We consider the dynamics of actions on homogeneous spaces of algebraic groups, and propose to tackle a wide range of problems in the area, including the central open problems.
One main focus in our proposal is the study of the intriguing and somewhat subtle rigidity properties of higher rank diagonal actions. We plan to develop new tools to study invariant measures for such actions, including the zero entropy case, and in particular Furstenberg's Conjecture about -invariant measures on .
A second main focus is on obtaining quantitative and effective equidistribution and density results for unipotent flows, with emphasis on obtaining results with a polynomial error term.
One important ingredient in our study of both diagonalizable and unipotent actions is arithmetic combinatorics. Interconnections between these subjects and arithmetic equidistribution properties, Diophantine approximations and automorphic forms will be pursued.
Name | Role |
---|---|
Elon Lindenstrauss | PI |
Ron Mor | PhD student |
Omri Solan | PhD student |
Zvi Shem-Tov | Postdoc |
Andreas Wieser | Postdoc |
Taehyeong Kim | Postdoc |
Name | Role in project | Current position |
---|---|---|
Weikun He | postdoc | Assoc. Prof. Chinese Academy of Sciences, Beijing |
Or Landesberg | PhD student | Gibbs Assistant Prof. at Yale |
Daren Wei | postdoc | Assistant Prof. at NUS |
Erez Nesharim | postdoc | Assistant Prof. at Technion |
Tsviqa Lakrec | PhD student | Postdoc at UZH |
under constructions