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This paper is the 10th in a sequence on the structure of sets of solutions to systems of
equations over groups, projections of such sets (Diophantine sets), and the structure

of definable sets over few classes of groups. In the 10th paper we study the first order

theory of free products of arbitrary groups. With a given (coefficient-free) predicate,
we associate (non-canonically) a finite collection of graded resolutions. These graded

resolutions enable us to reduce uniformly an arbitrary coefficient-free sentence over

a free product to a finite disjunction of conjunctions of sentences over the factors
of the free product. The graded resolutions enable a uniform quantifier elimination

over free products, where a coefficient-free predicate (over free products) is shown
to be equivalent to a predicate in an extended language, that contains finitely many

quantifiers over the factors of the free product, and only 3 quantifiers over the ambient

free product.
These uniform reductions allow us to answer affirmatively a question of R. Vaught

on the elementary equivalence of free products of pairs of elementarily equivalent

groups, and to obtain a generalization of Tarski’s problem on the elementary equiv-
alence of non-abelian free groups. Finally, we use the resolutions that are associated

with a predicate over free products, to prove that the free product of stable groups
is stable, generalizing the main theorem of [Se9] on the stability of free groups.

In the first 6 papers in the sequence on Diophantine geometry over groups we
studied sets of solutions to systems of equations in a free group, and developed
basic techniques and objects that are required for the analysis of sentences and
elementary sets defined over a free group. The techniques we developed, enabled
us to present an iterative procedure that analyzes EAE sets defined over a free
group (i.e., sets defined using 3 quantifiers), and shows that every such set is in the
Boolean algebra generated by AE sets ([Se6],41), hence, we obtained a quantifier
elimination over a free group.
In the 7th paper in the sequence we generalized the techniques and the results from
free groups to torsion-free hyperbolic groups, and in the 8th paper we used the
techniques that were developed for quantifier elimination to prove that the elemen-
tary theories of free and torsion-free hyperbolic groups are stable. In the 9th paper
in the sequence we studied definable equivalence relations over free and hyperbolic
groups, proved that 3 basic families of equivalence relations are imaginaries (non-
reals), and finally proved a geometric elimination of imaginaries when sorts are
added for these 3 basic imaginaries.

In this paper we study the first order theory of free products of arbitrary groups.
In a joint work with E. Jaligot [Ja-Se] we started this study, by analyzing the set of
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solutions to systems of equations over an arbitrary free product. For that purpose,
we used limit groups over free products, and with each system of equations, or
alternatively, with each f.p. group, we have associated (non-canonically) a Makanin-
Razborov diagram over free products. This Makanin-Razborov diagram encodes the
set of solutions to the finite system of equations over an arbitrary free product, or
alternatively describes all the quotients of a given f.p. group that are free products.

We start this paper by studying systems of equations with parameters (section 1).
We generalize the notion of a graded limit group from free groups to free products,
and then define rigid and (weakly) solid limit groups over free products, generalizing
the corresponding notions over free and hyperbolic groups. Unfortunately, the
boundedness results that were proved in [Se3] for the number of rigid and strictly
solid families of homomorphisms over free and hyperbolic groups, can no longer be
valid over free products. However, we manage to prove a combinatorial boundedness
for rigid and (weakly) strictly solid families (theorems 1.14 and 1.15), that plays
an essential role in studying the first order theory of free products, successfully
replacing the strong boundedness results of [Se3].

In section 2 we prove a general form of Merzlyakov theorem (over free groups)
on the existence of formal solutions for sentences and predicates over varieties that
are defined over free products. In particular, we show how to associate (non-
canonically) a formal Makanin-Razborov diagram with a given AE sentence or
predicate over free products, generalizing the results of [Se2] over free groups.

In section 3 we start studying sentences and predicates over free products. In
section 3 we study AE sentences. The strategy that was used to study such sen-
tences over free groups in [Se4] can not be applied over free products, hence, we use
a modification of it that uses the tools that were constructed in the first 2 sections
and in [Ja-Se]. In section 4 we study AE sets (predicates), and further apply it to
study EAE sets and sentences. In section 5 we study AEAE sets and sentences,
and finally, in section 6 we study general definable sets and sentences over arbitrary
free products.

In theorem 6.1, we associate (non-canonically) finitely many graded resolutions
with a given coefficient-free predicate over free products. This finite collection of
resolutions is non-canonical, but it is universal, and it is good for all non-trivial
free products apart from the infinite dihedral group, D∞. In principle, the finite
collection of resolutions enables one to reduce a sentence or a predicate from an
ambient free product to its factors. Indeed, in theorem 6.3, we show that any
given coefficient-free sentence over free products is equivalent to a finite disjunction
of conjunctions of (coefficient-free) sentences over the factors of the free product.
Furthermore, any given coefficient-free predicate over free products is equivalent
to a coefficient-free predicate in an extended language, that involves finitely many
quantifiers over the factors of the free product, and only 3 quantifiers over the
ambient free product. Note that since the resolutions that we associated with a
coefficient-free predicate are universal, the reduction of sentences and predicates
from the ambient free product to its factors is uniform, i.e., it is good for all free
products, and it does not depend on any particular given one.

The uniform reduction of sentences and predicates, and the resolutions that are
associated with a given (coefficient-free) predicate, enable us to prove some basic
results on the first order theory of free products in the next sections. In [Fe-Va] S.
Feferman and R. Vaught studied the first order properties of certain products of
structures. Their methods, that look at the cartesian product of given structures,
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do not cover free products of groups (as they indeed indicated in their paper). This
and his work with A. Tarski, led R. L. Vaught to ask the question that we answer
in the beginning of section 7:

Theorem 7.1. Let A1, B1, A2, B2 be groups. Suppose that A1 is elementarily equiv-
alent to A2, and B1 is elementarily equivalent to B2. Then A1 ∗B1 is elementarily
equivalent to A2 ∗ B2.

The existence of graded resolutions that are associated with a given sentence over
free products enables one to prove the following theorem, that generalizes Tarski’s
problem for free groups.

Theorem 7.2. Let A, B be non-trivial groups, and suppose that either A or B
is not Z2. Let F be a (possibly cyclic) free group. Then A ∗ B is elementarily
equivalent to A ∗ B ∗ F .

The resolutions that are associated with coefficient-free predicates and sentences
over free products, that enable a uniform reduction from the ambient free product
to its factors, allow us to prove other uniform properties of sentences over free
products.

Theorem 7.3. Let Φ be a coefficient free sentence over groups. There exists an
integer, k(Φ), so that for every group, H, Φ is a truth sentence over H1∗. . .∗Hk(Φ),
Hi ≃ H, if and only if Φ is a truth sentence over H1 ∗ . . . ∗Hn, Hi ≃ H, for every
n ≥ k(Φ).

Note that the integer k(Φ) depends on the coefficient free sentence, Φ, but it
does not depend on the group, H. It is easy to see that k(Φ) can not be chosen to
be a universal constant, e.g., we can take Φm to be a sentence that specifies if the
number of conjugacy classes of involutions in the group is at least m. For such a
sentence, Φm, k(Φm) = m.

Theorem 7.3 can be further strengthened for sequences of groups. Let Φ be a
coefficient free sentence over groups. Given any sequence of groups, G1, G2, . . . , we
set M1 = G1, M2 = G1 ∗ G2, M3 = G1 ∗ G2 ∗ G3, and so on. The sentence Φ may
be truth or false on any of the groups (free products) Mi, i = 1, . . . . Here one can
(clearly) not guarantee that the sentence Φ is constantly truth or constantly false
staring at a bounded index (of the Mi’s). However, one can prove the following.

Theorem 7.4. There exists an integer c(Φ), so that for every sequence of groups,
G1, G2, . . . , the sentence Φ over the sequence of groups, M1 = G1, M2 = G1∗G2, . . .
may change signs (from truth to false or vice versa) at most c(Φ) times.

In section 8 we use the resolutions that are associated with a coefficient-free
predicate over free products, and combine them with a modification of the strategy
that was applied to prove the stability of free groups in [Se9], to prove that free
products of stable groups is stable.

Theorem 8.1. Let A and B be stable groups. Then A ∗ B is stable.

This question was brought to our attention by E. Jaligot, and was the main
reason for this entire work. In fact we prove a slightly stronger result, and show
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that a free product of a countable collection of groups that are uniformly stable, is
stable.

Theorem 8.7. Let G1, G2, . . . be a sequence of groups. Suppose that every sentence
Φ is uniformly stable over the sequence {Gi}. Then the countable free product,
G1 ∗ G2 ∗ . . . , is stable.

In section 9, we answer a question that we have learnt from I. Kazachkov [Ca-
Ka], and prove that the free product of two equationally Noetherian groups is
equationally Noetherian (theorem 9.1).

Finally, it is worth noting that our results for free products of groups, or slight
strengthenings of them that are still valid over groups, can be shown to be false for
free products of semigroups, using techniques of Quine [Qu] and Durnev [Du]. e.g.,
a free product of finite semigroups is in general unstable (although it is stable if
the finite semigroups happen to be groups). Hence, it seems that model theoretic
techniques that handle products of general structures, like the ones that were used
by Feferman and Vaught, can not suffice to analyze the elementary theory of free
products of groups.

We would like to thank I. Kazachkov, A. Ould-Houcine, G. Sabbagh, and espe-
cially E. Jaligot, for presenting to us some of the problems that are discussed in
this paper. We thank Mladen Bestvina and Mark Feighn for helpful conversations
around Tarski’s problem that influenced our approach to the problems discussed in
this paper, and Eliyahu Rips for convincing us to write the paper, and for many
discussions on future problems it suggests.

§1. Graded Limit Groups over Free Products

In [Ja-Se] we have studied systems of equations over free products. To do that
we generalized limit groups over free groups to limit groups over free products.
Limit groups over free products are equipped with an elliptic structure, i.e., with
a finite collection of conjugacy classes of some f.g. subgroups, that are supposed to
be mapped into elliptic elements in every homomorphism into a free product under
consideration.

With a limit group over free products we have associated a JSJ decomposition
over free products (theorem 11 in [Ja-Se]), that encodes all the abelian decom-
positions of such limit groups over non-elliptic abelian subgroups. Such a JSJ
decomposition is non-trivial if the limit group is not (entirely) elliptic, and not
abelian nor a 2-orbifold group.

We further proved a d.c.c. for limit groups over free products (theorem 13 in
[Ja-Se]), that proves that a strictly decreasing sequence of epimorphisms of limit
groups over free products that do not map elliptic elements into the trivial ele-
ment, terminate after finitely many steps. This d.c.c. which is weaker than the one
proved for limit groups over a free group (theorem 5.1 in [Se1]), is still sufficient
for constructing a Makanin-Razborov diagram for a limit group, or for a system of
equations over free products, and such a diagram is the final conclusion of [Ja-Se].

The Makanin-Razborov diagram over free products encodes all the homomor-
phism from a given f.p. group into free products, and hence, all the solutions of a
given system of equations over arbitrary free products. However, unlike the con-
struction of Makanin-Razborov diagrams over a free or a hyperbolic group, the
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construction of the diagram over free products does not give a canonical diagram,
but rather a collection of (strict) resolutions, that encode the entire set of homo-
morphisms into free products.

In this section we combine the construction of the Makanin-Razborov diagram
over free products, with the construction of the graded Makanin-Razborov diagram
over a free group, to construct a graded (relative) diagram over free products.

Let Σ(x, p) = 1 be a system of equations with (a tuple of) variables x and (a
tuple of) parameters p. With Σ(x, p) we naturally associate a f.p. group, G(x, p),
that is generated by copies of the variables x and parameters p, and the relations
are words that correspond to the equations of Σ(x, p). By theorem 21 in [Ja-
Se] with the f.p. group G(x, p) we associate (canonically) a finite collection of its
maximal limit quotients (over free products), (L1(x, p), EL1

), . . . , (Lt(x, p), ELt
).

We continue with each of these limit groups in parallel, and denote such a limit
group (over free products), (L(x, p), EL).

With the limit group (L(x, p), EL) we associate (canonically) a graded (relative)
JSJ decomposition over free products (see theorem 11 in [Ja-Se]), that encodes
all the splittings of (L(x, p), EL) over trivial and non-elliptic abelian subgroups,
in which the parameter subgroup < p > is elliptic (i.e., contained in a vertex
group). Like over a free or a hyperbolic group, and in a similar way to the un-
graded case, with the graded JSJ decomposition (over free products), we naturally
associate a graded modular group (over free products), GMod(x, p), of the limit
group (L(x, p), EL). Given the graded limit group (L(x, p), EL) and its graded
modular group, GMod(x, p), we naturally associate with (L(x, p), EL) a collection
of shortening quotients.

As over free and hyperbolic groups, and unlike the ungraded (non-relative) case,
it may be that the graded virtually-abelian JSJ decomposition of a graded limit
group (over free products), (L(x, p), EL), is trivial. By construction, a shortening
quotient of a graded limit group (L(x, p), EL) is a quotient of L(x, p). In the
ungraded case (over free products) a shortening quotient is always a proper quotient,
or it is entirely elliptic. As in the free and hyperbolic case a shortening quotient
may be isomorphic to the original limit group L(x, p), even when it is not entirely
elliptic.

Definition 1.1. Let (L(x, p), EL) be a graded limit group over free products. If the
graded (virtually abelian) JSJ decomposition of (L(x, p), EL) over free products is
trivial, we say that L(x, p) is rigid. If the following 3 conditions hold:

(1) (L(x, p), EL) admits no non-trivial free decomposition in which the parame-
ter subgroup < p >, and the elliptic subgroups in (L(x, p), EL), are elliptic.

(2) the graded JSJ decomposition of (L(x, p), EL) (over free products) is non-
trivial.

(3) (L(x, p), EL) has a graded shortening quotient which is isomorphic to L(x, p)
(as an abstract group), and this shortening quotient is not entirely elliptic.

We say that (L(x, p), EL) is solid.

As in the case of free and hyperbolic groups, and unlike the ungraded case, asso-
ciating shortening quotients with rigid and solid limit groups (over free products)
is not helpful (in order to construct a diagram that encodes all the homomorphisms
of a given graded limit group over free products). Like in the cases of free and
hyperbolic groups, to analyze the collection of homomorphisms that factor through
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a given rigid or solid limit group, we need to associate with such a graded limit
group a finite collection of flexible quotients.

Definition 1.2. Let (L(x, p), EL) be either a rigid or a solid graded limit group
(over free products). If L is a group of rank at most d, then with L we can associate
a sequence of f.p. approximating subgroups Fd → G1 → G2 → . . . , so that Gm

converges into L, and the abelian JSJ decomposition over free products of L lifts to
abelian decompositions of the f.p. groups Gm. We fix generating sets of the groups
Gm, and of the rigid or solid limit group, (L, EL), that is obtained from a generating
set of the free group, Fd.

Given these generating sets, we associate Cayley graphs with each of the f.p.
groups Gm, and with (L, EL). Let {hm : Gm → A1

m ∗ . . . ∗ Aℓ
m} be a sequence of

homomorphisms that converges into a quotient of the limit group over free products,
(L, EL). With each free product, A1

m ∗ . . . ∗ Aℓ
m, we naturally associate the pointed

Bass-Serre tree, (Tm, tm), that is associated with the free product ((Tm, tm) is dual
to a finite tree of groups, having one vertex with trivial stabilizer, and ℓ vertices
connected to it with stabilizers, A1

m, . . . , Aℓ
m). We denote by dTm

the (simplicial)
metric on the tree Tm. We say that the sequence of homomorphisms, {hm}, is a
flexible sequence if one of the following holds:

(i) each homomorphism hm can not be shortened (as measured in the trees Tm)
by an element from the graded modular group (over free products) of the
group Gm, (that lifts the graded modular group of the rigid or solid limit
group L(x, p)).

(ii) for each index m, let B1 be the ball of radius 1 in the Cayley graph Xm of
the f.p. Gm. Then:

max
g∈B1

dTm
(hm(g)(tm), tm) > m · (1 + max

1≤j≤u
dTm

(hm(pj)(tm), tm)).

where p1, . . . , pu is a fixed generating set of the parameter subgroup < p >
in Gm, which is the image of this subgroup in Fd.

A graded limit group (over free products) which is the limit of a flexible sequence
is called a flexible quotient of the rigid or solid graded limit group (L(x, p), EL).

As in the free group case, the following are immediate properties of flexible
quotients.

Lemma 1.3. Let (Flx(x, p), EF ) be a flexible quotient (over free products) of the
rigid or solid graded limit group (over free products) (L(x, p), EL). Then:

(i) (Flx(x, p), EF ) is not a rigid limit group (over free products), and is not
entirely elliptic.

(ii) (Flx(x, p, a), EF) is a proper quotient of (L(x, p), EL).

Proof: Identical to lemma 10.4 in [Se1].
�

Let (L(x, p), EL) be a rigid or solid limit group over free products. As over
(ungraded) limit groups over free products, on the set of flexible quotients of
(L(x, p), EL) we can naturally define a partial order and an equivalence relation,
similar to the ones defined on limit groups (over free products) in [Ja-Se]. By the
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same argument that is used to prove proposition 20 in [Ja-Se], the set of flexible
quotients of (L(x, p), EL) contains maximal elements with respect to the partial
order. Theorem 1.4 proves that there are at most finitely many maximal flexible
quotients of a rigid limit group over free products.

Proposition 1.4. Let (L(x, p), EL) be a rigid limit group over free products. Then
there exist only finitely many maximal flexible quotients of (L(x, p), EL) (up to
equivalence).

Furthermore, recall that with the (rigid) limit group over free products, (L, EL),
we can naturally associate finitely many elliptic subgroups, E1, . . . , Er. Each max-
imal flexible quotient of the rigid limit group, (L, EL), can be embedded in an (un-
graded) completion, Comp, where the completion, Comp, is obtained from the ellip-
tic subgroups of the rigid limit group, (L, EL), E1, . . . , Er, by adding finitely many
generators and relations.

Proof: Identical to the proof of theorem 21 in [Ja-Se].
�

Note that in case a rigid limit group, (L, EL), is finitely presented, theorem 1.4
implies that each maximal flexible quotient of (L, EL) can be embedded into a f.p.
completion (with f.p. terminal elliptic subgroups).

Theorem 1.4 proves that rigid limit groups over free products have finitely many
maximal flexible quotients. For solid limit groups (over free products) we prove a
slightly weaker statement. We do not prove the existence of finitely many maximal
flexible quotients of a solid limit group, but instead we prove the existence of finitely
many covers of flexible quotients, that cover all the flexible quotients of the solid
limit group (see theorem 24 in [Ja-Se] for a cover of a limit quotient of a limit group
over free products).

Proposition 1.5. Let (L(x, p), EL) be a solid limit group over free products. Then
there exists a finite collection of covers of maximal flexible quotients of (L(x, p), EL),
so that:

(1) each cover is a proper quotient of (L(x, p), EL).
(2) each cover has a non-trivial graded JSJ decomposition over free products.
(3) let E1, . . . , Er be the elliptic subgroups of (L, EL). Then each cover can

be embedded in an (ungraded) completion that is obtained from the elliptic
subgroups of (L, EL), E1, . . . , Er, by adding finitely many generators and
relations.

(4) every flexible quotient of (L(x, p), EL) is dominated by at least one of the
covers from the finite collection.

(5) let hn : L(x, p) → A1
n ∗ . . . ∗ Aℓ

n be a sequence of homomorphisms that
converges into a flexible quotient of (L(x, p), EL). Then there exists a sub-
sequence of the homomorphisms {hn} that do all factor through one of the
covers from the fixed finite collection of covers.

Proof: Identical to the proof of theorem 25 in [Ja-Se].
�

As in the case of free groups, having defined flexible quotients over free products,
we are able to define flexible homomorphisms, and rigid and solid homomorphisms.
Since a limit group over free products is in general f.g. and not necessarily finitely
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presented, for rigid and solid limit groups we define both rigid and solid homo-
morphisms that factor through the (rigid or solid) limit group, and asymptotically
rigid or solid sequences of homomorphisms that converge to limit groups that are
dominated by the rigid or solid limit group.

Definition 1.6. Let (Rgd(x, p), ER) be a rigid limit group over free products, and
let:

(Flx1(x, p), EF1
), . . . , (Flxv(x, p), EFv

)

be the maximal flexible quotients of it. A homomorphism h : Rgd(x, p) → A1 ∗
. . . ∗Aℓ that does not factor through any of the maximal graded flexible quotients of
(Rgd(x, p), ER) is called a rigid homomorphism (specialization) of the rigid limit
group (Rgd(x, p), ER). A homomorphism of (Rgd(x, p), ER) into a free product
that does factor through one of the maximal flexible quotients is called a flexible
homomorphism (specialization).

Suppose that the rank of the rigid limit group, (Rgd, ER), is at most d. A se-
quence of homomorphisms, {hn : Fd → A1

n ∗ . . . ∗ Aℓ
n}, that converges to a limit

quotient (U, EU) of (Rgd, ER) is called asymptotically rigid for (Rgd, ER), if the
limit group (U, EU) is not dominated by any of the flexible quotients of (Rgd, ER),
i.e., if there is no epimorphism τ : (Flx, EF ) → (U, EU), where (Flx, EF ) is one
of the flexible quotients of (Rgd, ER). A sequence of homomorphisms {hn : Fd →
A1

n ∗ . . . ∗ Aℓ
n}, that converges to a limit quotient (U, EU) of (Rgd, ER) that is not

asymptotically rigid is called asymptotically f lexible.

Definition 1.7. Let (Sld(x, p), ES) be a solid limit group over free products. With
(Sld(x, p), ES) we associate a (fixed) finite collection of covers that satisfies the con-
clusion of proposition 1.5. A homomorphism h : Sld(x, p) → A1 ∗ . . .∗Aℓ for which
h = h′ ◦ϕ where h′ factors through one of the covers from the fixed finite collection
of covers that is associated with (Sld(x, p), ES), and ϕ is a graded modular automor-
phism (over free products) of (Sld(x, p), ES), is called a flexible homomorphism
(specialization) of the solid limit group (Sld(x, p), ES) (with respect to the given
finite collection of covers).

A non-flexible homomorphism h : Sld(x, p) → A1 ∗ . . . ∗ Aℓ is called a solid
homomorphism (specialization) of the solid limit group (over free products) (Sld(x, p), ES)
(with respect to the fixed finite collection of covers).

Suppose that the rank of the solid limit group, (Sld, ES), is at most d. With
(L, EL) we can associate a sequence of f.p. groups, Fd → G1 → G2 . . . , that con-
verges into Sld, so that the graded abelian decomposition of Sld lifts to abelian de-
compositions of the f.p. groups {Gn}. A sequence of homomorphisms {hn : Gn →
A1

n ∗ . . . ∗ Aℓ
n}, that converges to a limit quotient (U, EU) of (Sld, ES) is called

asymptotically solid for (Sld, ES), if there is no subsequence of homomorphisms
(still denoted) {hn}, and automorphisms {ϕn} from the graded modular automor-
phisms of the groups {gn}, so that the sequence {hn ◦ ϕn : Gn → A1

n ∗ . . . ∗ Aℓ
n}

converges into a limit quotient of one of the covers that are associated with (Sld, ES)
according to theorem 1.5.

A sequence of homomorphisms {hn : Gn → A1
n ∗ . . . ∗ Aℓ

n}, for which there are
automorphisms, {ϕn}, so that hn ◦ ϕn converges to a limit quotient of one of the
covers that are associated with (Sld, ES) is called asymptotically f lexible.
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As in the case of free groups, flexible quotients of rigid and solid limit groups over
free products contain all the ”generic infinite families” of homomorphisms (into free
products) of these graded limit groups. Rigid solutions of rigid limit groups over
free products are the exceptional solutions, and solid solutions of solid limit groups
are the exceptional families of solutions.

Proposition 1.8. Let (Rgd(x, p), ER) be a rigid limit group, and let (Sld(x, p), ES)
be a solid limit group. With (Sld(x, p), ES) we associate a (fixed) finite collection
of covers that satisfies the conclusion of proposition 1.5. Let p0 be a specialization
of the defining parameters p. Let x1, . . . , xf be a fixed generating set of Rgd or
Sld, and let p1, . . . , pu be a fixed generating set for the parameter subgroup < p >.
Then there exists a constant c(p0) so that:

(i) let h : Rgd(x, p) → A1 ∗ . . . ∗Aℓ be a rigid homomorphism for which h(p) =
p0. With the free product A1 ∗ . . . ∗ Aℓ we associate its pointed Bass-Serre
tree (T, t). Then:

max
1≤i≤f

dT (h(xi)(t), t) < c(p0) · max
1≤j≤u

dT (h(pj)(t), t)

Note that the constant c(p0) depends on the parameter p0, but not on the
rigid homomorphism h.

(ii) let h : Sld(x, p) → A1∗. . .∗Aℓ be a solid homomorphism for which h(p) = p0

with respect to the given finite collection of covers that is associated with
(Sld(x, p), ES). With the free product A1 ∗ . . . ∗ Aℓ we associate its pointed
Bass-Serre tree (T, t). Then there exists a graded modular automorphism
(over free products) of the solid limit group Sld(x, p), ϕ, so that h = h′ ◦ϕ,
and:

max
1≤i≤f

dT (h′(xi)(t), t) < c(p0) · max
1≤j≤u

dT (h′(pj)(t), t)

Proof: Similar to the proof of proposition 10.7 in [Se1].
�

In studying the first order theory of free and hyperbolic groups, it was essential to
strengthen the finiteness of the number of rigid and solid families of specializations
for any given value of the defining parameters, to a global bound on the number of
rigid and strictly solid families (these bounds were proved in [Se3]).

Over free products the number of rigid or families of solid solutions for a given
value of the defining parameters is not finite in general, hence, we can’t expect a
strong form of global boundedness. One way to generalize the boundedness results
from free and hyperbolic groups would be to prove that the constant, c(p0), that
appears in the formulation of proposition 1.8 can be taken to be uniform, i.e.,
independent of the specific value of the parameters p0. This can indeed be done,
but it won’t suffice to analyze first order predicates and sentences over free products.

To analyze predicates over free products, we look for a different (stronger) type
of generalization of proposition 1.8. We show that in an appropriate sense, the
collection of rigid and solid families of homomorphisms, is contained in boundedly
many families, where the bound on the number of families does not depend on the
specific value of the defining parameters. Furthermore, these families can be defined
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using certain (AE like) predicates, that are crucial in proving a form of quantifier
elimination over free products.

Our strategy to define these families and the uniform bound on their number
generalizes the argument that was used in [Se3] to prove a uniform bound on the
number of rigid and strictly solid families (over a free group). We start by proving
combinatorial boundedness for rigid and (shortest) solid specializations, which is
similar to the one that was proved in section 1 of [Se3], and then use this combi-
natorial boundedness to prove the existence of a uniform bound on the number of
rigid and strictly solid families of homomorphisms.

In principle, the combinatorial bound we are looking for is showing that there
exist finitely many (combinatorial) ways to cut the specializations of the defining
parameters, and finitely many words in these pieces (fractions), so that the spe-
cializations of the (given) generating set of a rigid or solid limit group inherited
from any rigid or (shortest) solid specialization, can be presented as one of these
(finitely many) words in fractions of the specializations of the defining parameters.

To prove such a combinatorial bound, we actually prove a stronger result (cf. the-
orems 1.2 and 1.7 in [Se3]). To state the stronger statement we need the notion of
an R-P -covered (graded) homomorphism.

Let X be the Cayley graph of a rigid or solid limit group (over free products),
Rgd(x, p) or Sld(x, p), with respect to the generating system Rgd(x, p) =< x, p >
(or Sld(x, p) =< x, p >). Let h : Rgd(x, p) → A1 ∗ . . . ∗ Aℓ (or h : Sld(x, p) →
A1 ∗ . . . ∗ Aℓ) be a homomorphism, and and let (T, t) be the pointed Bass-Serre
tree that corresponds to the free product A1 ∗ . . .∗Aℓ. Clearly, the homomorphism
h corresponds to a natural equivariant map τ : X → T , where each edge in X is
mapped to a (possibly degenerate) path in T .

Definition 1.9. Let BR be the ball of radius R in the Cayley graph X of Rgd(x, p)
(or Sld(x, p)). We say that a homomorphism h : Rgd(x, p) → A1 ∗ . . . ∗ Aℓ (or
h : Sld(x, p) → A1 ∗ . . .Aℓ) is R-P -covered, if the image in T of the union of edges
labeled by an element of {p} in BR covers the entire image in T of the ball B1.

As over free groups (theorem 1.2 in [Se3]), to control the combinatorial types
of rigid solutions over free products, we need the following basic theorem, that
bounds combinatorially the structure of rigid solutions (specializations) of a rigid
limit group (over free products).

Theorem 1.10. Let Rgd(x, p) be a rigid limit group over free products. There
exists a constant R0 so that every rigid homomorphism h : Rgd(x, p) → A1∗ . . .∗Aℓ

is R0-P -covered.

Proof: Identical to the proof of theorem 1.2 in [Se3].
�

As over free groups, to state a similar theorem for (shortest) solid homomor-
phisms, we first need to define strictly solid homomorphisms of a f.p. solid limit
group (over free products) with respect to a given finite collection of covers of its
flexible quotients (see proposition 1.5). The definition we present is similar to the
definition of strictly solid homomorphisms over free groups that are defined in def-
inition 1.5 in [Se3]. Strictly solid homomorphisms, and their families, are the ones
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that needed to be considered in analyzing first order predicates over free products.

Definition 1.11. Let (Sld(x, p), ES) be a solid limit group over free products, and
let:

(CFlx1(x, p), E1), . . . , (CFlxs(x, p), Es)

be a finite collection of covers that satisfies the conclusion of proposition 1.5.
With each cover, (CFlx(x, p), E), we associate a natural one step resolution

given by the quotient map: Sld(x, p) → CFlx(x, p), and the graded abelian JSJ
decomposition over free products of the solid limit group (Sld(x, p), ES), ΛS. Given
the one step resolution, we associate with it the entire collection of homomorphisms
(into free products) that factor through the one step resolution, and the limit group
corresponding to that collection that we denote (Q(x, p), EQ), which is a quotient
of the solid limit group (Sld(x, p), ES).

The limit group Q(x, p) inherits a graded abelian decomposition over free prod-
ucts, ∆Q, from the graded abelian decomposition of the solid limit group (Sld(x, p), ES),
which is in general either similar to the abelian decomposition ΛS (i.e., it has iso-
morphic QH and abelian vertex and edge groups, and the other (rigid) vertex groups
in ∆Q are quotients of the corresponding ones in ΛS), or it is a degeneration of the
abelian decomposition ΛS, that is associated with (Sld(x, p), ES). By construction,
the one step resolution given by the quotient map Q(x, p) → CFlx(x, p), and the
graded abelian decomposition ∆Q of Q(x, p), is a strict resolution.

With the one step, strict (well-structured) resolution Q(x, p) → CFlx(x, p, a),
with the abelian decomposition ∆Q, we associate its completion, according to the
construction that appears in definition 1.12 of [Se2]. We denote the obtained com-
pletion, CompCFlx.

By the construction of the completion, CompCFlx, the solid limit group (Sld(x, p), ES)
is naturally mapped into it (onto the subgroup that is associated with its top level,
that is isomorphic to (Q(x, p), EQ)). Let τ : Sld(x, p) → CompCFlx be this natural
map.
A homomorphism, h : Sld(x, p) → A1 ∗ . . . ∗ Aℓ, of the solid limit group over free
products, (Sld(x, p), ES), is called a strictly solid homomorphism (specialization)
if it is non-degenerate (definition 11.1 in [Se1]), and for every index i, 1 ≤ i ≤ s, it
does not factor through the homomorphisms τi : Sld(x, p) → CompCFlxi

. Note that
a strictly solid specialization is, in particular, a solid specialization (with respect to
the given finite collection of covers).

Solid limit groups over free products may be infinitely presented. For complete-
ness, and since it will be required in the next sections, we further associate with a
solid limit group its collection of asymptotic strictly solid sequences of homomor-
phisms.

Definition 1.12. Let (Sld(x, p), ES) be a solid limit group over free products, Sup-
pose that the rank of the solid limit group, (Sld, ES), is at most d. With (L, EL) we
can associate a sequence of f.p. groups, Fd → G1 → G2 . . . , that converges into Sld,
so that the graded abelian decomposition of (Sld, ES) lifts to abelian decompositions
of the f.p. groups {Gn}. With each f.p. group Gn we can formally associate the
completion, Compn, of the identity map, Gn → Gn (note that Gn is not a limit
group over free products, but only its abelian decompositions (that lifts the one of
(Sld, ES) is needed for defining the completion).
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A sequence of homomorphisms {hn : Gn → A1
n ∗ . . . ∗ Aℓ

n}, that converges to
a limit quotient (U, EU) of (Sld, ES) is called asymptotically strictly solid for
(Sld, ES), if there is no subsequence of homomorphisms (still denoted) {hn}, and
homomorphisms {un : Gn → A1

n ∗ . . . ∗ Aℓ
n}, so that for each index n the pair

of homomorphisms, (hn, un), extends to a homomorphism, τn : Compn → A1
n ∗

. . . ∗ Aℓ
n, where the restrictions of τn to the two copies of Gn in Compn are the

homomorphisms hn and un, and so that the sequence {un} converges into a limit
quotient of one of the covers that are associated with (Sld, ES) according to theorem
1.5.

Like over free groups, and in a similar way to the combinatorial boundedness of
rigid homomorphisms, in theorem 1.13 we state the existence of a combinatorial
bound for strictly solid homomorphisms that are the shortest in their solid family.

Theorem 1.13. Let (Sld(x, p), ES) be a solid limit group, and let: (CFlx1, E1), . . . , (CFlxs, Es)
be a finite collection of covers of flexible quotients of (Sld, ES) that satisfies the con-
clusion of proposition 1.5. Then there exists a constant R0 so that every strictly
solid homomorphism h : Sld(x, p, a) → Fk which is among the shortest in its solid
family, is R0-P -covered.

Proof: Identical to the proof of theorem 1.7 in [Se3].
�

So far we generalized the combinatorial boundedness of rigid and shortest strictly
solid homomorphisms from free and hyperbolic groups to the context of rigid and
solid limit groups over free products, i.e., we showed that rigid and (shortest) strictly
solid homomorphisms over free products of a given f.p. rigid or solid limit group
(over free products) are R0-P -covered, for some constant R0 that depends only on
the rigid or solid limit group.

Over free and hyperbolic groups we were able to use this combinatorial bound-
edness to obtain a global bound on the number of rigid and families of strictly solid
homomorphisms for any given value of the defining parameters (theorems 2.5 and
2.9 in [Se3]). Over free products such a global bound can not exist. However, once
we define appropriately families of rigid and strictly solid homomorphisms over free
products, it is possible to use the combinatorial bounds to obtain a global (uniform)
bound on the number of rigid and strictly solid families, a bound that suffices for
the analysis of first order predicates over free products in the next sections.

Theorem 1.14. Let (Rgd(x, p), ER) be a rigid limit group over free products, gen-
erated by x1, . . . , xs and so that the parameter subgroup is generated by p1, . . . , pu.
Let (Flx1, E1), . . . , (Flxt, Et) be the set of maximal flexible quotients of (Rgd(x, p), ER)
(see proposition 1.4).

There exist finitely many (combinatorial) systems of fractions of the defining
parameters (that depend only on the rigid limit group (Rgd(x, p), ER)):

p1 = v1 . . . vi1 , p2 = vi1+1 . . . vi2 , . . . , pu = viu−1+1 . . . viu

xj = xj(v1, . . . , viu
, a1, . . . , af ) j = 1, . . . , s.

(where the indices i1, . . . , iu and the words x1, . . . , xs may depend on the system of
fractions), so that:

(i) with each triple consisting of a fixed free product, A1 ∗ . . . ∗ Aℓ, a value
of the defining parameters p0 from the free product A1 ∗ . . . ∗ Aℓ, and a
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(combinatorial) system of fractions (one out of the finitely many possible
ones), there is either a unique or no associated values of the fractions,
v1, . . . , viu

(that are all taken from A1 ∗ . . . ∗ Aℓ).
(ii) for each rigid homomorphism: h : Rgd(x, p) → A1 ∗ . . . ∗ Aℓ, that satisfies

h(p) = p0, there exist at least one of the (finitely many combinatorial) sys-
tems of fractions, so that the associated values of the fractions, v1, . . . , viu

(that depend only on p0 and the combinatorial system of fractions), together
with some elements, a1, . . . , af ∈ A1 ∪ . . . ∪ Aℓ, satisfy:

h(xj) = xj(v1, . . . , viu
, a1, . . . , af) j = 1, . . . , s.

Proof: By theorem 1.10 there exists some integer, R0, so that every rigid homo-
morphism is R0-P -covered. This implies the existence of finitely many combinato-
rial systems of fractions that have the properties that are listed in the theorem, i.e.,
that the values of a fixed generating set, x1, . . . , xs, under any given rigid homo-
morphism into a free product, are specified by fixed words that are associated with
the combinatorial systems, and these words are in terms of fractions of values of a
generating set of the parameter subgroup, p1, . . . , pu, and finite number of elements
from the factors of the free product.

To complete the proof of the theorem one is still required to show that for each
combinatorial system of fractions, there is a global bound bR (that does not depend
on the parameters value), so that for each free product, G = A1 ∗ . . .∗Aℓ, and each
given value of the parameters, p1, . . . , pu, in G, it possible to ”cut” the parameters
in finitely many ways to obtain the values of (the fractions), v1, . . . , viu

, to obtain
all the rigid specializations that are associated with the value of p1, . . . , pu, and
the number of ways we need to ”cut” the parameters to obtain the fractions, is
bounded by the global bound bR.

The existence of such a bounded follows from the proof of theorem 2.5 in [Se3].
Note that the argument that is used to prove theorem 2.5 in [Se3] proves exactly
the statement of theorem 1.13 (also in the case of free products), just that in the
case of free (or hyperbolic) groups this statement implies a bound on the number
of rigid specializations for each value of the defining parameters (theorem 2.5 in
[Se3]), and this can not be deduced (in general) over free products.

�

The bound on the number of rigid families of homomorphisms of a rigid limit
group over free products that is stated in theorem 1.14 has an analogue for strictly
solid families of homomorphisms of a solid limit group over free products.

Theorem 1.15. Let Sld(x, p) be a solid limit group over free products, generated
by x1, . . . , xs and so that the parameter subgroup is generated by p1, . . . , pu. Let
(CFlx1, E1), . . . , (CFlxt, Et) be a finite collection of covers of flexible quotients of
(Sld(x, p), ES) (see proposition 1.5).

There exist finitely many (combinatorial) systems of fractions of the defining
parameters (that depend only on the solid limit group (Sld(x, p), ES) and the fixed
collection of covers):

p1 = v1 . . . vi1 , p2 = vi1+1 . . . vi2 , . . . , pu = viu−1+1 . . . viu

xj = xj(v1, . . . , viu
, a1, . . . , af ) j = 1, . . . , s.
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(where the indices i1, . . . , iu and the words x1, . . . , xs may depend on the combina-
torial system of fractions), so that:

(i) with a triple that consists of a free product, A1 ∗ . . . ∗ Aℓ, a value of the
defining parameters p0 from the free product A1∗. . .∗Aℓ, and a combinatorial
system of fractions (one out of finitely many), there is either a unique or
no associated values of the fractions, v1, . . . , viu

(that are all taken from
A1 ∗ . . . ∗ Aℓ).

(ii) for each (almost) shortest strictly solid homomorphism: h : Sld(x, p) →
A1 ∗ . . . ∗Aℓ, that satisfies h(p) = p0, there exist at least one of (the finitely
many combinatorial) systems of fractions, so that the associated values of
the fractions, v1, . . . , viu

(that depend only on p0 and the combinatorial
system of fractions), together with some elements, a1, . . . , af ∈ A1∪. . .∪Aℓ,
satisfy:

h(xj) = xj(v1, . . . , viu
, a1, . . . , af) j = 1, . . . , s.

Proof: The existence of finitely many combinatorial systems of fractions that are
good for all almost shortest strictly solid specializations follows by theorem 1.11.
The existence of a global bound on the number of ”cuts” or fractions that are
needed in order to cover all the almost shortest specializations follows from the
proof of theorem 2.9 in [Se3].

�

Graded limit groups, their graded (relative) abelian JSJ decompositions (over
free products), their graded shortening quotients, and rigid and solid limit groups
and their flexible quotients, allow us to associate a graded Makanin-Razborov di-
agram over free products with any given f.p. group G(x, p). As in the ungraded
case, the diagram is not canonical, but as over free groups, it encodes all the ho-
momorphisms of the group G(x, p) into free products for all the possible values of
the parameters p.

To construct the graded Makanin-Razborov diagram over free products, we need
two basic objects, that were constructed and used in the ungraded case. First
given a f.p. group G(x, p) we need to associate with G(x, p) (or a quotient of it)
a collection of (well-structured) graded resolutions. Then given a well-structured
graded resolution we need to associate with it a cover that satisfies similar properties
to the cover of an ungraded resolution (see theorem 24 in [Ja-Se]). The entire
collection of covers of resolutions of G(x, p) should encode all the homomorphisms
of G(x, p) into free products, for every possible value of the defining parameters.
Finally, to construct the graded Makanin-Razborov diagram we will show that
there exist a finite collection of covers of graded resolutions through which all the
homomorphisms from the given graded limit group into free products do factor.

Proposition 1.16. Let G(x, p) be a f.g. group, and let L(x, p) be a limit quotient
of G(x, p) (over free products). Then there exists a finite sequence of limit groups
over free products:

L = L0(x, p) → L1(x, p) → L2(x, p) → . . . → Ls(x, p)

for which:

(i) non-trivial elliptic elements in Li are mapped to non-trivial elliptic elements
in Li+1, i = 1, . . . , s − 1.
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(ii) if Li is not rigid nor solid, then Li+1 is a shortening quotient of Li, for
i = 1, . . . , s − 1.

(iii) in case Li is a free product of a solid limit group with (possibly) elliptic
factors and (possibly) a free group, for some i < s, then Li+1 is a free
product of a quotient of one of the covers that are associated with the solid
factor (according to proposition 1.5) with (possibly) the same elliptic factors
and (possibly) the same free group, for i = 1, . . . , s − 1.

(iv) The epimorphisms along the sequence are proper epimorphisms.
(v) Ls is a free product of a rigid or a solid limit group with (possibly) some

elliptic factors and (possibly) a free group. With the rigid limit group (which
is a factor in Ls) we associate its finite collection of maximal flexible quo-
tients, and with a solid limit group (which is a factor of Ls), we associate a
finite collection of covers of its flexible quotients that satisfies the conclusion
of proposition 1.5.

(vi) the resolution: L0 → L1 → L2 → . . . → Ls is a graded strict resolution
([Se1],5), i.e., in each level non-QH, non-virtually-abelian vertex groups
and edge groups in the graded JSJ decomposition (over free products) are
mapped monomorphically into the limit group in the next level, and QH
vertex groups are mapped into non-virtually-abelian, non-elliptic subgroups).

(vii) the constructed resolution is well-structured (see definition 1.11 in [Se2] for
a well-structured resolution). As a corollary, the graded limit group (over
free products) L = L0 is embedded into the completion of the well-structured
resolution:

L0 → L1 → L2 → . . . → Ls

so that all the elliptic elements in L are mapped into conjugates of the
elliptic subgroups of the completion.

Proof: Given a sequence of homomorphisms {hn} of a given group G into free
products, A1

n ∗ . . . ∗Aℓ
n, that converges to a limit group (L, EL) over free products,

it is shown in theorem 18 of [Ja-Se] how to associate a strict resolution with a
subsequence of the sequence of homomorphisms. with the notions of graded limit
groups over free products, their graded abelian decompositions, rigid and solid
graded limit groups over free products, their flexible quotients, and asymptotically
rigid and strictly solid sequences, the construction of an (ungraded) resolution over
free products generalizes naturally to the construction of a graded resolution.

�

Proposition 1.16 associates graded resolutions with a f.g. group. In the ungraded
case, in order to associate a (non-canonical) Makanin-Razborov diagram over free
products with a given f.p. group, we have replaced each resolution of some limit
quotient (over free products) of the given f.p. group with a cover of that limit
quotient, and the entire resolution with a cover resolution, so that each cover reso-
lution has a f.p. completion (and terminates in a f.p. group). This existence of cover
resolutions enables one to show that it is sufficient to choose finitely many cover
resolutions, so that every homomorphism of the original (given) f.p. group into free
products factors through at least one of the finite (non-canonical) collection of cover
resolutions (see theorems 24-27 in [Ja-Se]).

Our approach to constructing a graded Makanin-Razborov diagram of a given
f.p. group G(x, p) is conceptually similar. However, we will need to modify the
notion of a cover resolution to the graded case. As our goal is to obtain a finite
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collection of (graded) covers so that for each value of the defining parameters the
homomorphisms of G(x, p) into free factors will factor through the given finite
collection, we need to define cover resolutions in a finite way, i.e., graded covers
should be embedded into f.p. completions (over free products). Also, we need to
define the covers of flexible quotients that are attached to (terminal) rigid and solid
limit groups in such a way that they can be embedded into f.p. completions. To
achieve these goals we need to slightly modify the definitions and the constructions
that we used, so that covers can be defined in a ”finite” way, and all our previous
results, especially those for rigid and solid limit groups remain valid.

Theorem 1.17. Let (Rgd(x, p), ER) be a rigid limit group over free products. Sup-
pose that (Rgd(x, p), ER) is a (rigid) limit quotient of a f.p. group, G(x, p), and let
{hn : G(x, p) → A1

n∗. . .∗A
ℓ
n} be an asymptotically rigid sequence of homomorphisms

(of Rgd) that converges into (Rgd(x, p), ER).
There exists an approximating rigid limit group of (Rgd(x, p), ER), that we de-

note (APRgd, EAPR), with the following properties:

(1) (Rgd, ER) is a quotient limit of (APRgd, EAPR). APRgd is a rigid limit
quotient of G(x, p) (over free products).

(2) there is an ungraded resolution (over free products) WRes, APRgd →
W1 → . . . → Ws, so that Ws is f.p. and there exists a subsequence of
homomorphisms, (still denoted) {hn}, that factor through this resolution.
In particular, the completion of the resolution WRes is f.p. and the approx-
imating limit group, (APRgd, EAPR), is embedded into this f.p. completion.

(3) with (APRgd, EAPR) we associate finitely many limit quotients (over free
products) of G(x, p), CF1, . . . , CFg, with ungraded resolutions (over free
products), Res1, . . . , Resg, that terminate in f.p. limit groups. Hence, the
completions of Res1, . . . , Resg are f.p. and the limit groups (over free prod-
ucts) , CF1, . . . , CFg, can be embedded in f.p. completions (that have f.p.
terminal limit groups).

(4) the finite collection of limit groups, CF1, . . . , CFg, are all limit quotients of
G(x, p), and they dominate all the flexible quotients of (APRgd, EAPR) (al-
though they need not be quotients of the rigid limit group (APRgd, EAPR)).
Furthermore, every flexible homomorphism of the rigid approximation, (APRgd, EAPR),
factors through at least one of the resolutions, Res1, . . . , Resg.

(5) from the subsequence of homomorphisms, {hn}, that factor through the res-
olution, WRes, it is possible to extract a subsequence that does not factor
through any of the limit groups over free products, CF1, . . . , CFg, and in
particular they do not factor through the resolutions, Res1, . . . , Resg. This
implies that the homomorphisms, {hn}, are rigid homomorphisms of the
rigid limit group (over free products) (APRgd, EAPR).

Proof: Let (Rgd, ER) be a rigid limit group over free products, and let {hn :
G(x, p) → A1

n ∗ . . . ∗ Aℓ
n} be a sequence of asymptotically rigid homomorphisms

that that converges into the rigid limit group over free products, (Rgd, ER).
By theorem 18 in [Ja-Se], starting with the sequence of homomorphisms, {hn},

we can pass to a subsequence, and associate with the rigid limit group over free
products, (Rgd, ER), a strict well-structured ungraded resolution, that we denote
Res, Rgd = W0 → W1 → . . . → Wt, so that Wt is the free product of (possibly)
finitely many elliptic factors and (possibly) a free group.
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We set CompW to be the completion of this ungraded resolution. Note that
CompW is generated by the terminal limit group Wt, in addition to finitely many
elements and relations. However, Wt may be not finitely presented.
We modify CompW by replacing Wt with a sequence of f.p. approximations of it.
Starting with CompW we define a sequence of completions, obtained by replacing
the terminal limit group (over free products) in CompW , Wt, with approximating
f.p. groups, that we denote Wm

t . These groups, Wm
t , are obtained by replacing

each of the elliptic factors of Wt, with a f.p. group that is generated by some fixed
generating set of the corresponding elliptic factor of Wt, and imposing only the
relations up to length m in this (fixed) generating set that are equal to the identity
in the corresponding factor of Wt. For every index m, Wt is a quotient of Wm

t ,
and for m large enough, the group obtained by replacing Wt with Wm

t in CompW ,
is a completion of a strict well-structured resolution (over free products), and we
denote the obtained completion, Compm

W .
Note that the approximating completions, Compm

W , are all finitely presented.
With Compm

W , we naturally associate an ungraded resolution over free products,
that we denote Resm, Wm

0 → Wm
1 → . . . → Wm

t . The limit groups over free
products, Wm

0 , . . . , Wm
t , are all embedded in the f.p. completion, Compm

W . The
limit groups (over free products), W0, . . . , Wt, are quotients of the limit groups
over free products, Wm

0 , . . . , Wm
t , in correspondence, and the direct limit of the

limit groups over free products, Wm
0 , . . . , Wm

t , are W0, . . . , Wt, in correspondence.
By construction, with each of the graded limit groups, Wi, there is an associ-

ated virtually abelian decomposition, which is the JSJ decomposition (over free
products) of Wi. By the construction of Compm

W , the JSJ decompositions of the
limit groups (over free products), Wi, lift to virtually abelian decompositions of the
(approximating) graded limit groups over free products, Wm

i .
By the proof of theorem 27 in [Ja-Se], for large enough index m, these virtually

abelian decompositions of the limit groups Wm
i (that are lifted from Wi) are their

JSJ decompositions over free products. Furthermore, by the same argument (that
appears in detail in the proof of theorem 27 in [Ja-Se]), for large enough m, the
graded JSJ decomposition of Wm

0 is trivial, which means that for large m, Wm
0 is

rigid.
So far we have shown that for large index m, the resolutions Resm and their

initial rigid limit group Wm
0 , satisfy properties (1) and (2) of the theorem. To get

the other parts, we first need to show that for large index m, there exists some index
nm, so that for every n > nm, the homomorphism hn is a rigid homomorphism of
the rigid limit group, Wm

0 .
The sequence of homomorphisms, {hn}, is an asymptotically rigid sequence of

homomorphisms with respect to the original rigid limit group, (Rgd, ER), and it
converges to (Rgd, ER). Since the completions, Compm

W , are finitely presented, for
each index m, there exists some index, am, so that for every n > am, the sequence
of of homomorphisms, {hn}, factor through Compm

W , and in particular through the
rigid limit group, Wm

0 .
Suppose that there exists a subsequence of indices, still denoted m, so that for

every index m, there is a subsequence of homomorphisms (where the subsequence
may depend on m), still denoted, {hn}, that are not rigid homomorphisms of Wm

0 ,
i.e., they factor through a flexible quotient of Wm

0 . In this case, the sequence of
homomorphisms, {hn}, converges into a flexible quotient of (Rgd, ER), a contra-
diction to (Rgd, ER) being rigid. Therefore, for large enough index m, there exists
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an index nm, so that the for every n > nm, the homomorphisms {hn} that do all
factor through Wm

0 , are rigid homomorphisms.
Furthermore, for large enough index m, Wm

0 is rigid, hence, we can associate with
Wm

0 its finite collection of maximal flexible quotients, (Flxm
1 , Em

F1
), . . . , (Flxm

v , Em
Fv(m)

)

(such a collection of maximal flexible quotients exists by proposition 1.4). If
there exists a subsequence of the indices m, so that the original rigid limit group,
(Rgd, ER), which is a limit quotient of Wm

0 , is a limit quotient of at least one of the
maximal flexible quotients of Wm

0 , then (Rgd, ER), can not be a rigid limit group,
a contradiction. Therefore, for m large enough, (Rgd, ER) is not a limit quotient
of any of the maximal flexible quotients of Wm

0 .
We pick such a large index m. Since (Rgd, ER) is not a limit quotient of any of

the maximal flexible quotients: (Flxm
1 , Em

F1
), . . . , (Flxm

v , Em
Fv(m)

), and since G(x, p)

maps epimorphically onto its maximal flexible quotients and onto (Rgd, ER), there
exist elements r1, . . . , rv(m) ∈ G(x, p), so that for each j, 1 ≤ j ≤ v(m), rj is either
mapped into non-trivial element in (Rgd, ER) and to the identity element in Flxm

j ,

or it is mapped into a non-elliptic element in (Rgd, ER), and to an elliptic element
in (Flxm

j , EF m
j

).

With each of the maximal flexible quotients, (Flxm
j , Em

Fj
), we associate its (un-

graded) Makanin-Razborov diagram according to theorem 27 in [Ja-Se]. Given
one of these flexible quotients, (Flxm

j , Em
Fj

), and a resolution that appears in its

(strict) ungraded Makanin-Razborov diagram, we take the completion of this reso-
lution, into which G(x, p) is mapped. We further take a f.p. approximation of this
completion into which G(x, p) is mapped as well. Clearly, we can choose the f.p.
approximation of the completion, so that the element rj ∈ G(x, p) is mapped either
to a trivial or to an elliptic element, depending whether it is mapped to a trivial or
to an elliptic element in (Flxm

j , Em
Fj

). Finally we set the groups, (CF1, . . . , CFg)

to be the images of G(x, p) in the corresponding f.p. completions of the resolution
in the (strict) ungraded Makanin-Razborov diagrams of the maximal flexible quo-
tients: (Flxm

1 , Em
F1

), . . . , (Flxm
v , Em

Fv(m)
). By construction, this finite collection of

limit groups with f.p. completions (and corresponding strict well-structured reso-
lution), together with the rigid limit group, Wm

0 , and its f.p. completion, satisfy
properties (1)-(5) of the theorem.

�

Theorem 1.17 associate (non-canonically) a rigid limit group that can be embed-
ded into a f.p. completion with any given rigid limit group over free products. To
construct a graded Makanin-Razborov diagram over free products we further need
to associate a limit group that can be embedded into a f.p. completion with any
given solid limit group. In order to associate similar limit groups with a solid limit
group over free products, we need to weaken the notion of a solid limit group, to a
weakly solid limit group.

Definition 1.18. Let (L(x, p), EL) be a graded limit group over free products. Sup-
pose that (L, EL) does not admit a non-trivial free decomposition in which the pa-
rameter subgroup, < p >, and all the elliptic subgroups of L(x, p) are elliptic (i.e.,
elliptic subgroups are contained in conjugates of the factors of the free decomposi-
tion). Let Λ be the graded virtually abelian JSJ decomposition of (L, EL) over free
products, and suppose that it is non-trivial.

Let GMod(L, EL) be the graded modular group of (L, EL) over free products.
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Even though (L, EL) need not be solid, with the graded limit group, (L, EL), we
can associate its collection of flexible quotients according to definition 1.2. Hence,
following the proof of proposition 1.5, with (L, EL) we can associate a finite col-
lection of covers that dominate all the flexible quotients of (L, EL), and satisfy the
properties of covers (that are associated with a solid limit group) that are listed in
proposition 1.5.

We say that a graded limit group over free products, (L(x, p), EL), that does
not admit a graded free decomposition over free products, and that has a non-trivial
graded JSJ decomposition, is weakly solid, if there exists a finite collection of covers
of the flexible quotients of L, (CF1, . . . , CFb), so that there are homomorphisms
of (L, EL) into free products that are weakly strictly solid, i.e., they can not be
extended to homomorphisms of any of the completions of the one step resolutions,
L → CFi (cf. definition 1.11).

Proposition 1.19. Let (L(x, p), EL) be a weakly solid limit group, and let (CF1, . . . , CFb),
be a finite collection of covers that dominate all the flexible quotients of (L, EL).
Then there exists a constant, R0, so that every (almost) shortest weakly strictly
solid homomorphism of (L, EL) into free products is R0-P -covered. Furthermore,
the conclusion of theorem 1.15 (for shortest strictly solid homomorphisms of a solid
limit group over free products) hold for weakly strictly solid homomorphisms of
(L, EL).

Proof: The same arguments that are used to prove proposition 1.8, and theorems
1.13 and 1.15 for strictly solid homomorphisms of a solid limit group (over free
products) remain valid for weakly strictly solid homomorphisms of a weakly solid
limit group.

�

The notion of weakly solid limit group, and the ability to generalize the bounds
on strictly solid homomorphisms of solid limit groups to weakly strictly solid homo-
morphisms of weakly solid limit groups, enable us to state an analogue of theorem
1.16 for approximations of solid limit groups over free products. Theorems 1.17
and 1.20 finally allow us to generalize the construction of the Makanin-Razborov
diagram over free products from the ungraded to the graded case.

Theorem 1.20. Let (Sld(x, p), ES) be a solid limit group over free products. Sup-
pose that (Sld(x, p), ES) is a (solid) limit quotient of a f.p. group, G(x, p), and
let {hn : G(x, p) → A1

n ∗ . . . ∗ Aℓ
n} be an asymptotically strictly solid sequence of

homomorphisms (of Sld) that converges into (Sld(x, p), ES).

There exists an approximating weakly solid limit group of (Sld(x, p), ES), (see
definition 1.18 for weakly solid) that we denote (WSld, EWS), with the following
properties:

(1) (Sld, ES) is a quotient limit of (WSld, EWS). WSld is a weakly solid limit
quotient of G(x, p) (over free products).

(2) there is an ungraded resolution (over free products) Res, WSld → V1 →
. . . → Vr, so that Vr is f.p. and there exists a subsequence of homomor-
phisms, (still denoted) {hn}, that factor through this resolution. In par-
ticular, the completion of the resolution Res is f.p. and the approximating
weakly solid limit group, (WSld, EWS), is embedded into this completion.
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(3) with (WSld, EWS) we associate finitely many limit groups (over free prod-
ucts), CF1, . . . , CFg, with ungraded resolutions (over free products), Res1, . . . , Resg,
that terminate in f.p. limit groups. Hence, the completions of Res1, . . . , Resg

are f.p. and the limit groups (over free products) , CF1, . . . , CFg, can be
embedded in f.p. completions (that have f.p. terminal limit groups).

(4) the finite collection of limit groups, CF1, . . . , CFg, are all limit quotients
of G(x, p), and they dominate (as quotients of the f.p. group G(x, p)) all
the flexible quotients of (WSld, EWS) (although they need not be quotients
of the weakly solid limit group (WSld, EWS)). Furthermore, for each ho-
momorphism f : WSld → A1 ∗ . . . ∗ Aℓ that is not weakly strictly solid,
there exists a homomorphism, u : WSld → A1 ∗ . . . ∗ Aℓ, such that the
pair, (f, u), extends to a homomorphism of the completion of the identity
resolution, WSld → WSld, and the homomorphism u as a homomorphism
of the f.p. group, G(x, p), factors through at least one of the resolutions,
Res1, . . . , Resg.

(5) from the sequence of homomorphisms, {hn}, it is possible to extract a sub-
sequence of weakly solid homomorphisms of the approximating solid limit
group, (WSld, EWS). Furthermore, for each homomorphism hn in this sub-
sequence, there does not exist a homomorphism, un : WSld → A1

n ∗ . . .∗Aℓ
n,

so that the pair of homomorphisms, (hn, un), extends to a homomorphism of
the completion of the one step identity resolution, WSld → WSld, and the
homomorphism un, as a homomorphism from the f.p. group G(x, p) (into
A1

n ∗ . . . ∗ Aℓ
n), factors through one of the limit groups: CF1, . . . , CFg.

Proof: The argument that we use follows the proof of theorem 1.17. Let (Sld, ES)
be a solid limit group, and let {hn : G(x, p) → A1

n ∗ . . . ∗ Aℓ
n} be a sequence of

asymptotically strictly solid homomorphisms that converges into the solid limit
group over free products, (Sld, ES).

Starting with the sequence of homomorphisms, {hn}, we can pass to a subse-
quence, and associate with the solid limit group over free products, (Sld, ES), a
strict well-structured ungraded resolution, that we denote Res, Sld = W0 → W1 →
. . . → Wt, so that Wt is the free product of (possibly) finitely many elliptic factors
and (possibly) a free group.

We set CompW to be the completion of this ungraded resolution. CompW is
generated by the terminal limit group Wt, in addition to finitely many elements
and relations. However, Wt may be not finitely presented. We modify CompW ,
by replacing Wt with a sequence of f.p. approximations of it precisely as we did in
the rigid case, i.e., for each index m, we replace each factor of Wt by a f.p. group,
so that the presentation of each (new) factor includes only relations up to length
m from the relations of the corresponding factor of Wt. We denote the obtained
f.p. group Wm

t , and the completion that is obtained from CompW , by replacing Wt

with Wm
t , Compm

W .

For each m, Compm
W , is finitely presented. With Compm

W , we naturally associate
an ungraded resolution over free products, that we denote Resm, Wm

0 → Wm
1 →

. . . → Wm
t . The limit groups over free products, Wm

0 , . . . , Wm
t , are all embedded

in the f.p. completion, Compm
W . The limit groups (over free products), W0, . . . , Wt,

are quotients of the limit groups over free products, Wm
0 , . . . , Wm

t , in correspon-
dence, and the direct limit of the limit groups over free products, Wm

0 , . . . , Wm
t ,

are W0, . . . , Wt, in correspondence.
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By construction, with each of the graded limit groups, Wi, there is an associated
virtually abelian decomposition, which is the JSJ decomposition (over free prod-
ucts) of Wi. By the construction of Compm

W , the JSJ decompositions of the limit
groups (over free products), Wi, lift to virtually abelian decompositions of the (ap-
proximating) graded limit groups over free products, Wm

i . By the proof of theorem
27 in [Ja-Se], for large enough index m, these virtually abelian decompositions of
the limit groups Wm

i (that are lifted from Wi) are their JSJ decompositions over
free products.

The sequence of homomorphisms, {hn}, is an asymptotically strictly solid se-
quence of homomorphisms with respect to the original rigid limit group, (Sld, ES),
and it converges to (Sld, ES). Since the completions, Compm

W , are finitely pre-
sented, for each index m, there exists some index, am, so that for every n > am,
the sequence of of homomorphisms, {hn}, factor through Compm

W , and in particular
through the limit group, Wm

0 .

Suppose that there exists a subsequence of indices, still denoted m, so that for
every index m, there is a subsequence of homomorphisms (where the subsequence
may depend on m), still denoted, {hn}, that are not weakly strictly solid homomor-
phisms of Wm

0 , i.e., they can be extended to a completion of a one step resolution:
W 0

m → CFlxm, where CFlxm is a (cover of a) flexible quotient of the graded limit
group Wm

0 (note that W 0
m need not be solid, still one can define a flexible quotient

of it as it appears in definition 1.18). In this case, the original sequence of homomor-
phisms, {hn}, is not an asymptotically strictly solid sequence of homomorphisms
with respect to the solid limit group, (Sld, ES), a contradiction. Therefore, for large
enough m, the approximating limit groups, Wm

0 are weakly solid, and for every in-
dex m, there exists an index nm, so that for every n > nm, the homomorphisms,
{hn}, are weakly strictly solid homomorphisms of Wm

0 .

For each index m, we look at some finite collection of covers of its flexible quo-
tients. We further look at a strict (ungraded) Makanin-Razborov resolution of each
of the (ungraded) resolutions in this diagram, and with each completion of a reso-
lution that appears in the diagram we associate a f.p. completion, that is obtained
by replacing the terminal limit group of such an ungraded resolution with some
f.p. approximation of it. By looking at the image of the f.p. group G(x, p) in each
of these (finitely many) f.p. completions, we obtained finitely many limit groups
(covers), that we denote CFm

1 , . . . , CFm
v(m), that are quotients of G(x, p), and can

be embedded into f.p. completions, and cover all the flexible quotients of the weakly
solid limit groups (over free products) Wm

0 .

The limit groups, {Wm
0 }, do converge into the original solid limit group, (Sld, ES).

As the flexible quotients of Wm
0 are (by definition) quotients of Wm

0 , by choosing the
approximations properly, i.e., choosing enough of the relations of the terminal limit
group of each completion, to obtain the covers (that are not necessarily quotients of
Wm

0 ), CFm
1 , . . . , CFm

v(m), we can guarantee that any sequence of homomorphisms,

sm : CFm
i(m) → A1

m ∗ . . . ∗ Aℓ
m, that converges to a limit group, converges into a

quotient of (Sld, ES).

Suppose that there exists a subsequence of indices, still denoted m, so that for
every index m, there is a subsequence of homomorphisms (where the subsequence
may depend on m), still denoted, {hn}, so that for every hn there exists a homo-
morphism, un : Wm

0 → A1
n ∗ . . . ∗ Aℓ

n, that as a homomorphism of the f.p. group,
G(x, p), factors through one of the finitely many covers, CFm

i(m), and the pair of
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homomorphisms of WSld, (hn, un), extend to a homomorphism of the completion
of the identity resolution, Wm

0 → Wm
0 (with the graded JSJ decomposition of

WSld as the associated virtually abelian decomposition). In this case, it is possi-
ble to extract a subsequence of the homomorphisms, {hn}, with homomorphisms
{un : Wm

0 → A1
n ∗ . . . ∗ Aℓ

n}, so that the pairs, (hn, un), extend to homomorphisms
of the identity resolution, Wm

0 → Wm
0 , and the homomorphisms, {un}, converge

into a flexible quotient of (Sld, ES), a contradiction to our assumption that the
sequence, {hn}, is weakly strictly solid.

Therefore, for large enough m, the weakly solid limit group, Wm
0 , that can be

embedded into a f.p. completion, and the covers, CFm
1 , . . . , CFm

v(m), that can be

embedded into f.p. completions as well, satisfy properties (1)-(5) of the theorem.
�

Given a sequence of homomorphisms from a fixed graded group into free prod-
ucts, theorem 1.16 enables us to associate a graded resolution with a subsequence
of the homomorphisms. Theorems 1.17 and 1.20 finally allow us to generalize the
notion of a cover of an ungraded resolution (theorem 24 in [Ja-Se]), to define a cover
of a resolution, so that, in particular, given a sequence of homomorphisms of a f.p.
group into free products, there is a subsequence of a sequence of homomorphisms
that factor through a cover of the resolution that was constructed in proposition
1.16.

Theorem 1.21. Let G(x, p) be a f.p. group, and let {hn : G(x, p) → A1
n ∗ . . .∗Aℓ

n}
be a sequence of homomorphisms of G(x, p) into free products that converges into
a limit group (over free products), (L(x, p), EL). Let L(x, p) = L0 → L1 → . . . Ls

be a graded resolution, that we denote GRes, of the limit group (L(x, p), EL), that
is obtained from a subsequence of the sequence of homomorphisms, {hn}, according
to proposition 1.16.

There exists a f.g. graded limit quotient of G(x, p), CM , with a set of elliptics,
ECM , and a well-structured graded resolution of CM , CGRes, CM = CM0 →
CM1 → . . . → CMs, that satisfies similar properties to the ones listed in proposition
1.16. The graded resolution, CGRes, satisfies the following properties:

(1) for each index i, i = 1, . . . , s, there is an epimorphism of limit groups over
free products, τi : CMi → Li. The epimorphisms τi commute with the
quotient maps in the two graded resolutions, GRes and CGRes.

(2) non-trivial elliptic elements in CMi are mapped to non-trivial elliptic ele-
ments in CMi+1, i = 1, . . . , s − 1.

(3) the epimorphisms along CGRes are proper epimorphisms.
(4) the resolution CGRes is a graded strict resolution ([Se1],5), and a well-

structured resolution. All the graded abelian decompositions that are associ-
ated with the various limit groups (over free products), CMi, i = 1, . . . , s,
are their graded JSJ decompositions over free products. Furthermore, the
graded JSJ decompositions (over free products) of the limit groups CMi,
i = 1, . . . , s, have the same structure as the corresponding graded JSJ de-
compositions (over free products) of the limit groups, Li, where the differ-
ence is only in the rigid vertex groups of the JSJ decompositions and in the
elliptic factors.

(5) if no factor of Li is rigid nor solid, then CMi+1 is a cover of a shortening
quotient of CMi, for i = 1, . . . , s − 1.
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(6) if a factor of Li is rigid then the corresponding factor of CMi is rigid. This
can happen only for i = s. If a factor of Li is solid then the corresponding
factor of CMi is weakly solid (definition 1.18).

(7) in case Li is a free product of a solid limit group with (possibly) elliptic
factors and (possibly) a free group, for some i < s, then by (6) the corre-
sponding factor of CMi is weakly solid, and CMi+1 is a free product of a
cover of a flexible quotient of the weakly solid factor in CMi with (possibly)
the same elliptic factors of CMi and (possibly) the same free group (as in
CMi).

(8) Ls, the terminal limit group of the graded resolution GRes, is a free product
of a rigid or a solid limit group with (possibly) some elliptic factors and
(possibly) a free group. CMs is a free product of a rigid or a weakly solid
factor, that we denote RSFs, in correspondence with the factor of Ls, with
(possibly) f.p. covers of the elliptic factors of Ls, and a free group (of the
same rank as in Ls).

With the rigid or the weakly solid factor of CMs, RSFs, we associate
finitely many limit groups (over free products), CF1, . . . , CFg, with un-
graded resolutions (over free products), Res1, . . . , Resg, that terminate in
f.p. limit groups (cf. theorems 1.17 and 1.20). Hence, the completions of
Res1, . . . , Resg are f.p. and the limit groups (over free products), CF1, . . . , CFg,
can be embedded in f.p. completions (that have f.p. terminal limit groups).

(9) the finite collection of limit groups, CF1, . . . , CFg, are all limit quotients of
G(x, p), and they dominate all the flexible quotients of RSFs (although they
need not be quotients of RSFs).

By theorem 1.16, from the sequence of homomorphisms, {hn}, it is pos-
sible to extract a subsequence, still denote {hn}, on which it is possible to
perform iterative shortenings, and obtain another sequence of homomor-
phisms, {un}, which is asymptotically rigid or asymptotically strictly solid
and converges into the rigid or solid factor of Ls, the terminal graded limit
group in GRes.

The homomorphisms {un} factor through CMs, and they restrict to rigid
or weakly strictly solid homomorphisms of RSFs (with respect to that cover).
Furthermore, in the rigid case, every flexible homomorphism of RSFs fac-
tors through at least one of the resolutions, Res1, . . . , Resg, that are associ-
ated with the limit groups, CF1, . . . , CFg. In the weakly solid case, for every
non-weakly strictly solid homomorphism of RSFs, f : RSFs → A1 ∗ . . .∗Aℓ,
there exists a homomorphism, u : RSFs → A1 ∗ . . . ∗ Aℓ, such that the
pair, (f, u), extends to a homomorphism of the completion of the identity
resolution, RSFs → RSFs, and the homomorphism u as a homomorphism
of the f.p. group, G(x, p), factors through at least one of the resolutions,
Res1, . . . , Resg.

(10) with the terminal graded limit group CMs, it is possible to associate an
ungraded strict well-structured resolution: CMs = V0 → V1 → . . . → Vt,
so that the terminal (ungraded) limit group (over free products) Vt is a free
product of (possibly) elliptic factors and (possibly) a free group. Every non-
trivial elliptic element in each of the limit groups (over free products) Vi,
i = 0, . . . , t − 1, is mapped to a non-trivial element in Vi+1.

With the combined (ungraded) resolutions, CM0 → . . . → CMs → V1 →
. . . → Vt it is possible to associate a completion, CompCM , which is f.p.
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(and terminates in a f.p. group).

Proof: Given the sequence of homomorphisms, {hn : G(x, p) → A1
n ∗ . . . ∗Aℓ

n}, we
can extract a subsequence from it (still denoted {hn}), from which it is possible to
obtain a graded strict, well-structured resolution over free products, L0 → L1 →
. . . → Ls , according to theorem 1.16. Furthermore, with each homomorphism
hn (from that subsequence) it is possible to associate a homomorphism un : L →
A1

n ∗ . . . ∗ Aℓ
n, so that the homomorphisms {un} restrict to an asymptotically rigid

or to an asymptotically strictly solid homomorphisms with respect to the rigid or
solid factor of the terminal limit group, Ls.

Following theorem 18 in [Ja-Se], starting with the sequence of homomorphisms,
{un}, we can pass to a further subsequence, and associate with the limit group over
free products, Ls , a strict well-structured ungraded resolution, Ls = W0 → W1 →
. . . → Wt, so that Wt is the free product of (possibly) finitely many elliptic factors
and (possibly) a free group.

At this point we look at the combined (ungraded) resolution:

L0 → L1 → . . . → Ls = W0 → W1 → . . . → Wt

We set CompL to be the completion of this ungraded combined resolution. Note
that all the limit groups over free products, L0, . . . , Ls and W1, . . . , Wt, are em-
bedded in the completion CompL.

Starting with CompL we define a sequence of completions, obtained by replacing
the terminal limit group (over free products) in CompL, Wt, with approximating
f.p. groups, that are obtained from the terminal limit group Wt, by imposing only
relations of length at most m from each factor of Wt (with respect to a fixed set
of generators of these factors). We denote the approximating f.p. subgroups, Wm

t ,
and the group that is obtained from CompL be replacing Wt with Wm

t , we denote
Compm

L .
For large enough index m, we do obtain a new completion, hence, for large m,
Compm

L is a completion of a strict well-structured ungraded resolution over free
products. We denote the resolution that is associated with Compm

L , Resm, and
this is the resolution:

Lm
0 → Lm

1 → . . . → Lm
s = Wm

0 → Wm
1 → . . . → Wm

t

where the groups Lm
i and Wm

j approximate the corresponding subgroups, Li and
Wj .

By construction, with each of the graded limit groups, Li, there is an associated
graded (virtually) abelian decomposition, which is the graded virtually abelian JSJ
decomposition of Li over free products. Also, with each of the ungraded limit group,
Wj , there is an associated (virtually) abelian decomposition which is the virtually
abelian decomposition of Wj over free products. These graded and ungraded JSJ
decompositions lift to virtually abelian decompositions of the approximating limit
groups, Lm

i and Wm
j .

Moreover, by the proof of theorem 27 in [Ja-Se], for large enough index m, these
graded virtually abelian decompositions of the limit groups Lm

i (that are lifted
from Li) are their graded JSJ decompositions over free products, and the virtually
abelian decompositions of the limit groups Wm

j (that are lifted from Wj) are their
JSJ decompositions over free products.
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By theorems 1.17 and 1.20, if Li is solid, then for large m, Lm
i is weakly solid.

If Ls is rigid (it’s the only graded limit group along the resolution Res that can be
rigid), then for large m, Lm

s , is rigid. Therefore, for large enough m, the resolution,
Resm, satisfy properties (1)-(7) and (10). Properties (8) and (9) hold for Resm,
for large enough m, by the conclusions of theorems 1.17 and 1.20.

�

Theorem 1.21 associates a collection of covers of resolutions (over free prod-
ucts) with a given f.p. group. Every homomorphism of a given f.p. group into free
products factors through one of these cover resolutions. As in the ungraded case
(theorem 26 in [Ja-Se]), if we start with a f.p. group, G(x, p), there exists a finite
collection of cover resolutions through which all the homomorphism from the f.p.
group into free products do factor. Such a finite collection is not canonical, but as
in the ungraded case, we view each such finite collection as the graded Makanin-
Razborov diagram of the graded f.p. group, G(x, p), over free products.

Theorem 1.22. Let G(x, p) be a f.p. group. There exist finitely many well-structured
resolutions: CM = CM0 → CM1 → . . . → CMs, where CM is a graded limit quo-
tient of G(x, p) (over free products), and CMs is a free product of either a rigid or
a weakly solid factor with (possibly) finitely many elliptic factors, and (possibly) a
free group, that are all covers of graded resolutions, that satisfy properties (1)-(10)
that are listed in theorem 1.21.

With each of the finitely many cover graded resolutions we associate the collection
of homomorphisms that factor through it. Homomorphisms of the terminal graded
limit group, CMs, are obtained from rigid or weakly strictly solid homomorphisms
of the rigid or weakly solid factor of CMs that are combined with homomorphisms
of the elliptic factors (into elliptic subgroups), and arbitrary homomorphisms of the
(possible) free factor. We further require that the restriction of weakly strictly solid
homomorphisms to edge groups and to abelian and QH vertex groups in the graded
abelian JSJ decomposition of the weakly solid factor are not (entirely) elliptic.

Homomorphisms of the limit groups, CMs−1, . . . , CM0 (and hence of the given
f.p. group G(x, p)), are obtained from homomorphisms of CMs, in a similar way
to homomorphisms that factor through graded resolutions over free and hyperbolic
group, i.e., in the following way:

(1) in case CMi, i = 0, . . . , s − 1, does not have a factor which is rigid or
weakly solid, homomorphisms of CMi are obtained from homomorphisms of
CMi+1, by precomposing the homomorphisms of CMi+1 with graded modu-
lar automorphisms of CMi.

(2) in case CMi, i = 0, . . . , s−1, is weakly solid, we look at the following homo-
morphisms. With CMi we associate a one step (well-structured) resolution
CMi → CMi+1. With this one step resolution we associate its completion,
Compi. Both CMi and CMi+1 are naturally embedded in Compi. With
CMi we associate all its homomorphisms that can be extended to homomor-
phisms of the completion, Compi, so that the restrictions of these homo-
morphisms of Compi to the image of CMi+1 in Compi is a homomorphism
that is associated with CMi+1.

(3) the restriction of the homomorphisms of the various groups, CMi, i =
0, . . . , s − 1, to the edge groups and to abelian and QH vertex groups in
the graded abelian JSJ decomposition of theses are not (entirely) elliptic.
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Every homomorphism of G(x, p) into a free product factors through at least one of
the finitely many (cover) resolutions that are associated with the f.p. group G(x, p)
(i.e., the cover resolutions that appear in its (non-canonical) Makanin-Razborov
diagram).

Proof: The cover graded resolutions that appear in theorem 1.21, can be defined
by finitely many generators, relations, and generators of subgroups, since these are
determined by finitely many f.p. completions and finitely may f.g. subgroups of
these f.p. completions. The construction of cover graded resolutions in theorem
1.21 allows one to consider only homomorphisms that satisfy properties (1)-(3) as
homomorphisms that factor through a cover graded resolution.

By theorem 1.21, every homomorphism of the f.p. group, G(x, p), factors through
at least one of the cover graded resolutions that can be associated with G(x, p).
Therefore, by ordering the countable set of cover graded resolutions, and applying
the same argument that was used to prove theorem 26 in [Ja-Se], i.e., the argument
that was used to show that the set of all homomorphisms of a f.p. group into free
products factor through finitely many cover ungraded resolutions, there exists a
finite collection of cover graded resolutions, through which all the homomorphisms
of the f.p. group, G(x, p), do factor.

�

The finite collection of graded resolutions that are associated with a f.p. group,
G(x, p), according to theorem 1.22, and through which all the homomorphisms of
G(x, p) into free products do factor, form a graded Makanin-Razborov diagram of
G(x, p) over free products. Note that the collection of graded resolutions is not
canonical, hence, the diagram we constructed is not canonical.

Also, note that over free and hyperbolic groups we needed to study the singu-
lar locus of the graded resolutions that appear in the (in these cases canonical)
graded Makanin-Razborov diagram. This was crucial in studying sentences and
predicates over these groups. The diagram that we constructed over free products,
and particularly the conditions on homomorphisms that factor through each graded
resolution in the diagram, guarantee that the collection of homomorphisms that are
associated with each graded resolution from the diagram lies outside the singular
locus, and these collections cover the entire set of homomorphisms from the f.p.
group G(x, p) into free products. Hence, there is no need to study the singular
locus of the constructed graded resolutions.

§2. Formal Solutions and Formal Limit Groups

So far we have generalized the construction of the Makanin-Razborov diagram
from a free group to a free product of groups [Ja-Se], and in section 1 we have
generalized the study of systems of equations with parameters (over free products),
and associated a graded Makanin-Razborov with such a system.

To analyze the structure of elementary sets over a free product, we first need
to generalize formal solutions, and their (formal) limit groups ([Se2]), to formal
solutions and formal limit groups over free products. As in the construction of the
Makanin-Razborov diagrams (graded and ungraded), we study formal solutions
over the entire class of free products, and not over a particular free product. This
approach will finally lead us to the construction of uniform proofs of a given sentence
(or predicate), uniform proofs that lead to a (uniform) reduction of a sentence over
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a free product to sentences over the various factors.
We start this section with a generalization of (a special case of) Merzlyakov orig-

inal theorem, mainly to demonstrate that basic concepts over free groups generalize
to free products.

Theorem 2.1 (cf. [Me]). Let G = A1 ∗ . . . ∗ Aℓ be a non-trivial free product
that is not isomorphic to D∞. Let y = (y1, . . . , yℓ) and x = (x1, . . . , xq). Let
w1(x, y, a) = 1, . . . , ws(x, y, a) = 1 be a system of equations over G, where a is a
tuple of elements from the factors, A1, . . . , Aℓ. Suppose that the sentence:

∀y ∃x w1(x, y, a) = 1, . . . , ws(x, y, a) = 1

is a truth sentence over G. Then there exists a formal solution x = x(y, a′), where
a′ is a tuple of elements from the factors, A1, . . . , Aℓ, so that each of the words
wj(x(y, a′), y, a) is the trivial word in the free product < y > ∗A1 ∗ . . . ∗Aℓ =< y >
∗G.

Proof: In a non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, which is not isomorphic
to D∞, there exists a free, purely hyperbolic subgroup, so that its Cayley graph is
quasi-isometrically mapped, under the embedding of the free group, into the Bass-
Serre tree that corresponds to the free product, G = A1 ∗ . . . ∗ Aℓ. We can clearly
write G as a non-trivial free product, G = C ∗ B, where C is not isomorphic to
Z2. If c1, c2 ∈ C are distinct non-trivial elements, and b ∈ B is non-trivial, then
wn = (c1b)n and tn = (c2b)n, generate such a free group of rank 2, for n large
enough (e.g. n > 5).

The sentence is a truth sentence over the free product, G, hence, we may as-
sign arbitrary values to the universal variables y, and for every chosen values
(in G), there exist values for the existential variables x, so that the equalities,
w1 = 1, . . . , ws = 1, hold in G.

In G there is a copy of the free group F2 that is quasi-isometrically embedded
in the Bass-Serre tree that corresponds to the free product, G = A1 ∗ . . . ∗ Aℓ. We
assign a sequence of values in G to the universal variables y. We give the universal
variables y, a sequence of values in G that we denote {y(n)}, so that these values
are in (the image of) the (quasi-isometrically embedded) free group F2 in G, that
form a test sequence in F2 (see the proof of theorem 1.1 and definition 1.20 in [Se2]
for the notion of test sequence).

For every index n, there are values in G of the existential values, x, that we
denote x(n), so that wi(x(n), y(n), a) = 1, i = 1, . . . , s. For each n we choose
the shortest possible x(n) (in the Bass-Serre tree that is associated with the free
product, G = A1 ∗ . . .∗Aℓ, with its simplicial metric) that satisfies these equalities.

By the same (geometric) argument that was used to prove Merzlyakov’s theorem
over free groups (theorem 1.1 in [Se2]), by possibly iteratively modifying the shortest
values x(n) finitely many times, the sequence of elements {(x(n), y(n), a)} has a
subsequence that converges to the limit group over free products, L(x, y, a) = <
y > ∗A1 ∗ . . . ∗ Aℓ ∗ E1 ∗ . . . ∗ Et ∗ Fr, where:

(1) < y > is a free group generated by the universal variables: y1, . . . , yℓ.
(2) Ai, i = 1, . . . , ℓ, is elliptic and contains the tuple of (fixed) elements a from

the factor Ai.
(3) E1, . . . , Er are elliptic. Fr is a (possibly trivial) free group of rank r.
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(4) L contains the elements x, and the elements, w1(x, y, a), . . . , ws(x, y, a),
represent the trivial element in the limit group L.

We replace L by its (quotient) factor, R(x, y, a) = < y > ∗A1 ∗ . . . ∗ Aℓ, which
is also a (limit) quotient of L (R is in fact a retract of L). L, and hence R, are
f.g. groups, but in general they need not be finitely presented, i.e., the elliptic
factors A1, . . . , Aℓ, are f.g. but not necessarily finitely presented. Still, the words
w1, . . . , wr represent the trivial element in R, as they represent the trivial element
in L, and R is a retract of L. Hence, if we look at a free group, Fy, generated by the
elements y1, . . . , yℓ and finite (fixed) generating sets for A1, . . . , Aℓ, then there is a
finite collection of relations, r1, . . . , rf , in the (fixed) generating sets of A1, . . . , Aℓ,
relations that hold in these factors, such that if these relations are imposed on F ,
then the words, w1, . . . , ws, represent the trivial element in the obtained quotient
f.p. group.

L is a limit group that is obtained as a limit from a sequence of elements,
{(x(n), y(n), a)}. Hence, for large enough n, the relations r1, . . . , rf that hold in
A1, . . . , Aℓ, hence in L, hold for the specializations, {(x(n), y(n), a)}, and the fixed
set of generators of A1, . . . , Aℓ are elliptic, hence, their specializations are in the fac-
tors A1, . . . , Aℓ correspondingly. Therefore, using the specialization {(x(n), y(n), a)},
for large n, it is possible to find elements x ∈< y > ∗A1 ∗ . . .∗Aℓ, so that the words,
w1(x, y, a), . . . , ws(x, y, a) are the trivial elements in the free product, < y > ∗G.

�

To analyze sentences and predicates over free products, we will need a general-
ization of Merzlyakov theorem to a truth sentence defined over an arbitrary (given)
variety. Before generalizing the results that were proved over free group for gen-
eral varieties, we generalize Merzlyakov theorem to a coefficient free sentence that
contains inequalities. For such sentences the conclusion can be stated in a uniform
way for all free products for which the sentence is a truth sentence.

Theorem 2.2. Let w1(x, y) = 1, . . . , ws(x, y) = 1 be a system of equations (over
a group), and let v1(x, y), . . . , vr(x, y) be a collection of words in the free group
generated by {x, y}. Let:

∀y ∃x w1(x, y) = 1, . . . , ws(x, y) = 1 ∧ v1(x, y) 6= 1, . . . , vr(x, y) 6= 1

be a sentence over groups. Then there exist finitely many f.p. limit groups over free
products:

Hj =< y > ∗S1 ∗ . . . ∗ Smj
∗ Frj

j = 1, . . . , t

and tuples of elements (formal solutions), xj ∈ Hj, so that: w1(xj , y) = 1, . . . , ws(xj, y) =
1 in the limit group Hj.

Furthermore, for every non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not
isomorphic to D∞, and so that the given sentence is a truth sentence over G, for
at least one index j, 1 ≤ j ≤ t, there exists a homomorphism τ : Hj → G∗ < y >,
that maps each factor Si, 1 ≤ i ≤ mj, into an elliptic subgroup in G, the factor
< y > in Hj isomorphically onto the factor < y > in G∗ < y >, and the free factor
Frj

into G, such that the sentence:

∃y v1(τ(xj), y) 6= 1, . . . , vr(τ(xj), y) 6= 1

is a truth sentence in G.
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Proof: The argument that we use is a combination of the proof of theorem 2.1,
with the proof of Merzlyakov theorem with inequalities (theorem 1.2 in [Se2]), and
the construction of formal limit groups in section 2 of [Se2].

As we have pointed out in the proof of theorem 2.1, in a non-trivial free product,
G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞, there exists a free, purely hyper-
bolic subgroup, so that its Cayley graph is quasi-isometrically mapped, under the
embedding of the free group, into the Bass-Serre tree that corresponds to the free
product, G = A1 ∗ . . . ∗ Aℓ.

We look at all the non-trivial free products, G = A1 ∗ . . . ∗ Aℓ (for an arbitrary
finite ℓ), that are not isomorphic to D∞, over which the given sentence is a truth
sentence. For each such free product G, we look at all the f.g. free groups that
are embedded in G, are purely hyperbolic in G, and the Cayley graph of F is
quasi-isometrically mapped into the Bass-Serre tree that is associated with the free
product of G, G = A1 ∗ . . . ∗ Aℓ.

We look at all such free products G = A1 ∗ . . . ∗ Aℓ (over which the given
sentence is a truth sentence), the quasi-isometrically embedded free groups, F , all
possible test sequence for the universal variables y in F , and for each value of the
universal variables y, the shortest possible values for the existential variables x (in
the simplicial metric of the Bass-Serre tree that is associated with the free product
G = A1 ∗ . . . ∗ Aℓ), for which both the equalities, w1, . . . , ws, and the inequalities,
v1, . . . , vr, hold (in G).

By the construction of formal limit groups that appears in section 2 of [Se2],
and by the argument that was used to prove that a f.p. group has only finitely
many maximal limit quotients over free products (theorem 21 in [Ja-Se]), with the
entire collection of these test sequences it is possible to associate finitely many
(maximal) formal limit groups (over free products). Since these limit groups were
constructed from sequences that restrict to test sequences for the universal variables,
and shortest possible values for the existential variables, each of the finitely many
maximal formal limit groups has the structure:

Hj =< y > ∗S1 ∗ . . . ∗ Smj
∗ Frj

j = 1, . . . , t

where the factors, S1, . . . , Smj
, are elliptic, and Frj

is free. Furthermore, each such
(maximal) formal limit group, Hj, is finitely presented, and with each such formal
limit group, Hj , there are associated tuples of elements, xj ∈ Hj , so that the words,
w1(xj , y), . . . , w(xj, y), are trivial in Hj , and the words, v1(xj , y), . . . , vr(xj , y), are
non-trivial in Hj .

Suppose that G = A1∗. . .∗Aℓ is a non-trivial free product, that is not isomorphic
to D∞, and the given coefficient free sentence is true over G. Then there exists a
free group F2, with an embedding into G so that the Cayley graph of F2 is mapped
quasi-isometrically into the Bass-Serre tree that is associated with the free product,
G = A1 ∗ . . . ∗ Aℓ. We assign (tuples of) values, y(n), from (the embedding in G
of) a test sequence of F2 to the universal variables y. Given each y(n), we set x(n)
to have the shortest possible values in G (with respect to the simplicial metric on
the Bass-Serre tree that is associated with G = A1 ∗ . . . ∗ Aℓ).

Since the limit groups over free products, {Hj}, are finitely presented, the se-
quence {(x(n), y(n))} has a subsequence (still denoted {(x(n), y(n))}, that fac-
tors thorough one of the limit groups, Hj . Furthermore, we may assume that
for every index n, the restriction of the specializations, {(x(n), y(n)}, to the (el-
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liptic) factors of Hj , S1, . . . , Smj
, are elliptic subgroups in G, and the elements,

v1(x(n), y(n)), . . . , vr(x(n), y(n)), are all non-trivial in G.
For every index n, we can define a homomorphism hn : Hj → G, given by the

specialization {(x(n), y(n)}. We modify each homomorphism hn, to a homomor-
phism: un : Hj →< y > ∗G, by sending the subgroup < y > in Hj isomorphically
onto the subgroup < y > in < y > ∗G, and setting un restricted to the factor
S1 ∗ . . . ∗ Smj

∗ Frj
to be identical to hn restricted to that factor. un is clearly a

homomorphism, so all the elements, w1, . . . , ws, which are the identity element in
Hj are mapped to the identity element in < y > ∗G. Furthermore, v1, . . . , vr are
mapped to non-trivial elements in G by the homomorphisms hn, hence, they must
be mapped to non-trivial elements by un, as hn = νn◦un, where νn :< y > ∗G → G,
nun(y) = y(n).

Finally, we set τ = un for an arbitrary n. The equalities wi(τ(x), y) = 1 hold in
G (as they hold in < y > ∗G), i = 1, . . . , s. Furthermore, the sentence:

∃y v1(τ(xj), y) 6= 1, . . . , vr(τ(xj), y) 6= 1

is a truth sentence in G, as the inequalities hold for y = y(n).
�

To generalize Merzlyakov’s original theorem to sentences (over a free group) that
hold over some varieties and not only over the entire affine set, we have associated
with each well-structured resolution a completion, and with a completion we have
associated closures of it, that are obtained by adding roots to a finite collection of
elements in abelian vertex groups that appear along the well-structured resolution
(see definitions 1.12 and 1.15 in [Se2]).

Given a completion of a well-structured resolution over a free group, and a (finite)
collection of closures of that completion, we call the finite collection of closures, a
covering closure of the completion (definition 1.16 in [Se2]), if every homomorphism
that factors through the well-structured resolution can be extended to a completion
of at least one of the closures of the completion (from the given finite collection).

These notions generalize to well-structured resolutions over free products, al-
though the generalizations require some modifications. The construction of a com-
pletion generalizes naturally and canonically from well-structured resolutions over
a free group (definition 1.12 in [Se2]) to well-structured resolutions over free prod-
ucts. The notion of a closure of the completion over free products, requires some
changes in comparison with the similar object over a free group.

Definition 2.3. Let Res(y) be a well-structured resolution over free products, and
let Comp(Res)(z, y) be its completion.
Let E1, . . . , Er be the terminal elliptic subgroups (factors) in the well-structured
resolution, Res(y). Note that these are also the terminal elliptic subgroups in the
completion, Comp(Res)(z, y). Let Ab1, . . . , Abd be the non-conjugate, non-cyclic,
maximal abelian subgroups that appear along the completion, Comp(Res)(z, y), and
are mapped onto a non-cyclic, (non-elliptic) abelian factor in a free decomposition
associated with one of the levels of the completion.
Let PAb1, . . . , PAbpd be the non-conjugate, non-cyclic, (non-elliptic) maximal pegged
abelian groups that appear along the completed resolution, i.e., maximal non-cyclic
abelian subgroups in Comp(Rlim)(z, y), that are mapped onto a non-cyclic, (non-
elliptic) abelian vertex group in some abelian decomposition associated with some
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level of the completed resolution Comp(Res)(z, y), and this abelian vertex is con-
nected to the other vertices of the completed decomposition of that level by an edge
with (maximal) cyclic (non-elliptic) stabilizer. We call the maximal cyclic subgroup
of a pegged abelian group connecting it to the other vertices of the corresponding
completed decomposition, the peg of the pegged abelian group PAb.

Let S1, . . . , Sd be free abelian groups so that Ab1 < S1, . . . , Abd < Sd are sub-
groups of finite index. Let PS1, . . . , PSpd be free abelian groups so that PAb1 <
PS1, . . . , PAbpd < PSpd are subgroups of finite index, and the pegs peg1, . . . , pegpd

are primitive elements in the ambient free abelian groups PS1, . . . , PSpd.
A closure of the completed resolution Comp(Res)(z, y) is obtained by replacing

the free abelian groups Ab1, . . . , Abd by the free abelian groups S1, . . . , Sd, and the
pegged abelian groups PAb1, . . . , PAbpd by the free abelian groups PS1, . . . , PSpd

in correspondence, along the entire completed resolution, i.e., from the top level
through the bottom level in which a subgroup of the pegged abelian group appears
along the completed resolution.

We also associate with the closure new elliptic subgroups, D1, . . . , Df , where
ℓ ≤ r, and B1, . . . , Bt, with the following properties:

(1) (up to a change in the order of the elliptic factors E1, . . . , Er) Ei is mapped
into Di, i = 1, . . . , f .

(2) for each index i, f + 1 ≤ i ≤ r, we add a new (free) generator, ci, and map
Ei into Dji

.

The closure is obtained from the completion, Comp(Res), by possibly enlarging
the maximal abelian and maximal pegged abelian subgroups (by finite index super-
groups), and further replacing each of the terminal elliptic subgroups, E1, . . . , Ef ,
with the corresponding subgroup, D1, . . . , Df , and replacing each of the subgroups,
Ef+1, . . . , Er, by its image in Dji

conjugated by ci, i = f + 1, . . . , r. The terminal
limit group of the closure is the free product of the elliptic subgroups, D1 ∗ . . . ∗Df ,
with the free product of the (additional) elliptic subgroups, B1 ∗ . . . ∗ Bt (possibly)
free product with a free group and finitely many abelian (non-elliptic) factors and
closed surface groups. The completion, Comp(Res)(z, y), is mapped naturally into
a closure of it.

Having defined closures of a completion, we can generalize the notion of a
covering closure.

Definition 2.4. Let Res(y) be a well-structured resolution over free products, let
Comp(Res)(z, y) be its completion, and let Cl1(Res), . . . , Clv(Res) be a finite set
of closures of Comp(Res).

Let G = A1 ∗ . . . ∗ Aℓ be a (non-trivial) free product that is not isomorphic to
D∞. We say that the given finite collection of closures is a covering closure of the
completion, Comp(Res), over the free product G, if every tuple of specializations
in G of the variables y, that factors through the resolution Res(y), can be extended
to a specialization that factors through at least one of the closures, Cl1, . . . , Clv.

The completion of a resolution Comp(Res)(z, y), its closures Cl(Res)(s, z, y),
and the notion of a covering closure, finally allow us to present formal solutions
associated with a well-structured resolution of a limit group over free products.

Theorem 2.5. Let u1(y), . . . , um(y) be a collection of words in the free group,
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< y >, and let (L, EL) be a limit group over free products that is a limit quotient
(over free products) of the f.p. group: G(y) =< y | u1(y), . . . , um(y) >. Let Res(y)
be a well-structured resolution of the limit group (L, EL), and let Comp(Res)(z, y)
be the completion of the resolution Res(y).

Let w1(x, y) = 1, . . . , ws(x, y) = 1 be a system of equations, and let v1(x, y), . . . , vt(x, y)
be a collection of words in the alphabet {x, y}. Let the sentence:

∀y (u1(y) = 1, . . . , um(y) = 1) ∃x w1(x, y) = 1, . . . , ws(x, y) = 1∧

∧ v1(x, y) 6= 1, . . . , vt(x, y) 6= 1

be a sentence over groups.
There exists a finite collection of closures of the resolution Res(y) over free

products: Cl(Res)1(s, z, y), . . . , Cl(Res)q(s, z, y), so that for each index i, 1 ≤ i ≤
q, there exists a limit group over free products, Hi = Cli(Res) ∗ Fdi

, with a tuple
of elements xi ∈ Hi, for which the words, w1(xi, y), . . . , ws(xi, y), are the trivial
elements in the limit groups Hi, and the words, v1(xi, y), . . . , vt(xi, y), are non-
trivial elements in the limit groups Hi, for i = 1, . . . , q.

In addition, let G = A1 ∗ . . .∗Aℓ be a non-trivial free product that is not isomor-
phic to D∞, and suppose that the given sentence is a truth sentence over G. Let
E1, . . . , Er be the terminal elliptic subgroups in the completion, Comp(Res), of the
resolution, Res(y). Then:

(1) the closures, Cl1, . . . , Clq, form a covering closure (definition 2.4) of the
completion, Comp(Res), over the free product G.

(2) let (z0, y0) be a tuple of specializations from G that factors through the com-
pleted resolution, Comp(Res)(z, y). There exists an index i, 1 ≤ i ≤ q, for
which the specialization (z0, y0) extends to a specialization (s0, z0, y0) of the
closure, Cli(Res).

the specialization (z0, y0) restricts to homomorphisms of the elliptic sub-
groups of the completion, Comp(Res), E1, . . . , Er, into the free product G.
These homomorphisms extend to a homomorphism h : Hi → G for which
for every index j, 1 ≤ j ≤ r: vj(h(xi), h(y)) 6= 1 in G.

Proof: To construct the set of closures that is associated with a given sentence,
we start with the collection of free products of non-trivial groups, G = A1 ∗ . . .∗Aℓ,
where ℓ > 1 is (an arbitrary) positive integer, and G is not isomorphic to D∞ =
Z2 ∗Z2, and over which the given sentence is a truth sentence. Given the collection
of all these groups, {G}, we look at the collection of all the test sequences of
the given resolution over free products, Res(y). Note that the collection of test
sequences is divided into finitely many subsets, where in each subset it is specified
which of the terminal elliptic subgroups of Res(y), E1, . . . , Er, are mapped into
conjugate factors in G. If for some test sequence of Res(y) over a free products
G = A1∗. . .∗Aℓ, two terminal elliptic factors, Ei and Ej, are mapped into conjugate
factors of G, we add new elements to the (generators of the) resolution, Res(y),
that conjugate the factors into which Ei and Ej are mapped.

Since the sentence is a truth sentence over the free products G that we consider,
for the specializations of each test sequence (in the free products G), it is possible
to add specializations to the existential variables x, so that both the equalities,
w1, . . . , ws, and the inequalities, v1, . . . , vt, do hold in G. Given each specialization
in a test sequence, we choose the shortest possible specialization of the existential
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variables x (in the simplicial metric of the Bass-Serre tree that is associated with
the free product, G = A1 ∗ . . . , Aℓ).

Given each test sequence of Res(y), and the extensions to shortest possible
existential variables, it is possible to extract a subsequence, that converges into a
limit group (over free products), that has the form, Cl(Res) ∗ Fd, for some closure
of the given resolution, Res(y), and (possibly trivial) free group, Fd. As we did
in proving theorem 21 in [Ja-Se], we can define a partial order on the collection
of these obtained limit groups. We can replace each of the obtained closures,
Cl(Res), with a closure that is obtained from the completion, Comp(Res) , by
adding finitely many generators and relations, and so that the elements, w1, . . . , ws

are still trivial, and the elements, v1, . . . , vt, are non-trivial in the relatively finitely
presented closure. By the ability to perform such a replacement, every maximal
element with respect to the partial order on the obtained limit groups, Cl(Res)∗Fd,
is obtained from Comp(Res) by adding finitely many generators and relations.
By the same argument that was used to prove the finiteness of maximal limit
quotients (over free products) of a f.p. group (theorem 21 in [Ja-Se]), there are only
finitely many maximal limit groups of the form, Cl(Res) ∗ Fd, that dominate all
the limit groups that are obtained from test sequences of the resolution, Res, and
its extension to shortest existential variables.

We denote these maximal limit groups, H1, . . . , Hq, where for each i, i =
1, . . . , q, Hi = Cli(Res)∗Fdi

. Since the limit groups {Hi} dominate all the possible
test sequences over groups for which the sentence is a truth sentence (together with
their extensions to the existential variables), the closures, Cl1, . . . , Clq, do form a
covering closure for the resolution, Res, for every non-trivial free product G, which
is not D∞, and over which the sentence is a truth sentence. By construction, the
elements w1, . . . , ws represent the trivial element in each of the groups Hi. The
elements v1, . . . , vt represent non-trivial elements. Part (2) follows since the limit
groups Hi, i = 1, . . . , q, dominate (the tails of) all the test sequences of the reso-
lution, Res(y), over free products for which the given sentence is a truth sentence
(and their extensions to shortest existential variables).

�

Theorem 2.5 proves, in particular, that if a given sentence is a truth sentence
over a variety V that is defined over some free product G, then there exist formal
solutions that prove the validity of the sentence for generic points in the variety
V . As over free and hyperbolic groups, we will need a uniform way to pick these
formal solutions. To get the type of uniformity that we need, we still need to collect
the entire set of formal solutions. These can be encoded using formal limit groups
(over free products) and graded formal limit groups.

As over free groups (definition 2.1 in [Se2]), given a completion of a well-structured
resolution over free products, Comp(Res)(z, y), and a system of equations, Σ(x, y) =
1, we define a formal limit group that is associated with the completion and the
system of equations, as a limit of a sequence of homomorphisms: hn :< x, z, y >→
A1

n∗. . .∗Aℓ
n, where the restrictions, hn :< z, y >→ A1

n∗. . .∗Aℓ
n, form a test sequence

of the completion, Comp(Res)(z, y), and Σ(hn(x), hn(y)) = 1 in A1
n ∗ . . . ∗ Aℓ

n.
In [Ja-Se] we have associated well-structured resolutions with a limit group over

free products. If we combine the results and the techniques of [Ja-Se], with the
construction of formal resolutions of a formal limit group (over a free group) in the
second chapter of [Se2], then given a formal limit group, FL(x, z, y), we are able
to associate with it its collection of formal resolutions. Furthermore, in [Ja-Se] it is
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shown that given a f.p group it is possible to associate with it finitely many well-
structured resolutions, so that every homomorphism from the given f.p. group into
a free product factors through at least one of these finitely many resolutions, and
so that the completion of each of the finitely many resolutions is finitely presented
(such a finite collection of resolutions is taken to be the (non-canonical) Makanin-
Razborov diagram of the given f.p. group over free products).

Similarly, let Res(y) be a well-structured resolution with a f.p. completion,
Comp(Res)(z, y) (hence, comp(Res)(z, y) terminates in a free product of finitely
many f.p. elliptic factors and (possibly) a f.g. free group). Given a (finite) system of
equations, Σ(x, y) = 1, it is possible to associate with the given system of equations,
Σ(x, y) = 1, and the given resolution over free products, Res(y), a finite collection
of (well-structured) formal resolutions, with f.p. completions, so that:

(1) each resolution terminates in a f.p. group, Cli(Res) ∗ Fdi
, where Cli(Res)

is a closure of the completion, Comp(Res), and the closure, Cli(Res), and
its terminating elliptic factors are all finitely presented.

(2) every formal solution of the given completion and the given system of equa-
tions, over any non-trivial free product that is not isomorphic to D∞, factors
through at least one of the finitely many formal resolutions.

Like the Makanin-Razborov diagram (over free products) that we associated
with a f.p. group, the finite collection of formal resolutions that we associated with
a given f.p. completion and a finite system of equations is not canonical. However,
it encodes all the formal solutions that can be associated with the given comple-
tion and the given system of equations, and it suffices to analyze sentences and
predicates. Hence, we call such a finite collection of formal resolutions (that satisfy
properties (1) and (2)), a formal Makanin-Razborov diagram of the completion,
Comp(Res), and the finite system of equations, Σ, over free products.

To analyze sentences and predicates over free groups, we needed to collect not
only formal solutions that are defined over a given completion and a given system
of equations, but rather to collect all the formal solutions that are defined over
a given graded completion, Comp(Res(y, z, p)), and a system of equations with
parameters, Σ(x, y, p) = 1.
Note that a technical difficulty that exists in the graded case, and does not appear
in the ungraded case, is that a (graded) completion of a graded resolution over
free products, can not be assumed to be f.p. even if we start with a graded f.p.
group. f.p. is essential in our approach to constructing (graded) Makanin-Razborov
diagrams over free products. However, this technical difficulty can be overcome by
applying the techniques and the results that appear in theorems 1.17, 1.20, and
1.21, while studying graded resolutions and their covers.

We start the construction of a graded formal Makanin-Razborov diagram over
free products, by following the construction of formal graded limit groups and
their formal graded Makanin-Razborov diagrams over free groups, that appears in
section 3 in [Se2]. Let Res(y, p) be a graded well-structured resolution over free
products. We assume that Res(y, p) terminates in a free product of a rigid or a
solid limit group with (possibly) finitely many elliptic factors and (possibly) a f.g.
free group. In case the terminal graded limit group of Res(y, p) contains a solid
factor we assume that with the solid factor, there is an associated finite collection
of covers of its flexible quotients (see proposition 1.5). Let Comp(Res)(z, y, p) be
the graded completion of Res(y, p).
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As in the ungraded case (over free products), given the graded completion,
Comp(Res)(z, y, p), of the graded well-structured resolution over free products,
Res(y, p), and a (finite) system of equations, Σ(x, y, p) = 1, we define a graded
formal limit group that is associated with the completion and the system of equa-
tions, as a limit of a sequence of homomorphisms hn :< x, z, y, p >→ A1

n ∗ . . . ∗Aℓ
n,

where the restrictions, hn :< z, y, p >→ A1
n ∗ . . . ∗ Aℓ

n, form a graded test sequence
of the graded completion, Comp(Res)(z, y, p), and Σ(hn(x), hn(y), hn(p)) = 1 in
A1

n ∗ . . . ∗Aℓ
n. Furthermore, by possibly passing to a subsequence of the homomor-

phisms, {hn}, it is possible to use the subsequence of homomorphisms (still denoted
{hn}), and associate with them a graded formal resolution, that terminates in a
graded limit group of the form, Cl(Res)∗Fd, where Cl(Res) is a closure of the given
completion, Comp(Res), and Fd is a possibly trivial free group. Note that even if
the completion, Comp(Res), is f.p. it does not imply that the closure, Cl(Res), is
f.p. as well.

Since the closure, Cl(Res), may be infinitely presented, to construct finitely
many formal graded resolutions that will cover all the graded formal resolutions that
are associated with Comp(Res), we need to replace each graded formal resolution
by a cover, in a similar way to the construction of covers of graded resolutions over
free products that appear in theorem 1.21.

Theorem 2.6. Let G(y, p) be a f.p. group, let Res(y, p) be a well-structured reso-
lution over free products of a (graded) limit quotient of G(y, p) that terminates in a
free product of a rigid or solid factor and possibly finitely many elliptic factors and a
(possibly trivial) free group. Let Comp(Res)(z, y, p) be the completion of Res(y, p),
and let Σ(x, y, p) = 1 be a (finite) system of equations.

Let {hn :< x, z, y, p >→ A1
n ∗ . . . ∗ Aℓ

n} (where A1
n ∗ . . . ∗ Aℓ

n are non-trivial
free products that are not isomorphic to D∞) be a sequence of homomorphisms,
where the restrictions, hn :< z, y, p >→ A1

n ∗ . . . ∗ Aℓ
n, form a graded test sequence

of the graded completion, Comp(Res)(z, y, p), and Σ(hn(x), hn(y), hn(p)) = 1 in
A1

n ∗ . . . ∗ Aℓ
n. Furthermore, we assume that the sequence {hn} converges into a

formal limit group over free products, FL(x, z, y, p), and that from the sequence,
{hn}, it is possible to construct a formal resolution (over free products), FGRes:

FL(x, z, y, p) = FL0 → FL1 → . . . → FLs = Cl(Res) ∗ Fd

where Cl(Res) is a graded closure of the completion, Comp(Res)(z, y, p), and Fd

is a possibly trivial free group.
There exists a f.g. graded formal limit quotient of G(y, p), CF , and a well-

structured graded formal resolution of CF , CFGRes, CF = CF0 → CF1 → . . . →
CFs, that covers the graded formal resolution that is constructed from the homo-
morphisms, {hn}, i.e., the formal graded resolution, CFGRes, has the following
properties (cf. theorem 1.21):

(1) the (cover) graded formal resolution, CFGRes, is a strict well-structured
resolution over free products. In particular it maps non-trivial elliptic el-
ements to non-trivial elliptic elements. Furthermore, for each index i,
i = 1, . . . , s, there is an epimorphism of limit groups over free products,
τi : CFi → FLi. The epimorphisms τi commute with the quotient maps in
the two graded resolutions, FGRes and CFGRes.

(2) the epimorphisms along CFGRes are proper epimorphisms.
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(3) all the graded formal abelian decompositions that are associated with the
various formal limit groups (over free products), CFi, i = 1, . . . , s, are
their graded formal JSJ decompositions over free products. Furthermore, the
graded formal JSJ decompositions (over free products) of the formal limit
groups, CFi, i = 1, . . . , s, have the same structure as the corresponding
graded formal JSJ decompositions (over free products) of the formal limit
groups, FLi, where the difference is only in the rigid vertex groups of the
JSJ decompositions and in the elliptic factors.

(4) if no factor of FLi is (formal) rigid nor solid, then CFi+1 is a cover of a
(formal) shortening quotient of CFi, for i = 1, . . . , s − 1.

(5) for i < s no factor of FLi can be (formal) rigid. If for i < s a factor of FLi

is (formal) solid then the corresponding factor of CFi is formal weakly solid
(see definition 1.18 for a weakly solid group). In this (solid) case, when
i < s, CFi+1 is a free product of a cover of a (formal) flexible quotient
of the (formal) weakly solid factor in CFi with (possibly) the same elliptic
factors and (possibly) the same free group as in CFi.

(6) FLs, the terminal formal graded limit group of the formal graded resolution,
FGRes, is of the form Cl(Res) ∗ Fd, where Cl(Res) is a closure of the
completion, Comp(Res), and Fd is a possibly trivial free group. Cl(Res)
terminates in a free product of either a (non-formal) rigid or solid factor
with (possibly) finitely many elliptic factors and (possibly) a free factor.

CFs, the terminal limit group of the cover formal graded resolution,
CFGRes, is of the form CFs = CCl(Res) ∗ Fd, where CCl(Res) is a
cover of the closure, Cl(Res), which is a factor of FLs. The cover closure,
CCl(Res), has the same structure as the closure, Cl(Res), and it differs
from the closure Cl(Res) only in the terminating limit group. The cover
closure CCl(Res) terminates in a free product of a (non-formal) rigid or a
weakly solid factor, that we denote RSFs, in correspondence with the factor
of the terminal limit group of Cl(Res), with (possibly) f.p. covers of the
elliptic factors in the terminal limit group of Cl(Res), and a free group (of
the same rank as in the terminal limit group of Cl(Res)).

With the rigid or the weakly solid factor of the terminal limit group
of CCl(Res), RSFs, we associate finitely many limit groups (over free
products), CFl1, . . . , CF lg, with ungraded resolutions (over free products),
Res1, . . . , Resg, that terminate in f.p. limit groups (cf. theorems 1.17 and
1.20). Hence, the completions of Res1, . . . , Resg are f.p. and the limit
groups (over free products), CFl1, . . . , CF lg, can be embedded in f.p. com-
pletions (that have f.p. terminal limit groups).

(7) the finite collection of limit groups, CFl1, . . . , CF lg, are all limit quotients
of the f.p. group G(y, p)∗ < x >, and they dominate all the flexible quotients
of RSFs (although they need not be quotients of RSFs).

From the sequence of homomorphisms, {hn}, it is possible to perform it-
erative shortenings, and obtain another sequence of homomorphisms, {un},
that restrict to asymptotically rigid or asymptotically strictly solid homo-
morphisms that converge into the rigid or solid factor of the terminal limit
group of the closure, Cl(Res), that appears as a factor in a free product,
FLs = Cl(Res) ∗ Fd, where FLs is the terminal graded limit group in
FGRes.

The homomorphisms {un} factor through CFLs, and they restrict to
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rigid or weakly strictly solid homomorphisms of RSFs (with respect to the
cover, CFl1, . . . , CF lg). Furthermore, in the rigid case, every flexible ho-
momorphism of RSFs factors through at least one of the resolutions, Res1, . . . , Resg,
that are associated with the limit groups, CFl1, . . . , CF lg. In the weakly
solid case, for every non-weakly strictly solid homomorphism of RSFs, f :
RSFs → A1∗. . .∗Aℓ, there exists a homomorphism, u : RSFs → A1∗. . .∗Aℓ,
such that the pair, (f, u), extends to a homomorphism of the completion of
the identity resolution, RSFs → RSFs, and the homomorphism u as a ho-
momorphism of the f.p. group, G(y, p)∗ < x >, factors through at least one
of the resolutions, Res1, . . . , Resg.

(8) with the terminal graded limit group of the cover closure, CCl(Res), that
we denote, TCCl(Res), it is possible to associate an ungraded strict well-
structured resolution: TCCl = V0 → V1 → . . . → Vt, so that the terminal
(ungraded) limit group (over free products) Vt is a free product of (possibly)
f.p. elliptic factors and (possibly) a free group. Every non-trivial elliptic
element in each of the limit groups (over free products) Vi, i = 0, . . . , t− 1,
is mapped to a non-trivial element in Vi+1.

It is clearly possible to combine the cover formal graded resolution, CFGRes,
with the ungraded resolution, TCl = V0 → V1 → . . . → Vt, and obtain a
combined ungraded resolution over free products. With this resolution we
can naturally associate an (ungraded) completion, that we denote, CompCF .
Then the completion, CompCF , and its terminal limit group, Vt, are finitely
presented. This implies that all the formal limit groups that appear along
the cover formal graded resolution, CFGRes, and in particular the terminal
cover closure, CCl(Res), can all be embedded in a f.p. completion.

Proof: With the techniques for the construction of graded formal limit groups
(over free groups) that appear in section 3 of [Se2], the proof is identical to the
proof of theorem 1.21.

�

Given a graded well-structured resolution, Res(y, p), of a graded limit quotient
of a f.p. group, G(y, p), its completion, Comp(Res)(z, y, p), a system of equations,
Σ(x, y, p) = 1, and a sequence of homomorphisms, {hn :< x, z, y, p >→ A1

n ∗
. . . ∗ Aℓ

n} that restricts to a test sequence of the completion, Comp(Res), we first
passed to a subsequence of the homomorphisms, {hn}, from which we constructed a
formal graded resolution over a closure of the completion, Comp(Res), and then by
theorem 2.6 we have associated (non-canonically) a cover formal graded resolution
with the constructed formal graded resolution. By the properties of the cover formal
resolution, all the graded limit groups that are involved in its construction can be
embedded in f.p. graded completions (see theorem 2.6).

Therefore, with the graded resolution, Res(y, p), and the system of equations,
Σ(x, y, p) = 1, theorem 2.6 associates a collection of cover formal graded resolutions,
so that every formal solution, that is associated with the resolution and the system
of equations, factors through at least one of these cover formal graded resolutions.
As in the ungraded case (theorem 26 in [Ja-Se]), and as in the graded case (theorem
1.22), from this collection of cover formal graded resolutions it is possible to find
a finite subcollection, so that every formal solution that is associated with the
graded resolution, Res(y, p), and the system of equations, Σ(x, y, p) = 1, factors
through at least one of the cover formal graded resolutions that belong to the finite
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subcollection. Hence, we can view this (non-canonical) finite subcollection as a
formal graded Makanin-Razborov diagram of the resolution, Res(y, p), and the
system of equations, Σ(x, y, p) = 1.

Theorem 2.7. Let G(y, p) be a f.p. group, let Res(y, p) be a well-structured reso-
lution over free products of a (graded) limit quotient of G(y, p) that terminates in
a free product of a rigid or solid factor, and possibly finitely many elliptic factors,
and a (possibly trivial) free group. Let Comp(z, y, p) be the completion of Res(y, p),
and let Σ(x, y, p) = 1 be a (finite) system of equations.

There exist finitely many well-structured formal graded resolutions that satisfy
properties (1)-(8) of theorem 2.6: CF = CF0 → CF1 → . . . → CFs, where CF is
a graded formal limit group over free products that is associated with the f.p. group
G(y, p) and the system of equations, Σ(x, y, p) = 1, and CFS is a free product CFs =
CCl(Res) ∗ Fd, i.e., a free product of a cover of a closure of Comp(Res)(z, y, p)
with a (possibly trivial) free group.

With each of the finitely many cover formal graded resolutions we associate the
collection of formal solutions that factor through it. These formal solutions, are
obtained from homomorphisms of the terminal graded limit group, TCCl(Res) of
the cover closure, CCl(Res), which is a factor of CFs. These homomorphisms of
TCCl(Res) are obtained from rigid or weakly strictly solid homomorphisms of the
rigid or weakly solid factor of TCCl(Res), that are combined with homomorphisms
of the f.p. elliptic factors (into elliptic subgroups), and arbitrary homomorphisms of
the (possible) free factor (of TCCl(Res)). We further require that the restriction of
weakly strictly solid homomorphisms to edge groups and to abelian and QH vertex
groups in the graded abelian JSJ decomposition of the weakly solid factor are not
(entirely) elliptic.

Formal solutions that are associated with the given cover formal graded resolu-
tion, and with the formal limit groups, CFs−1, . . . , CF0 = CF , are obtained from
homomorphisms of CFs, in a similar way to homomorphisms that factor through
graded resolutions over free and hyperbolic group, i.e., according to parts (1)-(3)
that are listed in theorem 1.22.

Every formal solution that is associated with the given resolution, Res(y, p),
and the system of equations, Σ(x, y, p) = 1, factors through at least one of the
finitely many (cover) formal graded resolutions that are associated with the f.p.
group G(y, p), the resolution, Res(y, p), and the system of equations, Σ(x, y, p) = 1.

Proof: Given the construction of a cover formal graded resolution that appears in
theorem 2.6, the proof of theorem 2.7 is identical to the proof of theorem 1.22 (and
to theorem 26 in [Ja-Se]).

�

The finite collection of formal graded resolutions that are associated (non-canonically)
with a f.p. group, G(y, p), a well-structured resolution of a limit quotient (over free
products) of it, Res(y, p), and a system of equations, Σ(x, y, p) = 1, according to
theorem 2.7, and through which all the formal solutions that are associated with
this triple do factor, form a formal graded Makanin-Razborov diagram over free
products. Note that the collection of formal graded resolutions is not canonical,
hence, the diagram we constructed is not canonical.

As we have already indicated in constructing the graded Makanin-Razborov di-
agram, the construction of the formal graded Makanin-Razborov diagram does not
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require a separate study of the singular locus of the constructed formal graded res-
olutions, as by construction, this singular locus is covered by other formal graded
resolutions from the constructed finite collection.

§3. AE Sentences

In [Ja-Se] and the first 2 sections in this paper we have generalized the results
and notions that were presented in [Se1], [Se2] and [Se3], for studying varieties,
sentences and predicates defined over a free group, to free products. In this section
we show how to use these notions and constructions to reduce an AE sentence over
free products to a sentence in the Boolean algebra of AE sentences in the factors.
Like all our constructions in the previous sections and in [Ja-Se], the reduction of
an AE sentence over free products to a sentence in the factors is uniform, and does
not depend on a specific free product (although it does depend on the number of
factors in the free product).

In [Se4] we have associated a complexity with each well-structured resolution, or
an induced resolution (see section 3 of [Se4] for an induced resolution). This com-
plexity is slightly modified in studying AE sentences over hyperbolic groups (defini-
tion 4.2 in [Se7]). Over free products we use the same complexity of well-structured
resolutions (and their completions), as the one that is used over hyperbolic groups.

Definition 3.1 ([Se4],4.2). Let Comp(Res)(t, y) be a completion of a well-structured
resolution, Res(y), over free products, with (possibly) reduced modular groups asso-
ciated with each of its various QH subgroups. Let Q1, . . . , Qm be the QH subgroups
that appear in the completion, Comp(Res)(t, y), and let S1, . . . , Sm be the (punc-
tured) surfaces associated with the reduced modular group associated with each of
the QH vertex group. To each (punctured) surface Sj we may associate an ordered
couple (genus(Sj), |χ(Sj)|). We will assume that the QH subgroups Q1, . . . , Qm

are ordered according to the lexicographical (decreasing) order of the ordered cou-
ples associated with their corresponding surfaces. Let rk(Res(y)) be the rank of
the free group that is dropped along the resolution Res(y), let fact(Res(y)) be the
number of elliptic terminal factors of the resolution Res(y), and let Abrk(Res(y))
be the sum of the ranks of the kernels of the mappings of (free) abelian groups that
appear as vertex groups along the resolution Res(y) (see definition 1.15 in [Se4]).
We set the complexity of the resolution, Res(y), and the completion, Comp(Res),
denoted Cmplx(Res(y)), to be:

Cmplx(Res(y)) = (fact(Res(y)) + rk(Res(y)), (genus(S1), |χ(S1)|), . . .

. . . , (genus(Sm), |χ(Sm)|), Abrk(Res(y))).

On the set of complexities of completed resolutions with (possibly) reduced modular
groups we can define a linear order. Let Res1(y) and Res2(y) be two completed
resolutions with (possibly) reduced modular groups. We say that Cmplx(Res1(y)) =
Cmplx(Res2(y)) if the tuples defining the two complexities are identical. We say
that Cmplx(Res1)(y)) < Cmplx(Res2(y)) if:

(1) the ”Kurosh” rank, fact(Res1(y))+rk(Res1(y)) is smaller than the Kurosh
rank fact(Res2(y)) + rk(Res2(y)).

(2) the above ranks are equal and the tuple:

((genus(S1
1), |χ(S1

1)|), . . . , (genus(S1
m1

), |χ(S1
m1

|))
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is smaller in the lexicographical order than the tuple:

((genus(S2
1), |χ(S2

1)|), . . . , (genus(S2
m2

), |χ(S2
m2

|)).

(3) the above ranks and tuples are equal and Abrk(Res1(y)) < Abrk(Res2(y)).

Given a complete, well-separated resolution, Res(t, y), over a free group, and
a subgroup < y > of its associated limit group, we have constructed in section
3 of [Se4], the induced resolution, Ind(Res(t, y))(u, y). The construction of the
induced resolution generalizes directly to well-separated resolutions over free prod-
ucts, hence, we omit its detailed description.

In section 4 of [Se4] a procedure for a validation of an AE sentence over a free
group is presented. This procedure is generalized to torsion-free hyperbolic groups
in [Se8]. In this section our goal is to analyze uniformly an AE sentence over all
non-trivial free products. Hence, we are not aiming at validating an AE sentence,
but rather our goal is to find a uniform way to reduce an AE sentence over a free
product to a sentence over its factors.

In the procedure that is presented in [Se4] we used a single formal solution (at
times particular families of formal solutions), at each step of the procedure. As
we look for a uniform construction, we will need to collect all the formal solutions
that are defined over a completion (or rather on closures of it) in each step of
the procedure. Also, as we will see in the sequel, to obtain the reduction of an AE
sentence from a free product to its factors, it is easier to analyze the places in which
the iterative procedure of the type that is presented in [Se4] fails, rather than the
places it succeeds (these possible ”failures” are provided by the iterative procedure
for validation of an AE sentence over free and hyperbolic groups (see section 4 in
[Se4]), and they are later used in the quantifier elimination procedure over these
groups).

Let:

∀y ∃x Σ(x, y) = 1 ∧ Ψ(x, y) 6= 1

be a sentence over groups. Let Fy =< y >, be a free group that is freely generated
by (copies of) the (universal) variables y. Let G = A1 ∗ . . . ∗ Aℓ be a non-trivial
free product that is not isomorphic to D∞. If the given sentence is a false sentence
over G, then there is a homomorphism h : Fy → G, so that for the corresponding
values of the universal variables y (i.e., the image of the variables y under the
homomorphism h), there exist no values for the existential variables x, for which
both the equalities Σ(x, y) = 1 and the inequalities Ψ(x, y) 6= 1 hold.

We look at all the possible sequences of homomorphisms, {hn : Fy → A1
n ∗

. . . ∗ Aℓ
n}, where ℓ ≥ 2 is an arbitrary positive integer, and the free products,

A1
n ∗ . . . ∗ Aℓ

n, are non-trivial and not isomorphic to D∞. We further assume that
each of the homomorphisms hn fails the given AE sentence for A1

n ∗ . . . ∗ Aℓ
n, i.e.,

for each hn there are no values for the existential variables x (in A1
n ∗ . . . ∗ Aℓ

n), so
that for the tuple, (x, hn(y)), both the equalities Σ and the inequalities Ψ hold (in
A1

n ∗ . . . ∗ Aℓ
n).

By theorem 18 in [Ja-Se] given such a sequence, {hn}, we can pass to a sub-
sequence that converges into a well-structured (even well-separated) resolution:
L0 → L1 → . . . → Ls, where Ls is a free product of (possibly) a free group and
(possibly) finitely many elliptic factors. We denote this resolution BRes. Note

40



that the terminal elliptic subgroups in BRes are f.g. but they may be infinitely
presented.
As the the terminal elliptic factors of the resolution, BRes, and its completion,
may be infinitely presented, we start by iteratively approximating it by resolutions
with the same structure that have f.p. completions and terminal elliptic factors,
approximations (or covers) that we used in constructing the ungraded Makanin-
Razborov diagram over free products (see theorem 25 in [Ja-Se]).

Let E1, . . . , Er be the elliptic factors in the free decomposition of the terminal
limit group of the resolution, BRes, Ls. E1, . . . , Er are all f.g. but they may be
infinitely presented. Hence, we fix a system of f.p. approximations of E1, . . . , Er,
that we denote, Em

1 , . . . , Em
r , that are obtained from E1, . . . , Er by fixing a gen-

erating set of E1, . . . , Er, and keeping only the relations of length up to m in each
of the elliptic factors, E1, . . . , Er.

For sufficiently large index m, we set Resm to be the resolution (over free prod-
ucts) that is obtained from BRes, by replacing the elliptic factors, E1, . . . , Er, by
the f.p. factors, Em

1 , . . . , Em
r (note that for sufficiently large m it is guaranteed

that the all the retractions in the resolution, BRes, lift to corresponding retrac-
tions in the resolutions, Resm). Since the resolution BRes is well-structured (and
well-separated), the resolutions, Resm, are well-structured and well-separated for
large m. Since the elliptic factors, Em

1 , . . . , Em
r , are all finitely presented, for each

index m, there exists some index nm, so that for all n > nm, the homomorphisms
{hn} factor through the resolution Resm.

In section 2 we have shown that given a resolution over free products, Res(y),
with a f.p. completion, and a finite system of equations, Σ(x, y) = 1, it is possible
to associate with them (non-canonically) a formal Makanin-Razborov diagram that
encodes all the formal solutions that are defined over (a closure of) Res(y), and
over every non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to
D∞ (see theorem 2.5). Furthermore, each formal resolution in the formal Makanin-
Razborov diagram terminates in a closure of Res(y), and this closure, as well as its
terminating elliptic factors are all finitely presented.
Therefore, with each approximating resolution of the constructed resolution BRes,
Resm, we associate (non-canonically) a formal Makanin-Razborov diagram (over
free products). Note that the completions of the formal resolutions in these formal
Makanin-Razborov diagrams are all finitely presented.

For each index m, there exists an index nm, so that for all n > nm, the homo-
morphisms {hn : A1

n ∗ . . . ∗ Aℓ
n} factor through the resolution, Resm. Hence, with

each such homomorphism, hn, we can associate values (specializations) with each
of the elliptic subgroups, Em

1 , . . . , Em
r .

If there exists an index m, for which there is an infinite subsequence of homomor-
phisms (still denoted), {hn}, so that for each of the specializations of the elliptic
subgroups, Em

1 , . . . , Em
r , that are associated with the homomorphisms, {hn}, there

exists a test sequence of Resm that extends the values of the elliptic factors, that
does not extend to formal solutions over (a closure of) Resm, or it does extend
to formal solutions over (a closure of) Resm, but for each such formal solution at
least one of the inequalities in the system, Ψ(x, y) 6= 1, does not hold (i.e., it is
an equality and not an inequality), we reached a terminal point of the iterative
procedure. In this case, the associated output is the (approximating) resolution,
Resm, and its associated formal Makanin-Razborov diagram.

Suppose that for every index m, there is no subsequence of homomorphisms
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{hn}, for which for the values of the elliptic factors of Resm that are associated
with each homomorphism from the subsequence, there exists a test sequence that
extends these values, and either there exists no formal solution (over a closure of
Resm) that extends the specializations of the test sequence, or there exist such
formal solutions but for all of them the system of inequalities, Ψ(x, y) 6= 1 does not
hold. In this case for each index m, there exists an index km > nm > m, so that
hkm

factors through Resm, and with the specializations of the elliptic subgroups,
Em

1 , . . . , Em
r , that are associated with hkm

, it is possible to associate a formal
solution xm that does satisfy Σ(xm, y) = 1 and Ψ(xm, y) 6= 1 for generic y (generic
for the fiber that is associated with the resolution, Res(y), and the corresponding
specializations of the elliptic factors, Em

1 , . . . , Em
r ).

By construction, the elliptic factors in the resolutions, {Resm}, Em
1 , . . . , Em

r ,
converge into the elliptic factors in the resolution, BRes, E1, . . . , Er (as they are
f.p. approximations of E1, . . . , Er). The formal solutions, {xm}, are defined over
closures of the resolutions, {Resm}. Using the techniques to construct formal limit
groups over free products, that were presented in the previous section, from the
sequence of formal solutions, {xm}, it is possible to extract a subsequence (still
denoted) {xm}, that converges into a formal limit group over a closure of the
(limit) resolution BRes, FL(x, z, y). By the construction of the formal limit group
FL(x, z, y), the equations from the system, Σ(x, y) = 1, represent the trivial word
in FL(x, z, y), whereas each of the inequations, Ψ(x, y) 6= 1, represent a non-trivial
element in FL(x, z, y) (as these elements are non-trivial for the formal solutions,
{xm}, and generic values of the variables y).

At this point we look at the sequences of specializations, {(xm, ym, z1(m), . . . , zt(m))},
of the formal solution xm, the universal variables y, and its successive shortenings
(z1, . . . , zt), that take their values in the free products, {A1

km
∗ . . . ∗ Aℓ

km
}, and

each of the specializations, (ym, z1(m), . . . , zt(m)), factors through the resolution,
Resm. The elements, {ym}, are precisely the subsequence of values of the universal
variables for which the sentence fail to hold for the free products, {A1

km
∗ . . .∗Aℓ

km
}.

Given this sequence of specializations, we apply the first step of the procedure for
validation of an AE sentence, that is presented in section 4 of [Se4], and extract a
subsequence, that converges into a quotient resolution of the one that is associated
with the formal limit group, FL(x, z, y) (where the last one is a closure of the
original resolution, BRes). Since the formal solutions, {xm}, were assumed to
satisfy both the equalities, Σ(x, y) = 1, and the inequalities, Ψ(x, y) 6= 1, the
obtained quotient resolution is not a closure of the resolution, BRes, that we have
started with, but rather a resolution of ”reduced complexity” (in the sense of the
iterative procedure that is presented in section 4 in [Se4]).

We continue iteratively. At each step we start with a quotient resolution, QRes,
that was constructed in the previous step of the procedure, using the general step
of the iterative procedure that is presented in section 4 in [Se4], and a sequence
of homomorphisms into free products, {hn}, that converges into the (completion
of the) quotient resolution, QRes. The homomorphisms, {hn}, that are associated
with QRes, are constructed from a subsequence of the sequence of homomorphisms
that are associated with the quotient resolution that was constructed in the previous
step, in addition to elements that are associated with the formal solution that is
imposed on that quotient resolution. Furthermore, the sequence {hn}, restricts
to specializations of the universal variables y, that demonstrate that the given AE
sentence is a false sentence for the corresponding free products (i.e., for these values
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of the universal variables there exist no specializations of the existential variables
for which both the equalities, Σ, and the inequalities, Ψ, do hold).
We start the current (general) step, by fixing a sequence of finitely presented ap-
proximations, QResm, of the quotient resolution, QRes. Note that for each index
m, there exists an index nm, so that for every n > nm, the homomorphisms {hn}
factor through QResm, and for each homomorphism hn there are associated spe-
cializations of the elliptic factors of QResm in the free product that is associated
with hn.

With each f.p. completion (of QResm) we associate (not in a canonical way)
a formal Makanin-Razborov diagram. Note that each formal resolution in such a
formal diagram has a f.p. completion. If there exists an index m, and a subsequence
of the given sequence of homomorphisms, {hn}, that we still denote {hn}, so that
over the specializations of the elliptic factors of QResm that are associated with the
subsequence of homomorphisms, {hn}, there exists a test sequence that does not
extend to any formal solutions over QResm, so that both the equalities, Σ(x, y) = 1,
and the inequalities, Ψ(x, y) 6= 1, hold for generic y’s (over the corresponding
sequence of free products, {A1

n ∗ . . . ∗ Aℓ
n}), we reached a terminal point of our

iterative procedure. In this case the final output of the iterative procedure is the
quotient resolution, QResm, (that has a f.p. completion), and its (non-canonical)
formal Makanin-Razborov diagram, where each formal resolution in this diagram
has a f.p. completion as well, and this formal Makanin-Razborov diagram encodes
all the formal solutions over QResm that satisfy the equalities, Σ(x, y) = 1.

Suppose that there is no such index m, and no such subsequence of the homo-
morphisms, {hn}. In this case for each index m, there exists some index km > m,
so that there is a formal solution xm that is defined over the resolution, QResm,
with values of its elliptic factors that are associated with the homomorphism, hkm

,
so that both the equalities, Σ(xm, y) = 1, and the inequalities, Ψ(xm, y) 6= 1, hold
for generic values of the universal variables y (generic in the corresponding fibers
of the resolution QResm, and the values of its terminal elliptic factors that are
associated with the homomorphisms, {hkm

}). In this case we look at the sequence,
{(xm, hnm

)}, that has a subsequence that converges into a quotient resolution, that
is obtained using the general step of the iterative procedure for the analysis of
an AE sentence that is presented in section 4 of [Se4]. Since the formal solutions
are guaranteed to satisfy both the equalities, Σ(xm, y) = 1, and the inequalities,
Ψ(xm, y) 6= 1, the complexity of the obtained quotient resolution is strictly smaller
than the complexity of the resolution, QRes, that we have started the current step
with.

By theorem 4.12 in [Se4], this iterative procedure terminates after finitely many
steps. If we reached a terminal quotient resolution along the process, we found a f.p.
resolution, QResm, and a subsequence of the original sequence of homomorphisms,
for which for the specializations of the elliptic factors of QResm that are associated
with the subsequence of homomorphisms (these elliptic factors take their values in
the free products, {A1

n ∗ . . . ∗ Aℓ
n}, that are associated with the homomorphisms,

{hn}), there exist test sequences that do not extend to formal solutions that are
defined over (closures of) QResm, and for which both the equalities and the in-
equalities hold for generic value of the universal variables y (generic in the fibers
that are associated with QResm and the corresponding values of the elliptic factors
of QResm in A1

n ∗ . . . ∗ Aℓ
n).

If we didn’t find such a f.p. resolution along the iterative procedure, it continued
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until we reached a quotient resolution which is a free product of elliptic factors
(as by theorem 4.12 in [Se4] the iterative procedure terminates after finitely many
steps). Once again, we look at a sequence of f.p. approximations of these elliptic
factors. These f.p. approximations are free products of elliptic factors as well.

Since the given sequence of homomorphisms {hn}, testifies that the given sen-
tence is not valid for the free products, {A1

n ∗ . . . ∗ Aℓ
n}, there must exist a f.p.

approximation of the terminal elliptic factors, and a subsequence of the given se-
quence of homomorphisms, {hn}, that we still denote {hn}, so that over the spe-
cializations of the elliptic factors of the f.p. approximation that are associated with
the subsequence of homomorphisms, {hn}, no formal solution over the f.p. approx-
imating free product can be constructed so that both the equalities, Σ(x, y) = 1,
and the inequalities, Ψ(x, y) 6= 1, hold for the corresponding value of the universal
variables y.

Therefore, whatever terminal point of the iterative procedure we have reached,
we found a resolution (over free products) with f.p. completion, through which a
subsequence of the given sequence of homomorphisms do factor, and for which for
some test sequences of this resolution that are associated with those values of the
elliptic factors of the terminal limit group of the resolution, that are associated
with the given subsequence of homomorphisms, the specializations in these test
sequences can not be extended to formal solutions (over closures of the resolution)
that satisfy both the equalities, Σ(x, y) = 1, and the inequalities, Ψ(x, y) 6= 1, for
generic values of the variables y.

This procedure that starts with a given AE sentence, and with a sequence of
values of the universal variables y of that sentence, that testifies that the given AE
sentence fails (over the free products in which the universal variables take their
values), and extracts a subsequence that factors through a resolution (over free
products) with a f.p. completion, is what we need in order to reduce a sentence
uniformly from free products to their factors. It enables one to associate with a
given AE sentence, a finite collection of resolutions with f.p. completions, so that if
the given sentence is false for a non-trivial free product, A1 ∗ . . . ∗Aℓ (which is not
D∞), it must be false for a generic point of one of the constructed resolutions, where
the elliptic factors take some value in A1 ∗ . . . ∗Aℓ. This is the key for reducing an
AE sentence over a free product to a sentence over the factors of the free product,
and a key for our approach to the analysis of general sentences and predicates over
free products.

Theorem 3.2. Let:

∀y ∃x Σ(x, y) = 1 ∧ Ψ(x, y) 6= 1

be a sentence over groups. Then there exist finitely many resolutions over free
products: Res1(z, y), . . . , Resd(z, y) with the following properties:

(1) the completion of each of the resolutions, Resi(z, y), is finitely presented.
(2) with each resolution, Resi(z, y), we associate (non-canonically) its formal

Makanin-Razborov diagram over free products with respect to the system of
equations, Σ(x, y) = 1. Every resolution in these formal Makanin-Razborov
diagrams has a f.p. completion.

(3) for every non-trivial free product, A1 ∗ . . . ∗ Aℓ, which is not D∞, and for
which the given sentence is false over A1 ∗ . . . ∗ Aℓ, there exists an index
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i, 1 ≤ i ≤ d, and a specialization of each of the terminal elliptic factors
of Resi(z, y) in elliptic factors in the free products, A1 ∗ . . . ∗ Aℓ, so that
for these specializations of the elliptic factors of Resi(z, y), there exists a
test sequence that is associated with these values of the elliptic factors, that
does not extend to formal solutions over (closures of) Resi(z, y), for which
both the equalities, Σ(x, y) = 1, and the inequalities, Ψ(x, y) 6= 1, hold for
generic values of y.

In other words, there exists a finite collection of resolutions (with f.p. completion)
over free products, so that the failure of an AE sentence over general free products
can be demonstrated by the lack of the existence of a formal solution over a (generic
point in a) fiber of at least one of these resolutions.

Proof: Let A1
n, . . . , Aℓ

n, for some ℓ > 1, be a sequence of non-trivial free products,
that are not isomorphic to D∞, over which the given AE sentence is false. Let
{yn} be a sequence of specializations of the universal variables y, in the free prod-
ucts, A1

n, . . . , Aℓ
n, that fail the given AE sentence over these free products, i.e., the

existential sentences (with coefficients) over the free products, A1
n ∗ . . . ∗ Aℓ

n:

∃x Σ(x, yn) = 1 ∧ Ψ(x, yn) 6= 1

are false.
Starting with the sequence, {yn}, the terminating iterative procedure that we

have presented constructs a resolution, V Res, with the following properties:

(i) the resolution V Res has a f.p. completion and terminal limit group.
(ii) there exists a subsequence of the sequence of specializations, {yn}, that ex-

tend to specializations that factor through the resolution, V Res. Hence,
with each specialization from this subsequence of the sequence, {yn}, spe-
cializations of the f.p. terminal limit group of the resolution, V Res, can
be associated. For each such specialization of the terminal limit group of
V Res, there exists an associated subsequence, that does not extend to any
formal solutions (over closures of V Res) that satisfy both the equalities,
Σ(x, y) = 1, and the inequalities, Ψ(x, y) 6= 1, for generic values of the
variables y.

(iii) with the resolution V Res, and the system of equations, Σ(x, y) = 1, we
associate (non-canonically) a formal Makanin-Razborov diagram (see sec-
tion 2). Every (formal) resolution in this diagram has a f.p. completion and
terminal limit groups as well.

At this point we are able to apply the argument that we used in constructing the
ungraded and graded Makanin-Razborov diagrams (theorems 26 in [Ja-Se] and 1.22
in this paper). We look at all the non-trivial free products, A1∗ . . .∗Aℓ (possibly for
varying ℓ > 1), that are not isomorphic to D∞, over which the given AE sentence
is false. We further look at sequences of specializations of the universal variables y,
{yn}, that testifies that the given AE sentence fail over the corresponding sequence
of non-trivial free products (that are not D∞), A1

n ∗ . . . ∗ Aℓ
n. From every such

sequence we use our terminating iterative procedure, and extract a subsequence of
the specializations, {yn}, and a resolution, V Res, that has the properties (i)-(iii),
and in particular, the subsequence of specializations, (still denoted) {yn}, extend
to specializations that factor through the resolution V Res, and no formal solutions
that satisfy both the equalities, Σ(x, y) = 1, and the inequalities, Ψ(x, y) 6= 1, for
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generic values (i.e., some test sequences) of the variables y can be constructed, for
those values of the elliptic factors in the terminal limit group of V Res, that are
associated with the subsequence of specializations of the sequence, {yn}.

The completion of each of the constructed resolutions, V Res, is finitely pre-
sented, and so are the resolutions in its associated formal Makanin-Razborov dia-
gram. Hence, we can define a linear order on this (countable) collection of reso-
lutions (V Res), and their (non-canonically) associated formal Makanin-Razborov
diagrams. By the same argument that was used in constructing the Makanin-
Razborov diagram (theorem 26 in [Ja-Se]), there exists a finite subcollection of
these resolutions that satisfy properties (1)-(3) of the theorem.

�

Theorem 3.2 constructs a finite collection of resolutions over free products, with
f.p. completions, that demonstrate the failure of an AE sentence over general free
products. This is precisely what is required in order to reduce an AE sentence over
a free product to a sentence which is in the Boolean algebra of AE sentences over
its factors, which is a special case of our general goal. Before stating this reduction
of a sentence from a free product to its factors, we need to study the singular locus
of a resolution over free products.

Recall that in constructing the graded and ungraded Makanin-Razborov dia-
grams over free products, and the formal Makanin-Razborov diagram, we have
considered the set of specializations that factor through a resolution in one of these
diagrams, as those homomorphisms that factor through the resolutions (in the sense
that they are obtained from specializations of the terminal limit group of the resolu-
tion by iteratively precomposing these homomorphisms with automorphisms from
the modular groups (over free products) that are associated with the various levels),
and in addition we required that the associated specializations of the various limit
groups along the resolution restrict to non-elliptic specializations of all the abelian
edge (and vertex) groups, and all the QH vertex groups along the resolution.

This assumption on the non-ellipticity of abelian edge groups, and QH vertex
groups, allows us to ignore the singular locus in studying (graded) resolutions and
the formal resolutions that are defined over them. However, it is essential to deter-
mine the singular locus of the resolutions, Res1, . . . , Resd, that were constructed
in theorem 3.2, as specializations that do factor through the singular locus are not
being considered in further analyzing a given resolution, in order to reduce the AE
sentence over the free product G to an AE sentence over the factors of G, and
this singular locus needs to be defined uniformly (for all free products that are not
isomorphic to D∞).

Definition 3.3. Let Res(y) be a well-structured, coefficient free resolution over free
products. Let G = A1 ∗ . . . ∗ Aℓ be a non-trivial free product that is not isomorphic
to D∞. A specialization of the terminal limit group of Res(y) in G is said to be
in the singular locus of Res(y) over the free product G if it does not extend to a
test sequence over G, or equivalently, if for every specialization of Res(y) in G that
is obtained from the given specialization of the terminal limit group of Res(y), by
a finite sequence of automorphisms in the modular groups that are associated with
the various levels of Res(y), the associated specialization of at least one of the edge
groups in the virtually abelian decompositions that are associated with the various
levels of Res(y) is elliptic or trivial, or the specialization of at least one of the
QH vertex groups in these abelian decompositions is elliptic or trivial or virtually
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abelian.

To obtain a (uniform) reduction of AE sentences, we need a uniform description
of the singular locus of a given resolution (over all free products).

Proposition 3.4. Let Res(y) be a well-structured, coefficient free resolution over
free products with a f.p. completion (and terminal limit group). Then there exist
finitely many graded resolutions with f.p. completions and terminal limit groups,
SLRes1(y), . . . , SLResu(y), so that for every non-trivial free product, G = A1 ∗
. . . ∗ Aℓ, that is not isomorphic to D∞, a specialization of the terminal limit
group of Res(y) is in the singular locus of Res(y), if and only if it extends to
a specialization of (at least) one of the terminal limit groups of the resolutions,
SLRes1(y), . . . , SLResu(y).

Proof: Let the resolution, Res(y), be given by the sequence of epimorphisms:
L0 → L1 → . . . → Ls. Given an edge or a QH vertex in the virtually abelian
decomposition that is associated with level i of the resolution Res(y), 0 ≤ i ≤ s−1,
we look at the partial resolution, Resi+1, that is given by: Li+1 → Li+2 → . . . →
Ls. Since Res(y) is well-structured and coefficient-free, so is Resi+1. Since Ls, the
terminal limit group of Res(y), is finitely presented, so is the completion of Resi+1.

An edge group or a QH vertex group in the virtually abelian decomposition that
is associated with Li, is mapped into Li+1. Given the edge or a QH vertex group
in the abelian decomposition that is associated with Li, 0 ≤ i ≤ s − 1, we look at
all the test sequences of the completion of the resolution, Resi+1, over arbitrary
non-trivial free products that are not D∞, for which the image of the given edge
group is elliptic or trivial or the image of the given QH vertex group in Li+1 is
either elliptic or trivial or virtually abelian.

Every such test sequence subconverges into a limit quotient U (over free prod-
ucts) of the completion, Comp(Resi+1), in which the image of the given edge group
is elliptic or trivial, or the image of the given QH vertex group in Li+1 is elliptic
or trivial or virtually abelian. As the limit quotient U is obtained as a limit of
a test sequence of specializations of Comp(Resi+1), U has the same structure as
the completion, Comp(Resi+1), but its terminal limit group is a quotient of the
terminal limit group of Res(y), Ls. Note that the terminal limit group of Ls is f.g.
but it may be infinitely presented.

On the set of limit quotients that are obtained from convergent sequences of
test sequences of Resi+1 in which the image of the given edge group is trivial or
elliptic, or the the image of the given QH vertex group in Li+1 is either elliptic or
trivial or virtually abelian, we can naturally define a partial order, that is identical
to the partial order that is defined on limit quotients (over free products) of a
given f.g. group in definition 12 in [Ja-Se]. Since the completion, Comp(Resi+1),
is finitely presented, and we require that finitely many more elements (the image
of a generating set of an edge group or a QH vertex group in Li+1) are elliptic or
trivial, or that the image of a QH vertex group is virtually abelian (which means
that it has an abelian subgroup of index 2 in our case), every limit quotient U that
is obtained as a limit of a test sequence of Resi+1 in which the image of the given
edge group is trivial or elliptic, or the image of the given QH vertex group in Li+1 is
either elliptic or trivial or virtually abelian, is dominated (under the natural partial
order) by such a limit quotient which is finitely presented.

Therefore, by the same argument that was used to prove the finiteness of maximal
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limit quotients (over free products) of a f.p. group (theorem 21 in [Ja-Se]), with a
given edge or a QH vertex in the abelian decomposition that is associated with Li

in Res(y), 0 ≤ i ≤ s− 1, we can associate finitely many limit quotients U1, . . . , Ud,
that are all f.p. and do all have the same structure as Resi+1, such that every test
sequence of Resi+1 for which the image of the given edge group is trivial or elliptic,
or the image of the given QH vertex group in Li+1 is either elliptic or trivial or
virtually abelian, has a subsequence that factors through one of the limit groups,
U1, . . . , Ud.

Hence, by taking the finite union of these limit quotients for all the (finitely
many) edge and QH vertex groups in the abelian decompositions that are associated
with all the limit groups, Li, 0 ≤ i ≤ s − 1, we constructed a finite set of limit
quotients, that are all completions, and together they satisfy the conclusion of the
proposition.

�

To reduce an AE sentence from the ambient free group to its factors, we also
need to construct auxiliary resolutions, that will enable one to decide uniformly
if over a given free product G, the set of specializations that do factor through a
given resolution are covered by a given finite collection of closures. Following the
construction of the Root resolutions (over free groups) in sections 1 and 3 of [Se5],
we associate a finite collection of Root resolutions with a given resolution and a
finite collection of its closures (over free products).

Proposition 3.5. Let Res(y) be a well-structured, coefficient free resolution over
free products with a f.p. completion (and terminal limit group), and let Cl1(Res), . . . , Clf (Res)
be a given finite set of closures of Res(y) (see definition 2.3).

Each abelian vertex group that appears in the abelian decompositions that are
associated with the various levels of Res(y) is contained as a finite index subgroup
in an abelian vertex group in each of the closures, Cl1(Res), . . . , Clf (Res). We set
Pind to be the product of all the indices of the abelian vertex groups of Res(y) in
the corresponding abelian vertex groups in the closures, Cl1(Res), . . . , Clf (Res).

Let pg1, . . . , pgt be the pegs of pegged abelian groups in Res(y). With each col-
lection of positive integers, d1, . . . , dt, that do all divide Pind, we associate a finite
(possibly empty) collection of closures of Res(y) with f.p. completions and terminal
limit groups. We denote the entire finite collection of such closures, {RootResr},
and call them Root resolutions.

Let G = A1 ∗ . . . ∗Aℓ be a non-trivial free product that is not isomorphic to D∞.
We fix a specialization of the terminal limit group of Res(y) in G. The pegs of
abelian vertex groups in Res(y), pg1, . . . , pgt, have roots of orders d1, . . . , dt, for
every test sequence (in G) over the given specialization of the terminal limit group
of Res(y), if and only if the specialization of the terminal limit group of G can be
extended to at least one of the Root resolutions, RootResr, that are associated with
the sequence, d1, . . . , dt.

Proof: Let d1, . . . , dt be a tuple of integers that divide Pind. We look at the
collection of all the test sequences of Res(y), over all possible non-trivial free prod-
ucts that are not isomorphic to D∞, for which the pegs, pg1, . . . , pgt, have roots
of orders d1, . . . , dt. By the construction of the formal Makanin-Razborov diagram
over free products in section 2, with this collection of test sequences, it is possible
to associate (non-canonically) a finite collection of closures of Res(y), that do all
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have f.p. completions. This finite collection of closures has the property, that every
test sequence of Res(y) (over an arbitrary non-trivial free product that is not iso-
morphic to D∞), for which the pegs in Res(y), pg1, . . . , pgt, have roots of orders,
d1, . . . , dt, in correspondence, has a subsequence that factors through one of the
closures from the finite collection.

By taking the finite union of the finite collections of closures for every tuple of
integers, d1, . . . , dt, for which each di divides Pind, we get a (non-canonical) finite
collection that satisfies the conclusion of the theorem.

�

Proposition 3.5 associates Root resolutions with a given coefficient-free resolu-
tion over free products, and a finite collection of closures of this resolution. Using
these Root resolutions, it is possible to write a sentence, which is a disjunction of
conjunctions of sentences over the factors of a free product, that determines (uni-
formly) if for a given free product the finite collection of closures forms a covering
closure of the given resolution.

Corollary 3.6. With the notation of proposition 3.5, and for every positive in-
teger ℓ > 1, the set of closures, Cl1(Res), . . . , Clf (Res), is a covering closure of
the resolution, Res(y), over a non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is
not isomorphic to D∞ (see definition 2.4 for a covering closure), if and only if a
(finite) conjunction of disjunctions of coefficient free AE sentences over the factors,
A1, . . . , Aℓ is a truth sentence.

Proof: The given closures, Cl1(Res), . . . , Clf (Res), do not form a covering closure
of the resolution, Res(y), over a free product, G = A1∗. . .∗Aℓ, that is not isomorphic
to D∞, if and only if there exist specializations of the elliptic factors in the terminal
limit group of Res(y), for which:

(i) the specializations extend to specializations of the elliptic factors in the
terminal limit groups of (one of finitely many possible) prescribed subset
of the associated Root resolutions (see proposition 3.5) and to any of the
terminal limit groups of the Root resolutions in the complement of the
prescribed set.

(ii) the specializations do not extend to specializations of the elliptic factors in
the terminal limit groups of (one of finitely many possible) prescribed subset
of the closures, Cl1(Res), . . . , Clf (Res), that given condition (i) on the
Root resolutions, cover the corresponding fiber of Res(y) that is associated
with the specializations of the elliptic factors.

By counting all the possible finite subsets of Root resolutions, and all the possible
finite subsets of closures, Cl1(Res), . . . , Clf (Res), that satisfy part (ii), given the
chosen finite subset of Root resolutions, the set of closures, Cl1(Res), . . . , Clf (Res),
do not form a covering closure of Res(y) over G, if and only if a (finite) disjunction
of conjunctions of EA sentences over the factors A1, . . . , Aℓ is a truth sentence.
Hence, the converse is a finite conjunction of disjunctions of AE sentences over the
factors, A1, . . . , Aℓ.

�

Proposition 3.4 on the structure of the singular locus of a resolution, the con-
struction of Root resolutions in proposition 3.5, together with theorem 3.2 that
associates with a given AE sentence over free products, finitely many resolutions,
and their formal Makanin-Razborov diagrams, enable us to reduce (uniformly) a
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given AE sentence from free products to their factors.

Theorem 3.7. Let:

∀y ∃x Σ(x, y) = 1 ∧ Ψ(x, y) 6= 1

be a sentence over groups.
Then for every positive integer, ℓ > 1, there exists a coefficient-free sentence over

free products, which is a disjunction of conjunctions of AE sentences, where each of
these last AE sentences involves elliptic elements from the same factor, A1, . . . , Aℓ,
such that for every non-trivial free product, G = A1 ∗ . . .∗Aℓ, which is not D∞, the
original AE sentence over the free product G = A1 ∗ . . . ∗ Aℓ is a truth sentence,
if and only if the sentence which is a disjunction of conjunctions of AE sentences
over the factors A1, . . . , Aℓ is a truth sentence.

Proof: By theorem 3.2, with the given AE sentence, it is possible to associate
finitely many well-structured resolutions, Res1, . . . , Resd, that do all have f.p. com-
pletion, and terminal limit groups. With each resolution, Resi, and the system
of equations, Σ(x, y) = 1, it is possible to associate (non-canonically) its formal
Makanin-Razborov diagram. We denote each resolution in the formal Makanin-
Razborov diagram of Resi, FResj

i . Since the completion of Resi is f.p. each formal

resolution, FResj
i , has a f.p. completion and terminal limit group.

By the construction of the formal resolutions, the elements that correspond to
the equations in the system, Σ(x, y) = 1, represent the identity element in the

completion, Comp(FResj
i ). We further look at all the test sequences of each of

the formal resolutions, FResj
i , for which at least one of the words in the system

of inequalities, Ψ(x, y) 6= 1, holds as equality. By the construction of the formal
Makanin-Razborov diagram, this associates a finite collection of resolutions with
each of the formal resolutions, FResj

i , that do all have f.p. completion and terminal
limit groups. In each of these resolutions, at least one of the words in the system of
inequalities, Ψ(x, y) 6= 1 is the trivial element. We denote each of these resolutions,

ΨFResj,k
i .

By proposition 3.4, with the resolutions, Res1, . . . , Resd, that are associated
with the given AE sentence, it is possible to associate finitely many resolutions,
SLResv

i , that have f.p. completions and terminal limit groups. A specialization
of the terminal limit group of Resi is in the singular locus, if and if only this
specialization extends to a specialization of the terminal limit group of one of the
resolutions, SLResv

i . Similarly we associate with each formal resolution, FResj
i ,

finitely many formal resolutions that are associated with its singular locus, and we
denote of these resolutions, SLFResj,v

i .

Each of the formal resolutions, FResj
i , terminates with a closure of the res-

olution Resi. Hence with the resolution, Resi, we can associate finitely many
closures, Cl(Resi)

j . By proposition 3.5, with the resolution, Resi, and its clo-
sures, Cl(Resi)

j , we can associate finitely many Root resolutions, that we denote
RootResr

i , that collect all the specializations of the terminal limit group of Resi,
for which the pegs in the resolution, Resi, have roots of prescribed orders for every
test sequence that extends the given specialization of the terminal limit group of
Resi.

Therefore, by theorem 3.2 and propositions 3.4 and 3.5, the given AE sentence
is false over a non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic
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to D∞, if and only if there exists a specialization in G of the terminal limit group
of a resolution Resi (one of the resolutions, Res1, . . . , Resd, that were associated
with the sentence by theorem 3.2), i.e., specializations of the elliptic factors of the
terminal limit group of Resi in the factors, A1, . . . , Aℓ, for which:

(1) the specialization does not extend to a specialization of the terminal limit
group of one of the resolutions, SLResv

i (the singular locus of Resi).
(2) the specialization extends to the terminal limit group of some prescribed

Root resolutions (possibly only the trivial roots), RootResr
i , and not to

other ones.
(3) the specialization does not extend to a (finite) collection of specializations

of the formal resolutions, FResj
i , that are associated with the resolution

Resi, that satisfy:
(i) these specializations are not in the singular locus of FResi, i.e., they

don’t extend to specializations of the terminal limit group of one of
the resolutions, SLResj,v

i .
(ii) these specializations do not extend to specializations of the terminal

limit group of any of the resolutions, ΨFResj,k
i .

(iii) the fibers that are associated with these specializations and the cor-

responding formal resolutions, FResj
i , form a covering closure of the

fiber that is associated with Resi and the given specialization of its
terminal limit group.

Finally, the existence of such a specialization of the terminal limit group of one of
the resolutions, Resi, that satisfies properties (1)-(3), is clearly a finite disjunction
of finite conjunctions of EA sentences over the factors of G, A1, . . . , Aℓ. Hence, the
AE sentence, which is exactly the negation of this sentence is a finite disjunction
of finite conjunctions of AE sentences over the factors, A1, . . . , Aℓ.

�

§4. EAE sentences and predicates

In the previous section we used the iterative procedure that is presented in section
4 of [Se4] to reduce AE sentences from the ambient free product to its factors. In
this section we use the procedures that were used to prove quantifier elimination
over free groups, to analyze EAE predicates and sentences over free products.

Let:

EAE(p) = ∃w∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

be a predicate over groups. Let G = A1 ∗ . . . ∗Aℓ be a non-trivial free product (for
some ℓ > 1) that is not isomorphic to D∞. If p0 ∈ EAE(p) over the free product
G, then there exists some specializations w0 of the existential variables w, so that
the AE sentence:

∀y ∃x Σ(x, y, w0, p0) = 1 ∧ Ψ(x, y, w0, p0) 6= 1

is a truth sentence over G.
In the previous section we studied AE sentence over free products, and we have

finally shown that an AE sentence over free products is a truth sentence over a
non-trivial free product G = A1 ∗ . . . ∗ Aℓ (that is not isomorphic to D∞) if and
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only if a disjunction of conjunctions of sentences over the factors A1, . . . , Aℓ does
hold.
To prove a similar reduction from a given EAE sentence over free products to a
(finite) disjunction of (finite) conjunctions of sentences over the factors of the free
product, we use the procedure for quantifier elimination over free groups that was
presented in [Se5] and [Se6]. Recall that the analysis of an EAE set over a free
group is divided into two steps. In the first step one analyzes uniformly the AE
sentences:

∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

(uniformly in the pair (w, p), which is equivalent to the analysis of the corresponding
AE set, AE(w, p)). Then one uses this uniform analysis of AE sentences, and the
(iterative) sieve procedure that is presented in [Se6], to analyze an EAE set over a
free group.

We start with the uniform analysis of AE sentences, which is equivalent to the
analysis of an AE set, that combines what we did in the previous section with the
iterative procedure that is presented in section 2 in [Se5]. Let:

AE(w, p) = ∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

be an AE set. Let G = A1 ∗ . . . ∗ Aℓ be a non-trivial free product that is not
isomorphic to D∞, and suppose that (w0, p0) is a specialization of the free variables,
(w, p), in the free product G, that is not in the definable set AE(w, p) over the free
product G. Then there exists a specialization y0 of the universal variables y in
G, for which for all the possible values of the existential variables x in G either
the equalities, Σ(x, y0, w0, p0) = 1, do not hold, or at least one of the inequalities,
Ψ(x, y0, w0, p0) 6= 1, does not hold in G.

We continue by combining the construction of the diagram that is associated with
an AE sentence over free products, that was constructed in the previous section,
with the procedure for the analysis of AE sets (over free groups) that is presented
in section 2 of [Se5]. We start by looking at all the sequences of specializations
of tuples, {(pn, wn)}, that take their values in non-trivial free products, Gn =
A1

n ∗ . . .∗Aℓ
n, that are not isomorphic to D∞, specializations of the tuple (p, w) that

are not in the definable set, AE(w, p). This implies that for every pair, (wn, pn), in
the sequence, there exists a specialization of the universal variables, yn, in the free
product, Gn, for which there are no values for the existential variables x (in Gn)
so that both the equalities Σ(x, y, w, p) = 1 and the inequalities Ψ(x, y, w, p) 6= 1
hold.

By proposition 1.16, given such a sequence of triples, {(pn, wn, yn)}, we can pass
to a subsequence that converges into a well-structured (even well-separated) graded
resolution with respect to the parameter subgroup < w, p >, that we denote GRes:

L0 → L1 → . . . → Ls

where Ls is a free product of a rigid or a solid limit group over free products (that
contains the subgroup, < w, p >), and (possibly) a free group and (possibly) finitely
many elliptic factors. Note that the terminal limit group Ls of GRes is f.g. but it
may be infinitely presented.

As the terminal limit group Ls of GRes is f.g. but perhaps not f.p. we fix a se-
quence of approximating covers of the resolution GRes, that we denote, {CGResm}.
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These approximating covers are constructed according to the construction of a cover
approximating resolution that appears in theorem 1.21, hence, the cover approxi-
mating resolutions, {CGResm}, satisfy all the properties that are listed in theorem
1.21. In particular, the graded completions of the covers, CGResm, can be em-
bedded into f.p. completions, and if the terminal limit group Ls of GRes is a free
product of a rigid (solid) factor with elliptic and free factors, then the terminal
limit group of the covers, CGResm, is a free product of a rigid (weakly solid) factor
with (f.p. approximating) elliptic and free factors. With each of the graded cov-
ers, CGResm, there is an associated cover of its flexible quotients, and each cover
(of flexible quotients) from this finite collection can be embedded into a f.p. com-
pletion. Also, for each cover, CGResm, there exists a subsequence of the triples,
{(pn, wn, yn)}, that factor through it, and restrict to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of the terminal limit group of
CGResm. By the construction of approximating cover resolutions, we further as-
sume that the sequence of cover approximations, {CGResm}, converges into the
original graded resolution, GRes, and in particular the terminal limit groups of the
covers, {CGResm}, that we denote, Lm

s , converge into the terminal limit group of
GRes, Ls.

With each of the approximating covers, CGResm, and the system of equations,
Σ(x, y, w, p) = 1, we associate (non-canonically) a graded formal Makanin-Razborov
diagram. Note that by theorem 2.7, the (formal graded) completion of each of the
resolutions in such a formal graded Makanin-Razborov diagram can be embedded
into a f.p. (formal graded) completion, and that with the terminal limit group of
the cover closure of CGResm, that is associated with a resolution in the graded
formal Makanin-Razborov diagram, there is an associated finite collection of covers
of the flexible quotients of the rigid or weakly solid factor of the terminal limit
group, and these covers are all embedded in f.p. completions (see theorem 2.7).

By the construction of the approximating covers, {CGResm}, for each index m,
there is a subsequence of the sequence of tuples, {(pn, wn, yn)}, that factor through
CGResm. In particular, for each index m, with the subsequence of tuples, (still
denoted) {(pn, wn, yn)}, that factor through CGResm, we can associate a sequence
of specializations of the terminal limit group of CGResm, Lm

s , that restricts to rigid
or weakly strictly solid specializations of the rigid or weakly solid factor of Lm

s , and
to specializations of the elliptic factors of Lm

s .
If there exists an index m, for which there is an infinite subsequence of tuples

(still denoted), {(pn, wn, yn)}, that factor through CGResm, and so that the rigid
or weakly strictly solid specializations of the rigid or weakly solid factor in Lm

s ,
and the specializations of the elliptic factors of Lm

s , that are associated with the
tuples, {(pn, wn, yn)}, extend to test sequences (of CGResm) that do not extend to
formal solutions, or they do extend to formal solutions (over closures of CGResm),
but for each such formal solution, at least one of the inequalities in the system,
Ψ(x, y, w, p) 6= 1, does not hold (for generic value of the universal variables y), we
reached a terminal point of the iterative procedure. In this case, the associated
output is the approximating cover, CGResm, its associated (finite) collection of
covers of the flexible quotients of the rigid or weakly solid factor of Lm

s , and its
formal graded Makanin-Razborov diagram.

Suppose that for every index m, there is no such subsequence of tuples {(pn, wn, yn)}.
In this case for each index m, there exists an index nm > m, so that the tuple
(pnm

, wnm
, ynm

) factors through CGResm, and with the associated rigid or weakly
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strictly solid specialization of the rigid or weakly solid factor of Lm
s , and the asso-

ciated specializations of the elliptic factors of Lm
s , it is possible to associate a test

sequence and a formal solution xnm
that does satisfy Σ(xnm

, y, wnm
, pnm

) = 1 and
Ψ(xnm

, y, wnm
, pnm

) 6= 1 for generic y.
By construction, the factors of the terminal limit groups of the graded resolu-

tions, {CGResm}, Lm
s , converge into the corresponding factors of the terminal limit

group of the graded resolution, GRes, Ls. The formal solutions, {xnm
}, are defined

over the approximating cover resolutions, {CGResm}. Using the techniques to con-
struct graded formal limit groups over free products, that were presented in section
2, from the sequence of formal solutions, {xnm

}, and the specializations of the ter-
minal limit groups, Lm

s , that are associated with the tuples, {(pnm
, wnm

, ynm
)},

it is possible to extract a subsequence that converges into a graded formal limit
group over the original (limit) graded resolution Res, FL(x, z, y, w, p). By the con-
struction of the graded formal limit group FL(x, z, y, w, p), the equations from the
system, Σ(x, y, w, p) = 1, represent the trivial word in FL(x, z, y, w, p), whereas
each of the inequations in the system, Ψ(x, y, w, p) 6= 1, represent a non-trivial
element in FL(x, z, y, w, p).

At this point we look at the sequences of specializations:

{(xnm
, ynm

, z1(nm), . . . , zt(nm), wnm
, pnm

)}

of the formal solution xnm
, the universal variables ynm

, and its successive short-
enings (z1, . . . , zt), and the parameters, (pnm

, wnm
), that take their values in the

free products, {A1
nm

∗ . . . ∗ Aℓ
nm

}, and each of the tuples, (pnm
, wnm

, ynm
), factors

through the cover graded resolution, CGResm. The elements, {ym}, are precisely
the subsequence of values of the universal variables for which the sentence fail to
hold for the free products, {A1

nm
∗ . . . ∗ Aℓ

nm
}.

Given this sequence of specializations, we apply the first step of the procedure
for the analysis of an AE set, that is presented in section 2 of [Se5], and extract
a subsequence, that converges into a quotient graded resolution of the one that is
associated with the formal limit group, FL(x, z, y, w, p). Since the formal solutions,
{xnm

}, were assumed to satisfy both the equalities, Σ(x, y, w, p) = 1, and the
inequalities, Ψ(x, y, w, p) 6= 1, the obtained quotient resolution is not a graded
closure of the original graded resolution, GRes, that we have started with, but
rather a resolution of ”reduced complexity” (in the sense of the iterative procedure
that is presented in section 2 in [Se5]).

We continue iteratively. At each step we start with a quotient graded resolution
(with respect to the parameter subgroup), < w, p >, QRes, that was constructed
in the previous step of the procedure, using the general step of the iterative proce-
dure that is presented in section 2 in [Se5], and a sequence of homomorphisms
into free products, that extends a subsequence of the original sequence of tu-
ples, {(pn, wn, yn)}, that converges into the (completion of the) quotient resolution,
QRes. Note that the completion of such a quotient resolution need not be finitely
presented.

We start the current (general) step, by fixing a sequence of approximating cover
graded resolutions, QResm, of the quotient resolution, QRes, that satisfy the prop-
erties that are listed in theorem 1.21. By the construction of cover resolutions (the-
orem 1.21), we may further assume that the sequence of cover resolutions, QResm,
converges into the original quotient resolution, QRes. Note that for each index
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m, there exists a subsequence of the original sequence of specializations (that con-
verges into the completion of the quotient resolution, QRes) that factor through
the cover (graded) resolution, QResm. In particular, this subsequence restricts to
rigid or weakly strictly solid specializations of the rigid or weakly solid factor of the
terminal limit group of the cover resolution, QResm.

With each cover (approximating) graded resolution, QResm, we associate (not
in a canonical way) its graded formal Makanin-Razborov diagram (see theorem
2.7). Note that the completion of each resolution in the formal Makanin-Razborov
diagram can be embedded in a f.p. completion, and that with each such formal
resolution there is an associated finite collection of covers of the flexible quotients
of the rigid or weakly solid factor of its terminal limit group, and each cover from
this finite collection can be embedded in a f.p. completion (see theorem 2.7). Also,
recall that a formal Makanin-Razborov diagram of QResm encodes all the formal
solutions that can be defined over it for all possible free products, A1 ∗ . . . ∗ Aℓ.

If there exists an index m, and a subsequence of the original sequence of special-
izations that factor through the cover approximating resolution, QResm, so that
over the rigid or the weakly strictly solid specializations of the rigid or weakly solid
factor of the terminal limit group of QResm, and the specializations of the elliptic
factors of the terminal limit group of QResm, that are associated with the sub-
sequence, there exist test sequences that can not be extended to formal solutions
over closures of QResm, so that both the equalities, Σ(x, y, w, p) = 1, and the
inequalities, Ψ(x, y, w, p) 6= 1, hold for generic y’s (over the corresponding subse-
quence of free products, {A1

n∗. . .∗Aℓ
n}), we reached a terminal point of our iterative

procedure. In this case the final output of the iterative procedure is the graded quo-
tient resolution, QResm, and its (non-canonical) graded formal Makanin-Razborov
diagram.

Suppose that there is no such index m, and no such subsequence of the special-
izations that factor through QResm. In this case for each index m, there exists a
specialization from the sequence that converges to QRes (of index bigger than m in
that sequence) that factors through QResm, and a formal solution xm that is de-
fined over (a closure of) the graded resolution, QResm, so that for the specialization
of the terminal limit group of QResm that is associated with this specialization,
and for the formal solution, xm, both the equalities, Σ(x, y, w, p) = 1, and the
inequalities, Ψ(x, y, w, p) 6= 1, hold for generic values of the universal variables
y (generic values that are associated with the specialization of the terminal limit
group of QResm, and the specialization that factors through it from the sequence
that converges to QRes).

In this case we look at the sequence of these specializations (that factor through
QResm), and their associated formal solutions, {xm}, that are defined over QResm.
We analyze the combined sequence (of pairs of a specialization that factors through
QResm and the formal solution xm), according to the analysis of quotient graded
resolutions, which is part of the general step of the iterative procedure for the
analysis of AE sets (over free groups), that is presented in section 2 of [Se5], and
finally extract a subsequence that converges into a quotient graded resolution of
the resolutions that we have this step with, QRes (see section 2 of [Se5]). Since
the formal solutions are guaranteed to satisfy both the equalities, Σ(x, y, w, p) = 1,
and the inequalities, Ψ(x, y, w, p) 6= 1, for generic values of y, the complexity of the
obtained quotient graded resolution is strictly smaller than the complexity of the
graded resolution, QRes, that we have started the current step with.
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By theorem 2.10 in [Se5], this iterative procedure terminates after finitely many
steps (the proof of the termination over free products is identical to the one over
free groups). If we reached a terminal quotient graded resolution along the pro-
cess, we found a cover graded resolution, QResm, that satisfies the properties of
theorem 1.21. Furthermore, there exists a subsequence of the original sequence of
tuples, {(pn, wn, yn)}, that extend to specializations that factor through this cover
resolution, QResm, and these extended specializations restrict to rigid or weakly
strictly solid specializations of the rigid or weakly solid factor of the terminal limit
group of QResm. Each extended specialization from this subsequence restricts to
a specialization of the terminal graded limit group of QResm, and there exists a
test sequence that is associated with it, that can not be extended to a formal so-
lution that is defined over (a closure of) QResm, for which both the equalities,
Σ(x, y, w, p) = 1, and the inequalities, Ψ(x, y, w, p) 6= 1, hold for generic values
of the universal variables y, that are associated with QResm, and the associated
specialization of the terminal limit group of QResm.

If we didn’t find such an approximating cover resolution, QResm, along the it-
erative procedure, it continued until we reached a quotient graded resolution which
is a free product of a rigid limit group over free products (with respect to the
parameter subgroup < w, p >) and elliptic factors. Once again we look at a se-
quence of approximating covers of the rigid limit group (over free products) and the
elliptic factors, and we construct these covers according to the construction that
appears in theorem 1.21. With each such approximating cover, and the system
of equations, Σ(x, y, w, p) = 1, we associate (non-canonically) its graded formal
Makanin-Razborov diagram, according to theorem 2.7.

Hence, whatever terminal point of the iterative procedure we have reached, we
found an approximating cover (graded) resolution (over free products) that satisfies
the properties of approximating covers that appear in theorem 1.21. A subsequence
of the given sequence of specializations, {(pn, wn, yn)}, extend to specializations
that do factor through this approximating cover. Each extended specialization
restricts to a specialization of the terminal limit group of the approximating cover
resolution. For each associated specialization of the terminal limit group of the
cover resolution, there exists a test sequence for which there is no formal solution
that is defined over the approximating cover resolution, and for which the equalities,
Σ(x, y, w, p) = 1, and the inequalities, Ψ(x, y, w, p) 6= 1, do hold for generic values of
the universal variables y, in the the fiber that is associated with the approximating
cover resolution, and the specialization of its terminal graded limit group.

As in the previous section, the existence of such a cover resolution, that satisfies
the properties that are listed in theorem 1.21, is sufficient to enable one to associate
with a given AE set, a finite collection of (cover) graded resolutions that satisfy
the properties that are listed in theorem 1.21, and their (non-canonical) formal
graded Makanin-Razborov diagrams, so that if a specialization of the tuple (w, p)
in some free product, A1 ∗ . . . ∗ Aℓ (for some ℓ > 1), is not in the definable set
AE(w, p), then the corresponding sentence must be false for a generic point of one
of the constructed (cover) graded resolutions, where the terminal factors of the
graded resolutions take some value in the free product, A1 ∗ . . . ∗ Aℓ. This is the
key for analyzing an AE set over free products, i.e., the key for obtaining quantifier
elimination from a predicate over the ambient free product to a predicate over the
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factors.

Theorem 4.1. Let:

AE(w, p) = ∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

be an AE set over groups. Then there exist finitely many (cover) graded resolutions
over free products (with respect to the parameter subgroup < w, p >) that satisfy the
properties that are listed in theorem 1.21: GRes1(z, y, w, p), . . . , GResd(z, y, w, p),
with the following properties:

(1) with each graded resolution, GResi(z, y), we associate (non-canonically) its
graded formal Makanin-Razborov diagram over free products with respect to
the system of equations, Σ(x, y, w, p) = 1.

(2) each of the graded resolutions, GResi, can be extended to an ungraded res-
olution with a f.p. completion, Compi (see theorem 1.21).

(3) let G = A1 ∗ . . . ∗ Aℓ be a non-trivial free product (for some ℓ > 1) that is
not isomorphic to D∞. Let (w0, p0) be a specialization of the parameters
(w, p) in the free product A1 ∗ . . . ∗ Aℓ, for which (w0, p0) /∈ AE(w, p) over
the free product G = A1 ∗ . . . ∗ Aℓ. Then there exists an index i, 1 ≤ i ≤ d,
a rigid or a weakly strictly solid specialization of the rigid or weakly solid
factor of the terminal limit group of GResi in G = A1 ∗ . . . ∗ Aℓ, that
extends (w0, p0), and specializations of the elliptic factors of that terminal
limit group in elliptic subgroups in G = A1 ∗ . . . ∗ Aℓ, so that the combined
specialization of the terminal limit group of the graded resolution, GResi,
can be extended to a specialization of the f.p. completion, Compi, and with
this combined specialization of the terminal limit group of GResi there exists
an associated test sequence for which there is no formal solution over (a
closure of) GResi(z, y, w, p) for which both the equalities, Σ(x, y, w, p) = 1,
and the inequalities, Ψ(x, y, w, p) 6= 1, do hold for generic values of the
universal variables y.

In other words, given an AE set, there exists a finite collection of cover graded
resolutions over free products (with the properties that are listed in theorem 1.21),
so that the failure of a specialization of the parameters (free variables) to be in the
AE set over any given free product, can be demonstrated by the lack of the existence
of a formal solution over a test sequence of at least one of these (finitely many
cover) graded resolutions.

Proof: Let Gn = A1
n ∗ . . . ∗ Aℓ

n (possibly for varying ℓ > 1), be a sequence of
non-trivial free products that are not isomorphic to D∞. Let {(pn, wn, yn)} be a
sequence of tuples in Gn, so that (pn, wn) /∈ AE(p, w) over Gn, and yn testifies
for the failure of the pair (pn, wn) to be in AE(p, w), i.e. the following existential
sentence (with coefficients):

∃x Σ(x, yn, wn, pn) = 1 ∧ Ψ(x, yn, wn, pn) 6= 1

is false over Gn.
Starting with the sequence, {(pn, wn, yn)}, the terminating iterative procedure

that we have presented constructs a graded resolution, GRes, with the following
properties:

(i) the graded resolution GRes satisfies the properties of a cover graded res-
olution that are listed in theorem 1.21. In particular, its completion can
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be extended to (an ungraded) f.p. completion. With the rigid or weakly
solid factor of the terminal limit group of GRes, there is a finite collec-
tion of covers of its flexible quotients that can all be embedded into f.p.
completions.

(ii) there exists a subsequence of the sequence of specializations, {(pn, wn, yn)},
that extend to specializations that factor through the resolution, GRes, and
to specializations of the f.p. completion of the ungraded resolution that ex-
tends the graded resolution, GRes (see theorem 1.21). Hence, with each
specialization from this subsequence of the tuples, {(pn, wn, yn)}, special-
izations of the terminal limit group of the graded resolution, GRes, can be
associated. Furthermore, these specializations of the terminal limit group
of GRes can be extended to specializations of the f.p. completion of some
ungraded resolution of the terminal limit group of GRes. With this subse-
quence of specializations of the terminal limit group of the graded resolu-
tion, GRes, there are associated test sequences for which no formal solu-
tions that satisfy both the equalities, Σ(x, y, w, p) = 1, and the inequalities,
Ψ(x, y, w, p) 6= 1, for generic values of the universal variables y, can be
constructed.

(iii) with the resolution GRes, and the system of equations, Σ(x, y, w, p) = 1,
we associate (non-canonically) a formal graded Makanin-Razborov diagram
(see theorem 2.7). The completion of every (formal) resolution in this di-
agram can be embedded into a f.p. completion, and the finite collection of
covers that is associated with the rigid or weakly solid factor of the termi-
nal limit group of each resolution in these formal graded Makanin-Razborov
diagrams, can be embedded in a f.p. completion as well.

At this point we are able to apply the argument that was used to prove theorem
3.2 (for AE sentences). We look at all the sequences of non-trivial free products,
Gn = A1

n ∗ . . . ∗ Aℓ
n (possibly for varying ℓ > 1), that are not isomorphic to D∞,

an associated sequence of the tuples, (pn, wn) /∈ AE(p, w), over Gn, and specializa-
tions yn (in G) of the universal variables y that testify for that. Given every such
sequence we use our terminating iterative procedure, and extract a subsequence
of the tuples, (still denoted) {(pn, wn, yn)}, and a graded resolution, GRes, that
has the properties (i)-(iii), and in particular, the subsequence of tuples, (still de-
noted) {(pn, wn, yn)}, extend to specializations that factor through the resolution
GRes, and to specializations of the f.p. completion of the ungraded resolutions that
extends the graded resolution GRes. Furthermore, no formal solution that satis-
fies both the equalities, Σ(x, y, w, p) = 1, and the inequalities, Ψ(x, y, w, p) 6= 1,
for generic values of the variables y can be constructed, for some test sequences
that are associated with those values of the terminal limit group of GRes, that are
associated with the subsequence of tuples, {(pn, wn, yn)}.

The completion of each of the constructed resolutions, GRes, can be extended
to an ungraded f.p. completion, and so are the resolutions in its associated formal
graded Makanin-Razborov diagram. Furthermore, the (finite collection of) covers
of flexible quotients of the rigid or weakly solid factors of the terminal limit groups
of the resolutions, GRes, and of the formal graded resolutions that are associated
with the resolutions GRes, can all be embedded into (ungraded) resolutions with
f.p. completions. Hence, we can define a linear order on this (countable) collec-
tion of resolutions (GRes), and their (non-canonically) associated formal Makanin-
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Razborov diagrams, and (finite collections of) covers of flexible quotients. By the
same argument that was used in constructing the Makanin-Razborov diagram (the-
orem 26 in [Ja-Se]), there exists a finite subcollection of these graded resolutions
that satisfy properties (1)-(3) of the theorem.

�

Given an AE set, theorem 4.1 constructs a finite collection of (cover) graded res-
olutions over free products, where the completions of all these graded resolutions
can be embedded into (ungraded) f.p. completions (cf. theorem 1.21), that demon-
strates the failure of specializations of the parameters (free variables) to be in the
given AE set over general free products. This is an analogue of the uniformization
of proofs (the construction of the tree of stratified sets) that was proved in section
2 of [Se5] for AE sets over free groups.

To use these (finitely many) constructed resolutions for the analysis of EAE sets, we
still need to associate with the graded resolutions that are constructed in theorem
4.1, a (finite) collection of resolutions that contain their singular locus, and a finite
collection of resolutions that classifies those values of their terminal limit groups
for which the pegs of these graded resolutions have roots of prescribed orders (cf.
propositions 3.4 and 3.5).

As in the ungraded case, in constructing the graded and formal graded Makanin-
Razborov diagrams over free products, we have considered the set of specializations
that factor through a resolution in one of these diagrams, as those homomorphisms
that factor through the graded resolutions, and in addition we required that the
associated specializations of the various limit groups along the resolution restrict
to non-elliptic specializations of all the abelian edge (and vertex) groups, and all
the QH vertex groups along the resolution.

In applying theorem 4.1 to analyze EAE sets, and general definable sets, over free
products, it is essential to determine the singular locus of the graded resolutions that
are associated with an AE set by the theorem, as we need to ignore specializations
that do factor through the singular locus.

The singular locus of a graded resolution, GRes(y, p), is defined precisely in the
same way as in the ungraded case (definition 3.3). To analyze the singular locus
of a graded resolution we prove a graded version of proposition 3.4. Given the
techniques of the first two sections, especially the construction of the formal graded
Makanin-Razborov diagram (theorem 2.7), the generalization of proposition 3.4 to
the graded case is rather straightforward.

Proposition 4.2. Let GRes(y, p) be a well-structured, coefficient free, graded reso-
lution over free products. There exist finitely many graded approximating cover res-
olutions, that satisfy the properties of the resolutions in the formal graded Makanin-
Razborov diagram (theorems 2.6 and 2.7), SLRes1(y, p), . . . , SLResu(y, p), and in
particular the (graded) completion of each of these graded resolutions embeds into
an (ungraded) f.p. completion.

For every non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to
D∞, a specialization of the terminal limit group of GRes(y) is in the singular locus
of GRes(y, p), if and only if it extends to a specialization of (at least) one of the
terminal limit groups of the resolutions, SLGRes1(y, p), . . . , SLGResu(y, p), and
further extends to a specialization of the f.p. (ungraded) completion that contains
the (graded) completion of the corresponding resolution, SLGResi(y, p).
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Proof: The statement of the theorem follows by exactly the same argument that
was used to prove the analogous statement in the ungraded case (proposition 3.4),
where instead of using the construction of the (ungraded) formal Makanin-Razborov
diagram, we apply the construction of the graded formal Makanin-Razborov dia-
gram (theorem 2.7).

�

As in the ungraded case, to analyze an EAE and general definable sets over
free products, we also need to construct auxiliary resolutions, that will enable one
to decide uniformly if over a given free product G, the set of specializations that
do factor through a given resolution are covered by a given finite collection of
closures. The construction of these graded Root resolutions essentially follows the
construction of ungraded Root resolutions in proposition 3.5.

Proposition 4.3. Let GRes(y, p) be a well-structured, coefficient free resolution
over free products with a f.p. completion (and terminal limit group), and let:

Cl1(Res), . . . , Clf (Res)

be a given finite set of graded closures of GRes(y, p) (see definition 2.3).
Each of the abelian vertex groups that appear in the abelian decompositions that

are associated with the various levels of GRes(y, p) is contained as a finite index
subgroup in an abelian vertex group in each of the closures, Cl1(Res), . . . , Clf (Res).
We set Pind to be the product of these indices (where the product is over all the
abelian vertex groups in GRes(y, p), and all the closures, Cl1(Res), . . . , Clf (Res)).

Let pg1, . . . , pgt be a generating set for the pegs of pegged abelian groups in
GRes(y, p). Note that in the graded case, the peg of a pegged abelian vertex group
is in general a f.g. free abelian group, hence, its generating set may consist of more
than a single element). With each collection of positive integers, d1, . . . , dt, that do
all divide Pind, we associate a finite (possibly empty) collection of graded closures
of GRes(y, p) with f.p. completions and terminal limit groups. We denote the entire
finite collection of such graded closures, {GRootResr}, and call them (graded) Root
resolutions.

Let G = A1 ∗ . . . ∗Aℓ be a non-trivial free product that is not isomorphic to D∞.
We fix a specialization of the terminal limit group of GRes(y, p) in G. The pegs of
abelian vertex groups in GRes(y, p), pg1, . . . , pgt, have roots of orders d1, . . . , dt,
for every test sequence (in G) over the given specialization of the terminal limit
group of GRes(y, p), if and only if the specialization of the terminal limit group of
G can be extended to at least one of the graded Root resolutions, GRootResr, that
are associated with the sequence, d1, . . . , dt.

Proof: Identical to the proof of the analogous statement in the ungraded case
(proposition 3.5), were as in the construction of the graded resolutions that are
associated with the singular locus of a graded resolution (proposition 4.2), we apply
the construction of the graded formal Makanin-Razborov diagram (theorem 2.7),
instead of the construction of the (ungraded) formal Makanin-Razborov diagram
that was used in proving proposition 3.5.

�

In a similar way to the ungraded case, the graded Root resolutions that are
constructed in proposition 4.3, enable one to associate a predicate with the set of
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values of the parameters p, for which a given set of (graded) closures is a covering
closure.
The finite collection of graded resolutions that are associated with an AE set in
theorem 4.1, their formal graded Makanin-Razborov diagrams, the singular loci of
all these resolutions, and their associated graded Root resolutions, enable us to
analyze EAE sets over free products. For such analysis we need a variation of the
sieve procedure over free groups that is presented in [Se6] for free products.

Let:

EAE(p) = ∃w ∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

be a predicate over groups. With the given EAE set we naturally look at the AE
set:

AE(p, w) = ∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1.

By theorem 4.1 with this AE set it is possible to associate finitely many (cover)
graded resolutions that satisfy the properties that are listed in theorem 1.21. With
each of these (finitely many) graded resolutions, we have associated (non-canonically)
a graded formal Makanin-Razborov diagram, a finite collection of graded resolu-
tions that are associated with the singular loci of all these resolutions, and a finite
collection of graded Root resolutions, that are associated with each of the graded
resolutions that are associated with the AE set by theorem 4.1, and the closures
that are associated with the resolutions in the formal Makanin-Razborov diagrams
of these graded resolutions. These finite collection of graded (and graded formal)
resolutions, demonstrate the failure of a specialization of a pair (p, w) to be in the
definable set AE(p, w) over an arbitrary non-trivial free product, G = A1 ∗ . . . ∗Aℓ

(for an arbitrary ℓ > 1), where G is not isomorphic to D∞.
Let: GRes1(z, y, w, p), . . . , GResd(z, y, w, p) be the (cover) graded resolutions

that we have associated with the set AE(p, w). Each of these graded resolutions
terminates in a graded limit group which is a free product of a rigid or a weakly
solid limit group with (possibly) a finite collection of f.p. elliptic factors, and the
completion of each of these cover graded resolutions can be embedded into a f.p.
(ungraded) completion, that we denote Comp1, . . . , Compd.

With each of the graded resolutions, GResi, and the system of equations, Σ(x, y, w, p) =
1, we have associated (non-canonically) its graded formal Makanin-Razborov dia-
gram, and the completion of each formal resolution in one of these diagrams can
be embedded into a f.p. completion as well. We denote each of the (finitely many)
resolutions in the formal graded Makanin-Razborov diagram of a graded resolution,
GResi, FGResj

i .

With each of the formal graded resolutions, FGResj
i , we further associate a

finite collection of graded resolutions. For each formal graded resolution, FGResj
i ,

we look at all of its test sequences, for which at least one of the inequalities in the
system, Ψ(x, y, w, p) 6= 1, fails to be an inequality and is in fact an equality for the
entire test sequence. With the collection of all such test sequences it is possible to
associate a finite collection of graded resolutions, that do all have the same structure
as the formal graded resolution, FGResj

i , just that each factor in the terminal limit

group of FGResj
i is replaced by a quotient. We denote each of the (finitely many)

obtained resolutions, that are associated with FGResj
i , CollFGResj,k

i .
With each of the graded resolutions, GResi, we have associated a finite collection

of graded resolutions that are associated with its singular locus. We denote these
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graded resolutions, SLGResv
i . We also associate finitely many resolutions with

each graded formal resolution, FGResj
i , that we denote, SLFGResj,v

i .
We further associate graded Root resolutions with each of the graded resolutions,
GResi, and the collection of closures that are associated with the graded resolutions
in its formal graded Makanin-Razborov diagram. We denote these graded Root
resolutions, GRootResr

i .
We start the analysis of the set EAE(p) with all the sequences of specializations

of the tuple, (p, w), {(pn, wn)}, that take values in non-trivial free products, Gn =
A1

n ∗ . . . ∗Aℓ
n (for some ℓ > 1), which is not isomorphic to D∞. We further assume

that for every index n, pn ∈ EAE(p) over the free product, Gn, and that wn is a
witness for pn, i.e., a specialization of the existential variables w in Gn, so that the
AE sentence:

∀y ∃x Σ(x, y, wn, pn) = 1 ∧ Ψ(x, y, wn, pn) 6= 1

is a truth sentence over Gn.
By theorem 1.16, given such a sequence of pairs, {(pn, wn)}, we can pass to

a subsequence that converges into a well-structured (even well-separated) graded
resolution with respect to the parameter subgroup < p >: M0 → M1 → . . . → Ms,
where Ms is a free product of a rigid or a solid group over free products (that
contains the subgroup, < p >), and (possibly) a free group and (possibly) finitely
many elliptic factors. We denote this graded resolution WRes. Note that the
terminal limit group Ms in WRes is f.g. but it may be infinitely presented.

As we did in analyzing the set, AE(p, w), we fix a sequence of approximating
cover resolutions of WRes, that we denote, {WResm}, that are constructed fol-
lowing the construction that appears in theorem 1.21, and hence each of them
satisfies the properties of cover graded resolutions that are listed in theorem 1.21.
By construction we may further assume that the sequence of approximating cover
resolutions, {WResm}, converge into the original graded resolution, WRes.

By the construction of the approximating cover graded resolutions that appears
in theorem 1.21, for every index m, there is a subsequence of the sequence of
specializations, {(pn, wn)}, that factor through the approximating cover resolution,
WResm, and they further extend to specializations of the f.p. completion of the
ungraded resolution that extends the approximating cover, WResm (see theorem
1.21). In particular, with this subsequence it is possible to associate specializations
of the terminal limit group of WResm, that restrict to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of the terminal (graded) limit
group of WResm.

First, suppose that there exists an approximating resolution, WResm, for which
there exists a subsequence of pairs, (still denoted) {(pn, wn)}, so that for each
specialization of the terminating limit group of WResm that is associated with a
pair (pn, wn) from the subsequence, there exists a test sequence in the fiber that
is associated with such a specialization of the terminal graded limit group (which
takes its values in Gn) that satisfies pn ∈ EAE(p) (over Gn), and the values of the
variables w from the test sequence are witnesses for pn (over Gn).

In this case with the approximating graded resolution, WResm, we associate
finitely many graded resolutions, that have similar properties to the resolutions in
the formal graded Makanin-Razborov diagram (see theorem 2.7).

First, we look at all the test sequences of WResm, that can be extended to spe-
cializations of one of the terminal limit groups of the graded resolutions, GRes1, . . . , GResd,
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that restrict to rigid or weakly strictly solid specializations of the rigid or weakly
solid factor of that terminal limit group, and so that the specializations of the
terminal limit group, GResi, extends to a specializations of the f.p. completion,
Compi, into which the completion of GResi is embedded.

By the construction the formal graded Makanin-Razborov diagram (theorem
2.7), with the approximating (cover) graded resolution, WResm, and the collection
of test sequences of it, that can be extended to specializations of the terminal limit
groups of the graded resolutions, GRes1, . . . , GResd, it is possible to associate
(non-canonically) a finite collection of (formal like) graded resolutions, that do all
terminate in graded cover closures of the graded resolution, WResm, CCl(WResm),
possibly free product with a free group. Each resolution from this finite collection
has the same properties as the resolutions in the formal Makanin-Razborov diagram
(see theorems 2.6 and 2.7). We denote each of the constructed (finitely many,
graded, cover) resolutions, ExWResm.

In a similar way to the formal Makanin-Razborov diagram (cf. theorem 2.7),
given a test sequence of WResm that can be extended to specializations of the
terminal limit group of one of the graded resolutions, GRes1, . . . , GResd, and its
associated f.p. completion Compi, it is possible to extract a subsequence of the
extended specializations that factor through one of the resolution, ExWResm.

Given this finite collection of closures, ExWResm, that collect all the test se-
quences of the graded resolution, WResm, that can be extended to specializations
of the terminal limit group of one of the graded resolutions, GRes1, . . . , GResd,
we further associate with each of the graded cover resolutions, ExWResm, finitely
many graded resolutions, that terminate in (cover) closures of the graded reso-
lutions, ExWResm. These include 6 types of cover graded resolutions, each for
collecting test sequences of ExWResm with different properties. With each collec-
tion of test sequences it is possible to associate a finite collection of cover graded
resolutions, in a similar way, and with similar properties to those of the resolutions
in the formal Makanin-Razborov diagram (see theorems 2.6 and 2.7):

(1) first we look at all the test sequences of ExWResm for which the restrictions
to specializations of the rigid or weakly solid factor of the terminal limit
group of one of the resolutions, GRes1, . . . , GResd, is not rigid or not weakly
strictly solid.

(2) second, we look at all the test sequences of ExWResm for which the restric-
tions to specializations of the terminal limit group of one of the resolutions,
GRes1, . . . , GResd, can be extended to specializations of the terminal limit
group of one the graded resolutions, SLGResv

i , that are associated with the
singular locus of the corresponding graded resolution, GResi.

(3) third, we look at all the test sequences of ExWResm for which the restric-
tions to specializations of the terminal limit group of one of the resolutions,
GRes1, . . . , GResd, can be extended to specializations of the terminal limit
group of one the graded Root resolutions, GRootResr

i , that are associated
with the corresponding graded resolution, GResi.

(4) we look at all the test sequences of ExWResm, for which to the restriction to
specializations of the terminal limit group of one of the graded resolutions,
GRes1, . . . , GResd, it is possible to add a specialization of the terminal limit
group of one of the associated graded formal (cover) resolution, FGResj

i .
(5) given the finite collection of graded cover resolutions that are associated
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with the test sequences that are described in part (4), we look at those test
sequences of these graded cover resolutions ,for which the restrictions to the
specializations of the rigid or weakly solid factor of the terminal limit group
of FGResi are not rigid or not weakly strictly solid.

(6) given the finite collection of graded cover resolutions that are associated
with part (4), we look at those test sequences of these (finitely many) graded
resolutions, for which the restrictions to the terminal limit groups of one of
the resolutions, FGResj

i , either factor through the terminal limit group of

one of the associated collapse formal graded resolutions, CollFGResj,k
i , or

the can be extended to specializations of the terminal limit group of one of
the resolutions, SLFGResj,v

i , that are associated with the singular locus of

the corresponding resolution, FGResj
i .

Finally, with the resolution, WResm, itself, we associate finitely many graded
resolutions, that are associated with its singular locus, according to proposition 4.2.
We further associate with WResm, and the finite collection of closures of it, that
include the resolutions, ExWResm, and the resolutions that are associated with it
according to parts (1)-(6), a finite collection of graded Root resolutions, according
to proposition 4.3.

Suppose that there is no approximating resolution, WResm, with a subsequence
of (the original sequence of) tuples {(pn, wn)} that factor through it, and that
can be extended to specializations of the f.p. completion that extends WResm, for
which for the fiber of WResm that contains the tuple, (pn, wn), the restrictions of
a test sequence in the fiber to the existential variables w testify that pn ∈ EAE(p)
over Gn, i.e., for these w’s, the tuple (pn, w) is not in the associated set AE(p, w)
(over Gn).

In this case we can associate with the original graded resolution, WRes, a graded
closure that is constructed from a limit of test sequences of a sequence of approxi-
mating resolutions, WResm, that can be extended to specializations of the terminal
limit group of one of the graded resolutions, GRes1, . . . , GResd, that restrict to
rigid or weakly strictly solid specializations of the rigid or weakly solid factor of
that terminal group, where the specializations of the terminal limit group of one of
the graded resolutions, GRes1, . . . , GResd, can not be extended to formal solutions
that are defined over these graded resolutions, and these formal solutions form a
covering closure (definition 2.4), and satisfy both the equalities, Σ(x, y, w, p) = 1,
and the inequalities, Ψ(x, y, w, p) 6= 1. We denote such a closure, ExWRes.

Now, we continue in one of two possible ways, depending on the sequence of
specializations, {(pn, wn}, and the fibers that contain them in the approximations,
WResm. The first possibility is to look at a sequence of cover approximations of the
closure, ExWRes, (see theorem 1.21 for the construction of such approximations),
and force one of 3 possible collapse conditions on it:

(i) we require that the additional rigid or weakly strictly solid specialization of
the rigid or weakly solid factor of the terminal limit group of the associated
graded resolution, GRes1, . . . , GResd, that was added to ExWRes, will be
either non-rigid or non weakly strictly solid.

(ii) we require that the specialization of the terminal limit group of the associ-
ated graded resolution, GResi, extends to a specialization of the terminal
limit group of one of the graded resolutions, SLGResv

i , that are associated
with the graded resolution, GResi.
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(iii) we require that the specialization of the terminal limit group of the associ-
ated graded resolution, GResi, extends to a specialization of the terminal
limit group of one of the graded Root resolutions, GRootResr

i , that are
associated with the graded resolution, GResi (and the restrictions of the
test sequences from which the resolution, ExWRes, was constructed, do
not extend to specializations of this graded Root resolution).

By passing to a further subsequence, and applying the first step of the sieve pro-
cedure, that is presented in [Se6], we obtain a quotient resolution of the closure,
ExWRes.

The second possibility is to look at a sequence of cover approximations of the
closure, ExWRes, and force the existence of a formal solution that is associ-
ated with the specialization of the terminal limit group of one of the resolutions,
GRes1, . . . , GResd, that was added to specializations of ExWRes. i.e., to each
specialization in a test sequence of a cover approximation of ExWRes that we con-
sider, we add specializations of the terminal limit group of one of the formal resolu-
tions, FGResj

i , that are associated with the graded resolutions, GRes1, . . . , GResd.
From the collection of test sequences that factor through cover approximations of
ExWRes, and the additional specializations of the terminal limit groups of one of
the formal resolutions that are associated with one of the resolutions, GRes1, . . . , GResd,
we extract a subsequence that converges into a quotient resolution of the closure,
ExWRes. The structure of such a quotient resolution is determined by the first
step of the sieve procedure [Se6], in the same way that it was used in proving the
equationality of Diophantine sets in section 2 of [Se9].

We continue iteratively, at each step we first look at a sequence of approximating
(cover) resolutions of a quotient resolution that was constructed in the previous step,
where these approximating (cover) resolutions satisfy the properties that are listed
in theorem 1.21, and in particular they can be extended to ungraded resolutions
with f.p. completions. If there exists an approximating cover resolution for which
there exists a subsequence of pairs, (still denoted) {(pn, wn)}, so that for each
specialization of the terminating limit group of the approximating resolution that
is associated with a pair (pn, wn) from the subsequence, there exists a test sequence
in the fiber that is associated with such a specialization (which takes its values in
Gn) that satisfies pn ∈ EAE(p) (over Gn), and the restrictions of the test sequence
to the existential variables w are witnesses for pn, we do what we did in this case
in the first step.

This means that we associate with the approximate resolution finitely many aux-
iliary resolutions. First, we look at all the test sequences of the approximating cover
resolution that can be extended to specializations of the terminal limit group of one
of the graded resolutions, GRes1, . . . , GResd, and use a construction similar to the
construction of the formal graded Makanin-Razborov diagram to associate with the
cover approximating resolution finitely many resolutions that are similar to the res-
olutions, ExWResm, that were constructed in the first step. Then we look at all the
test sequences of these constructed resolutions that satisfy properties (1)-(6), where
for each such collection of test sequences, we use a construction similar to the one
that was used to construct a formal Makanin-Razborov diagram (theorems 2.6 and
2.7). Finally ,with the approximating resolution and the auxiliary resolutions that
are associated with it, we associate finitely many graded resolutions that are asso-
ciated with the singular locus of the approximating resolution, and with it and the

65



finite set of closures that are associated with its auxiliary resolutions, according to
propositions 4.2 and 432. Note that each of the constructed (auxiliary) resolutions
has the same properties of a resolution in the formal Makanin-Razborov diagram
(see theorem 2.6), so in particular it terminates in a cover closure of the approxi-
mating cover resolution, and each of the constructed resolution can be extended to
an ungraded resolution with a f.p. completion.

If there is no such approximating resolutions for a constructed quotient reso-
lution, we associate with it a graded resolution that is constructed from test se-
quences that can be extended to specializations of the terminal limit groups of one
of the graded resolutions: GRes1, . . . , GResd (that can not be extended to formal
solutions that are defined over these resolutions and satisfy both the equalities,
Σ(x, y, w, p) = 1, and the inequalities, Ψ(x, y, w, p) 6= 1). We further force one
of the 3 possible collapse conditions over the constructed closure of the quotient
resolution, or the existence of a formal solution that is associated with the addi-
tional specialization of the terminal limit group of one of the graded resolutions,
GRes1, . . . , GResd, and apply the general step of the sieve procedure [Se6], and
associate a quotient resolution of the quotient resolution that we have started this
(general) step with.

By an argument which is similar to the argument that guarantees the termination
of the sieve procedure in [Se6], and the argument that was used to prove the equa-
tionality of Diophantine sets over free and hyperbolic groups (proposition 2.2 in
[Se9]), we obtain a termination of the this procedure.

Theorem 4.4. The procedure for the analysis of an EAE set over free products
terminates after finitely many steps.

Proof: At each step of the procedure, on the quotient resolution, WRes, that is
analyzed in that step, we impose one of two types of restrictions. The first adds to
generic points of fibers (test sequences) of the resolution, WRes, specializations of
the terminal limit group of one of the graded resolutions, GRes1, . . . , GResd, that
restrict to rigid or weakly strictly solid specializations of the rigid or weakly solid
factor of that terminal limit group, and associate with WRes a (cover) closure.
Then we impose one of 3 possible Diophantine conditions on the obtained (cover)
closure, that either forces the additional rigid or weakly strictly solid specialization
to be either non-rigid or non weakly strictly solid, or forces the specialization of
the terminal limit group of one of the graded resolution, GRes1, . . . , GResd, to be
extended to a specialization of the terminal limit group of one of the resolutions
that are associated with the singular locus, SLGResv

i , or to the terminal limit
group of one of the graded Root resolutions, GRootResr

i .

The second type adds specializations of the terminal limit groups of one of the as-
sociated formal graded (cover) resolutions, FGResj

i , that restrict to rigid or weakly
strictly solid specializations of the rigid or weakly solid factor in the terminal limit
group of that formal graded resolution, and these specializations do not extend to
a closure of the quotient resolution from the previous step.

These (3 possible) Diophantine conditions are similar in nature to the Diophan-
tine condition that is imposed on quotient resolutions in the general step of the
sieve procedure (over free groups) in [Se6]. The additional specializations of the
second type (that do not extend to a closure of the previous quotient resolution),
are similar to the rigid or strictly solid specializations that are added in each step in
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the iterative procedure that is used to prove the equationality of Diophantine sets
over free and hyperbolic groups (section 2 in [Se9]). However, we need to modify the
argument for the termination of the sieve procedure over free groups, to guarantee
the termination of the procedure for the analysis of an EAE set over free products.

The sieve procedure over free groups [Se6], analyzes a sequence of quotient resolu-
tions, where each quotient resolution is obtained from the previous one by imposing
one of finitely many Diophantine conditions on a closure of the quotient resolution
that was obtained in the previous step. The complexity of such a quotient resolu-
tion is measured by some finite collection of associated graded limit groups (over
free groups), a finite collection of core resolutions, their associated induced resolu-
tions, and possibly a finite collection of sculpted resolutions and carriers. Since the
analysis and the definitions of these objects are rather involved, we won’t elaborate
on them, and the interested reader is refered to [Se6] for the complete details.

The analysis of quotient resolutions over free products, along the steps of the
iterative procedure for the analysis of an EAE set, is done according to the general
step of the sieve procedure. Hence, with each quotient resolution we also associate
(finitely many) graded limit groups (over free products), core resolutions, induced
resolutions, and possibly carriers and sculpted resolutions, precisely as they appear
in the sieve procedure [Se6].

As the graded limit groups, the core resolutions, and the induced resolutions, that
are constructed along the iterative procedure for the analysis of an EAE set over
free products, are similar to the ones that are constructed along the sieve procedure
over free groups in [Se6], the proof of theorem 22 in [Se6] that guarantees the
termination of the sieve procedure over free groups, implies that the limit groups,
the core resolutions, and the induced resolutions, that appear along the procedure
for the analysis of an EAE set over free products, can change only finitely many
times along the procedure. Hence, by the same proof of theorem 22 in [Se6], if
the procedure does not terminate, the number of sculpted resolutions that are
associated with the quotient resolutions that are constructed in the various steps
can not be bounded.

Suppose that the procedure for the analysis of an EAE set over free products
does not terminate. By the argument that is used in proving theorem 22 in [Se6],
the larger and larger numbers of sculpted resolutions that are constructed along
the iterative procedure, in combination with the argument that was used to prove
the combinatorial bounds on rigid and (weakly) strictly solid specializations of
rigid and (weakly) solid limit groups over free products (theorems 1.10 and 1.13),
together with the argument that was used to prove the existence of finitely many
systems of fractions for rigid and (weakly) strictly solid specializations in theorems
1.14 and 1.15, guarantee the existence of a subsequence of steps along the iterative
procedure, with an unbounded number of associated sculpted resolutions, for which
the additional specializations of the rigid or weakly solid factors of the terminal limit
groups of one of the graded resolutions,GRes1, . . . , GResd, satisfy the conclusions
of theorems 1.10, 1.13, 1.14 and 1.15 (even though these specializations are not
rigid nor weakly strictly solid in general).

Over free groups, such a subsequence of steps gives an immediate contradiction,
as theorems 1.14 and 1.15 in the case of a free group imply a global bound on
the number of (families of) the specializations of the rigid or weakly solid factors
of the terminal limit groups of GRes1, . . . , GResd, that contradicts the lack of a
bound on the number of sculpted resolutions along the subsequence of steps of the
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procedure. Over free products, theorems 1.14 and 1.15 do not imply similar bounds
on the number of specializations of the rigid or weakly solid factors, hence, we need
to slightly modify the argument.

The quotient resolutions that are constructed along the procedure, are obtained
by either imposing one of 3 possible Diophantine conditions on a closure of the
quotient resolution that was constructed in the previous step, or by requiring the
existence of an additional specialization of the terminal limit group of one of the
formal graded resolutions, FGResj

i , that are associated with the graded resolu-
tions, GRes1, . . . , GResd, a specialization that does not extend to a closure of the
previously constructed quotient resolution. The second type of requirement, the
existence of an additional specialization of one of the terminal limit groups of the
associated graded formal resolutions, can occur for only boundedly many sculpted
resolutions, by the same argument that was used in the proof of theorem 22 in [Se6]
(over free groups), or alternatively by the argument that was applied in proving
the equationality of Diophantine sets over free and hyperbolic groups (theorem 2.2
in [Se9]).

Hence, to prove the termination of the iterative procedure for the analysis of an
EAE set, we need to prove that the requirement that the additional specializations
of the terminal limit group of one of the graded resolutions, GRes1, . . . , GResd,
satisfy one of 3 possible Diophantine conditions, can occur for boundedly many
sculpted resolutions as well.

Each of the 3 possible Diophantine requirements, is expressed by an extension of
the specialization of the additional terminal limit group of one of the graded resolu-
tions, GRes1, . . . , GResd, to a specialization of one of finitely many possible graded
limit groups. With each such graded limit group we associate a (non-canonical)
graded Makanin-Razborov diagram (see theorem 1.22) with respect to the parame-
ter subgroup that is generated by the fixed generating set of the (original) terminal
limit group of one of the graded resolutions, GRes1, . . . , GResd. Each such graded
resolution in the graded Makanin-Razborov diagram terminates in a free product of
a rigid or a weakly solid limit group with finitely many elliptic factors and possibly
a free group.

Therefore, the Diophantine conditions that are imposed in each step of the iter-
ative procedure on the additional specializations of the terminal limit group of one
of the graded resolutions, GRes1, . . . , GResd, can be expressed by the possibility
to extend this specialization to a specialization of one of the terminal limit groups
in the finitely many graded Makanin-Razborov diagrams that are associated with
the 3 possible Diophantine conditions, that restrict to a rigid or a weakly strictly
solid specialization of the rigid or weakly solid factor of the corresponding terminal
graded limit group.

We have already pointed out that in case the iterative procedure doesn’t termi-
nate, there exists a subsequence of steps for which the additional specializations of
the terminal limit groups of the graded resolutions, GRes1, . . . , GResd, that are
associated with unbounded collections of sculpted resolutions, satisfy the conclu-
sions of theorems 1.10,1.13,1.14 and 1.15. Precisely the same argument guarantees
that we can pass to a further subsequence for which the extended specializations
to terminal limit groups of the resolutions in the graded Makanin-Razborov dia-
grams that are associated with the 3 possible Diophantine conditions, satisfy the
conclusions of these (1.10,1.13.1.14 and 1.15) theorems as well.

Now we can apply the argument that was used to prove the termination of
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the sieve procedure over free groups (theorem 22 in [Se6]), and conclude that by
the conclusions of theorems 1.14 and 1.15 for the extended specializations of the
terminal limit groups in the graded Makanin-Razborov diagrams that are associated
with the Diophantine conditions, if there is no bound on the number of sculpted
resolutions that are associated with the quotient resolutions along the iterative
procedure, then there must exist a specialization of the terminal limit group of
one of the graded resolutions, GRes1, . . . , GResd, that already satisfies one of the
associated Diophantine conditions within the sculpted (or developing) resolution
in which it was constructed, which is a contradiction to the way sculpted and
developing resolutions are constructed in the general step of the iterative procedure.

Therefore, there exists a global bound on the number of possible sculpted resolu-
tions that can be associated with a quotient resolution along the iterative procedure.
This global bound implies the termination of the iterative procedure for the anal-
ysis of an EAE set over free products, since as we have already pointed out, in
case it doesn’t terminate, there is no bound on the number of associated sculpted
resolutions. Therefore, the iterative procedure terminates after finitely many steps.

�

By theorem 4.4 the procedure for the analysis of an EAE set terminates after
finitely many steps. When it terminates we are left with a quotient resolution, that
has all the properties of a cover approximating (graded) resolution that are listed in
theorem 1.21, and a finite collection of auxiliary resolutions, that do all satisfy the
properties of the resolutions in the formal Makanin-Razborov diagram (theorems
2.6 and 2.7)

This terminating iterative procedure that allows one to associate an approximat-
ing cover graded resolution, and its finite collection of auxiliary resolutions (that
can all be extended to ungraded resolutions with f.p. completions), with a subse-
quence of any given sequence of pairs, {(pn, wn)}, of specializations in free products
Gn for which pn ∈ EAE(p) over Gn, and wn are witnesses for pn, enables one to
construct finitely many such approximating cover resolutions with their (finitely
many) auxiliary resolutions, that can be associated with the set EAE(p). In the
case of an EAE sentence, the construction of these (finitely many) approximating
and auxiliary resolutions, allows one to reduce (uniformly) the given EAE sentence
over free products to a (finite) disjunction of conjunctions of sentences over the
factors of the free product.

Theorem 4.5. Let:

EAE(p) = ∃w ∀y ∃x Σ(x, y, w, p) = 1 ∧ Ψ(x, y, w, p) 6= 1

be an EAE set over groups. Then there exist finitely many (coefficient-free) graded
resolutions over free products (with respect to the parameter subgroup < p >):
WRes1(z, y, w, p), . . . , WRese(z, y, w, p), with the following properties:

(1) each of the graded resolutions, WResi, is a graded cover resolution that
satisfies the properties of cover graded resolutions that are listed in theorem
1.21. In particular, each of the graded resolutions, WResi, can be continued
to an ungraded resolution with a f.p. completion. With the rigid or weakly
solid factor of the terminal limit group of WResi there are finitely many
associated covers of the flexible quotients of that rigid or weakly solid factor,
and each of these covers can be embedded in an ungraded resolution with a
f.p. completion (see theorem 1.21).
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(2) with each graded resolution, WResi(z, y, w, p), we associate (non-canonically)
finitely many graded (auxiliary) resolutions, precisely in the same way that
we have associated such auxiliary resolutions with an approximating cover
resolution, WResm, in the first step of the iterative procedure, in case the
iterative procedure terminates in the first step. These auxiliary graded res-
olutions have the same properties as the resolutions in a formal graded
Makanin-Razborov diagram (theorems 2.6 and 2.7), and they are constructed
from test sequences of each of the graded resolutions, WResi, i = 1, . . . , e,
that can be extended to specializations of the terminal limit group of one
of the graded resolutions, GRes1, . . . , GResd, and test sequences that can
be extended to specializations that satisfy one of the properties (1)-(6), that
are listed in constructing the auxiliary resolutions that are associated with
the resolution, WResm, in the first step of the iterative procedure (in case
this procedure terminates in the first step). We further associate auxil-
iary resolutions that are associated with the singular loci of the resolutions,
WResi, (see proposition 4.2) and auxiliary resolutions that are graded Root
resolutions that are associated with the graded resolutions, WResi, and the
(finite) set of closures that are associated with all the previously constructed
auxiliary resolutions (see proposition 4.3).

(3) let G = A1 ∗ . . .∗Aℓ be a non-trivial free product, which is not isomorphic to
D∞. Let p0 be a specialization of the parameters p in the free product G, for
which p0 ∈ EAE(p) over G. Then there exists an index i, 1 ≤ i ≤ e, a rigid
or a weakly strictly solid specialization of the rigid or weakly solid factor of
the terminal limit group of WResi in G (that restricts to p0), and special-
izations of the elliptic factors of that terminal limit group in elliptic factors
in G, so that for the combined specialization of the terminal limit group of
the graded resolution, WResi, there is a test sequence in the fiber that is
associated with this specialization of the terminal limit group (of WResi),
that either can not be extended to specializations of the terminal limit group
of one of the graded resolutions, GRes1, . . . , GResd, or if it can be extended
to such specializations, then either their restrictions to the rigid or weakly
solid factor in the terminal limit group of GRes1, . . . , GResd, is not rigid
or not weakly solid, or the specializations of the terminal limit group of
GRes1, . . . , GResd, can be extended to specializations of the terminal limit
group of one of the graded resolutions, SLGResv

i , that are associated with
the singular locus of the graded resolutions, GRes1, . . . , GResd, or the spe-
cializations of the terminal limit group of GRes1, . . . , GResd, can be further
extended to specializations of the terminal limit groups of one or more formal
graded resolutions, FGResj

i , that are associated with, GRes1, . . . , GResd,

so that the associated fibers of the formal resolutions, FGResj
i , form a cov-

ering closure of the corresponding fiber of the graded resolution GResi, and
these specializations of the terminal limit groups of the formal resolutions,
FGResi, can not be further extended to the terminal limit groups of the col-

lapse resolutions, CollFResj,k
i , that are associated with the formal graded

resolutions, FResj
i , and not to specializations of the terminal limit group

of one of the graded resolutions, SLFGResj,v
i , that are associated with the

singular locus of the formal resolutions FGResj
i (see the construction of

the auxiliary resolutions that are associated with WResm in the first step
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of the iterative procedure for the analysis of an EAE set, and in particular
properties (1)-(6)).

In other words, given an EAE set, there exists a finite collection of graded res-
olutions (that can be extended to ungraded resolutions with f.p. completions) over
free products, and finitely many associated auxiliary resolutions of these graded res-
olutions, so that the inclusion of a specialization of the parameters (free variables)
in the EAE set over any given free product, can be demonstrated by a generic point
in at least one of these resolutions, and (possibly) their associated auxiliary resolu-
tions.

Proof: The argument that we use is similar to the one that was used to prove
theorems 4.1 and 3.2, that is based on the arguments that were used in constructing
the ungraded and graded Makanin-Razborov diagrams (theorem 26 in [Ja-Se] and
theorem 1.22).
Let Gn = A1

n ∗ . . .∗Aℓ
n (possibly for varying ℓ > 1), be a sequence of non-trivial free

products that are not isomorphic to D∞. Let {(pn, wn)} be a sequence of tuples in
Gn, so that pn ∈ EAE(p) over Gn, and wn is a witness for pn, i.e., (pn, wn) is in
the associated set AE(p, w) over Gn, which means that the following sentence:

∀y ∃x Σ(x, y, wn, pn) = 1 ∧ Ψ(x, y, wn, pn) 6= 1

is true over Gn.
Starting with the sequence, {(pn, wn)}, the terminating iterative procedure for

the analysis of an EAE set that we have presented constructs a graded resolution,
WRes, with the following properties:

(i) the graded resolution WRes satisfies the properties of a cover graded res-
olution that are listed in theorem 1.21. In particular, its completion can
be extended to (an ungraded) f.p. completion. With the rigid or weakly
solid factor of the terminal limit group of WRes, there is a finite collec-
tion of covers of its flexible quotients that can all be embedded into f.p.
completions.

(ii) there exists a subsequence of the sequence of specializations, {(pn, wn)},
that extend to specializations that factor through the resolution, WRes,
and to specializations of the f.p. completion of the ungraded resolution that
extends the graded resolution, WRes (see theorem 1.21). Hence, with each
specialization from this subsequence of the tuples, {(pn, wn)}, specializa-
tions of the terminal limit group of the graded resolution, WRes, can be
associated. Furthermore, these specializations of the terminal limit group
of WRes can be extended to specializations of the f.p. completion of some
ungraded resolution of the terminal limit group of WRes. Restrictions of
generic points in the fibers that are associated with these specializations of
the terminal limit group of WRes, to the variables (p, w), that we denote,
(pn, w), are in the set AE(p, w) that is associated with the given EAE set,
EAE(p). i.e., for every index n, and for generic w in the fiber that is as-
sociated with (pn, wn) (i.e., for the restriction of some test sequence in this
fiber to the existential variables w), the sentence:

∀y ∃x Σ(x, y, w, pn) = 1 ∧ Ψ(x, y, w, pn) 6= 1

is true over Gn.
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(iii) with the resolution WRes, we associate (non-canonically) a finite collection
of graded auxiliary resolutions, that are part of the output of the terminating
iterative procedure for the analysis of an EAE set, i.e., auxiliary resolutions
of the same type as those that were associated with an approximating cover
resolution, WResm, in the first step of the procedure, in case it terminates
in the first step. These auxiliary resolutions have the same properties of the
resolutions in a formal graded Makanin-Razborov diagram (theorems 2.6
and 2.7), and in particular they can be extended to ungraded resolutions
with f.p. completions.

Now we can apply the argument that was used to prove theorems 3.2 and 4.1. We
look at all the sequences of non-trivial free products, Gn = A1

n ∗ . . . ∗ Aℓ
n (possibly

for varying ℓ > 1), that are not isomorphic to D∞, an associated sequence of tuples,
pn ∈ EAE(p) over Gn, and witnesses wn for pn, i.e., a sequence of pairs (pn, wn) ∈
AE(p, w) over Gn. From every such sequence we use our terminating iterative
procedure, and extract a subsequence of the tuples, (still denoted) {(pn, wn)}, and
a graded resolution, WRes, that has the properties (i)-(iii), and in particular,
the subsequence of tuples, (still denoted) {(pn, wn)}, extend to specializations that
factor through the resolution WRes, and to specializations of the f.p. completion of
the ungraded resolutions that extends the graded resolution WRes. Furthermore,
the restrictions of generic points in the fibers that are associated with the pairs,
{(pn, wn)}, are in the set AE(p, w) (i.e., generic values of w in these fibers are
witnesses for pn ∈ EAE(p) over Gn).

The completion of each of the constructed resolutions, WRes, can be extended
to an ungraded f.p. completion, and so are its associated (finitely many) auxiliary
resolutions. Furthermore, the (finite collection of) covers of flexible quotients of
the rigid or weakly solid factors of the terminal limit groups of the resolutions,
WRes, and of the auxiliary resolutions that are associated with WRes, can all be
embedded into (ungraded) resolutions with f.p. completions. Hence, we can define
a linear order on this (countable) collection of graded resolutions (WRes), and
their (non-canonically) associated auxiliary resolutions, and (finite collections of)
covers of flexible quotients. By the same argument that was used in constructing
the Makanin-Razborov diagram (theorem 26 in [Ja-Se]), there exists a finite sub-
collection of these graded resolutions that satisfy properties (1)-(3) of the theorem.

�

As we have already pointed out, the existence of finitely many graded resolutions
that satisfy the properties that are listed in theorem 4.5, and their (finitely many)
auxiliary resolutions, allows one to reduce an EAE sentence from free products to
a sentence over its factors in a uniform way.

Theorem 4.6. Let:

∃w ∀y ∃x Σ(x, y, w) = 1 ∧ Ψ(x, y, w) 6= 1

be an EAE sentence over groups.
Then there exists a coefficient-free sentence over free products, which is a (fi-

nite) disjunction of conjunctions of EAE sentences, where each of these last EAE
sentences involves elliptic elements from the same factor, such that for every non-
trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞, the original
EAE sentence over the free product G = A1 ∗ . . . ∗ Aℓ is a truth sentence, if and
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only if the sentence which is a (finite) disjunction of conjunctions of EAE sentences
over the factors A1, . . . , Aℓ is a truth sentence.

Proof: By theorem 4.5, with a given EAE set, it is possible to associate finitely
many graded resolutions, WRes1, . . . , WRese, that do all satisfy the properties
that are listed in theorem 1.21, and in particular they can all be embedded into f.p.
completions. With each graded resolution, WResi, we have associated finitely many
auxiliary resolutions, according to parts (1)-(6) that appear in the first step of the
iterative procedure for the analysis of an EAE set, as well as finitely many graded
resolutions that are associated with the singular locus of WResi (according to
proposition 4.2), and finitely many graded Root resolutions that are associated with
WResi and its collection of auxiliary resolutions according to proposition 4.3. Note
that all the (finitely many) graded resolutions that are associated with WResi have
the properties of the resolutions in the formal graded Makanin-Razborov diagram
as listed in theorems 2.6 and 2.7, and in particular they can all be embedded into
f.p. completions.

In case of an EAE sentence, the same constructions that enable one to asso-
ciate graded resolutions and their auxiliary resolutions with an EAE set (i.e., the
iterative procedure for the analysis of an EAE set, and the proof of theorem 4.5),
enable one to associate with a given EAE sentence a (non-canonical) finite collec-
tion of (ungraded) resolutions (over free products) with f.p. completions, and with
each resolution finitely many (ungraded) auxiliary resolutions that do all have f.p.
completions, and these auxiliary resolutions have the same properties and they are
constructed in the same way as the (graded) auxiliary resolutions that are con-
structed in the case of an EAE set.

We (still) denote the (ungraded) resolutions that are associated with the given
EAE sentence, WRes1, . . . , WRese. By theorems 4.5 and 3.2, and propositions
4.2 and 4.3, the given EAE sentence is true over a non-trivial free product, G =
A1∗. . .∗Aℓ, that is not isomorphic to D∞, if and only if there exists a specialization
in G of the terminal limit group of a resolution WResi (one of the resolutions,
WRes1, . . . , WRese, i.e., specializations of the elliptic factors of the terminal limit
group of WResi in the factors, A1, . . . , Aℓ, for which:

(1) the specialization does not extend to a specialization of the terminal limit
group of one of the auxiliary resolutions, that are associated with the singu-
lar locus of WResi according to proposition 4.2. The specialization extends
to the terminal limit group of some prescribed Root resolutions (possibly
only the trivial roots), that are associated with WResi according to theorem
4.3, and does not extend to the other Root resolutions.

(2) the specialization does not extend to a (finite) collection of specializations
of the terminal limit groups of the auxiliary resolutions that are constructed
from test sequences of WResi that extend to specializations of the terminal
limit groups of the graded resolutions, GRes1, . . . , GResd, that are associ-
ated with the AE set, AE(w):

∀y ∃x Σ(x, y, w) = 1 ∧ Ψ(x, y, w) 6= 1

that satisfy:
(i) these specializations extend to specializations of the terminal limit

groups of a prescribed finite collection (possibly empty) of auxiliary
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resolutions (that are associated with WResi) that are constructed
from test sequences for which the additional specializations of GRes1, . . . , GResd,
are either collapsed, i.e., the restriction of the additional specializa-
tions to the rigid or weakly solid factor are not rigid nor weakly strictly
solid, or they can be extended to either the the terminal limit groups
of resolutions that are associated with the singular locus of the cor-
responding resolution, GRes1, . . . , GResd, or to the terminal limit
groups of resolutions that are associated with the graded Root reso-
lutions that are associated with the resolutions, GRes1, . . . , GResd.
The specializations extend only to specializations of the terminal limit
groups of such auxiliary resolutions from the prescribed set, and not
to specializations of terminal limit groups of auxiliary resolutions that
do not belong to the prescribed set.

(ii) these specializations extend to specializations of the terminal limit
groups of a prescribed finite collection (possibly empty) of auxiliary
resolutions (that are associated with WResi) that are constructed
from test sequences for which the additional specializations of GRes1, . . . , GResd,
extend to specializations of the terminal limit groups of formal graded
resolution, FGResj

i , that are associated with the graded resolutions,
GResi. The specializations extend only to specializations of the ter-
minal limit groups of such auxiliary resolutions from the prescribed
set, and not to specializations of terminal limit groups of auxiliary
resolutions that do not belong to the prescribed set.

(iii) the extended specializations of the terminal limit groups of the aux-
iliary resolutions that are associated with the formal graded resolu-
tions, FGResj

i , extends further to specializations of the terminal limit
groups of a prescribed finite collection (possibly empty) of auxiliary
resolutions (that are associated with WResi) that are constructed
from test sequences for which the additional specializations of the ter-
minal limit groups of the formal graded resolutions, FGResi, are either
collapsed, i.e., the restriction of the additional specializations to the
rigid or weakly solid factor are not rigid nor weakly strictly solid, or
they can be extended to either the the terminal limit groups of resolu-
tions that are associated with the singular locus of the corresponding
graded formal resolution, FGResj

i , or to the terminal limit groups of

one of the graded resolutions, ΨFGResj,k
i . Again, the specializations

extend only to specializations of the terminal limit groups of such aux-
iliary resolutions from the prescribed set, and not to specializations
of terminal limit groups of auxiliary resolutions that do not belong to
the prescribed set.

(iv) the fibers that are associated with the specializations of the termi-
nal limit groups of auxiliary resolutions from the prescribed (finite)
sets, form a covering closure of the fiber that is associated with the
specialization of the terminal limit group of WResi.

Finally, by going over the finitely many possibilities for prescribed sets of auxil-
iary resolutions that satisfy part (iv), the existence of a specialization of the termi-
nal limit group of one of the resolutions, WResi, that satisfies properties (1)-(2), is
clearly a finite disjunction of finite conjunctions of EAE sentences over the factors
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of G, A1, . . . , Aℓ, i.e., conditions (i)-(iv) can be easily written as a disjunction of
conjunctions of such sentences in the factors by using all the constructed auxiliary
resolutions.

�

§5. AEAE sentences and predicates

In the previous two sections we used the iterative procedure for the analysis of
an AE sentence over free groups [Se4], and the sieve procedure that was used for
quantifier elimination over free groups [Se6], to analyze AE and EAE predicates and
sentences. In particular we showed that AE and EAE sentences over free products
can be reduced to (finite) disjunction of conjunctions of sentences over the factors
of the free product. In this section we further continue towards similar statements
for general predicates and sentences. We use what we proved for AE and EAE
predicates, to analyze AEAE predicates and sentences. We expand the structure
that we are working with, by adding new quantifiers over elliptic factors, and prove
that an AEAE set can be defined using a predicate that requires only 3 quantifiers
over the ambient free product, and additional quantifiers over elements that are
in elliptic factors. The tools that are used in this reduction enable us to reduce
an AEAE sentence over the ambient free product to a disjunction of conjunctions
of sentences over the elliptic factors. These results and the tools and techniques
that are used in their proof, are the basis for our general results for sentences and
predicates (with an arbitrary (finite) number of quantifiers) over free products, and
therefore they are the key for all our results on the first order theory of free products
of groups.

Let:

AEAE(p) = ∀t ∃w ∀y ∃x Σ(x, y, w, t, p) = 1 ∧ Ψ(x, y, w, t, p) 6= 1

be a predicate over groups. With the set AEAE(p) we naturally associate an EAE
set:

EAE(p, t) = ∃w ∀y ∃x Σ(x, y, w, t, p) = 1 ∧ Ψ(x, y, w, t, p) 6= 1

and with the sets, AEAE(p) and EAE(p, t), we naturally associate an AE set:

AE(p, t, w) = ∀y ∃x Σ(x, y, w, t, p) = 1 ∧ Ψ(x, y, w, t, p) 6= 1.

Recall that with the set AE(p, t, w) we have associated (in theorem 4.1) finitely
many graded resolutions, GRes1, . . . .GResd, with respect to the parameter sub-
group < p, t, w >, that do all satisfy the properties of graded cover resolutions
that are listed in theorem 1.21. With these graded resolutions we have associated
graded resolutions that are associated with their singular locus (proposition 4.2),

graded Root resolutions (proposition 4.3), and graded formal resolutions, FGResj
i ,

with which we associated graded resolutions that are associated with their singu-

lar locus, and collapse graded formal resolutions, CollFGResj,k
i . A specialization

(p0, t0, w0) /∈ AE(p, t, w), over some non-trivial free product G = A1 ∗ . . . ∗ Aℓ,
which is not isomorphic to D∞, if and only if there is a specialization of the termi-
nal graded limit group of one of the graded resolutions, GRes1, . . . , GResd, that
extends the specialization (p0, t0, w0), a specialization that is composed from a rigid
or a weakly strictly solid specialization of the rigid or solid factor of that graded
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limit group, and specializations of the f.p. elliptic factors of the terminal graded
limit group, so that the restrictions to the universal variables y of generic elements
(i.e., a test sequence) in the fiber that is associated with the specialization of the
terminal limit group, are witnesses that (p0, t0, w0) /∈ AE(p, t, w).

With the EAE set, EAE(p, t), we associated finitely many graded resolution (in
proposition 4.3) that we denoted, WRes1, . . . , WRese, that satisfy the properties
of theorem 1.21. With each of these graded resolutions we have associated finitely
many auxiliary resolutions that satisfy the properties of the resolutions in the formal
Makanin-Razborov diagram (theorems 2.6 and 2.7). Both the graded resolutions,
GResi, and their associated auxiliary resolutions can be extended to ungraded
resolutions with f.p. completions. By part (3) of theorem 4.5, a specialization
(p0, t0) ∈ EAE(p, t) over some non-trivial free product G = A1 ∗ . . . ∗ Aℓ which is
not isomorphic to D∞, if and only if there is a specialization of the terminal graded
limit group of one of the graded resolutions, WRes1, . . . , WRese, that extends
(p0, t0), so that a generic point (i.e., a test sequence) in the fiber that is associated
with this specialization of the terminal limit group, restricts to specializations of
the existential variables w that are witnesses that (p0, t0) ∈ EAE(p, t).

Both in the analysis of AE sets, and in the analysis of EAE sets, the existence of
finitely many graded resolutions with the properties listed above enabled us to re-
duce a 2 quantifier and a 3 quantifier sentence to a finite disjunction of conjunctions
of sentences over the factors of the free product (theorems 3.7 and 4.6).

In this section we use our results on AE and EAE sets over free products to
analyze AEAE sets over free products, and in particular we associate finitely many
graded resolutions, that satisfy the properties of theorem 1.21, and finitely many
auxiliary resolutions with each of these graded resolutions (that satisfy the prop-
erties of formal graded resolutions that are listed in theorem 2.6), with any given
AEAE set. The construction of these graded and auxiliary resolutions uses the
structural results that were proved in sections 1 and 2, and is once again a varia-
tion of the sieve procedure that was presented in [Se6].

We start the analysis of the set AEAE(p) with all the sequences of specializations
of the tuple, (p, t), {(pn, tn)}, that take values in non-trivial free products, Gn =
A1

n ∗ . . . ∗ Aℓ
n (for possibly varying ℓ > 1), which are not isomorphic to D∞. We

further assume that for every index n, pn /∈ AEAE(p) over the free product, Gn,
and that tn is a witness for pn, i.e., a specialization of the universal variables t in
Gn, so that the EAE sentence:

∃w ∀y ∃x Σ(x, y, w, tn, pn) = 1 ∧ Ψ(x, y, w, tn, pn) 6= 1

is a false sentence over Gn.
By theorem 1.16, given such a sequence of pairs, {(pn, tn)}, we can pass to

a subsequence that converges into a well-structured (even well-separated) graded
resolution with respect to the parameter subgroup < p >: T0 → T1 → . . . → Ts,
where Ts is a free product of a rigid or a solid group over free products (that
contains the subgroup, < p >), and (possibly) a free group and (possibly) finitely
many elliptic factors. We denote this graded resolution TRes. As we noted in
similar constructions in the previous sections, the terminal limit group Ts in TRes
is f.g. but it may be not finitely presented.

We apply the techniques of theorem 1.21, and fix a sequence of cover approxi-
mating graded resolutions of the resolution, TRes, that we denote, {TResm}, that
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satisfy the properties of cover approximating resolutions that are listed in theorem
1.21, and converge into the graded resolution, TRes. For each index m, there is
a subsequence of the sequence of pairs, {(pn, tn)}, that factors through the cover
approximating (graded) resolution, TResm.

For each index m, and each pair, (pn, tn), that factors through TResm, we can
associate a specialization of the terminating limit groups of the (approximating)
resolution, TResm (in the free product Gn). Such specialization is composed from
a rigid or a weakly strictly solid specialization of the rigid or weakly solid factor of
the terminal limit group of TResm, and specializations of the f.p. elliptic factors of
that terminal graded limit group.

As in the analysis of an EAE set in section 4, we first assume that there exists
an approximating resolution, TResm, for which there exists a subsequence of pairs,
(still denoted) {(pn, tn)}, so that for each specialization of the terminating limit
group of TResm that is associated with a pair (pn, tn) from the subsequence, a
generic pair in the fiber (i.e., a test sequence) that is associated with such a special-
ization of the terminal graded limit group of TResm (which values in Gn) satisfies
pn /∈ AEAE(p) (over Gn), and a generic t in the fiber is a witness for that. i.e., for
generic t in the fiber, the pairs (pn, t) /∈ EAE(p, t) over Gn.

In this case with the approximating (cover) graded resolution, TResm, that has
the properties that are listed in theorem 1.21, we associate finitely many auxiliary
resolutions, that have similar properties to the resolutions in the formal graded
Makanin-Razborov resolution (theorems 2.6 and 2.7). These auxiliary resolutions
are similar in nature to the auxiliary resolutions that were associated in section 4
with an EAE set, and with a cover approximating resolution, WResm (see the first
step of the iterative procedure for the analysis of an EAE set in section 4). The
auxiliary resolutions that are associated with the approximating cover, TResm, are
constructed from test sequences of TResm that have the following properties:

(1) we start by associating (non-canonically) finitely many graded resolutions
with the singular locus of TResm (according to proposition 4.2), that we
denote SLTRes, and finitely many graded Root resolutions (according to
proposition 4.3), that we denote GRootTRes.

(2) we look at all the test sequences of TResm, that can be extended to special-
izations of the terminal limit group of one of the cover graded resolutions,
WResi, that are associated with the EAE set, EAE(p, t), and to the f.p.
completion into which this terminal limit group embeds. By the construc-
tion of the formal graded Makanin-Razborov diagram, with this collection
of test sequences it is possible to associate finitely many graded resolutions
that have the same properties as the resolutions in the formal Makanin-
Razborov diagram (theorems 2.6 and 2.7). In particular, the completion
of each of the constructed resolutions embeds into a f.p. completion. We
denote the constructed resolutions, WTRes.

(3) we look at test sequences of the graded resolutions that are constructed
in part (2), for which the restriction of the additional specializations of
the terminal limit group of the resolution, WResi, to a specialization of
the rigid or weakly solid factor of that terminal limit group, is non-rigid
or non weakly solid. By the construction of the formal Makanin-Razborov
diagram, it is possible to associate finitely many graded (cover) resolutions
with these test sequences that have the properties of the resolutions in the
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formal Makanin-Razborov diagram. We denote the constructed resolutions,
CollWTRes.

Similarly, we look at test sequences of the graded resolutions that are
constructed in part (2), for which the restrictions of the additional spe-
cializations of the terminal limit group of the resolution, WResi, can be
extended to specializations of the terminal limit group of one the auxiliary
resolutions that are associated with the singular locus of WResi, or of one
of the graded Root resolutions that are associated with WResi. We de-
note the obtained auxiliary resolutions, SLWTRes and GRootWTRes, in
correspondence.

(4) we look at test sequences that are constructed in part (2), that can be fur-
ther extended to specializations of the terminal limit group of one of the
auxiliary resolutions that are associated with the graded resolution, WResi,
and was constructed from test sequences that can be extended to the ter-
minal limit group of one of the graded resolutions, GRes1, . . . , GResd, that
are associated with the AE set, AE(p, t, w). We further require that the
specialization of the terminal limit group of this auxiliary resolution can be
extended to the f.p. completion that is associated with the auxiliary resolu-
tion, and the terminal limit group (of the auxiliary resolution) is embedded
into it. Once again with this collection of sequences it is possible to associate
finitely many graded resolutions that have the properties of the resolutions
in a formal graded Makanin-Razborov diagram (theorems 2.6 and 2.7). We
denote the constructed resolutions, Y WTRes.

(5) we look at test sequences that were considered in part (4) for which the
additional specialization of the terminal limit group of the associated auxil-
iary resolution, restricts to non-rigid non-weakly strictly solid specialization
of the rigid or weakly solid factor of the terminal limit group of the auxil-
iary resolution. With this collection of sequences we associate finitely many
graded resolutions following the construction of the formal graded Makanin-
Razborov diagram. We denote the constructed resolutions, CollY WTRes.

Similarly, we look at test sequences of the graded resolutions that are
constructed in part (4), for which the restrictions of the additional spe-
cializations of the associated auxiliary resolution of WResi, can be ex-
tended to specializations of the terminal limit group of one the auxiliary
resolutions that are associated with WResi and with the singular locus of
GResi, or with one of the graded Root resolutions that are associated with
GResi. We denote the obtained auxiliary resolutions, SLY WTRes and
GRootY WTRes, in correspondence.

(6) we look at test sequences that are constructed in part (4), that can be fur-
ther extended to specializations of the terminal limit group of one of the
auxiliary resolutions that are associated with the graded resolution, WResi,
and were constructed from test sequences that can be extended to the ter-
minal limit group of one of the graded formal resolutions, FGResj

i , that are
associated with the graded resolution GResi, and both are associated with
the AE set, AE(p, t, w). We further require that the specialization of the
terminal limit group of this auxiliary resolution can be extended to the f.p.
completion that is associated with the auxiliary resolution, and the terminal
limit group (of the auxiliary resolution) is embedded into it. With this col-
lection of sequences we, once again, associate finitely many resolutions, in
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a construction that follows the construction of the formal graded Makanin-
Razborov diagram (theorem 2.7). We denote the constructed resolutions,
XY WTRes.

(7) we look at test sequences that were considered in part (6) for which the
additional specialization of the terminal limit group of the associated aux-
iliary resolution (that is associated with FGResj

i ), restricts to non-rigid
non-weakly strictly solid specialization of the rigid or weakly solid factor
of the terminal limit group of the auxiliary resolution. With this collection
of sequences we associate finitely many graded resolutions, following the
construction of the formal graded Makanin-Razborov diagram. We denote
the constructed resolutions, CollXY WTRes.

Similarly, we look at test sequences of the graded resolutions that are
constructed in part (6), for which the restrictions of the additional special-
izations of the terminal limit group of one the auxiliary resolutions that are
associated with WResi and one of the formal graded resolution, FGResj

i ,
can be extended to specializations of the terminal limit group of one the aux-
iliary resolutions that are associated with WResi and with the singular locus
of FGResj

i . We denote the obtained auxiliary resolutions SLXY WTRes.
(8) we look at test sequences that are constructed in part (6), that can be further

extended to specializations of the terminal limit group of one of the auxil-
iary resolutions that are associated with the graded resolution, WResi, and
were constructed from test sequences that can be extended to the terminal

limit group of one of the collapse graded formal resolutions, CollFGResj,k
i ,

that are associated with the graded formal resolution, FGResj
i , that is as-

sociated with the graded resolution, GResi, and all the three are associated
with the AE set, AE(p, t, w). We further require that the specialization
of the terminal limit group of this auxiliary resolution can be extended to
the f.p. completion that is associated with the auxiliary resolution, and
the terminal limit group (of the auxiliary resolution) is embedded into it.
With this collection of sequences we associate finitely many resolutions, in
a construction that follows the construction of the formal graded Makanin-
Razborov diagram (theorem 2.7). We denote the constructed resolutions,
ΨXY WTRes, as well.

(9) we look at test sequences that were considered in part (8) for which the
additional specialization of the terminal limit group of the associated auxil-

iary resolution (that is associated with CollFGResj,k
i ), restricts to non-rigid

non-weakly strictly solid specialization of the rigid or weakly solid factor of
the terminal limit group of the auxiliary resolution. With this collection
of sequences we associate finitely many graded resolutions, following the
construction of the formal graded Makanin-Razborov diagram. We denote
the constructed resolutions, CollΨXY WTRes.

Hence, with the cover approximating graded resolution, TResm, that satisfies the
properties of theorem 1.21, we associated finitely many auxiliary resolutions that
do all satisfy the properties of resolutions in the formal Makanin-Razborov diagram
(theorems 2.6 and 2.7).

Suppose that there is no approximating cover resolution, TResm, with a subse-
quence of the original sequence, {(pn, tn)} (for which pn /∈ AEAE(p) (over Gn),
and tn (a specialization of the universal variables t in Gn) is a witness for that (in
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Gn)), that factor through TResm, so that for each specialization of the terminal
limit group of TResm that is associated with a pair (pn, tn) from the subsequence,
a generic pair (i.e., a test sequence) in the fiber that is associated with such a
specialization of the terminal graded limit group (which takes its values in Gn),
satisfies pn /∈ AEAE(p) (over Gn), and t (a generic value of t in the associated
fiber) is a witness for that.

As in analyzing EAE sets in sections 4, in this case (in which there is no ap-
proximating cover TResm with the desired properties) we can associate with the
original graded resolution, TRes, another graded resolution, which is obtained by
applying the first step of the sieve procedure for the analysis of quotient resolu-
tions [Se6]. The new graded resolution has a smaller complexity than the original
graded resolution TRes, and the original sequence of specializations, {(pn, tn)}, is
guaranteed to have a subsequence that extends to specializations that converge into
the obtained quotient resolution (which is of smaller complexity). This enables us
to continue iteratively, in a similar way to the sieve procedure [Se6], and to the
iterative procedure that was used to prove the equationality of Diophantine sets
over free and hyperbolic groups in section 2 of [Se8].

With the resolution, TRes, we have associated a sequence of approximating cover
resolutions, TResm, that satisfy the properties that are listed in theorem 1.21. In
particular, for each index m, there is a subsequence of the original sequence of pairs,
{(pn, tn)}, that factor through TResm. Recall that by our assumptions, for every
index m, there is no subsequence of the pairs, {(pn, tn)}, that do factor through the
approximating cover, TResm, for which for generic pair (pn, t) (i.e., for a restriction
of a test sequence to the universal variables t) in the fiber that contains the pair
(pn, tn) (in the graded variety that is associated with TResm), pn /∈ AEAE(p) over
Gn, and the generic t (in the fiber) is a witness for that, i.e., the generic pairs,
(pn, t) /∈ EAE(p, t) over Gn.

We construct a sequence of specializations over Gn as follows. We go over
the indices m, and given an index m we pick an index nm > m, and a tuple,
(pnm

, t̂nm
, w̃nm

, t̃nm
), that takes its values in Gnm

, with the following properties:

(1) (pnm
, tnm

) factors through the graded resolution, TResm, and t̂nm
is the

specialization of the terminal limit group of the graded resolution, TResm,
that contains the pair, (pnm

, tnm
).

(2) t̃nm
is a specialization of the variables t, from the fiber that is associated

with t̂nm
, i.e., the fiber that contains the pair (pnm

, tnm
) in the graded

variety that is associated with TResm. Furthermore, for every index m,
(pnm

, t̃nm
) ∈ EAE(p, t) over Gn.

(3) the sequence {(pnm
, t̃nm

)} is a graded test sequence that converges into the
graded resolution, TRes.

(4) the tuples (pnm
, t̃nm

, w̃nm
), are specializations of the terminal limit group

of one of the finitely many graded resolutions, WRes (that are associated
with the set EAE(p, t)), that do not extend to specializations of the terminal
limit groups of the graded resolutions that are associated with the singular
locus of WResm, and these specializations restrict to rigid or weakly strictly
solid specializations of the rigid or weakly solid factor of that terminal limit
group (with respect to the parameter group < p, t >). Furthermore, a
generic value of the existential variables w in the fiber of WRes that is
associated with the tuple, (pnm

, t̃nm
, w̃nm

), is a witness that: (pnm
, t̃nm

) ∈
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EAE(p, t) over Gnm
.

From the sequence of tuples, (pnm
, t̂nm

, w̃nm
, t̃nm

), we can extract a subsequence
that converges into a closure of the graded resolution, TRes, that we have started
with. We denote this closure, ExWTRes. Recall that we have assumed that the
original sequence of pairs, {(pn, tn)}, satisfies pn /∈ AEAE(p), and tn is a witness
for that (i.e., (pn, tn) /∈ EAE(p, t)). On the other hand, in the sequence of tuples
that we chose (in the fibers that are associated with a subsequence of the original
sequence of specializations), a generic value of the existential variables w in the
fiber that is associated with the tuple, (pnm

, t̃nm
, w̃nm

), is a witness that the pair
(pnm

, t̃nm
) ∈ EAE(p, t).

Given the closure, ExWTRes, we continue in a similar way to what we did in
analyzing EAE sets in section 4, a way that is adapted to sets with 4 quantifiers.
The closure, ExWTRes, contains an (additional) rigid or weakly strictly solid
specialization of the terminal existential variables w, that for generic value of the
universal variables t (i.e., for restrictions of a test sequence to the variables t) are
witnesses that the pairs, (pnm

, t) ∈ EAE(p, t). Hence, we apply the construction
that was used in theorem 1.21, and associate a sequence of approximating covers of
ExWTRes that satisfy the properties that are listed in theorem 1.21. We denote
this sequence, {ExWTResr}.

By construction, for each index r, it is possible to extract a subsequence of the
original sequence of tuples: (pnm

, t̂nm
, w̃nm

, t̃nm
), that factor through ExWTResr.

The tuples (pnm
, tnm

) /∈ EAE(p, t), whereas the tuples (pnm
, t̃nm

) ∈ EAE(p, t),
and generic values (a test sequence) of the existential variables w in the fiber that
is associated with the tuple, (pnm

, t̃nm
, w̃nm

), are witnesses for this last inclusion.
Hence, on the tuples of variables (p, t, w), that are associated with the additional
tuples, (pnm

, t̃nm
, w̃nm

), in the approximating cover ExWTResr, at least one of
the following collapse forms can be imposed (cf. the list of test sequences that are
associated with the approximating cover TResm in the first step):

(1) the additional specialization of the variables (p, t, w) in ExWTResr, that is
assumed to restrict to rigid or weakly strictly solid specialization of the rigid
or weakly solid factor of the terminal limit group of a resolution, WRes (that
is associated with EAE(p, t)) restricts to non-rigid or non weakly strictly
solid specialization of that factor. This forces a Diophantine condition on
the specializations of ExWTResr, similar to the ones that are forced along
the sieve procedure in [Se6].

(2) the additional specialization of the variables (p, t, w) in ExWTResr, ex-
tends to a specialization of the terminal limit group of one of the graded
resolutions that are associated with the singular locus of the corresponding
resolution, WResi. This forces a Diophantine condition on the specializa-
tions of ExWTResr.

(3) we look at all the test sequences of ExTWResr, for which the specialization
of the variables (p, t, w) in ExWTResr, can be extended to a specialization
of the terminal limit group of an auxiliary resolution that is associated
with graded Root resolution of WRes (and with the set EAE(p, t)), and
not to a specializations of an auxiliary resolutions that is associated with
graded Root resolutions of WRes of higher order roots, and for which the
specializations of the variables, (p, t, w), can be extended to specializations
of the terminal limit groups of a prescribed set of auxiliary resolutions that
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are associated with the resolution WRes (and with the set EAE(p, t)),
auxiliary resolutions that were constructed from test sequences of WRes
that can be extended to specializations of the terminal limit group of one
of the graded resolutions, GRes1, . . . , GResd, or with the formal graded
resolutions, FGResi

j, or with their associated graded Root resolutions, that
are associated with AE(p, t, w). It is further required that the prescribed
set of auxiliary resolutions that are associated with the graded resolutions,
GRes1, . . . , GResd, form a covering closure of the graded resolution WRes,
but that they do not form a covering closure if we take out the auxiliary
resolutions that are associated with the graded formal resolutions, FGResj

i .

By the techniques for the construction of the graded formal Makanin-
Razborov diagram (theorem 2.7), with this collection of test sequences and
their extended specializations (for all possible graded root resolutions and
prescribed sets of auxiliary resolutions), it is possible to associate finitely
many graded resolutions that have the properties of resolutions in the for-
mal Makanin-Razborov diagrams (theorems 2.6 and 2.7), and they are all
closures of ExWTResr. We denote each of these finitely many graded res-
olutions, XY ExWTRess

r.

On each of the closures, XY ExWTRess
r, we further impose Diophan-

tine conditions (in parallel). We require that the additional specializations
of the terminal limit group of one of the auxiliary resolutions of WRes that
is associated with FGResj

i in XY ExWTRess
r, extend to specializations

of the terminal limit group of either an auxiliary resolution that is associ-
ated with the singular locus of the corresponding resolution, FGResj

i , or to
the terminal limit group of an auxiliary resolution that is associated with

a resolution, ΨFGResj,k
i , or to an auxiliary resolution that is associated

with specializations of the terminal limit group of a corresponding graded
resolution, FGResi

j, that do not restrict to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of the terminal limit group
of FGResj

i , or that the specializations of the terminal limit group of such
an auxiliary resolution of WRes do not restrict to rigid or weakly strictly
solid specializations of the rigid or weakly solid factor of their terminal limit
group.

Another possible Diophantine restrictions on XY ExWTRes is that the
specializations of the terminal limit group of the graded resolution WRes,
extend to specializations of the terminal limit group of an auxiliary reso-
lution of WRes, that is associated with a graded Root resolution of WRes or
with a graded Root resolution of one of the graded resolutions, GRes1, . . . , GResd,
from the prescribed set, with roots of higher orders than the prescribed ones.

(4) we further look at all the specializations of the graded resolution, ExWTResr,
for which to the specialization of the the variables (p, t, w) in ExWTResr,
it is possible to add additional specialization of the terminal limit group of
one of the finitely many auxiliary resolutions that are associated with WRes
(and with EAE(p, t)), auxiliary resolutions that were constructed from test
sequences of WRes that can be extended to specializations of the terminal
limit group of one of the graded resolutions, GRes1, . . . , GResd, that are
associated with AE(p, t, w), and the combined specialization does not ex-
tend to a specialization that factors through (or in the same weakly strictly
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solid family of a specialization in) one of the closures, XY ExWTRess
r, that

were constructed in part (3). We further assume that these additional spe-
cializations of the terminal limit group of an auxiliary resolution of WRes
(that is associated with GResi), restrict to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of the terminal limit group
of the auxiliary resolution, and they can not be extended to specializations
of the terminal limit groups of auxiliary resolutions that are associated with
the singular locus of GResi, or of auxiliary resolutions that are associated
with specializations of the terminal limit group of GResi that do not restrict
to rigid or weakly strictly solid specializations of the rigid or weakly solid
factor of the terminal limit group of GResi.

For each index r, we can find an index nr > r, so that the specialization, (pnr
, tnr

)
(in Gnr

), extends to a specialization that satisfies the conditions that are specified
by one the parts, (1)-(4) (for ExWTResr). We further apply the analysis of quo-
tient resolutions that appear in the first step of the sieve procedure [Se6], and pass
to a subsequence of the extended specializations (of the sequence {(pnr

, tnr
)}, that

converges into a quotient resolution of smaller complexity (in terms of the sieve
procedure) than the complexity of the original resolution, TRes (note that the ob-
tained quotient resolution may be a proper closure of TRes, but there is a global
bound (depending on TRes) on the number of steps for which the obtained quotient
resolution is a closure of TRes. After a number of steps that is bigger than the
bound, the obtained quotient resolution is no longer a closure, and hence, there is
a reduction in other parts of the complexity of the obtained quotient resolution).

We continue iteratively. At each step we first look at a sequence of approxi-
mating resolutions of a quotient resolution that was constructed in the previous
step, where these approximating resolutions satisfy the properties that are listed
in theorem 1.21. If there exists an approximating resolution for which there exists
a subsequence of pairs, (still denoted) {(pn, tn)}, so that for each specialization
of the terminating limit group of the approximating resolution that is associated
with a pair (pn, tn) from the subsequence, a generic pair (i.e. a restriction of a test
sequence to the pair (p, t)) in the fiber that is associated with such a specialization
of the terminal graded limit group (which takes its values in Gn) forms a witness
for pn /∈ AEAE(p) (over Gn), we do what we did in this case in the first step
(i.e., we look at all the test sequences of the approximating resolutions that satisfy
properties (1)-(9) and associate finitely many auxiliary resolutions with it).

If there is no such approximating resolutions for a constructed quotient resolu-
tion, we associate with it a closure that is constructed from test sequences that
can be extended to additional (new) specialization of the terminal limit group of
one of the resolutions, WRes (that are associated with EAE(p, t)), in a similar
way to the construction of the graded closure, ExWTRes, in the first step of the
procedure. We further force a collapse condition over the constructed closure of
the quotient resolution, according to parts (1)-(4), and apply the general step of
the sieve procedure [Se6], extract a subsequence of the original sequence of tuples,
{(pn, tn)}, and construct a quotient resolution that has smaller complexity than the
quotient resolution that was constructed in the previous step (smaller complexity
in light of the sieve procedure).

By an argument which is similar to the argument that guarantees the termination
of the sieve procedure in [Se6], and to the termination of the procedure for the
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analysis of EAE sets, we obtain a termination of the this procedure.

Theorem 5.1. The procedure for the analysis of an AEAE set over free products
terminates after finitely many steps.

Proof: The argument that we use is similar to the proof of theorem 4.4 (termina-
tion of the procure for the analysis of an EAE set). At each step of the procedure,
on the quotient resolution, TRes, that is analyzed in that step we impose one of
finitely many restrictions. The first ones impose a non-trivial Diophantine condi-
tion on specializations of a closure of the resolution, TRes. This is similar to the
Diophantine conditions that are imposed on quotient resolutions in the general step
of the iterative procedure for the analysis of an EAE set. Hence, by the termination
of this iterative procedure (theorem 4.4), these type of restrictions can occur only
at finitely many steps along the iterative procedure for the analysis of an AEAE
set.

The second type of restrictions, adds specializations of the terminal limit groups
of one of the associated auxiliary resolutions that are associated with the graded
resolution, WRes, where these specializations restrict to rigid or weakly strictly
solid specializations of the rigid or weakly solid factor of the terminal limit group.
We further require that the additional specializations do not factor through (or are
not in the same (weak) strictly solid families as specializations of) closures that are
built from test sequences of TRes that can be extended to specializations of such
terminal limit groups of auxiliary resolutions.

Therefore, the argument that was used to prove the termination of the iterative
procedure for the analysis of an EAE set (theorem 4.4), proves that restrictions of
the second type can also occur in only finitely many steps (this type of restrictions
are precisely the ones that are analyzed in proving the equationality of Diophantine
sets (over free and hyperbolic) groups in [Se9]). Since the restrictions of both
the first and the second type can occur at only finitely many steps, the iterative
procedure for the analysis of an AEAE set terminates after finitely many steps.

�

As we argued for AE and EAE sets, the termination of the procedure for the
analysis of AEAE sets, enables one to associate with the given AEAE set a finite
collection of graded resolutions, that do all satisfy the properties that are listed in
theorem 1.21, and for each of these graded resolutions an associated finite collection
of auxiliary resolutions, that do all satisfy the properties of resolutions in the formal
Makanin-Razborov diagram (theorems 2.6 and 2.7).

This finite collection of graded resolutions, enable us to obtain a form of quanti-
fier elimination for AEAE sets over free products, i.e., it enables one to show that
an AEAE set can be defined by a predicate that uses only 3 quantifiers over the
free product, and additional quantifiers over the various factors. In the case of an
AEAE sentence, the construction of these (finitely many) graded resolutions (and
their auxiliary resolutions), allows one to reduce the given AEAE sentence over free
products to a (finite) disjunction of conjunctions of sentences over the factors of
the free product. These statements are generalized to arbitrary definable sets and
predicates in the next section, and they are the key for all the results in this paper.

Theorem 5.2. Let:

AEAE(p) = ∀t ∃w ∀y ∃x Σ(x, y, w, t, p) = 1 ∧ Ψ(x, y, w, t, p) 6= 1
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be an AEAE set over groups. Then there exist finitely many graded resolutions over
free products (with respect to the parameter subgroup < p >):

TRes1(z, y, w, t, p), . . . , TResg(z, y, w, t, p)

with the following properties:

(1) The graded resolutions, TResi(z, y, w, t, p), satisfy the properties that are
listed in theorem 1.21. In particular, with each of them there is an associated
f.p. completion, into which the completion of them embeds.

(2) with each graded resolution, TResi(z, y, w, t, p), we associate (non-canonically)
a finite collection of auxiliary resolutions, that do all have the properties of
resolutions in the formal graded Makanin-Razborov diagram (theorems 2.6
and 2.7). These auxiliary resolutions are constructed from test sequences
of TResi, precisely in the way we associated auxiliary resolutions with an
approximating cover, TResm, in the first part of the procedure, i.e., ac-
cording to parts (1)-(9) in the first step. We denote these auxiliary res-
olutions: WTRes, CollWTRes, Y WTRes, CollY WTRes, XY WTRes,
CollXY WTRes, ΨXY WTRes, and CollΨXY WTRes, and their associ-
ated graded Root resolutions and resolutions that are associated with the
corresponding singular locus (see parts (1)-(9) in the first step of the proce-
dure).

(3) let G = A1 ∗ . . . ∗ Aℓ be a non-trivial free product, which is not isomorphic
to D∞. Let p0 be a specialization of the parameters p in the free product G,
for which p0 /∈ AEAE(p) over G. Then there exists an index i, 1 ≤ i ≤ g,
a specialization of the terminal limit group of TResi (in G) that restricts
to p0, that extends to a specialization of the f.p. completion into which the
completion of TResi embeds, and restricts to a rigid or a weakly strictly
solid specialization of the rigid or weakly solid factor of the terminal limit
group of TResi, such that one of the following holds:

(i) the specialization of the terminal limit group of TResi, does not ex-
tend to a specialization of the terminal limit group of any graded reso-
lutions, SLTRes, that are associated with the singular locus of TRes.
It may extend to specializations of the terminal limit groups of some of
the auxiliary resolutions, WTRes, but the corresponding fibers do not
cover the fiber of TRes that is associated with the given specialization.

(ii) the specialization of the terminal limit group of TResi does not ex-
tend to the terminal limit group of any of the resolutions, SLTRes,
but it extends to specializations of the terminal limit groups of some
graded resolutions, WTRes, that do not extend to specializations of
the terminal limit groups of the auxiliary resolutions, SLWTRes and
CollWTRes, and the corresponding fibers do cover the fiber of TRes
that is associated with the given specialization.

In that case, for each extension of the specialization of the terminal limit
group of TResi, to a specialization of the terminal limit group of one of
the auxiliary resolutions, WTRes, there can be further extensions to spe-
cializations of the terminal limit groups of auxiliary resolutions, Y WTRes.
Furthermore, these specializations of the terminal limit group of Y WTRes
may extend to specializations of the terminal limit groups of auxiliary res-
olutions, XY WTRes. For every finite collection of extensions of the spe-
cialization of the terminal limit group of TResi to the terminal limit groups
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of (finitely many) auxiliary resolutions WTRes, the fibers that are asso-
ciated with these extensions (and with the auxiliary resolutions WTRes),
minus the fibers that are associated with further extensions to specializa-
tions of the terminal limit groups of auxiliary resolutions Y WTRes, that
are not covered by fibers that are associated with further extensions to the
terminal limit groups of auxiliary resolutions XY WTRes (that can not be
extended to fibers of auxiliary resolutions CollXY WTRes, ΨXY WTRes,
and SLXY WTRes), do not cover the fiber that is associated with the orig-
inal specialization of the terminal limit group of TResi.

In other words, given an AEAE set, there exists a finite collection of graded
resolutions over free products (that satisfy the properties that are listed in theorem
1.21), and a finite collection of auxiliary resolutions (that satisfy the properties that
are listed in theorem 2.6), so that the inclusion of a specialization of the parame-
ters (free variables) in the complement of the given AEAE set over any given free
product, which is not D∞, can be demonstrated by a generic point (test sequences)
in a disjunction of conjunctions of (fibers of) these resolutions.

Proof: The argument that we use is similar to the one that was used to prove theo-
rems 4.5,4.1 and 3.2, that is based on the arguments that were used in constructing
the ungraded and graded Makanin-Razborov diagrams (theorem 26 in [Ja-Se] and
theorem 1.22).
Let Gn = A1

n ∗ . . . ∗ Aℓ
n (possibly for varying ℓ > 1), be a sequence of non-trivial

free products that are not isomorphic to D∞. Let {(pn, tn)} be a sequence of
tuples in Gn, so that pn /∈ AEAE(p) over Gn, and tn is a witness for pn, i.e.,
(pn, tn) /∈ EAE(p, t) over Gn.

Starting with the sequence, {(pn, tn)}, the terminating iterative procedure for
the analysis of an AEAE set that we have presented, constructs a graded resolution,
TRes, with the following properties:

(i) the graded resolution TRes satisfies the properties of a cover graded res-
olution that are listed in theorem 1.21. In particular, its completion can
be extended to (an ungraded) f.p. completion. With the rigid or weakly
solid factor of the terminal limit group of WRes, there is a finite collec-
tion of covers of its flexible quotients that can all be embedded into f.p.
completions.

(ii) there exists a subsequence of the sequence of specializations, {(pn, tn)}, that
extend to specializations that factor through the resolution, TRes, and to
specializations of the f.p. completion of the ungraded resolution that ex-
tends the graded resolution, TRes (see theorem 1.21). Hence, with each
specialization from this subsequence of the tuples, {(pn, tn)}, specializa-
tions of the terminal limit group of the graded resolution, TRes, can be
associated. Furthermore, these specializations of the terminal limit group
of TRes can be extended to specializations of the f.p. completion of some
ungraded resolution of the terminal limit group of TRes. Restrictions of
generic points in the fibers that are associated with these specializations of
the terminal limit group of TRes, to the variables (p, t), that we denote,
(pn, t), are not in the set EAE(p, t) that is associated with the given AEAE
set, AEAE(p).

(iii) with the resolution TRes, we associate (non-canonically) a finite collection
of graded auxiliary resolutions, according to parts (1)-(9) of the first step of
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the iterative procedure for the analysis of an AEAE set. These auxiliary res-
olutions are part of the output of this terminating procedure. The auxiliary
resolutions have the same properties of the resolutions in a formal graded
Makanin-Razborov diagram (theorems 2.6 and 2.7), and in particular they
can be extended to ungraded resolutions with f.p. completions.

Now we can apply the argument that was used to prove theorems 3.2, 4.1 and
4.5. We look at all the sequences of non-trivial free products, Gn = A1

n ∗ . . . ∗ Aℓ
n

(possibly for varying ℓ > 1), that are not isomorphic to D∞, an associated se-
quence of tuples, pn /∈ AEAE(p) over Gn, and witnesses tn for pn, i.e., a sequence
of pairs (pn, tn) /∈ EAE(p, t) over Gn. From every such sequence we use our termi-
nating iterative procedure, and extract a subsequence of the tuples, (still denoted)
{(pn, tn)}, and a graded resolution, TRes, that has the properties (i)-(iii), and in
particular, the subsequence of tuples, (still denoted) {(pn, tn)}, extend to special-
izations that factor through the resolution TRes, and to specializations of the f.p.
completion of the ungraded resolutions that extends the graded resolution TRes.
Furthermore, the restrictions of generic points in the fibers that are associated with
the pairs, {(pn, tn)}, are not in the set EAE(p, t) (i.e., generic values of t in these
fibers are witnesses for pn /∈ AEAE(p) over Gn).

The completion of each of the constructed resolutions, TRes, can be extended
to an ungraded f.p. completion, and so are its associated (finitely many) auxiliary
resolutions. Furthermore, the (finite collection of) covers of flexible quotients of
the rigid or weakly solid factors of the terminal limit groups of the resolutions,
TRes, and of the auxiliary resolutions that are associated with TRes, can all be
embedded into (ungraded) resolutions with f.p. completions. Hence, we can define
a linear order on this (countable) collection of graded resolutions (TRes), and their
(non-canonically) associated auxiliary resolutions, and (finite collections of) covers
of flexible quotients. By the same argument that was used in constructing the
Makanin-Razborov diagram (theorem 26 in [Ja-Se]), there exists a finite subcollec-
tion of these graded resolutions that satisfy properties (1)-(3) of the theorem.

�

As we argued for AE and EAE sets, the existence of a finite collection of graded
resolutions and their auxiliary resolutions, with the properties that are listed in the-
orem 5.2, allows one to reduce an AEAE sentence from free products to a sentence
over its factors in a uniform way.

Theorem 5.3. Let:

∀t ∃w ∀y ∃x Σ(x, y, w, t) = 1 ∧ Ψ(x, y, w, t) 6= 1

be an AEAE sentence over groups.
Then there exists a coefficient-free sentence over free products, which is a (finite)

disjunction of conjunctions of AEAE sentences, where each of these last AEAE
sentences involves elliptic elements from the same factor, such that for every non-
trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞, the original
AEAE sentence over the free product G is a truth sentence, if and only if the
sentence which is a (finite) disjunction of conjunctions of AEAE sentences over
the factors, A1, . . . , Aℓ is a truth sentence.

Proof: The argument that we use, that is based on theorem 5.2, is similar to
the proof of theorem 4.6 (which is based on theorem 4.5). By theorem 5.2, with
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a given AEAE set, it is possible to associate finitely many graded resolutions,
TRes1, . . . , TResg, that do all satisfy the properties that are listed in theorem 1.21,
and in particular they can all be embedded into f.p. completions. With each graded
resolution, TResi, we have associated finitely many auxiliary resolutions, according
to parts (1)-(9) that appear in the first step of the iterative procedure for the
analysis of an AEAE set. Note that all the (finitely many) graded resolutions that
are associated with TResi have the properties of the resolutions in the formal graded
Makanin-Razborov diagram as listed in theorems 2.6 and 2.7, and in particular they
can all be embedded into f.p. completions.

In case of an AEAE sentence, the same constructions that enable one to as-
sociate graded resolutions and their auxiliary resolutions with an AEAE set (i.e.,
the iterative procedure for the analysis of an AEAE set, and the proof of theorem
5.2), enables one to associate with a given AEAE sentence a (non-canonical) fi-
nite collection of (ungraded) resolutions (over free products) with f.p. completions,
and with each resolution finitely many (ungraded) auxiliary resolutions that do all
have f.p. completions, and these auxiliary resolutions have the same properties and
they are constructed in the same way as the (graded) auxiliary resolutions that are
constructed in the case of an AEAE set.

We (still) denote the (ungraded) resolutions that are associated with the given
AEAE sentence, TRes1, . . . , TResg. By theorems 5.2, 4.5 and 3.2, and propositions
4.2 and 4.3, the given AEAE sentence is false over a non-trivial free product, G =
A1∗. . .∗Aℓ, that is not isomorphic to D∞, if and only if there exists a specialization
in G of the terminal limit group of a resolution TResi (one of the resolutions,
TRes1, . . . , TResg), i.e., specializations of the elliptic factors of the terminal limit
group of TResi in the factors, A1, . . . , Aℓ, so that the specialization does not extend
to a specialization of the terminal limit group of one of the auxiliary resolutions
that are associated with the singular locus of TResi (see proposition 4.2). This
specialization of the terminal limit group of TResi also satisfies:

(1) it extends to the terminal limit group of an auxiliary resolution that is
associated with a Root resolution of TResi according to proposition 4.3
(possibly only the trivial roots), and does not extend to specializations of
the terminal limit group of other Root resolutions, RootTRes, that are
associated with higher order roots.

(2) it may extend to specializations of the terminal limit groups of some of
the auxiliary resolutions WTRes, that do not extend to specializations of
the terminal limit groups that are associated with the singular locus of
the associated graded resolution, WRes. Either the collection of the fibers
that are associated with these specializations of the terminal limit groups
of WTRes do not form a covering closure of the fiber that is associated
with the specialization of the terminal limit group of TResi, or (some of)
these specializations can be extended to the specializations of the terminal
limit groups of the following auxiliary resolutions (see pars (1)-(9) in the
first step for the construction and the properties of the auxiliary resolutions
that we refer to):

(i) each of the specializations of the terminal limit groups of WTRes
extends to a specialization of the terminal limit group of one of the
auxiliary resolutions, GRootWTRes, and not to similar auxiliary res-
olutions that are associated with roots of higher orders.
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(ii) some of these specializations extend to specializations of the terminal
limit groups of auxiliary resolutions, Y WTRes, that do not extend
to specializations of the terminal limit groups of auxiliary resolutions,
CollY WTRes and SLY WTRes.

Each such specialization extends to a specialization of the terminal limit
group of an auxiliary resolution, GRootY WTRes, and not to the terminal
limit groups of such resolutions that are associated with higher order roots.
(iii) some of the specializations in (ii) can further extend to specializations

of the terminal limit groups of auxiliary resolutions, XY WTRes, that
do not further extend to specializations of the terminal limit groups of
auxiliary resolutions, SLXWTRes, CollXY WTRes, or ΨXY WTRes.

(iv) the fibers that are associated with the specializations of the terminal
limit groups of auxiliary resolutions WTRes, minus the fibers that
are associated with their extensions to specializations of the terminal
limit groups of auxiliary resolutions Y WTRes, from which we take out
fibers that are covered by fibers that are associated with further exten-
sions to specializations of the terminal limit groups of auxiliary resolu-
tions XY WTRes, that do not extend to terminal limit groups of aux-
iliary resolutions: SLXWTRes, CollXY WTRes, or ΨXY WTRes,
do not form a cover of the fiber that is associated with the original
specialization of the graded resolution TResi.

Finally, by going over the finitely many possibilities for prescribed sets of auxil-
iary resolutions that satisfy part (iv), the existence of a specialization of the termi-
nal limit group of one of the resolutions, TResi, that satisfies properties (1)-(2), is
clearly a finite disjunction of finite conjunctions of EAEA sentences over the factors
of G, A1, . . . , Aℓ, i.e., conditions (i)-(iv) can be easily written as a disjunction of
conjunctions of such sentences in the factors by using all the constructed auxiliary
resolutions. Hence, the given AEAE set is a disjunction of conjunctions of AEAE
sentences over the factors A1, . . . , Aℓ.

�

In analyzing AE and EAE sets, we have associated finitely many graded reso-
lutions with these sets, and using them we were able to reduce an AE or an EAE
sentence over free products to disjunctions of conjunctions of sentences over the
factors. The graded resolutions that we constructed for analyzing AEAE sets, en-
able us to reduce not only AEAE (and EAEA) sentences over free products, but
also AEAE (and EAEA) predicates. As we will see in the next section, this kind
of reduction, or quantifier elimination, hold for arbitrary predicates (or definable
sets) over free products, and can be viewed as a form of quantifier elimination over
free products.

Theorem 5.4. Let:

AEAE(p) = ∀t ∃w ∀y ∃x Σ(x, y, w, t, p) = 1 ∧ Ψ(x, y, w, t, p) 6= 1

be an AEAE predicate over groups.
Then there exists a coefficient-free predicate over groups that are free products,

that is composed from only 3 quantifiers over variables that take values in the am-
bient free product, and additional quantifiers over variables that take their values
in the various factors of the free product, so that for every non-trivial free product,
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G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞, the set AEAE(p) over G can be
defined by the following predicate over free products:

AEAE(p) = ∃u (∀t ∃w ∀y ∃x) ∀v ∃s( ∃e)

(Σ1(x, y, w, t, u, v, s, p) = 1 ∧ Ψ1(x, y, w, t, u, v, s, p) 6= 1) ∨ . . . ∨

(Σk(x, y, w, t, u, v, s, p) = 1 ∧ Ψk(x, y, w, t, u, v, s, p) 6= 1)

where the variables u, v, s take values in the ambient free product G, and the vari-
ables t, w, y, x, e take values in the factors A1, . . . , Aℓ.

Furthermore, an EAEA set, EAEA(p), can be defined over every non-trivial free
product G = A1 ∗ . . .∗Aℓ, that is not isomorphic to D∞, by the following predicate:

EAEA(p) = ∃u (∃t ∀w ∃y∀x) ∀v ∃s( ∃e)

(Σ1(x, y, w, t, u, v, s, p) = 1 ∧ Ψ1(x, y, w, t, u, v, s, p) 6= 1) ∨ . . . ∨

(Σk(x, y, w, t, u, v, s, p) = 1 ∧ Ψk(x, y, w, t, u, v, s, p) 6= 1)

where (as in the AEAE case) the variables u, v, s take values in the ambient free
product G, and the variables t, w, y, x, e take values in the factors A1, . . . , Aℓ.

Proof: Our argument for the analysis of AEAE and EAEA predicates combines
theorem 5.3, that proves the reduction of sentences from the ambient free product
to the factors, with theorem 5.2 that associates with an AEAE or EAEA predicates
a finite collection of graded resolutions and their auxiliary resolutions that enable
one to perform the reduction of sentences uniformly.

By theorem 5.2, with a given AEAE set, it is possible to associate finitely many
graded resolutions, TRes1, . . . , TResg, that do all satisfy the properties that are
listed in theorem 1.21, and in particular they can all be embedded into (ungraded)
f.p. completions. Furthermore, with the rigid or weakly strictly solid factor of the
terminal limit group of each of the graded resolutions, TResi, we have associated
finitely many (graded limit group) covers of its flexible quotient, and each of these
covers embeds into an (ungraded) f.p. completion as well (see theorem 1.21).

With each graded resolution, TResi, we have associated finitely many auxiliary
resolutions, according to parts (1)-(9) that appear in the first step of the iterative
procedure for the analysis of an AEAE set. Note that all the (finitely many) graded
resolutions that are associated with TResi have the properties of the resolutions
in the formal graded Makanin-Razborov diagram as listed in theorems 2.6 and 2.7,
and in particular they can all be embedded into f.p. completions, and with the rigid
or weakly solid factor of their terminal limit groups, there are associated finitely
many covers of its flexible quotients, and these covers are embedded into (ungraded)
f.p. completions.

Theorem 5.3 analyzes logically an AEAE sentence over free products, and shows
how the graded resolutions, TResi, can be used to reduce (uniformly) such an
AEAE sentence from the ambient free product to a (finite) disjunction of conjunc-
tions of AEAE sentences over the factors of the free product.

For the analysis of sentences, we have used ungraded resolution over free prod-
ucts, that terminate in a free product of elliptic factors and possibly a free group.
To analyze predicates we have to use graded resolutions, that terminate in a free
product of a rigid or a weakly solid factor with (possibly) finitely many elliptic
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factors and possibly a free factor. Hence, to apply the same analysis that was used
in the analysis of AEAE sentences to analyze AEAE predicates, we need to further
find a way to encode all the rigid or all the weakly strictly solid specializations of
the rigid or weakly solid factors, and to encode the fact that two specializations
belong to the same rigid or weakly strictly solid family of a rigid or a weakly solid
limit group (over free products).

By theorem 1.14, for any given rigid limit group, Rgd(x, p), and any given (finite)
covers of its flexible quotients, there exist finitely many combinatorial systems of
fractions (that depend only on the rigid limit group and its generating set), so that
for every value p0 of the parameter subgroup < p >, we can associate at most
one value of the fractions for each combinatorial system (these values depend on
the value of the defining parameters p0), so that every rigid specialization that is
associated with p0 can be expressed as a fixed word (that depends only on the
combinatorial system, i.e., depends only on the group and its generating set), in
the fractions (that take their values in the ambient free product), and in finitely
many elliptic elements (see theorem 1.14 for the exact statements). By theorem
1.15 the same holds for almost shortest weakly strictly solid homomorphisms that
are associated with the parameters value p0.

These finite collection of combinatorial systems that describe the structure of all
the rigid or almost shortest weakly strictly solid homomorphisms of rigid and weakly
solid limit groups, together with theorems 5.2 and 5.3, allow us to replace an AEAE
(or EAEA) predicate with a predicate that uses only 3 quantifiers on elements from
the ambient free product, as described in the statement of the theorem.

Given an AEAE set, AEAE(p), we can write a predicate of the form:

AEAE(p) = ∃u (∀t ∃w ∀y ∃x) ∀v ∃s( ∃e)

(Σ1(x, y, w, t, u, v, s, p) = 1 ∧ Ψ1(x, y, w, t, u, v, s, p) 6= 1) ∨ . . . ∨

(Σk(x, y, w, t, u, v, s, p) = 1 ∧ Ψk(x, y, w, t, u, v, s, p) 6= 1)

where the existential variables u represent the fractions in all the possible sys-
tem of fractions that are associated (by theorems 1.14 and 1.15) with the rigid
or weakly solid factors of the terminal limit groups of the graded resolutions,
TRes1, . . . , TResg, and their auxiliary resolutions, that are associated with the set
AEAE(p) by theorem 5.2. The universal variables v and the existential variables
s and e (the variables e are contained in a factor A1, . . . , Aℓ of the free product),
enable us to guarantee that the values of the fractions u satisfy the conclusions
of theorems 1.14 and 1.15, i.e., enable the covering of all the families of rigid or
weakly strictly solid families that are associated with any given value of the defining
parameters.

The variables t, w, y, x take their values in the various elliptic factors, A1, . . . , Aℓ,
of the given free product G, and this part of the predicate is given by the description
that appears in theorem 5.3, only that the elements t, w, y, x are either specializa-
tions of the elliptic factors of the terminal limit groups of the graded resolution,
TRes1, . . . , TResg, and of their auxiliary resolutions, or they are elliptic elements
that appear in the combinatorial description of rigid and almost shortest weakly
strictly solid specializations (given by theorems 1.14 and 1.15) of the rigid or weakly
solid factors of these terminal limit groups. The universal variables v (that get val-
ues in the ambient free product) enable us to guarantee that the existential variables
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w and x represent rigid or weakly strictly solid specializations. The existential vari-
ables s (that get values in the ambient free product) enable us to guarantee that the
universal variables t and y represent rigid or weakly strictly solid specializations,
and that two given specializations of a weakly solid limit group belong to the same
family.

Once we have used the variables u, v, s (that take their values in the ambient
free product) and the elliptic variables e, to go over all the rigid and weakly strictly
solid specializations, the theorem for AEAE sets follows by the proof of theorem
5.3. The proof in the EAEA case, is naturally identical.

�

§6. Definable sets and sentences over free products

In the previous 3 sections we used the iterative procedure for the analysis of an
AE sentence over free groups [Se4], and the sieve procedure that was used for quan-
tifier elimination over free groups [Se6], to analyze AE, EAE, and AEAE predicates
and sentences. In particular, we showed that AEAE and EAEA sentences over free
products can be reduced to a (finite) disjunction of conjunctions of sentences over
the factors of the free product (theorem 5.3), and that every AEAE or EAEA set
over free products can be defined by a predicate that contains only 3 quantifiers
over the ambient free product, and additional quantifiers over elements in the vari-
ous factors (theorem 5.4). These were conclusions of the existence of finitely many
graded resolutions that satisfy the properties that are listed in theorem 1.21, and
their (finitely many) auxiliary resolutions (that satisfy the properties of resolutions
in the formal graded Makanin-Razborov diagram), so that a specialization p0 of
the defining parameters (free variables) is in the AEAE (EAEA) set if and only if
a generic element in a fiber of one of these resolutions is a witness for that, and the
existence of such a generic witness can be reduced to the terminal limit groups of
these graded resolutions, and their auxiliary resolutions, and the condition on the
terminal limit groups can be expressed by a predicate of the indicated form.

In this section we use the same techniques that were used to analyze AEAE and
EAEA sets in section 5, to analyze general definable sets and sentences over free
products. First we apply a finite induction process and associate (non-canonically) a
finite collection of graded resolutions with any given definable set over free products,
graded resolutions that have similar properties to the ones that are associated with
an AEAE and EAEA sets (see theorem 5.2). The existence of finitely many graded
resolutions with such properties allows one to deduce that every definable set over
free products can be defined by a predicate that contains only 3 quantifiers over the
ambient free product and finitely many quantifiers over elements in the factors of
the free product. These resolutions also enable one to deduce that every sentence
over free products can be reduced to a finite disjunction of finite conjunctions of
sentences over the factors over the free product. As we show in the next section,
these reductions have somewhat surprising (uniformity) corollaries for sentences
over free products, and we are sure that they will find quite a few generalizations
and further applications in the near future.

Let:

E(AE)
k
(p) = ∃t ∀y1 ∃x1 . . . ∀yk ∃xk Σ(t, y1, x1, . . . , yk, xk, p) = 1∧

∧Ψ(t, y1, x1, yk, xk, p) 6= 1
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be a predicate (with 2k+1 quantifiers) over groups. Our goal is to associate with
this set a finite collection of graded resolutions that have the properties of the
graded resolutions that are associated with an AEAE set according to theorem 5.2.

Theorem 6.1. Let E(AE)
k

be a definable set over free products. Then there exist
finitely many graded resolutions over free products (with respect to the parameter
subgroup < p >):

DRes1(z, xk, yk, . . . , x1, y1, t, p), . . . , DResg(z, xk, yk, . . . , x1, y1, t, p)

with the following properties:

(1) the resolutions, DResi, i = 1, . . . , g, satisfy the properties that are listed in
theorem 1.21. In particular, with each of them there is an associated f.p.
completion, into which the completion of them embeds.

(2) with each of the graded resolutions, DResi, i = 1, . . . , g, we associate (non-
canonically) a finite collection of auxiliary resolutions, that do all have the
properties of resolutions in the formal graded Makanin-Razborov diagram
(theorems 2.6 and 2.7). These auxiliary resolutions are constructed from
test sequences of DResi, precisely in the way we associated auxiliary resolu-
tions with the graded resolutions, TResi, that are associated with an AEAE
set (part (2) of theorem 5.2). These include auxiliary resolutions that are
associated with the singular locus of DResi according to proposition 4.2,
that we denote SLDRes, and graded resolutions that are associated with
possible roots of pegs in DResi, according to proposition 4.3, that we denote
GRootDRes. Besides these resolutions, the auxiliary resolutions that are
associated with DResi are similar to the ones that are constructed in that
case of an AEAE set in part (2) of theorem 5.2.

We denote these auxiliary resolutions, Y1DRes, X1Y1DRes, . . . , X1Y1 . . .XkYkDRes,
ΨX1Y1 . . .XkYkDRes, and their associated collapsed resolutions, CollY1DRes,
CollX1Y1DRes, . . . , CollX1Y1 . . .XkYkDRes, CollΨX1Y1 . . .XkYkDRes,
that indicate that certain specializations that are assumed to be rigid or
weakly strictly solid, are non-rigid or non weakly strictly solid, and similar
auxiliary resolutions that are associated with the singular locus of the cor-
responding resolutions, SLY1DRes, . . . , and auxiliary resolutions that are
associated with possible roots of pegs in the associated graded resolutions,
GRootY1DRes, . . . .

(3) let G = A1 ∗ . . .∗Aℓ be a non-trivial free product, which is not isomorphic to
D∞. Let p0 be a specialization of the parameters p in the free product G, for

which p0 ∈ E(AE)
k
(p) over the free product G. Then there exists an index i,

1 ≤ i ≤ g, a specialization of the terminal limit group of DResi (in G) that
restricts to p0, that extends to a specialization of the f.p. completion into
which the completion of DResi embeds, does not extend to a specialization
of an auxiliary resolution that is associated with the singular locus, and
restricts to a rigid or a weakly strictly solid specialization of the rigid or
weakly solid factor of the terminal limit group of DResi, such that one of
the following holds:

(i) the specialization of the terminal limit group of DResi does not extend
to specializations of the terminal limit group of auxiliary resolutions,
Y1DRes, that are associated with DResi.

93



(ii) suppose that the specialization of the terminal limit group of DResi

extends to specializations of the terminal limit groups of some of the
auxiliary resolutions, Y1DRes. Then each such specialization of the
terminal limit group of an auxiliary resolution, Y1DRes, either extends
to specializations of the terminal limit groups of auxiliary resolutions,
CollY1DRes and SLY1DRes, so that the corresponding fibers of these
resolutions cover the fiber of Y1DRes, or the specialization of the ter-
minal limit group of Y1DRes extends to a specialization of the terminal
limit group of an auxiliary resolution, X1Y1DRes, that does not ex-
tend to specializations of the terminal limit groups of any auxiliary
resolutions, CollX1Y1DRes, SLX1Y1DRes, and Y2X1Y1DRes.

In this case, for each extension of the original specialization (of the ter-
minal limit group of DRes) to the terminal limit group of Y1DRes, the fiber
that is associated with such extended specialization (and with Y1DRes), is
covered by the fibers that are associated with extended specializations to the
terminal limit groups of auxiliary resolutions: CollY1DRes, SLY1DRes,
and X1Y1DRes (that do not extend to specializations of the terminal limit
groups of auxiliary resolutions: CollX1Y1DRes, SLX1Y1DRes, and Y2X1Y1DRes).
(iii) suppose that the specialization of the terminal limit group of DResi

extends to specializations of the terminal limit groups of some of the
auxiliary resolutions, Y1DRes, and this extension does not satisfy part
(ii) (i.e., the corresponding fibers are not covered by fibers of the auxil-
iary resolutions: CollY1DRes, SLY1DRes, and fibers of an auxiliary
resolution X1Y1DRes that satisfy the properties that are listed in part
(ii)).

In this case we continue the conditions on extensions of specializations it-
eratively. If we got to an extension of the specialization of the terminal limit
group of DResi, to a specialization of the terminal limit group of the termi-
nal limit group of an auxiliary resolution, YjXj−1Yj−1 . . .X1Y1DRes, j <
k, then every such specialization extends to specializations of the terminal
limit groups of CollYjXj−1Yj−1 . . .X1Y1DRes ,or of SLYjXj−1Yj−1 . . .X1Y1DRes,
or to specializations of the terminal limit groups of auxiliary resolutions,
XjYjXj−1Yj−1 . . .X1Y1DRes, that do not extend to a specialization of the
terminal limit group of CollXjYjXj−1Yj−1 . . .X1Y1DRes nor of

SLXjYjXj−1Yj−1 . . .X1Y1DRes

nor of Yj+1XjYjXj−1Yj−1 . . .X1Y1DRes. Furthermore, the fibers that are
associated with these extended specializations (and their associated auxiliary
resolutions) cover the fiber that is associated with the specialization of the
terminal limit group of YjXj−1Yj−1 . . .X1Y1DRes.

In case we got to an extension of the specialization of the terminal limit
group of DResi, to a specialization of the terminal limit group of the termi-
nal limit group of an auxiliary resolution, YkXk−1Yk−1 . . .X1Y1DRes, then
every such specialization extends to a specialization of the terminal limit
group of CollYkXk−1Yk−1 . . .X1Y1DRes or SLYkXk−1Yk−1 . . .X1Y1DRes,
or to a specialization of the terminal limit group of an auxiliary resolu-
tion, XkYkXk−1Yk−1 . . .X1Y1DRes, that does not extend to a specializa-
tion of the terminal limit group of CollXkYkXk−1Yk−1 . . .X1Y1DRes nor
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of SLXkYkXk−1Yk−1 . . .X1Y1DRes, nor to a specialization of the terminal
limit group of an auxiliary resolution, ΨXkYkXk−1Yk−1 . . .X1Y1DRes, that
does not extend to a specialization of the terminal limit group of

CollΨXkYkXk−1Yk−1 . . .X1Y1DRes

Furthermore, the fibers that are associated with these extended specializa-
tions (and their associated auxiliary resolutions) cover the fiber that is asso-
ciated with the specialization of the terminal limit group of YkXk−1Yk−1 . . .X1Y1DRes.

In other words, given an E(AE)
k

set, there exists a finite collection of graded
resolutions (with completions that can be embedded into f.p. completions) over free
products, with finitely many auxiliary resolutions (that have the properties of res-
olutions in the formal Makanin-Razborov diagram), such that the inclusion of a

specialization of the parameters (free variables) in the E(AE)
k

set over any given
non-trivial free product (which is not D∞), can be demonstrated by a generic point
in a disjunction of conjunctions of (fibers of) these resolutions and their auxiliary
resolutions.

Proof: We prove theorem 6.1 by induction on the index k, that determines the

number of quantifiers that are used in defining the set, E(AE)
k
(p). Our induction

hypothesis is therefore that theorem 6.1 holds for (AE)
k

sets. Note that in section 3
and 5 we proved theorem 6.1 for AE and AEAE sets, hence, the induction hypothesis
holds for k = 1, 2.

Having the induction hypothesis, we prove theorem 6.1 following our analysis of
EAE and AEAE sets. We start with all the sequences of specializations of the tuple,
(p, t), {(pn, tn)}, that take values in non-trivial free products, Gn = A1 ∗ . . . ∗ Aℓ

(possibly for varying ℓ), that are not isomorphic to D∞. We further assume that

for every index n, pn ∈ E(AE)
k
(p) over the free product, Gn, and that tn is a

witness for pn, i.e., (pn, tn) ∈ (AE)
k
(p, t) over Gn.

Given such a sequence of pairs, {(pn, tn)}, we can pass to a subsequence that
converges into a well-structured (even well-separated) graded resolution with re-
spect to the parameter subgroup < p >: T0 → T1 → . . . → Ts, where Ts is a free
product of a rigid or a solid group over free products (that contains the subgroup,
< p >), and (possibly) a free group and (possibly) finitely many elliptic factors.
We denote this graded resolution DRes. The terminal limit group Ts in DRes is
f.g. but it may be infinitely presented.

Following our arguments from previous sections, we apply the construction that
appears in theorem 1.21, and fix a sequence of approximating covers of Ts, that
we denote, DResm. The approximating covers, DResm, satisfy the properties that
are listed in theorem 1.21, and they converge to the resolution Ts, precisely like the
approximating covers that we chose in analyzing EAE and AEAE sets in sections
4 and 5.

By the construction of approximating covers, with each approximating cover,
DResm, there exists a subsequence of the original sequence of tuples, {(pn, tn)},
that factor through it. As in the analysis of an AEAE set in section 5, we first
assume that there exists an approximating cover, DResm, for which there exists
a subsequence of tuples, (still denoted) {(pn, tn)}, so that for each specialization
of the terminal limit group of DResm (in Gn), that is associated with a tuple
(pn, tn) from the subsequence, a generic pair (i.e., a test sequence) in the fiber that
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is associated with such a specialization of the terminal graded limit group satisfies

pn ∈ E(AE)
k
(p) (over Gn), and (a generic) t is a witness for that.

In this case with the approximating graded resolution, DResm, we associate
finitely many auxiliary resolutions, that do all have the properties of resolutions in
the formal Makanin-Razborov diagram (theorems 2.6 and 2.7), in a similar way to
what we did in the procedure for the analysis of an AEAE set in section 5. The
auxiliary resolutions that are associated with the approximating cover, DResm, are
constructed from test sequences of DResm that have the following properties:

(1) With DResm we associate finitely many graded resolutions that are associ-
ated with its singular locus (according to proposition 4.2), that we denote
SLDRes, and given all the auxiliary resolutions that are constructed be-
low, a finite collection of graded Root resolutions (proposition 4.3), that we
denote GRootDRes.

(2) we start by looking at all the test sequences of DResm, that can be ex-
tended to specializations of the terminal limit group of one of the cover

graded resolutions, Y1Res, that are associated with the set, (AE)
k
(p, t),

and to the f.p. completion into which this terminal limit group embeds. By
the construction of the formal graded Makanin-Razborov diagram, with this
collection of test sequences it is possible to associate finitely many graded
resolutions that have the same properties as the resolutions in the formal
Makanin-Razborov diagram (theorems 2.6 and 2.7). In particular, the com-
pletion of each of the constructed resolutions embeds into a f.p. completion.
We denote the constructed resolutions, Y1DRes.

We further associate with each of these resolutions, (collapse) auxiliary
resolutions, CollY1DRes, auxiliary resolutions that are associated with the
singular locus of the resolutions Y1Res, that we denote SLY1DRes, and
auxiliary resolutions that are associated with the graded Root resolutions
of Y1Res, that we denote GRootY1DRes.

(3) we look at test sequences that are constructed in part (2), that can be
further extended to specializations of the terminal limit group of one of
the auxiliary resolutions that are associated with the graded resolution,

Y1Res (that are associated with the set (AE)
k
(p, t)), and was constructed

from test sequences that can be extended to the terminal limit group of
one of the graded resolutions, X1Y1Res, that are associated with the set

E(AE)
k−1

(p, t, y1). We further require that the specialization of the ter-
minal limit group of this auxiliary resolution can be extended to the f.p.
completion that is associated with the auxiliary resolution, and the ter-
minal limit group (of the auxiliary resolution) is embedded into it. Once
again with this collection of sequences it is possible to associate finitely
many graded resolutions that have the properties of the resolutions in a for-
mal graded Makanin-Razborov diagram (theorems 2.6 and 2.7). We denote
the constructed resolutions, X1Y1DRes.

We further associate with each of these resolutions, (collapse) auxiliary
resolutions, CollX1Y1DRes, auxiliary resolutions that are associated with
the singular locus of the resolutions X1Y1Res, that we denote SLX1Y1DRes,
and auxiliary resolutions that are associated with the graded Root resolu-
tions of X1Y1Res, that we denote GRootX1Y1DRes.

(4) we continue iteratively. For each index j ≤ k, we look at all the test se-
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quences that were looked at while constructing the auxiliary resolutions,
Xj−1Yj−1 . . .X1Y1DRes, that can be extended to the terminal limit group
of one of the auxiliary resolutions that are associated with the graded res-
olution, Y1Res, and one of the resolutions, YjXj−1Yj−1 . . .X1Y1Res, that

are associated with the set (AE)
k+1−j

. We further require that the spe-
cialization of the terminal limit group of this auxiliary resolution can be
extended to the f.p. completion that is associated with the auxiliary res-
olution, and the terminal limit group (of the auxiliary resolution) is em-
bedded into it. With this collection of sequences we, once again, associate
finitely many resolutions, in a construction that follows the construction
of the formal graded Makanin-Razborov diagram (theorem 2.7). We de-
note the constructed resolutions, YjXj−1Yj−1 . . .X1Y1DRes. With each
such resolution we also associate finitely many collapse auxiliary resolu-
tions, CollYjXj−1Yj−1 . . .X1Y1DRes, finitely many auxiliary resolutions
that are associated with the singular locus of the corresponding resolu-
tions, SLYjXj−1Yj−1 . . .X1Y1DRes, and finitely many auxiliary resolutions
that are associated with all the corresponding graded Root resolutions,
GRootYjXj−1Yj−1 . . .X1Y1DRes.

Similarly, we look at all the test sequences that were looked while con-
structing these last auxiliary resolutions that can be extended to the ter-
minal limit group of one of the auxiliary resolutions that are associated
with the graded resolution, Y1Res, and one of the auxiliary resolutions,

XjYj . . .X1Y1Res, that are associated with the set E(AE)
k−j

. We denote
the constructed resolutions, XjYj . . .X1Y1DRes. With such a resolution we
associate finitely many collapse auxiliary resolutions, CollXjYj . . .X1Y1DRes,
auxiliary resolutions that are associated with the singular loci of the con-
structed resolutions, SLXjYj . . .X1Y1DRes, and auxiliary resolutions that
are associated with graded Root resolutions, GRootXjYj . . .X1Y1DRes.

(5) Finally, we look at all the test sequences that were looked at while con-
structing the auxiliary resolutions, XkYk . . .X1Y1DRes, that can be ex-
tended to the terminal limit group of one of the auxiliary resolutions that
are associated with the graded resolution, Y1Res, and one of the resolu-
tions, ΨXkYk . . .X1Y1Res, that are associated with the set (AE). We de-
note the constructed resolutions, ΨXkYk . . .X1Y1DRes. With each such
resolution we also associate finitely many collapse auxiliary resolutions,
CollΨXkYk . . .X1Y1DRes.

Suppose that there is no approximating cover resolution, DResm, with a subse-

quence of the original sequence, {(pn, tn)} (for which pn ∈ E(AE)
k
(p) (over Gn),

and tn (a specialization of the universal variables t in Gn) is a witness for that (in
Gn)), that factor through DResm, so that for each specialization of the terminal
limit group of DResm that is associated with a pair (pn, tn) from the subsequence,
a generic pair in the fiber that is associated with such a specialization of the ter-

minal graded limit group (which takes its values in Gn), satisfies pn ∈ E(AE)
k
(p)

(over Gn), and t (a generic value of t in the associated fiber) is a witness for that.
As in analyzing EAE and AEAE sets in sections 4 and 5, in this case we can

associate with the original graded resolution, DRes, another graded resolution, of
smaller complexity, which is obtained by applying the first step of the sieve pro-
cedure for the analysis of quotient resolutions [Se6]. Furthermore, a subsequence
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of the original sequence of specializations, {(pn, tn)}, is guaranteed to have a sub-
sequence that extends to specializations that converge into the obtained quotient
resolution. This enables us to continue iteratively, in a similar way to the sieve pro-
cedure [Se6], and to the iterative procedure that was used to prove the equationality
of Diophantine sets over free and hyperbolic groups in section 2 of [Se8].

With the resolution, DRes, we have associated a sequence of approximating cover
resolutions, DResm, that satisfy the properties that are listed in theorem 1.21. In
particular, for each index m, there is a subsequence of the original sequence of
pairs, {(pn, tn)}, that factor through DResm. By our assumptions, for every index
m, there is no subsequence of the pairs, {(pn, tn)}, that do factor through the
approximating cover, DResm, for which for generic pair (pn, t) in the fiber that
contains the pair (pn, tn) (in the graded variety that is associated with DResm),

pn ∈ E(AE)
k
(p) over Gn, and the generic t (a test sequence in in the fiber) is a

witness for that, i.e., the generic pairs, (pn, t) ∈ (AE)
k
(p, t) over Gn.

We construct a sequence of specializations over Gn, in the same way as what we
did in analyzing an AEAE set in section 5 as follows. We go over the indices m, and

given an index m we pick an index nm > m, and a tuple, (pnm
, t̂nm

, ˜(y1)nm
, t̃nm

),
that takes its values in Gnm

, with the following properties:

(1) (pnm
, tnm

) factors through the graded resolution, DResm, and t̂nm
is the

specialization of the terminal limit group of the graded resolution, DResm,
that contains the pair, (pnm

, tnm
).

(2) t̃nm
is a specialization of the variables t, from the fiber that is associated

with t̂nm
, i.e., the fiber that contains the pair (pnm

, tnm
) in the graded

variety that is associated with DResm. Furthermore, for every index m,

(pnm
, t̃nm

) /∈ (AE)
k
(p, t) over Gn.

(3) the sequence {(pnm
, t̃nm

)} is a graded test sequence that converges into the
graded resolution, DRes.

(4) the tuples (pnm
, t̃nm

, ˜(y1)nm
), are specializations of the terminal limit group

of one of the finitely many graded resolutions, Y1Res (that are associated

with the set (AE)
k
(p, t)), that restrict to rigid or weakly strictly solid

specializations of the rigid or weakly solid factor of that terminal limit
group of Y1Res, with respect to the parameter group < p, t >). Fur-
thermore, a generic value of the existential variables y1 in the fiber of

Y1Res that is associated with the tuple, (pnm
, t̃nm

, ˜(y1)nm
), is a witness

that: (pnm
, t̃nm

) /∈ (AE)
k
(p, t) over Gnm

.

From the sequence of tuples, (pnm
, t̂nm

, ˜(y1)nm
, t̃nm

), we can extract a subse-
quence that converges into a closure of the graded resolution, DRes, that we have
started with. We denote this closure, ExY1DRes. Recall that we have assumed

that the original sequence of pairs, {(pn, tn)}, satisfies pn ∈ E(AE)
k
(p), and tn is

a witness for that (i.e., (pn, tn) ∈ (AE)
k
(p, t)). On the other hand, in the sequence

of tuples that we chose (in the fibers that are associated with a subsequence of the
original sequence of specializations), a generic value of the existential variables y1

in the fiber that is associated with the tuple, (pnm
, t̃nm

, ˜(y1)nm
), is a witness that

the pair (pnm
, t̃nm

) /∈ (AE)
k
(p, t).

Given the closure, ExY1DRes, we continue in a similar way to what we did in
analyzing AEAE sets in section 4, a way that is adapted to sets with arbitrarily
many quantifiers. The closure, ExY1DRes, contains an (additional) specialization
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of the variables y1, so that for a generic value of the variables t and y1, the value

of the existential variables y1 are witnesses that the pairs, (pn, t) /∈ (AE)
k
(p, t).

Hence, we look at a sequence of approximating covers of the closure, ExY1DRes,
that we denote {ExY1DResr}, that satisfy the properties that are listed in theorem
1.21. On the additional (existential) variables y1 in the approximating covers,
ExY1DRes, we impose one of the (finitely many) possible collapse forms that are
defined iteratively. These possible collapse forms are:

(1) the additional specialization of the terminal limit group of the graded res-
olutions, Y1Res, in ExY1DResr, that is assumed to restrict to a rigid or
a weakly strictly solid specialization of the rigid or weakly solid factor of
the terminal limit group of the graded resolution Y1Res, is non-rigid or non
weakly strictly solid. This forces a Diophantine condition on the special-
izations of ExY1DResr, similar to the ones that are forced along the sieve
procedure in [Se6].

Similarly, we impose the Diophantine condition that forces the additional
specialization of the terminal limit group of Y1Res to extend to a special-
ization of the terminal limit group of one of the resolutions, SLY1Res, that
are associated with the singular locus of Y1Res.

(2) to the specialization of the closure, ExY1DResr, it is possible to add an
additional specialization of the terminal graded limit group of one of the
graded resolutions, X1Y1Res, that is associated by our induction hypothesis

with the set, (AE)
k
(p, t), that restricts to a rigid or a weakly strictly solid

specialization of the rigid or solid factor of that terminal graded limit group.
If the extended specializations can not be extend to a specialization of a
closure of ExY1DResr, then we collect these extended specializations (for
a subsequence of the original sequence of specializations, {(pn, tn)}), in a
graded resolution that has smaller complexity than the graded resolution,
DRes, according to the sieve procedure [Se6], or rather according to the
iterative procedure that was used to prove the equationality of Diophantine
sets in [Se9].

(3) suppose that there is a test sequence of the graded resolution, ExY1DRes,
for which for each additional specialization of the terminal limit group of

the resolution Y1Res (that is associated with the set (AE)
h
(p, t)), there is

an extension to specializations of the terminal limit group of some auxiliary
resolutions X1Y1Res (that are associated with the resolution Y1Res and the

set (AE)
k
(p, t)), so that the associated fibers covers the corresponding fiber

of Y1Res.

In this case, we first look at all the test sequences of ExY1DResr, for
which the specialization of the variables (p, t, y1) in ExY1DResr, can be
extended to a specialization of the terminal limit group of an auxiliary
resolution that is associated with graded Root resolution of Y1Res (and with

the set (AE)
k
(p, t)), and not to a specialization of an auxiliary resolution

that is associated with graded Root resolutions of Y1Res of higher order
roots, and for which the specializations of the variables, (p, t, y1), can be
extended to specializations of the terminal limit groups of a prescribed set of
auxiliary resolutions, X1Y1Res and CollY1Res, that are associated with the

resolution Y1Res (and with the set (AE)
k
(p, t)), so that the corresponding

fibers of these auxiliary resolutions cover the fiber of the resolution Y1Res.
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We further repeat the construction of the graded resolution, ExY1DResr,
and construct a closure of, ExY1DResr, from test sequences that can be
further extended to specializations of the terminal limit group of one of
the auxiliary resolutions, Y2X1Y1Res, that are associated with the set,

(AE)
k
(p, t, y1, x1), that restrict to rigid or weakly strictly solid special-

izations of the rigid or solid factor in that graded limit group. We de-
note this constructed graded resolution, which is a closure of ExY1DResr,
ExY2X1Y1DResr.

First, it may be that for a subsequence of the original sequence of special-
izations, the additional specialization (that is associated with the variables
Y2) does not restrict to a rigid or a weakly strictly solid specialization,
or that this specialization extends to a specialization of the terminal limit
group of one of the auxiliary resolutions that are associated with the sin-
gular locus of the associated auxiliary resolution Y2X1Y1Res (in a similar
to what we did in part (1)), or that the specialization of the terminal limit
group of the graded resolution Y1Res extends to an associated graded Root
resolution with higher order roots. In this case we impose a Diophantine
condition similar to the ones that are imposed in part (1) on the constructed
resolution, ExY2X1Y1DResr, and as in part (1) we get a graded resolution
with a smaller complexity according to the sieve procedure [Se6].

If we can not impose these Diophantine conditions, we further collect
specializations that extend to specializations of the terminal limit groups of
auxiliary resolutions, X2Y2X1Y1Res (that restrict to rigid or weakly strictly
solid specializations, and do not extend to the associated singular locus). If
the extended specializations do not factor through a closure of ExY1DResr,
we obtained a graded resolution with smaller complexity than DRes.

If for a subsequence of the original specializations, the extended special-
izations do factor through a closure of ExY2X1Y1DResr, we continue as in
part (3), and collect test sequences that can be extended to specializations
that are associated with the variables Y3.

(4) we continue iteratively. The original sequence of specializations, {(pn, tn)},

are in the set, (AE)
k
(p, t), but generic points in the fibers of ExY1DResr

that are associated with these specializations are not in this set. Hence,
after at most k steps we must end up with a graded resolution, that has
a smaller complexity than the original graded resolution, DRes, and this
graded resolution is obtained by either forcing an additional specialization
that is associated with variables Yj to be non-rigid or non weakly strictly
solid or extendable to the specialization of the terminal limit group of an
auxiliary resolution that is associated with the corresponding singular locus
(a Diophantine condition), or it is obtained by collecting additional spe-
cializations that are associated with variables Xj that restrict to rigid or
weakly strictly solid specializations, and do not factor through a closure of
ExY1DResr.

In all these cases we constructed a quotient resolution according to the first
step of the sieve procedure [Se6], and pass to a subsequence of the specializations,
{(pn, tn)}, that extend to specializations that converge into that quotient resolution.
Note that by the construction of these quotient resolutions that appear in [Se6],
the complexity of this quotient resolution, in light of the sieve procedure, is smaller
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than the complexity of the graded resolution that we have started the first step
with, DRes (note that the obtained quotient resolution may be a proper closure of
the resolution that we have started the first step with, i.e. the resolution DRes.
However, there is a global bound on the orders of roots that are needed to be
added to such closures, hence, the obtained quotient resolution can be a closure
of the quotient resolution that we have started the first step with only finitely
(boundedly) many steps. After these finitely many steps, the complexity of the
obtained quotient resolution is strictly smaller).

We continue iteratively. At each step we first look at a sequence of approximating
(cover) resolutions of the quotient resolution that was constructed in the previous
step, where these approximating cover resolutions satisfy the properties that are
listed in theorem 1.21, and in particular their completion can be embedded in a f.p.
completion. If there exists an approximating cover resolution for which there exists
a subsequence of pairs, (still denoted) {(pn, tn)}, so that for each specialization of
the terminating limit group of the approximating cover resolution, that is associated
with a pair (pn, tn) from the subsequence, a generic pair (i.e., a test sequence) in the
fiber that is associated with such a specialization of the terminal graded limit group

(which takes its values in Gn) forms a witness for pn ∈ E(AE)
k
(p) (over Gn), we

do what we did in this case in the first step (and associate with this approximating
cover finitely many auxiliary resolutions).

If there is no such approximating cover resolution for the constructed quotient
resolution, we associate with it a closure that is constructed from test sequences that
can be extended to additional (new) rigid or weakly strictly solid specializations of
the terminal limit groups of one of the graded resolutions Y1Res, that are associated

with the set (AE)
k
(p, t). We further associate a sequence of approximating covers

with that closure, and force a collapse condition over the constructed approximating
covers, according to parts (1)-(4). Finally, we apply the general step of the sieve
procedure [Se6], and obtain a new quotient resolution, that has smaller complexity
than the quotient resolution that we have started the current step with.

By an argument which combines the argument that guarantees the termination
of the sieve procedure in [Se6], with the argument that implies the equationality of
Diophantine sets over free groups, we obtain a termination of the this procedure.

Theorem 6.2. The procedure for the analysis of an E(AE)
k

set over free products
terminates after finitely many steps.

Proof: The argument that we use is similar to the proofs of theorems 4.4 and 5.1
(termination of the procures for the analysis of AEAE and EAE sets). At each
step of the procedure, on the quotient resolution, DRes, that is analyzed in that
step we impose one of finitely many restrictions. The first ones impose a non-trivial
Diophantine condition on specializations of a closure of the resolution, DRes. The
second type of restrictions, adds specializations of the terminal limit groups of one of
the associated auxiliary resolutions that are associated with the graded resolution,

Y1Res (and with the set (AE)
k
(p, t)), where these specializations restrict to rigid or

weakly strictly solid specializations of the rigid or weakly solid factor of the terminal
limit group. We further require that the additional specializations do not factor
through (or are not in the same (weak) strictly solid families as specializations
of) closures that are built from test sequences of DRes that can be extended to
specializations of such terminal limit groups of auxiliary resolutions.
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The argument that was used to prove the termination of the sieve procedure
(theorem 22 in [Se6]), that was modified to work over free products in the proof of
theorem 4.4, proves that restrictions of both types can occur in only finitely many

steps. Hence, the iterative procedure for the analysis of an E(AE)
k

set terminates
after finitely many steps.

�

So far we have shown that given a sequence, {(pn, tn)}, for which pn ∈ E(AE)
k
(p)

over Gn, and tn is a witness for pn, i.e., (pn, tn) ∈ (AE)
k
(p, t) over Gn, it is possi-

ble to extract a subsequence, (still denoted) {(pn, tn)}, and to construct a graded
resolution, DRes, with the following properties:

(i) the graded resolution DRes satisfies the properties of a cover graded reso-
lution that are listed in theorem 1.21.

(ii) the specializations of the subsequence, {(pn, tn)}, extend to specializations
that factor through the resolution, DRes, and to specializations of the f.p.
completion of the ungraded resolution that extends the graded resolution,
DRes (see theorem 1.21). Hence, with each specialization from this subse-
quence of the tuples, {(pn, tn)}, specializations of the terminal limit group
of the graded resolution, DRes, can be associated. Furthermore, these spe-
cializations of the terminal limit group of DRes can be extended to special-
izations of the f.p. completion of some ungraded resolution of the terminal
limit group of DRes. Restrictions of generic points (i.e., test sequences) in
the fibers that are associated with these specializations of the terminal limit
group of DRes, to the variables (p, t), that we denote, (pn, t), are in the set

(AE)
k
(p, t) that is associated with the given set, E(AE)

k
(p).

(iii) with the resolution DRes, we associate (non-canonically) a finite collection
of graded auxiliary resolutions, that are part of the output of the termi-
nating iterative procedure for the analysis of a definable set, i.e., auxiliary
resolutions of the same type as those that were associated with an approx-
imating cover resolution, DResm, in the first step of the procedure, in case
it terminates in the first step. These auxiliary resolutions have the same
properties of the resolutions in a formal graded Makanin-Razborov diagram
(theorems 2.6 and 2.7), and in particular they can be extended to ungraded
resolutions with f.p. completions.

As in the proof of theorems 3.2, 4.1, 4.5 and 5.1, we look at all the sequences
of non-trivial free products, Gn = A1

n ∗ . . . ∗ Aℓ
n (possibly for varying ℓ > 1), that

are not isomorphic to D∞, an associated sequence of tuples, pn ∈ E(AE)
k
(p) over

Gn, and witnesses tn for pn, i.e., a sequence of pairs (pn, tn) ∈ (AE)
k
(p, t) over Gn.

From every such sequence we use our terminating iterative procedure, and extract a
subsequence of the tuples, (still denoted) {(pn, tn)}, and a graded resolution, DRes,
that has the properties (i)-(iii), and in particular, the subsequence of tuples, (still
denoted) {(pn, tn)}, extend to specializations that factor through the resolution
DRes, and to specializations of the f.p. completion of the ungraded resolutions
that extends the graded resolution DRes. Furthermore, the restrictions of generic
points (test sequences) in the fibers that are associated with the pairs, {(pn, tn)},

are in the set (AE)
k
(p, t) (i.e., generic values of t in these fibers are witnesses for

pn ∈ E(AE)
k
(p) over Gn).

The completion of each of the constructed resolutions, DRes, can be extended
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to an ungraded f.p. completion, and so are its associated (finitely many) auxiliary
resolutions. Furthermore, the (finite collection of) covers of flexible quotients of
the rigid or weakly solid factors of the terminal limit groups of the resolutions,
DRes, and of the auxiliary resolutions that are associated with DRes, can all be
embedded into (ungraded) resolutions with f.p. completions. Hence, we can define
a linear order on this (countable) collection of graded resolutions (DRes), and their
(non-canonically) associated auxiliary resolutions, and (finite collections of) covers
of flexible quotients. By the same argument that was used in constructing the
Makanin-Razborov diagram (theorem 26 in [Ja-Se]), there exists a finite subcollec-
tion of these graded resolutions that satisfy properties (1)-(3) of the theorem.

So far we have argued that given our induction hypothesis (the conclusion of

theorem 6.1) on sets of the form, (AE)
k
, the conclusion of theorem 6.1 follows for

sets of the form E(AE)
k
. Clearly, exactly the same argument proves the conclusion

of theorem 6.1 for sets of the form (AE)
k+1

, assuming what we already proved,

i.e., the conclusion of theorem 6.1 for sets of the form E(AE)
k
. Hence, we have

completed the proof by induction, and theorem 6.1 follows for every definable set
over free products.

�

Theorem 6.1 associates finitely many graded resolutions with any given definable
set over free products. As we argued for AE, EAE and AEAE sets, the existence
of a finite collection of graded resolutions with the properties that are listed in
theorem 6.1, allows one to reduce a general sentence in the language of groups from
free products to a sentence over its factors in a uniform way.

Theorem 6.3. Let Φ be a coefficient-free sentence over groups. Then there ex-
ists a coefficient-free sentence over free products, which is a (finite) disjunction of
conjunctions of sentences over the factors of the free product, such that for every
non-trivial free product, G = A1∗. . .∗Aℓ, that is not isomorphic to D∞, the original
sentence over the free product G is a truth sentence, if and only if the sentence which
is a (finite) disjunction of conjunctions of sentences over the factors A1, . . . , Aℓ is
a truth sentence.

Proof: The argument that we use, that is based on theorem 6.1, is similar to the
proof of theorem 5.3 (which is based on theorem 5.2). By theorem 6.1, with a
given coefficient-free definable set, it is possible to associate finitely many graded
resolutions, DRes1, . . . , DResg, that do all satisfy the properties that are listed in
theorem 1.21, and with them we have associated finitely many auxiliary resolutions,
according to parts (1)-(5) that appear in the first step of the iterative procedure
for the analysis of a definable set. Note that all these auxiliary resolutions have
the properties of the resolutions in the formal graded Makanin-Razborov diagram
as listed in theorems 2.6 and 2.7, and in particular they can all be embedded into
f.p. completions.

As we remarked in the EAE and AEAE cases in sections 4 and 5, in analyzing
general sentences (rather than predicates), the same constructions that enable one
to associate graded resolutions and their auxiliary resolutions with a definable set
(i.e., the iterative procedure for the analysis of a definable set, and the proof of
theorem 6.1), enable one to associate with a given sentence a (non-canonical) finite
collection of (ungraded) resolutions (over free products) with f.p. completions, and
with each resolution finitely many (ungraded) auxiliary resolutions that do all have
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f.p. completions, and these auxiliary resolutions have the same properties and they
are constructed in the same way as the (graded) auxiliary resolutions that are
constructed in the case of a definable set.

We (still) denote the (ungraded) resolutions that are associated with the given
AEAE sentence, DRes1, . . . , DResg. By theorem 6.2, the given sentence is true
over a non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞,
if and only if there exists a specialization in G of the terminal limit group of a
resolution DResi (one of the resolutions, DRes1, . . . , DResg), i.e., specializations
of the elliptic factors of the terminal limit group of DResi in the factors, A1, . . . , Aℓ,
so that the specialization does not extend to a specialization of the terminal limit
group of one of the auxiliary resolutions that are associated with the singular locus
of DResi (see proposition 4.2). This specialization of the terminal limit group of
DResi also satisfies:

(1) it extends to the terminal limit group of an auxiliary resolution that is
associated with a Root resolution of DResi according to proposition 4.3
(possibly only the trivial roots), and does not extend to specializations of
the terminal limit group of other Root resolutions, RootDRes, that are
associated with higher order roots.

(2) it may extend to specializations of the terminal limit groups of some of the
auxiliary resolutions Y1DRes, that do not extend to specializations of the
terminal limit groups of auxiliary resolutions, SLY1DRes, that are asso-
ciated with the singular locus of the associated graded resolution, Y1Res,
nor to the terminal of a collapse auxiliary resolution, CollY1DRes. Either
the collection of the fibers that are associated with these specializations of
the terminal limit groups of Y1DRes do not form a covering closure of the
fiber that is associated with the specialization of the terminal limit group
of DResi, or (some of) these specializations can be extended to the special-
izations of the terminal limit groups of the following auxiliary resolutions
(see pars (1)-(5) in the first step of the iterative procedure for the analysis
of a definable set for the construction and the properties of the auxiliary
resolutions that we refer to).

(3) each of the specializations of the terminal limit groups of Y1DRes extends
to a specialization of the terminal limit group of one of the auxiliary res-
olutions, RootY1DRes, and not to similar auxiliary resolutions that are
associated with roots of higher orders.

(4) some of the specializations that extend to specializations of the terminal
limit groups of the auxiliary resolutions, Y1DRes, extend further to special-
izations of the terminal limit groups of auxiliary resolutions, X1Y1DRes,
that do not extend to specializations of the terminal limit groups of auxil-
iary resolutions, CollX1Y1DRes and SLX1Y1DRes.

The fibers that are associated with the specializations of the terminal
limit groups of the auxiliary resolutions, Y1DRes (and not to SLY1DRes
nor CollY1DRes), minus the fibers that are associated with specializa-
tions that can be further extended to specializations of the terminal limit
groups of auxiliary resolutions, X1Y1DRes (and not to SLX1Y1DRes nor
CollX1Y1DRes), do not form a covering closure of the fiber that is associ-
ated with the specialization of the terminal limit group of DRes.

(5) if none of the specializations of the terminal limit groups of the auxiliary
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resolutions, X1Y1DRes, that can not be extended to specializations of the
terminal limit groups of SLX1Y1DRes nor CollX1Y1DRes, can be further
extended to specializations of the terminal limit groups of auxiliary resolu-
tions, Y2X1Y1DRes, that can not be further extended to SLY2X1Y1DRes
nor CollY2X1Y1DRes, we are done.

If some of these specializations of X1Y1DRes do extend to Y2X1Y1DRes
we do the following. Each such specialization of the terminal limit group
of X1Y1DRes extends to a specialization of the terminal limit group of an
auxiliary resolution, GRootX1Y1DRes, and not to the terminal limit groups
of such resolutions that are associated with higher order roots.

If the fibers that are associated with specializations of (the terminal limit
groups of) the auxiliary resolutions, Y1DRes, minus the fibers that are
associated with specializations of X1Y1DRes from which we take out fibers
that are associated with specializations of Y2X1Y1DRes, do not form a
covering closure of the fiber that is associated with the specialization of the
terminal limit group of DRes we are done.

(6) otherwise, we continue iteratively. At each step, we first require that the
specialization of the corresponding terminal limit groups can be extended
to some associated graded Root auxiliary resolutions, and to such auxiliary
resolutions that are associated with higher order roots.

Then we check if the inclusion exclusion combination of fibers that are
associated with the auxiliary resolutions that are associated with existen-
tial and universal variables do cover the fiber that is associated with the
(original) specialization of the terminal limit group of DRes. If they do not
cover the fiber of DRes we are done. Otherwise we continue to the next
auxiliary resolutions. After finitely many such steps (that depend only on
the number of quantifiers in the original sentence) we have exhausted all
the possibilities for the sentence to be a true sentence.

Finally, the given sentence is a true sentence over a non-trivial free group, G =
A1∗. . .∗Aℓ, that is not isomorphic to D∞, if and only if there exists a specialization
of the terminal limit group of DRes, that satisfies one of the possibilities that are
described in parts (1)-(6). The union of these finitely many possibilities can be
expressed as a finite disjunction of finite conjunctions of sentences over the factors,
A1, . . . , Aℓ.

�

In analyzing AEAE sets in section 5, we were able to reduce not only AEAE
(and EAEA) sentences over free products, but also AEAE (and EAEA) predicates.
The existence of graded resolutions with the properties that are listed in theorem
6.1, enables us to get a similar reduction for arbitrary predicates over free products.

Theorem 6.4. Let Φ be an arbitrary coefficient-free predicate over groups. Then
there exists a coefficient-free predicate over groups that are free products, that is
composed from only 3 quantifiers over variables that take values in the ambient
free product, and additional quantifiers over variables that take their values in the
various factors of the free product, so that for every non-trivial free product, G =
A1 ∗ . . . ∗ Aℓ, that is not isomorphic to D∞, the set Φ(p) over G can be defined by
the following predicate over free products:

Φ(p) = ∃u (Θ(e1)) ∀v ∃s (∃e2)
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(Σ1(e1, e2, u, v, s, p) = 1 ∧ Ψ1(e1, e2, u, v, s, p) 6= 1) ∨ . . . ∨

(Σℓ(e1, e2, u, v, s, p) = 1 ∧ Ψℓ(e1, e2, u, v, s, p) 6= 1)

where the variables u, v, s take values in the ambient free product G, and the vari-
ables e1, e2 take values in the factors A1, . . . , Aℓ, and Θ is a predicate over elements
from the factors A1, . . . , Aℓ.

Proof: Given theorems 6.1 and 6.3, the statement of the theorem follows by the
same argument that was used to prove theorem 5.4 (that is based on theorems 5.2
and 5.3).

The existential variables u represent the fractions in all the possible systems of
fractions that are associated (by theorems 1.14 and 1.15) with the rigid or weakly
solid factors of the terminal limit groups of the graded resolutions, DRes1, . . . , DResg,
and their auxiliary resolutions, that are associated with the given definable set by
theorem 6.1. The universal variables v and the existential variables s and e2 (the
variables e2 are contained in the various factor sA1, . . . , Aℓ of the free product),
enable us to guarantee that the values of the fractions u satisfy the conclusions
of theorems 1.14 and 1.15, i.e., enable the covering of all the families of rigid or
weakly strictly solid families that are associated with any given value of the defining
parameters.

The variables e1 take their values in the various elliptic factors, A1, . . . , Aℓ, of
the given free product G, and this part of the predicate is given by the descrip-
tion that appears in theorem 6.3, only that the elements e1 are either specializa-
tions of the elliptic factors of the terminal limit groups of the graded resolution,
DRes1, . . . , DResg, and of their auxiliary resolutions, or they are elliptic elements
that appear in the combinatorial description of rigid and almost shortest weakly
strictly solid specializations (given by theorems 1.14 and 1.15) of the rigid or weakly
solid factors of these terminal limit groups. The universal variables v (that get val-
ues in the ambient free product) enable us to guarantee that the existential variables
among the variables e1 that are associated with rigid or weakly strictly solid spe-
cializations are indeed part of such specializations. The existential variables s (that
get values in the ambient free product) enable us to guarantee that the univer-
sal variables among the elliptic variables e1 that represent rigid or weakly strictly
solid specializations are indeed part of such specializations, and that two given
specializations of a weakly solid limit group belong to the same family.

Once we have used the variables u, v, s (that take their values in the ambient
free product) and the elliptic variables e1, e2, to go over all the rigid and weakly
strictly solid specializations, the theorem follows by the proof of theorem 6.3.

�

§7. Basic properties of the first order theory of free products

In the previous section we associated a finite collection of graded resolutions
with any given predicate (definable set) over free products (theorem 6.1). We used
these graded resolutions to reduce a general sentence over free products to a (finite)
disjunction of conjunctions of sentences over the factors of the free product (theorem
6.3), and to get a form of ”quantifier elimination”, i.e. a reduction of a predicate
over free products to a predicate that contains only 3 quantifiers over the ambient
free product and finitely many additional quantifiers over the factors of the free
product (theorem 6.4).
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The (uniform) reduction of sentences from a free product to its factors has fairly
immediate corollaries for the first order theory of free product of groups. We start
with a positive answer to a well known problem of R. Vaught (cf. [Fe-Va]).

Theorem 7.1. Let A1, B1, A2, B2 be groups. Suppose that A1 is elementarily equiv-
alent to A2, and B1 is elementarily equivalent to B2. Then A1 ∗B1 is elementarily
equivalent to A2 ∗ B2.

Proof: If A1 ∗ B1 is isomorphic to D∞, and the free product is non-trivial, then
both A1 and B1 are isomorphic to Z2. Hence, A2 and B2 are isomorphic to Z2

as well, so if A1 ∗ B1 is a non-trivial free product that is isomorphic to D∞ then
A2 ∗ B2 is isomorphic to D∞ as well, and the theorem follows in this case.

Suppose that A1 ∗B1 is a non-trivial free product that is not isomorphic to D∞.
Let Φ be a coefficient free sentence over groups. By theorem 6.3, the sentence Φ is
a truth sentence over a non-trivial free product U ∗V that is not isomorphic to D∞,
if and only if a (finite) disjunction of conjunctions of sentences over the factors U
and V , that we denote α, is a truth sentence.

Since A1 is elementarily equivalent to A2, and B1 is elementarily equivalent to
B2, the sentence α is a truth sentence over the factors, A1, B1, if and only if it is a
truth sentence over the factors, A2, B2. Therefore, Φ, is truth over A1 ∗ B1, if and
only if it is truth over A2 ∗ B2.

�

The existence of graded resolutions that are associated with a given sentence
over free products enables one to prove the following theorem, that implies Tarski’s
problem for free groups.

Theorem 7.2. Let A, B be non-trivial groups, and suppose that either A or B
is not Z2. Let F be a (possibly cyclic) free group. Then A ∗ B is elementarily
equivalent to A ∗ B ∗ F .

Proof: Since by Tarski’s problem [Se7], all the non-abelian free groups are elemen-
tarily equivalent, by theorem 7.1 we may assume that F is a f.g. free group. With
A ∗ B we have associated a Bass-Serre tree, T1, that corresponds to the graph of
groups that contains two vertex groups, A and B, and an edge (with trivial stabi-
lizer) that connects them. With A ∗ B ∗ F we associate a Bass-Serre tree, T2, that
corresponds to a graph of groups that contains 3 vertices, one with trivial stabilizer
and two with stabilizers A and B that are connected by edges with trivial stabilizer
to the vertex group with trivial stabilizer. On the vertex with trivial stabilizer we
further place m ≥ 1 loops, if the free group F is isomorphic to Fm. In particular,
in both free products, A ∗ B and A ∗ B ∗ F , the elliptic elements are (only) those
that can be conjugated into A or B.

Let Σ(x) = 1 be a (finite, coefficient-free) system of equations. Then, by con-
struction, every (non-canonical) Makanin-Razborov diagram of Σ over the collection
of all free products, A ∗B, is a Makanin-Razborov diagram of Σ over the collection
of all the free products, A ∗ B ∗ F . If Θ(x, p) = 1 is a coefficient-free system of
equations with parameters, p, then by construction, every (non-canonical) graded
Makanin-Razborov diagram of Θ (that satisfy the properties that are listed in theo-
rem 1.22) over the collection of free products, A∗B, is a graded Makanin-Razborov
diagram of Θ over the entire collection of free products A ∗ B ∗ F . This means, in
particular, that a graded limit group over the collection, A ∗ B, is rigid or weakly
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solid, if and only if it is rigid or weakly solid over the collection, A ∗B ∗F , and the
same holds for flexible quotients of a rigid or a (weakly) solid limit group.

A ∗ B naturally embeds (as a factor) in A ∗ B ∗ F , and hence each element
y0 ∈ A ∗ B can be naturally viewed as an element in A ∗ B ∗ F . Let:

∀y ∃x Σ(x, y) = 1 ∧ Ψ(x, y) 6= 1

be a sentence over groups, and let A ∗ B be a non-trivial free product that is not
isomorphic to D∞. Suppose that y0 ∈ A ∗ B is a specialization of the universal
variables y, for which there is no specialization x0 ∈ A∗B of the existential variables
x, so that Σ(x0, y0) = 1 and Ψ(x0, y0) 6= 1 (in A ∗ B). Then for y0 viewed as an
element of A ∗ B ∗ F , there is no specialization x1 ∈ A ∗ B ∗ F of the existential
variables x, so that Σ(x1, y0) = 1 and Ψ(x1, y0) 6= 1 (in A ∗ B ∗ F ).

Let y1 ∈ A∗B ∗F be a specialization of the universal variables y, for which there
is no x1 ∈ A ∗ B ∗ F , such that Σ(x1, y1) = 1 and Ψ(x1, y1) 6= 1 (in A ∗ B ∗ F ).
Then there exists a sequence of retractions: τn : A ∗B ∗F → A ∗B, that maps the
subgroup A ∗ B of A ∗ B ∗ F identically onto A ∗ B, and maps a fixed generators
of F into tuples of elements that form a test sequence in A ∗ B (when n grows
to infinity), so that for every index n, there is no element xn ∈ A ∗ B, for which:
Σ(xn, τn(y1)) = 1 and Ψ(xn, τn(y1)) 6= 1 (in A ∗ B).

Hence, given a coefficient free AE sentence, a specialization of the universal
variables y in A∗B that is a witness for the failure of the sentence over A∗B, is also
a witness for the failure of the sentence over A ∗B ∗F , and with a specialization of
the universal variables y in A∗B ∗F that is a witness for the failure of the sentence
over A ∗ B ∗ F , it is possible to associate a (test) sequence of specializations in
A ∗ B, that are all witnesses for the failure of the sentence over A ∗ B, and these
specializations (in A ∗ B) ”converge” into the specialization of the variables y in
A ∗ B ∗ F .

This fact, and the identity between ungraded, graded, and (graded) formal
Makanin-Razborov diagrams over the collection of non-trivial free products, A ∗B
and A∗B ∗F , imply that the (non-canonical) finite collection of (ungraded) resolu-
tions, Res1(z, y), . . . , Resd(z, y), and their finite collection of auxiliary resolutions,
that are associated in theorem 3.1 with a given coefficient-free sentence, and the
entire collection of non-trivial free products A∗B (that are not isomorphic to D∞),
can be taken to be the collection of ungraded resolutions and their auxiliary reso-
lutions that is associated (by theorem 3.1) with the same coefficient free sentence,
and all the non-trivial free products A ∗ B ∗ F . This implies that a coefficient-free
AE sentence is a truth sentence over a non-trivial free product, A ∗ B, that is not
isomorphic to D∞, if and only if it is a truth sentence over A ∗ B ∗ F .

By the same arguments, given a coefficient-free AE set, AE(p), the (non-canonical)
finite collection of graded resolutions and their auxiliary resolutions, that is associ-
ated with the set AE(p) and the entire collection of free products A∗B, in theorem
4.1, can be taken to be the finite collection of graded resolutions and their auxiliary
resolutions that is associated (by theorem 4.1) with the given AE set AE(p) and
the collection of free products, A ∗ B ∗ F .

We continue by induction, similar to the induction that was used in proving
theorem 6.1 for general definable sets over free products. We argued that the finite
collection of graded resolutions and their auxiliary resolutions that are associated
with a given coefficient-free AE set can be to taken to be the same over the collection
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of non-trivial free products A ∗ B (that are not isomorphic to D∞), and over the
collection of non-trivial free products, A ∗ B ∗ F . Hence, given a coefficient-free
EAE set, the finite collection of graded resolutions and their auxiliary resolutions
that are associated with it (by theorem 4.5) over the entire collection of non-trivial
free products, A ∗ B, that are not isomorphic to D∞, can be taken to be the finite
collection of such graded resolutions and auxiliary resolutions that are associated
by the same theorem with the collection of non-trivial free products, A ∗ B ∗ F .
Continuing inductively, we obtain the same conclusion for the finite collection of
graded resolutions and their associated auxiliary resolutions that is associated with
a given coefficient-free definable set (by theorem 6.1) over the collection of non-
trivial free products, A ∗ B, and over the collection of non-trivial free products,
A ∗ B ∗ F .

Theorem 6.3 uses the finite collection of graded resolutions and their auxiliary
resolutions that is associated with a coefficient-free definable set, to reduce a given
coefficient free sentence from a non-trivial free product to a disjunction of conjunc-
tions of sentences over its factors.

The finite collection of graded resolutions and their auxiliary resolutions that is
associated with a given coefficient-free definable set, can be taken to be identical
over the entire collection of non-trivial free products, A ∗ B, and over the entire
collection of free products, A ∗ B ∗ F . Hence, we may apply the proof of theorem
6.3, and deduce that a given coefficient-free sentence over the entire collection of
non-trivial free products, A ∗ B, that are not isomorphic to D∞, and over the
entire collection of non-trivial free products, A ∗B ∗F , reduces to the same (finite)
disjunction of conjunctions of sentences over the factors A and B. Hence, a given
coefficient-free sentence is a truth sentence over a given non-trivial free product,
A ∗ B, that is not isomorphic to D∞, if and only if it is a truth sentence over
A ∗ B ∗ F . Therefore, every such non-trivial free product A ∗ B is elementarily
equivalent to A ∗ B ∗ F .

�

Note that Tarski’s problem for free groups follows if we take A and B to be
isomorphic to Z in the statement of theorem 7.2. Also, note that exactly the same
argument proves that a non-trivial free product, A ∗ B, that is not isomorphic to
D∞, is elementarily equivalent to a tower over A ∗ B, i.e., a completion that has
in its bottom level a free product of the form, A ∗ B ∗ F , where F is a (possibly
trivial) free group (cf. theorem 7 in [Se7] in the free group case, and theorems 7.6
and 7.10 in [Se8] in the torsion-free hyperbolic analogue).

Theorem 7.1 implies that for every group G that is a non-trivial free product, and
is not the infinite dihedral group, G is elementarily equivalent to G ∗F (where F is
a free group). In [Se8] it is proved that this holds for every non-elementary (torsion-
free) hyperbolic group. By the combination of theorems 7.1 and 7.2, the collection
of groups G for which G is elementarily equivalent to G ∗F is an elementary class,
i.e., if G is elementarily equivalent to G∗F , and H is elementarily equivalent to G,
then H is elementarily equivalent to H ∗ F . It is then natural to ask what are the
properties of groups in this elementary class.

Question. What are the (algebraic, first order) properties of groups G for which
G is elementarily equivalent to G ∗ F?

Other rather straightforward corollaries of theorems 6.1 and 6.3, are uniform
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properties of sentences over free products.

Theorem 7.3. Let Φ be a coefficient free sentence over groups. There exists an
integer, k(Φ), so that for every group, H, Φ is a truth sentence over H1∗. . .∗Hk(Φ),
Hi h H, if and only if Φ is a truth sentence over H1 ∗ . . . ∗Hn, Hi h H, for every
n ≥ k(Φ).

Proof: By theorem 6.1, with the coefficient free sentence, Φ, it is possible to asso-
ciate finitely many (ungraded) resolutions (over free products), DRes1, . . . , DResg,
and with each of them finitely many auxiliary resolutions, so that the sentence Φ
is a truth sentence over a non-trivial free product, G = A1 ∗ . . . ∗ Aℓ, that is not
D∞, if and only if there exist (or there do not exist) specializations of the terminal
limit groups of the resolutions, DRes1, . . . , DResg, with properties that are listed
in the statement of the theorem.

Note that the finite collection of resolutions, DRes1, . . . , DResℓ, is universal
(although it is not canonical), i.e., it does not depend on the free product G,
nor on the number of factors in the free product G. In theorem 6.3, we used the
existence of this finite collection of resolutions, to reduce the coefficient-free sentence
Φ to a disjunction of conjunctions of sentences in the factors of the free product
G, A1, . . . , Aℓ. This disjunction of conjunctions of sentences does depend on the
number of factors, even though the resolutions and the auxiliary resolutions that
are associated with Φ by theorem 6.1, do not (depend on the number of factors).

For each subset I that contains a resolution, DResi, and a subset of its (finitely
many) associated auxiliary resolutions, we set tI to be the sum of the numbers of
elliptic factors in the terminal limit groups of all the resolutions in the subset I
(DResi and the subset of its associated auxiliary resolutions). Clearly, there are
finitely many such subsets I. We set k(Φ) to be the maximum between the sum
of the numbers tI over all the possible subsets I, and the number 3 (to guarantee
that the corresponding free product is not D∞, in case G is non-trivial).

Since the free products we are looking at are free products of the same group
G, theorem 6.1 implies that Φ is a truth sentence over an iterated free product of
G with itself k(Φ) times, if and only if it is a truth sentence over an iterated free
product of G with itself a larger number of times.

�

Note that the integer k(Φ) depends on the coefficient free sentence, Φ, but it
does not depend on the group, G. It is easy to see that k(Φ) can not be chosen to
be a universal constant, e.g., we can take Φm to be a sentence that specifies if the
number of conjugacy classes of involutions in the group is at least m. For such a
sentence, Φm, k(Φm) = m.

Theorem 7.3 can be further strengthened for sequences of groups. Let Φ be a
coefficient free sentence over groups. Given any sequence of groups, G1, G2, . . . , we
set M1 = G1, M2 = G1 ∗ G2, M3 = G1 ∗ G2 ∗ G3, and so on. The sentence Φ may
be truth or false on any of the groups (free products) Mi, i = 1, . . . . Here one can
(clearly) not guarantee that the sentence Φ is constantly truth or constantly false
staring at a bounded index (of the Mi’s). However, one can prove the following.

Theorem 7.4. There exists an integer c(Φ), so that for every sequence of groups,
G1, G2, . . . , the sentence Φ over the sequence of groups, M1 = G1, M2 = G1∗G2, . . .
may change signs (from truth to false or vice versa) at most c(Φ) times.
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Proof: The argument that we use is similar to the proof of theorem 7.3. By the-
orem 6.1, with the coefficient free sentence, Φ, it is possible to associate finitely
many (ungraded) resolutions, and with each of them finitely many auxiliary reso-
lutions, so that the sentence Φ is a truth sentence over a non-trivial free product,
G = A1 ∗ . . . ∗ Aℓ, that is not D∞, if and only if there exist (or there do not exist)
specializations of the terminal limit groups of the given list of resolutions, with
properties that are listed in the statement of the theorem.

Once again, we note that the collection of resolutions that is associated (by
theorem 6.1) with the given coefficient free sentence Φ, and their associated finite
collections of auxiliary resolutions, are universal, which means that they are good
for all the non-trivial free factors that are not isomorphic to D∞, and they do
not depend on the number of factors in such a free product. In theorem 6.3, this
finite collection of resolutions is used to reduce the coefficient-free sentence Φ to
a disjunction of conjunctions of sentences in the factors of the free product. This
disjunction of conjunctions of sentences does depend on the number of factors, even
though the resolutions and the auxiliary resolutions that are associated with Φ by
theorem 6.1, do not (depend on the number of factors).

The (finitely many) resolutions and their auxiliary resolutions, that are associ-
ated with the coefficient-free sentence Φ by theorem 6.1, allows one to reduce the
sentence Φ into boundedly many sentences on the various factors of a given non-
trivial free product, that is not isomorphic to D∞, where the given sentence Φ is
true or false (over the ambient free product) if and only if a (finite) disjunction of
conjunctions of these sentences over the factors is true or false (see theorem 6.3).
The length of this disjunction of conjunctions depend on the number of factors in
the given free product, but the number of distinct (coefficient-free) sentences over
the various factors is uniformly bounded, and depend only on the resolutions that
are associated with Φ by theorem 6.1, and on their auxiliary resolutions.

We set selp to be the sum of the numbers of elliptic factors in the terminal
limit groups of all the (finitely many) resolutions (and auxiliary resolutions) that
are associated with the coefficient free sentence Φ by theorem 6.1. By the proof
of theorem 6.3, the number of distinct coefficient-free sentences that are defined
over the factors of a given non-trivial free product, such that the given sentence
Φ is equivalent to a disjunction of conjunctions of these sentences over the various
factors of the given non-trivial free product, is bounded by the number of subsets
of a set of size selp, i.e, it is bounded by 2selp.

We define the state of a given factor of a free product, to be the subcollection of
distinct coefficient-free sentences, that are defined over the factors of a free product,
and are associated with Φ by theorems 6.1 and 6.3, that are truth sentences over

this given factor. Clearly, there are at most 22slp

possible states for factors of a free
product.

Let G1, G2, . . . be a sequence of groups, with the corresponding free products:
M1 = G1, M2 = G1 ∗ G2, . . . . By the proof of theorem 6.3, the question whether
the given coefficient-free sentence Φ is true or false depends only on the states of
the factors, G1, . . . , Gn. Furthermore, to determine if Φ is true or false, it suffices
to know for every possible factor how many factors do have this state, and for every
possible state it suffices to know the number of factors that have this state only
up to selp, as a larger number will make no difference for the question of Φ being
true or false (i.e., for each state it suffices to know the minimum between the actual
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number of factors that have this state and the number selp).

Hence, with each free product Mn from the sequence, we can associate a tuple

of at most 22selp

non-negative integers that are all bounded by selp. The sequence
of tuples that are associated with the free products, {Mn}, can only increase (in
the lexicographical order), and Φ may change from true to false or vice versa, only
when the tuple changes (increases). Hence, Φ may change from true to false or vice

versa over the sequence of free factors, {Mn}, at most at selp · 22selp

indices, and
the theorem follows.

�

§8. Stability

In the previous section we deduced several basic first order properties of free
products from the reduction of sentences from a free product to its factors (theo-
rem 6.3), and from the association of finitely many resolutions and their auxiliary
resolutions with any given sentence, that enables this reduction (theorem 6.1). This
reduction, and the associated resolutions, enable one to prove that a free product
inherits certain first order properties from its factors. In this section we use the
scheme of argument that was used to prove the stability of free and hyperbolic
groups [Se10], to prove that stability is inherited by a free product from its factors.
This question about the possibility to lift stability from the factors to a free product
was brought to our attention by Eric Jaligot, and was the motivation for our entire
work on free products.

Theorem 8.1. Let A, B be stable groups. Then A ∗ B is stable.

Proof: We may assume that the free product A ∗B is non-trivial and not isomor-
phic to D∞. As in the proof of stability of free and (torsion-free) hyperbolic groups,
we prove the stability of a free product gradually. We start with the stability of
coefficient-free varieties (that can be deduced from complex algebraic geometry in
the case of free groups), (coefficient-free) Diophantine sets, (coefficient-free) rigid
and weakly solid sets (i.e., the set of specializations of the defining parameters for
which there exists a rigid or a strictly solid specialization of a given rigid or a
solid limit group), coefficient-free definable sets, and finally the stability of every
definable set.

Theorem 8.2. Let A, B be stable groups. Then every coefficient-free variety over
A ∗ B is stable.

Proof: The approach that we used for proving stability of free and hyperbolic
groups, associates certain finite diagrams with some families (Diophantine, rigid
and solid) of definable sets, and using these diagrams we further associate (finite)
canonical collections of Duo limit groups with these definable sets. These finite
diagrams and their associated Duo limit groups, together with the bounds on the
number of rigid and strictly solid families of specializations of rigid and solid limit
groups over free and (torsion-free) hyperbolic groups, are the main tools that enable
one to prove stability of free and hyperbolic groups.

Unfortunately, we do not know how to imitate this approach in the free product
case, and we won’t construct canonical and universal diagrams as in the free group
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case. Instead we argue by contradiction. We suppose that there exists a coefficient-
free system of equations, Σ(p, q) = 1, such that the corresponding variety, V (p, q), is
not stable over a non-trivial free product G = A∗B, where both A and B are stable.
With such unstable variety V (p, q), we associate (non-canonically) two diagrams
that are similar to the (canonical and universal) diagram that was constructed in
the case of free and hyperbolic groups, and from the existence of the constructed
diagrams, and the stability of the factors, A and B, we deduce a contradiction, that
finally proves theorem 8.2.

Let Σ(p, q) = 1 be a coefficient-free system of equations. Let G = A ∗ B be
a non-trivial free product in which both A and B are stable, and suppose that
the variety V (p, q), that corresponds to the system of equations Σ(p, q) = 1, is
unstable over G. Since V (p, q) is unstable over G, for every positive integer m,
there exists two sequences of tuples with elements in G, {pm

i }m
i=1 and {qm

j }m
j=1,

such that (pm
i , qm

j ) ∈ V (p, q) if and only if j ≤ i.

Given the triangle of pairs, {(pm
i , qm

i ) 1 ≤ i ≤ m}, we can pass to a subtri-
angle (still denoted with the same indices), such that every sequence of pairs,
{(pm

im
, qm

1 )}∞m=1, converges into the same limit group (over free products), L(p, q).
By passing to a further subtriangle, we may assume that every such sequence,
{(pm

im
, qm

1 )}∞m=1, converges into the same graded resolution, with respect to the pa-
rameter subgroup < q >: L = L0 → L1 → . . . → Ls, where Ls is a free product of
a rigid or a solid factor with (possibly) finitely many elliptic factors, and (possibly)
a free group. We denote this graded resolution, GRes1.

At this stage we pass to a further subtriangle (still denoted with the same in-
dices). In this subtriangle, we may further assume that every sequence of triples,
{(pm

im
, qm

1 , qm
2 )}∞m=2, where for every index m, im ≥ 2, converges into the same limit

group, U(p, q1, q2). We apply the construction of quotient resolutions, as it appears
in the first step of the sieve procedure [Se6], and pass to a further subtriangle, so
that we may assume that every sequence of triples, {(pm

im
, qm

1 , qm
2 )}∞m=2, where for

every index m, im ≥ 2, converges into the same quotient resolution with respect
to the parameter subgroup < q1, q2 > (as constructed according to the first step of
the sieve procedure).

We continue iteratively. At each step we pass to a subtriangle, and apply the
general step of the construction of a quotient resolution, as it appears in the sieve
procedure [Se6]. Note that the resolution that is constructed in step n of the
procedure, is graded with respect to the parameter subgroup, < q1, . . . , qn >. Also
note that each quotient resolution is either a closure of the quotient resolution that
was constructed in the previous step, or it is a proper quotient resolution, which
means that its complexity (as it appears in the sieve procedure) is strictly smaller
than the complexity of the resolution that was constructed in the previous step.

To conclude the first part of the argument, and continue with it to prove stability
of varieties, we need to prove that this (first) iterative procedure that is associated
with an unstable variety terminates after finitely many steps.

Proposition 8.3. There are only finitely many steps along the iterative procedure
that is associated with an unstable variety, V (p, q), over a given non-trivial free
product, G = A ∗ B, in which the constructed graded resolution is not a closure of
the graded resolution that was constructed in the previous step of the procedure.

Proof: Suppose that there are infinitely many steps in which the constructed
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graded resolution is not a closure of the graded resolution that was constructed
in the previous step of the procedure. This contradicts the termination of the
sieve procedure after finitely many steps (theorem 22 in [Se6], see also the proof of
theorem 4.4).

�

By proposition 8.3 there exists some step n0 of the iterative procedure, such
that starting at this step, the constructed quotient resolutions along the iterative
procedure, are closures of the quotient resolution that was constructed in step
n0. First, we replace the quotient resolution that was constructed in step n0, by
a cover resolution, according to theorem 1.21. We denote this cover resolution,
CGRes. By the construction of the cover resolution, CGRes, we can pass to a
further subtriangle of specializations, {pm

i }m
i=1, and {qm

j }m
j=1, such that:

(1) (pm
i , qm

j ) ∈ V (p, q) if and only if j ≤ i.
(2) the pairs (pm

i , qm
j ) extend to specializations that factor through the (cover)

graded resolutions, CGRes, for j ≤ i, and 1 ≤ j ≤ n0.

The (cover) graded resolution, CGRes, terminates in a free product of a rigid
or weakly solid factor with (possibly) finitely many elliptic factors. By theorems
1.14 and 1.15, with the rigid or weakly solid factor, one can associate finitely many
(combinatorial) configurations, so that each configuration contains finitely many
fractions, and finitely many elliptic elements, and a rigid or almost shortest (weakly)
strictly solid specialization is given by fixed words in the fractions and the elliptic
elements. The value of these fractions depend only on the specialization of the
defining parameters, and not on the (specific) rigid or almost shortest (weakly)
strictly solid specialization, whereas the elliptic elements do depend on the specific
rigid or weakly strictly solid specialization (and not only on the specialization of
the defining parameters). See theorems 1.14 and 1.15 for the precise details.

Once again, we can pass to a further subtriangle of specializations, {pm
i }m

i=1 and
{qm

j }m
j=1, that satisfy properties (1) and (2), and assume that the specializations of

the rigid or weakly solid factor of the terminal limit group of CGRes that are asso-
ciated with the specializations, {(pm

i , qm
j )}, from the subtriangle, are all associated

with one (fixed) combinatorial configuration (out of the finitely many combinatorial
configurations) that is presented in theorems 1.14 and 1.15, and is associated with
the rigid or weakly solid factor of the terminal limit group of CGRes.

We denote the fractions that appear in the (fixed) combinatorial configuration
(that get the same values for all the rigid or almost shortest strictly solid spe-
cializations that are associated with the same specializations of the parameters
(qm

1 , . . . , qm
n0

), and with the fixed combinatorial configuration), vm
1 , . . . , vm

f . We
denote the elliptic elements that are associated with the values of the parameters
(qm

1 , . . . , qm
n0

), eqm
1 , . . . , eqm

d , and with the rigid or almost shortest (weakly) strictly
solid specializations: epm

1 , . . . , epm
g (see the statements of theorems 1.14 and 1.15

for these notions). For brevity we denote the tuple vm
1 , . . . , vm

f by vm, the tuple
eqm

1 , . . . , eqm
d by eqm, and the tuple epm

1 , . . . , epm
g by epm.

With the variety V , the (cover) graded resolution, CGRes, the triangle of spe-
cializations that factor through CGRes, the terminal limit group of CGRes, and
the (fixed) combinatorial configuration that is associated with the rigid or weakly
solid factor of its terminal limit group, we associate a triangle of specializations,
and a second iterative procedure, in which each quotient resolution is ungraded,
hence, terminates in a free product of f.g. elliptic factors.
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First, with the specializations, qm
1 , . . . , qm

n0
, and the fixed combinatorial configu-

ration that is associated with the rigid or weakly solid factor of the terminal limit
group of CGRes, we associate the fixed specializations of the elements, vm

1 , . . . , vm
f ,

and of the elliptic elements, eqm. With each element, pm
i , n0 < i ≤ m, from the

triangle of specializations that is associated with CGRes, we associate a tuple of
elliptic specializations, epm

i , that is associated with it and with the fixed combina-
torial configuration that is associated with the rigid or weakly solid factor of the
terminal limit group of CGRes, and with the fixed values of the elements, vm.

We continue with the triangle of specializations, {epm
i } and {qm

j }, n0 < i, j ≤ m.
We swap each line of the triangle, i.e., we replace a pair, (epm

i , qm
i ), with the pair,

(epm
m−i+n0+1, q

m
m−i+n0+1), for n0 < i ≤ m. After this swap, the corresponding pair,

(pm
i , qm

j ) ∈ V (p, q), n0 < i, j ≤ m, if and only if i ≤ j.

Given the triangle of pairs, and the specialization, vm and eqm, we can pass
to a subtriangle (still denoted with the same indices), such that every sequence of
pairs, {(epm

n0+1, q
m
jm

, vm, eqm)}∞m=1, converges into the same limit group (over free
products), E. By passing to a further subtriangle, we may assume that every such
sequence, converges into the same ungraded resolution (that can be viewed as multi-
graded with respect to the elliptic tuples, epm and eqm): E = E0 → E1 → . . . →
Es, where Es is a free product of finitely many f.g. elliptic factors and possibly a
free group. We denote this ungraded resolution, ERes1.

As we did in the first iterative procedure, at this stage we pass to a further
subtriangle (still denoted with the same indices), and apply the construction of
quotient resolutions, as it appears in the first step of the sieve procedure [Se6],
and pass to a further subtriangle, so that we may assume that every sequence of
tuples, {(epm

n0+1, ep
m
n0+2, q

m
jm

, vm, eqm)}∞m=1, n0 + 2 < jm ≤ m, converges into the
same quotient resolution (which is an ungraded resolution), as it is constructed
according to the first step of the sieve procedure.

We continue iteratively. At each step we pass to a subtriangle, and apply the
general step of the construction of a quotient resolution, as it appears in the sieve
procedure [Se6]. As in the first iterative procedure that we associated with V (p, q),
each quotient resolution is either a closure of the quotient resolution that was
constructed in the previous step, or it is a proper quotient resolution, which means
that its complexity (as it appears in the sieve procedure) is strictly smaller than the
complexity of the resolution that was constructed in the previous step. The second
iterative procedure, satisfies a similar termination property as the first iterative
procedure.

Proposition 8.4. There are only finitely many steps along the (second) iterative
procedure that is associated with an unstable variety, V (p, q), over a given non-
trivial free product, G = A ∗B, in which the constructed ungraded resolution is not
a closure of the ungraded resolution that was constructed in the previous step of the
procedure.

Proof: Identical to the proof of proposition 8.3.
�

By proposition 8.4 starting at some step, n1 > n0, all the quotient resolutions
that are constructed along the various steps of the (second) iterative procedure, are
closures of the quotient (ungraded) resolution that was constructed in step n1.

We denote the ungraded resolution that is constructed in step n1, ERes. With
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ERes we associate a cover (ungraded) resolution, CERes, according to theorem
1.21. As (by theorem 1.21) the completion and the terminal limit group of the cover
resolution, CERes, are finitely presented, we may pass to a further subtriangle of
the tuples specializations that were used to construct the resolution ERes, such
that all the specializations in this subtriangle factor through CERes.

The cover resolution, CERes, the subtriangle of specializations that are associ-
ated with it, together with the stability of the factors A and B of the (non-trivial)
free factor, G = A ∗ B, contradict the instability of the variety, V (p, q), over G.
Indeed, since the constructed quotient resolutions are only replaced by closures
along the second iterative (starting with step n1), after passing to a further sub-
triangle, with each specialization, qm

j , n1 < j ≤ m, we can associate a tuple

of elliptic specializations eqm
j . By the construction of the (ungraded) Makanin-

Razborov diagram of a f.p. group (theorem 26 in [Ja-Se]), the pairs of specializa-
tions, (pm

i , qm
j ) ∈ V (p, q), for n1 ≤ i, j < m, if and only if the tuples of elliptic

elements, epm
i , eqm

j , satisfy one out of finitely many system of equations. Since,
(pm

i , qm
j ) ∈ V (p, q) if and only if i ≤ j, from the given subtriangle of specializations,

we can extract larger and larger sequences of specializations, {epm
i } and {eqm

j },
n1 ≤ i, j ≤ m, such that the (elliptic) tuples, (epm

i , eqm
j ) satisfy a fixed coefficient-

free system of equations (independent of the indices, i, j, m), if and only if i ≤ j.
This clearly contradicts the stability of varieties over the factors A and B. Hence,
every coefficient-free variety over an arbitrary free product of stable groups is stable,
and we get theorem 8.2.

�

Theorem 8.2 proves the stability of varieties over non-trivial free products, G =
A ∗ B, in case both A and B are stable. A similar argument implies the stability
of Diophantine sets over such non-trivial free products.

Theorem 8.5. Let A, B be stable groups that are not both isomorphic to Z2. Then
every coefficient-free Diophantine set over A ∗ B is stable.

Proof: The argument that we used to prove stability of varieties, essentially ap-
plies to prove stability of Diophantine sets as well. We assume that there exists an
unstable coefficient-free Diophantine set over a non-trivial free product, G = A∗B,
that is not isomorphic to D∞, in which both A and B are stable. We apply the
same iterative procedures that we applied in the case of varieties. After finitely
many steps the quotient resolutions that are produced in each of the two iterative
procedures are closures of the quotient resolution that was constructed in the pre-
vious step. This follows by the argument that proves termination of the iterative
procedure for the analysis of an EAE set (theorem 4.4), that is based on the termi-
nation of the sieve procedure (theorem 22 in [Se6]), and the proof of equationality
of Diophantine sets over free and (torsion-free) hyperbolic groups in theorem 2.2 in
[Se9].

Once one proves that after finitely many steps, quotient resolutions that are
constructed along the second iterative procedure are closures of the quotient res-
olutions that were constructed in the previous step, we get a contradiction to the
instability of the original Diophantine set, in the same way a contradiction was
extracted for unstable varieties in the proof of theorem 8.2.

�

Theorem 8.5 proves that coefficient free Diophantine sets are stable over free
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products of stable groups. As over free and hyperbolic groups, our next step towards
stability of the theory of free products of stable groups, is the analysis of rigid
specializations of rigid limit groups, and (weakly) strictly solid specializations of
solid limit groups (cf. section 4 in [Se9] for the analysis of the corresponding sets
over free and hyperbolic groups).

Over free products, we looked at the set of parameters for which there are at
least s rigid or s families of strictly solid specializations. Unfortunately, over free
products there are infinitely many such (rigid and strictly solid) families. In the-
orems 1.14 and 1.15 we proved combinatorial bounds on the collection of rigid
and (weakly) strictly solid families, that give bounds on the number of rigid and
(weakly) strictly solid families over free products (that are different than the fam-
ilies over free groups). However, these families and their number is not definable
over free products. They are definable if we enrich the language and allow quanti-
fiers over elements in the factors of the free product. Hence, instead of looking at
sets (of parameters) with at least s families of rigid or weakly strictly solid families,
we look at sets of the defining parameters for which there exists a rigid or a weakly
strictly solid specialization.

As in the case of a free group, the stability of Diophantine sets (theorem 8.5) plays
an essential role in proving the stability of these sets that are naturally associated
with rigid and weakly solid limit groups. However, the iterative procedures that
served us in proving stability of varieties and Diophantine sets need to be further
refined.

Theorem 8.6. Let Sld(x, p, q) be a coefficient-free (weakly) solid limit group over
free products. Suppose that Sld embeds into a f.p. (ungraded) completion, and that
with Sld there is an associated (finite) cover of its flexible quotients, so that every
graded limit group in this cover embeds into an (ungraded) f.p. completion (see
theorems 1.20 and 1.21 for the precise details on such weakly solid limit groups).
Note that we say that a homomorphism of Sld(x, p, q) into a free product is (weakly)
strictly solid, if it can be extended to a specialization of the f.p. completion that is
associated with Sld, and it does not extend to a specialization of any of the f.p.
completions that are associated with the (finite) cover of the flexible quotients of
Sld.

We set ES(p, q) to be the (coefficient-free definable) set of specializations of
the (free variables) parameters p, q, for which there exists a (weakly) strictly solid
homomorphism of Sld(x, p, q). If A and B are non-trivial stable groups that are
not both isomorphic to Z2, then ES(p, q) is stable.

Proof: The argument that we use is a modification of the argument that was used
to prove stability of varieties and Diophantine sets (theorems 8.2 and 8.5). Let
Sld(p, q) be a weakly solid limit group, and let ES(p, q) be the (coefficient-free)
definable set that contains those values of the parameters (free variables) for which
Sld has a weakly strictly solid specialization. Let G = A ∗ B be a non-trivial
free product, that is not isomorphic to D∞, in which both A and B are stable,
and suppose that the definable set, ES(p, q), is unstable over G. Since ES(p, q) is
unstable over G, for every positive integer m, there exists two sequences of tuples
with elements in G, {pm

i }m
i=1 and {qm

j }m
j=1, such that (pi, qj) ∈ ES(p, q) if and only

if j ≤ i.

Given the triangle of pairs, {(pm
i , qm

i ) 1 ≤ i ≤ m}, we can pass to a subtriangle
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(still denoted with the same indices), and with each pair, (pm
i , qm

1 ), we associate
a weakly strictly solid specialization of the weakly solid limit group Sld(x, p, q),
(xm

i,1, p
m
i , qm

1 ), such that every sequence of weakly strictly solid specializations,
{(xm

im,1, p
m
im

, qm
1 )}∞m=1, converges into the same limit group (over free products),

L(x, p, q). By passing to a further subtriangle, we may assume that every such
sequence, {(xm

im,1, p
m
im

, qm
1 )}∞m=1, converges into the same graded resolution, with

respect to the parameter subgroup < q >: L = L0 → L1 → . . . → Ls, where Ls

is a free product of a rigid or a solid factor with (possibly) finitely many elliptic
factors and (possibly) a free group. We denote this graded resolution, GRes1.

At this stage we look for a further subtriangle (still denoted with the same
indices), for which:

(1) for each pair (pm
i , qm

2 ), there exists a weakly strictly solid specialization of
Sld(x, p, q), (xm

i,2, p
m
i , qm

2 ), 2 ≤ i ≤ m.
(2) every sequence of weakly strictly solid specializations (of Sld(x, p, q)):

{(xm
im,2, p

m
im

, qm
2 )}∞m=1

2 ≤ im ≤ m, converges into the same limit group, U(x, p, q).
(3) every sequence of pairs of weakly strictly solid specializations:

{(xm
im,1, x

m
im,2, p

m
im

, qm
1 , qm

2 )}∞m=1

2 ≤ im ≤ m, converges into the same quotient resolution, that is constructed
according to the first step of the sieve procedure [Se6].

(4) the quotient resolution that is constructed from the convergent sequences
of pairs of weakly strictly solid specializations, is a proper quotient reso-
lution of the graded resolutions that was constructed from the convergent
sequences, {(xm

im,1, p
m
im

, qm
1 )}∞m=1, in the first step of the iterative procedure,

i.e., the quotient resolution that is constructed in the second step of the it-
erative procedure is not a graded closure of the graded resolution that was
constructed in the first step, but rather it is a quotient resolution of strictly
smaller complexity according to the sieve procedure [Se6].

We continue iteratively. At each step n we look for a further subtriangle,
for which the corresponding sequences of weakly strictly solid specializations (of
Sld(x, p, q)), {(xm

im,n, pm
im

, qm
n )}∞m=1, n ≤ im ≤ m, converge into the same limit

group, and the combined weakly strictly solid specializations converge into the
same quotient resolution, that is constructed according to the general step of the
sieve procedure. Furthermore, the quotient resolution that is constructed in the
n-th step of the procedure is not a closure of the quotient resolution that was
constructed in step n − 1, but rather it is a quotient resolution of strictly smaller
complexity according to the sieve procedure [Se6].

By proposition 8.3 this iterative procedure terminates after finitely many steps.
When it terminates we are left with a triangle of specializations, (still denoted)
{pm

i }m
i=1 and {qm

j }m
j=1, which is a subtriangle of the original triangle of specializa-

tions in G = A ∗ B, for which (pi, qj) ∈ ES(p, q) if and only if j ≤ i. Furthermore,
suppose that the iterative procedure terminated at step n1. Then:

(1) for each pair (pm
i , qm

j ), there exists a weakly strictly solid specialization of
Sld(x, p, q), (xm

i,j , p
m
i , qm

j ), where 1 ≤ j ≤ n1 and n1 + 1 ≤ i ≤ m.
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(2) every sequence of tuples of weakly strictly solid specializations:

{(xm
im,1, . . . , xm

im,n1
, pm

im
, qm

1 , . . . , qm
n1

)}∞m=n1+1

n1 + 1 ≤ im ≤ m, converges into the same quotient resolution, that was
constructed according to the general step of the sieve procedure [Se6].

We denote the graded resolution that is constructed in the n1-th step of the
iterative procedure, GResn1

. By theorem 1.21 we can associate a cover graded
resolution with GResn1

, that we denote, CGResn1
, that satisfies all the properties

that are listed in theorem 1.21, and after possibly passing to a further subtriangle,
we may assume that all the tuples of specializations,

{(xm
im,1, . . . , xm

im,n1
, pm

im
, qm

1 , . . . , qm
n1

)}∞m=n1+1

n1 + 1 ≤ im ≤ m, factor through the cover graded resolution, CGResn1
.

At this point we swap the raws in the subtriangle of specializations. For each i,
n1 + 1 ≤ i ≤ m, we replace pm

i with pm
m+n1+1−i, and for each j, n1 + 1 ≤ j ≤ m,

we replace qm
j with qm

m+n1+1−j . Note that after this swap, for each pair of indices,
n1 + 1 ≤ i, j ≤ m, (pm

i , qm
j ) ∈ ES(p, q) if and only if i ≤ j.

Each specialization pm
i , n1 + 1 ≤ i ≤ m, belongs to some fiber of the graded

resolution, CGResn1
. If there is a subtriangle of our given triangle, (still denoted)

{pm
i } and {qm

j }, n1 + 1 ≤ i, j ≤ m, for which for every triple (i, j, m), n1 + 1 ≤ j <

i ≤ m, there is no sequence of weakly strictly solid specializations of Sld(x, p, q),
{(xm

i,j(s), pm
i (s), qm

j )}, where the sequence, {pm
i (s)}, is a restriction to the elements

p of a test sequence in the fiber that contains pm
i , we reached a terminal point of

the first procedure (for proving the stability of ES(p, q)), and we continue with
the subtriangle, and the graded resolutions, CGResn1

, and the graded resolution,
GResn1

, to the second part of the proof, i.e., to a procedure that allows us to analyze
ungraded resolutions and not graded ones, as we did along the second iterative
procedure in proving the stability of varieties and Diophantine sets (theorems 8.2
and 8.5).

Otherwise, if there is no subtriangle with this property, there exists a subtriangle
of the given triangle, {pm

i } and {qm
j }, n1 + 1 ≤ i, j ≤ m, for which for every triple

(i, j, m), n1 + 1 ≤ j < i ≤ m, there exists a sequence of weakly strictly solid
specializations of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

j )}, where the sequence, {pm
i (s)},

is a restriction to the elements p of a test sequence in the fiber that contains pm
i .

In this case there exists a further subtriangle of the triangle that is associated
with CGResn1

, (that we still denote) {pm
i } and {qm

j }, n1 +1 ≤ i, j ≤ m, for which:

(1) for every pair (i, m), n1 + 1 < i ≤ m, there exists a sequence of weakly
strictly solid specializations of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

n1+1)}, and an
associated test sequence of the cover graded resolution, CGResn1

:

(zm
i (s), pm

i (s), qm
1 , . . . , qm

n1
)

that is all in the fiber that contains pm
i .

(2) every combined sequence, {(zm
im

(sm), xm
im,n1+1(sm), pm

im
(sm), qm

1 , . . . , qm
n1

, qm
n1+1)},

where n1 + 1 < im ≤ m, and m < sm, converges into the same graded res-
olution, FGResn1+1 (it is graded with respect to the parameter subgroup
< q1, . . . , qn1+1, qn1+1 >. In particular, the sequence:

{(zm
im

(sm), pm
im

(sm), qm
1 , . . . , qm

n1
)}

converges into the graded resolution, GResn1
.
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The graded resolution, FGResn1+1, can be viewed as a formal graded resolution,
and it has the same structure as the graded resolution, GResn1

. With the graded
resolution, FGResn1+1, we associate a cover graded resolution according to theorem
1.21, that we denote, CFGResn1+1. We can pass to a further subtriangle, so that
the sequences of specializations: {(zm

im
(sm), xm

im,n1+1(sm), pm
im

(sm), qm
1 , . . . , qm

n1
, qm

n1+1)},
where n1 + 1 < im ≤ m, and m < sm, actually factor through the graded cover
resolution, CFGResn1+1.

As for i, j, n1 < i, j ≤ m, (pm
i , qm

j ) ∈ E(p, q) if and only if i ≤ j, the tuple,
{(xm

i,n1+1, p
m
i , qm

n1+1)}, that extends to a specialization of CFGResn1+1, can not be
weakly strictly solid for n1 + 1 < i ≤ m. Hence, on the specializations that factor
through CFGResn1+1 we may further impose one of finitely many Diophantine
conditions that force the specializations, {(xm

i,n1+1, p
m
i , qm

n1+1)}, that extends to a
specialization of CFGResn1+1, to be non weakly strictly solid for n1 + 1 < i ≤ m.

We further pass to a subtriangle, so that every sequence of specializations,
(xm

im,n1+1, p
m
im

, qm
n1+1), n1 + 1 < im ≤ m, together with the specialization of the

Diophantine condition that forces it to be non weakly strictly solid, converges into
a quotient resolution of FGResn1+1, that we denote, GResn1+1. Since generic
points in FGResn1+1 restrict to weakly strictly solid specializations, GResn1+1,
is a proper quotient resolution of FGResn1+1, i.e., it is a quotient resolution of
strictly smaller complexity than GResn1

(in light of the sieve procedure).

We continue iteratively. At each step we first look for a subtriangle, (still de-
noted) {pm

i } and {qm
j }, i, j ≤ m, for which for every triple (i, j, m), j < i ≤ m, there

is no sequence of weakly strictly solid specializations of Sld(x, p, q), {(xm
i,j(s), pm

i (s), qm
j )},

where the sequence, {pm
i (s)}, is a restriction to the elements p of a test sequence in

the fiber that contains pm
i in the cover of the graded resolution that was constructed

in the previous step. If there is such a subtriangle, we reached a terminal point of
this part of the procedure.

Otherwise, if there is no subtriangle with this property, there exists a subtriangle
of the given triangle, {pm

i } and qm
j , i, j ≤ m, for which for every triple (i, j, m), j <

i ≤ m, there exists a sequence of weakly strictly solid specializations of Sld(x, p, q),
{(xm

i,j(s), pm
i (s), qm

j )}, where the sequence, {pm
i (s)}, is a restriction to the elements

p of a test sequence in the fiber that contains pm
i in the cover of the graded resolution

that was constructed in the previous step.

In this case we (possibly) pass to a further subtriangle, and collect test sequences
that extend to weakly strictly solid specializations. The combined specializations
converge into a graded resolution that is similar to FGResn1+1. On the special-
izations in a further subtriangle, that factor through a cover graded resolution, we
impose one of finitely many possible Diophantine conditions, and the combined
specializations converge into a quotient resolution which is a proper quotient reso-
lution (of strictly smaller complexity) of the resolution that was constructed in the
previous step.

By the termination of the sieve procedure (theorem 22 in [Se6], see also the proof
of theorem 4.4), this iterative procedure terminates after finitely many steps. We
denote its terminating step, n2, and clearly n2 > n1. When it terminates there ex-
ists a subtriangle for which for every triple (i, j, m), j < i ≤ m, there is no sequence
of weakly strictly solid specializations of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

j )}, where

the sequence, {pm
i (s)}, is a restriction to the elements p of a test sequence in the

fiber that contains pm
i in the cover of the graded resolution that was constructed
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in step n2.

At this point we once again swap the raws in the subtriangle of specializations.
For each i, n2 + 1 ≤ i ≤ m, we replace pm

i with pm
m+n2+1−i, and for each j,

n2 + 1 ≤ j ≤ m, we replace qm
j with qm

m+n2+1−j . After this swap, for each pair of
indices, n2 + 1 ≤ i, j ≤ m, (pm

i , qm
j ) ∈ ES(p, q) if and only if j ≤ i.

We continue according to the first iterative procedure, i.e., at each step we
collect weakly strictly solid specializations, that converge into a proper quotient
resolution (a resolution of strictly smaller complexity) of the graded resolution that
was constructed in the previous step. This iterative procedure terminates after
finitely many steps. After it terminates we swap the raws in the triangle once again,
and continue iteratively along the steps of the second iterative procedure. This
(second) iterative procedure terminates after finitely many steps, and we continue
iteratively. At each step we first swap the raws, and then continue along the first or
second iterative procedure until they terminate (after finitely many steps), swap,
and continue along the other procedure.

This iterative procedure of swapping and continuing along the two iterative pro-
cedures until they terminate, terminates after finitely many steps, by the proof
of theorem 4.4. Once it terminates, we are left with a graded resolution, GResnk

,
which is graded with respect to the parameter subgroup, < q1, . . . , qnk

>, a cover of
this graded resolution that satisfies the properties of cover graded resolutions that
are listed in theorem 1.21, CGResnk

, and a subtriangle of specializations, (still de-
noted) {pm

i } and {qm
j }, nk + 1 ≤ i, j ≤ m that extend to specializations that factor

through the cover graded resolution, CGResnk
, for which (pm

i , qm
j ) ∈ ES(p, q) if

and only if nk + 1 ≤ j ≤ i ≤ m. Furthermore, each specialization pm
i extends to a

specialization that factors through CGResnk
. A test sequence of specializations in

the fiber of CGResnk
that contains pm

i , restricts to specializations, {pm
i (s)}, that

extend to weakly strictly solid specializations of Sld(x, p, q), {(xm
i,j(s), pm

i (s), qm
j )},

if and only if nk + 1 ≤ j ≤ i ≤ m.

Now, we can continue to the second part as we did in proving the stability of
varieties and Diophantine sets (theorems 8.2 and 8.5). The (cover) graded reso-
lution, CGResnk

, terminates in a free product of a rigid or a weakly solid factor
with (possibly) finitely many elliptic factors and (possibly) a free group. By theo-
rems 1.14 and 1.15, with the rigid or solid factor, one can associate finitely many
(combinatorial) configurations, so that each configuration contains finitely many
fractions, and finitely many elliptic elements. A rigid or almost shortest (weakly)
strictly solid specialization is given by fixed words in the fractions and the elliptic
elements. The value of these fractions depend only on the specialization of the
defining parameters, and not on the (specific) rigid or almost shortest (weakly)
strictly solid specialization, whereas the elliptic elements do depend on the specific
rigid or weakly strictly solid specialization (and not only on the specialization of
the defining parameters). See theorems 1.14 and 1.15 for the precise details.

We can pass to a further subtriangle of specializations, {pm
i }m

i=nk+1 and {qm
j }m

j=nk+1,
so that (pm

i , qm
j ) ∈ ES(p, q) if and only if j ≤ i, and assume that the specializations

of the rigid or weakly solid factor of the terminal limit group of CGResnk
that

are associated with the specializations, {(pm
i , qm

j )}, from the subtriangle, are all
associated with one (fixed) combinatorial configuration (out of the finitely many
combinatorial configurations) that is presented in theorems 1.14 and 1.15, and
is associated with the rigid or weakly solid factor of the terminal limit group of
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CGResnk
.

We denote the fractions that appear in the (fixed) combinatorial configuration
(that get the same values for all the rigid or almost shortest strictly solid spe-
cializations that are associated with the same specializations of the parameters
(qm

1 , . . . , qm
nk

), and with the fixed combinatorial configuration), vm
1 , . . . , vm

f , and
for brevity vm. We denote the elliptic elements that are associated with the values
of the parameters (qm

1 , . . . , qm
nk

), eqm
1 , . . . , eqm

d , and for brevity eqm, and with the
rigid or almost shortest (weakly) strictly solid specializations: epm

1 , . . . , epm
g , and

for brevity epm (see the statements of theorems 1.14 and 1.15 for these notions).

At this point we start the second part of our argument that involves two inter-
changing iterative procedures like the first part, and in which all the resolutions are
ungraded, i.e., they terminate in elliptic subgroups, in a similar way to the second
part of the argument that was used to prove stability of varieties and Diophantine
sets.

First, With each element, pm
i , nk < i ≤ m, from the triangle of specializations

that is associated with the cover graded resolution, CGResnk
, we associate a tuple

of elliptic specializations, epm
i , that is associated with it and with the fixed combi-

natorial configuration that is associated with the rigid or weakly solid factor of the
terminal limit group of CGResnk

, and with the fixed values of the elements, vm.

We continue with the triangle of specializations, {epm
i } and {qm

j }, nk < i, j ≤ m.
We swap each line of the triangle, i.e., we replace a pair, (epm

i , qm
i ), with the pair,

(epm
m−i+nk+1, q

m
m−i+nk+1), for nk < i ≤ m. After this swap, the corresponding pair,

(pm
i , qm

j ) ∈ ES(p, q), nk < i, j ≤ m, if and only if i ≤ j.

We apply the first iterative procedure for this triangle of specializations. Given
the triangle of pairs, and the specialization, vm and eqm, we can pass to a sub-
triangle (still denoted with the same indices), such that every sequence of pairs,
{(epm

nk+1, q
m
jm

, vm, eqm)}∞m=1, nk + 1 ≤ jm ≤ m, converges into the same limit

group (over free products), E. By passing to a further subtriangle, we may assume
that every such sequence, converges into the same ungraded resolution (that can
be viewed as multi-graded with respect to the elliptic tuples, epm

nk+1 and eqm):
E = E0 → E1 → . . . → Es, where Es is a free product of finitely many f.g. elliptic
factors and possibly a free group. We denote this ungraded resolution, ERes1.

We continue iteratively. At each step we look for a further subtriangle, for which
the corresponding sequences of weakly strictly solid specializations (of Sld(x, p, q)),
{(xm

n,im
, pm

n , qm
jm

)}∞m=1, n ≤ jm ≤ m, converge into the same limit group, and
the combined weakly strictly solid specializations converge into the same quotient
resolution, that is constructed according to the general step of the sieve procedure.
Note that the constructed quotient resolution is ungraded and terminates in a free
product of elliptic factors and possibly a free group. Furthermore, the quotient
resolution that is constructed in the general step of the procedure is not a closure
of the quotient resolution that was constructed in the previous step, but rather it is
a quotient resolution of strictly smaller complexity according to the sieve procedure
[Se6].

By proposition 8.3 this iterative procedure terminates after finitely many steps,
that we denote ℓ1 (ℓ1 > nk). When it terminates we are left with an ungraded
resolution, that we denote EResℓ1 . With the ungraded resolution, EResℓ1 we
associate a cover resolution, CEResℓ1 , that satisfies the properties of theorem 1.21.
With CEResℓ1 , there is an associated triangle of specializations, (still denoted)
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{epm
i }m

i=ℓ1+1 and {qm
j }m

j=ℓ1+1, which is a subtriangle of the original triangle of

specializations in G = A∗B, for which the corresponding specialization, (pm
i , qm

j ) ∈
ES(p, q), if and only if i ≤ j. Furthermore, for every pair, (epm

i , qm
j ), for which

ℓ1 +1 ≤ i ≤ j ≤ m, the triple (epm
i , vm, qm

j ) extends to a specialization that factors
through the cover resolution CEResℓ1 .

At this point we continue as we did in the first part of the argument. First, we
swap the raws in the subtriangle of specializations. Note that after this swap, for
each pair of indices, ℓ1 +1 ≤ i, j ≤ m, the corresponding specializations, (pm

i , qm
j ) ∈

ES(p, q) if and only if j ≤ i.
Each specialization (vm, qm

j ), ℓ1+1 ≤ j ≤ m, belongs to some fiber of the graded

resolution, CEResℓ1 . If there is a subtriangle of our given triangle, (still denoted)
{epm

i } and {qm
j }, ℓ1 + 1 ≤ i, j ≤ m, for which for every triple (i, j, m), ℓ1 + 1 ≤ i <

j ≤ m, there is no sequence of weakly strictly solid specializations of Sld(x, p, q),
{(xm

i,j(s), pm
i (s), qm

j (s))}, where the sequence, {(pm
i (s), qm

j (s))}, is a restriction to
the pair (p, q) of a test sequence in the fiber that contains qm

j , we reached a terminal
point of the procedure (i.e., a terminal point of the second part of the argument
for proving stability of ES(p, q)). In this case we can extract a contradiction, and
conclude stability, from this subtriangle, and the graded resolution CEResℓ1+1.

Otherwise, if there is no subtriangle with this property, there exists a subtriangle
of the given triangle, {epm

i } and {qm
j }, ℓ1 + 1 ≤ i, j ≤ m, for which for every

triple (i, j, m), ℓ1 + 1 ≤ i < j ≤ m, there exists a sequence of weakly strictly
solid specializations of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

j (s))}, where the sequence,
{(pm

i (s), qm
j (s))}, is a restriction to the pair (p, q) of a test sequence in the fiber

that contains qm
j .

In this case there exists a further subtriangle of the triangle that is associated
with CEResℓ1 , (that we still denote) {pm

i } and {qm
j }, ℓ1 + 1 ≤ i, j ≤ m, for which:

(1) for every pair (j, m), ℓ1 + 1 < j ≤ m, there exists a sequence of weakly
strictly solid specializations of Sld(x, p, q), {(xm

ℓ1+1,j(s), pm
ℓ1+1(s), qm

j (s))},
and an associated test sequence of the cover resolution, CEResℓ1 :

{(zm
ℓ1+1,j(s), vm(s), pm

ℓ1+1(s), qm
j (s), eqm

1 , . . . , eqm
nk

, epm
nk+1, . . . , epm

ℓ1
)}

that is all in the fiber that contains (vm, qm
j ).

(2) every combined sequence:

{(zm
ℓ1+1,jm

(sm), xm
ℓ1+1,jm

(sm), vm(sm), pm
ℓ1+1(sm), qm

jm
(sm), eqm

1 , . . . , eqm
nk

, epm
nk+1, . . . , epm

ℓ1
, epm

ℓ1+1)}

where ℓ1 + 1 < jm ≤ m, and m < sm, converges into the same ungraded
resolution, FEResℓ1+1. In particular, the sequence:

{(zm
ℓ1+1,jm

(sm), vm(sm), pm
ℓ1+1(sm), qm

jm
(sm), eqm

1 , . . . , eqm
n1

, epm
nk+1, . . . , epm

ℓ1
)}

converges into the ungraded resolution, EResℓ1 .

The resolution, FEResℓ1+1, can be viewed as a formal (ungraded) resolution,
and it has the same structure as the resolution, EResℓ1 . With the resolution,
FEResℓ1+1, we associate a cover resolution, with a f.p. completion and terminal
limit group, according to theorem 1.21, that we denote, CFEResℓ1+1. We can pass
to a further subtriangle, so that the sequences of specializations:

{(zm
ℓ1+1,jm

(sm), xm
ℓ1+1,jm

(sm), vm(sm), pm
ℓ1+1(sm), qm

jm
(sm), eqm

1 , . . . , eqm
nk

, epm
nk+1, . . . , epm

ℓ1
, epm

ℓ1+1)}
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actually factor through the cover resolution, CFEResℓ1+1.

As for i, j, ℓ1 + 1 ≤ i, j ≤ m, (pm
i , qm

j ) ∈ E(p, q) if and only if j ≤ i, the

tuple, {(xm
ℓ1+1,j, p

m
ℓ1+1, q

m
j )}, ℓ1 + 1 < j ≤ m, that extends to a specialization of

CFEResℓ1+1, can not be weakly strictly solid. Hence, on the specializations that
factor through CFEResℓ1+1 we may further impose one of finitely many Diophan-
tine conditions that force the specializations, {(xm

ℓ1+1,j, p
m
ℓ1+1, q

m
j )}, ℓ1 +1 < j ≤ m,

that extends to a specialization of CFEResℓ1+1, to be non weakly strictly solid.

We further pass to a subtriangle, so that every sequence of specializations,
(xm

ℓ1+1,jm
, pm

ℓ1+1, q
m
jm

), ℓ1 + 1 < jm ≤ m, and their extensions to specializations
of CFERes, together with the specialization of the Diophantine condition that
forces it to be non weakly strictly solid, converges into a quotient resolution of
FEResℓ1+1, that we denote, EResℓ1+1. Since generic points in FEResℓ+11+1 re-
strict to weakly strictly solid specializations, EResℓ1+1, is a proper quotient reso-
lution of FEResℓ1+1, i.e., it is a quotient resolution of strictly smaller complexity
than EResℓ1 (in light of the sieve procedure).

We continue iteratively, precisely as we did in the iterative procedure that was
used in the first part of th argument. At each step we first look for a subtriangle,
(still denoted) {epm

i } and {qm
j }, i, j ≤ m, for which for every triple (i, j, m), i <

j ≤ m, there is no sequence of weakly strictly solid specializations of Sld(x, p, q),
{(xm

i,j(s), pm
i (s), qm

j (s))}, where the sequence, {(pm
i (s), qm

j (s))}, is a restriction to

the elements p, q of a test sequence in the fiber that contains (vm, qm
j ) in the cover

of the ungraded resolution that was constructed in the previous step. If there is
such a subtriangle, we reached a terminal point of this part of the procedure.

Otherwise, if there is no subtriangle with this property, there exists a subtriangle
of the given triangle, {epm

i } and qm
j , i, j ≤ m, for which for every triple (i, j, m), i <

j ≤ m, there exists a sequence of weakly strictly solid specializations of Sld(x, p, q),
{(xm

i,j(s), pm
i (s), qm

j )}, where the sequence, {(pm
i (s), qm

j (s))}, is a restriction to the
elements p, q of a test sequence in the fiber that contains (vm, qm

j ) in the cover of
the graded resolution that was constructed in the previous step.

In this case we (possibly) pass to a further subtriangle, and collect test sequences
that extend to weakly strictly solid specializations. The combined specializations
converge into a graded resolution that is similar to FEResℓ1+1. On the specializa-
tions in a further subtriangle, that extend to specializations that factor through a
cover resolution we impose one of finitely many possible Diophantine conditions,
and the combined specializations converge into a quotient resolution which is a
proper quotient resolution (of strictly smaller complexity) of the resolution that
was constructed in the previous step.

By the termination of the sieve procedure (theorem 22 in [Se6], see also the proof
of theorem 4.4), this iterative procedure terminates after finitely many steps. We
denote its terminating step, ℓ2, and clearly ℓ2 > ℓ1. When it terminates there exists
a subtriangle for which for every triple (i, j, m), i < j ≤ m, there is no sequence
of weakly strictly solid specializations of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

j (s)}, where
the sequence, {(pm

i (s), qm
j (s))}, is a restriction to the elements p, q of a test sequence

in the fiber that contains (vm, qm
j ) in the cover of the graded resolution that was

constructed in step ℓ2.

We continue as we did in the first part of the argument. At this point we once
again swap the raws in the subtriangle of specializations. After this swap, for each
pair of indices, ℓ2 + 1 ≤ i, j ≤ m, (pm

i , qm
j ) ∈ ES(p, q) if and only if i ≤ j.
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We continue according to the first iterative procedure that was used in the sec-
ond part of the argument. i.e., at each step we collect weakly strictly solid spe-
cializations, that converge into a proper quotient resolution (a resolution of strictly
smaller complexity) of the graded resolution that was constructed in the previ-
ous step. This iterative procedure terminates after finitely many steps. After it
terminates we swap the raws in the triangle once again, and continue iteratively
along the steps of the second iterative procedure that was used in the second part
of the argument. This (second) iterative procedure terminates after finitely many
steps, and we continue iteratively. At each step we first swap the raws, and then
continue along the first or second iterative procedure until they terminate (after
finitely many steps), swap, and continue along the other procedure.

This iterative procedure of swapping and continuing along the two iterative pro-
cedures until they terminate, terminates after finitely many steps, by the proof
of theorem 4.4. Once it terminates, we are left with an ungraded resolution,
EResℓt

, a cover of this resolution that satisfies the properties of cover resolutions
that are listed in theorem 1.21 (and in particular has a f.p. completion and ter-
minal limit group), CEResℓt

, and a subtriangle of specializations, (still denoted)
{epm

i } and {qm
j }, ℓt + 1 ≤ i, j ≤ m that extend to specializations that factor

through the cover resolution, CEResℓt
, for which (the corresponding specialization)

(pm
i , qm

j ) ∈ ES(p, q) if and only if ℓt + 1 ≤ i ≤ j ≤ m. Furthermore, each special-

ization (vm, qm
j ) extends to a specialization that factors through CEResℓt

. A test
sequence of specializations in the fiber of CEResℓt

that contains (vm, qm
j ), restricts

to specializations, {(pm
i (s), qm

j (s))}, that extend to weakly strictly solid specializa-
tions of Sld(x, p, q), {(xm

i,j(s), pm
i (s), qm

j (s))}, if and only if ℓt + 1 ≤ i ≤ j ≤ m.

We denote the ungraded resolution that is constructed in step ℓt, ERes. With
ERes we associate a cover (ungraded) resolution, CERes, according to theorem
1.21. As (by theorem 1.21) the completion and the terminal limit group of the cover
resolution, CERes, are finitely presented, we may pass to a further subtriangle of
the tuples of specializations that were used to construct the resolution ERes, such
that all the specializations in this subtriangle factor through CERes.

Recall that the subgroup < q > is embedded in the graded cover CERes, and
the elements p can be expressed as words in the elements that are associated with
vm in CERes, with the elliptic elements ep. Given the cover resolution, CERes,we
look at all its test sequences, for which the restriction of the test sequences to
the elements p, q, extend to weakly strictly solid specializations of the weakly solid
limit group, Sld(x, p, a). By the techniques that were used to construct the formal
Makanin-Razborov diagram, with the collection of these test sequences we can
associate a formal Makanin-Razborov diagram (see theorem 2.7), where each of the
finitely many resolutions in this formal Makanin-Razborov diagram is a closure of
CERes, and each such resolution has a f.p. completion and terminal limit group.

A specialization of Sld(x, p, q) is not weakly strictly solid if it satisfies one out
of finitely many Diophantine conditions. Given each of the resolutions in this
(formal) Makanin-Razborov diagram, we look at all the test sequences that factor
through it, for which the elements that are associated with the weakly strictly
solid specializations of Sld(x, p, q), satisfy one of the finitely many Diophantine
conditions that force them to be non weakly strictly solid specializations. With
the collection of these sequences we can once again associate a formal Makanin-
Razborov diagram, in which every resolution has a f.p. completion and terminal
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limit group.

Now, the subtriangle of specializations that factor through the cover graded
resolution, CERes, extend to specializations that factor through resolutions in the
(formal) Makanin-Razborov diagram that is associated with CERes. Specialization
in the subtriangle that is associated with CERes satisfy: (pm

i , qm
j ) ∈ ES(p, q) if

and only if i ≤ j. By the iterative procedure that was applied to construct the
terminal ungraded resolution ERes, test sequences in CERes that are contained in
the fiber of of (vm, qm

j ), extend to weakly strictly solid specializations of Sld(x, p, q)
if and only if i ≤ j as well.

The resolutions in the formal Makanin-Razborov diagrams that are associated
with CERes enable one to reduce the question of whether a fiber in CERes contains
a test sequence that extends to weakly strictly solid specializations of Sld(x, p, q)
to a (finite) disjunction of conjunctions of (fixed) AE predicates over the factors
of the free product G = A ∗ B. Hence, the existence of the (infinite) subtriangle
of specializations that is associated with CERes, contradicts the stability of the
constructed AE predicates over the factors A and B. Therefore, ES(p, q) is stable,
and theorem 8.6 follows.

�

Having proved that varieties, Diophantine sets, and sets of specializations of
the defining parameters for which there exists a rigid or a weakly strictly solid
specialization of a rigid or a weakly solid limit group, are stable over a free product
in which the factors are stable, we are finally ready to complete the proof of theorem
8.1, i.e., to prove that the theory of a free product of stable groups is stable.

The argument that we use to prove stability of a general definable set over a
free product of stable groups, is based on the argument that was used to prove
that the set, ES(p, q), is stable over such free products in theorem 8.6. To adapt
this approach, we use the uniform geometric description of a definable set over free
products, that is stated and proved in theorem 6.1.

Let Def(p, q) be a coefficient-free definable set. Wlog we will assume that

Def(p, q) is an E(AE)
k

set. Recall that theorem 6.1 associates with Def(p, q)
finitely many graded resolutions, DRes1, . . . , DResg, and with each such graded
resolution, there are finitely many associated auxiliary resolutions. The graded res-
olutions, DResi, have the properties of resolutions in the graded Makanin-Razborov
diagram (over free products) of a f.p. group (theorem 1.22), and in particular they
terminate in a free product of a rigid or a weakly solid limit group (that can be em-
bedded in a f.p. ungraded completion) with finitely many f.p. elliptic factors. The
auxiliary resolutions have the same properties as resolutions in a graded formal
Makanin-Razborov diagram (theorem 2.7), and their terminal limit groups have
the same properties as the terminal limit groups of the graded resolutions, DResi.

By theorem 6.1, the question of whether a specialization of the defining parame-
ters is in Def(p, q) or in its complement, over an arbitrary non-trivial free product
that is not isomorphic to D∞, depends entirely on the set of all possible special-
izations of the terminal limit groups of the graded resolutions, DResi (that are
associated with Def(p, q)), and their possible extensions to specializations of the
terminal limit groups of the (finitely many) associated resolutions (see theorem 6.1
for details). This enables one to reduce a sentence over free products to sentences
over its factors (theorem 6.3), and even to get a form of quantifier elimination for
predicates over free products (theorem 6.4). Note that the graded resolutions that
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are constructed in theorem 6.1 and are associated with Def(p, q) are good for all
free products, regardless of the number of factors, whereas the reduction of a sen-
tence to its factors, and the quantifier elimination, do depend on the number of
factors in the given free product.

By theorem 6.1 (see also the proof of theorem 6.3), a specialization of the defining
parameters p, q is in Def(p, q), if and only if specializations of the terminal limit
groups of the graded resolutions, DResi (that are associated with Def(p, q)), and
their associated auxiliary resolutions, satisfy certain properties that are listed in
theorem 6.1 (and correspondingly in theorem 6.3).
Hence, our approach to prove stability of the set Def(p, q) over free products con-
sists of two parts, as in proving stability of the set ES(p, q) (theorem 8.6). In each
part we apply a sequence of interchanging iterative procedures, where the iterative
procedures are similar to the ones that were used in the proof of theorem 8.6, and
the way we interchange them depends and follows the requirements on the terminal
limit group of the graded resolutions, DRes, that are associated with Def(p, q),
and the terminal limit groups of their associated auxiliary resolutions, as these
requirements appear in theorem 6.1 (and in its proof).

The terminal limit group of any of those (finitely many) graded resolutions, is a
free product of a rigid or a weakly solid factor (w.r.t. to the parameter subgroup
< p, q >) with (possibly) finitely many elliptic factors. Furthermore, the rigid or
weakly solid factor in such a terminal limit group can be embedded in an ungraded
f.p. completion. Hence, each terminal limit group of one of the graded resolutions,
DResi, or one of its associated auxiliary resolutions, can be embedded into a f.p.
group, which is the free product of the f.p. ungraded completion into which the rigid
or weakly solid factor embeds, free product with the (finitely many) f.p. elliptic
factors of the terminal limit group.

Let G = A ∗ B be a non-trivial free product, that is not isomorphic to D∞, in
which both A and B are stable, and suppose that the coefficient-free definable set,
Def(p, q), is unstable over G. Since Def(p, q) is unstable over G, for every positive
integer m, there exists two sequences of tuples with elements in G, {pm

i }m
i=1 and

{qm
j }m

j=1, such that (pi, qj) ∈ Def(p, q) if and only if j ≤ i.

Let Def(p, q) be given by the coefficient-free predicate:

Def(p, q) = ∃t ∀y1 ∃x1 . . . ∀yk ∃xk Σ(t, y1, x1, . . . , yk, xk, p, q) = 1∧

∧Ψ(t, y1, x1, yk, xk, p, q) 6= 1

By theorem 6.1, given the triangle of pairs, {(pm
i , qm

j ) 1 ≤ i, j ≤ m}, we can pass to
a subtriangle (still denoted with the same indices), and with each pair, (pm

i , qm
1 ), as-

sociate a specialization of the terminal limit group of one of the resolutions, DRes,
that are associated with Def(p, q), that restricts to a rigid or a weakly strictly solid
specialization of the rigid or weakly solid factor of that terminal limit group. Fur-
thermore, these specializations of the terminal limit group of DRes, are supposed
to testify that the various specializations, (pm

i , qm
1 ) are in the set Def(p, q). we can

pass to a further subtriangle (still denoted with the same indices), such that these
specializations of the terminal limit group of DRes, (tmi,1, p

m
i , qm

1 ), 1 ≤ i ≤ m, have
the property that every sequence of the form: {(tmim,1, p

m
im

, qm
1 )}∞m=1, converges into

the same limit group (over free products), L(t, p, q). By passing to a further subtri-
angle, we may assume that every such sequence, {(tmim,1, p

m
im

, qm
1 )}∞m=1, converges
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into the same graded resolution, with respect to the parameter subgroup < q >:
L = L0 → L1 → . . . → Ls, where Ls is rigid or solid. We denote this graded
resolution, GRes1.

We continue as we did in the first part of proving that ES(p, q) is stable (theorem
8.6). At this stage we look for a further subtriangle (still denoted with the same
indices), for which:

(1) for each pair (pm
i , qm

2 ), there exists a specialization of the terminal limit
group of one of the graded resolutions, DRes, that restricts to a rigid or a
weakly strictly solid specialization of the rigid or solid factor of that terminal
limit group, (tmi,2, p

m
i , qm

2 ), 2 ≤ i ≤ m. Furthermore, we may assume that
these specializations of the terminal limit group of DRes testify that the
specializations, (pm

i , qm
2 ), 2 ≤ i ≤ m, are in the set Def(p, q).

(2) every sequence of these specializations (of the terminal limit group of DRes),
{(tmim,2, p

m
im

, qm
2 )}∞m=1, 2 ≤ im ≤ m, converges into the same limit group,

U(t, p, q).
(3) every sequence of pairs of these specializations of the terminal limit group

of DRes, {(tmim,1, t
m
im,2, p

m
im

, qm
1 , qm

2 )}∞m=1, 2 ≤ im ≤ m, converges into the
same quotient resolution, that is constructed according to the first step of
the sieve procedure [Se6].

(4) the quotient resolution that is constructed from the convergent sequences
of pairs of specializations of the terminal limit group of DRes, is a proper
quotient resolution of the graded resolutions that was constructed from the
convergent sequences, {(tmim,1, p

m
im

, qm
1 )}∞m=1, in the first step of the iterative

procedure, i.e., the quotient resolution that is constructed in the second step
of the iterative procedure is not a graded closure of the graded resolution
that was constructed in the first step, but rather it is a quotient resolution
of strictly smaller complexity according to the sieve procedure [Se6].

We continue iteratively as we did in the first part of the proof of theorem 8.6. At
each step n we look for a further subtriangle, for which the corresponding sequences
of specializations of the terminal limit group of a resolution DRes, that is associ-
ated with Def(p, q), that restrict to rigid or weakly strictly solid specializations of
the rigid or weakly solid factors of this terminal limit group, {(tmim,n, pm

im
, qm

n )}∞m=1,
n ≤ im ≤ m, converge into the same limit group, and the combined specializa-
tions specializations converge into the same quotient resolution, that is constructed
according to the general step of the sieve procedure. Furthermore, the quotient
resolution that is constructed in the n-th step of the procedure is not a closure of
the quotient resolution that was constructed in step n−1, but rather it is a quotient
resolution of strictly smaller complexity according to the sieve procedure [Se6].

By proposition 8.3 this iterative procedure terminates after finitely many steps.
When it terminates we are left with a triangle of specializations, (still denoted)
{pm

i }m
i=1 and {qm

j }m
j=1, which is a subtriangle of the original triangle of specializa-

tions in G = A ∗B, for which (pi, qj) ∈ Def(p, q) if and only if j ≤ i. Furthermore,
suppose that the iterative procedure terminated at step n1. Then:

(1) for each pair (pm
i , qm

j ), there exists a specialization of a terminal limit group
of a resolution, DRes, (tmi,j , p

m
i , qm

j ), where 1 ≤ j ≤ n1 and n1 + 1 ≤ i ≤ m,
that restricts to a rigid or a weakly strictly solid specialization of the rigid
or weakly solid factor of that terminal limit group.
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(2) every sequence of these specializations:

{(tmim,1, . . . , tmim,n1
, pm

im
, qm

1 , . . . , qm
n1

)}∞m=n1+1

n1 + 1 ≤ im ≤ m, converges into the same quotient resolution, that was
constructed according to the general step of the sieve procedure [Se6].

We denote the graded resolution that is constructed in the n1-th step of the
iterative procedure, GResn1

. By theorem 1.21 we can associate a cover graded
resolution with GResn1

, that we denote, CGResn1
, that satisfy all the properties

that are listed in theorem 1.21, and after possibly passing to a further subtriangle,
we may assume that all the tuples of specializations,

{(tmim,1, . . . , tmim,n1
, pm

im
, qm

1 , . . . , qm
n1

)}∞m=n1+1

n1 + 1 ≤ im ≤ m, factor through the cover graded resolution, CGResn1
.

Each specialization pm
i , n1 + 1 ≤ i ≤ m, belongs to some fiber of the graded

resolution, CGResn1
. If there is a subtriangle of our given triangle, (still denoted)

{pm
i } and {qm

j }, n1 + 1 ≤ i, j ≤ m, for which for every triple (i, j, m), n1 + 1 ≤
j ≤ i ≤ m, there is a sequence of specializations of the terminal limit group of
DRes, that restrict to rigid or weakly strictly solid specializations of the rigid or
weakly solid factor of that terminal limit group, {(tmi,j(s), pm

i (s), qm
j )}, where the

sequence, {pm
i (s)}, is a restriction to the elements p of a test sequence in the fiber

that contains pm
i , and these elements testify that the tuples, (pm

i (s), qm
j ), are in

the definable set, Def(p, q), we reached a terminal point of the first procedure
(for proving the stability of Def(p, q)), and we continue with the subtriangle, and
the graded resolutions, CGResn1

, and the graded resolution, GResn1
, to the next

iterative procedure, that studies those pairs (pm
i , qm

j ), n1 + 1 ≤ i < j ≤ m, that do
not belong to Def(p, q).

Otherwise, if there is no subtriangle with this property, there exists a subtriangle
of the given triangle, {pm

i } and {qm
j }, n1 + 1 ≤ i, j ≤ m, for which for every

triple (i, j, m), n1 + 1 ≤ j < i ≤ m, there exists a sequence of specializations of
the terminal limit group of DRes, that restrict to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of that terminal limit group,
{(tmi,j(s), pm

i (s), qm
j )}, where the sequence, {pm

i (s)}, is a restriction to the elements
p of a test sequence in the fiber that contains pm

i , and:

(1) for every triple, (i, j, m), n1 ≤ j ≤ i ≤ m, the sequence of specializations,
{(tmi,j(s), pm

i (s), qm
j )}, and its associated test sequence of the cover graded

resolution, CGResn1
, converge into a closure of CGResn1

, and the given
specialization of the terminal limit group of DRes, (tmi,j, p

m
i , qm

j ), that testi-

fies that (pm
i , qm

j ) ∈ Def(p, q), is a specialization of a cover of that closure
of CGResn1

.
(2) the sequence of specializations of the terminal limit group of DRes:

{(tmi,j(s), pm
i (s), qm

j )}

do not testify that the tuples, (pm
i (s), qm

j (s)) are in the definable set, Def(p, q).

In this case there exists a further subtriangle of the triangle that is associated
with CGResn1

, (that we still denote) {pm
i } and {qm

j }, n1 +1 ≤ i, j ≤ m, for which:

(1) for every triple (i, j, m), n1 + 1 ≤ j ≤ i ≤ m, there exists a sequence of spe-
cializations of the terminal limit group of an auxiliary resolution, Y1DRes,
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that is associated with DRes, that restricts to rigid or weakly strictly solid
specializations of the rigid or weakly solid factor of that terminal limit group
of Y1DRes, {(y1m

i,j(s), tmi,j(s), pm
i (s), qm

j )}, that extends the sequence of spe-
cializations of the terminal limit group of DRes, {(tmi,j(s), pm

i (s), qm
j )}, that

is associated with the pair, (pm
i , qm

j ). Furthermore, these specializations of
the terminal limit group of the auxiliary resolution Y1DRes, testify that the
corresponding specializations of DRes, {(tmi,j(s), pm

i (s), qm
j )}, do not testify

that the tuples, (pm
i , qm

j ), are in Def(p, q).

(2) every combined sequence:

{(zm
im,n1+1(sm), y1m

im,n1+1(sm), tmim,n1+1(sm), pm
im

(sm), qm
1 , . . . , qm

n1
, qm

n1+1)}

where n1 + 1 ≤ im ≤ m and m < sm, converges into the same graded
resolution, FGResn1+1 (it is graded with respect to the parameter subgroup
< q1, . . . , qn1+1 >. In particular, the sequence:

{(zm
im,n1+1(sm), pm

im
(sm), qm

1 , . . . , qm
n1

)}

converges into the graded resolution, GResn1
.

The graded resolution, FGResn1+1, can be viewed as a formal graded resolution,
and it has the same structure as the graded resolution, GResn1

. With the graded
resolution, FGResn1+1, we associate a cover graded resolution according to theorem
1.21, that we denote, CFGResn1+1. We can pass to a further subtriangle, so that
the sequences of specializations:

{(zm
im,n1+1(sm), y1m

im,n1+1(sm), tmim,n1+1(sm), pm
im

(sm), qm
1 , . . . , qm

n1
, qm

n1+1)}

where n1 + 1 ≤ jim ≤ m, and m < sm, actually factor through the graded cover
resolution, CFGResn1+1.

The sequences, {(tmi,n1+1(s), pm
i (s), qm

n1+1)}, do not testify that the tuples, (pm
i , qm

n1+1),
are in Def(p, q), and their extensions to specializations of the terminal limit group
of the auxiliary resolution, Y1DRes, {(y1m

i,n1+1(s), tmi,n1+1(s), pm
i (s), qm

n1+1)}, testify
for that. Furthermore, the specializations, (tmi,n1+1, p

m
i , qm

n1+1), n1 + 1 ≤ i ≤ m,
do testify that (pm

i , qm
n1+1) ∈ Def(p, q). Hence, on the specializations that factor

through the cover, CFGResn1+1, we can further impose either one of finitely many
Diophantine conditions that forces the specializations of the elements y1, that are
specializations of the terminal limit group of an auxiliary resolution, Y1DRes, to
restrict to non-rigid or non weakly strictly solid specialization of the rigid or weakly
solid specialization factor of that terminal limit group, or to impose the existence
of extensions of these specializations of the terminal limit group of Y1DRes, to an
auxiliary resolution, X1Y1DRes (see theorem 6.1 for these auxiliary resolutions).

We further pass to a subtriangle, so that every sequence of specializations,
(y1m

im,n1+1, t
m
im,n1+1, p

m
im

, qm
n1+1), n1 + 1 ≤ im ≤ m, together with their extension to

specializations of CFGRes, and together with the specialization of the Diophan-
tine condition that forces them to restrict to non-rigid or non weakly strictly solid
specializations of the rigid or weakly solid factor of the terminal limit group of
Y1DRes, or together with the corresponding specializations of the terminal limit
group of an auxiliary resolution, X1Y1DRes, that restrict to rigid or weakly strictly
solid specializations of the rigid or weakly solid factor of that terminal limit group,
converges into a quotient resolution of FGResn1+1, that we denote, GResn1+1.
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If the obtained quotient resolution is a proper quotient resolution of GResn1
,

i.e., not a closure of it, we continue iteratively, by looking for a subtriangle with
test sequences that extend to specializations of the terminal limit group of one
of the auxiliary resolution, Y1DRes, and then force either one of finitely many
Diophantine conditions or a further extension to the terminal limit group of one of
the auxiliary resolutions, X1Y1DRes.

If the obtained resolution is not a proper quotient resolution of GResn1
, we pass

to a further subtriangle, in which test sequences of a cover of the obtained quotient
resolution (which is a closure of GResn1

), extend to specializations of the terminal
limit group of one the auxiliary resolutions, Y2X1Y1DRes, that restrict to rigid
or weakly strictly solid specializations of the rigid or weakly solid factor of that
terminal limit group.

We continue iteratively, according to the iterative procedure that was applied in
the first n1 steps, and according to the proof of theorem 6.1 that constructed the
graded resolutions, DRes, and their associated auxiliary resolutions, that are all
associated with the definable set, Def(p, q). This iterative procedure terminates
after finitely many steps according to proposition 8.3, and the proof of theorem 4.4.
When the iterative procedure terminates, at step nk, we are left with a quotient
resolution that we denote, GResnk

, that is graded with respect to the parameters,
qm
1 , . . . , qm

nk
.

With GResnk
we associate a cover resolution according to theorem 1.21, that

we denote CGResnk
. With GResnk

and its cover, CGResnk
, there is an associated

subtriangle of specializations, {pm
i } and {qm

j }, nk +1 ≤ i, j ≤ m, so that every spe-
cialization, pm

i extends to a specialization that factors through the cover CGResnk
.

By the properties of the iterative procedure that was used to construct the quotient
resolution, GResnk

, for any specialization, qm
j , nk + 1 ≤ j ≤ m, and any special-

ization, pm
i , j ≤ i ≤ m, there exists a sequence of specializations, {(pm

i (s), qm
j )},

where the specializations, {pm
i (s)}, are the restriction to the variables p, of a test

sequence of specializations in the fiber that contains pm
i , so that the sequence,

{(pm
i (s), qm

j )}, extend to specializations, {(tmi,j(s), pm
i (s), qm

j )}, that are all special-
izations of the terminal limit group of a resolution DRes, that restrict to rigid or
weakly strictly solid specializations of the rigid or weakly solid factor of that ter-
minal limit group, and each of these specializations testify that the corresponding
specialization, {(pm

i (s), qm
j )}, is in the definable set Def(p, q).

At this point we swap the raws in the subtriangle of specializations, as we did in
proving the stability of the set ES(p, q) (theorem 8.6). For each i, nk + 1 ≤ i ≤ m,
we replace pm

i with pm
m+nk+1−i, and for each j, nk +1 ≤ j ≤ m, we replace qm

j with
qm
m+nk+1−j . Note that after this swap, for each pair of indices, nk + 1 ≤ i, j ≤ m,

(pm
i , qm

j ) ∈ Def(p, q) if and only if i ≤ j.

Each specialization pm
i , nk + 1 ≤ i ≤ m, belongs to some fiber of the graded

resolution, CGResnk
. If there is a subtriangle of our given triangle, (still de-

noted) {pm
i } and {qm

j }, nk + 1 ≤ i, j ≤ m, for which for every triple (i, j, m),
nk + 1 ≤ j < i ≤ m, there is no sequence of specializations of the terminal limit
group of one of the resolutions, DRes, that restrict to rigid or weakly strictly
solid specializations of the rigid or weakly solid factor of that terminal limit group,
{(tmi,j(s), pm

i (s), qm
j )}, where the sequence, {pm

i (s)}, is a restriction to the elements

p of a test sequence in the fiber that contains pm
i (in the variety that is associated

with CGResnk
), and these specializations of the terminal limit group of DRes, tes-
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tify that (pm
i (s), qm

j ) ∈ Def(p, q), we reached a terminal point of the first procedure
(for proving the stability of Def(p, q)), and we continue with the subtriangle, and
the graded resolution, CGResnk

, and the graded resolution, GResnk
, to the second

part of the proof (in which we analyze ungraded resolutions and not graded ones,
as we did along the second iterative procedure in proving the stability of ES(p, q)).

Otherwise, there is a subtriangle with this property, and we pass to that subtri-
angle. In this case there exists a further subtriangle of the triangle that is associated
with CGResnk

, (that we still denote) {pm
i } and {qm

j }, nk +1 ≤ i, j ≤ m, for which:

(1) for every pair (i, m), nk + 1 < i ≤ m, there exists a sequence of spe-
cializations of the terminal limit group of one of the resolutions, DRes,
that restrict to rigid or weakly strictly solid specializations of the rigid or
weakly solid factor of that terminal limit group, {(tmi,nk+1(s), pm

i (s), qm
nk+1)},

and an associated test sequence of the cover graded resolution, CGResnk
,

(zm
i,nk+1(s), pm

i (s), qm
1 , . . . , qm

nk
), that is all in the fiber that contains pm

i .

Furthermore, the specializations, {(tmi,nk+1(s), pm
i (s), qm

nk+1)}, testify that
the tuples, (pm

i (s), qm
nk+1) ∈ Def(p, q).

(2) every combined sequence, {(zm
im,nk+1(sm), tmim,nk+1(sm), pm

im
(sm), qm

1 , . . . , qm
nk

, qm
nk+1)},

where nk + 1 < im ≤ m, and m < sm, converges into the same graded res-
olution, FGResnk+1 (it is graded with respect to the parameter subgroup <
q1, . . . , qnk+1. In particular, the sequence: {(zm

im,nk+1(sm), pm
im

(sm), qm
1 , . . . , qm

nk
)},

converges into the graded resolution, GResnk
.

With the graded resolution, FGResnk+1, which is a graded formal closure of
GResnk

, we associate a cover graded resolution according to theorem 1.21, that we
denote, CFGResnk+1. We can pass to a further subtriangle, so that the sequences
of specializations: {(zm

im,nk+1(sm), tmim,nk+1(sm), pm
im

(sm), qm
1 , . . . , qm

nk
, qm

nk+1)}, where
nk +1 < im ≤ m, and m < sm, actually factor through the graded cover resolution,
CFGResnk+1.

As for i, j, nk < i, j ≤ m, (pm
i , qm

j ) ∈ Def(p, q) if and only if i ≤ j, on the
tuples, (tmi,j, p

m
i , qm

j ), for j < i, that extend to specializations that factor through
CFGResnk+1, we may impose one of two conditions. Either they satisfy one of
finitely many Diophantine conditions that force these specializations to restrict to
non-rigid or non weakly strictly solid specializations of the rigid or weakly solid
factor of the terminal limit group of DRes, or each of these specializations can
be extended to a specialization of the terminal limit group of an auxiliary resolu-
tion, Y1DRes, a specialization that restricts to a rigid or a weakly strictly solid
specialization of the rigid or weakly solid factor of that terminal limit group. Fur-
thermore, these specializations of the terminal limit group of Y1DRes testify that
a specialization, (tmi,j , p

m
i , qm

j ), does not testify that (pm
i , qm

j ) ∈ Def(p, q).

We further pass to a subtriangle, so that every sequence of specializations,
(tmim,nk+1, p

m
im

, qm
nk+1), nk + 1 < im ≤ m, together with the specialization of the

Diophantine condition that forces it to restrict to non rigid or non weakly strictly
solid specialization of the terminal limit group of the associated graded resolution,
DRes, or the specialization of the terminal limit group of an auxiliary resolu-
tion, Y1DRes, converges into a quotient resolution of FGResnk+1, that we denote,
GResnk+1. GResnk+1 is either a proper quotient resolution of FGResnk+1 (which
is a closure of GResnk

), i.e., a quotient resolution of strictly smaller complexity than
GResnk

according to the sieve procedure [Se6], or it is a closure of FGResnk+1. If
GResnk+1 is a proper quotient resolution of GResnk

we reached a terminal point
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of this step of the procedure, and we continue to the next step.
If GResnk+1 is a closure of GResnk

, we associate with it a cover, CGResnk+1,
according to theorem 1.21, with a f.p. completion and terminal limit group. We
further pass to a subtriangle of specializations, {pm

i } and {qm
j }, nk + 1 ≤ i, j ≤ m,

for which, (pm
i , qm

j ) ∈ Def(p, q) if and only if i ≤ j, and the associated specializa-

tions, (y1m
i,nk+1, t

m
i,nk+1, p

m
i , qm

nk+1), nk + 1 < i ≤ m, extend to specializations that
factor through the cover CGResnk+1.

In the variety that is associated with the cover, CGResnk+1, generic points (test
sequences) in the fibers that contain the specializations that restrict to the tuples,
(y1m

i,nk+1, t
m
i,nk+1, p

m
i , qm

nk+1), nk+1 < i ≤ m, restrict to specializations of the termi-
nal limit group of the auxiliary resolution, Y1DRes, that extend to specializations
of the terminal limit group of at least one of the auxiliary resolutions, X1Y1DRes,
that restrict to rigid or weakly strictly solid specializations of the rigid or weakly
solid factor of the terminal limit group of that auxiliary resolution. Furthermore,
these specializations of the terminal limit group of X1Y1DRes, testify that the
corresponding specializations of Y1DRes, do not form an obstacle for proving that
(pm

i (s), qm
nk+1) ∈ Def(p, q) for nk + 1 < i ≤ m, and restrictions of test sequences of

CGResnk+1 to the variables p, {pm
i (s)}.

We pass to a further subtriangle of specializations, {pm
i } and {qm

j }, and use
the test sequences that extend to specializations of the terminal limit group of an
auxiliary resolution, X1Y1DRes, to associate a graded closure with CGResnk+1.
With this graded closure we associate a cover with a f.p. completion and terminal
limit group according to theorem 1.21.
We pass to a further subtriangle, for which the specializations,

(x1m
i,nk+1, y1m

i,nk+1, t
m
i,nk+1, p

m
i , qm

nk+1)

nk + 1 < i ≤ m, extend to specializations that factor through the constructed
cover resolution. On the tuples, (x1m

i,nk+1, y1m
i,nk+1, t

m
i,nk+1, p

m
i , qm

nk+1), that extend
to specializations that factor through the constructed cover resolution, we may
impose one of two conditions, similar to the ones that we imposed on the special-
izations of the cover resolution, CGResnk+1. Either they satisfy one of finitely
many Diophantine conditions that force these specializations to restrict to non-
rigid or non weakly strictly solid specializations of the rigid or weakly solid factor
of the terminal limit group of X1Y1DRes, or each of these specializations can be
extended to a specialization of the terminal limit group of an auxiliary resolution,
Y2X1Y1DRes, a specialization that restricts to a rigid or a weakly strictly solid
specialization of the rigid or weakly solid factor of that terminal limit group. Fur-
thermore, these specializations of the terminal limit group of Y2X1Y1DRes testify
that the specializations, (x1m

i,nk+1, y1m
i,nk+1, t

m
i,nk+1, p

m
i , qm

nk+1), do not testify that

(pm
i , qm

j ) ∈ Def(p, q) for nk + 1 < i ≤ m.
We further pass to a subtriangle, so that every sequence of specializations,

(x1m
i,nk+1, y1m

i,nk+1, t
m
im,nk+1, p

m
im

, qm
nk+1), nk + 1 < im ≤ m, together with the spe-

cialization of the Diophantine condition that forces them to restrict to non rigid
or non weakly strictly solid specializations of the rigid or weakly solid factor of
the terminal limit group of the auxiliary resolution, X1Y1DRes, or the specializa-
tion of the terminal limit group of an auxiliary resolution, Y2X1Y1DRes, converges
into a quotient resolution of GResnk+1. This quotient resolution is either a proper
quotient resolution of GResnk+1 (which is a closure of GResnk

), i.e., a quotient
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resolution of strictly smaller complexity than GResnk
according to the sieve pro-

cedure [Se6], or it is a closure of GResnk+1. If the constructed quotient resolution
is a proper quotient resolution of GResnk

we reached a terminal point of this step
of the procedure, and we continue to the next step.

If the constructed quotient resolution is a closure of GResnk
, we continue it-

eratively along the steps of the auxiliary resolutions that are associated with the
graded resolution, DRes, and the given definable set, Def(p, q), in theorem 6.1. At
each step we first pass to a subtriangle and associate a closure with the previously
constructed quotient resolution, and then impose either a Diophantine condition
that forces the collected specializations to restrict to non rigid or non weakly strictly
solid specializations of the rigid or weakly solid factor of the terminal limit group
of the corresponding auxiliary resolution, or force the corresponding specializations
to extend to specializations of the terminal limit group of an associated auxiliary
resolution. Then we pass to a further subtriangle and use it to construct a new
quotient resolution that is either a closure of GResnk

or it is a proper quotient
resolution, i.e. a quotient resolution of strictly smaller complexity according to the
sieve procedure.
By theorem 6.1, and our assumptions that {(pm

i , qm
j )} ∈ Def(p, q) if and only if

nk + 1 < i ≤ m, after finitely many such steps, we must reach a point in which the
constructed quotient resolution is indeed a proper quotient resolution.

We continue iteratively, and this iterative procedure terminates after finitely
many steps by proposition 8.3 and the argument that was used to prove theorem
4.4. When it terminates we are left with a subtriangle of specializations, {pm

i } and
{qm

j }, for which (pm
i , qm

j ) ∈ Def(p, q) if and only if i ≤ j. Furthermore, with the
subtriangle there is an associated quotient resolution, GResb1 , that is graded with
respect to a tuple, q1, . . . , qb1 . With GResb1 there is an associated cover (graded)
resolution, CGResb1 , and all the specializations pm

i extend to specializations that
factor through the cover, CGResb1 . Furthermore, for every b1 + 1 ≤ j < i ≤
m, there is no test sequence in the fiber that contains pm

i (in the variety that is
associated with the closure, CGResb1), that restrict to specializations, {pm

i (s)},
and the tuples (pm

i (s), qm
j ) ∈ Def(p, q).

At this point we once again swap the raws in the subtriangle of specializations, so
that after the swap, in the subtriangle of specializations, {pm

i } and {qm
j }, b1 + 1 ≤

i, j ≤ m, (pm
i , qm

j ) ∈ Def(p, q) if and only if j ≤ i. We continue according to the
first iterative procedure, until we obtain a quotient resolution, with an associated
cover and subtriangle of specializations, so that for each pair in the remaining
subtriangle of specializations, for every j ≤ i, and pm

i , a test sequence in the fiber
that is associated with pm

i restricts to a sequence of specializations, {pm
i (s)}, so

that (pm
i (s), qm

j ) ∈ Def(p, q).
After this first iterative procedure terminates we swap the raws in the remaining

subtriangle triangle once again, and continue iteratively along the steps of the sec-
ond iterative procedure. This (second) iterative procedure terminates after finitely
many steps, and we continue iteratively. At each step we first swap the raws, and
then continue along the first or second iterative procedure until they terminate
(after finitely many steps), swap, and continue along the other procedure.

As in the analysis of the set ES(p, q) in theorem 8.6, this iterative procedure
of swapping and continuing along the two iterative procedures until they termi-
nate, terminates after finitely many steps, by the proof of theorem 4.4. Once it
terminates, we are left with a graded resolution, GResf , which is graded with
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respect to the parameter subgroup, < q1, . . . , qf >, a cover of this graded reso-
lution that satisfies the properties of cover graded resolutions that are listed in
theorem 1.21, CGResf , and a subtriangle of specializations, (still denoted) {pm

i }
and {qm

j }, f + 1 ≤ i, j ≤ m, that extend to specializations that factor through
the cover graded resolution, CGResf , for which (pm

i , qm
j ) ∈ Def(p, q) if and only

if f + 1 ≤ j ≤ i ≤ m. Furthermore, each specialization pm
i extends to a special-

ization that factors through CGResf . A test sequence of specializations in the
fiber of CGResf that contains pm

i , restricts to specializations, {pm
i (s)}, that satisfy

(pm
i (s), qm

j ) ∈ Def(p, q) if and only if f + 1 ≤ j ≤ i ≤ m.

Now, we can continue to the second part as we did in proving the stability of
varieties, Diophantine sets, and the sets ES(p, q) (theorems 8.2, 8.5 and 8.6). The
(cover) graded resolution, CGResf , terminates in a free product of a rigid or a
weakly solid factor with (possibly) finitely many elliptic factors. By theorems 1.14
and 1.15, with the rigid or solid factor, one can associate finitely many (combinato-
rial) configurations, so that each configuration contains finitely many fractions, and
finitely many elliptic elements, and a rigid or almost shortest (weakly) strictly solid
specialization is given by fixed words in the fractions and the elliptic elements. The
value of these fractions depend only on the specialization of the defining parameters,
and not on the (specific) rigid or almost shortest (weakly) strictly solid specializa-
tion, whereas the elliptic elements do depend on the specific rigid or weakly strictly
solid specialization (and not only on the specialization of the defining parameters).

We can pass to a further subtriangle of specializations, {pm
i }m

i=f+1 and {qm
j }m

j=f+1,

so that (pm
i , qm

j ) ∈ Def(p, q) if and only if j ≤ i, and assume that the specializa-
tions of the rigid or weakly solid factor of the terminal limit group of CGResf that
are associated with the specializations, {(pm

i , qm
j )}, from the subtriangle, are all

associated with one (fixed) combinatorial configuration (out of the finitely many
combinatorial configurations) that is presented in theorems 1.14 and 1.15, and
is associated with the rigid or weakly solid factor of the terminal limit group of
CGResf .

We denote the fractions that appear in the (fixed) combinatorial configuration
(that get the same values for all the rigid or almost shortest strictly solid spe-
cializations that are associated with the same specializations of the parameters
(qm

1 , . . . , qm
f ), and with the fixed combinatorial configuration), vm

1 , . . . , vm
e , and for

brevity vm. We denote the elliptic elements that are associated with the values
of the parameters (qm

1 , . . . , qm
f ), eqm

1 , . . . , eqm
d , and for brevity eqm, and with the

rigid or almost shortest (weakly) strictly solid specializations: epm
1 , . . . , epm

g , and
for brevity epm (see the statements of theorems 1.14 and 1.15 for these notions).

At this point we start the second part of our argument that is similar to the
second part of the argument that was used to prove the stability of the set ES(p, q)
in theorem 8.6. This second part involves two interchanging iterative procedures,
that are similar to the ones that were used in the first part, and in which all the
resolutions are ungraded, i.e., they terminate in elliptic subgroups.

First, with each element, pm
i , f < i ≤ m, from the triangle of specializations

that is associated with the cover graded resolution, CGResf , we associate a tuple
of elliptic specializations, epm

i , that is associated with it and with the fixed combi-
natorial configuration that is associated with the rigid or weakly solid factor of the
terminal limit group of CGResf , and with the fixed values of the elements, vm.

We continue with the triangle of specializations, {epm
i } and {qm

j }, f < i, j ≤
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m. We swap each line of the triangle. After this swap, the corresponding pair,
(pm

i , qm
j ) ∈ Def(p, q), f < i, j ≤ m, if and only if i ≤ j.

We apply the first iterative procedure for the triangle of specializations. At
each step we pass to a further subtriangle, and require that specializations of the
terminal limit group of one of the graded resolution, DRes, or of the terminal limit
group of one of its associated auxiliary resolutions, and are associated with (or
extend) the pairs, (pm

i , qm
j ), i ≤ j, will converge into the same limit group, and the

specializations of the quotient resolution that was constructed in the previous step,
that are extended to specializations of these terminal limit group converge into a
quotient resolution of the resolution that was constructed in the previous step.

Precisely as we argued in the first part of the procedure, after finitely many steps
we obtain a quotient resolution, GResℓ1 , and a subtriangle of specializations, {pm

i }
and {qm

j }, ℓ1 +1 ≤ i, j ≤ m that are associated with it, with associated elliptic spe-
cializations, {epm

i }. With the quotient (ungraded) resolution, we associate a cover
(ungraded) resolution, that terminates in a f.p. group, such that all the subtriangle
of specializations factor through that cover. Furthermore, for each triple of indices
i, j, m, ℓ1 ≤ i ≤ j ≤ m, there exists a test sequence in the fiber that contains
(vm, qm

j ) (in the variety that is associated with the given cover of GResℓ1+1), that

restrict to specializations, {(vm(s), epm
i , pm

i (s), qm
j (s))}, so that for every index s,

(pm
i (s), qm

j (s)) ∈ Def(p, q).

We continue as we did in the first part of the argument. First, we swap the raws
in the subtriangle of specializations. Note that after this swap, for each pair of
indices, ℓ1 + 1 ≤ i, j ≤ m, the corresponding specializations, (pm

i , qm
j ) ∈ Def(p, q),

if and only if j ≤ i.

We apply the second iterative procedure that was used in the first part of the
argument, for the subtriangle of specializations. After finitely many steps we ob-
tain a quotient resolution, GResℓ2 , and a subtriangle of specializations, {pm

i } and
{qm

j }, ℓ2 + 1 ≤ i, j ≤ m, that are associated with it, with associated elliptic spe-
cializations, {epm

i }. With the quotient (ungraded) resolution, we associate a cover
(ungraded) resolution, that terminates in a f.p. group, such that all the subtriangle
of specializations factor through that cover. Furthermore, for each triple of indices
i, j, m, ℓ2 + 1 < i < j ≤ m, there exists a test sequence in the fiber that con-
tains qm

j (in the variety that is associated with the given cover of GResℓ2+1), that

restrict to specializations, {(vm(s), epm
i , pm

i (s), qm
j (s))}, so that for every index s,

(pm
i (s), qm

j (s)) /∈ Def(p, q).

We continue as we did in the first part of the argument. At this point we
once again swap the raws in the subtriangle of specializations. Then we apply the
first procedure that was used in the first part of the argument, until we construct a
quotient (ungraded) resolution, a cover of this quotient resolution, and a subtriangle
of specializations, {pm

i } and {qm
j }, with associated elliptic specializations, {epm

i },
that factor through the cover resolution. Furthermore, for each pair of indices i, m,
i < m, there exists a test sequence in the fiber that contains (vm, qm

j ) (in the variety
that is associated with the given cover of the quotient resolution), that restrict to
specializations, {(vm(s), epi

m, pm
i (s), qm

j (s))}, so that for every index s, and every
j, i ≤ j ≤ m, (pm

i (s), qm
j (s)) ∈ Def(p, q).

Then we swap the raws of the subtriangle once again, and apply the second
iterative procedure that was used in the first part of the argument. We obtain
a quotient (ungraded) resolution, a cover of this quotient resolution (with a f.p.
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terminal limit group), and a subtriangle of specializations, {pm
i } and {qm

j }, with
associated elliptic specializations, {epm

i }, that factor through the cover resolution.
Furthermore, for each triple of indices i, j, m, i < j ≤ m, there exists a test sequence
in the fiber that contains q(vm,mj ) (in the variety that is associated with the given
cover of the quotient resolution), {(vm(s), epm

i , pm
i (s), qm

j (s))}, so that for every
index s, (pm

i (s), qm
j (s)) /∈ Def(p, q).

As we argued in the proof of theorem 8.6, this iterative procedure of swapping and
continuing along the two iterative procedures until they terminate, terminates after
finitely many steps, by the proof of theorem 4.4. Once it terminates, we are left with
an ungraded (quotient) resolution, EResℓt

, a cover of this resolution that satisfies
the properties of cover resolutions that are listed in theorem 1.21 (and in particular
has a f.p. completion and terminal limit group), CEResℓt

, and a subtriangle of
specializations, (still denoted) {epm

i } and {qm
j }, ℓt + 1 ≤ i, j ≤ m that extend to

specializations that factor through the cover resolution, CEResℓt
, for which (the

corresponding specialization) (pm
i , qm

j ) ∈ Def(p, q) if and only if ℓt+1 ≤ i ≤ j ≤ m.
Furthermore, each specialization qm

j extends to a specialization that factors through
CEResℓt

. A test sequence of specializations in the fiber of CEResℓt
that contains

qm
j , restricts to specializations, {(vm(s), epm

i , pm
i (s), qm

j (s))}, for which (for every
index s), (pm

i (s), qm
j (s)) ∈ Def(p, q), if and only if ℓt + 1 ≤ i ≤ j ≤ m.

For brevity, we denote the ungraded resolution that is constructed in step ℓt,
ERes, and its closure, CERes. Recall that the subgroup < q > is embedded in the
graded cover CERes, and the elements p can be expressed as words in the elements
that are associated with vm in CERes, with the elliptic elements epm

i . Given the
cover resolution, CERes, we look at all its test sequences, for which the restriction
of the test sequences to the elements p, q, extend to specializations of the various
terminal limit groups of the resolutions, DRes, and of their associated auxiliary
resolutions, that are all associated with Def(p, q) according to theorem 6.1. All
these test sequences, together with their extended specializations (to the terminal
limit groups of the graded resolutions DRes and their auxiliary resolutions), can
be collected in finitely many graded resolutions that have similar properties to the
resolutions in the formal Makanin-Razborov diagram in theorems 2.6 and 2.7. In
particular, all the resolutions that are associated with these test sequences and
with the closure, CERes, do all have f.p. completion and terminal limit groups.
We denote these ungraded resolutions that are associated with the closure, CERes,
ACERes.

The specializations in the subtriangle that is associated with the closure, CERes,
have the property that a generic point (test sequence) in the fiber that contains a
pair (pm

i , qm
j ), restricts to specializations, (pm

i (s), qm
j (s)) ∈ Def(p, q), if and only if

i ≤ j ≤ m. The properties of the graded resolutions, DRes, and their associated
auxiliary resolutions, as listed in the statement of theorem 6.1, enable one to reduce
a sentence over free products to a finite disjunction of conjunctions of sentences
over the factors of the free product in theorem 6.3. In exactly the same way (as
in the argument that was used to prove theorem 6.3), the constructed resolutions,
ACERes, enable one to reduce the question of whether or not a tuple, (pm

i , qm
j ), is

in Def(p, q), to a finite disjunction of conjunctions of predicates in the free variables
(parameters), epm

i and eqm
j , over the factors A and B of the ambient free product

G = A ∗ B.

Hence, the existence of the (infinite) subtriangle of specializations that is as-
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sociated with CERes, contradicts the stability of the constructed predicates over
the factors A and B. Therefore, Def(p, q) is stable, and theorem 8.1 follows for
coefficient-free definable sets (predicates).

The stability of all coefficient-free predicates over free products of stable groups
implies the stability of all predicates over such free products. Indeed, we can
replace each predicate by a coefficient-free predicate, by replacing coefficients with
free variables (parameters). The stability of the obtained coefficient-free predicate
clearly implies the stability of the original predicate. This proves the stability of
free products of two stable groups and concludes the proof of theorem 8.1.

�

Theorem 8.1 proves the stability of free products of finitely many stable groups.
In case we look at a sequence of groups for which every sentence is uniformly stable
for the sequence, we obtain stability of the free product of the entire sequence.

Theorem 8.7. Let G1, G2, . . . be a sequence of groups. Suppose that every sentence
(over groups) Φ is uniformly stable over the sequence {Gi}. Then the infinite free
product, G1 ∗ G2 ∗ . . . , is stable.

Proof: Let G = G1 ∗ G2 ∗ . . . , and let Def(p, q) be a coefficient-free definable
set over G. The graded resolutions, DRes, and their associated auxiliary resolu-
tions, that were associated with Def(p, q) in theorem 6.1, are universal (although
not canonical), hence, the conclusion of theorem 6.1 is valid for all countable free
products and not just for finite free products.

The iterative procedures that were used to analyze the set, Def(p, q), over a free
product of the form A ∗ B, in the argument that was used to prove theorem 8.1,
work without a change over a countable free product. Hence, if Def(p, q) is not
stable over G, we can associate with it a quotient ungraded resolution, ERes, a
cover of this ungraded resolution, CERes, and a triangle of specializations, {pm

i }
and {qm

j }, i, j ≤ m, that factor through that cover, CERes, precisely as we did
with non-stable predicate over a finite free product.

With the cover CERes, we associate finitely many ungraded resolutions, ACERes,
precisely as we did in the proof of theorem 8.1. Now, the instability of Def(p, q),
that is translated into the subtriangle of specializations that factor through the
cover, CERes, implies the existence of a predicate over the various factors in the
free product G = G1 ∗ G2 ∗ . . . , that is not uniformly stable. This contradicts our
assumption on the sequence of groups, {Gi}.

As we noted in the proof of theorem 8.1, every predicate can be transformed into
a coefficient-free predicate by replacing the constants by free variables (parameters).
Hence, if all coefficient-free predicates are stable over the countable free product G,
all the predicates are stable.

�

§9. Noetherianity

In this section we prove another basic property that a free product inherits
from its factors, the Noetherianity of varieties. This problem was brought to our
attention by Ilya Kazachkov [Ca-Ka]. Its proof doesn’t really require what we
already proved in this paper, but it does rely on the techniques that were used in
constructing the Makanin-Razborov diagram for varieties over a free product [Ja-
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Se]. Abderezak Ould-Houcine has informed us that he has an alternative proof of
the problem.

Theorem 9.1. Let A, B be equationally Noetherian groups. Then A ∗ B is equa-
tionally Noetherian.

Proof: As an infinite dihedral group is linear, the theorem follows for D∞ by
Guba’s theorem [Gu]. Hence, we may assume that A and B are equationally Noe-
therian, and A ∗ B is a non-trivial free product that is not isomorphic to D∞.

Suppose that there exists a coefficient-free infinite system, Σ(x) = 1, where x is
a finite tuple of variables, that is not equivalent to a finite subsystem. We denote
by Σn(x) = 1 the finite subsystem of Σ(x) = 1 that contains the first n equations
(in Σ).

Since Σ is not equivalent to a finite subsystem, there must exist a sequence of
integers: n1 < n2 < . . . , for which there exist specializations of the tuple x in A∗B:
x1, x2, . . . , such that for every index k, Σnk

(xk) = 1 and Σnk+1
(xk) 6= 1, in A ∗ B.

By theorem 18 in [Ja-Se], from the sequence of specializations, {xk}, it is possible
to extract a subsequence that converges into a resolution Res (over free products):
L0 → L1 → . . . →  Ls, where the Li’s are limit groups over free products, the
initial limit group, L0, is naturally generated by the elements x, that correspond
to the variables in the system of equations, Σ(x) = 1, and Ls is a free product
of finitely many elliptic factors and a (possibly trivial) free group. Note that the
elliptic factors in Ls need not be finitely presented, hence, we can not deduce from
theorem 18 in [Ja-Se] that a subsequence of the specializations {xk} factor through
the resolution Res.

Also, since for each index k, Σnk
(xk) = 1, and the resolution, Res, is obtained

from a convergent subsequence of the specializations, {xk}, all the equations in the
infinite system, Σ(x), hold as relations of the initial limit group L0 of Res.

Ls is the terminal limit group of the resolution, Res. Ls need not be finitely
presented. Let Ls be the free product, A1 ∗ . . . ∗ Aℓ ∗ Fm, where A1, . . . , Aℓ are
elliptic, and Fm is a (possibly trivial) free group. Each of the elliptic factors, Ai,
i = 1, . . . , ℓ, is finitely generated and not necessarily finitely presented. Since both
factors A and B of the free product G = A∗B, are equationally Noetherian, for each
factor Ai, there exists a f.p. group, FPAi, and an epimorphism, τi : FPAi → Ai, so
that every homomorphism h : FPAi → A or f : FPAi → B, factors as h = ĥ◦τi or

f = f̂◦τi, where ĥ and f̂ are homomorphisms from Ai to A and B in correspondence.

With the (well-structured) resolution, Res, we associate its completion, Comp(Res).
We set the completion, Comp(FPRes), to be the completion, that is obtained from
Comp(Res) by replacing the terminal limit group of Res, Ls, by the f.p. group,
FPLs = FPA1 ∗ . . . ∗ FPAℓ ∗ Fm. L0 is naturally embedded in Comp(Res),
and is generated by the elements x that correspond to the variables in the sys-
tem, Σ(x) = 1. Similarly, there is a subgroup generated by the elements x in the
completion, Comp(FPRes).

Since a subsequence of the specializations, {xk} converges into the resolution,
Res, and Comp(FPRes) (and FPLs) are finitely presented, there exists a sub-
sequence of this subsequence (of {xk}) that factors through Comp(FPRes), i.e.,
each of these specializations can be extended to a specialization that factors through
Comp(FPRes). Since Comp(FPRes) differs from Comp(Res) only in the termi-
nal limit group (FPLs versus Ls), and since every homomorphism of the terminal
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limit group of Comp(FPRes), FPLs, factors through the epimorphism onto the
limit group Ls, the subsequence of the sequence of specializations, {xk}, that factor
through Comp(FPRes), factor through the original completion, Comp(Res) (and
through the original resolution, Res). However, all the equations of the system
Σ(x) = 1, hold as relations for the limit group L0, that is generated by the ele-
ments x that correspond to the variables of Σ. This contradicts the assumption
that for each k, Σnk

(xk) = 1, but Σnk+1
(xk) 6= 1.

This proves that every coefficient free system of equations over A∗B is equivalent
to a finite subsystem. For systems of equations with coefficients, we need to repeat
the same argument, working over the specific free product G = A ∗ B. In this
case, we first assume that both A and B are countable (and then generalize the
argument for any A and B). We start with an infinite system of equations with
coefficients, Σ(x, aj, bj) = 1, where x is a finite tuple of variables, and aj and bj are
(finite) tuples of elements in A and B, in correspondence, for each equation j, and
the system Σ is not equivalent to a finite subsystem.

We choose the specializations {xk}, and indices n1 < n2 < . . . , in the same way
as in the coefficient-free case. i.e., Σnk

(xk, aj, bj) = 1, and Σnk+1
(xk, aj, bj) 6= 1,

for each index k. By modifying the proof of theorem 18 in [Ja-Se] for systems of
equations with coefficients (over the same coefficient group), there exists a subse-
quence of the specializations, {xk}, that converges into a resolution with coefficients,
L0 → . . . → Ls, where L0 is a countable limit group, that is generated by the coef-
ficient group A ∗ B and elements x that correspond to the variables in the system
Σ, and Ls, the terminal limit group, is a free product: C ∗ D ∗ A1 ∗ . . . ∗ Aℓ ∗ Fm,
where A < C, B < D, the Ai’s are elliptic factors, and Fm is a possibly trivial free
group. Furthermore, C is f.g. relative to A, D is f.g. relative to B, and the Ai’s
are all finitely generated. Since the initial limit group L0 is generated by A, B,
and elements x that correspond to the variables in Σ, and since L0 is obtained as
a limit from a subsequence of the specializations, {xk}, all the equations in Σ hold
as relations for the limit group, L0 (note that L0 is a countable, not necessarily f.g.
limit group, that is f.g. relative to the elliptic subgroups A and B. Still all the basic
results on limit groups over free products that were obtained in [Ja-Se], including
theorem 18, hold for such limit groups. The modification of the basic results of
[Ja-Se] from f.g. groups to countable groups that are f.g. relative to finitely many
elliptic (coefficient) groups, requires (in addition to [Ja-Se]), the techniques of [Gu]
and [Se11], that allow one to analyze super-stable actions of such groups on real
trees, by presenting them as inductive limits of f.g. groups, where these f.g. groups
are defined iteratively by enlarging the stabilizer of a single vertex in each step).

Since both factors A and B are equationally Noetherian, we can replace the
completion of the constructed resolution (with coefficients), with a completion that
is f.p. relative to A and B. This means that we can replace the terminal limit
group, Ls, by a free product, FPC ∗ FPD ∗ FPA1 ∗ . . . ∗ FPAℓ ∗ Fm, where:

(1) FPC is f.p. relative to A, and FPD is f.p. relative to B. There exist natural
epimorphisms, FPC → C, that restricts to the identity homomorphism on
A, and FPD → D, that restricts to the identity homomorphism on B,
such that every homomorphism, h : FPC → A and f : FPD → B, that
restricts to the identity homomorphism on A and B in correspondence,
factors through the corresponding natural epimorphism: FPC → C or
FPD → D.
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(2) A1, . . . , Aℓ are all finitely presented. For every index i, i = 1, . . . , ℓ, there
exists a natural epimorphism, FPAi → Ai, such that every homomorphism,
h : FPAi → A and f : FPAi → B, factors through the natural epimor-
phism: FPAi → Ai.

Since the modified completion is f.p. relative to A and B, there exists a subse-
quence of the specializations, {xk}, that factor through this modified completion.
Since the modified completion differs from the original completion only in the ter-
minal limit group, and since every homomorphism of the terminal limit group of the
modified completion into A ∗ B, that restricts to the identity on A and B, factors
through the epimorphism onto the limit group Ls, the terminal limit group of the
original completion, the subsequence of the sequence of specializations, {xk}, that
factor through the modified completion, factor through the original completion. As
in the coefficient-free case, this contradicts the fact that all the equations in the
system Σ(x, aj, bj) = 1, hold as relations for the limit group L0, the initial limit
group of the original resolution, that is generated by the elements x that correspond
to the variables of Σ, together with A and B, as we have assumed that for each
index k, Σnk

(xk, aj, bj) = 1, but Σnk+1
(xk, aj, bj) 6= 1.

This proves that every system of equations with coefficients over A ∗ B, where
both A and B are countable, is equivalent to a finite subsystem. For system of
equations over free products A ∗ B, for general equationally Noetherian A and B,
we need to slightly modify our argument, and essentially reduce it to the countable
case.

Once again, we start with an infinite system of equations with coefficients,
Σ(x, aj, bj) = 1, where x is a finite tuple of variables, and aj and bj are (finite)
tuples of elements in A and B, in correspondence, for each equation i, and the
system Σ is not equivalent to a finite subsystem (A and B are general groups).

We choose the specializations {xk}, and indices n1 < n2 < . . . , in the same way
as in the countable case. i.e., Σnk

(xk, aj, bj) = 1, and Σnk+1
(xk, aj, bj) 6= 1, for

each index k.

Each specialization xk is an element in the free product A ∗ B. We set Ac to be
a countable subgroup of A that is generated by the elements, {aj}, that appear in
the various equations of the system, Σ(x, aj, bj) = 1, together with all the elements
of A that appear in the words in A ∗ B that are associated with the countable
collection of elements {xk}. Similarly, we set Bc to be a countable subgroup of B
that is generated by {bj}, and the elements of B that appear in the words in A ∗B
that are associated with the elements {xk}.

Now, both the coefficients in the equations of Σ(x, aj, bj) = 1, and the specializa-
tions, {xk}, are all contained in the countable subgroup, Ac ∗Bc. Hence, we repeat
the construction of the resolution in the countable case, and extract a subsequence
of the specializations {xk}, that converges into a resolution: Lc

0 → . . . → Lc
s over

the countable free product, Ac∗Bc. The initial limit group, Lc
0 , is generated by Ac,

Bc, and finitely many elements that are associated with the variables x. Since Lc
0 is

obtained as a limit of a subsequence of the specializations, {xk}, all the equations
in the system, Σ(x, aj, bj), hold as relations in the limit group, Lc

s.

Lc
s, the terminal limit group, is f.g. over the groups Ac and Bc, and admit a free

product: Cc ∗Dc ∗A1 ∗ . . . ∗Aℓ ∗Fm, where Ac < Cc, Bc < Dc, the Ai’s are elliptic
factors, and Fm is a possibly trivial free group. We replace the subgroups Cc and
Dc, by the groups, C = Cc ∗Ac

A, and D = Dc ∗Bc
B. As Cc and Dc are f.g. over
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Ac and Bc in correspondence, C and D are f.g. over A and B, in correspondence.
We set Ls to be Ls = C ∗ D ∗ A1 ∗ . . . ∗ Aℓ ∗ Fm. Ls is f.g. over A and B.

With the resolution Resc: Lc
0 → . . . → Lc

s, we can associate its completion,
Comp(Resc). With Comp(Resc) we associate another completion, that we denote
Comp(Res), that is obtained from the completion, Comp(Resc), by replacing the
terminal limit group of the resolution Resc, Lc

s, with the group, Ls. Note that
Comp(Resc) < Comp(Res), and since all the equations in the system, Σ, hold as
relations in the limit group Lc

0, and hence in Comp(Resc), they hold as relations
in the completion, Comp(Res), as well.

Since both factors A and B are equationally Noetherian, we can replace the
completion, Comp(Res), with a completion that is f.p. relative to A and B. This
means that we can replace the terminal limit group, Ls, by a free product, FPC ∗
FPD ∗FPA1 ∗ . . . ∗FPAℓ ∗Fm, that satisfy properties (1) and (2) that were used
in modifying the completion in case A and B are countable. In particular, the
modified free product is f.p. relative to A and B, and any homomorphism of the
modified free product into A ∗B, that restricts to the identity on A and B, factors
through the completion, Comp(Res).

Since the modified completion is f.p. relative to A and B, there exists a subse-
quence of the specializations, {xk}, that factor through this modified completion.
Hence, this subsequence factor (i.e., can be extended to specializations that fac-
tor) through the completion, Comp(Res). As in the coefficient-free and countable
cases, this contradicts the fact that all the equations in the system Σ(x, aj, bj) =
1, hold as relations in Comp(Res), whereas we assumed that for each index k,
Σnk

(xk, aj, bj) = 1, but Σnk+1
(xk, aj, bj) 6= 1. This finally proves that A ∗ B is

equationally Noetherian.
�
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