
DIOPHANTINE GEOMETRY OVER GROUPS IX:

ENVELOPES AND IMAGINARIES

Z. Sela1,2

This paper is the ninth in a sequence on the structure of sets of solutions to systems

of equations in free and hyperbolic groups, projections of such sets (Diophantine
sets), and the structure of definable sets over free and hyperbolic groups. In the

ninth paper we associate a Diophantine set with a definable set, and view it as the

Diophantine envelope of the definable set. We use the envelope and duo limit groups
that were used in proving stability of the theory of free and torsion-free hyperbolic

groups [Se9], to study definable equivalence relations, and in particular, to classify
imaginaries over these groups.

In the first 6 papers in the sequence on Diophantine geometry over groups we
studied sets of solutions to systems of equations in a free group, and developed
basic techniques and objects that are required for the analysis of sentences and
elementary sets defined over a free group. The techniques we developed, enabled
us to present an iterative procedure that analyzes EAE sets defined over a free
group (i.e., sets defined using 3 quantifiers), and shows that every such set is in the
Boolean algebra generated by AE sets ([Se6],41), hence, we obtained a quantifier
elimination over a free group.
In the 7th paper in the sequence we generalized the techniques and the results
from free groups to torsion-free hyperbolic groups, and in the 8th paper we used
the techniques that were developed for quantifier elimination to prove that the
elementary theories of free and torsion-free hyperbolic groups are stable.

In the 9th paper in the sequence we study definable equivalence relations over free
and hyperbolic groups. The understanding of the structure of definable equivalence
relations is central in model theory (see [Pi1] and [Pi2]), and in particular it is
necessary in order to study what can be interpreted in the theories of these groups.

In an arbitrary group, there are 3 basic (not necessarily definable) families of
equivalence relations: conjugation, left and right cosets of subgroups, and double
cosets of subgroups. As in general a subgroup may not be definable, not all these
equivalence relations are definable equivalence relations.

By results of M. Bestvina and M. Feighn [Be-Fe2] (on negligible sets), the only
definable subgroups of a free or a torsion-free hyperbolic group are (infinite) cyclic.
Hence, the only basic equivalence relations over these groups that are definable,
are conjugation, and left, right and double cosets of cyclic groups. Note that
conjugation is an equivalence relation of singletons, left and right cosets of cyclic
groups are equivalence relations of pairs of elements, and double cosets of cyclic

1Hebrew University, Jerusalem 91904, Israel.
2Partially supported by an Israel academy of sciences fellowship.

1



groups are equivalence relations of triples of elements (see theorems 2.1, 2.2 and
2.3).

Our first goal in this paper is to show that these 3 basic families of definable
equivalence relations are imaginaries (i.e., not reals). In model theory, a (definable)
equivalence relation is considered trivial (and called real) if it is obtained from a
definable function, i.e., if there exists some definable function so that every equiva-
lence class is the preimage of a point. In the second section of this paper (theorems
2.1-2.4) we show that over free and torsion-free hyperbolic groups, conjugation, left
and right cosets of cyclic groups, and double cosets of cyclic groups are not reals
(i.e., there exists no definable function so that classes in any of these equivalence
relations are preimages of points).

The main goal of this paper is to classify (or represent) all the definable equiv-
alence relations over free and torsion-free hyperbolic groups. In particular, we aim
at classifying all the imaginaries (non-reals) over these groups. Our concluding the-
orems (theorems 4.4 and 4.6) show that the basic definable equivalence relations
are the only ”essential” imaginaries. In particular, we show that if sorts are added
for the 3 basic families of imaginaries (conjugation, left, right and double cosets
of cyclic groups), then (definable) equivalence relations can be geometrically elim-
inated. Geometric elimination means that if G is a free or torsion-free hyperbolic
group, p and q are m-tuples, and E(p, q), is a definable equivalence relation, then
there exist some integers s and t, and a definable multi-function:

f : Gm → Gs × R1 × . . .× Rt

where each of the Ri’s is a new sort for one of the 3 basic families of imaginaries
(conjugation, left, right and double cosets of cyclic groups), the image of an element
is uniformly bounded (and can be assumed to be of equal size), the multi-function
is a class function, i.e., two elements in an equivalence class of E(p, q) have the
same image, and the multi-function f separates between classes, i.e., the images of
elements from distinct equivalence classes are distinct. Furthermore, if E(p, q) is
coefficient-free, then we can choose the definable multi-function f to be coefficient-
free.

In fact, we prove more than geometric elimination of imaginaries, as we do get
a representation of (generic points in) the equivalence classes of a given definable
equivalence relation as fibers over some (definable) parameters, where the definable
parameters separate between classes, and for each equivalence class the definable
parameters admit only boundedly many values up to the basic (definable) equiva-
lence relations.

The main tool that we use for analyzing definable equivalence relations is the
Diophantine envelope of a definable set. Given a definable set, L(p), we asso-
ciate with it a Diophantine set, D(p), its Diophantine envelope. L(p) ⊂ D(p), and
for a certain notion of (combinatorial) genericity (which differs from the stability
theoretic one), a generic point in the envelope, D(p), is contained in the origi-
nal definable set, L(p). If the free variables in the definable set are divided into
two tuples, L(p, q), then we associate with L(p, q) a Duo (Diophantine) Envelope,
Duo(p, q), with a dual Duo limit group (Duo limit groups were introduced in section
3 of [Se9], and served as the main tool in proving stability of free and torsion-free
hyperbolic groups). Again, L(p, q) ⊂ Duo(p, q), and (combinatorial) generic points
in Duo(p, q) are contained in L(p, q).
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The first section of the paper constructs the Diophantine and Duo envelopes of
definable sets. The construction of the envelopes is based on the sieve procedure
[Se6], that was originally used for quantifier elimination. The sieve procedure is
the main technical tool in proving stability of the theory [Se9], equationality of
Diophantine sets [Se9], and is also the main technical tool in analyzing equivalence
relations in this paper.

In the second section we use the existence of the Diophantine envelope (and its
properties), to prove that the 3 basic families of equivalence relations over free and
torsion-free hyperbolic groups: conjugation, left and right cosets of cyclic groups,
and double cosets of cyclic groups, are imaginaries (not reals). We believe that
envelopes can serve as an applicable tool to prove non-definability (and at times
definability) in many other cases.

In the third section we start analyzing general definable equivalence relations.
The Diophantine and Duo envelopes that are constructed in the first section of the
paper, depend on the defining predicate, and in particular are not canonical. Our
strategy in associating parameters to equivalence classes relies on a procedure for
constructing canonical envelopes.

Given a (definable) equivalence relation, E(p, q), we start with its Duo envelope,
and gradually modify it. Into each of the iterative sequence of envelopes that we
construct, that we call uniformization limit groups, there exists a map from a
group that specializes to valid proofs that the specializations of the tuples, (p, q),
are indeed in the given definable equivalence relation, E(p, q). We use this map to
associate parameters with the equivalence classes of the given equivalence relation,
E(p, q). The image of this map inherits a graphs of groups decomposition from the
constructed (ambient) uniformization limit group, a graph of groups in which the
subgroup < p > is contained in one vertex group, the subgroup < q > is contained
in a second vertex group, and for each equivalence class of E(p, q), the edge groups
in the inherited graph of groups are generated by finitely many elements, where
these elements admit only (uniformly) boundedly many values up to the basic
equivalence relations (conjugation, left right, and double cosets of cyclic groups).

The parameters that are associated with the edge groups in the graphs of groups
that are inherited from the uniformization limit groups, give us parameters with
only boundedly many values for each equivalence class (up to the basic imaginaries).
Hence, it is possible to construct a definable (class) multi-function using them.
However, these parameters are not guaranteed to separate between classes. Hence,
these parameters and graphs of groups are not sufficient for obtaining geometric
elimination of imaginaries.
Still, the graphs of groups that are inherited from the constructed uniformization
limit groups, and their associated parameters, enable us to separate variables, i.e.,
to separate the subgroup < p > from the subgroup < q >. These subgroups are
contained in two distinct vertex groups in the graphs of groups, and the edge groups
are generated by finitely many elements that admit only boundedly many values
(up to the basic imaginaries) for each equivalence class.

The separation of variables that is obtained by the graphs of groups that are
inherited from the uniformization limit groups, is the key for obtaining geomet-
ric elimination of imaginaries in the fourth section of the paper. In this section
we present another iterative procedure, that combines the sieve procedure [Se6],
with the procedure for separation of variables that is presented in section 3. The
combined procedure, iteratively constructs smaller and smaller (Duo) Diophantine
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sets, that converge after finitely many steps to a Diophantine (Duo) envelope of the
equivalence relation, E(p, q). Unlike the (Duo) envelope that is constructed in the
first section, the envelope that is constructed by this combined iterative procedure
is canonical. This means that the envelope is determined by the value of finitely
many elements, and these elements admit only (uniformly) boundedly many val-
ues for each equivalence class of E(p, q) (up to the basic imaginaries). Therefore,
the parameters that are associated with the envelope that is constructed by the
combined procedure, can be used to define the desired multi-function, that finally
proves geometric elimination of imaginaries (theorems 4.4 and 4.6).

We believe that some of the techniques, notions and constructions that appear
in this paper can be used to study other model theoretic properties of free, torsion-
free hyperbolic, and other groups. The arguments that we use also demonstrate the
power and the applicability of the sieve procedure [Se6] for tackling model theoretic
problems and properties.

Finally, we would like to thank Gregory Cherlin for suggesting the study of equiv-
alence relations to us, and Ehud Hrushovsky and Eliyahu Rips for their constant
advice.

§1. Diophantine and Duo Envelopes

Before we analyze some of the basic imaginaries over free and hyperbolic groups,
we present two of the main tools that are needed in order to classify the entire
collection of imaginaries over free and torsion-free hyperbolic groups, which may
also serve as a tool in proving that certain sets are not definable. First, we recall
the definitions of a Duo limit group, and its associated Duo families, and some
of their properties (section 3 in [Se9]). Then given a definable set, we associate
with it a (canonical) finite collection of graded limit groups that together form a
Diophantine envelope of the definable set, and with them we associate a canonical
collection of duo limit groups, that in certain cases can be viewed as a Duo envelope.

Definition 1.1 ([Se9],3.1). Let Fk be a non-abelian free group, and let Rgd(x, p, q, a)
(Sld(x, p, q, a)) be a rigid (solid) limit group with respect to the parameter subgroup
< p, q >. Let s be a (fixed) positive integer, and let Conf(x1, . . . , xs, p, q, a) be a
configuration limit group associated with the limit group Rgd(x, p, q, a) (Sld(x, p, q, a))
(see definition 4.1 in [Se3] for configuration limit groups). Recall that a configu-
ration limit group is obtained as a limit of a convergent sequence of specializations
(x1(n), . . . , xs(n), p(n), q(n), a), called configuration homomorphisms ([Se3],4.1),
in which each of the specializations (xi(n), p(n), q(n), a) is rigid (strictly solid) and
xi(n) 6= xj(n) for i 6= j (belong to distinct strictly solid families). See section 4 of
[Se3] for a detailed discussion of these groups.

A duo limit group, Duo(d1, p, d2, q, d0, a), is a limit group with the following
properties:

(1) with Duo there exists an associated map:

η : Conf(x1, . . . , xs, p, q, a) → Duo.

For brevity, we denote η(p), η(q), η(a) by p, q, a in correspondence.
(2) Duo =< d1 > ∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> < d2 >, η(Fk) = η(< a >

) << d0 >, η(< p >) << d1 >, and η(< q >) << d2 >.
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(3) Duo = Comp(d1, p, a)∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> Comp(d2, q, a), where
Comp(d1, p, a) and Comp(d2, q, a), are (graded) completions with respect to
the parameter subgroup < d0 >, that terminate in the subgroup < d0 >, and
< e1 > and < e2 > are abelian with pegs in < d0 > (i.e., abelian groups that
commute with non-trivial elements in the terminal limit group < d0 >).

(4) there exists a specialization (x1, . . . , xs, p, q, a) of the configuration limit
group Conf , for which the corresponding elements (xi, p, q, a) are distinct
and rigid specializations of the rigid limit group, Rgd(x, p, q, a) (strictly solid
and belong to distinct strictly solid families), that can be extended to a spe-
cialization that factors through the duo limit group Duo (i.e., there exists
a configuration homomorphism that can be extended to a specialization of
Duo).

Given a duo limit group, Duo(d1, p, d2, q, d0, a), and a specialization of the vari-
ables d0, we call the set of specializations that factor through Duo for which the
specialization of the variables d0 is identical to the given one, a duo-family. We
say that a duo family associated with a duo limit group Duo is covered by the duo
limit groups Duo1, . . . , Duot, if there exists a finite collection of duo families as-
sociated with the duo limit groups, Duo1, . . . , Duot, and a covering closure of the
duo family, so that each configuration homomorphism that can be extended to a
specialization of a closure in the covering closure of the given duo family, can also
be extended to a specialization that factors through one of the members of the finite
collection of duo families of the duo limit groups Duo1, . . . , Duot (see definition
1.16 in [Se2] for a covering closure).

In [Se9] we used the sieve procedure [Se6] to prove the existence of a finite
collection of duo limit groups, that cover all the duo families associated with a duo
limit group that is associated with a given rigid limit group.

Theorem 1.2 ([Se9],3.2). Let Fk be a non-abelian free group, let s be a positive
integer, and let Rgd(x, p, q, a) be a rigid limit group defined over Fk. There exists
a finite collection of duo limit groups associated with configuration homomorphisms
of s distinct rigid homomorphisms of Rgd, Duo1, . . . , Duot, and some global bound
b, so that every duo family that is associated with a duo limit group Duo, that is
associated with configuration homomorphisms of s distinct rigid homomorphisms
of Rgd, is covered by the given finite collection Duo1, . . . , Duot. Furthermore,
every duo family that is associated with an arbitrary duo limit group Duo, is cov-
ered by at most b duo families that are associated with the given finite collection,
Duo1, . . . , Duot.

In this section we look for a partial generalization of theorem 1.2 to a general
definable set. Given a definable set L(p, q) we associate with it (canonically) a
finite collection of graded limit groups (with respect to the parameter subgroup
< q >). A ”generic” point in each of these graded limit groups is contained in the
definable set L(p, q), and given a value q0 of the variables q the (boundedly many)
fibers that are associated with q0 and the finite collection of graded limit groups,
contain the projection L(p, q0) of the definable set L(p, q). Later on we associate
with this canonical collection of graded limit groups, a canonical collection of duo
limit groups, and the obtained duo limit groups is the key tool in our classification
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of imaginaries.

Theorem 1.3. Let Fk be a non-abelian free group, and let L(p, q) be a definable set
over Fk. There exists a finite collection of graded limit groups, G1(z, p, q, a), . . . , Gt(z, p, q, a),
(canonically) associated with L(p, q), that we call the Diophantine Envelope of
L(p, q), for which:

(1) For each j, 1 ≤ j ≤ t, Gj(z, p, q, a) is a graded completion (with respect to
the parameter subgroup < q, a >. See definition 1.12 in [Se2] for a (graded)
completion).

(2) For each j, 1 ≤ j ≤ t, there exists a test sequence {(zn, pn, q0, a)} of the
completion Gj(z, p, q, a), for which all the specializations (pn, q0) ∈ L(p, q).

(3) Given a specialization (p0, q0) ∈ L(p, q), there exists an index j, 1 ≤ j ≤ t,
and a test sequence {(zn, pn, q0, a)} of the completion Gj(z, p, q, a), for which
all the specializations (pn, q0) ∈ L(p, q), so that (p0, q0) can be extended to
a specialization that factors through the same (graded) modular block of the
completion Gj(z, p, q, a) that contains the test sequence, {(zn, pn, q0, a)}.

Proof: Let L(p, q) be a definable set. Recall that with a definable set L(p, q)
the sieve procedure associates a finite collection of graded (PS) resolutions that
terminate in rigid and solid limit groups (with respect to the parameter subgroup
< p, q >), and with each such graded resolution it associates a finite collection of
graded closures that are composed from Non-Rigid, Non-Solid, Left, Root, Extra
PS, and Generic collapse extra PS resolutions (see definitions 1.25-1.30 of [Se5] for
the exact definitions).

By the sieve procedure [Se6], that eventually leads to quantifier elimination over
a free group, the definable set L(p, q) is equivalent to those rigid and strictly solid
specializations of the terminal rigid and solid limit groups of the PS resolutions
constructed along the sieve procedure, for which the PS resolutions associated with
these rigid and solid specializations are not covered by the collection of Non-Rigid,
Non-Solid, Left, Root and extra PS resolutions (minus the specializations that
factor through the associated Generic collapse extra PS resolutions).

Therefore, using the output of the sieve procedure and the resolutions it con-
structs, with each terminating rigid or solid limit group Term of a PS resolution
along it we associate finitely many sets:

(1) B1(Term) - the set of specializations of < p > for which the terminal rigid
or solid limit group Term admits rigid or strictly solid specializations.

(2) B2(Term) - the set of specializations of < p > for which the associated
Non-Rigid, Non-Solid, Left, Root, and extra PS resolutions (minus the spe-
cializations that factor through the associated Generic collapse extra PS
resolutions), associated with the PS resolution that terminates in Term,
form a covering closure of all the (ungraded) PS resolutions associated with
the rigid or strictly solid specializations that are associated with the given
specialization of < p >.

(3) B3(Term) - the set of specializations of < p > for which the Non-Rigid,
Non-Solid, Left, Root, and extra PS resolutions (minus the specializations
that factor through associated Generic collapse extra PS resolutions) form
a covering closure of all the (ungraded) PS resolutions associated with a
given specialization of < p > and with PS resolutions that extend the PS
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resolution that terminates in Term, and for which there exist strictly solid
specializations of Term with respect to that covering closure.

(4) B4(Term) - the set of specializations of < p > in B3(Term), for which the
associated Non-Rigid, Non-Solid, Left, Root, and extra PS resolutions (mi-
nus the specializations that factor through the associated Generic collapse
extra PS resolutions), associated with the PS resolution that terminates
in Term, form a covering closure of all the (ungraded) PS resolutions as-
sociated with the strictly solid specializations of Term, where these rigid
and strictly solid specializations are associated with a given specialization
of < p >, and are taken with respect to the covering closure of all the PS
resolutions that extend the PS resolution that terminates in Term, that is
associated with their collections of Non-Rigid, Non-Solid, Left, Root and
extra PS resolutions.

Finally, using the sieve procedure, with a definable set L(p, q) there are finitely
many associated rigid and solid limit groups Term1, . . . , T erms, so that L(p, q) is
the finite union:

L(p, q) = ∪s
i=1 (B1(Termi) \ B2(Termi)) ∪ (B3(Termi) \ B4(Termi)).

We start the construction of the finite collection of graded limit groups that
are associated with L(p, q), by associating a finite collection of graded limit groups
(that are graded with respect to < q, a >) with the sets B1(Termi) \ B2(Termi),
i = 1, . . . , s.
Let Term be one of the rigid or solid limit groups Term1, . . . , T erms. The sieve
procedure [Se6] associates with the terminal limit group Term, and the PS reso-
lution that is associated with it, a finite collection of Non-Rigid, Non-Solid, Left,
Root, Extra PS, and Generic Collapse Extra PS resolutions (see sections 1 and 3
in [Se5] for the definition of these resolutions). Each of these associated resolutions
is by construction a graded closure of the PS resolution that terminates in Term,
and such a resolution terminates in a rigid or solid limit group (with respect to the
parameter subgroup < p, q >).

Recall that by theorems 2.5 and 2.9 in [Se3], there exists a global bound on
the number of rigid specializations of a rigid limit group, and a global bound on
the number of strictly solid families of specializations of a solid limit group, for all
possible specializations of the parameters subgroup. Hence, with each specialization
of the parameter subgroup < p, q >, there are boundedly many rigid (strictly solid
families of) specializations of the terminal limit group Term, and the the terminal
limit groups of the resolutions that are associated with Term.

Given Term, we look at the collection of specializations of the form:

(x, y1, . . . , yt, u1, . . . , um, v1, . . . , vn, r, r1, . . . , rn, p, q, a)

where:

(1) the integers t,m,n are bounded by the sum of the global bounds on the
number of rigid and strictly solid families of specializations of the terminal
rigid and solid limit groups of the resolutions that are associated with the
terminal limit group Term.

(2) the specialization (x, p, q, a) is a rigid or a strictly solid specialization of the
terminal rigid or solid limit group Term. The specializations (yi, p, q, a),
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i = 1, . . . , t, are rigid and strictly solid specializations of the terminal rigid
and solid limit groups of the Non-Rigid, Non-Solid, Left, and Root PS reso-
lutions that are associated with the PS resolution that terminates in Term.
The rigid specializations are distinct and the strictly solid specializations
belong to distinct strictly solid families, and the finite collection of special-
izations (yi, p, q, a), i = 1, . . . , t, represent all the rigid and strictly solid
families of specializations that are associated with (i.e., that extend) the
rigid or strictly solid specialization (x, p, q, a).

(3) the specializations (vj , p, q, a), j = 1, . . . , n, are distinct rigid and strictly
solid specializations of the terminal (rigid and solid) limit groups of the
Extra PS resolutions that are associated with Term that extend the spe-
cialization (x, p, q, a). Furthermore, given the specialization (x, p, q, a), there
are precisely n rigid or strictly solid families of specializations of the termi-
nal rigid and solid limit groups of the Extra PS resolutions that extend the
specialization (x, p, q, a).

(4) the specializations (uj, p, q, a), j = 1, . . . , m, are distinct rigid and strictly
solid specializations of the terminal (rigid and solid) limit groups of the
Generic Collapse Extra PS resolutions that are associated with Term that
extend the specialization (x, p, q, a). Furthermore, given the specialization
(x, p, q, a), there are precisely n rigid or strictly solid families of specializa-
tions of the terminal limit groups of Generic Collapse Extra PS resolutions
that extend the specialization (x, p, q, a).

(5) the specializations r, include primitive roots of the edge groups in the graded
abelian decomposition of the rigid or solid limit group Term that are as-
sociated with the specialization (x, p, q, a), and they indicate what powers
of the primitive roots are covered by the associated Non-Rigid, Non-Solid,
Left, Root, Extra PS, and Generic Collapse Extra PS resolutions (i.e., by
the resolutions that are associated with the specializations y, u, and v).

(6) the specializations rj , j = 1, . . . , n, include primitive roots of the edge
groups in the graded abelian decompositions of the rigid or solid limit group
terminal limit groups of the Extra PS resolutions that are associated with
the specializations (vj , p, q, a), j = 1, . . . , n, and they indicate what pow-
ers of the primitive roots are covered by the associated Generic Collapse
Extra PS resolutions, i.e., by the resolutions that are associated with the
specializations u.

The specializations (x, y, u, v, p, q, a) that satisfy properties (1)-(6) form ”proof
statements” for validation that (p, q) ∈ L(p, q). By our standard methods (pre-
sented in section 5 of [Se1]), with this collection of specializations we can canoni-
cally associate a finite collection of graded limit groups (which is the Zariski closure
of the collection). We view each of these (finitely many) limit groups, as graded
with respect to the parameter subgroup < q, a >. We associate with each such limit
group its graded taut Makanin-Razborov diagram (see proposition 2.5 in [Se4] for
the construction of the taut Makanin-Razborov diagram), and with each resolution
in the diagram we associate its (graded) completion.

We continue with each of the obtained graded completions in parallel. Given a
graded completion, we associate with it the collection of sequences:

{(bℓ, zℓ, xℓ, yℓ, vℓ, uℓ, rℓ, pℓ, qℓ)}
8



for which:

(1) {(zℓ, xℓ, yℓ, vℓ, uℓ, rℓ, pℓ, qℓ)} is a test sequence of one of the obtained graded
completions.

(2) for each index ℓ, (bℓ, pℓ, qℓ, a) is a rigid or a strictly solid specialization of one
of the (rigid or solid) terminal limit groups of one of the Non-Rigid, Non-
Solid, Left, Root, Extra PS, or Generic Collapse Extra PS resolutions that
are associated with the specialization (xℓ, pℓ, qℓ, a), which is distinct from
the rigid specializations and from the strictly solid families of specializations
that are specified by the specialization:

(xℓ, yℓ, vℓ, uℓ, rℓ, pℓ, qℓ)

Using the construction of graded formal limit groups that is presented in sections
2-3 in [Se2], we associate with the collection of sequences:

{(bℓ, zℓ, xℓ, yℓ, vℓ, uℓ, rℓ, pℓ, qℓ)}

a (canonical) finite collection of (maximal formal) limit groups. By choosing each of
the specializations {bℓ} to be a specialization for which the associated specialization,
(bℓ, pℓ, qℓ, a) is the shortest in its strictly solid family, each of the maximal formal
limit groups that is associated with the collection of sequences is in fact a graded
closure of one of the graded completions we have started this step with.

We continue with each of the obtained graded closures in parallel. Given a graded
closure, we associate with it the collection of specializations, (c, t, b, z, x, y, u, v, r, p, q),
for which:

(1) (t, b, z, x, y, u, v, r, p, q, a) factors through the given graded closure.
(2) (c, b, p, q, a) demonstrates that the specialization (b, p, q, a), which is a spe-

cialization of the (rigid or solid) terminal limit group of one of the Non-Rigid,
Non-Solid, Left, Root, Extra PS or Generic Collapse Extra PS resolutions
that are associated with Term, is not rigid nor strictly solid or that it ei-
ther coincides with one of the rigid specializations, or that it belongs to the
strictly solid family of one the strictly solid specializations that is associated
with the specialization: (z, x, y, u, v, p, q, a).

With the collection of specializations, (c, t, b, z, x, y, u, v, r, p, q), we naturally as-
sociate (canonically) a collection of (maximal) limit groups (which is the Zariski
closure of the collection). With these limit groups we associate a collection of graded
taut resolutions (with respect to the subgroup < q, a >), that are constructed ac-
cording to the first step of the sieve procedure (that is presented in [Se6]). Some
of these resolutions are graded closures of the graded completion we have started
with, and others have smaller complexity (in the sense of the complexities that are
used along the sieve procedure). We continue to the next step with the completions
of each of these resolutions that are not graded closures of the graded completion
we have started the first step with.

We continue iteratively to the next steps, by first collecting test sequences with
an extra rigid or strictly solid specialization of the terminal rigid and solid limit
groups of the resolutions that are associated with Term, and then by collecting
those specializations for which the extra specialization collapses, i.e., for which the
extra specialization is demonstrated to be non-rigid or non-strictly solid or that it
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belongs to the same family of specializations that is specified by the specializations
(x, y, u, v, p, q, a) we have started with. At each step we analyze the collection of
specializations using the construction that is used in the general step of the sieve
procedure [Se6]. Since all the resolutions that are constructed along the obtained
iterative procedure are the ones used in the sieve procedure, the iterative procedure
terminates after finitely many steps, according to the proof of the termination of
the sieve procedure that is given section 4 in [Se6] (theorem 22 in [Se6]).

So far we have associated graded limit groups with the subsets B1(Termi) \
B2(Termi), i = 1, . . . , s. Let Term be one of the terminal solid limit groups
Termi, 1 ≤ i ≤ s. We associate finitely many graded limit groups (with respect
to the parameter subgroup < q, a >) with the subset B3(Term) \ B4(Term) in a
similar way to what we did with the set B1(Term) \ B2(Term).

Let Term1, . . . , T ermb be the rigid and solid limit groups that appear in the
(taut) graded Makanin-Razborov diagram of Term (with respect to the parameter
subgroup < p, q, a >). By theorems 2.5, 2.9, and 2.13 in [Se3] there exists a global
bound on the number of rigid specializations of a rigid limit group, and a global
bound on the number of strictly solid families of specializations of a solid limit
group, even with respect to a given covering closure (see theorem 2.13 in [Se3]), for
all possible specializations of the parameters subgroup.

Hence, given the rigid and solid limit groups Term1, . . . , T ermb, and the ter-
minal rigid and solid limit groups of the Non-Rigid, Non-Solid, Left, Root, Extra
PS, and Generic Collapse Extra PS resolutions associated with them, there is a
global bound on the number of distinct rigid and strictly solid families of special-
izations that are associated with a given specialization of the parameter subgroup
< p, q, a >, and these terminal rigid and solid limit groups.

We go over all the specializations of the form:

(x, x1, . . . , xh, y1, . . . , yt, u1, . . . , um, v1, . . . , vn, r, r1, . . . , rn, p, q, a)

where:

(1) the integers h,t,m,n are bounded by the sum of the global bounds on the
number of rigid and strictly solid families of specializations (with respect to
the possible covering closures) of the terminal rigid and solid limit groups
Term1, . . . , T ermb, and of the terminal rigid and solid limit groups of the
resolutions that are associated with the terminal limit group Term and
Term1, . . . , T ermb.

(2) the specialization (x, p, q, a) is a rigid or a strictly solid specialization of the
terminal rigid or solid limit group Term.

(2) the specializations (xi, p, q, a), i = 1, . . . , h, are either rigid and strictly solid
specializations of the rigid or solid limit groups Term1, . . . , T ermb, or they
are strictly solid with respect to the an associated covering closure (that
is specified by the specialization itself, i.e., by the specializations y,u,v).
Furthermore, the finite collection of specializations (xi, p, q, a), i = 1, . . . , h,
represent all the rigid and strictly solid families of specializations (and the
strictly solid ones with respect to covering closures) that are associated with
the given specialization of the subgroup < p, q >, and the terminal limit
groups Term1, . . . , T ermb.

(3) the specializations (yi, p, q, a), i = 1, . . . , t, are rigid and strictly solid spe-
cializations of the terminal rigid and solid limit groups of the Non-Rigid,
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Non-Solid, Left, and Root PS resolutions that are associated with the PS
resolution that terminates in Term and Term1, . . . , T ermb. The rigid
specializations are distinct and the strictly solid specializations belong to
distinct strictly solid families, and the finite collection of specializations
(yi, p, q, a), i = 1, . . . , t, represent all the rigid and strictly solid families of
specializations that are associated with (i.e., that extend) the strictly solid
specialization (with respect to the associated covering closure) (x, p, q, a),
and the rigid and strictly solid specializations (xi, p, q, a), i = 1, . . . , h.

(4) the specializations (vj , p, q, a), j = 1, . . . , n, are distinct rigid and strictly
solid specializations of the terminal (rigid and solid) limit groups of the
Extra PS resolutions that are associated with Term that extend the spe-
cialization (x, p, q, a) and (xi, p, q, a), i = 1, . . . , h. Furthermore, given the
specializations (x, p, q, a) and (xi, p, q, a), i = 1, . . . , h, there are precisely
n rigid or strictly solid families of specializations of the terminal rigid and
solid limit groups of the Extra PS resolutions that extend the specialization
(x, p, q, a).

(5) the specializations (uj, p, q, a), j = 1, . . . , m, are distinct rigid and strictly
solid specializations of the terminal (rigid and solid) limit groups of the
Generic Collapse Extra PS resolutions that are associated with Term and
Term1, . . . , T ermb, that extend the specializations (x, p, q, a) and (xi, p, q, a),
i = 1, . . . , h. Furthermore, given the specialization (x, p, q, a) and (xi, p, q, a),
i = 1, . . . , h, there are precisely n rigid or strictly solid families of specializa-
tions of the terminal limit groups of Generic Collapse Extra PS resolutions
that extend the specialization (x, p, q, a).

(6) the specializations r, include primitive roots of the edge groups in the
graded abelian decompositions of the rigid or solid limit groups Term and
Term1, . . . , T ermb, that are associated with the specializations (x, p, q, a)
and (xi, p, q, a), i = 1, . . . , h, and they indicate what powers of the primitive
roots are covered by the associated Non-Rigid, Non-Solid, Left, Root, Extra
PS, and Generic Collapse Extra PS resolutions (i.e., by the resolutions that
are associated with the specializations y, u, and v).

(6) the specializations rj , j = 1, . . . , n, include primitive roots of the edge
groups in the graded abelian decompositions of the rigid or solid limit group
terminal limit groups of the Extra PS resolutions that are associated with
the specializations (vj , p, q, a), j = 1, . . . , n, and they indicate what pow-
ers of the primitive roots are covered by the associated Generic Collapse
Extra PS resolutions, i.e., by the resolutions that are associated with the
specializations u.

(7) the specialization (x, p, q, a) is not a strictly solid specialization of Term,
but it is strictly solid with respect to the covering closure associated with
the specializations y, u, and v (see definition 2.12 in [Se3] for a strictly solid
specialization with respect to a covering closure).

With this collection of specializations we can canonically associate a finite col-
lection of graded limit groups (which is the Zariski closure of the collection). We
view each of these (finitely many) limit groups, as graded with respect to the pa-
rameter subgroup < q, a >. We associate with each such limit group its graded taut
Makanin-Razborov diagram, and with each resolution in the diagram we associate
its (graded) completion.
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We continue as we did in assigning a finite collection of limit groups with the
sets B1(Term) \ B2(Term). At each step we first collect all the test sequences
for which there exists an extra rigid or strictly solid specialization of one of the
terminal limit groups Term1, . . . , T ermb or of one of the terminal limit groups of
the resolutions that are associated with Term and Term1, . . . , T ermb, i.e., a rigid
or strictly solid specialization which is distinct from the rigid and strictly solid
families that are specified by the specializations of the test sequence. We analyze
the obtained collection of sequences of specializations using the analysis that is used
in the construction of (graded) formal limit groups in section 3 in [Se2]. Then we
collect all the specializations for which the extra rigid or strictly solid specialization
collapses, i.e., is not rigid nor strictly solid or it belongs to the rigid and strictly
solid families that are specified by the given specializations, analyze the obtained
collection using the analysis that is used in the general step of the sieve procedure,
and finally continue to the next step only with those (graded) resolutions that are
not graded closures of the completions we have started the current step with. By
the termination of the sieve procedure (theorem 22 in [Se6]), the obtained procedure
terminates after finitely many steps.

The procedures that we used so far, that are associated with the sets B1(Termi)\
B2(Termi), and the sets B3(Termi) \ B4(Termi), i = 1, . . . , s, construct finitely
many graded completions that are associated with the definable set we have started
with, L(p, q). These are the graded completions with which we have started each
procedure, and the completions and closures of the completions of the developing
resolutions that are constructed in each step of the terminating iterative procedures
(see the general step of the sieve procedure in [Se6], for the construction of the
developing resolution).

Let G1(z, p, q, a), . . . , Gt′(z, p, q, a) be the graded completions that are asso-
ciated with L(p, q) according to the procedures presented above. We look at
the subset (up to a change of order of the original set of graded completions)
G1(z, p, q, a), . . . , Gt(z, p, q, a), for some 1 ≤ t ≤ t′, for which for each j, 1 ≤ j ≤ t,
there exists a test sequence {zn, pn, q, a} of the completion Gj(z, p, q, a), for which
all the specializations (pn, q) ∈ L(p, q).

The collection of graded completions, G1(z, p, q, a), . . . , Gt(z, p, q, a), clearly sat-
isfies part (1) and (2) of theorem 1.3. The iterative construction that leads to their
construction guarantees that they satisfy part (3) as well.

�

Given a definable set, L(p, q), theorem 1.3 associates with it a Diophantine enve-
lope. Starting with the Diophantine envelope of a definable set, we further associate
with it a Duo Envelope, that is the main tool that we use in classifying imaginaries
over free and hyperbolic groups.

Theorem 1.4. Let Fk be a non-abelian free group, let L(p, q) be a definable set over
Fk, and let G1(z, p, q, a), . . . , Gt(z, p, q, a) be the Diophantine envelope of L(p, q)
(see theorem 1.3). There exists a finite collection of duo limit groups:

Duo1(d1, p, d2, q, d0, a), . . . , Duor(d1, p, d2, q, d0, a)

which is (canonically) associated with L(p, q), that we call the Duo Envelope of
L(p, q), for which:

(1) For each index i, 1 ≤ i ≤ r, there exists a test sequence of the duo limit
12



group Duoi, that restricts to a sequence of couples {(pn, qn)}, so that for
every index n, (pn, qn) ∈ L(p, q).

(2) A (duo) test sequence {(d1(n), pn, d2(n), qn, d0, a)} of each of the duo limit
groups Duo1, . . . , Duor restricts to a sequence {pn} that can be extended to
a test sequence of at least one of the graded completions G1, . . . , Gt.

(3) Given a test sequence {(zn, pn, q0, a)} of one of the graded completions,
G1, . . . , Gt, for which (pn, q0) ∈ L(p, q) for every index n, there exists a
subsequence of the sequence {pn}, so that the sequence of couples (still de-
noted) {(pn, q0)} can be extended to a test sequence of specializations of at
least one of the duo limit groups Duo1, . . . , Duor.

(4) Given a specialization (p0, q0) ∈ L(p, q), there exists an index i, 1 ≤ i ≤ r,
and a duo family of the duo limit group Duoi, so that (p0, q0) extends to
a specialization that factors through the duo family, and there exists a test
sequence of the duo family that restricts to specializations {(pn, qn)}, so that
for every index n, (pn, qn) ∈ L(p, q).

(5) Let Duo be some duo limit group of L(p, q). Every duo family of Duo
that admits a test sequence that restricts to a sequence of specializations
{(pn, qn)}, for which (pn, qn) ∈ L(p, q) for every index n, and for which the
sequence (pn, qn) can be extended to a test sequence of one the graded com-
pletions, G1, . . . , Gt, is boundedly covered by the Duo envelope, Duo1, . . . , Duor.
i.e., there exists some constant b > 0 (that depends only on the duo limit
group Duo), for which given a duo family of the duo limit group Duo, there
exist at most b duo families of the Duo envelope, Duo1, . . . , Duor, so that
given an arbitrary test sequence that factors through the given duo family of
the duo limit group Duo, and restricts to specializations (pn, qn) ∈ L(p, q),
so that the sequence {(pn, qn)} can be extended to specializations that form
a test sequence of one of the graded completions, G1, . . . , Gt, there exists
a subsequence of the sequence {(pn, qn)} that can be extended to specializa-
tions of one of the (boundedly many) duo families that are associated with
the Duo envelope Duo1, . . . , Duor.

Proof: When we dealt with a Diophantine set (section 2 in [Se9]), or with a rigid
or solid limit group (section 3 in [Se9]), from the directed diagram that is associated
with these groups and the graded completions that are associated with its vertices,
it was immediate to obtain a canonical collection of duo limit groups that cover
any duo family that is associated with the Diophantine set or with the rigid or
solid limit group (see section 3 in [Se9]). When we deal with a general definable
set L(p, q) the construction of such a universal family of duo limit groups that is
associated with its Diophantine envelope is more involved.

We will start with the same construction that was applied in constructing the
duo limit groups that are associated with a rigid or a solid limit group in section 3
of [Se9], and then iteratively refine this construction using the sieve method [Se6],
in a similar way to the construction of the Diophantine envelope (theorem 1.3).

Let G1, . . . , Gt be the Diophantine envelope of the definable set L(p, q) (see
theorem 1.3). We start with the graded completions G1, . . . , Gt in parallel. With
each graded completion Gj , 1 ≤ j ≤ t, we first associate a finite collection of duo
limit groups (that are not yet necessarily part of the duo envelope).

To construct these duo limit groups, we look at the entire collection of graded test
sequences that factor through the given graded completion, Gj , for which the (re-
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stricted) sequence of specializations {pn} can be extended to specializations of one of
the graded completions (the Diophantine envelope) G1(z, p, q, a) . . . , Gt(z, p, q, a).
With this entire collection of graded test sequences, and their extensions to spe-
cializations of G1, . . . , Gt, we associate finitely many graded Makanin-Razborov
diagrams, precisely as we did in constructing the formal graded Makanin-Razborov
diagram in section 3 of [Se2]. As in the formal Makanin-Razborov diagram, each
resolution in the diagrams we construct terminates with a (graded) closure of the
given graded completion, Gj , we have started with, amalgamated with another
group along its base (which is the terminal rigid or solid limit group of the graded
completion Gj), and the abelian vertex groups that commute with non-trivial ele-
ments in the base.

By construction, a completion of a resolution in one of the constructed graded
diagrams is a duo limit group. We take the completions of the resolutions that
appear in the finitely many diagrams that are associated with the graded completion
Gj , to be the preliminary (finite) collection of duo limit groups that are associated
with Gj .

We proceed by constructing an iterative procedure that is similar to the one used
in the proof of theorem 1.3 to construct the Diophantine envelope, and is based on
the sieve procedure [Se6]. At each step we first collect all the test sequences of the
current duo limit group (that is associated with Gj), for which for every specializa-
tion from the sequence there exists an extra rigid or strictly solid specialization, and
analyze the obtained collection of sequences of specializations using the analysis of
(graded) formal limit groups that appears in sections 2 and 3 in [Se2]. Then we
collect all the test sequences of that graded completion Gj that can be extended
to specializations of the obtained cover of the current duo limit group, for which
the extra rigid or strictly solid specialization collapses. We analyze the obtained
collection using the analysis that is used in the general step of the sieve procedure,
and finally continue to the next step only with those (graded, formal) resolutions
that are not graded closures of the duo limit group we have started the current step
with. By the termination of the sieve procedure (theorem 22 in [Se6]), the obtained
procedure terminates after finitely many steps.

Finally, the duo limit groups that we proceed with, from which we can choose a
subcollection that satisfies the properties that are listed in Theorem 1.4, are those
duo limit groups that are obtained along the sieve procedures that were constructed
for all the (finitely many) duo limit groups that were associated with the graded
completion (the Diophantine envelope) G1, . . . , Gt.

We set the Duo envelope of the definable set L(p, q), Duo1, . . . , Duor, to be those
duo limit groups that are associated with the Diophantine envelope, G1, . . . , Gt, for
which there exists a duo family having a test sequence, so that all the specializations
in the test sequence restrict to elements (p, q) in L(p, q) (i.e., in particular, a ”generic
point” in Duoi is in L(p, q)).

The iterative procedure that constructs the collection of duo limit groups, Duo1, . . . , Duor,
guarantees that they satisfy properties (1)-(3) of theorem 1.4. Part (4) follows from
part (3) together with part (3) of theorem 1.3. To prove part (5) we assume that
Duo is a duo limit group, and that there exists a test sequence of Duo that restricts
to specializations (pn, qn), so that:

(i) the sequence (pn, qn) can be extended to a test sequence of one of the graded
completions, G1, . . . , Gt.
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(ii) for every index n, (pn, qn) ∈ L(p, q).

We look at the collection of all the test sequences of the given duo limit group Duo
that satisfy properties (i) and (ii). By properties (i) and (ii) and the construction of
the diagram that was used to construct the duo envelope, Duo1, . . . , Duor, given
such a test sequence, its sequence of restrictions {(pn, qn)} can be extended to
specializations that factor through one of the duo limit groups that are constructed
in the initial step of the diagram (that was used to construct the duo envelope).
By property (i) and the construction of the diagram, given such a test sequence it
has a subsequence so that the sequence of restrictions (still denoted) {(pn, qn)} of
the subsequence satisfies one of the following:

(1) {(pn, qn)} can be extended to specializations that factor through one of the
duo limit groups, Duo1, . . . , Duor, that are associated with the initial step
of the diagram that was used to construct the duo envelope.

(2) {(pn, qn)} can be extended to specializations that factor through one of
the developing resolutions that are associated with the second step of the
diagram that was used to construct the duo envelope.

If we continue with this argument iteratively, we obtain:

Lemma 1.5. Given a test sequence that satisfies properties (i) and (ii), it has
a subsequence that its sequence of projections, {(pn, qn)}, can be extended to a se-
quence of specializations that factor through one of the duo limit groups, Duo1, . . . , Duor.

Having proved lemma 1.5, we continue with all the test sequences of Duo that
satisfy properties (i) and (ii), and for which their projections {(pn, qn)} can be
extended to a sequence of specializations that factor through one of the duo limit
groups, Duo1, . . . , Duor.

With each test sequence of Duo from this collection, and its projection {(pn, qn)},
we consider all the shortest extensions of the sequence {(pn, qn} to specializations
of one of the duo limit groups, Duo1, . . . , Duor. By the techniques presented
in section 3 of [Se2] to analyze graded formal limit groups, with this collection
of shortest extensions we can canonically associate finitely many maps from the
collection of duo limit groups, Duo1, . . . , Duor to (finitely many) closures of the
given duo limit group Duo.

The existence of these finitely many maps, and finitely many closures, guarantees
that the sequence of projections {(pn, qn)} of a test sequence of one of the specified
closures of Duo can be extended to a sequence of specializations of one of the duo
limit groups, Duo1, . . . , Duor. Furthermore, a duo family of Duo is covered by
boundedly many duo families of the specified closures of Duo, and each duo family
of one of the specified closures is covered by boundedly many duo families of the
duo envelope, Duo1, . . . , Duor, and part (5) of theorem 1.4 follows.

�

§2. Few Basic Imaginaries

Our goal in this paper is to study definable equivalence relations over free and hy-
perbolic groups. Before we analyze the structure of a general definable equivalence
relation over such groups, we introduce some basic well-known definable equivalence
relations over a free (or hyperbolic) group, and prove, using Diophantine envelopes
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that were presented in the first section, that these equivalence relations are imag-
inaries (non-reals). Later on we show that if one adds these basic imaginaries as
new sorts to the model of a free or a hyperbolic group, then for any definable
equivalence relation there exists a definable multi-function that separates classes
and maps every equivalence class into a uniformly bounded set, i.e., that adding
the basic imaginaries as sorts geometrically eliminates imaginaries over free and
hyperbolic groups. We start by proving that conjugation is an imaginary.

Theorem 2.1. Let Fk =< a1, . . . , ak > be a non-abelian free group, and let:

Conj(x1, x2) = { (x1, x2) | ∃u ux1u
−1 = x2 }

be the definable equivalence relation associated with conjugation over Fk. Then
Conj(x1, x2) is an imaginary.

Proof: To prove that conjugation is an imaginary, we need to show that there is
no positive integer m and a (definable) function: f : Fk → Fm

k that maps each
conjugacy class in Fk to a point, and distinct conjugacy classes to distinct points
in Fm

k . To prove that there is no such function, we use the precise (geometric)
description of a definable set that was obtained using the sieve procedure for quan-
tifier elimination presented in [Se6] (the same description that we used in proving
the stability of free and hyperbolic groups in [Se8]), and the Diophantine envelope
of a definable set that was constructed in theorem 1.3.

Recall that by the output of the sieve procedure [Se6], with a definable set L(p)
there are associated rigid and solid limit groups (with respect to the parameter
subgroup < p >), Term1, . . . , T erms, and with each limit group, Termi, there are
associated sets Bj(Termi), j = 1, . . . , 4, that are described in the first section, so
that L(p) is the finite union:

L(p) = ∪s
i=1 (B1(Termi) \ B2(Termi)) ∪ (B3(Termi) \ B4(Termi)).

Suppose that conjugation is not an imaginary. Then there exists a definable
function: f : Fk → Fm

k , that maps each conjugacy class to a point, and different
conjugacy classes to distinct points. Let L(v, x1, . . . , xm) be the graph of the func-
tion f , that by our assumption on the definability of f has to be a definable set,
for which:

(i) for every possible value of the variable v there exists a unique value of the
tuple, (x1, . . . , xm).

(ii) the value of the tuple (x1, . . . , xm) is the same for elements v in the same
conjugacy class, and distinct for different conjugacy classes.

Using theorem 1.3, we associate with the definable set L(v, x1, . . . , xm), its Dio-
phantine envelope with respect to the parameter v (i.e., in the statement of theorem
1.3, we set v to be q, and (x1, . . . , xm) to be p). Let G1, . . . , Gt be the graded com-
pletions that form this Diophantine envelope. Since for every possible value of v
there exists a unique value of x1, . . . , xm in L(v, x1, . . . , xm), each of the graded
completions, Gj(z, x1, . . . , xm, v, a), is either a rigid limit group (with respect to the
parameters v), or it is a solid limit group where the subgroup < x1, . . . , xm, v, a >
is contained in the distinguished vertex group (that is stabilized by < v, a >).
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With the definable set L(v, x1, . . . , xm) we associate three sequences of special-
izations: {un}, {(vn, xn

1 , . . . , xn
m)}∞n=1 and {(v̂n, x̂n

1 , . . . , x̂n
m)}∞n=1, so that:

(1) for every index n, the tuples (vn, xn
1 , . . . , xn

m) and (v̂n, x̂n
1 , . . . , x̂n

m), are in
the definable set L(v, x1, . . . , xm).

(2) vn and un are taken from a test sequence in the free group Fk (see theorem
1.1 and lemma 1.21 in [Se2] for a test sequence), and v̂n = unvnu−1

n .
(3) 2 · |un| > |vn| > 1

2 · |un|, where |w| is the length of the word w ∈ Fk, with
respect to a fixed generating set of Fk.

By theorem 1.3, each of the specializations (vn, xn
1 , . . . , xn

m) extends to a spe-
cialization that factors through one of the graded completions, G1, . . . , Gt, that
form the Diophantine envelope of the definable set L(v, x1, . . . , xm). By passing to
a subsequence, and changing the order of the graded completions, we can assume
that they all factor through the graded completion G1. Since G1 is rigid or solid
with respect to the parameter subgroup < v, a >, and since the sequence {vn} was
chosen as a part of a test sequence, we can pass to a further subsequence, so that:

(1) there exists a retraction η : G1 → H =< v, a >=< v > ∗Fk.
(2) for each index n, there is a retraction, νn : H =< v, a >→< a >= Fk, given

by: νn(v) = vn, and for every index i, 1 ≤ i ≤ m, xn
i = νn ◦ η(xi).

(3) by the construction of the Diophantine envelope, the graded completion G1

contains elements that together are supposed to validate that the elements
(v, x1, . . . , xm) are indeed elements of the definable set L(v, x1, . . . , xm)
(see the construction of the Diophantine envelope in theorem 1.3). For each
index n, the restriction of the composition νn◦η : G1 → Fk to these elements
validates that (vn, xn

1 , . . . , xn
m) ∈ L(v, x1, . . . , xm).

By (1)-(3) and since v̂n = unvnu−1
n , and un and vn are taken from a test sequence,

if we set ν̂n : H → Fk to be the retraction given by: ν̂n(v) = v̂n = unvnu−1
n , then

after possibly passing to a further subsequence, for every index n and every index
i, 1 ≤ i ≤ m: x̂n

i = ν̂n ◦ η(xi).
Since the elements x1, . . . , xm are distinct for distinct conjugacy classes of special-
izations of v, and the elements vn are not conjugate, the tuples (xn

1 , . . . , xn
m) are

distinct for distinct indices n. Hence, there exists an index i, 1 ≤ i ≤ m, for which
η(xi) /∈ Fk. Therefore, for large enough n:

xn
i = νn ◦ η(xi) 6= ν̂n ◦ η(xi) = x̂n

i .

But, vn is conjugate to v̂n, and both tuples (vn, xn
1 , . . . , xn

m) and (v̂n, x̂n
1 , . . . , x̂n

m)
are contained in the definable set L(v, x1, . . . , xm). Hence, for every index n, and
every i, 1 ≤ i ≤ m, xn

i = x̂n
i , and we get a contradiction.

�

Having proved that conjugation is an imaginary, we further show that left and
right cosets of cyclic subgroups are imaginaries.

Theorem 2.2. Let Fk =< a1, . . . , ak > be a non-abelian free group, let m be a
positive integer and let:

Left(x1, y1, x2, y2) = { (x1, y1, x2, y2) | y1, y2 6= 1∧[y1, y2] = 1∧∃y [y, y1] = 1∧x−1
1 x2 = ym }

Right(x1, y1, x2, y2) = { (x1, y1, x2, y2) | y1, y2 6= 1∧[y1, y2] = 1∧∃y [y, y1] = 1∧x1x
−1
2 = ym }
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be the definable equivalence relation associated with left and right cosets of cyclic
subgroups over Fk. Then Left and Right are imaginaries.

Proof: The proof we give is similar to the one we used in theorem 2.1. Suppose
that Left is not an imaginary. Then there exists a definable function: f : F 2

k → F r
k ,

that maps each left coset (of the corresponding cyclic subgroup) to a point, and
different left cosets to distinct points. Let L(t, s, x1, . . . , xr) be the definable set
associated with the definable function f(t, s). Note that for every possible special-
ization (t0, s0) of (t, s), there exists a unique specialization (t0, s0, x

0
1, . . . , x0

r) that
belongs to the set L(t, s, x1, . . . , xr), and if (t0, s0, x

0
1, . . . , x0

r) ∈ L(t, s, x1, . . . , xr)
then (t0s

ℓm
0 , s0, x

0
1, . . . , x0

r) ∈ L(t, s, x1, . . . , xr) for every integer ℓ.

We proceed as in the proof of theorem 2.1. Using theorem 1.3, we associate
with the definable set L(t, s, x1, . . . , xm), its Diophantine envelope with respect to
the parameter subgroup < t, s > (i.e., in the statement of theorem 1.3, we set t, s
to be q, and x1, . . . , xm to be p). Let G1, . . . , Gt be the graded completions that
form this Diophantine envelope. Since for every possible value of the couple (t, s)
there exists a unique value of x1, . . . , xr in L(t, s, x1, . . . , xr), each of the graded
completions, Gj(z, x1, . . . , xr, t, s, a), is either a rigid limit group (with respect
to the parameter subgroup < t, s, a >), or it is a solid limit group where the
subgroup < x1, . . . , xr, t, s, a > is contained in the distinguished vertex group (that
is stabilized by < t, s, a >).

With the definable set L(t, s, x1, . . . , xr) we associate two sequences of special-
izations: {(tn, sn, xn

1 , . . . , xn
r )}∞n=1 and {(t̂n, sn, x̂n

1 , . . . , x̂n
r )}∞n=1, so that:

(1) for every index n, the tuples (tn, sn, xn
1 , . . . , xn

r ) and (t̂n, sn, x̂n
1 , . . . , x̂n

r ),
are in the definable set L(t, s, x1, . . . , xr).

(2) tn and sn are taken from a test sequence in the free group Fk (see theorem
1.1 and lemma 1.21 in [Se2] for a test sequence), and t̂n = tnsm

n .
(3) 2 · |sn| > |tn| > 1

2 · |sn|, where |w| is the length of the word w ∈ Fk, with
respect to a fixed generating set of Fk.

By theorem 1.3, each of the specializations (tn, sn, xn
1 , . . . , xn

r ) extends to a spe-
cialization that factors through one of the graded completions, G1, . . . , Gt, that
form the Diophantine envelope of the definable set L(t, s, x1, . . . , xm). By passing
to a subsequence, and changing the order of the graded completions, we can as-
sume that they all factor through the graded completion G1. Since G1 is rigid or
solid with respect to the parameter subgroup < t, s, a >, and since the sequences,
{tn} and {sn} were chosen as a part of a test sequence, we can pass to a further
subsequence, so that:

(1) there exists a retraction η : G1 → H =< t, s, a >=< t > ∗ < s > ∗Fk.
(2) for each index n, there is a retraction, νn : H =< t, s, a >→< a >= Fk,

given by: νn(t) = tn, νn(s) = sn, and for every index i, 1 ≤ i ≤ r,
xn

i = νn ◦ η(xi).
(3) by the construction of the Diophantine envelope, the graded completion G1

contains elements that together are supposed to validate that the elements
(t, s, x1, . . . , xr) are indeed elements of the definable set L(t, s, x1, . . . , xr)
(see the construction of the Diophantine envelope in theorem 1.3). For each
index n, the restriction of the composition νn◦η : G1 → Fk to these elements
validates that (tn, sn, .xn

1 , . . . , xn
r ) ∈ L(t, s, x1, . . . , xr).

By (1)-(3) and since t̂n = tnsm
n , and tn and sn are taken from a test sequence,
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if we set ν̂n : H → Fk to be the retraction given by: ν̂n(t) = tnsm
n and ν̂n(s) = sn,

then after possibly passing to a further subsequence, for every index n and every
index i, 1 ≤ i ≤ r: x̂n

i = ν̂n ◦ η(xi).
Since the elements x1, . . . , xr are distinct for distinct left cosets, and the elements
tn belong to distinct left cosets of the cyclic subgroups sm

n′ , there exists an index i,
1 ≤ i ≤ r, for which η(xi) /∈< s, a >. Therefore, for large enough n:

xn
i = νn ◦ η(xi) 6= ν̂n ◦ η(xi) = x̂n

i .

But, tn is in the same left coset as t̂n = tnsm
n , and both tuples (tn, sn, xn

1 , . . . , xn
r )

and (t̂n, sn, x̂n
1 , . . . , x̂n

r ) are contained in the definable set L(t, s, x1, . . . , xr). Hence,
for every index n, and every i, 1 ≤ i ≤ r, xn

i = x̂n
i , and we get a contradiction.

�

Having Proved that cosets of cyclic groups are imaginaries, we further show that
double cosets of cyclic groups are imaginaries as well.

Theorem 2.3. Let Fk =< a1, . . . , ak > be a non-abelian free group, let m1, m2 be
positive integers and let:

Dcoset(y1, x1, z1, y2, x2, z2) = { (y1, x1, z1, y2, x2, z2) | y1, z1, y2, z2 6= 1∧[y1, y2] = [z1, z2] = 1∧

∧∃y, z [y, y1] = [z, z1] = 1 ∧ ym1x1z
m2 = x2 }

be the definable equivalence relation associated with double cosets of cyclic subgroups
over Fk. Then Dcoset is an imaginary.

Proof: A straightforward modification of the proof for left and right cosets (the-
orem 2.2), proves that double cosets are imaginaries as well.

�

So far we proved that 3 basic definable equivalence relations over a free group
are imaginaries. The arguments that were used to prove them generalize to an
arbitrary non-elementary torsion-free hyperbolic group using the results of [Se8].

Theorem 2.4. Let Γ be a non-elementary, torsion-free (Gromov) hyperbolic group.
Then conjugation, left and right cosets and double cosets of cyclic subgroups (see
theorems 2.1-2.3) are imaginaries over Γ.

§3. Separation of Variables

In section 3 of [Se9] we have introduced Duo limit groups, and associated a finite
collection of Duo limit groups with a given rigid or solid limit group. In the first
section of this paper we have constructed the Diophantine envelope of a definable
set (theorem 1.3), and then used it to construct the Duo envelope of a definable set
(theorem 1.4).

Recall that by its definition (see definition 1.1), a Duo limit group Duo admits an
amalgamated product: Duo =< d1, p > ∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> < d2, q >
where < e1 > and < e2 > are free abelian groups with pegs in < d0 >, i.e., free
abelian groups that commute with non-trivial elements in < d0 >. A specialization
of the parameters < d0 > of a Duo limit group gives us a Duo family of it.
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To analyze definable equivalence relations over a free (or a hyperbolic) group,
we will need to further study the parameters (< d0 >) that are associated with
the Duo families that are associated with the Duo limit groups that form the Duo
envelope of a definable equivalence relation. To do that we will need to get a better
”control” or understanding of the parameters < d0 > that are associated with a
duo family and then with an equivalence class of a given equivalence relation.

In this section we modify and further analyze the construction of the Duo en-
velopes that were presented in theorem 1.4, in the special case of a definable equiv-
alence relation, to carefully study the set of values of the parameters that are
associated with the duo families that are associated with each equivalence class.
This careful study, that uses what we call uniformization limit groups that we as-
sociate with the Duo envelope, enables one to associate a ”bounded” set of (values
of) certain subgroups of the parameters that are associated with the Duo families
of the Duo envelope, for each equivalence class of a definable equivalence relation
(the bounded set of values of the subgroups of parameters is modulo the basic
imaginaries that were presented in the previous section).

The bound that we achieve on the number of specializations of the subgroups
that we look at, allows us to obtain what we view as ”separation of variables”.
This means that with the original subgroups of parameters, < p > and < q >, we
associate a bigger subgroup, for which there exists a graph of groups decomposition,
where < p > is contained in one vertex group, < q > is contained in a second
vertex group, and the number of specializations of the edge groups (up to the
imaginaries that were presented in the previous section) is (uniformly) bounded for
each equivalence class of E(p, q).

The approach to such a bound, combines the techniques that were used in con-
structing the Duo envelope in theorem 1.4 (mainly the sieve procedure for quantifier
elimination that was presented in [Se6]), together with the techniques that were used
to construct formal (graded) Makanin-Razborov diagrams in sections 2-3 in [Se2],
and the proof of the existence of a global bound on the number of rigid and strictly
solid families of specializations of rigid and solid limit groups, that was presented
in sections 1-2 in [Se3]. In the next section we show how to use the separation
of variables that is obtained in this section to finally analyze definable equivalence
relations.

Let Fk =< a1, . . . , ak > be a non-abelian free group, and let E(p, q) be a defin-
able equivalence relation over Fk. Recall that with the definable equivalence rela-
tion, E(p, q), being a definable set, one associates (using the sieve procedure) finitely
many (terminal) rigid and solid limit groups, Term1, . . . , T erms, with each of the
terminal limit groups Termi there are 4 sets associated, Bj(Termi), j = 1, . . . , 4,
and that the definable set E(p, q) is the set:

E(p, q) = ∪s
i=1 (B1(Termi) \ B2(Termi)) ∪ (B3(Termi) \ B4(Termi)).

By theorems 1.3 and 1.4, with the given definable equivalence relation E(p, q),
being a definable set, we can associate a Diophantine and a Duo envelopes. Let
G1, . . . , Gt be the Diophantine envelope of the given definable equivalence relation
E(p, q), and let Duo1, . . . , Duor, be its Duo envelope.

Let Duo be one of the Duo limit groups, Duo1, . . . , Duor. By definition (see def-
inition 1.1), Duo can be represented as an amalgamated product: Duo =< d1, p >
∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> < d2, q >. By construction, in Duo there exists a
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subgroup that demonstrates that generic elements < p, q > in Duo are indeed in the
equivalence relation E(p, q). This subgroup that we denote: < x, y, u, v, r, p, q, a >,
is generated by the subgroup < p, q >, together with elements x for rigid and strictly
solid specializations of some of the terminal limit groups, Term1, . . . , T erms, that
are associated by the sieve procedure with E(p, q), elements y, u, v for rigid and
strictly solid specializations of some of the terminal limit groups of the Non-Rigid,
Non-Solid, Left, Root, Extra PS, and Generic Collapse Extra PS resolutions that
are associated with some of these terminal limit groups, and elements for specializa-
tions of primitive roots of the specializations of edge groups in the graded abelian
decomposition of some of the terminal limit groups, Term1, . . . , T erms, and in
the graded abelian decompositions of the terminal limit groups of some of the Ex-
tra PS resolutions that are associated with them (see the proof of theorem 1.3).
The subgroup < x, y, u, v, r, p, q >, being a subgroup of Duo, inherits a graph of
groups decomposition from the presentation of Duo as an amalgamated product.
We denote the subgroup < x, y, u, v, r, p, q, a > of Duo by Ipr.

Ipr, being a subgroup of Duo, inherits a graph of groups decomposition from its
action on the Bass-Serre tree that is associated with the amalgamated product:

Duo =< d1, p > ∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> < d2, q > .

Suppose that in this graph of groups decomposition of the subgroup, Ipr, there
exists an edge with a trivial edge group. In that case Ipr admits a non-trivial free
product, Ipr = A ∗ B, and since < p ><< d1, p > and < q ><< d2, q >, so < p >
and < q > are either trivial or can be embedded into vertex groups in the graph of
groups decomposition that is inherited by Ipr. Therefore, either:

(i) < p, q > is a subgroup of A.
(ii) < p > is a subgroup of A and < q > is a subgroup of B.

If (i) holds, then the restrictions of the specializations of Duo to specializations
of Ipr are not generated by rigid and strictly solid specializations of the terminal
limit groups that are associated with Ipr (together with primitive roots of the
specializations of edge groups), which contradicts the construction of Duo (see
definition 1.1 and theorem 1.4).

To deal with case (ii), we present the following theorem, that associates finitely
many rigid and solid limit groups (with respect to the parameter subgroup < p, q >)
with the equivalence relation E(p, q), so that each couple, (p, q) ∈ E(p, q), can be
proved to be in E(p, q) by a rigid or a strictly solid homomorphism from one of these
limit groups. Furthermore there exist at most finitely many equivalence classes of
the equivalence relation E(p, q), for which couples (p, q) that do not belong to
these exceptional classes, can be proved to be in E(p, q) using rigid or strictly solid
homomorphisms of one of the finitely many associated rigid and solid limit groups
(with respect to < p, q >), and these rigid and solid homomorphisms do not factor
through a free product (of limit groups) as in case (ii). To prove the theorem we
apply once again the sieve procedure [Se6], which was originally used for quantifier
elimination, and was also the main tool in the construction of the Diophantine and
Duo envelopes.

Theorem 3.1. Let Fk =< a1, . . . , ak > be a non-abelian free group, and let E(p, q)
be a definable equivalence relation over Fk. There exist finitely many rigid and solid
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limit groups (with respect to < p, q >) that we denote: Ipr1, . . . , Iprw, so that:

(1) for every couple (p, q) ∈ E(p, q) there exists a rigid or a strictly solid homo-
morphism (with respect to < p, q >) h : Ipri → Fk, for some index i, that
contains a proof that (p, q) ∈ E(p, q).

(2) there exist at most finitely many equivalence classes of E(p, q), so that for
every couple (p, q) ∈ E(p, q) that does not belong to one of these finitely
many classes, there exists a rigid or a strictly solid homomorphism, h :
Ipri → Fk, for some index i, that contains a proof that (p, q) ∈ E(p, q),
and so that h, and every strictly solid homomorphism in the strictly solid
family of h, does not factor through a homomorphism ν onto a free product
(of limit groups) A ∗ B, in which ν(p) ∈ A and ν(q) ∈ B.

Proof: Recall that by the sieve procedure for quantifier elimination, with the
equivalence relation, E(p, q), there is a finite collection of associated rigid and solid
terminal limit groups, Term1, . . . , T erms. With a couple (p, q) ∈ E(p, q), there
exists a homomorphism from a subgroup < x, y, u, v, r, p, q, a >→ Fk, where:

(a) the elements x are mapped to rigid and strictly solid specializations of some
of the rigid and solid terminal limit groups, Term1, . . . , T erms.

(b) elements y, u, v that are mapped to rigid and strictly solid specializations of
some of the terminal limit groups of the Non-Rigid, Non-Solid, Left, Root,
Extra PS, and Generic Collapse Extra PS resolutions that are associated
with some of the terminal limit groups, Term1, . . . , T erms.

(c) elements r that are mapped to specializations of primitive roots of the spe-
cializations of edge groups in the graded abelian decomposition of some of
the terminal limit groups, Term1, . . . , T erms, and in the graded abelian
decompositions of the terminal limit groups of some of the Extra PS reso-
lutions that are associated with them (see the proof of theorem 1.3).

We look at the collection of all the homomorphisms from a subgroup < x, y, u, v, r, p, q, a >→
Fk, that verify that a couple (p, q) ∈ E(p, q). With this collection we can naturally
associate (by section 5 in [Se1]) a finite collection of limit groups that we denote:
V1, . . . , Vf . With each of these limit groups we can associate its graded Makanin-
Razborov diagram with respect to the parameter subgroup, < p, q >. We further
look at the collection of rigid and strictly solid homomorphisms of rigid and solid
limit groups in these diagrams, that verify that a couple < p, q >∈ E(p, q) (note
that if a couple (p, q) ∈ E(p, q), then there exists such a rigid or a strictly solid
homomorphism). With this collection of rigid and solid homomorphisms (with re-
spect to < p, q >), we can associate finitely many limit groups, that we denote,
L1, . . . , Lg.

At this point we collect the subcollection of this collection of homomorphisms
(i.e., rigid and strictly solid homomorphisms with respect to < p, q > that verify
that (p, q) ∈ E(p, q)) that factor through a free product of the form A ∗ B, where
A and B are limit groups, so that < p >< A and < q >< B. By the standard
methods of section 5 in [Se1], with the subcollection of such rigid and strictly
solid homomorphisms we can naturally associate a finite collection of limit groups
(graded with respect to < p, q >), that we denote M1, . . . , Me.

By successively applying the shortening argument to the subcollection of homo-
morphisms that factor through a free product of limit groups (by considering the
actions of the graded limit groups M1, . . . , Me on the Bass-Serre trees correspond-
ing to the free products A ∗ B through which they factor), we can replace this
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subcollection of homomorphisms with a new subcollection, and the finite collection
of limit groups, M1, . . . , Me, with a new finite subcollection, GFD1, . . . , GFDd,
for which each of the (graded) limit groups, GFD1, . . . , GFDd, admits a free de-
composition Aj ∗ Bj, where < p >< Aj and < q >< Bj.

Let GFDj = Aj ∗ Bj , so that < p >< Aj and < q >< Bj . With Aj and Bj

viewed as limit groups, we can naturally associate their taut Makanin-Razborov
diagrams (see section 2 in [Se4] for the construction and properties of the taut
diagram). With a taut resolution of Aj and a taut resolution of Bj, we naturally
associate their free product which is a resolution of GFDj = Aj ∗ Bj. Let Res be
such a resolution of GFDj . Given the taut resolution Res of GFDj we look at its
collection of test sequences for which either:

(1) one of the rigid or strictly solid specializations that are specified by the
specializations in the test sequence is not rigid or not strictly solid.

(2) the specializations of elements that are supposed to be mapped to primitive
roots are divisible by one of the finitely many factors of the indices of the
finite index subgroups that are associated with the rigid and solid limit
groups Term1, . . . , T erms and the Non-Rigid, Non-Solid, Left, Root, Extra
PS, and Generic Collapse Extra PS resolutions that are associated with
them.

(3) there exist extra rigid or extra strictly solid specialization of one of the ter-
minal limit groups Term1, . . . , T erms or one of the auxiliary resolutions
that are associated with them, and these extra specializations are not spec-
ified by the specializations of GFDj that form the test sequence.

Using the construction of formal limit groups that appears in section 2 in [Se2],
we associate with the collection of test sequences that satisfy one of the properties
(1)-(3), a finite collection of closures of the resolutions Res, that we call Non-Rigid,
Non-Solid, Root, and Extra resolutions (that satisfy properties (1), (2), and (3) in
correspondence). Given an Extra resolution (property (3)), we further collect all its
test sequences for which the extra rigid or strictly solid specialization (that was not
specified by the corresponding specialization of GFDj) is not rigid or not strictly
solid. The collection of these test sequences can be also collected in finitely many
closures of the resolution Extra, and we call these closures, Generic Collapse Extra
resolutions.

Before we continue to the next step of the construction of the limit groups and
resolutions that we’ll use in order to prove theorem 3.1, we prove the following
fairly straightforward lemma on the finiteness of equivalence classes that contain
generic points in one (at least) of the resolutions Res that are associated with the
various limit groups GFDj .

Lemma 3.2. Let GFD be one of the graded limit groups, GFD1, . . . , GFDd con-
structed above, and let Res be one of its constructed taut resolutions. Then there
exist at most finitely many equivalence classes of the definable equivalence relation
E(p, q), for which:

(1) for each of the finitely many equivalence classes there exist a test sequence
{(zn, xn, yn, un, vn, rn, pn, qn, a)}∞n=1 of Res that restrict to couples {(pn, qn)}∞n=1

that are in the equivalence class, and so that the specializations: {(xn, yn, un, vn, rn, pn, qn, a)}∞n=1

form a proof that the couples {(pn, qn)}∞n=1 are in the (definable set) equiv-
alence relation E(p, q).
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(2) for each test sequence of Res, {(zn, xn, yn, un, vn, rn, pn, qn, a)}∞n=1, for which
the restricted couples {(pn, qn)}∞n=1 are in E(p, q), and so that the special-
izations: {(xn, yn, un, vn, rn, pn, qn, a)}∞n=1 form a proof that the couples
{(pn, qn)}∞n=1 are in the (definable set) equivalence relation E(p, q), there
exists an (infinite) subsequence of the test sequence that restrict to cou-
ples {(pn, qn)}∞n=1 that are elements in one of the finitely many equivalence
classes of E(p, q).

Proof: With each of the finitely many limit groups, GFD1, . . . , GFDd, we have
associated finitely many (taut Makanin-Razborov) resolutions. Let Res be one of
these finitely many resolutions. With Res we have associated a finite collection of
Non-rigid, Non-solid, Left, Root, Extra PS, and Generic collapse Extra PS resolu-
tions that are all closures of the resolution Res.

Since each of the limit groups, GFDj , decomposes into a free product in which
the subgroup < p > is contained in one factor, and the subgroup < q > is contained
in a second factor, the resolution Res is composed from two distinct resolutions,
Res1 of a limit group that contains the subgroup < p >, and Res2 of a limit group
that contains the subgroup < q >.

The Non-rigid, Non-solid, Left, Root, Extra PS, and Generic Collapse Extra PS
resolutions that are associated with the resolution, Res, are all closures of Res.
Every closure of the resolution, Res, is a free product of a closure of Res1 and a
closure of Res2. Hence, with each of the resolutions that are associated with the
resolution, Res, we can associate a closure of Res1 and a closure of Res2. Therefore,
with each of the resolutions that are associated with Res, we can naturally associate
cosets of some fixed finite index subgroups of the direct sums of the abelian vertex
groups that appear along the abelian graph of groups decompositions that appear
along the various levels of the resolutions, Res1 and Res2 (see definitions 1.15 and
1.16 in [Se2] for closures of a resolution, and for the coset of a finite index subgroup
that is associated with a closure).

Suppose that there exists a test sequence of the resolution Res, so that:

(1) the specializations of the test sequence restrict to valid proofs that the
associated couples, {(pn, qn)}, are in the definable set, E(p, q).

(2) the specializations of the test sequence restrict to specializations of the
abelian vertex groups in the abelian decompositions that are associated with
the various levels of the resolutions Res1 and Res2, and these restrictions
belong to fixed cosets of the finite index subgroups of the direct sums of
these abelian vertex groups that are associated with Res1 and Res2, and
the Non-rigid, Non-solid, Left, Root, Extra, and Generic Collapse Extra
resolutions that are associated with the ambient resolution Res.

By the construction of the auxiliary resolutions, i.e., the Non-rigid, Non-solid,
Left, Root, Extra and Generic Collapse Extra resolutions, that are associated with
the resolution, Res, if for given coset of the finite index subgroups of the direct sums
of the abelian groups that appear in the abelian decompositions that are associated
with the various levels of Res1 and Res2, there exists a test sequence of Res that
satisfy properties (1) and (2), then every test sequence of Res that satisfy (2) (with
respect to the given cosets) satisfy part (1) as well.

Hence, given such cosets, there is a fixed equivalence class of E(p, q) (that de-
pends only on the given cosets), so that for all the test sequences of Res that
satisfy (1) and (2) with respect to the two cosets, for large enough n, the couples,
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{(pn, qn)}, belong to the equivalence class that is associated with the two cosets.
Since there are finitely many resolutions, Res, that are associated with the limit
groups, GFD1, . . . , GFDd, and with each resolution Res, there are only finitely
many associated cosets, there are only finitely many equivalence classes of E(p, q),
for which there is a test sequence of one of the resolutions Res, that restrict to
specializations, {(pn, qn)}, that belong to such equivalence class. This proves part
(1) of the lemma for the (finite) collection of equivalence classes that are associated
with the finitely many couples of cosets. Furthermore, from each test sequence of
one of the resolutions, Res, that restrict to valid proofs that the specializations,
{(pn, qn)}, are in the definable set E(p, q), it is possible to extract a (test) subse-
quence that is associated with one of the couple of cosets that is associated with
Res, and hence the test subsequence restricts to specializations, {(pn, qn)},which
for large enough index n are in the equivalence class that is associated with the two
cosets that are associated with Res, which proves part (2) of the lemma.

�

The limit groups, GFD1, . . . , GFDd, collect all those couples, (p, q) ∈ E(p, q),
for which a proof that they are in E(p, q), i.e., a rigid or strictly solid homomor-
phism: h :< x, y, u, v, r, p, q, a >→ Fk that is associated with them (and satisfies
the requirements from such a homomorphism to prove that (p, q) ∈ E(p, q)), factors
through a free product A ∗ B in which A and B are limit groups, < p >< A and
< q >< B. Lemma 3.2 proves that there exist finitely many equivalence classes of
E(p, q), for which every test sequence of one of the resolutions in the taut Makanin-
Razborov diagrams of the limit groups: GFD1, . . . , GFDd that restrict to couples
{(pn, qn)} ∈ E(p, q) and to proofs that the couples are indeed in E(p, q), can be
divided into a finite set together with finitely many test sequences, so that each of
the finitely many test sequences restricts to couples {(pn, qn)} that belong to one
of the finitely many equivalence classes of E(p, q) that are associated (by lemma
3.2) with the limit groups GFD1, . . . , GFDd.

In order to prove theorem 3.1, we still need to study non-generic couples (p, q) ∈
E(p, q) that can be extended to specializations of GFD1, . . . , GFDd, and these
extended specializations are valid proofs that demonstrate that these non-generic
couples (p, q) ∈ E(p, q). To do that we need to construct new limit groups that
admit homomorphisms that do not factor through a free product A∗B, in which A
and B are limit groups, < p >< A and < q >< B, and verify that these non-generic
couples, (p, q), are indeed in E(p, q). to construct these new limit groups, we apply
(once again) the sieve procedure [Se6], that was originally presented as part of the
quantifier elimination procedure.

Let GFD be one of the limit groups GFD1, . . . , GFDd, and let Res be one of
the resolutions in its taut Makanin-Razborov diagram. With Res we associate a
new collection of Extra limit groups. Suppose that the limit group, GFDj , that is
associated with the resolution Res, admits a free product, GFDj = Aj ∗ Bj , and
Res is composed from two taut resolutions, Res1 of Aj (or a quotient of Aj), and
Res2 of Bj (or a quotient of Bj).

With the resolutions, Res, we associate two types of Extra limit groups, that
we denote Exlim. First we look at all the specializations of (the completion of)
Res1 for which there exists a test sequence of specializations of (the completion
of) Res2, so that for each specialization in the combined sequence there exist ex-
tra rigid or (families of) strictly solid specializations (of one of the terminal limit
groups Term1, . . . , T erms or one of the terminal rigid or solid limit groups of the
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Non-Rigid, Non-Solid, Left, Root, Extra PS, or Generic Collapse Extra PS reso-
lutions that are associated with them) that are not specified by the corresponding
specialization of the limit group GFDj . Note that there is a global bound on the
number of such (distinct) extra rigid or families of strictly solid specializations. By
the techniques for constructing formal and graded formal limit groups (sections 2
and 3 in [Se2]), this collection of specializations can be collected in finitely many
limit groups, and each has the form Exlim1 ∗Exlim2, where Exlim2 is a closure of
Res2, and the completion of Res1 is mapped into Exlim1. Similarly, we look at the
specializations of (the completion of) Res2 for which there exists a test sequence
of specializations of (the completion of) Res1 so that the combined specializations
have similar properties.

Note that with an extra limit group, Exlim = Exlim1∗Exlim2, we can naturally
associate finitely many subgroups of Exlim1 and Exlim2, that are associated with
the finite collection of extra rigid and extra solid specializations that are collected
in the construction of Exlim1 and Exlim2, for which:

(1) each of these (finitely many) subgroups is a free product of two subgroups
of Exlim. One is a subgroup of Exlim1, and is rigid or solid with respect
to < p >. The second is a subgroup of Exlim2, and is rigid or solid with
respect to < q >.

(2) each extra rigid or strictly solid specialization that is collected by Exlim is a
specialization of one of these subgroups of Exlim, which are a free product
of rigid and solid subgroups of Exlim1 and Exlim2.

We continue with all the (finitely many) Extra resolutions and Extra limit groups
of the prescribed structure, that were constructed from Res, i.e., from the couple of
resolutions, Res1 and Res2. As in the quantifier elimination procedure (the sieve
procedure), for each Extra resolution, and Extra limit group that are associated
with Res (which is in particular a taut resolution), we collect all the specializations
that factor and are taut with respect to the taut resolution, Res, and extend to
specializations of either a resolution, Extra, or an Extra limit group, Exlim, and
for which the elements that are supposed to be extra rigid or strictly solid special-
izations and are specified by these specializations collapse. This means that the
elements that are supposed to be an extra rigid or strictly solid specializations are
either not rigid or not strictly solid, or they coincide with a rigid specialization
that is specified by the corresponding specialization of GFD, or they belong to a
strictly solid family that is specified by GFD. These conditions on the elements
that are supposed to be extra rigid or strictly solid specializations are clearly Dio-
phantine conditions, hence, we can add elements that will demonstrate that the
Diophantine conditions hold (see section 1 and 3 of [Se5] for more detailed explana-
tion of these Diophantine conditions, and the way that they are imposed). By our
standard methods (section 5 in [Se1]), with the entire collection of specializations
that factor through an Extra resolution or an Extra limit group, and restrict to
elements that are taut with respect to the (taut) resolution, Res, and for which the
elements that are supposed to be extra rigid or strictly solid specialization satisfy
one of the finitely many possible (collapse) Diophantine conditions, together with
specializations of elements that demonstrate the fulfillment of these Diophantine
conditions, we can associate finitely many limit groups. We denote these limit
groups, Collape1, . . . , Collapsef , and call them Collapse limit groups.

Let Collapse be one of the Collapse limit groups, Collapse1, . . . , Collapsef .
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With Collapse we associate its graded Makanin-Razborov diagram with respect
to the parameter subgroup < p, q >. We continue with all the rigid and strictly
solid homomorphisms of rigid and solid limit groups in this Makanin-Razborov
diagram. We look at all the rigid and strictly solid specializations of rigid and
solid limit groups in this diagram, so that their restrictions to specializations of the
corresponding limit group GFD are valid proofs that (p, q) ∈ E(p, q), and for which
the specializations factor through a free product A ∗ B, so that A and B are limit
groups, < p >< A and < q >< B. With this collection of (rigid and strictly solid)
homomorphisms we can associate a finite collection of limit groups (by the standard
techniques that are presented in section 5 of [Se1]), that we denote, R1, . . . , Rm.

Given a limit group Rj , we can associate with it a graded Makanin-Razborov
diagram in which every graded resolution (with respect to the parameter subgroup
< p, q >) terminates in a rigid or in a solid limit group, and this terminal rigid or
solid limit group admits a free decomposition A ∗ B, in which A and B are limit
groups, < p >< A and < q >< B.

At this point we combine the graded Makanin-Razborov diagram of Collapse
with the graded Makanin-Razborov diagrams of each of the limit groups R1, . . . , Rm.
Each of the resolutions in the graded Makanin-Razborov diagram of Collapse ter-
minates in a rigid or a solid limit group. We replace this graded resolution with
finitely many resolutions. First we replace its terminating rigid or solid limit group
by each of the quotients that are associated with it from the set R1, . . . , Rm. We
continue each of the obtained resolutions (after performing the replacements) with
the graded Makanin-Razborov diagram of the corresponding limit group Rj. By
construction, each of the constructed resolutions starts with Collapse and termi-
nates with a limit group that admits a free product in which < p > is a subgroup
of one factor and < q > is a subgroup of the second factor.
Given the obtained (graded) diagram of the limit group Collapse, we replace it
with a strict (graded) diagram, according to the finite iterative procedure that
is presented in proposition 1.10 in [Se2]. Note that each resolution in the strict
diagram starts with a quotient of Collapse and terminates with a limit group that
admits a free product in which < p > is contained in one factor and < q > is
contained in the second factor.

Let CRes1 be a (graded) resolution in the strict diagram that is associated
with Collapse. Note that given a homomorphism h : Collapse → Fk that factors
through CRes1, and h restricts to a specialization of GFD which is a valid proof
that (p, q) ∈ E(p, q), the rigid vertex groups in the graded abelian decompositions
that are associated with the rigid and strictly solid specializations in GFD, remain
elliptic through the entire combined resolution CRes1 (i.e., remain elliptic in both
resolutions from which CRes1 is constructed).

Suppose that a rigid vertex group or an edge group in the abelian decomposi-
tion that is associated with the specialization of the extra rigid or strictly solid
specialization in Collapse does not remain elliptic through CRes1. Then for all
the specializations of the Extra resolution, or the Extra limit group, that is asso-
ciated with the taut resolution of the graded limit group GFD, Res, that can be
extended to specializations of Collapse that factor through CRes1, the Diophan-
tine condition that we imposed on the extra rigid or strictly solid specialization
in the resolution Extra or the extra limit group Exlim, can be rephrased as a
Diophantine condition that factor through a free product A1 ∗B1 that extends the
free product of the resolution Res, and in particular, it is a free product in which
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< p >< A1 and < q >< B1.

Suppose that all the rigid vertex groups and edge groups in the abelian decom-
position that is associated with the specialization of the extra rigid or strictly solid
specialization in Collapse remain elliptic through CRes1. Then all these rigid ver-
tex groups can be conjugated into the factors of the terminal limit group of CRes1,
and hence, the same conclusion holds, i.e., for the relevant specializations that fac-
tor through Extra, or through Exlim, the Diophantine condition that we imposed
on the extra rigid or strictly solid specialization in the resolution Extra, or the
extra limit group, Exlim, can be rephrased as a Diophantine condition that fac-
tor through a free product A1 ∗ B1 that extends the free product of the resolution
Extra, or the Extra limit group, Exlim, and in particular, it is a free product in
which < p >< A1 and < q >< B1.

Therefore, we can replace the limit groups R1, . . . , Rm, by starting with the
Extra resolutions and the Extra limit groups that are associated with the taut res-
olutions in the Makanin-Razborov diagrams of the limit groups GFD1, . . . , GFDd,
that do all admit a free product in which < p > is contained in one factor and < q >
is contained in the second factor, and on these resolutions we impose Diophantine
conditions that factor as similar free products, i.e., these Diophantine conditions
are imposed on the two factors of the Extra resolutions independently.

Since both the Extra resolutions and Extra limit groups, and the Diophantine
conditions that are imposed on them, admit a free product in which < p > is
contained in one factor, and < q > is contained in the second factor, to analyze the
set of specializations that factor through an extra resolution or an extra limit group,
and are taut with respect to an original resolution, Res, of one of the limit groups,
GFD1, . . . , GFDd, and so that these (extra rigid and strictly solid) specializations
extend to specializations that satisfy the Diophantine conditions that are imposed
on them, we can use the analysis of such resolutions that was presented in the
sieve procedure [Se6], and apply it (independently) to each of the two factors of
such Extra resolutions and Extra limit group. Both the limit groups, and the
resolutions that are obtained after applying this analysis admit a free product in
which < p > is contained in one factor and < q > is contained in the second factor.

We continue iteratively as in the sieve procedure. At each step we start with
the collection of Extra resolutions and Extra limit groups that were constructed in
the previous step. We look at the collection of specializations that factor through
and are taut with respect to these resolutions, that satisfy one of finitely many
Diophantine conditions, and with this collection we associate (using section 5 in
[Se1]) finitely many limit groups that we denote Collapse.

With each of the obtained limit groups Collapse we associate its graded Makanin-
Razborov diagram (with respect to the subgroup < p, q >). Given each of the rigid
and solid limit groups in this diagram, we collect all the rigid or strictly solid
homomorphisms of it that factor through a free product of limit groups in which
< p > is contained in one factor, and < q > is contained in the second factor.
We collect all these rigid and strictly solid homomorphisms in finitely many limit
groups, and with each such limit group we associate a graded Makanin-Razborov
diagram (with respect to < p, q >) that terminates in rigid and solid limit groups
that admit free products in which < p > is contained in one factor, and < q > is
contained in the second factor.

We further combine the graded Makanin-Razborov diagrams of each of the limit
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groups Collapse with the graded Makanin-Razborov diagrams of the limit groups
that are associated with the rigid and solid limit groups in these diagrams. Given
a combined diagram we replace it by a strict diagram using the iterative procedure
that appears in proposition 1.10 in [Se2]. Each resolution in the strict diagram that
is associated with a limit group Collapse, starts with a quotient of Collapse and
terminates in a rigid or a strictly solid homomorphism that admits a free product
in which < p > is contained in one factor and < q > is contained in the second
factor.

As we concluded in the first step of the iterative procedure, from the structure
of the strict diagram it follows that the Diophantine condition that forces the extra
rigid or strictly solid specializations in the resolutions Extra or the Extra limit
groups, Exlim, we started this step with, can be imposed separately on the two
factors of the Extra resolution Extra or the Extra limit group, Exlim, so that
the collection of specializations that factor through the Extra resolution or Extra
limit group and are taut with respect to the resolution, Res, and do satisfy the
(collapsed) Diophantine condition, can be collected in finitely many limit groups,
and each of these limit groups admit a free product in which < p > is contained in
one factor, and < q > is contained in the second factor.

We continue by associating (taut) resolutions with these limit groups according
to the construction that is used in the sieve procedure [Se6]. Given each of these taut
resolutions we associate with it non-rigid, non-solid, Root, and Extra resolutions
as we did in the sieve procedure (sections 1 and 3 in [Se5]).

By lemma 3.2 there are at most finitely many equivalence classes of the equiv-
alence relation E(p, q) for which a test sequence of one of the constructed (taut)
resolutions restricts to valid proofs that the corresponding couples {(pn, qn} are
in the set E(p, q). We further associate with the constructed resolution finitely
many Extra limit groups (as we did in the first step of the iterative procedure).
We continue iteratively, and by the termination of the sieve procedure [Se6], the
iterative procedure terminates after finitely many steps. We set the (graded) limit
groups, Ipr1, . . . , Iprw, to be the rigid and solid limit groups L1, . . . , Lg, that were
constructed in the initial step of the procedure, together with the finite collection of
rigid and solid limit groups that appear in the graded Makanin-Razborov diagram
of the limit groups Collapse that are constructed along the various steps of the
sieve procedure.

By construction, for every (p, q) ∈ E(p, q) there exists a rigid or a strictly solid
homomorphism from one of the rigid or solid limit groups, L1, . . . , Lg, that restricts
to a valid proof that (p, q) ∈ E(p, q). By applying lemma 3.2 in the various steps
of the iterative procedure, there exist at most finitely many equivalence classes
of E(p, q) so that if (p, q) ∈ E(p, q), and (p, q) does not belong to one of these
classes, then there exists a rigid or a strictly solid homomorphism from one of the
limit groups, Ipr1, . . . , Iprw, that restricts to a valid proof that the couple (p, q)
is in the set E(p, q), and furthermore, this rigid homomorphism and every strictly
solid homomorphism which is in the same strictly solid family of the strictly solid
homomorphism does not factor through a free product of limit groups in which
< p > is contained in one factor, and < q > is contained in the second factor.
Hence, theorem 3.1 follows.

�

Theorem 3.1 associates with the given definable equivalence relation, E(p, q),
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finitely many rigid and solid limit groups, Ipr1, . . . , Iprw, so that apart from finitely
many equivalence classes, for each couple, (p, q) ∈ E(p, q), there exists a rigid or
a strictly solid family of homomorphisms from at least one of the limit groups,
Ipr1, . . . , Iprw, to the coefficient group Fk, so that the rigid homomorphisms or
the strictly solid homomorphisms from the given strictly solid family do not factor
through a free product of limit groups, A ∗ B, in which < p >< A and < q >< B,
and each of these homomorphisms restricts to a valid proof that (p, q) ∈ E(p, q).

The rigid and solid limit groups Ipr1, . . . , Iprw and their rigid and strictly solid
families of homomorphisms that do not factor through graded free products and
restrict to valid proofs, are the starting point for our approach to associating (defin-
able) parameters with the equivalence classes of the definable equivalence relation
E(p, q).

Recall that by theorems 1.3 and 1.4, with the given definable equivalence relation
E(p, q), being a definable set, we can associate a Diophantine and a Duo envelopes.
We denoted by G1, . . . , Gt the Diophantine envelope of the given definable equiv-
alence relation E(p, q), and by Duo1, . . . , Duor, its Duo envelope.

We continue by modifying the construction of the Duo envelope that is presented
in theorem 1.4, and use the collection of homomorphisms from the limit groups,
Ipr1, . . . , Iprw, that do not factor through a free product in which (the image of)
< p > is contained in one factor, and (the image of) < q > is contained in the
second factor (see the proof of theorem 1.4).

Let G1, . . . , Gt be the Diophantine envelope of the definable equivalence relation,
E(p, q) (see theorem 1.3). We start with the graded completions G1, . . . , Gt in
parallel. With each graded completion Gj , 1 ≤ j ≤ t, we first associate a finite
collection of duo limit groups.

To construct these duo limit groups, we look at the entire collection of graded
test sequences that factor through the given graded completion, Gj , for which the
(restricted) sequence of specializations {pn} can be extended to specializations of
one of the limit groups, Ipr1(f, p, q), . . . , Iprw(f, p, q), so that these specializations
of the subgroups Iprs are:

(1) rigid or almost shortest in their strictly solid family (see definition 2.8 in
[Se3] for an almost shortest specialization).

(2) the images of the subgroups Iprs do not factor through a free product in
which the subgroup < p > can be conjugated into one factor, and the
subgroup < q > can be conjugated into the second factor.

(3) in each such test sequence of Gj the specializations of the subgroup < q >
is fixed.

With this entire collection of graded test sequences, and their extensions to spe-
cializations of the limit groups Ipr1, . . . , Iprw, we associate finitely many graded
Makanin-Razborov diagrams, precisely as we did in constructing the formal graded
Makanin-Razborov diagram in section 3 of [Se2]. As in the formal Makanin-
Razborov diagram, each resolution in the diagrams we construct terminates with a
(graded) closure of the given graded completion, Gj , we have started with, amalga-
mated with another group along its base (which is the terminal rigid or solid limit
group of the graded completion Gj), and the abelian vertex groups that commute
with non-trivial elements in the base).
We continue as in the proof of theorem 1.4. By construction, a completion of a
resolution in one of the constructed graded diagrams is a duo limit group. We
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take the completions of the resolutions that appear in the finitely many diagrams
that are associated with the graded completion Gj , to be the preliminary (finite)
collection of duo limit groups that are associated with Gj . We proceed by applying
the sieve procedure to the constructed duo limit groups, precisely as we did in the
construction of the duo envelope in proving theorem 1.4.

Finally, we set the Duo envelope of the definable equivalence relation E(p, q),
that we denote, TDuo1, . . . , TDuom, to be those duo limit groups that are as-
sociated with the Diophantine envelope, G1, . . . , Gt, for which there exists a duo
family having a test sequence, so that all the specializations in the test sequence
restrict to elements (p, q) in E(p, q), and for which the associated specializations
of the subgroup, Iprs, testify that indeed the elements (p, q) are in E(p, q) (i.e.,
in particular, a ”generic point” in TDuoi restricts to elements in E(p, q), and the
corresponding restrictions to (the image of) Iprs are valid proofs that).

Note that by construction, the collection of duo limit groups that we constructed,
Tduo1, . . . , Tduom, satisfy all the properties (1-5) that are listed in theorem 1.4.
Hence, it is justified to call the subgroups, Tduo1, . . . , Tduom a duo envelope of
E(p, q) (as we did for the duo limit groups that are constructed in theorem 1.4).

Proposition 3.3. The Duo limit groups, Tduo1, . . . , Tduom, that form a duo en-
velope of E(p, q), and the rigid and solid limit groups, Ipr1, . . . , Iprw, have the
following properties:

(1) With each of the Duo limit groups Tduoi, there is an associated homo-
morphism from an associated graded completion, Gj(i), which is one of the
graded completions that form the Diophantine envelope of E(p, q). Further-
more, the graded completion Gj(i) has the same structure as one of the two
graded completions that are associated with Tduoi. In fact, the correspond-
ing graded completion in Tduoi is a graded closure of Gj(i), and Gj(i) is
mapped into this closure preserving the level structure.

(2) With each Duo limit group Tduoi, there is an associated homomorphism
from one of the limit groups, Ipr1, . . . , Iprw, into Tduoi that does not factor
through a free product in which < p > is contained in one factor and < q >
is contained in the second factor. We denote the image of this limit group
in Tduoi, < f, p, q >.

(3) Tduoi, being a Duo limit group, admits the amalgamated product: Tduoi =<
di
1, p > ∗<di

0
,ei

1
> < di

0, e
i
1, e

i
2 > ∗<di

0
,ei

2
> < di

2, q >. If both subgroups < p >
and < q > are non-trivial in < f, p, q >, then the subgroup < f, p, q >
intersects non-trivially some conjugates of the distinguished vertex group in
Tduoi, < di

0, e
i
1, e

i
2 >.

Proof: Parts (1) and (2) follow from the construction of the duo limit group,
Tduoi, that starts with one of the graded completions, Gj(i), and continues by
collecting all the test sequences of Gj(i), for which their restrictions to the subgroup
< p > can be extended to specializations of one of the limit groups, Ipr1, . . . , Iprw.

Let < f, p, q > be the image of one of the rigid or solid limit groups, Ipr1, . . . , Iprw,
in Tduoi. The subgroup, < f, p, q >, inherits a graph of groups decomposition from
the amalgamation of the ambient group Tduoi:

Tduoi =< di
1, p > ∗<di

0
,ei

1
> < di

0, e
i
1, e

i
2 > ∗<di

0
,ei

2
> < di

2, q >
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If both subgroups < p > and < q > are non-trivial in < f, p, q >, and < f, p, q >
intersects trivially all the conjugates of the vertex group, < di

0, e
i
1, e

i
2 >, the graph

of groups decomposition that is inherited by < f, p, q > collapses into a non-trivial
free product of < f, p, q > in which < p > is contained in one factor and < q > is
contained in a second factor. However, the duo limit group Tduoi was constructed
from specializations of one of the limit groups, Ipr1, . . . , Iprw, that do not factor
through a free product of limit groups in which < p > is contained in one factor
and < q > is contained in a second factor, a contradiction. Hence, in case both
subgroups < p > and < q > are non-trivial, < f, p, q > intersects non-trivially some
conjugate of the vertex group, < di

0, e
i
1, e

i
2 >, and part (3) follows.

�

Part (3) of proposition 3.3 uses the fact that the homomorphisms from the rigid
and solid limit groups, Ipr1, . . . , Iprw, that we use to verify that (generic) cou-
ples (p, q) in the Duo limit groups, TDuo1, . . . , TDuom, are in the given definable
equivalence relation E(p, q), do not factor through a free product in which < p > is
contained in one factor and < q > is contained in the second factor, to deduce that
< f, p, q > intersects non-trivially some conjugates of < di

0, e
i
1, e

i
2 >. The analysis

of the specializations of these intersections is a key in our approach to associat-
ing parameters with the families of equivalence classes of the equivalence relation,
E(p, q).

For presentation purposes, we first continue by assuming that the Duo limit
groups, Tduo1, . . . , Tduom, terminate in rigid limit groups, i.e., that the abelian
decomposition that is associated with the limit group < di

0 > is the trivial (graded)
decomposition. We further assume that the graded closures that are associated with
the duo limit groups, Tduo1, . . . , Tduom, do not contain abelian vertex groups in
any of their levels. Hence, in particular the subgroup < di

0, e
i
1, e

i
2 > is simply <

di
0 >. In the sequel, we will further assume that the Duo (and uniformization) limit

groups that are constructed from these Duo limit groups and are associated with
them, terminate in rigid limit groups, and the graded closures that are associated
with them do not contain abelian vertex groups in any of their levels as well. These
assumptions will allow us to present our approach to separation of variables, and to
associating parameters with the equivalence classes of E(p, q), while omitting some
technicalities. Later on we omit these assumptions, and generalize our approach
to work in the presence of both rigid and solid terminal limit groups, and when
abelian groups do appear as vertex groups in the abelian decompositions that are
associated with the graded closures that are associated with the constructed duo
limit groups.

Proposition 3.4. Let Tduoi be one of the Duo limit groups, Tduo1, . . . , Tduom,
and suppose that Tduoi terminates in a rigid limit group, i.e., that the abelian
decomposition that is associated with < di

0 > is trivial. Suppose further that the
two graded completions that are associated with Tduoi contain no abelian vertex
groups in any of their levels.

Tduoi being a duo limit group, admits a presentation as an amalgamated product:
Tduoi =< di

1, p > ∗<di
0
> < di

2, q >. Suppose that the subgroups < p > and < q >
are both non-trivial in Tduoi. By proposition 3.3, the subgroup < f, p, q >, which
is the image of one of the rigid or solid limit groups, Ipr1, . . . , Iprw, in Tduoi,
intersects non-trivially some conjugates of the edge group < di

0 >. Let H1
i , . . . , He

i

be these (conjugacy classes of) intersection subgroups.
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Let Gj(i) be the graded completion from the Diophantine envelope, G1, . . . , Gt,
that is mapped into Tduoi. Gj(i), being a graded completion, has a distinguished
vertex group, which is a subgroup of its base subgroup. Then there exists a global
integer bi > 0, so that for any specialization of the distinguished vertex group of
Gj(i), there are at most bi rigid specializations of < di

0 > that extend to generic
(i.e., restrictions of (duo) test sequences) rigid and strictly solid specializations of
< f, p, q >, that form valid proofs that the pairs (p, q) are in E(p, q). In partic-
ular, these specializations of < di

0 > restrict to at most bi conjugacy classes of
specializations of the subgroups, H1

i , . . . , He
i .

Proof: Since the subgroup, < di
0 >, of the duo limit group, Tduoi, is assumed

to be rigid, the proposition follows from the existence of a uniform bound on the
number of rigid specializations of a rigid limit group with a fixed value of the
defining parameters (i.e., a bound that does not depend on the specific value of the
defining parameters) that was proved in theorem 2.5 in [Se3].

�

Proposition 3.4 proves that for a given specialization of the distinguished vertex
group in Gj(i), there are at most boundedly many conjugacy classes of specializa-

tions of the corresponding subgroups, H1
i , . . . , He

i , that may be associated with it.
However, given an equivalence class of E(p, q) we can’t, in general, associate with it
only finitely many conjugacy classes of specializations of the subgroups H1

i , . . . , He
i .

Hence, to obtain only boundedly many specializations or conjugacy classes of spe-
cializations of some ”prefered” groups of parameters that are associated with each
equivalence class (and not only with a specialization of the distinguished vertex
group in Gj(i)), we need to construct uniformization limit groups.

Let Tduo be one of the Duo limit groups, Tduo1, . . . , Tduom. We assume as
in proposition 3.4, that Tduo terminates in a rigid limit group (i.e., the subgroup
< d0 > admits a trivial graded JSJ decomposition), and that the two graded com-
pletions that are associated with Tduo contain no abelian vertex group in any of
their levels. Tduo, being a Duo limit group (with no abelian vertex groups that
appear along the levels of its two associated graded completions), admits the amal-
gamated product: Tduo =< d1, p > ∗<d0> < d2, q >. By part (1) of proposition
3.3, with Tduo there is an associated homomorphism from an associated graded
completion, Gj , which is one of the graded completions in the Diophantine envelope
of E(p, q). By part (2) of proposition 3.3, with Tduo there is also an associated
homomorphism from one of the rigid or solid limit groups, Ipr1, . . . , Iprw, into
Tduo. We denote the image of this homomorphism in Tduo, < f, p, q >. Note that
by proposition 3.3 if both subgroups < p > and < q > in < f, p, q > are non-trivial,
then the intersection of < f, p, q > with some conjugates of < d0 > is non-trivial.
We denote by H1, . . . , He these intersection subgroups.

Suppose that there exists an equivalence class of E(p, q), for which there exists
an infinite sequence of conjugacy classes of specializations of H1, . . . , He that can
be extended to couples of test sequences of the two graded completions that are
associated with Tduo, so that restrictions of generic elements in these test sequences,
(fn, pn, qn), prove that the couples (pn, qn) ∈ E(p, q), these test sequences restrict
to valid proofs that the couples (pn, q0(n)) and (q0(n), qn) belong to E(p, q) (recall
that q0(n) is the restriction of the specializations d0(n) to the elements q0), and
furthermore these test sequences restrict to sequences of distinct couples, {(pn, qn)}.

Note that it is a corollary of the quantifier elimination procedure (and the uni-
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form bounds on rigid and strictly solid specializations of rigid and solid limit groups
obtained in [Se3]), that there is a global bound on the size of all finite equivalence
classes of a definable equivalence relation. To analyze the sets of specializations of
the subgroups H1, . . . , He that are associated with the same infinite equivalence
classes of E(p, q), we construct finitely many limit groups (that are all associated
with Tduo), that we call uniformization limit groups. To construct these limit
groups we look at the collection of all the sequences:

{(d1(n), pn, d0, d2(n), qn, f̂ , d̂0, a)}

for which:

(1) {(d1(n), pn, d0)} is a test sequence of the first graded completion that is
associated with TDuo, and {(d2(n), qn, d0)} is a test sequence of the second
graded completion that is associated with TDuo. These sequences restrict
to proofs that the couples (pn, q0) and (q0, qn) are in E(p, q), and the couples,
{(pn, qn)}, in such a sequence are distinct.

(2) the sequence {(d1(n), pn, d0, d2(n), qn)} restricts to a sequence of special-
izations: {(fn, pn, qn, a)}, that are rigid or strictly solid specializations
of the rigid or solid limit group Ipr that is associated with Tduo (see
part (2) of proposition 3.3). Furthermore, the sequence of specializations,
{(fn, pn, qn, a)}, restricts to proofs that the sequence {(pn, qn)} are in the
given equivalence relation E(p, q). As in constructing the Duo limit groups,
Tduo, we assume that the couples (pn, qn) do not belong to the finitely
many equivalence classes that are specified in theorem 3.1.

(3) the elements {(f̂ , d0, d̂0)} restrict to rigid or strictly solid specializations
of one of the rigid and solid limit groups Ipr1, . . . , Iprw, that prove that

the specialization < d0 > and the specialization d̂0 belong to the same
equivalence class in E(p, q).

Using the techniques of sections 2 and 3 in [Se2], we can associate with the above
collection of sequences (for the entire collection of Duo limit groups Tduo1, . . . , Tduom)
a finite collection of Duo limit groups, Dduo1, . . . , Dduou. By construction, the
subgroup < f̂, d0, d̂0 > form the distinguished vertex groups of the constructed
Duo limit groups, and the two graded completions that are associated with each
such Duo limit group has the same structure as those of the Duo limit group Tduo
from which they were constructed.

We continue with each of the distinguished vertex groups < f̂, d0, d̂0 > of the Duo

limit groups, Dduo1, . . . , Dduou. We view each of the vertex groups, < f̂, d0, d̂0 >,

as graded limit groups with respect to the parameter subgroups < d̂0 >, and asso-
ciate with them their graded taut Makanin-Razborov diagrams. With each resolu-
tion in these diagrams we naturally associate its graded completion (see definition
1.12 in [Se2] for the completion of a well-structured resolution).

Given each graded completion that is associated with a limit group < f̂, d0, d̂0 >,
we construct a new limit group that starts with the graded completion of a reso-

lution of a subgroup < f̂, d0, d̂0 > (so that the terminal limit group of this graded

completion contains the subgroup < d̂0 >), and on top of this completion we amal-
gam the two graded completions that were associated with the associated subgroup
Dduo. i.e., we get a Duo limit group that has the same structure as the associated
Duo limit group Dduo, but the distinguished vertex in Dduo is replaced with a
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graded completion that terminates in a rigid or a solid limit group that contains
< d̂0 > (which is the parameter subgroup of this terminal rigid or solid limit group).
We denote the limit groups that are constructed in this way from the Duo limit
groups, Dduo1, . . . , Dduou, Cduo1, . . . , Cduov.

The distinguished vertex group in the Duo limit groups Dduo1, . . . , Dduou, that

was the limit group < d0, f̂ , d̂0 >, was replaced by the completions of the resolutions
in the taut graded Makanin-Razborov diagrams of these groups (with respect to

< d̂0 >) to obtain the Duo limit groups Cduo1, . . . , Cduov. Each of the obtained
Duo limit groups, that we denote Cduo, has the structure of a completion (of

a resolution of < d0, f̂ , d̂0 >), and on top of this completion we amalgam two
additional completions, which are the two completions that are associated with the
Duo limit group, Tduo, from which it was constructed.

Since the Duo limit group, Cduo, is constructed from 3 completions, we can nat-
urally associate generic points with it, i.e., test sequences that are composed from

test sequence of the completion of the resolution of the limit group, < d0, f̂ , d̂0 >,
that is extended to be a test sequence of the two completions that are amalgamated
with that completion and these have the structure of the two completions that are
associated with the Duo limit group, Tduo, from which the limit group Cduo was
constructed.

By construction, there exist generic points of the Duo limit group Tduo, and
its associated Duo limit group, Dduo, i.e., (double) test sequences of the two com-
pletions that are associated with each of them, that restrict to proofs that the
couples (pn, q0(n)) and (q0(n), q(n)) are in E(p, q), and restrict to specializations
{(fn, pn, qn)} of the associated limit group Ipr, that restrict to proofs that the
couples {(pn, qn)} are in the given definable set E(p, q). However, there is no guar-
antee that there exists a generic point of the limit group Cduo, that is constructed
from Dduo, with these property, i.e., that there exists a (triple) test sequence,
that is composed from test sequences of the 3 completions that form the Duo limit
group Cduo, so that this (triple) test sequence restricts to proofs that the couples
(pn, q0(n)) and (q0(n), qn) are in E(p, q) and to specializations, {(fn, pn, qn)} and

{(f̂n, d0(n), d̂0(n))}, that restrict to proofs that the couples {(pn, qn)} are in E(p, q),

and that for each n the couple (d0(n), d̂0(n)) are in the same equivalence class of
E(p, q).

Therefore, we start with the Duo limit group Cduo, and apply the sieve procedure
to it, in the same way that we constructed the Diophantine and Duo envelopes in
theorems 1.3 and 1.4. First, we look at all the (triple) test sequences of Cduo for

which specializations of subgroups of < f, p, q > and < f̂, p, q > and specializations
of the the subgroup that is supposed to demonstrate that the specializations of
(p, q0) and (q0, q) are in E(p, q) that were supposed to be rigid or strictly solid do
not have this property. With this collection of test sequences we associate Non-Rigid
and Non-Solid closures of Cduo. Similarly we construct Root and Extra closures of
Duo. Given each of the extra resolutions we associate with it a (canonical, finite)
collection of Generic Collapse closures of Cduo (which are closures of the Extra
closures), and Collapse limit groups. Given a Collapse limit group, we analyze
its (Duo) resolutions using the analysis of quotient resolutions, that is used in the
sieve procedure [Se6]. However, when we analyze the resolutions of a Collapse
limit group, we analyze only those resolutions that have a similar structure as that
of Cduo, i.e., that are built from a completion to which two other completions
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are amalgamated and these two completions are closures of the two completions
that are amalgamated to the completion of a resolution of < f̂, d0, d̂0 > in the
construction of Cduo. By continuing this construction iteratively, according to the
steps of the sieve procedure, we finally obtain a finite collection of Duo limit groups,
that we denote Sduo1, . . . , Sduoh. Each of these Duo limit groups is constructed
from a completion to which we amalgamate two closures of the completions that
are amalgamated in the construction of Cduo. The sieve procedure that was used
to construct the Duo limit groups, Sduo1, . . . , Sduoh, guarantees that they have
the following properties.

Proposition 3.5. The Duo limit groups, Sduo1, . . . , Sduoh, that are associated
with the Duo limit groups, Cduo1, . . . , Cduov, have the following properties:

(1) Each of the Duo limit groups, Sduoi, is constructed from a completion that

we denote B(Sduoi), that contains the subgroup < f̂, d0, d̂0 >, to which we
amalgamate two completions that are closures of the completions that are
amalgamated to the base completion in the associated Duo limit group Cduo.
We denote these two completions Clp(Sduoi) and Clq(Sduoi).

(2) there is a homomorphism from the associated Duo limit group Cduo into
Sduoi that maps the base completion in Cduo into B(Sduoi), and the two
completions that are amalgamated to the base completion in Cduo into their
closures, Clp(Sduoi) and Clq(Sduoi), so that the map preserves the level
structure of the two completions.

(3) The base completion B(Sduoi) terminates in either a rigid or a solid limit

group with respect to the subgroup, < d̂0 >.
(4) for each Sduoi there exists two maps from either one or two of the limit

groups, Ipr1, . . . , Iprw, into Sduoi. Their images are the subgroup < f, p, q >,

and a subgroup of < f̂, d0, d̂0 > that we denote < f̂, q0, q̂0 >.

Proof: All the properties (1)-(4) follow in a straightforward way from the con-
struction of the duo limit groups, Sduo1, . . . , Sduoh from the duo limit groups,
Cduo1, . . . , Cduov.

�

As we did with the Duo limit groups Tduo, for presentation purposes we assume
that the terminal limit groups of each of the Duo limit groups, Sduo1, . . . , Sduoh are
rigid, and there are no abelian vertex groups that appear in any of the levels of the
3 graded completions from which each of the duo limit groups, Sduo1, . . . , Sduoh,
is constructed.

The construction of the Duo limit groups, Sduo1, . . . , Sduoh allows us to present
the construction of uniformization limit groups, that are the main tool that we use
in order to obtain separation of variables, with which we will eventually be able
to construct the set of parameters that are associated with the equivalence classes
that are defined by the given equivalence relation E(p, q).

Definition 3.6. Let Sduo be one of the obtained limit groups, Sduo1, . . . , Sduoh.
Sduo is by construction a Duo limit group, and it contains a base (graded) comple-

tion that contains the subgroup < f̂, d0, d̂0 >, and on top of that completion, there
are two amalgamated graded closures, one containing the subgroup < d1, p > that we
denote Clp(Sduo), and the second containing the subgroup < d2, q > that we denote
Clq(Sduo). We further denote the completion obtained from the base completion in
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Sduo, B(Sduo), to which we amalgam the closure, Clp(Sduo), GCp(Sduo), and the
completion obtained from B(Sduo) to which we amalgam the closure, Clq(Sduo),
GCq(Sduo).

Starting with a limit group Sduo, and its associated graded completion, GCp(Sduo),
we can apply the construction of the Duo envelope, that is presented in theorem 1.4,
and associate with GCp(Sduo) a finite collection of Duo limit groups, so that one
of the graded completions that is associated with these Duo limit groups is a graded
closure of GCp(Sduo), and the distinguished vertex groups of these Duo limit groups
contain the distinguished vertex group of GCp(Sduo), and in particular contain the

subgroup < d̂0 >.
Since the graded completion we started the construction with, GCp(Sduo), is con-

tained in Sduo, and Sduo is obtained from GCp(Sduo) by amalgamating to it the
closure, Clq(Sduo), each of the Duo limit groups that is obtained from GCp(Sduo)
using the construction of the Duo envelope (theorem 1.4) can be extended to Sduo
itself. i.e., with Sduo we associate finitely many limit groups, where each of these
limit groups is obtained from Sduo by amalgamating it with the second graded
completion (the one that is associated with the subgroup < q̃ >) of one of the
Duo limit groups that are constructed from it. We call the obtained limit groups
uniformization limit groups, and denote their entire collection (i.e., all the limit
groups of this form that are obtained from the various Duo limit groups Sduo),
Unif1, . . . , Unifd.

Uniformization limit groups is the main tool that will serve us to obtain separa-
tion of variables, which will eventually enable us to find the class functions that we
are aiming for, i.e., class functions that separate classes and associate a bounded set
of elements with each equivalence class. As we did with the Duo limit groups Tduo,
for presentation purposes we assume that the terminal limit groups of each of the
Duo limit groups that are associated with the various completions, GCp(Sduoi),

are rigid (and not solid) with respect to the subgroup < d̂0 >, and that the graded
completions that are associated with these duo limit groups contain no abelian ver-
tex groups in any of their levels. Since uniformization limit groups were constructed
from these Duo limit groups, this implies that the terminal limit group of all the
uniformization limit groups are rigid as well, and the graded completions that are
associated with the constructed uniformization limit groups contain no abelian ver-
tex groups in any of their levels. Later on we generalize our arguments and omit
these assumptions.

Before we use the uniformization limit groups to further constructions we list
some of their basic properties that will assist us in the sequel. These have mainly
to do with the various maps from the rigid and solid limit groups, Ipr1, . . . , Iprw,
into uniformization limit groups.

Proposition 3.7. Let Unif be one of the uniformization limit groups, Unif1, . . . , Unifd.
Then:

(1) With Unif there are 3 associated maps from the various rigid and solid
limit groups, Ipr1, . . . , Iprw into Unif . Two of these maps are associated
and are into the Duo limit group Sduo from which Unif was constructed.
The images of these two maps are the subgroup < f, p, q >, and a subgroup

of < f̂, d0, d̂0 > that we denote < f̂, q0, q̂0 >. The third homomorphism
is from one of the rigid or solid limit group, Ipr1, . . . , Iprw, into the Duo
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limit group that was constructed from GCp(Sduo), and from which Unif

was constructed. We denote the image of this third map, < f̃, p, q̃ >. Fur-
thermore, none of these 3 maps factor through a free product of limit groups
in which < p > is contained in one factor, and < q > is contained in the
second factor.

(2) there exist generic points of Unif , i.e., sequences of specializations of Unif
that are composed from test sequences of the 4 completions from which Unif
is built, (Clp, Clq, B(Sduo), and the completion that is associated with
< q̃ > in the Duo limit group that is associated with GCp(Sduo) from which
Unif was constructed), for which the restrictions to specializations of the 3

subgroups, < f, p, q >, < f̂, q0, q̂0 >, and < f̃, p, q̃ >, restrict to proofs that
the specializations of the couples (p, q),(q0, q̂0), and (p, q̃) are in the same
equivalence class of E(p, q). Furthermore, these test sequences restrict to
proofs that the specializations of the couples (p, q0) and (q0, q) are in the
same equivalence class of E(p, q), and these test sequences restrict to distinct
sequences of specializations {(pn, qn}.

(3) If the subgroups < p > and < q > in Unif are non-trivial, then the sub-

group < f̃, p, q̃ > intersects non-trivially some conjugates of the terminal
rigid vertex group in Unif . Let H̃1, . . . , H̃c be the (conjugacy classes of)
subgroups of intersection. Then there exists a global bound U , so that for

every possible value of d̂0 for which there exists a test sequence with the
properties that are described in part (2), there are at most U possible con-

jugacy classes of specializations of the subgroups H̃1, . . . , H̃c that extend d̂0

and together are restrictions of conjugates of a rigid specialization of the
terminal limit group of Unif .

Proof: Parts (1) and (2) follow from the construction of the uniformization limit
group, Unif , and from the construction of the duo limit group, Sduo, from which
it was constructed. Part (3) follows from the uniform bound on the number of rigid
specialization of a rigid limit group with the same value of the defining parameters,
that was proved in theorem 2.5 in [Se3].

�

Uniformization limit groups are constructed as an amalgamation of a (Duo)
limit group Sduo, and a Duo limit group that was associated with a graded com-
pletion, GCp(Sduo), that is contained in Sduo. This structure of uniformization
limit groups enable them to reflect properties of generic points in fibers on one side
(the Sduo side) and universal properties on the other side.

Theorem 3.8. Let Unif be one of the uniformization limit groups that are asso-
ciated with the given definable equivalence relation E(p, q). Then:

(i) Let DE be the distinguished vertex group in Tduo, the Duo limit group
from which Sduo, the Duo limit group that is associated with Unif , was
constructed. Let H1, . . . , He be the (conjugacy classes) of intersections be-
tween the subgroup < f, p, q > and conjugates of the distinguished vertex
group of Tduo, DE. Recall that by part (3) of proposition 3.3, if both sub-
groups < p > and < q > are non-trivial, then these subgroups of intersection
are non-trivial.

Let d̂′

0 be a specialization of d̂0 (i.e., a specialization of DE) that does
not belong to the finitely many equivalence classes of E(p, q) that are singled
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out in theorem 3.1, for which there are infinitely many specializations of
H1, . . . , He that are associated with the equivalence class of d̂′

0, so that
these specializations of H1, . . . , He can be extended to conjugates of rigid
specializations of DE (the terminal limit group in Tduo), and these rigid
specializations of DE can be extended to test sequences of Tduo that restrict
to valid proofs that the corresponding couples: (pn, qn), and (pn, q0), belong
to the same equivalence class of E(p, q), and each of these test sequences
restrict to an infinite distinct sequence of couples, {(pn, qn)}. Then there
exists a Duo limit group Sduo1 that is constructed from Tduo, in which
H1, . . . , He are not all contained in the distinguished vertex of Sduo1.
If there are in addition infinitely many conjugacy classes of specializations of
the subgroups H1, . . . , He with the same properties, then at least one of the
subgroups H1, . . . , He is not contained in a conjugate of the distinguished
vertex in Sduo1.

(ii) Let d̂′

0 be a specialization of d̂0 that does not belong to the finitely many
equivalence classes that are singled out in theorem 3.1, for which there are
only finitely many conjugacy classes of specializations of H1, . . . , He that
are associated with the equivalence class of d̂′

0, so that these specializations of
H1, . . . , He can be extended to conjugates of rigid specializations of DE (the
terminal limit group in Tduo) that can be extended to test sequences of Tduo
that restrict to valid proofs that the corresponding couples: (pn, qn), and
(pn, q0), belong to the same equivalence class of E(p, q), and so that these
test sequences restrict to sequences of distinct couples, {(pn, qn)}. Then

there exists a global bound (that does not depend on d̂′

0) on the possible
values of the conjugacy classes of the subgroups H1, . . . , He that can extend
such a specialization of the elements d0 which is in the equivalence class of
d̂′

0.

(iii) Let d̂′

0 be a specialization of the elements d̂0, so that d̂′

0 restricts to special-
izations q̂′0, and q̂′0 does not belong to the finitely many equivalence classes

of E(p, q) that are excluded in theorem 3.1. Suppose that d̂′

0 extends to a
test sequence of Sduo that restricts to proofs that the couples (pn, q0(n)),
and (q0(n), q̂′0) belong to the same equivalence class in E(p, q). Let q̃′ be
a specialization of the elements q̃ that belongs to the equivalence class of
q̂′0. Then q̃′ extends to a specialization of at least one of the uniformiza-
tion limits groups Unif that are constructed from Sduo, so that for this
uniformization limit group Unif , q̃′ extends to a sequence of specializa-
tions, {(f̃ , pn, q̃′)} that prove that the sequence of couples {(pn, q̃′)} is in
the given definable set E(p, q), and the sequence {pn} is a test sequence
for the completion, GCp(Sduo), that is contained in Sduo. Furthermore,
the specializations of the corresponding test sequence of GCp(Sduo) restrict
to proofs that the couples {(pn, q0(n))}, and {(q0(n), q̂′0)} are in the same
equivalence class of E(p, q).

Proof: Part (i) follows from the constructions of the duo limit group, Sduo, and
the uniformizations limit groups that are associated with it. Part (ii) follows from
the construction of a uniformization limit group, and from the existence of a uniform
bound on the number of rigid specializations of a rigid limit group, for any given
value of the defining parameters (theorem 2.5 in [Se3]). Part (iii) follows since
the uniformization limit groups that are associated with the duo limit group Sduo,
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collect all the test sequences of GCp(Sduo) nd all the specializations of the subgroup
< q >, so that the restriction of the test sequences of GCp(Sduo) to the subgroup
< p >, and the values of the subgroup, < q >, can be extended to a sequence of
specializations of one of the rigid or solid limit groups, Ipr1, . . . , Iprw. If q̃′ belong
to the same equivalence class as q̂′0, such a test sequence clearly exists for a test
sequence of GCp(Sduo) and q̃′, and part (iii) follows.

�

By construction, Uniformization limit groups admit 3 different maps from the
rigid and solid limit groups, Ipr1, . . . , Iprw, into them. These maps prove that
(generic specializations of) the couples, (p, q), (q0, q̂0), and (p, q̃), are in the definable
set E(p, q). The structure of the uniformization limit groups, and in particular
their ability to use both generic points of their associated Duo limit group Sduo,
and the universality property of the collection of specializations of the elements q̃
that is associated with the (finite) collection of uniformization limit groups that is
associated with a Duo limit group Sduo, enable us to ”compare” between two of
these maps, those that verify that generic specializations of the couples (p, q) and
(p, q̃) are in E(p, q). This comparison is crucial in our approach to constructing the
desired class functions from the given definable equivalence relation E(p, q).

Recall that by part (3) of proposition 3.7, if the subgroups < p > and < q > are

non-trivial, then the subgroup < f̃, p, q̃ > of a uniformization limit group Unif ,
intersects non-trivially conjugates of the distinguished vertex group in Unif , in
(conjugacy classes of) the subgroups: H̃1, . . . , H̃c.

Since the collection of duo limit groups, Tduo1, . . . , Tduom, collect all the possi-
ble extensions of test sequences of the graded completions, G1, . . . , Gt, that form the
Diophantine envelope of E(p, q), to rigid and almost shortest strictly solid special-
izations of the rigid and solid limit groups, Ipr1, . . . , Iprw, with the two subgroups
of a uniformization limit group, Unif , < f, p, q > and < f̃, p, q >, we can naturally
associate two (possibly identical) of the duo limit groups, Tduo1, . . . , Tduom. By
construction with < f, p, q > we can associate the duo limit group Tduo, With
f̃ , p, q > it is possible to associate another (possibly the same) duo limit group

from the collection, Tduo1, . . . , Tduom, that we denote, T̃ duo.

Let Tduo be one of the duo limit groups, Tduo1, . . . , Tduom, and let DE be the
distinguished vertex in Tduo. By the construction of Tduo, there is an associated
map from one of the rigid and solid limit groups, Ipr1, . . . , Iprw, into it, that we de-
noted < f, p, q >. Tduo is a duo limit group, and by our assumptions it terminates
in a rigid limit group and the two graded completions that are associated with it
contain no non-cyclic abelian vertex group in any of their levels. Hence, Tduo, can
be presented as an amalgamated product: Tduo =< d1, p > ∗DE=<d0> < d2, q >.
If both subgroups, < p > and < q >, are non-trivial in Tduo, then the subgroup
< f, p, q > intersects non-trivially some conjugates of the distinguished vertex group
in Tduo. We denoted by H1, . . . , He the conjugacy classes of these intersections.

Let d̂′

0 be a specialization of d0 (i.e., a specialization of a fixed generating set
of DE) that does not belong to the finitely many equivalence classes of E(p, q)
that are singled out in theorem 3.1, for which there are infinitely many conjugacy
classes of specializations of the subgroups H1, . . . , He that are associated with the

equivalence class of d̂′

0, so that these specializations of H1, . . . , He can be extended
to conjugates of rigid specializations of DE (the terminal limit group in Tduo)
that can be extended to test sequences of Tduo that restrict to valid proofs that
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the corresponding couples: (pn, qn), and (pn, q0), belong to the same equivalence
class of E(p, q), and to distinct couples of specializations: {(pn, qn)}. Then by part
(i) of theorem 3.8 there exists a Duo limit group Sduo, that is constructed from
Tduo, in which not all the images of the subgroups H1, . . . , He can be conjugated

into the distinguished vertex in Sduo, and so that d̂′

0 can be extended to a test
sequence of Sduo that restricts to proofs that the couples: (pn, qn), (pn, q0(n)),
and (q0(n), q̂′0) belong to the same equivalence class of E(p, q), the corresponding
specializations of the subgroups H1, . . . , He belong to distinct conjugacy classes,
and the corresponding couples of specializations {(pn, qn)} are distinct.

By the construction of the uniformization limit groups Unif , since this last con-
clusion holds for Sduo, it holds for at least one of the uniformization limit groups,
Unif , that are associated with it.

Let Unif be such a uniformization limit group, i.e., a uniformization limit
group in which not all the subgroups. H1, . . . , He, can be conjugated into the
distinguished vertex group in Unif . There are two maps of the limit groups
Ipr1, . . . , Iprw into Unif , with images < f, p, q > and < f̃, p, q >, that are as-
sociated with two (possibly identical) duo limit groups, Tduo and T̃ duo.

Recall that the duo limit groups, Tduo1, . . . , Tduom, encode all the extensions of
test sequences of the graded completions, G1, . . . , Gt, that form the Diophantine
envelope of E(p, q), to rigid and almost shortest strictly solid specializations of
the rigid and solid limit groups, Ipr1, . . . , Iprw, that do not factor through a free
product in which < p > is contained in one factor and < q > is contained in the
second factor, so that these extended test sequences restrict to valid proofs that the
sequences of couples, {(pn, qn)}, are in the set E(p, q), and the couples, {(pn, qn)},
are distinct.

Suppose that the second map of the limit groups, Ipr1, . . . , Iprw, into Unif , the
one with image < f̃, p, q >, is associated with Tduo as well (i.e., T̃ duo = Tduo).
Furthermore, suppose that the images of the subgroups H1, . . . , He in < f, p, q >
and in < f̃, p, q > are conjugate. Then, by the construction of the uniformization
limit group Unif , the two images of at least one of these subgroups can not be
conjugated into the distinguished vertex group in Unif .

Suppose that the map from one of the limit groups, Ipr1, . . . , Iprw, into Unif ,
with image < f̃, p, q >, is associated with a duo limit group Tduoi which is
not Tduo, or that it is associated with Tduo, but the images of the subgroups
H1, . . . , He under the two maps from Ipr1, . . . , Iprw to Unif , with images, <
f, p, q > and < f̃, p, q >, are not conjugate in Unif .

By proposition 3.4, under our assumption that the terminal limit groups of the
duo limit groups, Tduo1, . . . , Tduom are rigid, for each specialization d′

0 of a (finite)
generating set d0 of the distinguished vertex group DE =< d0 > of Tduo, there
are at most boundedly many possible conjugacy classes of specializations of the
subgroups, H1, . . . , He, that can extend d′

0, so that there exists a test sequence of
the duo family that is associated with d′

0, that can be extended to shortest rigid
and strictly solid specializations of one of the limit groups, Ipr1, . . . , Iprw, that is
associated with Tduo and these specializations will have one of the given conjugacy
classes of specializations of the subgroups, H1, . . . , He.

Therefore, if the subgroup < f̃, p, q > is not associated with Tduo, or it is as-
sociated with Tduo, but the images of the subgroups H1, . . . , He in < f, p, q >
and < f̃, p, q > are not pairwise conjugate, two of boundedly many such maps
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are already present, and later on we will be able to apply the pigeon hole prin-
ciple, to argue that after boundedly many steps two maps with pairwise conju-
gate subgroups H1

i , . . . , Hei

i (that are associated with one of the duo limit groups,
Tduo1, . . . , Tduom) must be present. This will eventually guarantee the termina-
tion of an iterative procedure that we present, that will finally give us the param-
eters for the equivalence classes of the given equivalence relation E(p, q).

Given the definable equivalence relation E(p, q), we started its analysis with its
Diophantine envelope, G1, . . . , Gt, and Duo envelope, Duo1, . . . , Duor (theorems
1.3 and 1.4). We further associated with E(p, q) the rigid and solid limit groups,
Ipr1, . . . , Iprw, so that their rigid and strictly solid specializations (with respect to
the parameter subgroup < p, q >) restrict to valid proofs that the couples (p, q) are
in E(p, q), and these specializations do not factor through a free product in which
< p > is contained in one factor and < q > is contained in the second factor, for all
but finitely many equivalence classes of E(p, q) (theorem 3.1). Then we collected
all the possible extensions of test sequences of the graded completions, G1, . . . , Gt,
that form the Diophantine envelope of E(p, q), to rigid and almost shortest strictly
solid specializations of the rigid and solid limit groups, Ipr1, . . . , Iprw, and these
were collected by the (finite) collection of duo limit groups, Tduo1, . . . , Tduom (see
propositions 3.3 and 3.4), that form a duo envelope of E(p, q) as well.

Into each of the duo limit groups, Tduo1, . . . , Tduom, there is an associated map
of one of the rigid and solid limit groups, Ipr1, . . . , Iprw. We denoted the image of
the map from one of the rigid or solid limit groups, Ipr1, . . . , Iprw, into a duo limit
group, Tduo, by < f, p, q >. If both subgroups < p > and < q > are non-trivial in
Tduo, then by proposition 3.3 the subgroup < f, p, q > intersects some conjugates
of the distinguished vertex group in Tduo non-trivially. We denoted by H1, . . . , He

the conjugacy classes of these intersection subgroups. be non-trivial.

If the number of specializations of conjugacy classes of specializations of the sub-
groups, H1, . . . , He for a given equivalence class is finite then it is globally bounded
(for all such equivalence classes). For the entire collection of equivalence classes for
which the number of conjugacy classes of specializations of H1, . . . , He is infinite,
we have associated with the duo limit groups, Tduo1, . . . , Tduom, a finite collection
of duo limit groups Sduo1, . . . , Sduoh.

With each of the duo limit groups, Sduo, we have associated a finite collection
of uniformization limit groups, that we denoted, Unif1, . . . , Unifd. Each of these
uniformization limit groups admits a second map from one of the rigid and solid
limit groups, that we denote < f̃, p, q >. By the universality of the collection of
duo limit groups, Tduo1, . . . , Tduom, with each of the subgroups, < f, p, q > and
< f̃, p, q >, it is possible to associate one of these limit groups. By construction
Tduo is associated with < f, p, q >, and we denoted T̃ duo, the duo limit group (from

the collection Tduo1, . . . , Tduom) that is associated with the subgroup < f̃, p, q >

(Tduo and T̃ duo may be the same duo limit group).

If both subgroups < p > and < q̃ > in Unif are non-trivial, then the subgroup
< f̃, p, q̃ > intersects some conjugates of the distinguished vertex group in Unif
non-trivially. We denote by H̃1, . . . , H̃c the conjugacy classes of these subgroups
of intersection.

To associate parameters with the various equivalence classes of the given equiv-
alence relation E(p, q), and obtain separation of variables, we repeat these con-
structions iteratively. The constructions that we perform in the second step of
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the iterative procedure, depend on whether the two maps from the rigid and solid
limit groups, Ipr1, . . . , Iprw, into a uniformization limit group Unif , with images
< f, p, q > and < f̃, p, q >, are associated with the same duo limit group Tduo (i.e.,

if T̃ duo = Tduo), and if so whether the images of the subgroups H1, . . . , He under
the two associated maps, are pairwise conjugate, or not.

Suppose that the two maps with images, < f, p, q > and < f̃, p, q >, are as-
sociated with the same duo limit group Tduo, and the images of the subgroups,
< H1, . . . , He >, under the two associated maps, are pairwise conjugate. Suppose
that there exists an equivalence class of E(p, q), which is not one of the finitely
many equivalence classes that were singled out in theorem 3.1, for which there exist
an infinite sequence of specializations of the subgroups, H̃1, . . . , H̃c, that are not
pairwise conjugate, that can be extended to test sequences of a uniformization limit
group Unif (i.e., sequences that restrict to test sequences of the 4 completions from
which the uniformization limit group Unif is composed), that restrict to pairwise
non-conjugate specializations of the subgroups, H1, . . . , He, and so that the restric-
tions of these test sequences, {(fn, pn, qn)} and {(f̃n, pn, q̃n)}, prove that the cou-

ples, {(pn, qn)} and {(pn, q̃n)}, are in E(p, q), and the restrictions {(f̂n, q0(n), q̂0)}
prove that the couples {(q0(n), q̂0)} are in E(p, q). Furthermore these test sequences
restrict to valid proofs that the couples {(pn, q0(n))} are in E(p, q) (recall that q0(n)
is the restriction of the specializations d0(n) to the elements q0 and q̂0 is the re-

striction of the specialization d̂0), and the couples, {(pn, qn)} and {(pn, q̃n)}, are
distinct.

We collect all these equivalence classes and their associated specializations of the
subgroup H̃ in a finite collection of uniformization limit groups, in a similar way to
the construction of the uniformization limit groups, Unif1, . . . , Unifd. With these
we associate a finite collection of duo limit groups, in a similar way to the construc-
tion of the duo limit groups, Cduo1, . . . , Cduov. Then we apply the sieve procedure
(that is presented in [Se6]), to associate with this collection of duo limit groups, a
finite collection of duo limit groups, in a similar way to the construction of the duo
limit groups, Sduo1, . . . , Sduoh. With each of these duo limit groups we associate
a finite collection of uniformization limit groups. We denote these uniformization
limit groups, Unif2

1 , . . . , Unif2
d2 . For presentation purposes we continue to assume

that the terminal limit groups of all the constructed duo limit groups are rigid (and
not solid), and the graded completions that are associated with them contain no
abelian vertex groups in any of their levels.

Let Unif2 be one of the duo limit groups, Unif2
1 , . . . , Unif2

d2 , in which at least

one of the subgroups, H̃1, . . . , H̃c, can not be conjugated into the distinguished
vertex group in Unif2. By construction, there are 3 maps from the rigid and
solid limit groups, Ipr1, . . . , Iprw, into Unif2. Two of these maps with images,
< f, p, q > and < f̃, p, q̃ >, are inherited from the associated uniformization limit
group Unif , and are associated with the duo limit group Tduo by our assumptions.
The third map with image that we denote, < f ′, p, q′ >, is also associated with one
of the duo limit groups, Tduo1, . . . , Tduom. We denote the duo limit group with
which < f ′, p, q′ > is associated, Tduo′.

By our assumptions the two subgroups, < f, p, q > and < f̃, p, q̃ >, are associated
with the same duo limit group Tduo, and the images of the subgroups, H1, . . . , He,
under these two maps are pairwise conjugate. Suppose that the third map from
one of the subgroups, Ipr1, . . . , Iprw, into Unif2 (with image < f ′, p, q′ >), is
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associated with Tduo as well (i.e., Tduo′ = Tduo), and the images of the subgroups,
H1, . . . , He, under the third map are pairwise conjugate to their images under the
first two maps.

The uniformization limit group, Unif2, was constructed from a uniformization
limit group, Unif , and its associated duo limit group Sduo. Hence, by the uni-
versality of the collection of uniformization limit groups that are associated with
the duo limit group, Sduo, with the third map from one of the rigid or solid limit
groups, Ipr1, . . . , Iprw, into Unif2, with image < f ′, p, q′ >, we can associate an-
other (possibly the same) uniformization limit group that is associated with the
duo limit group, Sduo, that we denote Unif ′.

Suppose that the uniformization limit group, Unif ′, that is associated with
Unif2, is Unif , the uniformization limit group from which Unif2 was constructed.
Suppose further, that the images of the subgroups, H̃1, . . . , H̃c, in the subgroup <
f ′, p, q′ >, are pairwise conjugate to the images of these subgroups in the subgroup,
< f̃, p, q̃ >.

If both subgroups, < p > and < q >, are non-trivial, then the subgroup
< f ′, p, q′ > of the uniformization limit group Unif2, intersects non-trivially some

conjugates of the distinguished vertex group in Unif2. Let H1′, . . . , Hb′ be conju-
gacy classes of these subgroups of intersection.

If the uniformization limit group that is associated with the subgroup < f ′, p, q′ >
and the uniformization limit group Unif2, is not Unif (i.e., if Unif ′ is not Unif),

or if it is Unif , but the images of the subgroups, H̃1, . . . , H̃c, in the subgroup
< f ′, p, q′ >, are not pairwise conjugate to the images of these subgroups in the
subgroup, < f̃, p, q̃ >, then as we argued for the uniformization limit group Unif2,
the two maps with images < f̃, p, q̃ > and < f ′, p, q′ >, occupies two of the bound-
edly many possibilities of such maps (where the bound is uniform and does not
depend on the specific equivalence class of E(p, q)).

By our assumptions the two subgroups, < f, p, q > and < f̃, p, q̃ >, are associated
with the same duo limit group Tduo, and the images of the subgroups, H1, . . . , He,
under these two maps are pairwise conjugate. If the third map from one of the
subgroups, Ipr1, . . . , Iprw, into Unif2 (with image < f ′, p, q′ >), is not associated
with Tduo as well (i.e., Tduo′ is not Tduo), or if the images of the subgroups,
H1, . . . , He, under the third map are not pairwise conjugate to their images under
the first two maps, then by the same reasoning, the two maps with images < f, p, q >
and < f ′, p, q′ >, occupies two of the boundedly many possibilities of such maps
(where the bound is uniform and does not depend on the specific equivalence class
of E(p, q)).

Suppose that the two maps with images, < f, p, q > and < f̃, p, q̃ >, are not
associated with the same duo limit group Tduo, or that they are both associated
with Tduo, and the images of the subgroups, < H1, . . . , He >, under the two
associated maps, are not pairwise conjugate. In this case, the second map, the
one with image < f̃, p, q̃ >, is associated with a duo limit group T̃ duo. If both
subgroups, < p > and < q >, in T̃ duo, are non-trivial, then the image of the map
from one of the rigid or solid limit groups, Ipr1, . . . , Iprw, in T̃ duo, intersects non-
trivially some conjugates of the distinguished vertex group in T̃ duo. Let Ĥ1, . . . , Ĥa

be the conjugacy classes of these subgroups of intersection.

Suppose that there exists an equivalence class of E(p, q), which is not one of the
finitely many equivalence classes that were singled out in theorem 3.1, for which
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there exist an infinite sequence of specializations of the subgroups, Ĥ1, . . . , Ĥa,
that are not pairwise conjugate, that can be extended to test sequences of a uni-
formization limit group Unif (i.e., sequences that restrict to test sequences of the
4 completions from which the uniformization limit group Unif is composed), that
restrict to pairwise non-conjugate specializations of the subgroups, H1, . . . , He,
and so that if both < f, p, q > and < f̃, p, q̃ > are associated with Tduo, then
the specializations of the subgroups, H1, . . . , He, are not pairwise conjugate to
those of Ĥ1, . . . , Ĥa=e, and the restrictions of these test sequences, {(fn, pn, qn)}

and {(f̃n, pn, q̃n)}, prove that the couples {(pn, qn)} and {(pn, q̃n)} are in E(p, q),

and the restrictions {(f̂n, q0(n), q̂0)} prove that the couples {(q0(n), q̂0)} are in
E(p, q). Furthermore these test sequences restrict to valid proofs that the couples
{(pn, q0(n))} are in E(p, q) (recall that q0(n) is the restriction of the specializations

d0(n) to the elements q0 and q̂0 is the restriction of the specialization d̂0), and the
couples {(pn, qn)} and {(pn, q̃n)} are distinct.

We collect all these equivalence classes and their associated specializations of
the subgroups, Ĥ1, . . . , Ĥa, in a finite collection of duo limit groups, in a similar
way to the construction of the duo limit groups, Dduo1, . . . , Dduou. With these
we associate a finite collection of duo limit groups, in a similar way to the con-
struction of the duo limit groups, Cduo1, . . . , Cduov. Then we apply the sieve
procedure (that is presented in [Se6]), to associate with this collection of duo limit
groups, a finite collection of duo limit groups, in a similar way to the construction
of the duo limit groups, Sduo1, . . . , Sduoh. With each of these duo limit groups
we associate a finite collection of uniformization limit groups, that we denote (once
again): Unif2

1 , . . . , Unif2
d2 . For presentation purposes we continue to assume that

the terminal limit groups of all the constructed duo limit groups are rigid (and
not solid), and the graded completions that are associated with them contain no
abelian vertex groups in any of their levels.

Let Unif2 be one of the uniformization limit groups, Unif2
1 , . . . , Unif2

d2 in

which at least one of the subgroups, Ĥ1, . . . , Ĥa, and at least one of the sub-
groups, H1, . . . , He, can not be conjugated into the distinguished vertex group in
Unif2. By construction, there are 3 maps from the rigid and solid limit groups,
Ipr1, . . . , Iprw, into Unif2. Two of these maps with images, < f, p, q > and
< f̃, p, q̃ >, are inherited from the associated uniformization limit group Unif , and
are associated with the duo limit groups Tduo and T̃ duo in correspondence, by our
assumptions. The third map with image that we denote, < f ′, p, q′ >, is associated
with the construction of Unif2, and is also associated with one of the duo limit
groups, Tduo1, . . . , Tduom. We denote the duo limit group with which < f ′, p, q′ >
is associated, Tduo′.

By our assumptions the two subgroups, < f, p, q > and < f̃, p, q̃ >, are associated
with the duo limit groups Tduo and T̃ duo in correspondence, and if they are both
associated with Tduo, then the images of the subgroups, H1, . . . , He, under these
two maps are not pairwise conjugate. Suppose that the third map from one of the
subgroups, Ipr1, . . . , Iprw, into DPduo2 (with image < f ′, p, q′ >), is associated

with either Tduo or T̃ duo, and the images of the subgroups, H1, . . . , He, or the
subgroups, Ĥ1, . . . , Ĥa, under the third map are pairwise conjugate to their images
under the first or the second map in correspondence.

If both subgroups, < p > and < q >, are non-trivial in Unif2, then the sub-
group < f ′, p, q′ > intersects some conjugates of the distinguished vertex group in
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Unif2 non-trivially. Let H1′, . . . , Hb′ be the conjugacy classes of these subgroups
of intersection.

By our assumptions, the two subgroups, < f, p, q > and < f̃, p, q̃ >, are asso-
ciated with the duo limit groups Tduo and T̃ duo, and if Tduo = T̃ duo then the
images of the subgroups, H1, . . . , He, under these two maps are not pairwise con-
jugate. If the third map from one of the subgroups, Ipr1, . . . , Iprw, into Unif2

(with image < f ′, p, q′ >), is not associated with Tduo or T̃ duo, or if the images of

the subgroups, H1, . . . , He, or Ĥ1, . . . , Ĥa, under the third map are not pairwise
conjugate to their images under the first or the second map, then three maps with
images < f, p, q >, < f̃, p, q̃ >, and < f ′, p, q′ >, occupies 3 of the boundedly many
possibilities of such maps (where the bound is uniform and does not depend on the
specific equivalence class of E(p, q)).

We continue iteratively. Suppose that there exists a uniformization limit group
Unif2, and an equivalence class of E(p, q), which is not one of the finitely many
classes that are singled out in theorem 3.1, for which there exist infinitely many con-

jugacy classes of specializations of the subgroups Hj ′ that are associated with the
image of the third map from Ipr1, . . . , Iprw, into Unif2 with image < f ′, p, q′ >,
that can be extended to test sequences of the duo limit group Unif2 (i.e., se-
quences that restrict to test sequences of the 4 completions from which the duo
limit group DPduo2 is composed), so that restrictions of these test sequences to

the subgroups, Hj and H̃j are pairwise non-conjugate, and the restrictions of the
subgroups: {(fn, pn, qn)}, {(f̃n, pn, q̃n)} and {(f ′, p, q′)}, prove that the couples
{(pn, qn)}, {(pn, q̃n)} and {(pn, q′n)}, are in E(p, q), and the restrictions of these test
sequences prove that the couples, {(pn, q0(n)}, {(q0(n), q̂0(n))} and {(q̂0(n), q′0)} are
in E(p, q). Then we repeat these constructions, and obtain new uniformization limit
groups, Unif3

1 , . . . , Unif3
d3 that admit 4 maps from the limit groups Ipr1, . . . , Iprw

into each of them.
To obtain a set of parameters for the equivalence classes of the given definable

equivalence relation, E(p, q), we need to ensure a termination of this iterative proce-
dure, that we’ll leave us with only finitely many uniformization limit groups, Unif i,
and so that for each equivalence class (apart from the finitely many that are singled
out in theorem 3.1) there will exist a uniformization limit group Unif i with only
boundedly many possible conjugacy classes of values for the associated subgroups
Hi (Hi are obtained as intersections between conjugates of the distinguished vertex
group in Unif i and an associated image of one of the limit groups Ipr1, . . . , IPrw,
< f i, p, qi >).

Theorem 3.9. The iterative procedure for the construction of the uniformization
limit groups, Unif i, terminates after finitely many steps.

Proof: Suppose that the iterative procedure does not terminate after finitely many
steps. Since at each step finitely many uniformization limit groups are constructed,
by Konig’s lemma, if the procedure doesn’t terminate there must exist an infinite
path along it.

Each uniformization limit group along the infinite path is equipped with a
map from one of the limit groups, Ipr1, . . . , Iprw, into it (we denote this image
< fj , p, qj >). Hence, by passing to a subsequence of the uniformization limit
groups along the infinite path, we may assume that they are all equipped with a
map from the same limit group, Ipri.
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With each uniformization limit group from the chosen subsequence there is an as-
sociated map from the duo limit group Ipri into that uniformization limit group. By
the construction of the uniformization limit groups, Unif j, by passing to a further
subsequence we may assume that the map from Ipri extends to a map from a fixed
uniformization limit group, Unif j1 . By passing iteratively to further subsequences
we obtain maps from fixed uniformization limit groups, Unif j1 , Unif j2 , . . . , into
the uniformization limit groups from the corresponding subsequences.

Now, we look at the sequence of images, < fj , p, qj >, of the limit group, Ipri,
in the uniformization limit groups, Unif j, along the diagonal subsequence that is
taken from the chosen subsequences of the infinite path. Each uniformization limit
group in the diagonal subsequence is constructed as a limit of homomorphisms
into a coefficient free group, Fk. With each uniformization limit group from the
diagonal subsequence, (that we still denote) Unif j , we associate a homomorphism,
hj : Unif j → Fk, that restricts and lifts to a homomorphism sj : Ipri → Fk.
We choose the homomorphism hj , so that it approximates the distances in the
limit action of Unif j on the limit Rnj -tree, for larger and larger (finite) subsets of
elements in Ipri.

To analyze the sequence of homomorphisms {sj}, and obtain a contradiction to
the existence of an infinite path, we need the following theorem (theorem 1.3 in
[Se3]), that gives a form of strong accessibility for limit groups.

Theorem 3.10 ([Se3],1.3). Let G be a f.g. group, and let: {un | un : G → Fk}
be a sequence of homomorphisms. Then there exist some integer m ≥ 1, and a
subsequence of the given sequence of homomorphisms, that converges into a free
action of some limit quotient L of G on some Rm-tree.

By theorem 3.10, from the sequence of homomorphisms, sj : Ipri → Fk, it
is possible to extract a subsequence (that we still denote {sj}) that converges
into a free action of a limit quotient L of Ipri on some Rm-tree, for some integer
m ≥ 1. By construction, the homomorphism from Ipri into Unif j extends to
homomorphisms from the uniformization limit groups, Unif j1 , Unif j2, . . . into Fk.
Hence, the limit action of the image of Ipri in Unif j on the associated Rnj -tree
contains at least j levels of infinitesimals. Since the homomorphisms sj : Ipri → Fk

were chosen to approximate these limit actions on larger and larger sets of elements
of Ipri, it can not be that the limit action that is obtained from the sequence of
homomorphisms sj : Ipri → Fk according to theorem 3.10 contains only a finite
sequence of infinitesimals. Therefore, we obtained a contradiction to the existence
of an infinite path, and the procedure for the construction of uniformization limit
groups terminate after finitely many steps.

�

Theorem 3.9 asserts that the iterative procedure for the construction of the
uniformization limit groups, Unif i, terminates. Since the iterative procedure pro-
duces finitely many uniformization limit groups at each step, until its termina-
tion it constructs finitely many uniformization limit groups, Unif i, that we denote
Unif1, . . . , Unifv (we omit the notation for the step it was produced, since this will
not be important in the sequel). With each uniformization limit group, Unifi, there
is an associated map from one of the rigid and solid limit groups Ipr1, . . . , Iprw

into Unifi, that we denote, < fi, p, qi >. Note that by our assumptions all the ter-
minal limit groups of the uniformization limit groups, Unif1, . . . , Unifv, are rigid
(and not solid). If the images of the subgroups < p > and < q > in Unifi are
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both non-trivial, then the subgroup < fi, p, qi > intersects some conjugates of the
distinguished vertex group in Unifi non-trivially. We set H1

i , . . . , Hei

i to be the
conjugacy classes of these subgroups of intersection.

Theorem 3.11. Suppose that all the uniformization limit groups, Unif1, . . . , Unifv,
and the duo limit groups that were used for their construction, terminate in rigid
limit groups, and the graded completions that are associated with these groups con-
tain no abelian vertex groups.

Then for every equivalence class of E(p, q), which is not one of the finitely many
equivalence classes that are excluded in theorem 3.1, there exists a uniformization
limit group, Unifi, from the finite collection, Unif1, . . . , Unifv, so that there exists
a (positive) bounded number of conjugacy classes of specializations of the subgroups,
H1

i , . . . , Hei

i , for which (cf. theorem 3.8):

(1) there exist specializations in the given conjugacy classes of specializations
of the subgroups H1

i , . . . , Hei

i that can be extended to rigid specializations of
the distinguished (terminal) rigid vertex group in the uniformization limit
group Unifi, that can be further extended to test sequences of specializations
that restrict to specializations of elements in the given equivalence class of
E(p, q).

The test sequences of specializations that extend the corresponding rigid
specializations of the distinguished vertex group in the uniformization limit
group Unifi, restrict to valid proofs that the sequence of couples {(pn, qn)}, . . . , {(pn, qi

n)}
are in the given equivalence class of E(p, q), and to distinct sequence of cou-
ples {(pn, qn)}, . . . , {(pn, qi

n)}. Furthermore, with the uniformization limit
group, Unifi, there are finitely many associated maps from the subgroups
Ipr1, . . . , Iprw. With each such map, there are finitely many associated sub-
groups Hi,j (that were associated with Unifi along the iterative procedure
that constructs it). Then the test sequences that extend the rigid specializa-
tions of the distinguished vertex group in Unifi, restricts to non pairwise
conjugate specializations of the subgroups Hi,j (for each level j), except for
the bottom level subgroups, H1

i , . . . , Hei

i .
(2) the boundedly many conjugacy classes of specializations of the subgroups,

H1
i , . . . , Hei

i , are the only conjugacy classes of specializations of these sub-
groups that satisfy part (1) for the given equivalence class of E(p, q).

Note that the bound on the number of conjugacy classes of specializations of the
subgroups, H1

i , . . . , Hei

i , is uniform and it does not depend on the given equivalence
class.

Proof: By the construction of the first level uniformization limit groups, Unif1
j ,

for each equivalence class that is not one of the finitely many equivalence classes
that are excluded in theorem 3.1, there exists a uniformization limit group, Unif1

j ,
with (conjugacy classes of) specializations of the of the subgroups, H1, . . . , He1

,
that satisfy part (1). If for a given equivalence class there are infinitely many such
conjugacy classes, we pass the uniformization limit groups that were constructed
in the second level. By continuing iteratively, and by the termination of the pro-
cedure for the construction of uniformization limit groups (theorem 3.9), for each
given equivalence class (which was not excluded by theorem 3.1), we must reach
a level in which there is a uniformization limit group with (conjugacy classes of)
specializations of the subgroups, Hi

1, . . . , Hi
ei

, that satisfy the conclusion of the
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theorem.
�

Theorem 3.11 proves that for any equivalence class of E(p, q) (except the finitely
many equivalence classes that are singled out in theorem 3.1), there exists some
uniformization limit group, Unifi, which is one of the constructed uniformization
limit groups, Unif1, . . . , Unifv, for which the subgroups, H1

i , . . . , Hei

i , which are
the conjugacy classes of intersecting subgroups between the subgroup, < fi, p, qi >,
and conjugates of the distinguished vertex group in the uniformization limit group,
Unifi, admit only boundedly many conjugacy classes of specializations (that can
be extended to test sequences of Unifi that satisfy part (1) in theorem 3.11).

Therefore, these boundedly many conjugacy classes of specializations of the sub-
groups, H1

i , . . . , Hei

i , already enable us to construct a (definable) function from the
collection of equivalence classes of E(p, q) into a power set of the coefficient group
Fk, so that the function maps each equivalence class of E(p, q) into a (globally)
bounded set. However, it is not guaranteed that the class function that one can
define in that way, separates between different classes of E(p, q).

The uniform bounds on the subgroups, H1
i , . . . , Hei

i , does not yet give us the
desired class function that we can associate with E(p, q), i.e., a class function
with ”bounded” image for each equivalence class. It does give us a separation
of variables that can be used as a step towards obtaining a desired class function.
In order to obtain this separation of variables we need to look once again at the
decomposition that we denote Λi, which is the decomposition that is inherited by
the subgroup < fi, p, qi > from the uniformization limit group, Unifi, from which
the uniformization limit group, Unifi, was constructed.

Lemma 3.12. With the notation of theorem 3.11, Λi, the graph of groups decom-
position that is inherited by the subgroup, < fi, p, qi >, from the uniformization
limit group, Unifi, is either:

(1) Λi is a trivial graph, i.e., a graph that contains a single vertex. In that
case either the subgroup < p > or the subgroup < qi > is contained in the
distinguished vertex in Unifi, and in particular, it admits boundedly many
values.

(2) Λi has two vertices, and (finitely many) edges between them. The subgroup
< p > is contained in one vertex group in Λi, and the subgroup < qi >
is contained in the second vertex group in Λi. In that case the subgroups,
H1

i , . . . , Hei

i , contain conjugates of all the edge groups in Λi, except possibly
a single edge, that connects the vertex that is stabilized by < p > with the
vertex that is stabilized by < qi > in Λi, that can have a trivial stabilizer.

Proof: Since we assumed that the terminating limit groups of each of the uni-
formization limit groups, Unifi, is rigid, each of the terminating limit groups,
Unifi, admits a splitting of the form, Unifi =< u, p > ∗<w> < v, qi >, where
< w > is the terminal rigid limit group of the uniformization limit group. We
will denote this splitting of Unifi, Θi, and let Ti be the Bass-Serre tree that is
associated with this splitting, Θi, of Unifi.

The subgroup < fi, p, qi > inherits a graph of groups decomposition, Λi, from
the splitting, Θi. Since the subgroups < p > and < qi > are elliptic in Θi, they
can be both conjugated into vertex groups in Λi. Since the subgroups < p > and
< qi > stabilize adjacent vertices in the Bass-Serre tree, Ti, Bass-Serre theory for
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actions of groups on simplicial trees, enables us to further assume that the vertex
groups in Λi were chosen so that both < p > and < qi > are contained in vertex
groups in Λi.

First, suppose that the subgroups < p > and < qi > fix the same vertex in
the tree Ti. Since the uniformization limit group, Unifi, is constructed from test
sequences of specializations of the subgroup, < u, p >, and corresponding short-
est possible specializations of the subgroup, < fi, p, qi >, the entire subgroup,
< fi, p, qi >, must fix the same vertex in Ti. In that case either the subgroup < p >
or the subgroup < qi > is contained in the distinguished vertex in Θi, hence, it
admits boundedly many values, and case (1) follows.

Suppose that the subgroup < p > fixes a vertex in Ti, and the subgroup < qi >
fixes a distinct vertex in Ti. Again since Unifi is constructed from test sequences
of the subgroup, < u, p >, and corresponding shortest possible specializations of
the subgroup, < fi, p, qi >, the action of the subgroup < fi, p, qi > on a minimal
invariant subtree of the tree Ti, contains only two orbits of vertices, one stabilized
by conjugates of < p > and the other by conjugates of < qi >. Furthermore, in the
graph of groups Λi, that is associated with this action, there are no loops that are
based on these two vertices. Hence, Λi contains two vertices with edges between
them. Since < fi, p, qi > does not admit a free product in which the subgroup
< p, qi > is contained in a factor, at most one of the edge groups in Λi can be
trivial. All the other edge groups can be conjugated into the distinguished vertex
group in the graph of groups Θi, hence, for each equivalence class, they values
belong to boundedly many conjugacy classes.

�

If we combine lemma 3.12 with theorem 3.11, for each equivalence class of E(p, q)
except the finitely many equivalence classes that are singled out in theorem 3.1,
there exists a uniformization limit group, Unifi, from the finite collection of the
constructed uniformization limit groups, Unif1, . . . , Unifv, for which:

(1) with the uniformization limit group, Unifi, there is an associated map from
one of the rigid and solid limit groups, Ipr1, . . . , Iprw, into Unifi, with
image, < fi, p, qi >.

(2) either one of the subgroups, < p > or < qi > admits boundedly many values
up to conjugacy, or the subgroup < fi, p, qi > inherits a graph of groups
decomposition, Λi, from the presentation of Unifi as an amalgamated prod-
uct. Λi contains two vertices, where < p > is contained in one vertex group
and < qi > in the second vertex group.

(3) the edge groups in Λi are conjugates to some of the subgroups, H1
i , . . . , Hei

i ,
and these groups admits only boundedly many conjugacy classes of special-
izations, that are associated with the given equivalence class, and satisfy
the conditions that are presented in part (1) of theorem 3.11.

As we have already indicated, the bounded number of conjugacy classes of spe-
cializations of the subgroups, H1

i , . . . , Hei

i , that are associated with a given equiv-
alence class of E(p, q), associated a bounded set with each equivalence class. How-
ever, these bounded sets may not separate between different equivalence classes.
The graph of groups, Λi, that is inherited by the subgroup, < fi, p, qi >, from the
uniformization limit group, Unifi, which is either trivial (in which case one of the
subgroups < p > or < qi > admits only boundedly many values up to conjugacy),
or it has two vertices, and (finitely many) edges between them, where the subgroup
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< p > is contained in one vertex group in Λi, and the subgroup < qi > is contained
in the second vertex group in Λi, and the subgroups, H1

i , . . . , Hei

i , contain conju-
gates of the edge groups in Λi, can be viewed as a separation of variables (Λi

separates between the subgroups < p > and < qi >). This separation of variables
is the goal of this section, and the key for associating parameters with equivalence
classes of the definable equivalence relation E(p, q) in the next section, parameters
that admit boundedly many values for each class, and these values separate between
the different classes.

For presentation purposes, in all the constructions that were involved in ob-
taining the uniformization limit groups, Unif1, . . . , Unifv, we assumed that the
terminal limit group in all the associated duo limit groups are rigid (and not solid),
and that there is no abelian vertex group in all the abelian decompositions that are
associated with the various levels of the completions that are part of the constructed
duo limit groups. Before we continue to the next section, and use the separation
of variables we obtained to associate parameters with equivalence classes, we gen-
eralize the constructions we used, to omit these technical assumptions.

Suppose that the graded completions, G1, . . . , Gt, that form the Diophantine
envelope of E(p, q), contain no abelian vertex groups in any of the abelian decom-
positions that are associated with their various levels, and they terminate in either
rigid or solid limit groups. The construction of the rigid and solid limit groups,
Ipr1, . . . , Iprw, and their properties that are listed in theorem 3.1, do not depend
on the terminal limit groups of the graded completions, G1, . . . , Gt, being rigid or
solid. Hence, we use them when some of the terminal limit groups of the the graded
completions that form the Diophantine envelope are solid (and not only rigid).

From the graded completions, G1, . . . , Gt, their test sequences and their exten-
sions to rigid or almost shortest specializations of the rigid and solid limit groups,
Ipr1, . . . , Iprw, we constructed the duo limit groups, Tduo1, . . . , Tduom. One
of the graded completions that is associated with each of the duo limit groups,
Tduo1, . . . , Tduom, has the same structure as the associated graded completion
from the Diophantine envelope. For presentation purposes we further assume
that the two graded completions that are associated with each of the duo limit
groups, Tduo1, . . . , Tduom contain no abelian vertex groups in any of their levels.
We make no assumptions on the terminal limit groups of the duo limit groups,
Tduo1, . . . , Tduom, i.e., they may terminate in either rigid or solid limit groups.
Recall that with each of the duo limit groups, Tduo1, . . . , Tduom there is an asso-
ciated subgroup, < f, p, q >, that denotes the image of an associated map from one
of the limit groups, Ipr1, . . . , Iprw, into it.

In propositions 3.3 and 3.4 we indicated the structure of the graph of groups
decompositions that the subgroups < f, p, q > inherit from the ambient duo limit
groups, Tduo1, . . . , Tduom, in case these duo limit groups terminate in rigid limit
groups and their associated completions contain no abelian vertex groups. The
following proposition generalizes propositions 3.3 and 3.4 in case the terminal limit
groups of Tduo1, . . . , Tduom may be solid.

Proposition 3.13. Let Tduoi be one of the Duo limit groups, Tduo1, . . . , Tduom,
and suppose that the two graded completions that are associated with Tduoi contain
no abelian vertex groups in any of their levels.

Let the subgroup < f, p, q >, be the image in Tduoi of one of the rigid or solid
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limit groups, Ipr1, . . . , Iprw. If both subgroups < p > and < q > are non-trivial in
Tduoi, then < f, p, q > intersects non-trivially some conjugates of the rigid vertex
groups in the abelian decomposition that is associated with the terminal vertex group
in Tduoi. As in proposition 3.3, we denote by H1

i , . . . , He
i the conjugacy classes of

these intersection subgroups.

Let Gj(i) be the graded completion (from the Diophantine envelope of E(p, q)) that
is associated (and mapped into) Tduoi. Then there exists a global integer bi > 0,
so that for any rigid or strictly solid family of specializations of the (rigid or solid)
distinguished vertex group in Gj(i), there are at most bi rigid or strictly solid families
of specializations of the terminal rigid or solid terminal limit groups of Tduoi that
extend the given family of specializations of the distinguished vertex group in the
terminal limit group of Gj(i), and so that these rigid or strictly solid families can
be extended to generic rigid and strictly solid specializations of < f, p, q >. In
particular, these specializations of the terminal limit group of Tduoi restrict to at
most bi conjugacy classes of specializations of the subgroups, H1

i , . . . , He
i .

Proof: The proof is identical to the proof of proposition 3.4. Since the subgroup,
< di

0 >, of the duo limit group, Tduoi, is assumed to solid, the proposition follows
from the existence of a uniform bound on the number of strictly solid families of
specializations of a solid limit group with a fixed value of the defining parameters
(i.e., a bound that does not depend on the specific value of the defining parameters)
that was proved in theorem 2.9 in [Se3].

�

Suppose that there exists a duo limit group Tduo, and an equivalence class
of E(p, q), for which there exists an infinite sequence of conjugacy classes of spe-
cializations of H1, . . . , He that can be extended to couples of test sequences of
the two graded completions that are associated with Tduo, so that restrictions
of generic elements in these test sequences, (fn, pn, qn), prove that the couples
(pn, qn) ∈ E(p, q), these test sequences restrict to valid proofs that the couples
(pn, q0(n)) and (q0(n), qn) belong to E(p, q) (recall that q0(n) is the restriction of
the specializations d0(n) to the elements q0), and furthermore these test sequences
restrict to sequences of distinct couples, {(pn, qn)}.

In that case we can associate with the entire collection of such equivalence classes
of E(p, q), a finite collection of duo limit groups, Sduo1, . . . , Sduoh, precisely as we
did in case the terminal limit groups of the duo limit groups, TDuo1, . . . , TDuom

were rigid.

We further assume that the abelian decompositions that are associated with the
various levels of the duo limit groups, Sduo1, . . . , Sduoh, contain no abelian vertex
groups. In that case we can associate finitely many uniformization limit groups
with each of the duo limit groups, Sduo1, . . . , Sduoh, precisely as we did in case
the terminal limit groups of Sduo1, . . . , Sduoh are all rigid. We Assume that these
uniformization limit groups contain no abelian vertex groups in the abelian decom-
positions that are associated with their various levels. With each uniformization
limit group, Unif , there is an associated duo limit group, Sduo.

As we did in the case the terminal limit groups of the uniformization limit
groups, Unif , were all rigid, the image, < f̃, p, q̃ >, of the map from one of the
rigid and solid limit groups, Ipr1, . . . , Iprw, into the uniformization limit group,
Unif , intersects non-trivially some conjugates of the rigid vertex groups in the
abelian decomposition that is associated with the terminal limit group of Unif , in
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case the images of both subgroups < p > and < q > in the uniformization limit
group, Unif , are non-trivial.

If there exist equivalence classes of E(p, q) for which these (finitely many) in-
tersection subgroups admit infinitely many conjugacy classes, we continue our con-
structions iteratively. In each step we construct new uniformization limit groups,
Unif i. If the image of both subgroups, < p > and < q >, in Unif i, are non-
trivial, then the image of the map from one of the rigid and solid limit groups,
Ipr1, . . . , Iprw, into Unif i (that we denoted < fi, p, qi >), intersects non-trivially
some conjugates of the rigid vertex groups in the abelian decomposition that is
associated with the terminal limit group of Unif i.

If there are equivalence classes of E(p, q) for which these intersection subgroups
admit infinitely many conjugacy classes of specializations we continue the next step.
By the same argument that was used in proving theorem 3.9, the iterative process
terminates after finitely many steps. After it terminates we are left with finitely
many uniformization limit groups that were constructed in its various steps. For
each equivalence class which is not one of the finitely many that were excluded
in theorem 3.1, there exists some uniformization limit group, Unif i, so that the
intersection subgroups between the image of one of the rigid and solid limit groups,
Ipr1, . . . , Iprw, in Unif i, and conjugates of the rigid vertex groups in the abelian
decomposition that is associated with the terminal limit group of Unif i, admit
boundedly many values (up to conjugation) that are associated with the given
equivalence class.

So far we explained how to generalize the outcome of the iterative procedure,
or theorem 3.10, in case the terminal limit groups of the constructed duo and
uniformization limit groups may be solid, but the graded completions that are
associated with these groups contain no abelian vertex groups in any of their levels.
To obtain from this conclusion a separation of variables, we still need to generalize
lemma 3.12 in this case.

Lemma 3.14. Suppose that the terminal limit groups in all the duo and uni-
formization limit groups that were constructed along our iterative procedure are
rigid or solid, and the graded completions that are associated with them contain no
abelian vertex groups in any of their levels. Let Λi be the graph of groups decompo-
sition that is inherited by the subgroup, < fi, p, qi >, from the uniformization limit
group, Unifi. Then Λi is either:

(1) Λi is a trivial graph, i.e., a graph that contains a single vertex. In that
case either the subgroup < p > or the subgroup < qi > is contained in the
distinguished vertex group in the abelian decomposition that is associated
with the distinguished vertex group in Unifi, i.e., the vertex group that
contains the coefficient group. In particular, either the subgroup < p > or
< q > admits boundedly many values.

(2) Λi has more than one vertex group, and both subgroups < p > and < qi >
are contained in the same vertex group. Like in case (1), in that case either
the subgroup < p > or the subgroup < qi > is contained in a conjugate of
the distinguished vertex group in the abelian decomposition that is associated
with the distinguished vertex group in Unifi, and in particular, it admits
boundedly many values. Furthermore, the subgroups, H1

i , . . . , Hei

i , contain
conjugates of all the edge groups in Λi, hence, the edge groups in Λi admit

53



boundedly many values up to conjugacy.
(3) Λi has more than one vertex, < p > is contained in the stabilizer of one

vertex and < qi > is contained in the stabilizer of another vertex in Λi. The
subgroups, H1

i , . . . , Hei

i , contain conjugates of all the edge groups in Λi,
except perhaps for one edge group, that is associated with the edge between
the vertex that is stabilized by < p > and the vertex that is stabilized by
< qi >, that can be trivial.

Proof: The proof is similar to the argument that was used in proving lemma
3.12. From the construction of uniformization limit groups, each of the terminating
limit groups, Unifi, admits a graph of groups decomposition, Θi. The graph, Θi,
is obtained from the graded abelian JSJ decomposition of the terminal rigid or
solid limit group of the uniformization limit group, Unifi, That we denote, ∆i, by
adding two vertices, the first is stabilized by a subgroup, < u, p >, and the second
is stabilized by a subgroup, < v, qi >. To the two additional vertices, we further
add edges that connect these vertices to some of the rigid vertices (i.e., vertices
with associated rigid vertex groups) in the graded abelian JSJ decomposition, ∆i.

All the edge groups in the obtained graph of groups, are subgroups of the rigid
vertex groups in the abelian JSJ decomposition, ∆i. Hence, for each equivalence
class of the given equivalence relation, E(p, q), with which the uniformization limit
group, Unifi, is associated, there are at most boundedly many conjugacy classes
of specializations of each of the edge groups in Θi, as well as of each rigid vertex
group in ∆i (which is part of Θi). Let Ti be the Bass-Serre tree that is associated
with the graph of groups, Θi.

The subgroup < fi, p, qi > inherits a graph of groups decomposition, Λi, from
the splitting, Θi. Since the subgroups < p > and < qi > are elliptic in Θi, they
can be both conjugated into vertex groups in Λi. Since the subgroups < p > and
< qi > stabilize adjacent vertices in the Bass-Serre tree, Ti, Bass-Serre theory for
actions of groups on simplicial trees, enables us to further assume that the vertex
groups in Λi were chosen so that both < p > and < qi > are contained in vertex
groups in Λi.

First, suppose that the subgroups < p > and < qi > fix the same vertex in the
tree Ti. Since the subgroup, < fi, p, qi > admits no free decomposition in which
the subgroups, < p > and < qi >, are contained in the same factor, all the edge
groups of Λi must be non-trivial and be contained in conjugates of the subgroups,
H1

i , . . . , Hci

i . Hence, there are at most boundedly many values (up to conjugacy)
of the edge groups in Λi that are associated with each equivalence class of the given
definable equivalence relation, E(p, q). Furthermore, in case both < p > and < qi >
are contained in the same vertex group of Λi, either < p > or < qi > is contained in
the distinguished vertex group of Θi (which is the distinguished vertex group in ∆i,
hence, there are at most boundedly many values of either < p > or < qi > that are
associated with each equivalence class of E(p, q) with which Unifi is associated.

Suppose that < p > and < qi > are contained in distinct vertex groups in Λi.
The edge groups of Λi are all contained in conjugates of the subgroups: H1

i , . . . , Hci

i

(that admit at most boundedly many values up to conjugacy for each equivalence
class that is associated with Unifi). Since the subgroup, < fi, p, qi >, admits no
free decomposition in which the subgroups < p > and < qi > are contained in the
same factor, all the edge groups in Λi that do not connect between the vertices that
are stabilized by < p > and < qi > must be non-trivial. If more than one edge
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group that connects between the vertex groups that contain < p > and < qi >
is trivial, then < fi, p, qi > admits a free product in which < p > is contained
in one factor and < qi > is contained in a second factor, and that contradicts
the construction of the uniformization limit group, Unifi, as it was constructed
from sequences of specializations of the subgroup, < fi, p, qi >, that do not factor
through a free product in which < p > and < qi > are contained in distinct factors.
Hence, in this case part (3) follows.

�

Lemma 3.14 together with the uniform bound on the number of conjugacy classes
of the edge groups in the abelian decompositions Λi, can be viewed once again as
a separation of variables, in case the terminal limit groups of all the duo and
uniformization limit groups that are constructed through our iterative procedure
may be rigid or solid, and the graded completions that are associated with these
groups contain no abelian vertex group in any of their levels.

So far we have assumed that the graded completions that are associated with all
the duo and uniformization limit groups that are constructed along our iterative
procedure contain no abelian vertex groups in the abelian decompositions that are
associated with their various levels. At this stage we drop this assumption, and
consider general duo and uniformization limit groups.

The construction of the rigid and solid limit groups, Ipr1, . . . , Iprw, and their
properties that are listed in theorem 3.1, do not depend on the structure of the
graded completions, G1, . . . , Gt, that form the Diophantine envelope of the given
equivalence relation, E(p, q). Hence, we can use them as in the special cases that
were analyzed before.

From the graded completions, G1, . . . , Gt, their test sequences and sequences of
(rigid and almost shortest) homomorphisms from the rigid and solid limit groups,
Ipr1, . . . , Iprw, we constructed the duo limit groups, Tduo1, . . . , Tduom, that can
also serve as the duo envelope of E(p, q). By construction, one of the graded
completions that is associated with each of the duo limit groups, Tduo1, . . . , Tduom,
is a closure of the graded completion, Gj , from which it was constructed. With
each of the duo limit groups, Tduo1, . . . , Tduom there is an associated subgroup,
< f, p, q >, that denotes the image of an associated map from one of the limit
groups, Ipr1, . . . , Iprw, into it. Propositions 3.3 is stated for general duo limit
groups Tduoi. In order to generalize propositions 3.4 and 3.12 to general duo limit
groups, Tduo1, . . . , Tduom, we need the following observations.

Let Tduoi be one of the Duo limit groups, Tduo1, . . . , Tduom, and let the sub-
group < f, p, q >, be the image in Tduoi of one of the rigid or solid limit groups,
Ipr1, . . . , Iprw. Suppose that both subgroups, < p > and < q >, are non-trivial in
Tduoi. Tduoi being a duo limit group, admits an amalgamated product decompo-
sition:

Tduoi =< di
1, p > ∗<di

0
,ei

1
> < di

0, e
i
1, e

i
2 > ∗<di

0
,ei

2
> < di

2, q > .

Furthermore, the distinguished vertex group, < di
0, e

i
1, e

i
2 >, admits a graph of

groups decomposition that we denote, Γi
D, that is obtained from the graph of

groups, Γi
<d0>, that is associated with the terminal rigid or solid limit group, <

di
0 >, so that to each rigid vertex group in Γi

<d0> one further connects several
(possibly none) free abelian vertex groups, which are subgroups of the subgroup <
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ei
1, e

i
2 >, along some free abelian edge groups. This graph of groups decomposition,

Γi
D, of the distinguished vertex group, < di

0, e
i
1, e

i
2 >, can be used to construct a

graph of groups decomposition of the ambient group, Tduoi, a graph of groups that
we denote ∆i, with the following properties:

(1) The subgroups < p > and < q > are subgroups of vertex groups in ∆i.
(2) Each of the subgroups that is obtained from a rigid vertex group in Γi

<d0>,
by connecting it to new vertices with abelian vertex groups (that are sub-
groups of < ei

1, e
i
2 >) in Γi

D, is a vertex group in ∆i. We call such a vertex
group in ∆i, an abelian star vertex group. Each such an abelian star ver-
tex group may be connected by an edge to either the vertex group that is
stabilized by < p >, or to the vertex group that is stabilized by < q > or to
both. We call each of these edge groups, an abelian star edge group. Each
such edge group is the fundamental group of a graph of groups contain-
ing the rigid vertex group from Γi

<d0> that appears in the graph of groups
of the adjacent abelian star vertex group, and abelian vertex groups that
are connected to it, abelian vertex groups which are a partial set of those
abelian vertex groups that appear in the graph of groups that is associated
with the adjacent abelian star vertex group.

All the other edge groups in ∆i are either rigid vertex groups or edge
groups in Γi

<d0>.
(3) The other vertex groups in ∆i that do not contain conjugates of < p >

nor < q >, and are not abelian star, are vertex groups in Γi
D, that are

also vertex groups in Γi
<d0>, which are not edge groups in ∆i. The edge

groups that are connected to these vertex groups are the edge groups that
are connected to them in Γi

D (which are the same edge groups that are
connected to these vertex groups in the graph of groups Γi

<d0>).

Recall that the subgroup < f, p, q > is the image of one of the limit groups,
Ipr1, . . . , Iprw, and it does not factor through a free product in which < p > is
contained in one factor and < q > is contained in another factor. Hence, if both
subgroups < p > and < q > are non-trivial in Tduoi, then < f, p, q > intersects
non-trivially some conjugates of the edge groups in the graph of groups ∆i, i.e.,
those edge groups that correspond to edge groups or vertex groups in Γi

D, or abelian
star edge groups. In this last case it intersects non-trivially conjugates of abelian

star vertex groups in ∆i. Let V 1
i , . . . , V f

i be the conjugacy classes of intersections
between the subgroup, < f, p, q >, and all the edge groups in ∆i, and between
< f, p, q > and conjugates of the abelian star vertex groups in ∆i.

Lemma 3.15. Let Tduoi be one of the duo limit groups, Tduo1, . . . , Tduom, and
suppose that both subgroups, < p > and < q >, are non-trivial in Tduoi. Then at

least one of the subgroups, V 1
i , . . . , V f

i , intersects nontrivially either a conjugate of
an abelian vertex group in Γi

D, or a conjugate of a rigid vertex group in Γi
<d0>.

Proof: Suppose that none of the subgroups V i
j intersects non-trivially both the

rigid vertex groups in Γi
<d0>, and the abelian vertex groups that are connected to

these rigid vertex groups in Γi
D.

We look at those subgroups, V i
j which are the intersections of the subgroup,

< f, p, q >, and conjugates of the abelian star vertex groups in ∆i. These vertex
groups must inherit non-trivial graphs of groups from Γi

D. Let V i
j be one of these
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vertex groups, and let Θi
j be its inherited graph of groups. The vertex groups in Θi

j

are intersections of the subgroups V i
j with an abelian vertex group in Γi

D or with a

rigid vertex group in Γi
<d0>. Since we assumed that such intersections are trivial,

the vertex (and edge) groups in Θi
j are all trivial.

Hence, each of the subgroups, V i
j , is a free group. Furthermore, recall that

the subgroups V i
j are conjugacy classes of intersections between the subgroup, <

f, p, q >, and conjugates of subgroups that are obtained from rigid vertex groups in
Γi

<d0> by amalgamation with abelian subgroups of the abelian subgroups < e1 >
and < e2 >. Therefore, in the graphs of groups that are inherited by the subgroups,
V i

j , from the graph of groups, Γi
D, we can separate those loops that are labeled by

elements from the rigid vertex group and < e1 >, or by elements of the rigid vertex
group and < e2 >. Those loops generate possibly trivial (free) factors in V i

j that
are contained in < d0, e1 >, and correspondingly in < d0, e2 >. Therefore, we
obtain a (possibly trivial) free decomposition for each of the subgroups, V i

j , V i
j =

A<d0,e1> ∗B<d0,e2> ∗C, where: A<d0,e1> < < d0, e1 > and B<d0,e2> < < d0, e2 >.

Combining these free decompositions of the subgroups, V i
j , with the graphs of

groups that is inherited by < f, p, q > from the graph of groups ∆i of the duo
limit group Tduoi, we obtain a non-trivial free decomposition of the subgroups,
< f, p, q >, in which the subgroup, < p >, is contained in one factor, and the
subgroup, < q >, is contained in a second factor, a contradiction to our assumption
that the test sequences of specializations of the subgroups, < f, p, q >, that are
images of the rigid and solid limit groups, Ipr1, . . . , Iprw, do not factor through
free products in which < p > is contained in one factor and < q > is contained in a
second factor. Therefore, the intersection of at least one of the subgroups, V i

j , and

either a conjugate of one of the rigid vertex groups in Γi
<d0>, or one of the abelian

vertex groups in Γi
D, is non-trivial.

�

By construction, edge groups in ∆i are either edge groups or rigid vertex groups
in Γi

<d0>, or they are abelian star edge groups (that are adjacent to abelian star

vertex groups). If a subgroup V i
j is contained in a conjugate of an edge group or

a rigid vertex group in Γi
<d0>, the statements of propositions 3.4 and 3.13 remain

valid. Suppose that V i
j is contained in a conjugate of an abelian star vertex group

in ∆i.

In that case, the subgroup V i
j inherits a (possibly trivial) graph of groups decom-

position from the graph of groups that is associated with the abelian star vertex
group of ∆i, into which it can be conjugated. We denote this graph of groups Θi

j .

With Θi
j we associate a finite collection of (conjugacy classes of) subgroups of

Tduoi. In the graph of groups Θi
j each edge group is either trivial or abelian. In Θi

j

we color all the edges that either have non-trivial edge groups or that are connected
to abelian vertex groups in Θi

j (i.e., to abelian vertex groups that intersect V i
j non-

trivially). If we erase from Θi
j all the edge groups that are not colored (note that

these edges must have trivial edge groups), we are left with finitely many (possibly
none) maximal connected subgraphs of Θi

j , that are associated with with V i
j . By

lemma 3.15 for at least one index j, j = 1, . . . , f , there exists such non-trivial
connected subgraph that is associated with V i

j .

By construction, with each such connected (colored) subgraph of Θi
j , we natu-

rally associate its fundamental group, that we denote, Ci
j(t) (which is a subgroup
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of V i
j ), where t is the index of the connected component. As V i

j is f.p. and Ci
j(t) is

a factor in a free decomposition of V i
j , Ci

j(t) is f.p. as well.

In particular, Ci
j(t) is finitely generated. If we fix a generating set for Ci

j(t), then

by the construction of the colored components of Θi
j , there exists a finite collection

of elements in Tduoi, that we associate with Ci
j(t), so that:

(i) each element in the fixed generating set of Ci
j(t) can be expressed as a fixed

word in the (fixed) finite set of elements from Tduoi.
(ii) the fixed set of elements from Tduoi consists of elements from the abelian

vertex groups of the corresponding abelian star vertex group, elements from
(conjugates of) the vertex group from Γi

<d0> that appear in the connected

subgraph of Θi
j , and elements from (conjugates of) the vertex group from

Γi
<d0> that appear in the connected subgraph, that are determined up to

their left or right coset of one of the associated abelian groups, or up to a
double coset of two (possibly the same) of the associated abelian groups.

Hence, if we fix a generating set for Ci
j(t), we can associate with Ci

j(t) finitely

many elements from conjugates of the associated vertex group in Γi
<d0>, finitely

many left, right, and double cosets of such elements, and primitive roots of the
images of the abelian groups that appear in such connected components.

Given each specialization of a subgroup, Ci
j(t), that is associated with an equiv-

alence class of E(p, q), we look at the subgroup generated by this specialization
together with primitive roots of the specializations of the abelian edge groups in
the graph of groups that is associated with Ci

j(t). Given such a subgroup (in the
coefficient group Fk), we further look at its associated almost shortest specializa-
tions (with respect to the modular group of the connected subgraph of groups that
is associated with Ci

j(t)). See definition 2.8 in [Se3], for almost shortest special-
izations. By our standard techniques (section 5 in [Se1]), The collection of such
almost shortest specializations that are associated with Ci

j(t) and all the equiva-
lence classes of E(p, q), factor through finitely many limit groups that we denote,
Hi

j(t)r.

Proposition 3.16. Let Tduoi be one of the Duo limit groups, Tduo1, . . . , Tduom,
and let ∆i be its associated graph of groups. Suppose that both subgroups, < p >
and < q >, are non-trivial in Tduoi, and let the subgroup < f, p, q >, be the
image in Tduoi of one of the rigid or solid limit groups, Ipr1, . . . , Iprw. Since
< f, p, q > does not admit a free product in which the subgroups < p > and < q >
can be conjugated into distinct factors, the subgroup < f, p, q > intersects non-
trivially some conjugates of the edge groups in the graph of groups ∆i. We denoted
the conjugacy classes of these intersection subgroups, and the conjugacy classes of
intersections between the subgroup, < f, p, q >, and the abelian star vertex groups in
∆i, V i

1 , . . . , V i
f . By lemma 3.15 at least one of the subgroups, V i

1 , . . . , V i
f , intersects

nontrivially either a conjugate of an abelian vertex group in Γi
D, or a conjugate of

a vertex group in Γi
<d0>.

The subgroups V i
j inherit graph of groups decompositions from the abelian de-

compositions of the edge groups that they intersect. With these graphs of groups we
associated certain connected subgraphs, and we denoted their fundamental groups,
Ci

j(t) (where t is the index of the connected subgraph). Given each specialization

of a subgroup, Ci
j(t), we add primitive roots of the specializations of the abelian

edge groups in the graph of groups decomposition that is associated with Ci
j(t), and
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looked at the associated almost shortest specializations (with respect to the modular
group of the connected subgraph), and the collection of almost shortest specializa-
tions factor through finitely many limit groups that we denoted, Hi

j(t)r.

Let Gj(i) be the graded completion from the Diophantine envelope of E(p, q),
G1, . . . , Gt, that is associated with Tduoi, i.e., the graded completion from which
Tduoi was constructed. Then there exists a global integer bi > 0, so that for any
rigid or a family of strictly solid specializations of the terminal rigid or solid limit
group of the graded completion, Gj(i), there are at most bi rigid or strictly solid
families of specializations of the terminal rigid or solid limit group of Tduoi that
extend the given family of specializations of the terminal limit group of Gj(i), and
so that these rigid or strictly solid families can be extended to generic rigid and
strictly solid specializations of < f, p, q >. Furthermore, these specializations of
the terminal limit group of Tduoi restrict to at most bi conjugacy classes of almost
shortest specializations that factor through the subgroups, Hj

i (t)r. Equivalently,
these specializations of the terminal limit group of Tduoi restrict to at most bi

conjugacy classes of specializations of finitely many (fixed) elements, left, right and
double cosets, of specializations of another finite set of elements, that are associated
with each of the subgroups, Ci

j(t), that are associated with the connected components

of the graphs of groups, Θi
j.

Proof: The bound on the number of conjugacy classes of specializations of rigid
vertex groups in the graph of groups, Γ<d0>, follows from the existence of a uniform
bound on the number of strictly solid families of specializations of a solid limit group
with a fixed value of the defining parameters (i.e., a bound that does not depend
on the specific value of the defining parameters) that was proved in theorem 2.9
in [Se3]. Given this uniform bound, the bound on the number of almost shortest
specializations that factor through the limit groups, Hi

j(t)r, follows by construction.
This last bound is equivalent to a bound on the number of conjugacy classes of
specializations of finite collection of elements, and a bound on the number of possible
right, left and double cosets of another collection of finitely many elements, that
together generate the subgroups, Ci

j(t).
�

Suppose that there exist a duo limit group Tduo, and an equivalence class of
E(p, q), for which there exists an infinite sequence of conjugacy classes of almost
shortest specializations (to which we have added primitive roots of specializations
of the abelian edge groups in the graphs of groups that are associated with the
subgroups Ci

j(t)), that factor through the various limit groups, Hi
j(t)r, that can

be extended to couples of test sequences of the two graded completions that are
associated with Tduo, so that restrictions of generic elements in these test sequences,
(fn, pn, qn), prove that the couples (pn, qn) ∈ E(p, q), these test sequences restrict
to valid proofs that the couples (pn, q0(n)) and (q0(n), qn) belong to E(p, q) (recall
that q0(n) is the restriction of the specializations d0(n) to the elements q0), and
furthermore these test sequences restrict to sequences of distinct couples, {(pn, qn)}.

In that case we can associate with the entire collection of such equivalence
classes of E(p, q), a finite collection of duo limit groups, Sduo1, . . . , Sduoh. These
limit groups are constructed in a similar way to the way they were constructed
in case the graded completions that are associated with the duo limit groups,
Tduo1, . . . , Tduom, contain no abelian vertex groups in any of their levels, just
that in the construction we add to the specializations of the subgroups, V i

1 , . . . , V i
f ,
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specializations of the subgroups, Hi
j(t)r, with elements that demonstrates that the

specializations of certain subgroups of Hi
j(t)r are conjugate or in the same coset or

double coset of specializations of corresponding subgroups in Ci
j(t) (recall that the

specializations of Hi
j(t)r are almost shortest specializations, that are obtained from

specializations of the subgroups Ci
j(t) by using the modular groups that are asso-

ciated with the subgroups Ci
j(t), together with primitive roots of specializations of

abelian edge groups in the graphs of groups that are associated with the subgroups,
Ci

j(t)).

Given the finite collection of duo limit groups, Sduo1, . . . , Sduoh, we can as-
sociate with them finitely many uniformization limit groups, precisely as we did
in case the graded completions that are associated with the duo limit groups,
Sduo1, . . . , Sduoh, contain no abelian vertex groups in any of their levels. Note that
the graded completions that are associated with the duo limit groups, Sduo1, . . . , Sduoh,
are replaced by some closures in their associated uniformization limit groups.

With the terminal limit group of a uniformization limit group, Unif , we can
associate graphs of groups (with abelian edge groups), ΓD and Γ<d0>, precisely as
we did with the terminal limit groups of the duo limit groups, Tduo. Furthermore,
from the graph of groups ΓD we can construct a graph of groups ∆ of the ambient
uniformization limit group, Unif . The edge group in ∆ include all the groups
that are obtained from rigid vertex groups in Γ<d0> that are amalgamated with

abelian vertex groups that are connected to them in ΓD. The image, < f̃, p, q̃ >,
of the map from one of the rigid and solid limit groups, Ipr1, . . . , Iprw, into the
uniformization limit group, Unif , is assumed not to factor through a free product
in which < p > is contained in one factor and < q > can be conjugated into a
second factor. Hence, if both subgroups < p > and < q̃ > are non-trivial in Unif ,
then the subgroup, < f̃, p, q̃ >, intersects non-trivially some conjugates of the edge
groups in its associated graph of groups, ∆.

Let Ṽ i
j be the conjugacy classes of the intersections between the subgroup <

f̃, p, q̃ > and the edge groups in ∆i, the graph of groups that is associated with
the uniformization limit group Unifi. Clearly, lemma 3.15 remains valid for the
subgroups, Ṽ i

j , hence, at least one of these subgroups intersects non-trivially a con-
jugate of a rigid vertex group in Γ<d0>, or an abelian vertex group that is connected
to one of the rigid vertex groups in Γ<d0>. We can further associate a graph of

groups decomposition with each of the subgroups Ṽ i
j , that is inherited from the

graph of groups, ΓD. In these graphs of groups we look at connected components,
precisely as in the construction of the groups Ci

j(t), and we set C̃i
j(t) to be the

fundamental groups of these connected components. With each specialization of
the groups, C̃i

j(t), we associate its finite collection of almost shortest specializations

(under the action of the modular groups of the connected subgraphs), to which we
add primitive roots of specializations of abelian edge groups in the graphs of groups
that are associated with the subgroups, C̃i

j(t). With the entire collection of almost
shortest specializations (together with specializations of their associated primitive

roots), we associate finitely many limit groups, that we denote, H̃i
j(t)r.

Suppose that there exists a uniformization limit group Unif , and an equivalence
class of E(p, q), for which there exists an infinite sequence of conjugacy classes
of almost shortest specializations (to which we have added primitive roots of spe-
cializations of abelian edge groups), that factor through the various limit groups,
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H̃i
j(t)r, that can be extended to couples of test sequences of the two graded com-

pletions that are associated with Unif , so that restrictions of generic elements in
these test sequences, (f̃n, pn, q̃n), prove that the couples (pn, q̃n) ∈ E(p, q), these
test sequences restrict to valid proofs that the couples (pn, q0(n)) and (q0(n), q̃0(n))
belong to E(p, q) (recall that q0(n) is the restriction of the specializations d0(n)
to the elements q0), and furthermore these test sequences restrict to sequences of
distinct couples, {(pn, q̃n)}.

In that case we can associate with the entire collection of such equivalence classes
of E(p, q), a finite collection of duo limit groups, Sduo1, . . . , Sduoh, and with each
of these duo limit groups we can associate a finite collection of uniformization limit
groups, precisely as we did in the previous steps, and in a similar way to the con-
struction in case the graded completions that are associated with the uniformization
and duo limit groups contain no abelian vertex groups in any of their levels.

We continue our constructions iteratively. In each step we construct new uni-
formization limit groups, Unif i. If the image of both subgroups, < p > and < q >,
in Unif i, are non-trivial, then the image of the map from one of the rigid and solid
limit groups, Ipr1, . . . , Iprw, into Unif i (that we denoted < fi, p, qi >), intersects
non-trivially some conjugates of the edge groups in the graph of groups ∆i that is
associated with Unif i. We can further associate graphs of groups with each such
intersection subgroup, and look at connected components in these graphs of groups
as we did in previous steps of the procedure.

If there are equivalence classes of E(p, q) for which there are infinitely many con-
jugacy classes of almost shortest specializations that are associated with connected
components in the constructed graphs of groups, to which we add specializations
of primitive roots of the associated abelian edge groups, we continue the next step.
The procedure terminates by an argument which is similar to the one that was used
in proving theorem 3.9.

Theorem 3.17. The iterative procedure for the construction of the uniformization
limit groups, Unif i, in the general case (i.e., when the graded completions that are
associated with the uniformization limit groups may contain abelian vertex groups
along their levels), terminates after finitely many steps.

Proof: Suppose that the procedure for the construction of uniformization limit
groups does not terminate. Since at each step we construct only finitely many
uniformization limit groups, there must exist an infinite path of uniformization
limit groups that is constructed along the iterative process.

First, suppose that along such an infinite path, there exists an infinite sequence
of primitive roots of (colored) abelian edge and vertex groups in the graphs of
groups, Θi

j(t), that are non-elliptic in the next levels, i.e., these primitive roots have
infinitely many specializations that are associated with a given class. In this case we
get a contradiction to theorem 1.3 in [Se3], in a similar way to the contradiction that
was obtained in proving theorem 3.9. Since at each level there are only finitely many
edges with non-trivial abelian edge groups (in the graphs of groups, Θi

j(t), that
are associated with the uniformization limit group that is constructed in this step
along the infinite path), we get a sequence of homomorphisms from the subgroups
< fi, p, qi >, that are associated with the uniformization limit groups that are
constructed along the path, into the coefficient group Fk, that converges into an
action of some limit group L on some real tree. Since there are infinitely many
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rates of growth for these primitive roots, the sequence of homomorphisms that we
look at contains no infinite subsequence that converges into a free actions on some
Rm-tree, for any positive integer m. This contradicts theorem 1.3 in [Se3].

Hence, after finitely many steps along the infinite path, the primitive roots of the
abelian edge and vertex groups in the graphs of groups, Θi

j(t), remain elliptic
throughout the infinite path.

Suppose that there exists an infinite subsequence along the infinite path, for
which to the completions in the duo limit group Sduoi from which the uniformiza-
tion limit groups, Unif i, are constructed, either non-abelian vertex groups are
being added, or abelian vertex groups are being added, and these abelian vertex
groups are not part of the associated graphs of groups, Γi

D, i.e., they are not part
of the vertex groups < di

0, e
i
1, e

i
2 > that are associated with the uniformization limit

groups, Unif i, for the indices i in the subsequence. Suppose further that the sub-
groups < fi, p, qi > that are associated with the uniformization limit groups, Unif i,
or rather some of their subgroups, inherit non-trivial abelian decompositions from
these additional non-abelian and abelian vertex groups. Then, once again, we are
able to construct a sequence of homomorphisms from the subgroups, < fi, p, qi >,
into the coefficient group, Fk, that converges into an action of a limit group, L, on
some real tree, and the elements in this limit group L, have infinitely many rates
of growth, in contradiction to theorem 1.3 in [Se3], that guarantees the existence
of a subsequence that converges into a free action of L on some Rm-tree for some
integer m.

Hence, after finitely many steps along the infinite path, we may assume that
new abelian vertex groups are being added to the graphs of groups, Γi

D, and along
a subsequence, the subgroups, < fi, p, qi >, or rather their associated subgroups,
Cj

i (t), inherit new abelian decompositions from these additional abelian vertex
groups. We may also assume that all the abelian edge groups in the graphs of
groups, Ci

j(t), remain elliptic in the graphs of groups that are associated with the

components, Ci′

j (t), for i′ > i.

Therefore, the new vertex and edge groups that are being added to the graphs
of groups that are associated with the components, Ci

j(t), along the infinite path,
further and further refine these graphs of groups, which contradicts theorem 1.3
in [Se3], or alternatively contradicts the accessibility for small splittings of finitely
presented groups of M. Bestvina and M. Feighn [Be-Fe1]. Therefore, every path
along the iterative procedure is finite, so the iterative procedure has to terminate
after finitely many steps.

�

After the procedure terminates we are left with finitely many uniformization limit
groups that were constructed in its various steps. For each equivalence class which
is not one of the finitely many that were excluded in theorem 3.1, there exists some
uniformization limit group, Unifi, so that the almost shortest specializations that
are associated with the equivalence class and with the connected components, Ci

j(t),
that are associated with the uniformization limit group, Unifi, belong to boundedly
many conjugacy classes. Hence, if we fix generating sets for the subgroups that are
associated with these connected components, then up to conjugacy the elements in
these generating sets can be written as words in elements that either belong to a
bounded set (where the bounded set depends on the equivalence class), or belong
to a bounded set of right, left or double cosets of cyclic groups (where the cosets
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and the cyclic groups depend on the equivalence class).
To obtain from this final conclusion a separation of variables in the general

case (i.e., in the presence of abelian vertex groups in the graded completions that
are associated with duo and uniformization limit groups), we still need to generalize
lemmas 3.12 and 3.14.

With each uniformization limit group, Unifi, that is obtained as a terminal uni-
formization limit group of the iterative process for the construction of uniformiza-
tion limit groups, as it is in particular a duo limit group, there are associated graphs
of groups, Γi

<d0>, Γi
D, and ∆i, precisely as the corresponding graphs of groups that

are associated with the duo limit groups, Tduo1, . . . , Tduom. Recall that the edge
groups in the graph of groups, ∆i, are either rigid vertex groups or edge groups in
Γi

<d0>, or they are abelian star edge groups, i.e, they are the fundamental group of

a subgraph of groups in Γi
D, that contain one rigid vertex group from Γi

<d0> and
several abelian vertex that are connected to this vertex group (which are subgroups
of < e1 > or < e2 >).

Let Λ′

i be the graph of groups decomposition that the subgroup, < fi, p, qi >,
inherits from the graph of groups, ∆i. Let V i

j be the (conjugacy classes of) in-
tersections between the subgroup, < fi, p, qi >, and conjugates of the abelian star
vertex groups in ∆i, i.e., vertex groups that are the fundamental group of a graph
of groups that contains a rigid vertex group from the abelian decomposition Γi

<d0>,

and abelian vertex groups that are connected to it in Γi
D. Each of the subgroups,

V i
j , inherits a graph of groups decomposition from the graph of groups that is as-

sociated with the corresponding abelian star vertex group in ∆i. We denote the
graph of groups that is inherited by the subgroups, V i

j , from the graphs of groups

of the associated abelian star vertex groups in ∆i, Θi
j .

Recall that in the graphs of groups, Θi
j , we colored edges for which the sub-

group V i
j contains a non-trivial element that commutes with the associated edge

group. This adds notation to some of the edges in Θi
j . In Θi

j we look at maximal
connected subgraphs in which all the edges are colored. This associates finitely
many (possibly none) subgraphs with Θi

j , and we denoted the fundamental groups

of these connected subgraphs, Ci
j(t) (t is the index of the connected subgraph). We

set the graph of groups Θ′i
j to be the graph of groups that is obtained from Θi

j by

collapsing the subgraphs of groups that are associated with the subgroups Ci
j(t).

Note that all the edge groups in Θ′i
j are trivial, and all the non-trivial vertex groups

are (conjugates of) the subgroups, Ci
j(t).

From the graphs of groups Θi
j and Θ′i

j , and the graph of groups Λ′

i, we construct

a graph of groups that we denote, Λi. The graphs of groups Θi
j and Θ′i

j provide

graphs of groups for the subgroups, V i
j , which are intersections of the subgroups,

< fi, p, qi >, with abelian star edge groups in the graph of groups, ∆i.

In the graphs of groups Θi
j and Θ′i

j , it is possible to identify the edge groups

that are connected to the vertex group V i
j in the graph of groups, Λ′

i. Indeed these

edge groups are contained in the fundamental groups of subgraphs of groups in Θ′i
j ,

where these subgraphs may intersect only in the vertex groups that are associated

with the factors, Ci
j(t). Hence, we may use the graphs of groups, Θ′i

j , and the

graph of groups, Λ′

i, to obtain a refinement of the graph of groups, Λ′

i, that we
denote, Λi.
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To obtain the graph of groups, Λi, we first modify the graphs of groups, Θ′i
j . We

replace Θ′i
j , by a graph of groups, αi

j , as follows. The vertex groups in the graphs of

groups, αi
j , are (maximal) subgraphs of groups in Θ′i

j for which their fundamental
groups can be generated by edge groups in Λ′

i, together with the vertex groups,
Ci

j(t), that lie on these subgraphs. The graph of groups, αi
j , is obtained from

Θ′i
j by collapsing these subgraphs into vertices. Edge groups in αi

j are either the

subgroups, Ci
j(t), which are vertex groups in Θ′i

j , or they are trivial. Since all the

edge groups in Λ′

i can be conjugated into vertex groups in the graphs of groups αi
j ,

the graphs of groups, Λ′

i and αi
j, have a common refinement, that we denote Λi.

Finally, since the subgroup, < fi, p, qi >, does not factor through a non-trivial free
product in which the subgroups, < p > and < q > are contained in factors, none
of the edge groups in the graphs of groups, αi

j , are trivial.

Lemma 3.18. Let Λi be the graph of groups decomposition that is the common
refinement of the graphs of groups, Λ′

i and αi
j, that are inherited by the subgroup,

< fi, p, qi >, and its subgroups V i
j , from the uniformization limit group, Unifi.

Then Λi is either:

(1) Λi is a trivial graph, i.e., a graph of groups that contains a single vertex.
In that case either the subgroup < p > or the subgroup < qi > is contained
in the distinguished vertex group in Γi

<d0>. Hence, for each equivalence
class there are at most boundedly many values of specializations of either
the subgroup < p > or the subgroup < qi > (where the bound on the number
of specializations that is associated with each equivalence class is uniform).

(2) Λi has more than one vertex group, and the subgroups < p > and < qi > are
contained in the same vertex group. In that case either < p > or < qi > are
contained in the distinguished vertex group in Γi

<d0>, hence, the conclusion
of part (i) holds, and there are at most boundedly many specializations of
either < p > or < qi > that are associated with each equivalence class.

(3) Λi has more than one vertex group, and either < p > or < qi > are contained
in a vertex group in Λi, which is stabilized by one of the subgroups, Ci

j(t),

which is a subgraph of one of the graph of groups, Θi
j . By proposition 3.16,

the subgroup Ci
j(t) that contains < qi > (or < p >) is generated by elements

that are (fixed) words in elements that belong to boundedly many left, right,
and double cosets of boundedly many cyclic groups (the cosets and the cyclic
groups depend only on the equivalence class, and the bound on their possible
number is uniform).

(4) Λi has more than one vertex, < p > is contained in the stabilizer of one
vertex and < qi > is contained in the stabilizer of another vertex in Λi. The
edge group in Λi that connects between the vertex that is stabilized by < p >
and the vertex that is stabilized by < qi > may be trivial. The other edge
groups in Λi (that are all non-trivial), are either conjugates of subgroups of
edge or vertex groups in the graph of groups, Γi

<d0> (the graph of groups for
the terminal rigid or solid limit group on the uniformization limit groups,
Unifi), or they are edge groups in one of the graphs of groups, αi

j, which

are all conjugates of the subgroups, Ci
j(t), or they are edge groups in the

graph of groups ∆i that can be conjugated into vertex groups in the graphs
of groups, αi

j. In this last case (an edge group in ∆i that can be conjugated
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into a vertex group in αi
j), the vertex group into which the edge group in

∆i is connected, admits a (possibly trivial) free product: M1 ∗ . . . ∗ Md ∗ F .
In this free product F is a free group, and all the factors M1, . . . , Ms are
conjugates of some of the subgroups, Ci

j(t). By proposition 3.16, each of
the factors Me is generated by finitely many elements, and each of these
elements can be written as a fixed word in elements that belong to boundedly
many left, right, and double cosets of boundedly many cyclic groups (the
cosets and the cyclic groups depend only on the equivalence class, and the
bound on their possible number is uniform).

Proof: Suppose that the subgroups < p > and < qi > fix the same vertex in Λi. By
the structure of the graph of groups, Λi, either < p > or < qi > is contained in an
edge group that is connected to this vertex group, which implies that either < p >
or < qi > must be contained in the distinguished vertex group in Λi

<d0>. Hence,
either < p > or < qi > admits only boundedly many values that are associated with
each equivalence class, and the bound on the number of values that is associated
with each equivalence class is uniform (it doesn’t depend on the class). This proves
parts (1) and (2). Part (3) follows from proposition 3.16.

Since the subgroup, < fi, p, qi >, admits no free decomposition in which the
subgroups, < p > and < qi >, are contained in the same factor, all the edge
groups of Λi, except perhaps the edge group that connects between the vertex that
is stabilized by < p > to the vertex that is stabilized by < qi >, must be non-
trivial. By the construction of the graph of groups Λi, an edge group can be either
conjugated into an edge group or a vertex group in Γi

<d0>, or it can be conjugated

into one of the subgroups, Ci
j(t), or it can be conjugated into a vertex group in one

of the graphs of groups, αi
j. The graphs of groups αi

j are obtained from the graphs

of groups, Θ′i
j , and each vertex group in αi

j is obtained as a (possibly trivial) free

product of some conjugates of the subgroups, Ci
j(t). Hence, each vertex group in

Λi that is not stabilized by < p > nor by < q >, and can not be conjugated into
a vertex group or an edge group in Γi

<d0>, must be a vertex group in one of the

graphs of groups, αi
j , and these, by construction, admit a (possibly trivial) free

decomposition of the form that is presented in part (4) of the lemma.
�

The graph of groups, Λi, lemma 3.18, and the uniform bounds on the number
of conjugacy classes and left, right and double cosets of cyclic groups of elements
that determine sets of generators for the subgroups, Ci

j(t), can be viewed once

again as a separation of variables in the general case (i.e., in case the terminal
limit groups of all the duo and uniformization limit groups that are constructed
through our iterative procedure may be rigid or solid, and the graded completions
that are associated with these groups may contain abelian vertex groups in any of
their levels). In the next section we use this separation of variables to associate
parameters with the equivalence classes of a definable equivalence relation, E(p, q).

§4. Equivalence Relations and their Parameters

In the first section of this paper we have constructed the Diophantine envelope
of a definable set (theorem 1.3), and then used it to construct the Duo envelope of
a definable set (theorem 1.4).
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Recall that by its definition (see definition 1.1), a Duo limit group Duo admits an
amalgamated product: Duo =< d1, p > ∗<d0,e1> < d0, e1, e2 > ∗<d0,e2> < d2, q >
where < e1 > and < e2 > are free abelian groups with pegs in < d0 >, i.e., free
abelian groups that commute with non-trivial elements in < d0 >. A specialization
of the parameters < d0 > of a Duo limit group gives us a Duo family of it.

To analyze definable equivalence relations over a free (or a hyperbolic) group,
our strategy is to further study the parameters (< d0 >) that are associated with
the Duo families that are associated with the Duo limit groups that form the Duo
envelope of a definable equivalence relation.

In the previous section we modified and analyzed the construction of the Duo
envelopes that were presented in theorem 1.4, in the special case of a definable
equivalence relation. We further carefully studied the set of values of the parameters
that are associated with the duo families that are associated with each equivalence
class. This careful study, that uses what we called uniformization limit groups
that we associated with the Duo envelope, enabled one to associate a ”bounded” set
of (values of) certain subgroups of the parameters that are associated with the Duo
families of the Duo envelope, for each equivalence class of a definable equivalence
relation (the bounded set of values of the subgroups of parameters is modulo the
basic imaginaries that were presented in the second section).

The bounds that we achieved on the number of conjugacy classes, left, right,
and double cosets of cyclic groups that are associated with each equivalence class,
allowed us to obtain what we view as ”separation of variables”. This means that
with the original subgroups of parameters, < p > and < q >, we associate a bigger
subgroup, for which there exists a graph of groups decomposition, where < p >
is contained in one vertex group, < q > is contained in a second vertex group,
and either the number of specializations of edge groups (up to the imaginaries
that were presented in section 2) is bounded for each equivalence class of E(p, q)
(see lemmas 3.12,3.14 and 3.18), where the bound does not depend on the specific
equivalence class, or as in part (4) of lemma 3.18, an edge group is contained in a
vertex group, and this vertex group is a free product of subgroups that are either
free, or generated by elements with boundedly many possible specializations (up to
the basic imaginaries) that are associated with each equivalence class.

However, the parameters that we associated with each equivalence class (that are
bounded up to the imaginaries that were presented in section 2), do not separate
between equivalence classes in general. To obtain subgroups of parameters that
have the same types of bounds as the ones constructed in the previous section,
that do separate between classes, we present a new iterative procedure that uses
both the sieve procedure [Se6] (that was used for quantifier elimination) together
with the procedure for separation of variables that was presented in the previous
section. The combined procedure is a (new) sieve procedure that preserves the
separation of variables along its various steps, and its termination (that follows
from the termination of the sieve procedure and the procedure for the separation of
variables), produces the desired subgroups of parameters, that do separate between
classes and admit boundedly many values (up to the imaginaries of section 2) for
each equivalence class (where the bound on the number of values does not depend
on the specific equivalence class).

Let Fk =< a1, . . . , ak > be a non-abelian free group, and let E(p, q) be a defin-
able equivalence relation over Fk. With the definable equivalence relation, E(p, q),
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being a definable set, one associates using theorems 1.3 and 1.4, a Diophantine and
a Duo envelopes. Let G1, . . . , Gt be the Diophantine envelope of the given definable
equivalence relation E(p, q), and let Duo1, . . . , Duor, be its Duo envelope.

Recall that with the definable equivalence relation, E(p, q), being a definable set,
one associates (using the sieve procedure for quantifier elimination [Se6]) finitely
many (terminal) rigid and solid limit groups, Term1, . . . , T erms. With each of the
terminal limit groups Termi there are 4 sets associated, Bj(Termi), j = 1, . . . , 4,
and the definable set E(p, q) is the set:

E(p, q) = ∪s
i=1 (B1(Termi) \ B2(Termi)) ∪ (B3(Termi) \ B4(Termi)).

Given this finite set of terminal limit groups, Term1, . . . , T erms, it is possible
to demonstrate that a couple, (p, q) ∈ E(p, q), using a specialization of one out of
finitely many limit groups, that we denoted: < x, y, u, v, r, p, q, a >, where each of
these limit groups is generated by the subgroup < p, q >, together with elements
x for rigid and strictly solid specializations of some of the terminal limit groups,
Term1, . . . , T erms, elements y, u, v for rigid and strictly solid specializations of
some of the terminal limit groups of the Non-Rigid, Non-Solid, Left, Root, Extra
PS, and Generic Collapse Extra PS resolutions that are associated with some of
these terminal limit groups, and elements for specializations of primitive roots of
the specializations of edge groups in the graded abelian decomposition of some of
the terminal limit groups, Term1, . . . , T erms, and in the graded abelian decom-
positions of the terminal limit groups of some of the Extra PS resolutions that are
associated with them (see the proof of theorem 1.3).

Theorem 3.1 associates with the given definable equivalence relation, E(p, q),
finitely many rigid and solid limit groups, Ipr1, . . . , Iprw, so that apart from finitely
many equivalence classes, for each couple, (p, q) ∈ E(p, q), there exists a rigid or
a strictly solid family of homomorphisms from at least one of the limit groups,
Ipr1, . . . , Iprw, to the coefficient group Fk, so that the rigid homomorphisms or
the strictly solid homomorphisms from the given strictly solid family do not factor
through a free product A ∗B in which < p >< A and < q >< B, and each of these
homomorphisms restricts to a valid proof that (p, q) ∈ E(p, q), i.e., restricts to a
specialization of one of the limit groups, < x, y, u, v, r, p, q, a >, that demonstrates
that (p, q) ∈ E(p, q).

To obtain separation of variables in the previous section, we started with the
Diophantine envelope of the given definable equivalence relation, G1, . . . , Gt. With
each graded completion Gj , 1 ≤ j ≤ t, we associated a finite collection of duo
limit groups. First, we collected all the test sequences of the completion Gj , that
can be extended to rigid or strictly solid specializations of one of the rigid or solid
limit groups, Ipr1, . . . , Iprw, that restrict to valid proofs that the corresponding
couples, {(pn, qn)}, are in the equivalence relation E(p, q). We further required that
these test sequences of specializations can not be factored through a free product in
which < p > is contained in one factor, and < q > is contained in the second factor.
This collection of test sequences of the graded completions, G1, . . . , Gt that can be
extended to specializations of Ipr1, . . . , Iprw, can be collected in finitely many duo
limit groups (using the techniques that were used for collecting formal solutions in
[Se2]). Then we used the sieve procedure [Se6] to construct finitely many duo limit
groups, Tduo1, . . . , Tduom, that still collect all these extended test sequences of the
graded completions, G1, . . . , Gt, and for which there exist generic points (i.e., duo
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test sequences) that restrict to valid proofs that the restricted couples, {(pn, qn)},
are in the given equivalence relation E(p, q).

The collection of duo limit groups, Tduo1, . . . , Tduom, is the starting point for
the iterative procedure for separation of variables. With them we associated it-
eratively a collection of uniformization limit groups, Unif1, . . . , Unifv, until the
iterative procedure terminates, and for each equivalence class of E(p, q), apart from
the finitely many equivalence classes that are singled out in theorem 3.1, there ex-
ists at least one uniformization limit group, Unifi, that satisfies the conclusions of
lemma 3.18. Recall that by lemma 3.18, the image of the subgroup, Ipr1, . . . , Iprw

that is associated with the uniformization limit group, Unifi, that we denoted,
< fi, p, qi >, inherits a graph of groups decomposition Λi from the graph of groups
decomposition ∆i of the ambient uniformization limit group, Unifi. For each equiv-
alence class of E(p, q) that is associated with Unifi, an edge group in Λi is either
generated by finitely many elements that admit boundedly many values (that are
associated with the equivalence class) up to conjugation, and right, left and double
cosets of boundedly many cyclic groups (see parts (1)-(3) in lemma 3.18), or an
edge group is embedded into a vertex group in Λi, and this vertex group in Λi is a
free product of a free group and finitely many factors, so that each of the factors is
generated by finitely many elements that admit boundedly many values (that are
associated with the equivalence class) up to conjugation, and right, left and double
cosets of boundedly many cyclic groups (see part (4) in lemma 3.18). Furthermore,
the subgroups < p > and < q > are both contained in vertex groups in Λi (lemma
3.18).

The edge groups in the graphs of groups, Λi, enable one to associate parameters
with each equivalence class of E(p, q), where these parameters admit only boundedly
many families of values for each equivalence class, where each family is defined using
the imaginaries that are presented in section 2 (i.e., each family is defined up to
conjugation and right, left and double cosets of cyclic groups), The parameters
that come from the edge groups in the graphs of groups Λi that are associated with
each equivalence class, and are bounded up to the imaginaries that are presented in
section 2 (i.e., up to conjugation and right, left and double cosets of cyclic groups),
are not guaranteed to separate between equivalence classes in general. To use the
graphs of groups Λi to obtain parameters that do separate between equivalence
classes, we use the graphs of groups Λi as a first step in an iterative procedure
that combines the procedure for separation of variables (that was presented in
the previous section), with the sieve procedure for quantifier elimination that was
presented in [Se6].

For presentation purposes, as we did in the previous section, we start by present-
ing the combined procedure assuming that the graded closures that are associated
with all the duo limit groups that were used in the construction of the uniformiza-
tion limit groups, Unifi, and the graphs of groups Λi, do not contain abelian
vertex groups in any of their levels. Later on we modify the procedure to omit this
assumption.

We continue with the uniformization limit groups, Unifi, in parallel. Hence,
for brevity, we denote the uniformization limit group that we continue with, Unif .
By construction, with each such uniformization limit group, Unif , there is an
associated subgroup, < f, p, q >, (which is the image of one of the rigid and solid
limit groups, Ipr1, . . . , Iprw), and graph of groups decomposition, Λ. Recall that
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under the assumption that there are no abelian vertex groups in any of the levels of
the graded closures that are associated with the uniformization limit group, Unif ,
by lemma 3.14 the edge group in Λ that connects the vertex that is stabilized by
< p > with the vertex that is stabilized by < q > may be trivial (only in case there
are more edges that connect these two vertices), and that for each equivalence class
of E(p, q) that is associated with Unif , the associated values of the the other edge
groups in Λ belong to boundedly many conjugacy classes (lemma 3.14).

If both subgroups, < p > and < q >, are contained in the same vertex group
in Λ, then for each equivalence class that is associated with Unif , there are only
boundedly many associated values of either the subgroup < p > or the subgroup
< q >, and these values that belong to the equivalence class obviously determine
the class. Hence, we can assume that the graph of groups Λi contains at least two
vertex groups, and that < p > is contained in one vertex group, and < q > is
contained in another vertex group in Λ.

In section 12 of [Se1] we presented the multi-graded Makanin-Razborov diagram.
Recall that this multi-graded diagram encodes all the homomorphisms of a given
limit group into a free group, if the specialization of a certain subgroup of the limit
group is fixed, and the specializations of finitely many other subgroups is fixed up
to conjugacy.
Let < u, p > be the vertex group that contains < p > in Λ, and let < v, q >
be the subgroup that contains < q > in Λ. With both < u, p > and < v, q >
we associate their taut multi-graded Makanin-Razborov diagram with respect to
the edge groups in Λi that are connected to them (see section 12 in [Se1] for the
construction of the multi-graded Makanin-Razborov diagram). We continue with
all the possible pairs of taut multi-graded resolutions in these taut multi-graded
Makanin-Razborov diagrams, MGResu of < u, p >, and MGResv of < v, q >, in
parallel.

Given a pair of multi-graded resolutions, MGResu of < u, p > and MGResv

of < v, q >, we use the graph of groups, Λ, that is inherited from the splitting
of the uniformization limit group, Unif , by its subgroup, < f, p, q >, and with
the collections of specializations that factor through MGResu and MGResv, we
associate finitely many duo resolutions for the subgroup < f, p, q >. We denote each
of the constructed duo resolutions, DuoRes. With such a duo resolution, DuoRes,
we can associate the standard auxiliary resolutions that play a role in each step
of the sieve procedure, i.e., Non-rigid, Non-solid, Left, Root, Extra, and Generic
Collapse Extra resolutions (see sections 1 and 3 of [Se5] for the construction of these
resolutions).
Before we continue with the analysis of the constructed duo resolutions, and the
specializations that factor through them, we need the following simple lemma, which
is similar to lemma 3.2.

Lemma 4.1. Let DuoRes be a duo resolution that is constructed from two multi-
graded resolutions, MGResu and MGResv. Recall that by lemma 3.14, with each
equivalence class of the definable equivalence relation , E(p, q), we have associated
a bounded collection of (conjugacy classes of) specializations of the edge groups in
the graphs of groups, Λ, that are associated with the uniformization limit groups,
Unif .

Then for each possible specialization of the edge groups in the graph of groups, Λ,
that is associated with the uniformization limit group, Unif , (that are defined up to
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conjugacy) there exist at most (uniformly) boundedly many equivalence classes of
the definable equivalence relation E(p, q), for which the duo family of the constructed
duo resolution, DuoRes, that is associated with the specialization of the edge groups,
admit a test sequence that restrict to proofs that the couples (pn, qn) are in the
equivalence class.

Proof: Identical to the proof of lemma 3.2.
�

The auxiliary resolutions that are associated with a duo resolution, DuoRes, that
is constructed from a couple of multi-graded resolutions, MGResu and MGResv,
enable us to analyze those values of the parameters for which generic points of
DuoRes restrict to couples (p, q) that are in the equivalence relation E(p, q).

To analyze equivalence classes of E(p, q), for which there do not exist generic
points of any Duo resolution, DuoRes, that restrict to specializations (p, q) in these
classes, we need further constructions (for collecting non-generic specializations).
As we did in proving theorem 3.1, with each Duo limit group, DuoRes, that is
composed from a couple of resolutions, MGResu and MGResv, we further associate
finitely many extra limit groups, that we denote, Exlim.

We start by looking at all the specializations of (the completion of) MGResu

for which there exists a test sequence of specializations of (the completion of)
MGResv, so that for each specialization in the combined sequence there exist ex-
tra rigid or (families of) strictly solid specializations (of one of the terminal limit
groups Term1, . . . , T erms or one of the terminal rigid or solid limit groups of the
Non-Rigid, Non-Solid, Left, Root, Extra PS, or Generic Collapse Extra PS reso-
lutions that are associated with them) that are not specified by the corresponding
specialization of the subgroup, < f, p, q >. Note that there is a global bound on
the number of such (distinct) extra rigid or families of strictly solid specializations.
By the techniques for constructing formal and graded formal limit groups (sections
2 and 3 in [Se2]), this collection of specializations can be collected in finitely many
limit groups, and each has the form of a graph of groups in which a closure of
MGResv stabilizes a vertex group, and MGResu can be mapped into another ver-
tex group. Similarly, we look at the specializations of MGResv for which there
exists a test sequence of specializations of MGResu so that the combined special-
izations have similar properties.

With an extra limit group, Exlim, we can naturally associate finitely many
subgroups that are associated with the finite collection of extra rigid and extra
solid specializations that are collected in the construction of Exlim. Each of these
subgroups inherits a graph of groups decomposition from the graph of groups de-
composition of Exlim. In this graph of groups decomposition there is one vertex
group that contains the subgroup, < q >, and another vertex group that contains
the subgroup < p >.

(1) The first vertex group is a subgroup of a closure of MGResv (resp. MGResu),
and is (multi-graded) rigid or solid with respect to the subgroup that is gen-
erated by < q > (resp. < p >) and the edge groups that are connected to the
vertex that is stabilized by < q > (resp. < p >) in Λ. The second is a sub-
group of the vertex group that is stabilized by MGResu (resp. MGResv),
and is (multi-graded) rigid or solid with respect to the subgroup that is
generated by < p > (resp. < q >) and the edge groups that are connected
to the vertex group that is stabilized by < p > (resp. < q >) in Λ.
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(2) each extra rigid or strictly solid specialization that is collected by Exlim
restricts to (multi-graded) rigid or strictly solid specializations of a pair of
subgroups that are described in part (1)..

We continue with all the (finitely many) Extra resolutions and Extra limit groups
of the prescribed structure, that were constructed from the duo resolution, DuoRes,
i.e., from the couple of resolutions, MGResu and MGResv. As in the quantifier
elimination procedure (the sieve procedure), for each Extra resolution, and Extra
limit group, that are associated with DuoRes (which is in particular a taut reso-
lution), we collect all the specializations that factor and are taut with respect to
the (taut) Duo resolution, DuoRes, and extend to specializations of either a res-
olution, Extra, or an Extra limit group, Exlim, and for which the elements that
are supposed to be extra rigid or strictly solid specializations and are specified by
these specializations collapse. This means that the elements that are supposed to
be an extra rigid or strictly solid specializations are either not rigid or not strictly
solid, or they coincide with a rigid specialization that is specified by the corre-
sponding specialization of < f, p, q >, or they belong to a strictly solid family that
is specified by < f, p, q >. These conditions on the elements that are supposed to
be extra rigid or strictly solid specializations are clearly Diophantine conditions,
hence, we can add elements that will demonstrate that the Diophantine conditions
hold (see section 1 and 3 of [Se5] for more detailed explanation of these Diophan-
tine conditions, and the way that they are imposed). By our standard methods
(section 5 in [Se1]), with the entire collection of specializations that factor through
an Extra resolution or an Extra limit group, and restrict to elements that are taut
with respect to the (taut) duo resolution, DuoRes, and for which the elements
that are supposed to be extra rigid or strictly solid specializations satisfy one of
the finitely many possible (collapse) Diophantine conditions, together with special-
izations of elements that demonstrate the fulfillment of these Diophantine condi-
tions, we can associate finitely many limit groups. We denote these limit groups,
ExCollape1, . . . , ExCollapseg, and call them Extra Collapse limit groups.

The Diophantine conditions, that are imposed on specializations of Extra reso-
lutions and limit groups, require additional elements to be expressed. These addi-
tional elements do not generally obey the separation of variables that was achieved
so far, i.e., it involves the entire duo resolution, DuoRes, that was constructed
from the multi-graded resolutions, MGResu and MGResv, and can not be im-
posed on each of its graded completions separately. To preserve the separation of
variables, i.e., to divide the Diophantine condition into two Diophantine conditions
that are imposed on the two graded completions ”separately”, we need to apply
once again the procedure for separation of variables, that was presented and used
in the previous section.

As we did in the previous section, to initiate the separation of variables pro-
cedure, we need to exclude free products. Let DuoRes be a duo resolution, that
is composed from the two multi-graded resolutions, MGResu and MGResv. Let
< z, p, q > be the (duo) completion of DuoRes. Note that the subgroup < f, p, q >
is mapped into < z, p, q >.

We start by collecting all the specializations of the group < z, p, q >, for which:

(1) the restriction to the (image of the) subgroup < f, p, q > form a proof that
the couple (p, q) is in E(p, q).

(2) the restriction to the specialization of the subgroup < f, p, q > does not
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factor through a free product of limit groups in which the subgroup < p >
is in one factor and the subgroup < q > is contained in a second factor, and
not through a free product in which the subgroup < p, q > is contained in
a factor.

(3) the ambient specialization (of the group < z, p, q >) factors through a
free product of limit groups in which the subgroup < p, q > (and hence,
< f, p, q >) is contained in one factor, and either the subgroup that is asso-
ciated with the completion of MGResu, or the one that is associated with
the completion of MGResv, is not contained in one factor.

By our standard techniques (section 5 in [Se1]), the collection of all these special-
izations factor through finitely many limit groups. By looking at the actions of the
ambient limit group < z, p, q > on the Bass-Serre trees that are associated with the
free products of limit groups through which the specializations factor, and apply
the shortening procedure for these actions, by using only the modular groups of
the subgroups that are associated with the completions of MGResu and MGResv

relative to the subgroup < f, p, q >, we can replace these limit groups, by a collec-
tion of finitely many (quotient) limit groups, GF1, . . . , GFf , so that each of them
admits a free product in which the subgroup < f, p, q > is contained in one factor,
and either the completion of MGResu, or that of MGResv, is not mapped into a
factor. Therefore, we can replace the collection of these specializations by the limit
groups that are associated with the factors that contain the subgroup < f, p, q >
in each of the limit groups, GF1, . . . , GFf , and this impose non-trivial relations
on either the subgroup that is associated with the completion of MGResu, or the
subgroup that is associated with the completion of MGResv.

We continue by collecting all the specializations of the Extra Collapse limit
groups, ExCollapse, for which:

(1) the restriction to the (image of the) subgroup < f, p, q > form a proof that
the couple (p, q) is in E(p, q).

(2) the restriction to the specialization of the subgroup < f, p, q > does not
factor through a free product of limit groups in which the subgroup < p >
is in one factor and the subgroup < q > is contained in a second factor,
and does not factor through a free product of limit groups in which the
subgroup < p, q > is contained in a factor.

(3) the restriction of the specialization of the Extra Collapse limit group, ExCollapse,
to the subgroup < z, p, q >, that is associated with the duo resolution,
DuoRes, from which it was constructed, does not factor through a free
product of limit groups in which < p, q > is in one factor.

(4) the ambient specialization (of ExCollapse) factors through a free product
of limit groups in which the subgroup < p, q > (and hence, < z, p, q >) is
contained in one factor.

Once again, the collection of all these specializations (of ExCollapse) factor
through finitely many limit groups, and by looking at the actions of these limit
groups on Bass-Serre trees corresponding to the free products of limit groups
through which the specializations factor, and apply the shortening procedure for
these actions, by using the modular groups of the ambient group modulo the group
< z, p, q >, we can replace these limit groups, by a collection of finitely many (quo-
tient) limit groups, AGF1, . . . , AGFa, so that each of them admits a free product
in which the subgroup < z, p, q > is contained in one factor. Therefore, we can
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replace the collection of these specializations of the Extra Collapse limit groups,
ExCollapse, by the limit groups that are associated with the factors that contain
the subgroup < z, p, q > in each of the limit groups, AGF1, . . . , AGFa, and these
factors still demonstrate that the Diophantine condition, that is associated with
the collapsing form, does hold.

The parameters that are associated with the uniformization limit group, Unif ,
that was constructed in the previous section, admit only boundedly many values
for each equivalence class (up to the imaginaries that were presented in section 2),
but they are not guaranteed to separate between equivalence classes. With the
uniformization limit group, Unif , there is an associated subgroup, < f, p, q >, that
inherits a graph of groups decomposition, Λ, from the graph of groups decomposi-
tion, ∆, of the ambient uniformization limit group, Unif . With Λ we associated
finitely many multi-graded resolutions, MGResu and MGResv, and with each pair
of these resolutions, we associated finitely many duo resolutions, DuoRes. For each
value of the parameters that are associated with the graph of groups Λ, there ex-
ist at most (uniformly) boundedly many duo families of specializations of the duo
resolutions, DuoRes, for which generic points in these families restrict to couples,
(p, q), that are in the equivalence relation, E(p, q). However, in general there will
exist equivalence classes of the equivalence relation, E(p, q), with which we can
not associate any (generic point of a) duo family of any of the duo limit groups,
DuoRes.

For these classes we started to construct tools that will assist us in collecting non-
generic specializations (in the duo families). Using these tools, the uniformization
limit group, Unif , its subgroup, < f, p, q >, and its abelian decomposition, Λ,
we iteratively construct a new collection of uniformization limit groups, that we
call Collapse uniformization limit groups. These limit groups will enable us to
impose further and further Diophantine conditions on the multi-graded resolutions,
MGResu and MGResv, from which the duo resolution, DuoRes, was constructed.

The Collapse uniformization limit groups allow us to impose the new Diophantine
conditions on the two multi-graded resolutions separately, hence, we are able to
run the sieve procedure [Se6] for the two resolutions, MGREsu and MGResv,
separately. The procedure terminates by the termination of the sieve procedure
(theorem 22 in [Se6]), and when it terminates it is guaranteed that for any given
equivalence class, there exist a duo family of one of the Duo limit groups that are
constructed along the iterative procedure, so that generic points in the duo family
restrict to (a sequence of) specializations of the pair, (p, q), that are in the given
equivalence class. The parameters that are associated with such duo families are
(definable) class multi-functions, and by construction they do separate between
classes. Hence, we finally obtain geometric elimination of imaginaries.

To analyze the (non-generic) pairs (p, q) ∈ E(p, q), that extend to a specialization
of the subgroup < f, p, q >, which is a valid proof, and this proof extends to a
specialization of one of the duo limit groups, DuoRes, we start with the following.

We collect all the specializations of the group < z, p, q > that factor through one
of the limit groups, GF1, . . . , GFf . Note that the specializations that factor through
each of these limit groups satisfy a non-trivial relation that is imposed on either
the limit group that is associated with MGResu or with MGResv or with both of
them. Therefore, we can proceed to the next step by applying the sieve procedure
(that was presented in [Se6] for quantifier elimination) to the proper quotients of
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the (multi-graded) completions of the resolutions MGResu and MGResv. In this
case the separation of variables is ”built in”, i.e., non-trivial relations are imposed
on MGResu or MGResv separately.

We continue by looking at the collection of specializations so that their restric-
tions to the subgroups < z, p, q > does not factor through a free product in which
the subgroup < p, q > is contained in a factor. In this case the Diophantine condi-
tion that is imposed on these specializations can not apriory be ”separated” into two
Diophantine conditions that are imposed separately on the completions of MGResu

and MGResv. Hence, we apply a modification of the procedure for separation of
variables, to ”separate” the imposed Diophantine condition to two separate Dio-
phantine conditions that are imposed on MGResu and MGResv.

The uniformization limit group, Unif , is composed from two graded completions,
one that contains the subgroup < p >, and one that contains the subgroup < q >
(these are the two vertex groups in the graph of groups ∆ that is associated with
Unif , the one that contains < p >, and the one that contains < q >). We denote
these two graded completions, GCompp and GCompq .

We start with GCompp, that is part of Unif , and the finitely many resolutions,
MGResu. We look at all the test sequences of the completion GCompp, that
extend to (shortest) specializations that factor through and are taut with respect
to one of the resolutions, MGResu, and do not factor through a free product of
limit groups, in which the subgroup < p, q > can be conjugated into a factor. By
the techniques for constructing formal limit groups, that are presented in sections
2 and 3 in [Se2], with the collection of all such sequences we can associate finitely
many graded completions, Comp1, . . . , Compℓ. The graded completion GCompp

is naturally mapped into each of these completions, preserving the level structure,
and each of the constructed completions terminate in either a rigid or a solid limit
group, with respect to the parameter subgroup of the original graded completion,
GCompp. Furthermore, the terminal rigid or solid limit groups of GCompp and of
MGResu, are mapped into the terminal rigid or solid limit group of the constructed
completions, Comp1, . . . , Compℓ.

For presentation purposes we will assume that the graded abelian decompositions
that are associated with the various levels of the completions, Comp1, . . . , Compℓ,
contain no abelian vertex groups. In that case, given one of the completions, Compj ,
and a multi-graded resolution, MGResu, that is mapped into it, the image of
the multi-graded resolution, MGResu, in the completion, Compj , intersects the
conjugates of rigid vertex groups in the multi-graded abelian decomposition of the
terminal rigid or solid limit group of Compj , in finitely many conjugacy classes of
subgroups.

By the uniform bounds on the number of rigid and families of strictly solid spe-
cializations (theorems 2.5 and 2.9 in [Se3]), given a value of the parameters of the
completion, Compj , which are the parameters of the uniformization limit group,
Unif (as well as its associated completions, Compp and Compq)), the subgroups
which are the intersections between the images of MGResu in Compj , and con-
jugates of the rigid vertex groups in the multi-graded abelian decomposition that
is associated with the terminal rigid or solid limit group in Compj , admit only
(uniformly) boundedly many values (up to conjugation) for each possible value of
the defining parameters. However, it is not guaranteed that these subgroups admit
only boundedly many values (up to conjugacy) for each equivalence class of E(p, q).

At this stage we use the construction of uniformization limit groups, that was
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presented in the previous section. Starting with each of the completions, Compj ,
for which there exists an equivalence class, so that the subgroups of intersection
between the image of MGResu and conjugates of the rigid vertex groups in the
abelian decomposition that is associated with the terminal level of Compj , admit
infinitely many values (up to conjugacy) that are associated with the equivalence
class, we do the following. We iteratively associate uniformization limit groups with
the completion, Compj , and the collection of equivalence classes for which the set of
associated parameters is infinite. By theorems 3.9 and 3.17, this iterative procedure
for constructing uniformization limit groups, terminates after finitely many steps.

When this iterative procedure terminates, there are finitely many completions
that are constructed along it. We denote these completions, UComp1, . . . , UCompt.
With each completion, UCompi, there is a map from one of the (completions of
the) multi-graded resolutions, MGResu, that is mapped into it. For presenta-
tion purposes we further assume that the abelian decompositions that are associ-
ated with the various levels of the constructed completions, UComp1, . . . , UCompt,
contain no abelian vertex groups. The image of MGResu in such a completion,
UCompi, intersects conjugates of the rigid vertex groups in the terminal multi-
graded abelian decompositions of the completion, UCompj , in a finite collection of
conjugacy classes of subgroups. The iterative procedure for separation of variables
(i.e., for the construction of uniformization limit groups), that was presented in the
previous section, guarantees that for each equivalence class of E(p, q), for which
there exists a duo family of Unif , and a test sequence of the duo family, that re-
stricts to specializations of the subgroup < f, p, q >, that form valid proofs that the
specializations of the couple, (p, q), are in the equivalence class, there exists at least
one of the constructed completions, UCompi, for which the values of the subgroups
of intersection between the image of MGResu and conjugates of the rigid vertex
groups in the abelian decomposition of the terminal limit groups of the completion,
UCompi, admit only (uniformly) bounded number of values (up to conjugacy) that
are associated with the given equivalence class.

In a similar way, we apply the procedure for the construction of uniformization
limit groups to the set of completions that are associated with the graded com-
pletion, GCompq , that is associated with the uniformization limit group, Unif .
We denote the constructed graded completions, V Comp|1, . . . , V Compr. In that
case one of the resolutions, MGResv is mapped into each of the constructed com-
pletions. The constructed completions have similar properties with respect to the
subgroups of intersection with the image of MGResv, as the completions that are
constructed from GCompp have with respect to subgroups of intersection with the
image of MGResu.

The construction of the completions, UComp1, . . . , UCompt, and V Comp1, . . . , V Compr ,
associates a universal and canonical finite set of completions with the uniformiza-
tion limit group, Unif , so that into each of the completions, UCompj , there is
a map of (the completion of) one of the multi-graded resolution, MGResu, and
into each completion, V Compi, there is a map of (the completion of) one of the
multi-graded resolutions, MGResv. The completions, UCompj and V Compi, en-
able one to extend specializations from the subgroup < f, p, q > of the original
limit group, Unif , to couples of duo resolutions, MGResu and MGResv, i.e., to
the duo resolutions, DuoRes. However, it is still not sufficient for extending spe-
cializations of the subgroup, < f, p, q >, or the duo resolution, DuoRes, to the
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extra collapse limit groups, Excollapse1, . . . , ExCollapseg, in a way that separates
variables (as we did in the previous section). Such a separation that will allow us to
impose new Diophantine conditions on the multi-graded resolutions, MGResu and
MGResv, separately, and hence enable us to continue to the second step of a sieve
procedure [Se6], that will associate new (developing) resolutions with MGResu and
MGREsv.

To extend (generic) specializations of the uniformization limit group, Unif , and
their restriction to the subgroup, < f, p, q >, to the Extra Collapse limit groups,
ExCollapse1, . . . , ExCollapseg, we once again apply the procedure for separation
of variables, i.e., we iteratively associate with each couple of completions, UCompj

and V Compi, a (finite) sequence of uniformization limit groups.

We start with all the possible couples of completions, UCompj and V Compi,
in parallel. Hence, for brevity we denote such a couple, UComp and V Comp. We
look at all the duo families of the graded completion, UComp, that admit a test
sequence of specializations, so that this test sequence of specializations have the
following properties:

(1) the test sequence of specializations of UComp can be extended to a sequence
of specializations, that is composed from a test sequence of specializations
of both graded completions, UComp and V Comp, so that the restrictions of
these specializations to the subgroup, < f, p, q >, form valid proofs that the
specializations of the pair (p, q), are in the definable equivalence relation,
E(p, q).

(2) the sequence of specializations that is composed from test sequences of
UComp and V Comp, extends to (shortest) specializations of either one of
the extra Collapse limit groups, ExCollapse1, . . . , ExCollapseg, or one of
their associated quotients, AGF1, . . . , AGFa, so that these specializations
do not factor through a free product in which the subgroup, < p, q >, is
contained in a factor.

By the techniques of the previous section, and the techniques for constructing
formal graded limit groups that were presented in sections 2 and 3 in [Se2], with
the collection of sequences of specializations, that extend test sequences of UComp,
and satisfy properties (1) and(2), it is possible to associate finitely many duo limit
groups, that we call Collapse uniformization limitgroups, and denote ColUnif .

Every collapse uniformization limit group is in particular a duo limit group, so
with it we can associate two graded completions. UComp is mapped into one of
the two graded completions that is associated with ColUnif , using a natural map
that preserves the level structure of UComp. In fact, this graded completion of
ColUnif has the same structure as that of UComp, except for the terminal rigid
or solid limit group of UComp and ColUnif .

V Comp is mapped into the second completion that is associated with ColUnif ,
by a map that preserve the level structures of V Comp, except (perhaps) for the
terminal level of V Comp.

The subgroup < f, p, q > is mapped into ColUnif , and generic points in ColUnif
restrict to specializations of < f, p, q > that form valid proofs that the specializa-
tions of the pair (p, q) is in the given definable equivalence relation, E(p, q). By
construction, the images of UComp and V Comp, restrict to images of a pair of
multi-graded resolutions, MGResu and MGResv, that are associated with UComp
and V Comp, and hence to an image of the duo resolution that is constructed from
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MGResu and MGResv, that we denote, DuoRes. Finally, by property (2) of
the specializations from which ColUnif is constructed, the image of DuoRes in
ColUnif extends to an image of one of the extra collapse limit groups, ExCollapse1, . . . , ExCollapseg

or one of their associated quotients, AGF1, . . . , AGFa.

For presentation purposes we will assume that the abelian decompositions that
are associated with the various levels of the constructed collapse uniformization
limit groups, ColUnif , contain no non-cyclic abelian vertex groups.

With each collapse uniformization limit group, ColUnif , there is an associated map
from an extra collapse limit group, ExCollapse, or one of its associated quotients,
AGF1, . . . , AGFa, into it. The image of the extra collapse limit group, ExCollapse,
in ColUnif , does not factor as a free product in which < p > is contained in one
factor and < q > in another factor, and it does not factor as a free product in
which < p, q > is contained in a factor. Hence, by proposition 3.3, the image of
ExCollapse in ColUnif intersects the rigid vertex groups in the abelian decompo-
sition that is associated with the terminal limit group of ColUnif in conjugates of
finitely many (f.g.) subgroups.

By proposition 3.4, for each given value of the defining parameters of ColUnif ,
the number of specializations of these intersection subgroups (up to conjugacy) is
uniformly bounded. However, there may be equivalence classes of the definable
equivalence relation, E(p, q), for which there are infinitely many conjugacy classes
of values of the subgroups of intersection between the image of ExCollapse and
the rigid vertex groups in the abelian decomposition that is associated with the
terminal limit group of ColUnif .

In this case, we continue by iteratively construct (collapse) uniformization limit
groups, in a similar way to what we did in the procedure for separation variables
in the previous section. For presentation purposes we assume that the abelian de-
compositions that are associated with the various levels of the constructed collapse
uniformization limit groups contain no abelian vertex groups. By theorem 3.9,
this iterative procedure for the construction of collapse uniformization limit groups
terminates after finitely many steps.

When the iterative procedure terminates we are left with finitely many collapse
uniformization limit groups, that we denote, ColUnif1, . . . , ColUnifb. With each
such collapse uniformization limit group there is an associated map from one of the
extra collapse limit groups, ExCollapse, and one of the duo resolutions, DuoRes,
that is composed from a pair of resolutions, MGResu and MGResv. Furthermore,
by theorem 3.11, for each equivalence class of E(p, q), which is not:

(i) one of the finitely many equivalence classes that were singled out in theorem
3.1

(ii) one of the equivalence classes for which there exists a (duo) test sequence of
one of the duo resolutions, DuoRes, that restricts to valid proofs that the
specializations of the pair, (p, q), are in the equivalence class (see lemma
4.1).

and for which there are duo families of one of the uniformization limit groups
that were constructed in the previous section (the uniformization limit groups,
Unif1, . . . , Unifv), so that generic specializations in these duo families restrict to
valid proofs that the specializations of the pairs, (p, q), are in the equivalence class,
there exists a collapse uniformization limit group, ColUnif , with the following
properties:
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(1) there are duo families of ColUnif , for which generic points in these duo
families restrict to valid proofs that the specializations of the pair, (p, q),
are in the equivalence class.

(2) the subgroups of intersection between conjugates of the rigid vertex groups
in the abelian decomposition that is associated with the terminal rigid or
solid limit group of ColUnif , and the image of ExCollapse in ColUnif , ad-
mit only uniformly bounded number of conjugacy classes of specializations
that are associated with the given equivalence class.

With each collapse limit group, ColUnif1, . . . , ColUnifb, we associate the collec-
tion of equivalence classes of E(p, q), that are not one of the equivalence classes that
satisfy (i) or (ii), and for which properties (1) and (2) hold for them and for the
collapse uniformization limit group. We continue with the (finitely many) collapse
uniformization limit groups in parallel, hence, we denote the one we continue with,
ColUnif .

With the collapse uniformization limit group, ColUnif , we have associated maps
from a pair of multi-graded resolutions, MGResu and MGResv, that extend to a
map from the duo resolution that is composed from the two multi-graded resolution,
that we denoted, DuoRes. Furthermore, the map from DuoRes, extends to a map
from an extra collapse limit group, ExCollapse, that is associated with DuoRes.

In the previous section we explained how the subgroup, < f, p, q >, inherits
a graph of groups decomposition from each of the uniformization limit groups,
Unif1, . . . , Unifv (see lemmas 3.12 and 3.14). The collapse uniformization limit
group, ColUnif , being a duo limit group, admits a graph of groups decomposition.
Like the subgroup < f, p, q > in a uniformization limit group, Unif , the image of an
extra collapse limit group, ExCollapse, inherits a graph of groups decomposition
from the graph of groups decomposition that is associated with ColUnif (as a duo
limit group).

Let ΛEx
Cl be the graph of groups that is inherited by the image of ExCollapse

from ColUnif . ΛEx
Cl have similar properties to those of the graph of groups, Λ.

Lemma 4.2. Suppose that the terminal limit groups in all the collapse uniformiza-
tion limit groups that were constructed along our iterative procedure are rigid or
solid, and the graded completions that are associated with them contain no abelian
vertex groups in any of their levels. Let ΛEx

Cl be the graph of groups decomposition
that is inherited by the image of the extra collapse limit group, ExCollapse, from
the collapse uniformization limit group, ColUnif . Then ΛEx

Cl is either:

(1) ΛEx
Cl is a trivial graph, i.e., a graph that contains a single vertex. In that

case either the subgroup < p > or the subgroup < q > is contained in the
distinguished vertex group in the abelian decomposition that is associated
with the distinguished vertex group in ColUnif , i.e., the vertex group that
contains the coefficient group. In particular, either the subgroup < p > or
< q > admits boundedly many values.

(2) ΛEx
Cl has more than one vertex group, and both subgroups < p > and < q >

are contained in the same vertex group. Like in case (1), in that case either
the subgroup < p > or the subgroup < q > admit only boundedly many
values.

(3) ΛEx
Cl has more than one vertex, < p > is contained in the stabilizer of one

vertex and < q > is contained in the stabilizer of another vertex in Λi.
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In that case the image of the (completion of the) multi-graded resolution
MGResu is contained in the vertex group that contains < p >, and the im-
age of the (completion of the) multi-graded resolution MGResv is contained
in the vertex group that contains < q >. Furthermore, given an equivalence
class of E(p, q) that is associated with ColUnif , the number of conjugacy
classes of the values of edge groups in ΛEx

Cl that are associated with the given
equivalence class, are uniformly bounded.

Proof: Identical to the proofs of lemmas 3.12 and 3.14.
�

The graph of groups, ΛEx
Cl , of the image of the extra collapse limit group,

ExCollapse, and its properties (lemma 4.2), enable us to continue to the next
step of the sieve procedure [Se6]. By lemma 4.2, the subgroup < p > is contained
in one vertex group in ΛEx

Cl , that contains the image of the completion of MGResu,
and the subgroup < q > is contained in a second vertex group in ΛEx

Cl , that con-
tains the image of the completion of MGResv. The edge groups in ΛEx

Cl admit only
(uniformly) boundedly many values (up to conjugacy) that are associated with
each equivalence class of E(p, q) that is associated with the collapse uniformization
limit group, ColUnif . Therefore, the graph of groups, ΛEx

Cl , enables us to sepa-
rate the Diophantine conditions that are imposed by the extra collapse limit group,
ExCollapse, into two Diophantine conditions that are imposed separately on the
two taut multi-graded resolutions, MGResu and MGResv.

Given the two separate Diophantine conditions that are imposed on the two
multi-graded resolutions, MGResu and MGResv, we analyze their quotient reso-
lutions according to the procedure for the analysis of quotient resolutions that is
presented in the second step of the sieve procedure in [Se6]. This procedure asso-
ciates with MGResu and with MGResv, and the Diophantine conditions that are
imposed on them, finitely many quotient resolutions, and with each quotient reso-
lution it associates a (finite) sequence of core resolutions, a developing resolution,
and possibly a sculpted resolution (see [Se6] for the definition of these notions and
for their construction).

Given each possible couple of quotient multi-graded resolutions, one that was
obtained from MGResu and a second that was obtained from MGResv, we first
look at their associated developing resolutions. Given the pair of their associated
developing resolution, we construct from the pair a duo resolution, that we denote,
DuoDevRes. With a duo resolution, DuoDevRes, we associate a finite collection
of auxiliary resolutions, in a similar way to the auxiliary resolutions that were con-
structed along the sieve procedure [Se6], and the auxiliary resolutions that were
associated with the duo resolution, DuoRes, in the first step of our iterative proce-
dure. These include, Non-rigid, Non-solid, Root, Left, Extra, and Generic Collapse
Extra resolutions (note that all the auxiliary resolutions are closures of the duo
resolution, DuoDevRes).

Given a duo resolution, DuoDevRes, that is composed from a pair of (com-
pletions of) developing resolutions, and its auxiliary resolution, we first separate
those equivalence classes of E(p, q), for which there exists a (duo) test sequence
of DuoDevRes, that restricts to valid proofs that the specializations of the pair,
(p, q), are in the equivalence class.

Given each Extra resolution of DuoDevRes, we first collect those specializations
that factor through a free product in which the subgroup, < p, q >, is contained
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in a factor. With these specializations we associate finitely many limit groups,
in a similar way to the construction of the limit groups, GF1, . . . , GFf , that we
used in the first step of the iterative procedure. Each of the constructed limit
groups imposed a non-trivial relation on at least one of its associated developing
resolutions, hence, we continue with it to the next step of the sieve procedure. Then,
with an Extra resolution, we associate finitely many Extra Collapse limit groups
(as in the first step of the procedure). We further separate all these specializations
of an Extra Collapse limit group that factor through a free product of limit groups
in which the subgroup < p, q > is contained in a factor. Hence, we may assume
that the specializations of the Extra Collapse limit groups that we consider do not
factor through such a free product.

Given the finite collection of quotient resolutions, and their associated developing
resolutions, Extra resolutions, and Extra Collapse limit groups, we use the iterative
procedure for separation of variables, that was used in the first step, to associate
with this collection a finite collection of Collapse uniformization limit groups. With
each collapse uniformization limit group, there is an associated map from a duo
resolution, DevDuoRes, that is composed from a pair of developing resolutions,
that extends to maps from the two associated quotient resolutions. The map from
the duo resolution, DevDuoRes, extends also to a map from an associated Extra
resolution, and this extends to a map from a Collapse Extra limit group.

With the subgroup that is generated by the images of the two quotient resolu-
tions, and by the image of the Collapse Extra resolution, that are associated with
a Collapse uniformization limit group, we associate a graph of groups decomposi-
tion that we (also) denote, ΛEx

Cl . This graph of groups have similar properties to
the ones listed in lemma 4.2. Each of the quotient resolutions that are associated
with the Collapse uniformization limit group is mapped to a vertex group, one to a
vertex group that contains < p >, and the second to a vertex group that contains
< q >.

As in the first step, the graph of groups, ΛEx
Cl , gives a separation of the Dio-

phantine condition that is imposed by the Collapse Extra limit group on the spe-
cializations that factor and are taut with respect to the Extra resolution, into two
separate Diophantine conditions that are imposed on the two quotient resolutions
that are mapped into the Collapse uniformization limit group.
Once the Diophantine condition is separated, we can apply the general step of
the sieve procedure, and associate with a Collapse uniformization limit group, its
associated graph of groups, ΛEx

Cl , and its associated Collapse Extra limit groups and
pair of quotient resolutions, a finite collection of (new) quotient resolutions, their
associated finite sequences of core resolutions, developing resolutions, and possibly
sculpted resolutions (see [Se6] for these objects and their construction).

We continue iteratively. By the termination of the sieve procedure, the iterative
procedure that combines the procedure for separation of variables, with the sieve
procedure, terminates after finitely many steps.

Theorem 4.3. In case there are no abelian vertex groups in any of the abelian de-
compositions that are associated with the various levels of the collapse uniformiza-
tion limit groups that are constructed along the iterative procedure for the analy-
sis of the parameters of equivalence classes, the iterative procedure, that combines
the sieve procedure with the procedure for separation of variables, terminates after
finitely many steps.
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Proof: Follows from the termination of the sieve procedure (theorem 22 in [Se6]).
�

Theorem 4.3 guarantees the termination of the iterative procedure, that we used
in order to analyze parameters that can be assigned with the equivalence classes of
a given definable equivalence relation, E(p, q), in case there are no abelian vertex
groups in any of the abelian decompositions that are associated with the various
levels of the constructed collapse uniformization limit groups.

Suppose that the abelian decompositions that are associated with the various
levels of the uniformization limit groups, Unif1, . . . , Unifv, that were constructed
in the previous section, do contain abelian vertex groups. In this general case, with
each of the uniformization limit groups, Unif1, . . . , Unifv, that were constructed
in the procedure for separation of variables in the previous section, there is (also)
an associated subgroup, < f, p, q >, which is the image of one of the rigid or solid
limit groups, Ipr1, . . . , Iprw, that were constructed in theorem 3.1, and a graph of
groups decomposition, (also denoted) Λ, that is described in lemma 3.18.

The graph of groups, Λ, gives us a separation of variables in the general case as
well. Given Λ, we can associate the taut multi-graded abelian Makanin-Razborov
diagram of the vertex group in Λ that contains the subgroup < p >, and the taut
multi-graded Makanin-Razborov diagram of the vertex group in Λ that contains
< q >.

We continue precisely as we did in case there were no abelian vertex groups in the
constructed uniformization limit groups. With each pair of resolutions, MGResu,
of the vertex group that contains < p >, and MGResv, of the vertex group that
contains < q >, we associate a finite (possibly empty) collection of duo resolutions,
DuoRes. Given a duo resolution, DuoRes, we associate with it, Non-rigid, Non-
Solid, Left, Root, Extra, and Generic Collapse extra (duo) resolutions. With each
Extra resolution, we further associate a finite collection of Collapse Extra limit
groups. Given the duo resolutions, DuoRes, and their associated Extra Collapse
limit groups, we apply the same iterative procedure that was used in the absence of
abelian vertex groups, that terminates after finitely many steps according to theo-
rem 3.17, and produces a finite collection of Collapse uniformization limit groups.

According to lemma 3.18, with each of the collapse uniformization limit groups,
there is an associated graph of groups decomposition, ΛEx

Cl , of the image of the
collapse extra limit group that is mapped into it. This graph of groups decompo-
sition separates the Diophantine condition which is imposed by the collapsed extra
limit group on the duo resolution, DuoRes, into two separate Diophantine condi-
tions that are imposed on the two resolutions, MGResu and MGResv, precisely as
in case the associated abelian decompositions contained no abelian vertex groups.
This separation of the Diophantine condition enable us to continue to the second
step of the sieve procedure [Se6], and we continue iteratively until the termination
of the sieve procedure that follows by theorem 4.3 (or rather by theorem 22 in
[Se6]).

The iterative construction of the uniformization limit groups, Unif1, . . . , Unifv,
in the previous section, and the iterative construction of developing resolutions (that
are constructed according to the sieve procedure [Se6]), their auxiliary resolutions,
in particular their associated Extra and Generic collapse extra resolutions, their
associated Collapse Extra limit groups, and finally the iterative construction of
the Collapse uniformization limit groups, enable one to associate parameters with
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the various equivalence classes of the given definable equivalence relation, E(p, q).
The collection of these objects allows one to associate a collection of finitely many
elements in finitely many limit groups, with the equivalence relation E(p, q), and for
each equivalence class in E(p, q), these elements admit only (uniformly) boundedly
many specializations, up to conjugation, left, right and double cosets of certain
cyclic subgroups (cyclic subgroups of the coefficient group). The existence of these
parameters follows from the construction we presented, in particular the properties
of the collapse uniformization limit groups. To obtain geometric elimination of
imaginaries, after adding sorts for the 3 basic (families of) imaginaries, we still
need to show that the parameters we found are definable.

Theorem 4.4. Let F be a (non-abelian) free group, and let E(p, q) be a definable
equivalence relation over F . If we add sorts for the imaginaries that are presented
in section 2: conjugation, left and right cosets of cyclic groups, and double cosets
of cyclic groups, then E(p, q) is geometrically eliminated.

Suppose that p and q are m-tuples. There exist some integers s and t and a
definable multi-function:

f : Fm → F s × R1 × . . .× Rt

where each of the Ri’s is a new sort for one of the 3 basic imaginaries (conju-
gation, left, right and double cosets of cyclic groups). The image of an element
is uniformly bounded (and can be assumed to be of equal size), the multi-function
is a class function, i.e., two elements in an equivalence class of E(p, q) have the
same image, and the multi-function f separates between classes, i.e., the images
of elements from distinct equivalence classes is distinct. Furthermore, if E(p, q) is
coefficient-free, then we can choose the definable multi-function f to be coefficient-
free (although then, the image of the multi-function may be of different (bounded
finite) cardinalities, for different classes).

Proof: Let E(p, q) be a definable equivalence relation. To prove that E(p, q) can
be geometrically eliminated, we need to construct a definable multi-function f as
described in the theorem. First, in theorem 3.1 we associated with E(p, q) finitely
many rigid or solid limit groups, Ipr1, . . . , Iprw, so that for all but finitely many
equivalence classes, and for every pair (p, q) in any of the remaining equivalence
classes, there is a rigid or a strictly solid homomorphism from one of these limit
groups into the coefficient group F , that restricts to a proof that the pair (p, q) is
in E(p, q), and the homomorphism does not factor through a free product of limit
groups in which < p > is contained in one factor, and < q > is contained in a
second factor.

All our further constructions (of uniformization limit groups) are based on the
existence of such homomorphisms, and hence, the finitely many equivalence classes
that were singled out by theorem 3.1 are excluded. Therefore, to construct the
desired multi-function f , we need to show that the finite collection of equivalence
classes that were singled out in theorem 3.1, is a definable collection.

Proposition 4.5. Let E(p, q) be an equivalence class over a free group F . The
finite collection of equivalence classes that were singled out in theorem 3.1, is a
definable collection, i.e., if the equivalence relation E(p, q) is coefficient-free, then
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the finite collection of equivalence classes that are singled out in theorem 3.1, is
coefficient-free definable.

Proof: Recall that in order to prove theorem 3.1 we have constructed finitely many
limit groups, GFD1, . . . , GFDd, that admit a free product decomposition in which
< p > is contained in one factor, and < q > is contained in a second factor. With
each limit group GFD we have associated its taut Makanin-Razborov diagram.
The finitely many equivalence classes of E(p, q) that were excluded in theorem 3.1,
are precisely those equivalence classes for which there exists a test sequence of one
of the (finitely many) resolutions in these diagrams that restrict to valid proofs that
the specializations of the pair, (p, q), are in the equivalence class. By lemma 3.2
there are only finitely many such equivalence classes.

Let Res be one of the resolutions in the taut Makanin-Razborov diagrams of
the limit groups, GFD1, . . . , GFDd. With the resolution, Res, we have associ-
ated (along the proof of theorem 3.1) finitely many auxiliary resolutions. These
include Non-rigid, Non-solid, Left, Root, Extra and Generic Collapse resolutions.
With each Extra resolution, we have further associated Extra limit groups, that
we denoted Exlim, and each Extra limit group admit a free product, Exlim =
Exlim1 ∗ Exlim2. With each Extra limit group we associated finitely many (pos-
sibly none) Collapse Extra limit groups.

With an Extra limit group, Exlim, we further associate a finite collection of
limit groups, that we call Generic Collapse Extra limit groups. Recall that a limit
group, GFDi admits a free product in which < p > is in one factor, and < q > is in
a second factor. Hence, a resolution, Res, in a Makanin-Razborov diagram of GFD
factors as a free product of resolutions, Res1 and Res2, where < p > is a subgroup
of the completion of Res1, and < q > is a subgroup of the completion of Res2. An
Extra limit group, Exlim admits a free product, Exlim = Exlim1 ∗Exlim2, where
either Exlim1 is a closure of (the completion of) Res1, or Exlim2 is a closure of
(the completion of) Res2.

Recall that if a specialization of an Extra limit group, Exlim, restricts to a valid
proof that the specialization of the pair, (p, q), is in the equivalence relation, E(p, q),
then the specialization of Exlim satisfies one of finitely many Diophantine (collapse)
conditions. Let Exlim = Exlim1 ∗Exlim2, and suppose that in Exlim, Exlim1 is
a closure of the resolution, Res1. We look at all the specializations of Exlim2 that
can be extended by a sequence of specializations of Exlim1 that restrict to a test
sequence of specializations of the resolution Res1, so that the combined sequence
of specializations satisfy one of the finitely many Diophantine conditions that are
associated with the Diophantine (collapse) conditions on specializations of Exlim.

If we add new elements that demonstrate the fulfillment of the imposed Dio-
phantine condition, and choose these additional elements to have values that are
the shortest possible, then by the techniques of collecting formal solutions (sec-
tions 2 and 3 in [Se2]), the collection of all such sequences of specializations of
Exlim that satisfy the collapse conditions, extended to (shortest) specializations
that demonstrate the fulfillment of the (collapse) Diophantine conditions, fac-
tor through finitely many limit groups, that we call Generic Collapse Extra
limit groups, GenColExtra. Each of these limit groups factors as a free product,
GenColExtra = GCE1 ∗ GCE2, and GCE1 is a closure of Res1 (and of Exlim1).
We repeat this construction for all the other Extra limit groups, Exlim, looking at
sequences of specializations that restrict to test sequences of Res2 in case Exlim2
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is a closure of Res2.

The limit groups, GFD1, . . . , GFDd, that were constructed in the course of prov-
ing theorem 3.1, the (finitely many) resolutions that appear in their taut Makanin-
Razborov diagrams, and their associated Non-rigid, Non-solid, Left, Root, Extra,
and Generic Collapse Extra resolutions, together with the Extra limit groups, Col-
lapse Extra limit groups, and finally the Generic Collapse Extra limit groups, that
are associated with each of the finitely many Extra resolutions, enable us to con-
struct a predicate that defines precisely the finitely many equivalence classes that
are excluded in theorem 3.1.

Let p0 be a specialization of the elements p. Recall that p0 belongs to one of
the equivalence classes that are singled out in theorem 3.1, if there exists a test
sequence of one of the resolutions in the taut Makanin-Razborov diagrams of the
limit groups, GFD1, . . . , GFDd, that restrict to valid proofs that the associated
pairs (pn, qn) are in E(p, q), and the elements, pn and qn, are in the same equivalence
class as p0. The existence of such a test sequence is equivalent to the existence of
a specialization, (p1, q1), of the pair, (p, q), that satisfies the following conditions
(that are all first order):

(1) (p1, q1) ∈ E(p, q) and (p1, p0) ∈ E(p, q) (i.e., p1 and q1 are in the same
equivalence class as p0).

(2) there exists a specialization, (p1, q1, f), which is a rigid or a strictly solid
specialization of one of the rigid or solid limit groups, Ipr1, . . . , Iprw, that
restricts to a valid proof that (p1, q1) ∈ E(p, q).

(3) the specialization, (p1, q1, f), extends to a specialization, (p1, q1, f, u), that
factors through (the completion of) one of the resolutions, Res, which is a
resolution in one of the taut Makanin-Razborov diagrams of one of the limit
groups, GFD1, . . . , GFDj .

(4) (p1, q1, f, u) does not extend to a specialization that factors through any
of the Non-rigid, Non-solid, Left, and Root resolutions that are associated
with Res. If it extends to a specialization that factors through an Extra
resolution that is associated with Res, the extended specialization must
further extend to a specialization that factors through a Generic Collapse
Extra resolution that is associated with the extra resolution Extra.

(5) If the specialization, (p1, q1, f, u), extends to a specialization of an Extra
limit group, Exlim, then the (extended) specialization of Exlim, further
extends to a specialization that factors through one of the Generic Collapse
Extra limit groups that are associated with the Extra limit group, Exlim.

The construction of the auxiliary resolutions that are associated with a resolu-
tion, Res, in one of the Makanin-Razborov diagrams of the limit groups, GFD1, . . . , GFDd,
guarantee that the existence of a test sequence of Res that restricts to valid proofs
and specializations in a given equivalence class of E(p, q) is equivalent to the ex-
istence of a pair (p1, q1) in the given equivalence class, that satisfies properties
(1)-(5). It is fairly straightforward that properties (1)-(5), that are imposed on a
pair, (p1, q1), are first order. Hence, the (finite) collection of equivalence classes
that are singled out in theorem 3.1 is definable. Furthermore, in case the equiva-
lence relation is coefficient-free, the limit groups, GFD1, . . . , GFDd, their Makanin-
Razborov diagrams, and all the auxiliary resolutions and limit groups that are
associated with the resolutions in these diagrams, are coefficient-free. Hence, the
first order predicate that formulates properties (1)-(5) is coefficient-free. Therefore,
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in case E(p, q) is coefficient-free, the predicate that defines the finite collection of
equivalence classes that are singled out in theorem 3.1 is coefficient-free.

�

Proposition 4.5 shows that the finite collection of equivalence classes that are
excluded in theorem 3.1 is definable. Therefore, to prove theorem 4.4, we need to
construct a (definable) function with the properties that are listed in the statement
of the theorem, that is defined on the union of all the other equivalence classes of
E(p, q).

Let p0 be a specialization of the (free) variables, p, that does not belong to one
of the finitely many equivalence classes that are excluded in theorem 3.1. Then for
each pair (p, q) ∈ E(p, q), that are in the same equivalence class as p0, there exists
a rigid or a strictly solid homomorphism h from one of the rigid or strictly solid
limit group, Ipr1, . . . , Iprw, into the coefficient group F , that restricts to a valid
proof that the given pair, (p, q) is in E(p, q), and so that the homomorphism h,
and all the homomorphisms in its strictly solid family, do not factor through a free
product in which < p > is contained in one factor, and < q > is contained in a
second factor.

Based on the existence of such a homomorphism, we have associated (in section 3)
at least one uniformization limit group from the finite collection, Unif1, . . . , Unifv,
with the equivalence class of p0, so that the uniformization limit group satisfies the
conclusions of lemma 3.18 with respect to that equivalence class.

Furthermore, with the equivalence class of p0, which is not one of the equiv-
alence classes that are excluded in theorem 3.1, there is an associated Collapse
uniformization limit group, ColUnif . With the graph of groups that is inherited
by the (image of the) Collapse Extra limit group that is mapped into the collapse
uniformization limit group, ColUnif , there is a pair of associated multi-graded
(quotient) resolutions. A quotient multi-graded resolution that is associated with
the vertex group of the vertex stabilized by < p >, and a quotient multi-graded res-
olution of the vertex group of the vertex stabilized by < q >. The pair of developing
resolutions of these multi-graded resolutions, extends to a Duo resolution, that we
denote, DuoDevRes, and there exists a (duo) test sequence, in a duo family of this
duo resolution, that restricts to valid proofs that the corresponding specializations
of the pair (p, q), (pn, qn), are in E(p, q), and these specializations are in the same
equivalence class as p0.

To construct a predicate that defines a multi-function with the properties that
are listed in the statement of theorem 4.4, i.e., to definably associate parameters
with the equivalence classes of E(p, q), we construct new duo limit groups that com-
bine the (finitely many) Collapse Uniformization limit groups, ColUnif , with the
(finitely many) duo resolutions that are associated with them, and are constructed
from pairs of multi-graded developing resolutions, that are constructed from the
graph of groups that is inherited by the image of the collapse extra limit groups in
the corresponding collapse uniformization limit group. We call these new duo limit
groups, parameters duo limit groups.

We construct the finitely many parameters duo limit groups for each of the
(finitely many) Collapse uniformization limit groups in parallel. Recall that given
a Collapse uniformization limit group, ColUnif , there exists a Collapse Extra limit
group that is mapped into it. This Collapse Extra limit group inherits a graph of
groups decomposition from the graph of groups that is associated with ColUnif ,
the subgroup < p > is contained in a vertex group in this graph of groups, and the
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subgroup < q > is contained in another vertex groups in the graph of groups. With
the vertex groups that contain the subgroups < p > and < q > we associated a
finite collection of multi-graded quotient resolutions (by applying the general step of
the sieve procedure), and with each such multi-graded resolution we associated its
developing resolution. Given a pair of developing resolutions, one that is associated
with the vertex group that contains < p >, and one that is associated with the
vertex group that contains < q >, we constructed a duo resolution, that we called
a developing duo resolution, DevDuoRes.

Given ColUnif , we construct finitely many (possibly none) parameters duo limit
groups for each of its associated developing duo resolutions in parallel. Given
ColUnif , and one of its (finitely many) developing duo resolutions, DevDuoRes,
we look at the following sequences of specializations.

(1) we look at equivalence classes of the given equivalence relation, E(p, q),
for which the given set of elements of the ambient Collapse uniformization
limit group, ColUnif , that are associated (and generate) the edge groups
in the graph of groups that is inherited by the collapse extra limit group,
that is mapped into ColUnif , admit only boundedly many values up to
conjugation, and right, left and double cosets of the corresponding cyclic
groups (see part (4) of lemma 3.18 for the elements that are associated with
the edge groups in the inherited graph of groups).

(2) for each equivalence class that satisfies part (1), we look at a (duo) test
sequence of ColUnif , that restricts to valid proofs that the sequence of
pairs, (pn, qn), are in the equivalence class.

(3) we further require the (duo) test sequence of Colunif , that satisfies part
(2), to extend to a (duo) test sequence of the associated developing duo
resolution, DevDuoRes.

(4) Furthermore, we require that to the (duo) test sequence of ColUnif , and
the (duo) test sequence of DevDuoRes, there exists an additional sequence
of specializations of one of the rigid or solid limit groups, Ipr1, . . . , Iprw,
that demonstrate that the specializations of the pair, (p, q), in the two test
sequences belong to the same equivalence class of E(p, q).

By the techniques for the construction of formal solutions that appear in sections
a and 3 in [Se2], with the collection of sequences that satisfy properties (1)-(4) it is
possible to associate a finite collection of duo limit groups, that we call parameters
duo limit groups. Note that each parameters duo limit group is composed from
closures of the completions that appear in ColUnif and DevDuoRes, that are
associated with the parameters duo limit group.

As we did in the sieve procedure, with a parameters duo limit group we associate
finitely many auxiliary resolutions. With each parameters duo limit group we asso-
ciate a finite collection of Non-rigid, Non-solid, Left, Root, and Extra resolutions,
that demonstrate the possible failure of the restriction of duo test sequences of the
parameters duo limit group to sequences of specialization of the corresponding sub-
groups, Ipr1, . . . , Iprw, to be valid proofs. With each Extra resolution we further
associate (finitely many) Generic Collapse Extra resolutions precisely as we did in
the sieve procedure.

Having constructed the parameters duo limit groups, and their auxiliary reso-
lutions, we have all the tools that are needed to define the multi-function that is
specified in theorem 4.4., i.e., to geometrically eliminate imaginaries.
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(1) first, we use the predicate that was constructed in proposition 4.5 to isolate
the finitely many equivalence classes that are singled out in theorem 3.1.
Note that these (finitely many) equivalence classes are ordered according
to the construction of the rigid and solid limit groups, Ipr1, . . . , Iprw, that
is used in theorem 3.1. Hence, if the given equivalence relation, E(p, q), is
coefficient-free, the predicate that defines these finitely many classes and
their order are coefficient-free as well.

(2) Given a collapse uniformization limit group, ColUnif , and one of its (finitely
many) associated parameters duo limit groups, we look at the equivalence
classes that are associated with them. With such an equivalence class, the
given finite sets of elements from the ambient collapse uniformization limit
group (or alternatively from the parameters duo limit group), that are asso-
ciated with the edge groups in the graph of groups that is inherited by the
collapse extra limit group that is mapped into the collapse uniformization
limit group, ColUnif , (see part (4) of lemma 3.18 for the elements that are
associated with these edge groups) should have only boundedly many val-
ues that are associated with each equivalence class, up to conjugation, and
right, left and double cosets of the corresponding cyclic groups (the bound
is uniform and it does not depend on the equivalence class). Furthermore,
there should exist test sequences of the parameters duo limit group that
are associated with the equivalence class, and with the specific values of
the elements that are associated with the edges in the inherited graph of
groups.

Given the auxiliary resolutions that are associated with the parameters
duo limit group, the existence of such test sequences can be expressed us-
ing a first order predicate. The parameters that are associated with the
equivalence class, are the values of the finite sets of elements of the ambient
collapse uniformization limit group, that are associated with the edge groups
in the graph of groups that is inherited by the image of the collapse extra
limit group from the ambient collapse uniformization limit group, ColUnif .
The number of these values is uniformly bounded up to the basic definable
equivalence relations: conjugation, left, right and double cosets of cyclic
subgroups.

By construction if E(p, q) is coefficient free, so is the predicate that defines
the parameters that are associated with the equivalence classes of it.

The parameters that are associated with each equivalence class of E(p, q), ac-
cording to parts (1) and (2), gives a definable multi-function that is associated with
the given definable equivalence relation, E(p, q), with the properties that are listed
in theorem 4.4. This function is coefficient-free if E(p, q) is coefficient-free.

�

By the results of [Se8], all the constructions that were associated with a (de-
finable) equivalence relation over a free group can be associated with a definable
equivalence relation over a (non-abelian) torsion-free hyperbolic group. Hence,
torsion-free hyperbolic groups admit the same type of geometric elimination of
imaginaries as a non-abelian free group.

Theorem 4.6. Let Γ be a non-elementary, torsion-free hyperbolic group, and let
E(p, q) be a definable equivalence relation over Γ. The conclusion of theorem 4.4
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holds for E(p, q). If we add sorts for the imaginaries that are presented in section
2: conjugation, left and right cosets of cyclic groups, and double cosets of cyclic
groups (all in Γ), then E(p, q) is geometrically eliminated.

Proof: By [Se8] the description of a definable set over a hyperbolic group is similar
to the one over a free group. In [Se8], the analysis of solutions to systems of equa-
tions, the construction of formal solutions, the analysis of parametric equations,
and in particular the uniform bounds on the number of rigid and strictly solid fam-
ilies of solutions that are associated with a given value of the defining parameters,
are generalized to non-elementary, torsion-free hyperbolic groups. Furthermore, in
[Se8] the sieve procedure is generalized to torsion-free hyperbolic groups, as well as
the the analysis and the description of definable sets. Duo limit groups are defined
and constructed over torsion-free hyperbolic groups precisely as over free groups,
and so are the Diophantine envelope and the duo envelope (see section 1).

Finally, theorem 1.3 in [Se3] that guarantees that given a f.g. group, and a se-
quence of homomorphisms from G into a free group, there exists an integer s, and
a subsequence of the given homomorphisms that converges into a free action of
some limit quotient of G on some Rs-tree, remains valid over torsion-free hyper-
bolic groups. This is the theorem that is used to prove the termination of the
iterative procedure for separation of variables, i.e., the iterative procedure for the
construction of uniformization limit groups.

Therefore, the procedure for separation of variables that was presented in the
previous section generalizes to torsion-free hyperbolic groups, and so is the mod-
ification of the sieve procedure that allows us to run the sieve procedure while
preserving the separation of variables, that was described in this section. Hence,
with a given equivalence relation, E(p, q), over a torsion-free hyperbolic group, one
can associate a finite collection of uniformization and Collapse uniformization limit
groups, precisely as over free groups. By the argument that was used to prove
theorem 4.4 (that remains valid over torsion-free hyperbolic groups), this collec-
tion of Collapse uniformization limit groups, enables one to geometric elimination
of imaginaries (over torsion-free hyperbolic groups), when we add sorts for the 3
basic families of imaginaries (conjugation, left and right cosets, and double cosets
of cyclic groups).

�
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