1.1.
1.2.
1.3.

2.1.
2.2.
2.3.

3.1.
3.2.

6.1.
6.2.
6.3.

7.1.
7.2.

GENERALIZED u-GIBBS MEASURES FOR C*
DIFFEOMORPHISMS

S. BEN OVADIA, D. BURGUET

ABSTRACT. We show that for every C*° diffeomorphism of a closed
Riemannian manifold, if there exists a positive volume set of points
which admit some expansion with a positive Lyapunov exponent
(in a weak sense) then there exists an invariant probability mea-
sure with a disintegration by absolutely continuous conditionals on
smoothly embedded disks subordinated to unstable leaves. As an
application, we prove a strong version of the Viana conjecture in
any dimension, generalizing a recent result of the second author
for surface diffeomorphisms.
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1. INTRODUCTION, MAIN RESULTS, AND KEY STEPS OF PROOF

1.1. Introduction. A dynamical system is a pair (X,7T") composed of
a space X endowed with a transformation 7" : X — X. One of the key
problems in Dynamical Systems is to study the statistics of a chaotic
system at a steady state. This heuristic is interpreted as studying
the collection of invariant probability measures which govern chaotic
orbits (“chaos” can be interpreted as positive entropy, or exponential
sensitivity to initial conditions in Smooth Dynamical Systems- that
is positive Lyapunov exponents- or both). An invariant probability
measure is a probability p € P(X) s.t. p(E) = p(T7'[E]) for all F €
B(X), the Borel sigma algebra.

The first problem with which one is faced is then, which measure
should we single out? Uniquely ergodic systems, which admit a unique
invariant measure, often do not answer all criteria for chaos. When a
system is not uniquely ergodic, there are natural candidates for refer-
ence measures in which we are interested.

In Smooth Dynamical Systems- that is differentiable maps of Rie-
mannian manifolds- the most natural reference measure is the Rie-
mannian volume of the manifold. This is due to several reasons: The
first reason is the underlying physical assumption on the mathemati-
cal model, which asserts that when we carry out an experiment or a
simulation of the system with a random initial condition, this initial
condition is chosen randomly w.r.t. the Riemannian volume of the
manifold (also sometimes called the Liouville measure).
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The second reason which makes the Riemannian volume a natural
candidate for a reference measure is the obvious relationship with the
geometry of the space.

The third reason is the fundamental Liouville theorem, which asserts
that whenever the system admits no dissipation/heat loss/friction (i.e
a closed Hamiltonian system), the Riemannian volume is an invariant
measure. This fact is very useful, as invariant measures admit many
statistical properties, which are studied in the field of Ergodic Theory.

However, it is natural to wish to extend the scope of the systems
which we study beyond the non-dissipative systems. What happens in
a system which has friction? Or for example the earth’s atmosphere
which constantly gets heat insertion from the sun? In those cases we do
not expect the Riemannian volume to be an invariant measure, while
we still wish to find natural reference measures for the system which
are invariant (as we are interested in the unique statistical properties
that invariant measures govern).

Uniformly Hyperbolic systems are differentiable maps which admit a
continuous decomposition of the tangent bundle into two invariant sub-
bundles, such that on one sub-bundle the differential uniformly con-
tracts tangent vectors, and on the other the differential uniformly ex-
pands tangent vectors. For Uniformly Hyperbolic systems, the ground-
breaking works of Sinai, Ruelle, and Bowen give an answer to the ques-
tion in the paragraph above (see [45, 42, 12, 13]). They study a class
of measures which are called SRB measures (named after them), which
are invariant measures with compatibility with the Riemannian struc-
ture, even in cases where the Riemannian volume is not preserved.

From now on, we only consider C'¢, ¢ > 0, smooth diffeomorphisms.
In this setting, SRB measures are invariant probability measures, which
when disintegrated on unstable leaves' (in the sense of the Rokhlin dis-
integration theorem), admit conditional measures which are absolutely
continuous w.r.t. the induced Riemannian volume on the unstable
leaves. This produces the first instance of compatibility with the Rie-
mannian volume.

The two more reasons which make SRB measures an object of im-
portance are:

1Unstable leaves are embedded disks which are tangent to the asymptotically
expanding direction of the tangent space of points with positive Lyapunov expo-
nents (i.e exponential sensitivity to initial conditions). Their existence is given in

37, 44].
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(1) Physicality: Every ergodic and hyperbolic SRB measure v is
physical [33]: its basin

1 n—1 i
B(v) = {x eM: V¢: M — R cont., E;gb(f (x)) — (Z)dl/}
has positive Riemannian volume. This was first shown for Uni-
formly Hyperbolic diffeomorphisms by Ruelle [42]. Physicality
does not imply the SRB property. For the gap between the two
properties, see [47].

(2) Entropic variational principle: SRB measures satisfy the en-
tropy formula: h,(f) = [ 3, <o Xi(2) du(x) where x;(z) is the
i-th Lyapunov exponent of x (with multiplicity),[42, 38, 33, 34];
and the Lh.s. is strictly smaller than the r.h.s. for all other
measures [42, 43, 35].

In particular, note that the physicality property admits an additional
notion of compatibility with the Riemannian volume. For more prop-
erties of SRB measures, see [50].

Unfortunatelly, SRB measures do not always exist, even for “nice”
systems (see [27] for example). This fact pushed forwards the field
of Smooth Dynamical Systems for almost three decades, in trying to
understand which systems admit SRB measures, or a corresponding
object of interest.

For unimodal interval maps with a negative Schwarzian derivative,
Keller showed that there is a positive Lebesgue measure of points with
a positive Lyapunov exponent if and only if there exists an absolutely
continuous invariant measure [32].

In the non-uniformly hyperbolic setting, in her celebrated result [49],
Young showed the existence of an SRB measure for non-uniformly hy-
perbolic maps with Young towers, subject to an assumption of integra-
bility of the return-time to the base of the tower w.r.t. the Riemannian
volume. In [22], the authors study the existence of an SRB measure
through the positive volume of “effectively hyperbolic” points. An-
other important approach and body of works is the study of existence
via parameter families. For example, such as in the setting of quadratic
families and Hénon maps (see [28, 7, 8, 9]).

Indeed, most approaches to constructing SRB measures rely on a
hyperbolic structure (which holds for surfaces for every measure with
positive entropy, by the Ruelle inequality [43]). Very few results ad-
dress the construction of SRB measures in high dimension, in a general
setup which allows 0 Lyapunov exponents. In [5], the authors construct
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SRB measures for a general diffeomorphism whose volume converges
exponentially fast to a limit under the dynamics.

The partially hyperbolic setting is where the tangent space splits con-
tinuously everywhere into three invariant sub-bundles. An wunstable
bundle E* which expands uniformly, a stable bundle E® which contracts
uniformly, and a central bundle E°, which is uniformly dominated by,
and dominates, the unstable and stable bundles respectively. One often
bunches together the unstable and central bundles or the stable and
central bundles (denoted by E" or E respectively), which uniformly
dominate E£° or dominated by E" respectively. In this setting, where
E* is allowed to be trivial but not £, in their celebrated work [39],
Pesin and Sinai construct u-Gibbs measures. That is, measures with
an absolutely continuous disintegration on strong unstable leaves. For
such partially hyperbolic systems which admit only negative Lyapunov
exponents in the central bundle volume-a.e, these u-Gibbs measures
are in fact SRB [11] measures.

More in the partially hyperbolic setting, allowing E* to be trivial
but not E, in [2, 3] the authors showed that volume-a.e point which
admits only positive Lyapunov exponents in the central bundle (for a
certain notion of Lyapunov exponent, see the discussion below), lies in
the basin of an ergodic hyperbolic SRB measure.

Then M. Viana posed the following conjecture in his famous ICM
talk.

Conjecture (Viana [1]). If a smooth map has only non-zero Lyapunov
exponents at Lebesque almost every point then it admits some SRB
measure.

The importance of Viana’s conjecture is two-fold. First, it is stated in
a very elementary and natural way, and second the condition it suggests
is important in terms of physical testability, as one would have to check
random initial conditions and observe whether expansion happens or
not.

Given a point, its Lyapunov exponents estimate exponential expan-
sion/contraction rates associated to the action of the differential. These
exponents are commonly used when x is typical for an invariant mea-
sure or satisfy some regularity. By using Markov partitions, the first
author [4] proved a version of Viana conjecture for C'*¢ diffeomor-
phisms of manifolds in any dimension by assuming a positive volume
for a collection of hyperbolic regular points (see also [23] for a related
result for surfaces, using Young towers and [18] for another notion of
regularity for C'*° systems).
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In the present work we do not assume any kind of regularity, and so
Lyapunov exponents may be defined in different ways. For example,
we may consider the top-upper exponent

— : 1
X(x) := limsup — log || f"|, (1)

n—oco 1
or the top-lower ezponent x(x) := liminf,_, + log||d, f™|. In any case,
any such notion should coincide with the common definition of Lya-
punov exponents for typical points with respect to invariant measures.

Recently some progress has been made regarding the Viana Conjec-
ture for C'* diffeomorphisms of surfaces ([21, 19]). In [19] the second
author proved more precisely that for a C" diffeomorphism, r > 1,
Lebesgue a.e z with x(x) > M lies in the bassin of an ergodic
hyperbolic SRB measure (see also [24] for C” interval maps). In these
settings, the lower bound on ¥ is sharp [18, 15]. Morally, C" smooth-
ness allows one to bound the distortion in the dynamics of disks, similar
to the role of domination in partially hyperbolic systems.

Before moving to the description of our main results (which indeed
apply to manifolds in any dimension), we wish to describe the limits of
the general Viana Conjecture in high dimension. Consider the famous
“Bowen’s eye” example (see [29]), which admits a single hyperbolic
fixed point p. It can always be made to be C* smooth. Consider the
product dynamics of this map, times a hyperbolic linear toral automor-
phism A of the 2-torus, where we assume w.l.o.g. that the exponents
at the fixed point on Bowen’s eye dominate the derivative bounds of
the toral map. In this product dynamics which is C'*° smooth, every
point admits a positive Lyapunov exponent, and there are no measures
with 0 exponents. However, the system admits no SRB measures. This
can be seen by the fact that the Bowen’s eye example admits only 4
ergodic invariant measures, all Dirac delta measures- three are on fixed
points which admit only positive Lyapunov exponents, and one on the
hyperbolic fixed point. By making the exponents at the hyperbolic
fixed point in the Bowen’s eye dominate all exponents in the toral au-
tomorphism, we can guarantee that there is even no invariant measure
with absolutely continuous conditionals on strong unstable leaves (i.e

no u-Gibbs).

Therefore we can see that in dimension larger than two, expansion
alone is not enough to conclude the existence of an SRB measure, nor
a u-Gibbs measure. But still in the above example there is a mea-
sure with some absolutely continuous property, which is the product

8, X 5P of the Dirac measure 6, at p with the SRB measure p358
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of A (just the Lebesgue measure on T? in this case). In the present
paper we prove a strong version of the Viana Conjecture for C'*° diffeo-
morphisms, by showing that volume almost every point with non-zero
Lyapunov exponents lies in the basin of a hyperbolic SRB measure (see
§1.2.2). This will be a consequence of our main result which implies the
existence of a measure with absolutely continuous properties assuming
only expansion at Lebesgue typical points. It addresses in particular
the above example. More precisely, if the k-th exponent is positive
on a set of positive volume, then there is an invariant measure which
disintegrates into smooth measures on k-disks which are contained in
local unstable manifolds (see §1.2.1).

In §1.2 we describe our results and in §1.3 we give a detailed de-
scription of the steps of our proof, which follows a geometric approach.
However, allow us to give a brief overview of these steps first.

(1) First we wish study the geometry of a k-disk which is pushed
forwards by the C*°-dynamics, using Yomdin theory. This poses
several new challenges, compared to previous works which study
the geometry of curves, e.g [21, 19].

(2) The refined Yomdin theory is then used to find points with
a positive density of times with bounded geometry, which is
adapted to the notion of expansion on disks.

(3) Finally, we construct an invariant measure using a notion of
Measured Disks (morally similar to standard pairs [25]). These
disks do not come equipped with a compact space of densities,
and so proving that the limiting measure is absolutely continu-
ous requires a new approach of comparing measures via atoms
of the Yomdin partition.

1.2. Main results. Let M be a closed Riemannian manifold of dimen-
sion d > 2, and let f € Diff>*(M). We denote the Riemannian volume
of M by Vol. Below we extend the notion of a Lyapunov exponent in
the weak sense from (1).

1.2.1. Generalized u-Gibbs measures. Let A*TM be the k-th exterior
power bundle of the tangent space TM endowed with the Riemannian
structure inherited from M. We denote by A*df the map induced by
df on TM.

Definition 1.1 (k-th exponent). For a point x € M, its k-th exponent,
where k € {1,...,d}, is defined by df on AFTM.
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)\k(x) =

n—1
1
. . - k n| _ - + S . fD
lim lim sup <log||/\ d. "l ) Eolog 1;122{_1”/\ dfinf ||>
]:

1
P—=0 pyco N

Remark:
(1) Vo € M, X\i(z) = X(z) = limsup,_,, +log||d,f"|| with the
convention max & = —oo.

(2) VI <k <dVreM, \(z) < limsupn%log ok(da f™) < A(x)
with oy (d,f") being the k-th singular value of d, f".

(3) To see that the definition is proper and that the limit on p
exists, see Lemma 2.2.

(4) Aa(z) < 0 for Vol-a.e z. See for example the remark following
Lemma 2.2.

For a smooth embedded disk D we let Volp be the Riemannian
probability volume on D.

Definition 1.2 (Generalized u-Gibbs measure). Let k € {1,...,d—1}
and v > 1. An f-invariant Borel probability measure [i is called a
Generalized u-Gibbs measure (G-u-Gibbs in short), if it can be written
as

- / 1o dB (),

where P s a probability on the space of C"~V'-embedded k-disks, and

(1) fOT ﬁ—CL.@ W, fe K VOllm(w);
(2) for p-a.e w, for piy-a.e x, Im(w) C V%.(z), where Vi".(z) de-
notes the local Pesin unstable manifold at x.

Remark:

(1) Notice that almost every ergodic component of a G-u-Gibbs
measure is also a G-u-Gibbs measure, as different ergodic com-
ponents are carried by disjoint collections of unstable leaves.

(2) In Corollary 7.27, we in fact prove that for every G-u-Gibbs
measure, the conditionals yi, are equivalent to Vol (z), with
an explicit density given the by the product of Jacobians.

(3) Note that every G-u-Gibbs measure given by a disintegration by
(k + 1)-disks, is in particular a G-u-Gibbs with a disintegration
by k-disks.

Our main theorem is as follows:
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Theorem A (Main Theorem). Let f be a C* diffeomorphism of a
closed manifold. Then if Vol([A\r, > 0]) > 0, then there exists a general-
ized u-Gibbs measure |1 with a disintegration by absolutely continuous
conditionals on k-dimensional disks.

Remark:

(1)

(2)

Our main theorem is optimal in the sense that it applies to the
example which is illustrated in the second-to-last paragraph of
§1.1. While that example does not admit an SRB measure, nor
a u-Gibbs measure, it admits a G-u-Gibbs measure.

The condition in the main theorem is sufficient, but not neces-
sary. To see this, consider the skew-product on S' x T? given
by F(t,z) = (g(t), fi(x)), where g : S' — S! is a North-South
dynamics, fixing 0 and 1, where 0 is an indifferent repelling
point (0 Lyapunov exponent) and 1 is an attracting fixed point
(negative exponent). Let fo be an Anosov map, and f; be a
homotopy to fi, which is a DA map with an attracting fixed
point p and a repeller (see for example [46]). Thus almost every
point w.r.t. to the volume converges to d; x d,, and hence has
no positive exponents. However, the system admits the SRB
measure dg X pf.

While the condition of the main the theorem is not necessary,
the proof quickly reduces to finding a disk with a positive disk-
volume of points which see some expansion tangent to the disk.
Such a “leaf condition” is clearly necessary, and through our
construction also sufficient.

u-Gibbs measures (and in particular G-u-Gibbs measures) do
not have to be physical, as can be observed by f = A x Id :
T2x T? — T? x T?, where A is a linear Anosov map. The diffeo-
morphism f admits SRB measures, and satisfies the condition
of our main theorem, but admits no physical measures.

Our proof uses tools from Yomdin theory. Yomdin theory is
sufficiently robust, as it applies to the dynamics of a disk under
a sequence of maps, rather than a single map (with uniform
regularity bounds). This implies potential applications to the
setting of random dynamics.

Conjecture (G-u-Gibbs rigidity). Given an ergodic generalized u-
Gibbs measure i = [ podp(w), either [ is a u-Gibbs measure, or
for some k, for p-a.e w, for py-a.e x, Im(w) is tangent to a sum of
Oseledec directions of dimension k at x, and the condiltional measures
on the stronger unstable leaves are atomic.
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The idea is to study the distribution of the tangent spaces to w
within the projection tangent space of a larger unstable leaf. The in-
variance of the measure should imply that either the distribution of
directions is atomic (hence allowing an invariant integration, or the
larger unstable leaf is absolutely continuous “in the direction of w@”
where these directions are well spread (hence implying that the condi-
tionals on the large unstable lead should be absolutely continuous as
well).?

The example which is illustrated in the second-to-last paragraph
of §1.1 falls within the case where the conditionals on the stronger
unstable leaves are atomic.

Remark: Given ¢ € C(M), we have [ ¢dji = [ [ pow(t)po(t)dtdp(w).
Similarly, we may define a measure p* on P A* TM as [ ®dp* =

[ [®((w(t),dywT;]0,1]%))pw(t) dtdp for any & € C(P A*¥ TM). Then
p* is invariant under the dynamics induced by f on A¥T' M. In the case
where the Lyapunov spectrum of i is simple we get that any ergodic
component of p* is supported on a direct sum of Oseledec unstable sub-
spaces. Thus, in this case, for p-a.e w, for py-a.e x, Im(w) is tangent
to a sum of Oseledec directions of dimension k at x.

In [19], the author conjectures the following:

Conjecture ([19]). Let f : M — M be a C* diffeomorphism of a
closed manifold. If Vol([$*(z) > XF~1(z) > 0]) > 0, then there exists
an ergodic measure with at least k positive Lyapunov exponents, such
that its entropy is larger than or equal to the sum of its k smallest
positive Lyapunov exponents.

In the conjecture above, $¥(z) := limsup = log || A¥ d,. /™|

We prove that the measure i1 from the main theorem satisfies the
following:

Theorem B. Assume that Vol([\y > 0]) > 0, and let i = [ i dp(x)
be the ergodic decomposition of i. Then for li-a.e x, [, admits at least
k-positive Lyapunov exponents, and satisfies

ha (f) = > Xi(fiz)-

k-smallest positive x;(fiz)

Remark:

2In [14] the authors study a related notion of “generalized u-Gibbs measures”:
if the unstable conditionals are invariant to the action of an adapted group (given
by the normal forms), then either the conditionals are invariant to the action of a
larger group, or the QNI condition [31] is violated.
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(1) Note that this statement is optimal, as can be seen by the ex-
ample which is illustrated in the second-to-last paragraph of
§1.1, where the inequality is an equality.

(2) In particular, this implies that i has positive entropy (by the
affinity of entropy), and that i admits also at least 1 negative
Lyapunov exponent a.e (by the Ruelle inequality for f~1).

1.2.2. The Strong Viana Conjecture. Finally, as an application to the
main theorem of §1.2.1, we prove a strong version of Viana conjecture
in any dimension.

Definition 1.3 (Negative exponents). For k € {1,...,d — 1} we set

s (T) = ilgl lim sup lim i£f i 1.qma (),

q—00 n—
where )
- e : (9) ¢
%k-l—l,q,n,A(m) T Lgr{rll}%n} ﬁ Z (I)k—‘rl © f (fﬂ),
An<#LLIn el
and
(I)(Q) ( ) 1 1 + H /\k d:rqu
r):=—-logm —————.
k41 q g | AT d, fa
Remark:

(1) For an f-invariant probability v, for v-a.e x,
s (2) = max{0, —xx+1(2)}, where xiy1(z) is the (k4 1)-
th Lyapunov exponent (with multiplicity) at x. For proof, see
Lemma 9.6.

(2) 744 (2) < max{—/Fs1(x),0}, where

Buni(e) = sup esssup, Xuo,
vEpw(x)

where pw(z) denotes the set of empirical measures of = and

esssup, Yx+1 1S the essential supremum of y — xg11(y) w.r.t.

v. For proof, see Lemma 9.4.

Definition 1.4 (Points with non-zero Lyapunov exponents). Forx > 0
and k€ {1,...,d— 1}, we let

Hyp];< = {x € M : \i(), 54, (x) > X}-

Theorem C (Strong Viana Conjecture). Let f € Diff>*(M) and let
x > 0. Then Vol-a.e x € Hypi lies in the basin of attraction of an
ergodic x-hyperbolic SRB measure with exactly k positive Lyapunov
exponents.
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Remark: We do not know if the number of SRB measures whose
basins cover Hypi is finite or not (see also the last item of the remark
following Theorem D ).

1.2.3. Hyperbolic SRB measure for co-dimension 1. In the case where
k =d —1 (i.e the co-dimension 1 case), we do not need any condition
on the exponent ;:

Theorem D. Let f be a C* diffeomorphism of a closed manifold of
dimension d. Then Vol-a.e x with Ag—1(x) > 0 lies in the basin of a a
hyperbolic SRB measure which admits exactly d — 1 positive Lyapunov
exponents almost everywhere.

Remark:

(1) Moreover, this is an “if and only if”, as the existence of a hy-
perbolic SRB measure with d — 1 positive exponents implies
Vol([Ag—1 > 0]) > 0, as a classical application of Pesin’s abso-
lute continuity theorem for stable leaves.

(2) In particular for d = 2 we recover the main result of [19] for C*
surface diffeomorphisms.

(3) In dimension 2, the number of SRB measures with entropy
larger than a > 0 is finite. This follows from the finiteness
of homoclinic classes with entropy larger than a > 0 which is
proved by using a Sard argument (firstly appeared in [41]). We
hope that by a similar approach one could show that Vol-a.e
x with Ag_1,(z) > 0 lies in the basin of finitely many SRB
measures (see Definition 2.1 for the definition of the exponent

Aio1yp).

1.2.4. C" statements with 1 < r < 400. The results stated in the above
§1.2.2 and §1.2.1 for C*° diffeomorphisms follow immediately from the
following general C” version of our Main Theorem. Fix 1 < r < +o0c.
We let
Vn €N, Mpn := max{|[d.f*[|, [[d.f~"[}
then
R(f) = lim llog;]\/[fn.

n—oo N
Theorem E (C” version). Let f be a C" diffeomorphism of a closed
manifold. Then if Vol([\x > %R(f)]) > 0, then there exists a gener-
alized u-Gibbs measure i with a disintegration by absolutely continuous
conditionals on k-dimensional disks.

Remark:
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(1)

(2)

By the aforementioned examples in dimension two, one can not
expect to replace the lower bound kaQlR( f) by 0. However we
do not claim that the lower bound in the above statement is
sharp.

The C™ smoothness property together with the assumption
Vol([A\r > %R(f)]) > (0 is used in §5 to construct a disk with
a positive density of geometric times on a subset of positive
disk-volume, using Yomdin theory. Given such a disk, the con-
struction of the G-u-Gibbs measure and its properties is done
in §6, §7, and §8. All arguments in those sections assume only
f € Diff'" (M).

In §9, by using the construction of the SRB measure from the
previous sections we show in addition that Vol-a.e z € [\, >
%R(f)] N [#,41 > x] lies in the basin of a min{y, %R(f)}—
hyperbolic SRB measure. The proofs in this section assumes
only C' regularity as well. In addition, Vol-a.e z € [A\g_1 >

7%213( f)] lies in the basin of a hyperbolic SRB measure.

1.3. Key steps of proof. The proof is composed of seven key steps,
which we describe below.

(1)

A disk with positive disk-volume for expanding points:
The first step is reducing the dynamics to dynamics of an “al-
most expanding” map. This is achieved by an embedded k-
dimensional disk D, such that the induced Riemannian volume
Volp gives a positive measure to points whose expansion of \g(-)
is achieved on T'D. In particular it requires using an iterative
power of the dynamics of f, to observe the expansion more
directly.

Refined high-dimensional Yomdin theory: The second
key step is developing a quantitative approach to Yomdin the-
ory which applies to high-dimensional disks. We expand here a
bit about this step, as it is crucial.

Yomdin theory allows to partition and reparameterize semi-
algebraic sets into components whose image under the dynamics
of a smooth map remain with a bounded derivative. The idea is
that if the image of a disk has to “bend” a lot, it forces the num-
ber of components to be larger. The strength of Yomdin theory
is controlling the number of such components under a C* map,
by approximating the map with its Taylor expansion, and prov-
ing that the number is exponentially small. The usefulness of
Yomdin theory is demonstrated for example in [48, 36, 20, 18].
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In [19] the second author develops an alternative approach,
which allows to better control the geometry of curves. The ge-
ometry of a curve is simple, as it entails of only its derivative and
length. The geometry of high-dimensional disks is much more
complicated, as they could be very narrow in some directions,
but large in other direction, or even wind above themselves like
a staircase. Moreover, the volume of the disk can increase under
the dynamics, while some directions demonstrate contraction.

In this paper we develop an applicable high-dimensional quan-
titative approach to Yomdin theory, which allows us to control
the geometry of the image of a disk under a smooth map. More-
over, we are able to do so in a manner where the reparameter-
ized disks (called Yomdin charts) form a partition. We call this
partition the Yomdin partition, and it serves an important role
later when we construct and compare measures by the atoms
of this partition.

Tree dynamics of the disk, and positive frequency of
“good” times: The third key step is to construct the tree of
the dynamics of the disk D. This refers to the tree structure
which is achieved by applying the Yomdin subdivision itera-
tively to the images of D under the dynamics. In particular,
this tree description is crucial in order to study the points on
the disk D whose corresponding position on the tree at time
k has the bounded geometry property, for a uniformly positive
portion of £ < m. This is the only part in the paper where
we require the regularity of the diffeomorphims to be possibly
greater than C'*. The notion of bounded geometry is how we
keep enough control of the geometry of the Yomdin subdivision,
without being too restrictive so the tree structure becomes in-
sufficient. Here we makes use of the quantitative Yomdin theory
for high-dimensional disks.

A limiting measure on the space of Measured Disks:
In the fourth step, we use the positive density of times with
bounded geometry for a subset of positive Lebesgue measure
on D in order to construct a measure on the space of Measured
Disks- that is the space of embedded k-dimensional disks in
M, endowed with a probability measure on them. The positive
density of times with bounded geometry allows us to restrict to
a pre-compact subset of the space of Measured Disks, in which
we can take limits.

The main idea here is to construct a sequence of measures
which are not invariant, but correspond to the restriction of the
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desired invariant measure onto increasing subsets (similarly to
Pesin blocks). The subsets are parameterized by the bounded
geometry of the disks.

Absolutely continuous conditionals: In the fifth step, we
prove that the invariant measure which we construct in the
fourth step is given by a disintegration into absolutely continu-
ous measures on disks which are subordinated to the unstable
foliation. In fact, we prove that these conditional measures are
equivalent to the induced Riemannian volume on the disks.

We decompose each conditional measure in the limiting pro-
cess into atoms of the Yomdin partition, and bound the total
mass of all atoms on which the conditional measure does not
compare with the respective disk volume. The idea is to make
sure that the conditional measure and the respective disk vol-
ume compare over finer and finer atoms, as we take the limit,
guaranteeing that the limiting measures will coincide over all
continuous functions.

Such analysis, and a choice for an increasing degree of atoms
which still cover a big portion of the measure, relies on the
sub-exponential decay of the measure of sets which we push
forward.

Dynamical properties of the invariant measure: In the
sixth step, we prove the variety of dynamical properties which
the invariant measure holds. That is, we prove the estimates
of the exponents, the entropy; And we prove the fact that the
limiting measures on the space of Measured Disks concentrate
on disks which are contained in unstable leaves. This gives an
indirect construction of disks which are contained in unstable
leaves, and an indirect construction of their densities. By “in-
direct”, we mean without the constructive approach of a graph
transform or a Perron-Hadamard method.

Controlling the transverse Lyapunov exponents: In the
seventh and final step, we estimate the Lyapunov exponents
of the G-u-Gibbs measure which we construct, in the direction
transverse to the disks on which it disintegrates with absolutely
continuous conditionals.

In general Lyapunov exponents may not be continuous, and
using the fact that our G-u-Gibbs measure is constructed by
pushing forwards sets, we are able to prove that the negative
exponents for the empirical measures translate to the limit. In
fact, our methods allow to control the Lyapunov spectrum of
the limiting measure, through the spectrum of the emprical
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measures. Controlling the spectrum of a measure which is con-
structed this way is meaningful even in the Anosov setting.

2. SETUP AND DEFINITIONS

2.1. Lyapunov exponents.

2.1.1. Standard Lyapunov exponent. For a dynamical system 7" : X O
and a normed vector bundle 7 : V' — X a linear cocyle A:V O is a
map satisfying m o G = T such that the restriction of A to the vector
space V, := 7 1(x) to Vp, is a linear isomorphism. Then one defines
the Lyapunov exponent of A at v = (x,v,) € V as follows

) 1 n
Xa(v) = limsup ﬁlog ||A™ (v)]|-

We may define the Lyapunov exponent y4 on the projective bundle
PV by letting xa([v]) = xa(v) for any 0 # v € V with its associ-
ated class [v] € PV. Consider a C' diffeomorphism f on a compact
smooth Riemannian manifold M of dimension d. For any x € M we
let (xx(2))1<k<a be the usual Lyapunov exponent associated to the
derivative cocycle of f. It is well-known that

1 .
xi(z) = X(x) = limsup —log ||dz.f"|.

When v is a f-invariant probability measure on M we let xx(v) =
[ xk(z) dp(z) for any 1 < k < d.

2.1.2. New positive exponents. We introduce now the new positive ex-
ponents A\, 1 < k <d.

Definition 2.1. For a point x € M and k € {1,...,d}, we let for all
p € N\ {0}, \pp(z) :=limsup,_,. Mpn(z), where

n—1
1 .
Nepun () 1= <log | AF do f7] - ;. > log* Jnaxc || A df%fpn) .
£=0 T

3|

Remark:

(1) For k =1 and for all p, we have
Aip() = Ma(x) = limsup, log d, /| = X().
(2) We always have X(x) > A ().
(3) When z is a typical point for an ergodic measure v, then

— 1 + J P
Mep(r) = ) a() - / log* max || A7 dpf" | d(x).

1<I<k
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Lemma 2.2. For any x € M and 1 <k < d the sequence (Aip()),, is
converging to A\p(w) := sup, App(z).

Proof. Fix t € M and 1 <k <d. For all n € N\ {0}, we set

n—I1
ap(n,z) =Y log" max || A dge f
=0 -

We also let C :=log™ maxi<j<p—1sup,en || A7 dy f||. Observe that
Vp,n € N\ {0} Vt € N, a,(n, f'z) < a,(n,x) + tpCy. (2)
Fix e > 0. Take g such that Ay 4, () > sup, A q(7)—€/2 and let py =
[2goCy]. Let us show that Agp(x) > Apge(2) — €/2 > sup, Apg(x) — €
for any p > po. Observe that for p =tqo +r, 0 < r < gy, we have

n—1

ay(n,x) < Z (logJr max || A dyeagse, [

1<j<k-1

(=0
+ 3 log" mae IV dyore, )

0<t'<t

<nrCjy + Z gy (1, fE%)

o<t'<t
<ngoCy + tay,(n, ) + tgoCy by using (2)

Snpg + tag, (n, x) + tgoC'y according to the choice of po(< p).
Therefore,

1 1
Ak p(2) = limsup — <log | NF d. f"| — 1—)ap(n, x))

n
1 t ¢
> 1mnsup " (Og H f H pOétIo(n (L’)) 2
1 1 €
> 1mnsup - <0g I Il qOOqu(" x)) 9
€
> Moo (z) — 9 (3)

Remark:

(1) Lemma 2.2 together with the remark following Definition 2.1
implies that for a typical point x for an ergodic measure v,

Me(z) = xe(v) + > min{yx(v),0}. In particular, when
1<i<k—1

k() = xe(v) > 0, one gets \p(z) = xr(x).
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(2) Observe that Ag(z) < limsup + log Jac,(f™). In particular Vol([As >
0]) = 0. If not, then there would exist a x > 0 and sets E,,
s.t. Vol(E,,) > -5 with B, := {x : Jac,(f") > e™*}, n; 1 0o

(by the Borel-Cantelli lemma). Then 1 > Vol(f™[E, ]) > <

i 2
J ns
J

which is a contradiction.
2.2. A disk and a positive disk-volume subset.

Definition 2.3. Fiz p € N and let k < dim M, we consider the linear
cocycle Ay, on ANFTM over f defined as

Aed, f (v)

: i
max{1, max;<;_1 || AV d, f?||7 }

Vo €M, ve A"TLM, Ag,(z,0) =

Remark:
(1) The top Lyapunov exponent of Ay, is equal to Ay,.
(2) When p divides ¢, we have x4, (v) > xa,,(v) for all v €
AT, M.

Let ¢ be the Pliicker embedding of the Grassmanian Grass(7TM) to

the projective space of the exterior bundle P A* TM (see Appendix
A.2).

Lemma 2.4. Write E := [\ > a] with a > 0, then if Vol(E) > 0,
then Ix > a, po € N, and a k-disk D s.t. Vp € poN,

Volp([xa,, (x.L(T,D)) > x]) > 0.

Proof. Fix x > a and py € N s.t. Vol(E') > 0 where we let £ :=
{r € E: N\p(x)>x} Let {0} =FyCF C...CF,=AN"TM,s>1
be the Lyapunov flag associated to Ay ,,. By definition the Lyapunov
space Fy_1(x) is given by Fy 1(x) = {v € A"TLM : xa,, (2,0(v)) <
Akpo () 1= SUDyenkry, XAy, (T, w)}. The map x +— Fy_i(x) is measur-
able (for the Borel algebra associated to the usual topology on Grass-
manian), and so it is continuous on a subset E” C E’ with Vol(E") > 0.
We may choose a Lebesgue density point x of E”. Let U be a small
neighborhood of z, such that F,_;(y) is almost constant for y € UNE".

We may disintegrate the volume by a family of affine k-planes H (in
some local chart at x which can be assumed containing U) satisfying
(H) ¢ {Fs_1(y), vy € UN E"}. By Fubini’s theorem, there is a k-
disk disk D contained in one of these planes with Volp(E”) > 0. This
completes the proof as we have for all z € D N E”,

XAx o (x, (T, D)) > x.
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O

2.3. Sequence of finite-time expanding subsets with a sub-
exponential volume.

Lemma 2.5. Let D and pg be given by Lemma 2./, and let p € poN.
There exist X' > x > a, N C N with #N = oo and subsets of D,

(BP)pens, s-t. for alln € N,
(1) Volp(Bh) > %,

(2) Vn € N'\Vx € B, |Ar (x,u(T,D))| > eX™.

Proof. This is a consequence of the Borel-Cantelli lemma applied to
the set E” from the proof of Lemma 2.4. O

3. THE TREE DESCRIPTION OF THE DYNAMICS OF A DISK

In this section we aim to describe the dynamics of a disk using a tree
associated with its Yomdin partitions. In [19] it was done for curves,
and here we introduce an extension to high-dimensional disks (which
may exhibit much more complicated geometry, lack of conformality,
and non-trivial boundary). We first generalize the notion of bounded
geometry to higher-dimensional disks.

3.1. Bounded geometry.

Notation: By a C" %! map F', we mean a C"~! map F with Lipschitz
C™! derivatives and we define the following semi-norm for k < r:

ldfF == Jnax Lip(|0*F]),
where Lip(-) denotes the Lipschitz constant. We also denote || F||, =
maxi << [|d*F|.

Definition 3.1 (Bounded couple). A couple of C"~4* map (o, 0), where
o :[0,1]* — M is a C" embedding and 0 : [0,1]* — [0,1]* is a C"—11
map, s called a bounded couple if

1
Vs=1,---,r—1, ||d° (t — /\kdg(t)O') | < 10k sup | AF dowyo|.
t

Lemma 3.2. Let (0,0) be a bounded couple, then

1
Wt ¢ € [0,1)%, [ A" doo — Nodoqyo] < 15| A" doyo].
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Proof. Let t, be such that | AF do(t.)0| = supy | NF do(syo|. Then for
any t,t' € [0, 1]%,

| N dg(t/)0| — | NFE dg(t)0'|‘ S‘ NE d@(t)O' — /\kdg(t/)O"

<|t —t'| - sup ||d¢ ( —> /\kdg(.)O') |
¢

1
<[t -] 10_k:| N do(r. 0]
1
Then, by letting ¢’ = ¢,, we obtain
1
(1 - m) | AF dgyo| < | AF doyo| < | AF dogryol. (5)

Therefore, by bootstrapping (5) and plugging it back into (4), we get
that for every ¢, ' € [0, 1]%,

‘ N doyo — /\’“de(w“‘ < |t =] [ A doyo] -

(6)
0

1
VE(OVE —1)

We may control the oscillation of the tangent space of a bounded
couple as follows. We refer to Appendix A for the definition of the
angle ZH, H' between two vector spaces H and H'.

Lemma 3.3. Let (0,0) be a bounded couple. Then for any x,y € Im(0)
we have
LT0,Tyo0 < /6.

Proof. 1t follows directly from Lemma 3.2 and Lemma A.2 in the ap-
pendix. ([l

Lemma 3.4 (Bounded distortion property). Let (0,0) be a bounded
couple. Then for any x,y € Im(0) we have

| Ak do
— < V2.
o] < V2

Proof. By (5), we have for all ¢,¢ € [0, 1]*
AFd 1
| o) < <3

’ NE d@(t/)(f’ - 1- ﬁ

U
Definition 3.5 (strongly e-bounded couple). Let € > 0. A bounded

€

couple (0,0) is called a strongly e-bounded couple if ||o 0 0], < R
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Definition 3.6 (Admissible family). Let ¢ > 0 and let (0,0) be a
bounded couple. A finite family © of maps {9 . 0, 1]* O}eee is said to
be a (0,0, €)-admissible family when
(1) (0,0) is a strongly e-bounded couple for any 0 € O,
(2) nge@ Im(0) < Im(6"), where [[* denotes a union of k-manifolds
which 1s disjoint up to to their boundaries,
(3) There is x € Im(o00) and a 1-Lipschitz map ¢ : H — H* with
H C T,M being the tangent space of o at x such that

k
Ly(e) Co(©) = H Im(o06) C I'y(2e),
00
where Ty (8) := exp,{(v,¥(v)) € H® H* : |v| <&} for§ >0
with exp, being the exponential map at x (such a set T'y () is
called a §-graph).

Remark: There is a constant Cy; > 1 such that:
(1) For any strongly e-bounded couple,

Vol(o 0 0) < Cye”
(2) For any (o, 8, €)-admissible family ©’ of a bounded couple (o, 6),
C7'e" < Vol(a(0')) < Cyue”.

3.2. The tree of the disk dynamics and the Yomdin partitions.
We consider a C" smooth diffeomorphism g : M O and a C" smooth
embedded disk o : [0,1]* — M with N > r» > 1. We state a global
reparametrization lemma to describe the dynamics on the image of o
by generalizing the case k = 1 which was established in [19]. We will
apply this lemma to g = f? for large p with f being the C" smooth
system under study.

Notation:

(1) We denote the image of o by D.

(2) For any n € N we let o, (resp. D,,) be the C" embedded disk
defined as o, = ¢" o o (resp. D,, = g"(D)).

(3) For two maps 0,60 : [0,1]* O we write §# > ¢’ when there is a
map ¢ : [0,1]F O with ||d.¢|| < 1/2 and § =0 o ¢.

(4) We denote by G (resp. F') the map induced by g (resp. f)
on the projective space P A¥ T'M of the k-th exterior tangent
bundle.
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(5) For & = (x,w,) € PAFTM we also write w, for a representative
with unit norm. Then we let [(Z), I'(x) be the following integers:

(&) :=log | A* dug(wa)l],
[(x) :=[log™ max || A¥ d,g|].
K<k

(6) For x € D, we let Z € P A¥T,M denote the class of the tangent
space to D at z, formally = «(T, D).

Description of the tree. We will encode the dynamics of g on the image
of o with a a directed rooted tree T by making all its edges point away
from the root. Moreover the nodes of our tree will be colored, either
in blue or in red. The level of a node is the number of edges along the
unique path between it and the root node. We let 7, (resp. T, Tn)
be the set of nodes (resp. blue, red nodes) of level n. For all ¢ <n —1
and for all i" € 7,,, we also let 7, 3 i} be the node of level ¢ leading
to i". We assign to each node i” € 7, a family of maps O;» such that
we have for some constant A, ; depending only on r and d, which is
specified afterwards:

e cither i” € T, then Oin is a (0, 8}., €)-admissible family with
#0O;n < A, 4 where 6, satisfies Ojn—1 > 60}, > 6in for some
Oin—1 € 91271 and for all 6;» € Ojn,

e ori" € T, then O;n = {6in} is a singleton with (o, fi») being
a strongly e-bounded couple with 6;.-1 > 6;» for some #;n—1 €
©j-_,. In this case we put 0;, = O;n.

Choice of the scale €. Recall that exp, denotes the exponential map

at x and let R;,; be the radius of injectivity of (M, || - ||). For % >

e > 0 welet g = goexp,(2¢) : {w € T,M, |w| <1} — M.

Then ||d°g5.||cc < (2€)° Supuwer,m, ||d5,(g 0 exp,)||. In particular there
|w|<2€

is g = €0(g) < R;‘j depending only on M and ||d*¢|/s, s = 1,...,7,

such that ||d*¢2 ||ee < 3€||d.g|| and ||d* A* dgi.||lee < 3¢|| AF d,g]| for all

s=1,...,r (resp. & =1,--- ;r—1),all x € M and all € < ¢(g).

Proposition 3.7. Let ¢y(g) > ¢ > 0 and let o : [0,1]* — M be a
strongly e-bounded disk. Then there is a tree T as above such that we
have for some other universal constant C, 4:

(1) ©p = {6} = Id e and for any i"~' € T,—1 we have

k
O (Ogn1) = Hinen N O (O4n) .

—in—1
_1=1
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In particular
 u(On) =1
I1..., o2(6) =Im(y).
(2) Vi"~t € T,y and for all (1,,l,) € Z x N we have
#{i” €T, 1", =i"" and
Jr € 0(O), s.t. (G"'T) = [n} < 203,

#{i“ e, i" , =i and

3k2

3z € 0(O), s.t. U(g" 'a) = I;l} < ChaMy e,

This statement is a global version of Proposition 7 of [18]. The proof
is the content of §4.

Definition 3.8 (Yomdin partition). For x € D and 0 < ¢ < n we let
wy(z) be the unique set of the form Im(o, 0 0y), 6y € Oy, containing
ftx. When it is clear we also write () for the map oy o ;.

Remark: The Yomdin partition is in fact only a partition up to a
set of zero disk volume, as charts may intersect on their boundaries, a
subset of co-dimension at least 1. This is enough for us, as the only
reference measure which we will use will be the disk volume. We will
continue to treat it as a partition henceforth.

Lemma 3.9. For every { <n and x € D,
diam (g~ "9 [w, (z)]) < 2.

Proof. Let 05y € Oy (resp. fin € Op) with x € Im (0 0 6n) (resp.
r € Im (0 006;n)). We have Ojn > 9{?“ > -« > @, > 6in. Therefore
there is ¢ : [0,1]% O with ||d.¢|| < 27" such that 6in = iy 0 ¢. Observe
that ¢~ 9[w,(x)] = Im(oy 0 6;»). In particular

diam(g~ "0 [, (z)]) < VE|d.(54 0 03|

< Vk|d.(o0 0 04)] - ||d.¢|
< 2,
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4. PROOF OF PROPOSITION 3.7
Proposition 3.7 follows by induction on n from the following lemma.

Lemma 4.1. Let (0,0) be a strongly e-bounded couple. Then there are
maps ¢ : [0,1]% O, disjoint families ©, and O, (maybe empty) of maps
0:10,1]% O such that
(1) (goo,¢) is a bounded couple for any ¢,
(2) (goo,¢o 5) is a strongly e-bounded couple for any ¢ and any
5 S @(z, U @¢,
(3) 0 < ¢ <0 for any ¢ and any§€@¢UQ¢,
(4) Oy is a disjoint union of (g o o, ¢, €)-admissible families, each
with cardinality less than A, 4,
(5) 115, yew,ue, Im(¢ 0 6) = Im(8),
3k2
(6) # (U¢ Q¢) < B, 4My " maxo<i<k || A d.g||tm(oo0), for some uni-
versal constant B, 4 > 0.

Proof of Proposition 3.7 assuming Lemma 4.1. The proof is by induc-
tion, where the case n = 0 is trivial. Assume that the statement
holds for the index n, and we prove it for n + 1. Let i* € 7, and
let 0;n € O;n. We apply Lemma 4.1 to the strongly e-bounded cou-
ple (0, 0:). Let ¢, Oy, ©, be the corresponding reparametrizations.
Then the red children of i (i.e., nodes i"*! in 7,1 with i"*! = i) are
given by the (0,11, ¢, €)-admissible families in ©, and, in this case, we
set 0,., = ¢. Then, to any ¢ € O, ¢, we associate a blue child i"+!
of i" with Op+1 = {#'}. Note that diam(0,(0i:)) < €, in particular
"W > || Al dgn,g|l > || AL d.gllim(on(@5m)/2 for any | < k and for any
x € 0(On). It follows from the last item of Lemma 4.1 that

#{i”“ €T, i =i" and

dx € 0(On+1), s.t. (g"z) = [;1+1}

= Z # U @¢>(9in)
¢ (Oin

Gi"eein’ i)
[/
max < HAldQHIm(anoein)S?B n+l

3k2

- !’
< 2A, 4B gMg el

The upper bound on the number of red children i"*! in Proposition 3.7
follows from the fact that the volume of ¢,,11(0jn+1) is bounded from
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below by C ek as it contains an e-graph in this case (see the remark
after Definition 3.6).
O

The proof of Lemma 4.1 involves the following form of Yomdin-
Gromov algebraic lemma. Recall ||¢]|, = max;<g<, ||d*6]|.

Lemma 4.2 (Algebraic Lemma). [26, 16, 40, 10] Let P : [0,1]* — R?
be a polynomial map with total degree less than or equal to r and let
Y be a bounded semi-algebraic set of RY. Then there is a constant
B, 4 depending only r,d,deg(Y),diam(Y") and semi-algebraic analytic
injective maps 0; : (0,1)% — [0,1]%, k; <k, i € I, such that

(1) #I S Br,d;
(2) 16:lr, [|1 P o b:l <

1
= 100d’

(3) i Im(6;) = P[Y].

Remark:

(1) The maps 6; may be continuously extended on [0, 1]% as 6;
satisfies ||d.0;]] < [|0;]|, < 1.

(2) In the following we may only focus on the reparametrizations
0; with k; = k as the image of the others have zero k-volume.

(3) By the invariance of domain theorem the image of each map
0; - (0,1)F — R* is open and each 6; is a homeomorphism onto
its image.

(4) The boundary of a semi-algebraic set has zero Lebesgue mea-
sure, therefore so does 6;(9[0, 1]%) = 96, ((0,1)*).

We will make use of the two following well-known multivariate for-
mulas for the derivatives of a product and a composition of C” functions
on R%. For positive integers m, p,q we let M, ,(R) be the set of real
valued p x ¢ matrices and we denote A-B € M, ,,(R) the product of two
matrices A € M, ,(R) and B € M,,,(R). We have with the standard
multi-index notations:

e General Leibniz rule: Let u : R — M, ,(R) and v : R —
M, m(R) be C" maps, then for any o = (ay, - ,aq) € N? with

la| :==>", a; < r, we have
O (u-v)= Y (O‘) (8%u) - (9% P). (7)
B:p<a b
e Fua di Bruno’s formula: Let u:R? — Rand v = (vy,-++ ,v4) :

R® — R? be C” maps, then for any o € N¢ with |a| < r, we
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have

P wov)= > (0u)ouvx Py ((8%1-)%2-) , (8)

BENC, |B|<]|al

where Pg <(8%i) w’) is a universal polynomial, in d7v; for i =

1,---,d and v € N° with |y| < |a|, of total degree less than or
equal to |a|.

Lemma 4.3. Let (0, 6) be a bounded couple. There is a constant E, 4 >
1 such that for any C" map ¢ : [0,1]* O with ||v|, < ELd’ the pair
(0,0 0 ) is a bounded couple.

Proof. By Faa di Bruno’s formula, we have for some constant £, 4 > 1
when ||, <1

Er,d
| A dgop(yollra1 < 5 | AY dgyo -1l
Erd k
< : N dyyo -
< 10k\/§H s()o ]|

By Lemma 3.4 we have

| A¥ dyyoll < V2| AP dgoyyo

1
Er,d

Therefore (0,60 o 1)) is a bounded couple whenever |||, <
U

Proof of Lemma /.1. Without loss of generality we may assume (by an
appropriate rescaling through local charts ¢ — ¢ 'g(e:) and 0 — ¢ 1o)
M =R’ |gll- < lldgl, || A* dgllr—1 < [| A*dg|l and € = 1 by an
appropriate rescaling, namely g — ¢ 'g(e-) and 0 — ¢ 1o

Step 1 : We first explicit a family of maps ¢ such
that

(1) [T Im(¢) = Im(6),
(2% (g o0, ¢) is a bounded couple,
3

(3) lldr (g0 0 6)l < 1/4,
3Kk2

(4) #{¢} < CraMy".

In the next computations we write a < b to mean a < C, 40 for some

constant C, 4 depending only on r and d. Let I' : ¢t — /\kdg(t) (goo)
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and let s with ||T'(s)|| = inf; ||['(¢)||. We have

a7 Tl < [ld7 ™ (A doopnyg - A doryo)|
S A doosygllr—1 ]l A¥ dogyollr—1 (by Leibniz rule (7))
< || AF dyoo()9||r—1] NF dosyo| (" (0,0) is a bounded couple)
S| A d.glly—1 max{1, [lo 0 ]|} A* dogyo| (by (8))
S| AR dgllr—i1| A¥ dooyo] (.- (0,0) is a strongly 1-bounded couple)
S| AR dgll] AF dgsyor| (by the choice of €)
< ldgll*I A* dggs)o
S lldgl*lld.g™ 1*1 A" dogiy (g 0 0)]
< M int D)

We partition [0, 1]¥ into subcubes of size < (M 2’“) = . By composing
6 with an affine reparametrization of one of these sub cubes, we get
maps 1 satisfying ||d"(gooo)|| < 1/4 and ||d" (T ov)|| < inft IT(t)]]-
Let P be the interpolation polynomial of I' at 0. Note that

I 04 = P,y < inf [[C()]].

We apply the Algebraic Lemma (Lemma 4.2) to each P := —E‘II/\’Si(;Z)U)H ,

[ € N*, with Y = B(0,1) \ B(0,1/e) (recall B(0,a) denotes the Eu-
clidean ball of radius a > 0). Let 6! be the obtained reparametrizations.
We have

ITow—P)ob; ;-1 ST o — Pll—ymax{L, |6;].}"""  (9)

infy [P
<
- 100d (10)
and
Wt e AR dyooll < [P o 0Ol < ) AF dyyall. (1)

From (9) we get
vt, 1P Bl < T 0w o i)l < 1P o bi(1)]

then by using (11)

Vt, e[_2|| AP dyyol| < [Totpo 9£(t)|| < e[+2|| AP dy()o||-
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Finally we obtain
IT ool < [[Pobifl,—1 + (o — P)obif,
N P A Ll

- 100d 100d
T ow ol inf T
- 100d 100d
_lrowod

- 10k '

This proves (g o 0,1 0 6}) is a bounded couple. Finally we check:

|d" (g oo otpob)] < g, max{1,|loo8],}" (by (8)
< lgll- (o(e,0) is a strongly 1-bounded couple
< |ld.g|l (by the choice of €).

By composing ¢/ with affine contractions p of rate [||d.g|~*] as
above, we get maps ¢ = ) 09 0 6% o p satisfying the three first items of
Step 1. Finally observe that

#{o} < #{v} - #{6,} - #{p}
< M; T Td.g]FT*

S Mg

Step 2: We construct the families ©, and estimate
their cardinality.

We set & = go oo ¢. Let C be the partition of R? into cubes of
size 1 with vertices in Z%. We may assume that there is a k-face [} (C)
of each cube C which is tangent to Im(dy.)(g © o)) with z¢ being
the center of C. Without loss of generality we may assume this face is
given by [0, 1]F x {0}47% 4 a for some a € Z¢. For C € C and ¢ € N we
let C'? be the cube of size 2q 4+ 1 centered at C'.

Let @ be the interpolation polynomial of & at 0. Recall ||d"7|| < 1/4.
Then ||o — Q|| < 1, in particular for any C' € C we have

clCcQCt caicr
We apply now the Algebraic Lemma to ) with Y being each cube C
in C. Let ©¢ be the family of reparametrizations obtained in this way.
Note that || o 6|, < 1/4. Without loss of generality we may also
assume ||0]], < = so that (go o, ¢o6) is a strongly 1-bounded couple

Er,d
for any 6 € ©¢ by Lemma 4.3.
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We let 0lm(o) be the boundary of the disk Im (o). Note that 0lm(c) =
7(0[0, 1]%). Then we have

#{C eC: CNIm(c) # @ and C* N IIm(5) # T}
S Cov(Im(algp,ix), 1)

< S max | AYd.7||, by Lemma B.1

< Orglax | A d.g|ltm(oog), " ||d.(c0@)| < 1.

We let ©, be the union of ©¢ over C' € C with C' NIm(c) # & and
C3 N oIm(c ) + @.

Step 3: for O¢ > 0 ¢ O, the intersection Im(c) N C
is contained in graphs of 1 Lipschitz maps v;, 5 € Je
over Fi(C).

Let C € C with C NIm(d) # @ and C* N dlm(c) = &. Recall that
0 = gooo¢ with (goo, ¢) being a bounded couple. By Lemma 3.3 and
Lemma A.3, the disk Im(a) is locally at € Im(c) N C a graph of a
1-Lipschitz map g : U C R¥ — R"7*_ which may be extended on F(C)
as C®°NOIm(c) = @. Then Im(a)N C is contained in the disjoint union
of such graphs. These graphs are not contained in C' a priori but in C3.

Step 4: We construct the admissible families in @¢.

We enumerate the cubes C satisfying C* N dlm(go o of) = & as
Cy,Cy, -+ ,Cy. For any 7, we let ¢;, j € J; be the Lipschitz maps over
Fi(C;) given by the previous step whose disjoints graphs cover (and
intersect) Im(a) N C;.

We continue to construct the admissible families by induction on
i=1,..,N. Forany j € J; we let ©, be the union of § € | J, ©¢ with
Im(g 0 0) NTy, # @. Assume for simplicity that C; = [0,1]%. Then
7(©),) is contained in [~1/4,5/4]% x R*"*. The number of such s
is bounded by ZCGC’ CnC 2o #0c < 7'B,4 =: A, 4. The families o),
are (g o o, ¢, €)-admissible family.

Then for any j € Jy we let ©, be the union of 0 € |J,O¢ \
(Ujes, ©51) with Im(go0)NLy, # g and so on. Observe that for j € Js,
the graph I'y, may intersect the image of the previously built admis-
sible family @, ,, j/ € Jy (assume for example Cy = [1,2] x [0,1]47").
However & (©,,) still contain the graph of ¢; over [5/4,7/4] x [0, 1]*~" x
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{0}%7*. One may continue this way by induction to construct the re-
quired (g o 0, ¢, €)-admissible families ©’.,, j € J;, i =1,--- | N.

Jsi?

4

5. POSITIVE DENSITY OF GEOMETRIC TIMES

We consider a C" diffeomorphism f : M O with Vol([A; > %R( D

0 (as assumed in Theorem E). Let p, D and x > a = %R(f) given by
Lemma 2.4. We consider the tree 7 associated to g = f? and to the
k-disc D given by Proposition 3.7.

Definition 5.1. For all n € N* U {oco} and for all x € D we define:
["(2) = (L(@), ((2))o<icn = ((G'T), '(g'%)o<icn-
Lemma 5.2. For any i" € T,, we have
(1) If x,y € Im(c 0 0l,), then |l,_ 1( ) —Li1(9)] <1,
(2) if x,y € o(Owm), then |L;(Z) — L(Y)],|l(z) — U(y )| < 1 for all
0<i<n.

Proof. (1) There is i» € O such that 0, < 0;» . Observe
that (0,,0{,) and (01,0 ) are bounded couples. There-

fore by the bounded distorsion property, we have for any ¢, s €
Im(6;.) :

NF dyo, NFdyo,,_
|| NFE dian|| < V2 and I kdso,_ 1: <V2
therefore we get with x = o(t),y = o(s)
| A" dg(G" (7))
| AFdg(Gm=1(y))

V

|| <2(<e), (12)

finally

b1 (7) =l (W) < 1.

(2) For any z,y € 0(Ojn), the points fix and fiy are e-close for any
0 <i < n. According to the choice of €, we have

maxy < || A¥ dizg]|

syt [ A dpygll =
therefore

Vi <n, |L(z)—(y)] <1
The inequalities |;(z) — [;(y)| < 1 follows from item (1) as we
have 0;» < 6’{? for any 6;» € Ojn.
O
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Definition 5.3. For a 2n-tuple of integers (" = (I;,l})o<i<n we consider
then

H(I"):={xe D :["(z)=1"}.

Definition 5.4. For a parameter X > 0, n € N* U {oo} and a se-
quence I" = (;, ) o<icn € R*", an integer £ € [0,n] is said to be (X, [")-
hyperbolic when

VO<i<l Y L1 > (0—i)x.
1<j<l

Lemma 5.5. Letx € D and Y > 0. For any (X, [*°(x))-hyperbolic time
¢, we have

Proof. We have for all 0 < j < /¢ (recall §3.2),

METD— () < | A dying(GIT)]
~ maxp || AY dging]
| A" dyig(G77))|
AT gl o]
<inf{|dgi.g(u)| : v e Ty, D; and |u| = 1}. (13)
Observe then that
g 0] 2 fol - T] inf{ldyiag(@)] : w€ TyiuD; and Ju] = 1}
i<j<m
> |?}| . H elj(w)—[;(z)’ (13)
i<j<t
> || - e IX - s (R,1°(2))—hyperbolic.

The lemma then follows easily from the definition of Y-hyperbolic
sequence. [

Remark: By Lemma 5.2, if x,y € 0(0;.) for some i" € 7T,, then
IL(z) — G(y)|, |L(x) — L(y)] < 1, for all i@ < n, therefore if ¢ € [0,n]
is (X, I°°(x))-hyperbolic then ¢ is (Y — 2, [°°(y))-hyperbolic. We apply
later this remark with ¥ = pyx + 2.

We recall Pliss Lemma in this context.
Lemma 5.6. Let [" = (I;,[})o<i<n be a sequence with Zogi<n =L

)
/

nX > 0. Then for any 0 < X < X' we have for A = sup,(l; — [

IN IV
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log || A* d.g]l,

X' —X

~

1
—#{0 <tl<n : lis(X, [")-hyperbolic} >
n

N

=

Definition 5.7. For all x € D and all n € N we define:
u,(7) =1 if x € 0(Op) with i" € T,
=0 if not.
Given n € N, we set
u'(z) = (ui(2))ocicn -

Definition 5.8. For a n-tuple of u™ = (u;) we consider

0<i<n

Bu"):={zxeD :u*(x)=u"}.

Notation:

(1) For two sequences [" and u™ and for 0 < ¢ < n we denote by [}
and uj respectively the sequence of suffices given by the n — ¢

last terms of 1" and u™.

(2) To simplify the notations, we write oy for o(©;) and oy for

fg O Oy = O'g(@ie).

(3) We also denote by Volg the normalized volume probability mea-

sure on a disjoint finite union & of discs.

The following lemma is a key estimate in the proof of Proposition

5.18.

Lemma 5.9. Given [" and u™, we consider a triple of integers ({y, {1, ls)

with 0 < by < U1 < Uy < n satisfying :

(1) Ugy = L
(2) 4y is (X, ")-hyperbolic,
(3) ug =0 for any £ € [ly + 1, 4].

Then, for some universal constant D, 4 > 0 we have
sup Vol (H(15,) N B(uj,))
ito
3k2 (01 —£g)

< DMy T e BT sup Volg,, (M(K,) N B()

if2
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Proof. Observe that

Volg,, (H(1,) N B(w,))

< Z VOl(fél o oy, ) Vol (fhaib N 7'[([21) N B(u?l))
- VOl(&izl ) Vol(le (0] O'iZQ) ’

. L .
it2: 142 =if1
1

It follows from the bounded distortion property that for all i”? we have

Vol (f“ o, NH(IE) N Buy)) - 4\/01 (200 NH(IE) N B(uy))
Vol(f4 o oye,) - Vol(f* o oy,) '

Therefore,

Vol(f* o oy, )

Vols,, (M) 0B) <4 >0 7=

. L .
it2: 122 =il1
1

< 4sup Vol (H(I7,) N B(uy,)) -

it2

Volz,, (H(1,) N Bug,))

To conclude the desired statement, we are only left to show that for
some constant D, 4

sup Volz (H(™) N B(u"))

ifo

e wlew)
< 74 Mg ! 67( 1=bo)X sup VO15iel (H<[Z> N B(NZ)> :

i‘1

For any ¢ € [y + 1,¢,] and for any = € B(u"), we have uy(x) = 0.
Therefore by Proposition 3.7,

#{i% : i! =i and Tm (o3, ) NH(I") N Bu") # @}

0 =

362\ £1—%o
[/
< (Cr,dMgrl ) eXto<i<tr

Then, in particular,
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Vol (Gyeo NH(G) N Bug)) < Y Vol(fo NH(1,) N B(uf,))
i1: i) =i

32 \ G100 [
<4 (QC'r’dMg’"“) ef0<i=4 " sup Vol(f®oy, NH(I}) N B(uy,))

i1

362\ (1=t > L=l
<4 <4CT,dMgT1> efo<ish sup Vol (a3, NH(I}) N B(u))

it

362\ f1—0o R
S 4 (4Cr7dMgr—l> e(&)—ﬁ)X Sup Vol (5#1 m H( ?1) ﬂ B(u?l)) 9

i1

*. 41 is YX-hyperbolic.

As uy, = 1, we have i belongs to T,. By the remark following
Definition 3.6, we have Vol(Gy,) > C;'eé® > C;?Vol(cy,) for some
constant Cy, so that we finally get for any % :

Vol (G NH(1) N B(uy))
_ n n)) < . s
Volz . (’H([@O) N B(ueo>) = Vol(Gyeo )

362\ f1—4o
< 4Cd€7k (4Cr7dMgrl>

=% sup Vol (G, NH(E) N B ))

i‘1

32\ f1=to
< a2 <4CT,dMg“)
. 6(60—51)5(\ Slelp VOIEel (H( Z) N B(uZ)) .
i1

This concludes the proof with D, 4 = 43C3C, 4. O

Definition 5.10. For all sequences [ and u", we set with X := px + 2
H(I"):={le[0,n): {is (X,[")-hyperbolic}
and
BGu"):={le€[0,n): u =1}
Lemma 5.11. For all sequences I and u™, we have

Cak2 p#(H(")\BG(u"))
Vol, (H(I") N B(u")) < 4D7, (M;Me—x)
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Proof. Fix sequences [" and u”.

Claim: There are integers 0 < {y < { < {1 < £} < --- < {, < n such
that :

o Vi=0,---,q, {; € BG(u"),
o Vi=0,---,q, 0; e H(I")\ BG(u"),
o H(I")\BG(u") C Up<icy(li, €] € [0,n) \ BG(u").

Proof of the Claim. Let ¢ | = —1. We set inductively for all i:
{; = max {€ eEBGW"): < 'Vl <l e H(I")\ BG(u")}
and
i=max{l' € HI")\BG"): ' <Vl <{eBGu")}.
We let g be the last integer for which £ is well defined. O

By applying Lemma 5.9 successively to the triplets (¢o, £, ¢1), (¢1, 01, ¢2),
(la, 05, 03), + -+, (L, 0. m — 1) it follows that

P Fp

3Kk2 =0 i~ ti
sup Volg , (H(1) N B(uy,)) < (DndMgrle_pX_Q)

it

3k2 P o li—t
n p(r—1) —x
<D, <Mg e )

32 p#(H(")\BG(u"))
<o ()

Then by using again the bounded distortion property we get
Vol (H(I") N B(u")) < 4sup Volz,, (H(13) N B(uy,)) ,

i‘o
w2\ PRHIMBGE)
< 4Dy, (M;<”>e—><)

O
Definition 5.12. Forallxz € D, all € (0,1) and alln € N we define:

1 K
up(z) = 1if x € o) with i* € T,, and Vol(a,, 0 6;n) < f@c(’)dA:da
=0 if not.

Given n € N, we set

Eg(ﬂﬂ) = (HQB(ZB)) 0<i<n
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Remark: In particular u’(x) = 1 implies u,(z) = 1.

Definition 5.13. For a n-tuple of u" = (u;) we consider

0<i<n

B'u") :={zeD :uj(zx)=u"}.

Lemma 5.14. Given u", for any 0 < ly < £y < n, with u, =1, we
have

0

n /8 n
sup VOIUZO b, (Eﬂ (EE )) < % sup VOerl b0, (ﬁﬁ (Llel )) .
O30 0,010 0500 <0y

Proof. By the bounded distortion property, recall that

)
L O01-1% O30y —1<0;04

sup V0102009izo (ﬁﬁ (E? )) <4 Sup V010z17109i5171 (ﬁﬁ (2?171»'
Therefore it is enough to show that

B
Sup VO1041,100i21,1 (ﬁﬁ (E?l—l)) S 100 Sup VO]'Ull Oeill (ﬁﬁ (2?1 ))
0.0, -1 O.01: 0,00 <00y —1

We have for all ;¢,-1:

Vol (Im (04,1 06i,-1) N EB(HZ—I))

< > Vol (Im (a4, 1 © 6y, ) N B*(uf))
9ie1: il1 E?@l, 0i£1 <9igl_1
sog !
Vol(og, 00,6, )< 54— €

< ¥ > Vol (Im (04,1 © 1) N B ()

I T 6.p,: 0 24
9151' 1Ty, i1 % < i1 )
, _
Gizl <9ig1_1 BC,

PCq " ok
Vol(ae, 00,4, )< 1004, 4
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Let zj, € Im(0 o8}, ). By Equation (12) we have
Vol (Im (04,1 0 bye,-1) N B (u} _,))
Yo 2AAdg(Gh T @)

o, . itteT, |
1 £

/
9#1 <9i51,1

IN

Z Vol (Im (04, 00, ) N Eﬁ(u_?l))

[ 0’
i1 <%0

-1
BCy ok
1004, 4

6151:

Vol(ay, O@igl )<

S 2l Ak (@ )| o Vol(m(or, o 6,)

IN

o, . il1eT, |
iel £

i
QiZI <9i21,1

sup Volg, o, (B”(u7,))
9151 : Hizl <9i£1—1

5 ,
< — Vol(Im(oy, _; 08 Vol,, op, (B (u?
< > Tog Vol(lm(oe, 1 0 lel))eillzailllg%_l Ol o8y, (B” (1))
¥4

. !
e O <01

Sﬁ\/ol(agl_l 0 Bie1-1) sup Vol,, oo, (B (u})).
100 000 : 0.0y <0p01 1 !

Applying Lemma 5.14 inductively yields the following lemma.

Lemma 5.15. For any u”

- ﬁ #BG(u")
Vol, (B (u >>g(%) .

Definition 5.16. For x € D we define
Copp(@) :={m: mis (X, 1°°(z))-hyperbolic,
U, (2) =1 and v? (z) = 0}.
Definition 5.17. Given a set B C N and n € N*, we set

d,(B) = %# (BA[0,n—1]).

Recall Lemma 2.5 and the definition of x' > x > %R(f).
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Proposition 5.18. For all € (0,1), for all p > x’8—x and for all n,
we have

Vol, ({x D dn(€pyrap () < B and |AP ((T,D))| > e”Px'})

(- X=x__o
< Crar(p)” <6§kiR(f)e_X>np (4klong 5) + e hn

J

10g Cr,d,f(p) — O

where Cy.q.¢(p) satisfies lim, =

Proof. First, note that if |A}" («(T,.D))| > e"X' then thereis 0 < ¢ < p
such that

n—1

T
" max{1l, max;j<z_1 || AV dpivtas fP||} —

"X/

Without loss of generality we can assume that ¢ = 0. Then we get
that,

n—1
D hi(x) = Gx) = nlpx - 2).
i=0
Set
£l = {xED: dn(€pyr2p8(x)) < B and Z[ z) > n(px’ —2)}

Since the entries of [ and [' belong to [—klog M, —1, klog M,+1], the
number of sequences (I, u" u™) with H(I") # &, B(u") # &, B(u") #
@ is bounded from above by (2k log M, + 3)?"4".

Fix such sequences [" and u™ with H(I") N B(u ) NB°W)NEP +
and #BG(u") < fn. Let ¢, € N with 3 € [m, —*) By Lemma 5.15
the volume of the union of B(u™) over the others u" is less than (up to

a multiplicative constant independent of n)

) (@) 2 Bty (1

q=3qx q=qx

n
S Z e%(2—log 25)

9=3qx
< eﬁ(2710g25)n < ef,Bn'

By Pliss’s lemma (Lemma 5.6) applied to the sequence (I; —[}),_,

with ¥ = px +2 and X' = px’ — 2, we have #H(I") > "p—z%;gxf'
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Therefore, for p > = and for all z € H(I") N B(u") N &P we get

# (H(I") \ (BG(u") \ BG(u")) >2#H (") — ndp(Epy+2,())
X' — X
2n <4klong _5) '
Then,

# (H(") \ BG(u")) = # (H(I") \ (BG(u") \ BG(u")) — #BG(u")

X —x
22— 2.
" <4klong 5)

v

By Lemma 5.11 we get

32 fpx’n-(zm’ﬂ,igfxwf25)
Vol, (H(I") N B(u")) < 4Dfd (M”(T Ve~ ) )
Therefore, for all n,

Vol, ({x (x)) < B and HAZZ( (T, D))|| > e”px})

!
X —X
3k2 )pn‘(4klog M *25)

S (2pk’ log Mf —+ 3)2n(4Dr,d)n (Mgp(rl)e—x

This concludes the proof with

362 (' —x) 28

pr ) A&(r=1)Tog My

o 2
Cr.a,r(p) == 4D, 4(2pklog M; + 3) (epR(f)

Definition 5.19. For x € D, we set
BCA(z) :={0 <l <n: w(z)=1,u)(z) =0
and L is (px, 1™ (y)) for any y € wi(x)}.
Definition 5.20. For any 8 € (0,1) and any p € N* we let
EPP={x € B : d,(BGi(z)) > B}.

Corollary 5.21. For any 5 € (0
n € N large enough,

) 8klogM ) there is p, such that for all

L
Vol(EPP) > —
n?
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Proof. Recall the set B given in Lemma 2.5 satisfies Vol(B?) > %
for n € N. As observed after Lemma 5.5, we have €, s, 5(z) C

BG?(x) for x € D. By Proposition 5.18, for g < m
choose p so large that the set of points = in BE with d,,(€,y12, (7)) <
B and |A" (o(T,D))| > "X’ has exponentially small measure in n, in

we may

particular measure less than =5 for n large enough. 0

Remark: From now on, we fix some 5 € (0, s;lcﬁ—;xz\@
p as in Corollary 5.21. The set E’? and BG?(z) will be then simply
denoted by E, and BG,(z) respectively. The integers in BG, (x) are
referred to as BG times.

) and we choose

6. INVARIANT MEASURE GIVEN BY DISINTEGRATION ON DISKS

In this section we construct an invariant measure which is given
by a disintegration on C"~!! embedded k-disks. To achieve that, we
wish to first construct a probability measure on the space of Measured
Disks- which is a space of disks endowed with a probability measure.
We restrict to BG times where the elements of the Yomdin partition
belong to a pre-compact subset of the space of Measured Disks, where
we can take limits.

6.1. Space of Measured Disks.

Definition 6.1 (Space of Measured Disks). Let
S :={(w,0): @:[0,1]F = M is C""' and o € P([0,1]%)},

endowed with the product topology of the C"~11 topology and the weak-*
topology, be the space of Measured Disks.

Definition 6.2. For x € D, we say that the atom w,(x) of the Yomdin
partition containing v is BG, when ¢ belongs to BG,,(z).

6.2. Sequence of measures on the space of Measured Disks.
Definition 6.3. Given M € N, we write
Sy = {(@2),00 €S :0 << M st w(g(z)) is BG] €8,

where @ denotes “compactly contained”.

Recall Lemma 2.5 and the definition of the set N.
Definition 6.4 (The measures pM). Forn € N, and for 0 < { < n,

(1)
E = U{g_e[lm(wg(x))] cx € Byt
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(2) Let P’ be the partition of |J EY into elements of the form
g~ [Im(co,(+))] centered at E,, points,
(3) Given x € E, write

BGM(z) = {0 <n:3W c[l,(+M], y € wi(x)NE, s.t. wp(y) is BG},
(4)
PM.— (P c P . (ecBGM(x) for some (any) x € PN E,},
(5) We denote Vol by A, and sz Aen by An,
(6)

)\(E"

/ Z 6we Qen:c)d/\m

LeBCM (z)
where 0g, . 1= (W)\Pé )Er g ) o wy(x).

Remark: In the above definition, w(z) denotes the map oy o 6y with
x € Im(o00;) (see Definition 3.8). According to the Remark following
the Algebraic Lemma (Lemma 4.2), 0y, thus o, o 6 is a (topological)
embedding, therefore we may push the measure m)\ PL(x)nER ©

g~% on M by the inverse of w,(x) to get 97,

Lemma 6.5. Given x € E,, andy € P! (x),
(1) For all M, BGM(z) = BGM(y),
(2) For all n large enough and for all h € Lip(M),

1 ”h”Ll

‘— N o § 5 ( [181Lip
f”(ﬂ»‘ f”y)

n <n Z<n \/_

Proof. The first item is clear by the definition of BGY(.), which is
saturated by partition elements. We continue to show the second item.
Let n > 0. By Lemma 3.9,

1 1
‘; > gy (h) = — Z Optr(y) (h)‘

<n <n
<‘— Z 0 pev () - = Z O pew () ‘ + 21|
£<n(1-9) £<n 1-9)

<20+ ||hlloo + Lip(h) - o

Then if we choose n = #ﬁ, the desired result is following, for all n s.t.
= < 3 O

n

%

3

B

2
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Remark: From here onwards, we saturate the set £, into £, and as-
sociate the two sets (recall Definition 5.20). Lemma 6.5 above justifies
it.

Proposition 6.6. For alln € N and M > 0,

P (1) € [8,1].

Proof. Recall Definition 5.20 and its following remark, then

1> (1) = ~#BGY (2) dA,(v)

> / d, (BG,(z)) > 6.

Definition 6.7.

! :Z/Qow‘ldpﬂ”((w,p))-
S

Claim 6.8. For every n, M, uM (1) = pM(1) € [B,1].

Proof. This is a direct corollary of Definition 6.7, as pow™1(1) = 1 for
all (w,0) € S. O

Lemma 6.9.

1
= [ - 0gt(mdN
[v 2 s

£eBGM (z)
Proof.
1 n—1
Ogt(z)dAn / O gt (AN
(z) (z)
/ ¢e BGZM )\(E )nzo [LeBGY ()] !

n—1

11
:—A( E.)n > Aeenai ) © 9
" =0

Z Z AE,nP og

=0 pepiM

)\Enpog
Z Z AE, N P) NE AP

f OP PZ]VI

—L
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I
—

n

1
CME)n
(=0
Z )\< / Q © wildé(wf(:rp)ugi,n,zp)
peppM s
/ Q % w / Z 5 ZU[ Qﬁnz d)\ )

LeBGM (z
— [ eomtan = u
S

where xp is any point in PN E,,. O

Recall Lemma 2.5.

Proposition 6.10. There exists a subsequence N' > n; 1 oo s.t. YM >
0,

pi = pM € [8,1]-P(Sw) C [,1)-P(S) and pul — p € [8,1]-P(M).
Moreover,

/LM:/gowldpM.

Proof. By Proposition 6.6 pM is a sequence of bounded measures car-
ried by Sy, which is a pre-compact subset of S.
Therefore, using the diagonal argument, there exists a subsequence
N 3n;1oost. VM >0, p% —pM e [B,1]-P(Sy) C [8,1] - P(S).
Then, given any continuous function h € C' (M), we define /f;(w, 0) ==
oow Yh) = f[o,l]k h o w dp, which lies in C(S). Then,

/hdugf = /Qow—l(h) dpy,! (14)

://i;dpfy, f—%/ﬁdpM
7 j—oo

() = [ oot dp.

Therefore
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6.3. Invariant measure with disintegration by a family of disks.

Lemma 6.11. For alln and M, pM+1 > pM pM+1 > pM - M+1 > M
and P+ > M

Proof. Tt is enough to prove that for all n and M, pM*! > pM and the
rest follows by Proposition 6.10. Indeed, by Definition 6.4, for any n,
when increasing M, we increase the sum in the definition of p. O

Corollary 6.12 (The measures p and p). p™ 1+ p and p* 1 p, where
p(S) € [8,1] and p= [ oo w 'dp.

Proof. By Lemma 6.11, both limits must exists as bounded increasing
sequences, and pM = [ pow tdpM for every M. Then as in (14), we
conclude that y = [ oo w 'dp. O

Lemma 6.13. < Y7, o pu’o f7.
Proof. For every M € N,

. 1 , 1 »
M 0 —1 M 0 —1 M 0 —1
MSE poo fTr <20 E Eﬂof <2p§§ﬂof‘

0<i<M 0<i<Mp i>0

Hence p™ < 37 =u0 o f71 = n. Since pM*t > M we get that
p=limy + ™ < 7. O

Remark: Lemma 6.13 implies that u° sees all ergodic components of
the measure pu.

Theorem 6.14. j1og~ ' = p.

Proof. For any n € N, for any M > 0,

M+1 / Z (5 Z(a:) ©) g dA

LeBGM+1(g

/ Z 5ge+1($)d)\n

LeBGM+1(g

2/— > bprmdn

n
L+1€BGM ()

1
/ E (5 d)\ - — = - —.
n

LeBGM (z

By sending n; — oo and then M — oo, we conclude gog™' > . Since
u(1) and po g71(1) have the same value, = po g~ '. O
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Lemma 6.15. There exists a probability measure p € P(S) s.t.
15/ 1 }
— —p)of= / eow 'dp((w,0)).
2 Gae) 7=

Proof. For 0 < j < p—1, set Fj((w,p)) := (f! ow,((pow*)o f7-
Jac(f™7)) o f/ o w), which is an invertible and continuous map from S

to S. Then set p := % ?;é(ﬁp) o F;! (recall Claim 6.8). O

Definition 6.16.
fi= /pow‘ldﬁ((wm))-
s
Corollary 6.17. 1 is an f-invariant probability measure on M.

Proof. 1t follows directly from Lemma 6.15 (recall that g = fP). O

Definition 6.18. Let W := {w : [0,1]¥ — M where w is C"~11} be
the space of disks.

Theorem 6.19 (Invariant measure with disintegration by an invariant
family of disks). There exists a probability measure p on W s.t.

i= | oeow dp(=)
w

where 04 is a probability measure on [0, 1]*.

Proof. Let o be the measurable partition of S given by the atoms
a((w,0)) == {w} x P([0,1]%), and disintegrate p:

p= / Po((w,0)dP = / podpor !,

where 7 : S = W, 7((w, 0)) := @. Then set 0, := [ odp and so,

//I:/Qow_ldﬁ://Qow_ldﬁwdﬁoﬁ_l:/Qwow_ldﬁoﬂ'_l.

O

7. SMOOTH CONDITIONALS

In this section we study the invariant measure which we constructed
in §6, and prove that its disintegration by Measured Disks in fact is
given by smooth disk-measures (the “conditionals”). The proof is de-
composed into two sub-sections, where we first show that the condi-
tionals are absolutely continuous, and then prove also domination in
the following sub-section. Proving that the conditionals are absolutely
continuous relies on finding a natural family of smooth disk-measures



46 S. BEN OVADIA, D. BURGUET

to which we compare the conditionals. The comparison is done by the
atoms of finer-and-finer Yomdin partitions, where we are able to get
tight bounds on the number of atoms which “compare well”, and the
total measure they cover. The key idea which allows to us to get these
estimates is the observation that if a certain point visits with some
fixed positive density times where a fixed portion of the atoms do not
“compare well”, then the point belongs to set of exponentially small
measure. Using the fact that % log A(E,;) — 0, we can compute the
portion of “bad points”. Note that the dynamics of the disk is be-
ing used here, as for purely analytic reasons, one should not expect to
bound the \,-portion of F, where \ “ is large”, as these are morally
two singular measures.

7.1. Absolute Continuity of the Conditionals. In this section of
the paper, we prove that for p-a.e @, the probability measure g 0w ™*
is absolutely continuous w.r.t. Vol (), where /i = [, 00w ™ 'dp(w).

Definition 7.1. For any w € Supp(p), set
o ._ At=109""

— Tlim v® (

Vg 1= gll}rgo v, where v’ = No—T=])

Proposition 7.2. The limit of v, in Definition 7.1 is well-defined

for p-a.e @, and converges exponentially uniformly on Sy to a ab-

solutely continuous probability measure on Im(w) whose log-density is
uniformly bounded, for all M € N.

Proof. Note, given M € N, aside for at most measure § > 0, for pM-a.e

(@, 0),
Crfl,l

w= lim wy,(z,),
n—oQ

where ¢, > on, and wy, (z,,) € Spr. Therefore, for every m € N,
1 1
—1 dig™™]| = lim — 1 dig™™|.
m ©8 ter?rr?(};) g™ n m o8 telmr(lzlv%f(wn) Ideg™
By Lemma 5.5, for all n large enough so on > m,
3pM
m

1
—log  max )||dtg_m|| < —X+ log M; < 0, (15)

m teIm(wy,, (zn

for all m large enough w.r.t. M. Then it is a known result that the limit
Ve = lim,, yz(x,m) exists with uniform exponential rates (see for example

[4, Theorem 4.10]) and satisfies the conclusions of the statement. [

Remark: Note that the proof of Proposition 7.2 holds also for @’ an
embedded k-disk with Im(w’) C Im(w).
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Definition 7.3. Given n, N € N with N|n, and 6 > 0 with 65 € N,

and x € E,, s.t.
1 MPIN(@)NE,) 1 MNP (2)
5#{6 S Pl M By = 8 APx) } =

set c'(x) € {0, 1}~ which has exactly dx-many 1’s to be the first chain
in lexicographic order such that for 0 <t < N

NP @) N E) LR @)
AP () N By~ 6% MBEN ()
For ¢ € {0,1}¥ with ezactly §%%-many 1’s, set

[ClnNst = {x €E,:d(z)= g}.

cdz)=1=

Let Cons = {g € {0,1}% : has exactly d 5 -many 1’5}. We often
abuse notation, and omit the dependence on n,N,d and t when it is
clear from context. For a lean notation, we write

] :={z € E,: d(x)=C1}

Remark:

(1) Note, #Cpns < 2183 for all § > 0 small enough.

(2) For a lean notation, from here onwards we assume that N|n
and 0% € N. This can always be arranged by taking integer
values which do not affect the proof but carry notation.

Proposition 7.4 (Main estimate). Given n, N € N and 6 > 0 as in
Definition 7.3, for all 6 > 0 small enough, for allc € C and 0 <t < N,

M) < e 85% | and #C < 2185 F,

Proof. To see the bound on #C, recall the remark after Definition 7.3.
We continue to bound A([¢f]) for ¢ € C and a fixed 0 < ¢ < N.

Let EY := J{P € PY* : PN |[c'] # @}. Note, this is a nested
sequences of sets in ¢. In addition, when i; is the j-th ¢ so ¢} = 1,

n

Prct]£o P'nlct£e,P'CP

A(E2) B S, i A(P)

PN[ct]#2

3AN(P'NEy,
Y APYY | vesanee 6 3phEn
t ! t !/
< Plct#o P'Ole'}£2,P'CP <5

i >, e AP :

PN[ct]#2

(P!
)\(Eij+1> ZPEPJI\]”H: )\(P> Z p/ePN(iJ'Jrl)thZ /\((P))

Qt
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ME2) e (B ey ME)
Then since A(Eg) < A(D) <1, and since [c!] C EY " we have

1n

Mel)) < em9osi,

O
Definition 7.5. Given n, N € N and { < n — N, set
£+N e+N
Bt = (o e, AEDNED | 1B )y
! APi(x) N Ey)  — 6% APi(x))
Definition 7.6. Given § € Qt, set
(1) Ny = [V/n],
(2) Ans = E, \ Ut<Nn,gt€Cn,Nn,5[Qt]-
Lemma 7.7. For all § > 0 and all n large enough,
5 N efélog%Nin
MA)>1-" " >1-§
) 2 1=y
Proof. By Theorem 7.4,
MAnd) =AE N [€]) 2 ME) = Ny - e85
t<Nn,§t€Cn’Nn7§
\/ﬁe—(slog 5\/5
> A(E, .<1——> > (1= 8)A\(E,),
> A(E,) ) = (1 OAE)
for all n large enough, since A\(E,) > - O

Lemma 7.8. For all 6 > 0 and n large enough,
1 y
—H{l < n— N, : M(E,\ BN <1 -v26) < V2.
n

Proof. Note that for x € An,g

1
— 1N, <.

(<n—Np,

3The sub-exponential decay of A(E,,) is enough, but then we may need to choose

a more careful N, ~ L ozm — 00. We need to satisfy )\(NE )e_c‘;Tn — 0,
7’” n

“Llog AM(En)+

while N,, — oo.
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For all n large enough, by Lemma 7.7,

Therefore
0, Np,8
- > MBS / > g d,
<n—N, 2<n—Ny,
n(En\ Ans) / > gensd,
€<n Nn,
<20.

Finally, by the Markov inequality,
—#{€<n—N A(En \ BEN9) <1 — V/25} < V/26.
O

Lemma 7.9. For all 6 > 0 and n large enough, for every ¢ < n — N,
st A(E, \ E5N0) > 1 — /20,

A (U {P nE, pep M QAE]EJ”O\%NM» <1- \/%})

< A(E,)\ V26.

Proof. By the Markov inequality, for every ¢ < n — N, s.t. A, (FE, \
EONn0Y > 1 — /26 (recall Lemma 7.8),

A (U {P nE, pep,- M ig’lﬂ\i’%mﬁ)) > ﬁ})

. A EVvE,N,tS
Z APV E,) — A(P A (B, \ BNy = 20

v PePé \/%

Definition 7.10. Given 6 >0, n, £ <n— N,, set
(1) Pitnd = { P e Pl UM > 1 -/ \/25),
(2) Given x € E,,

A 520, N ,8 Og_é
50y L O PAE@NENELN)
W= e ey
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(3)

1
- M5
S 2z 5 d\,,.
pp = /Aé - E (we(x),08 (x))

Remark:

(1) The measures o)(x) are well-defined, as w,(z) is invertible.

(2) The measures ¢)(z) may not be probability measures, but are
sub-probability measures (which is a still a compact collection
of measures).

(3) Tt is clear that 0 < & < 6 = o (x) > 0)(x).

(4) By the diagonal argument, we may assume w.l.0.g. that for any
M € N and for any ¢ € Q" the measures {p}}, converge to a
limit on the same subsequence {n;}; = N from Lemma 2.5.

Definition 7.11.

(1) Let P<1([0,1]%) be the set of sub-probability measures on [0, 1],

(2) Let m: W x P<1([0,1]¥) — W be the projectz'on onto W,

(3) Let p** = lim; p"° and ¢"° = pM° o ™!,

(4) Let p° = [ pM 5qu5 (w) be the dzsmtegmtz’on of pM° w.r.t.
the measurable partition {x~'({w}) : @ e W},

(5) Set oM = [ odpM?.

Lemma 7.12. For all 0 < ¢ <0, for all M € N,

M, ~M.,5
>q .
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Proof. By Lemma 7.7,

, 1
oot =y on! :/ ~ ) Smwdh
AW;/ n

ZGBGQ"QNTL (z):
50, Nn 6"
Pl(z)epP, '™

1
_ /A =Y e dh
n,d

M .
eeBGM | (a):

Prl;( ) PéNn(S

Z - )\n(An,(S’) - /\n(An,é)

1

eeBGQ{Nn(x);
P@(x)epe:Nn,él\p£7Nn75
-4’ log
> — Nne —
- /\(En> AMEn)

1
+ / - > Oz ()@,

ZEBGTIY_NH(I):
e(x)epé,Nn,é’\pﬁ,Nn,é
—&'1
N,e ° 8

3 ¢ log Hv/n
>_9 - 000> _ g 57 .
2 )\( n) 2nze 5 —>n 0

1 n
S5 N,

Lemma 7.13. For all M € N and § € QT,

0<pMort —gM° < 4\/V26.

Proof. Recall that by Lemma 7.7, \,(A4,s) > 1 —§ for all n large
enough. Then, by Lemma 7.8 and by Lemma 7.9,

Moot > — V25 —\/ V26 / 3 6we:v)d)\

z BGM (x
> — 40/ V20 / > Gy = —4\ V25 +p) o
LeBCM (z)
Since 7 is continuous, ¢M° = pMd o 17t > —4v/ /26 + p™ o 7. The
inequality pM? o 77! < pM o771 is clear. O

Corollary 7.14.

lim 1 ¢ = pM oL,
6—0
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Proof. 1t is a consequence of Lemma 7.13 and Lemma 7.12. O

Recall Theorem 6.19 and the definition of the conditional measures
A= [ 0w o 'dp(w).

Theorem 7.15. For p-a.e @,
Q0w © ol < Ve

Proof.
Step 1: Let h € Lip(M) with 0 < h < 1. We show that for all M € N,
for all L > Ly, for pMP-a.e (w,0), pow ™! < c@fl/z(ﬂL).

We start by studying pM°. Recall Lemma 3.9. Then, for pM°-a.e
(w,0) Jx € E,, and { <n— N, (w.lo.g. > 1L)s.t.

_ Apt@n(Bn\ B0 © 0
R e L AR (16)
_ Z )\(Pl N En) . )\P’ﬂEn o g—ﬁ (h)
B MPNE,) MPnNE,)
prepttin,
P'CP,PNELN =g
) 1 MNP NE,)
P/epéJan
PICP,PINEY N~
_ 1 L A\(P)
SLlp(h) 2N =+ Z ﬁ)\(P) -h(ZL’gE[p/])
Plepitin,
P'CPP'mE" Nn.b_ g
<Lip(h) L 11 > APk )
=hip 2N " 3 A(P) LgtP]
Plepltin
P'CP
2 1 Cyp
=+ HLip(h) - o5 + ﬁ”g)(h)a

’\’;E}g)_z < CMIA(DL) whenever L > L.

where ¢;; 1s a constant so
Therefore, for any 7 > 0, the property ¢ o wfl(h) <7+ Cé]\?/’l V‘z(ﬂL)(h/)

is a closed property, hence for pM4-a.e (w 0), for all 7 > 0,

pow (h) <7+ M 53 =V (h).
Since 7 > 0 was arbitrary, and 0 < h <1 is any Lipschitz function,

2
for 5M-auc (w,0), 0wt < Sl < My, (17)
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Step 2: By (17), for ¢M°-a.e w,

2
_ 1. C
Qg"sow 1:/@0@ Yd g’égé—]gl/w (18)

Recall, for pMd-a.e (w,0), o(1) € [1 — 261,1], and so for ¢M9-a.c w,
oM9(1) € [1 - 26%, 1],

In addition, o™ increases as § decreases, and as M increases (recall
the remark following Definition 7.10). In particular, by Corollary 7.14,
for por~l-a.e w,

lim 11im 1 ot = [ odp
A;&T;E}TQW /Qp,

where p = [ pmdp o 7! is the disintegration of p™ w.r.t. the parti-
tion the measurable partition {7~!({w}) : @w € W}. Hence, since an
increasing limit of absolutely continuous measures which are bounded
is absolutely continuous,

for ponl-a.e w, / odp, K Vg

Recalling the definition of p and o from Theorem 6.19, we are done.

U

By combining Theorem 7.15 and Theorem 6.19 one easily concludes
the proof of Theorem E.

7.2. Dominating Conditionals. In this subsection we post-hoc re-
visit §7.1, and conclude domination in addition to absolute continuity.

Proposition 7.16. We may assume w.l.o.g. that {E, };>0 is a con-
stant sequence {E}.

Proof. By (15), for p-a.e w,

1
li —1 dog™ ™1 1mie || < —X < 0. 19
imsup — ngé?ﬁffp)” 9 " rm@) || < =X (19)
Then, by the Oseledec theorem, for p-a.e @, for o5 o w '-a.e z,
1 ~
lim inf — IOg defm’TzIm(w)Hco > K > 0. (20)
m p

Therefore, by Theorem 7.15, for p-a.e w, for a Ay (w)-positive measure
set of 2’s, lim inf = log ||dy f™| 7, 1m(w)||co > 0. Hence we may fix a subset
with uniform expansion time. O

Definition 7.17.
/\(PZ/ (x) N E)

n

O I

EY :={x e E:Vl >,
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Claim 7.18. For all § > 0 s s.t. X220 > 1 4.

Proof. This is the Lebesgue density lemma, where instead of using
a differentiation basis of balls, we use the nested Yomdin partitions
Pt .= {Im(a 00y): 0 € Oy, i’ € 72} For the sake of completeness,
we present a short proof. Without loss of generality, we can assume
that F is compact. It is enough to show that the set E7 := {z € E :

lim inf, %

Let F?':={z € E : hmmf@%ﬁ)qf) <1—~} Wefix v € (0,0) s.t.

A(E7) = M(F™). For any x € E° and for any N we let £y (z) := min{¢ >

N : % < 1—~}. Then the sets E7(N) := U,egn PY@ ()

satisfy E7 C Ny + EY(N ) C F7. To see the last inclusion, note that if
a point z’ lies in all of EV(N ), then for infinitely many ¢’s, it belongs

< 1 — v} has zero A-measure for some v € (0,9).

to P’(x) where % < 1 — 7. Moreover as E is compact and
the diameter of P’ is going to 0 with ¢, we have also 2’ € E. Hence
#/ belongs to F7. However, it follows from definition that A(EY) <

(1 —~)A(EY(N)). Consequently A(E?) = limy A(E7(N)) = 0. O

Definition 7.19. Let {5 to be the smallest natural number to satisfy
Claim 7.18, then set

E° = Bl
Corollary 7.20. For all 6 > 0, for alln > %&;, forallls < <n—N,
for all x € o

AP ()N E) MBI (@)NE) iy

MPI@) AEEN@) C
Definition 7.21.
(1) E"NO = (J{P € PN - A8 > 1 — 6}
(2) Pt = { Pi(w) : MRS > 1 m},
(3) Given x € E,, and { <n — N,,
. —L

(4)
1
=M,§ .__
P = /E — ) mwaen®

eégzeBGﬁfN (z):

— n
50,Np .8

Pf(z)ePy™"
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Lemma 7.22. For all 6 > 0, for all { > {g,
MESN2) > A PL) - 26.
This is a consequence of Claim 7.18.

Lemma 7.23. For all 6 > 0, for all £ > (s,

AUPAUPY) < V2,

Proof. By Lemma 7.22,

AP N ESN9) 0 0N 8
d AP - T AP = MESN) < 26,
PePf
Then by the Markov inequality,
A(P N ESNS)
MU Per: 2 <1-v25}) < Vs
Ufper: AELE) <1 o)) < vas
O
Lemma 7.24. For all M € N, for all £ > Ly, for every P € 135,1\/,5 N
PYM - for all h € Lip(M) with 0 < h <1,
et Wy | ps (h) = €2 g)(P)(h) + Lip(h)e 2%,
and v (E*N9) > 1 —+/25.
Proof. This lemma follows from the definition of IB,fN 9, 0
Lemma 7.25. Let n; s.t. ]‘)%’5 —— ™9 for all M € N and 6 € Q*.
j—oo

Then,

ﬁM"SOW —>p L
6—0

Proof.
14
0<pMongt—pMiont <2243
n

Corollary 7.26. For p-a.e w,

-1
O OW =~ = V.

Proof. We may follow the proof of Theorem 7.15, where the only two
inequalities in (16) can now be reversed; While the constant 5 can be

replaced by e®. Indeed, when sending § — 0, we conclude that for
porn taew, [0dpy = Ve O

Corollary 7.27. For every G-u-Gibbs measure ji', i’ can be written
as @' = [ podp(w) where for p-a.e fim, flo = V.
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Proof. We may assume w.l.o.g. that i’ is ergodic (recall the remark
after Definition 1.2). Therefore, we may assume that the set E is
a subset of the p’-generic points, and in particular, it follows that
fi = limyy lim; [, y ZeeBGﬁé (@) Ogt()dA = [i’. By Corollary 7.26, we are

done. O

8. ERGODIC AND GEOMETRIC PROPERTIES OF THE INVARIANT
MEASURE

8.1. Positive exponents tangent to disks, and disks subordi-
nated to unstable leaves. In this section we prove some of the
geometric and ergodic properties of the measure we construct in §6.
Namely, we show that it admits at least k-many exponents larger than
x almost everywhere. In addition, we prove a lower bound on its en-
tropy by the Lyapunov exponents, which is not given by the standard
entropy formula (as we do not assume that the measure is an SRB, nor
a u-Gibbs measure, and moreover its disintegration is not given by a
measurable partition).

Corollary 8.1 (k positive exponents). For p-a.e w, Im(w) is con-
tained in a local unstable leaf, and [t admits at least k exponents greater
than x.

Proof. By (19), for p-a.e @, for g, 0o w '-a.e x, @ C V¥%(x), and
dim(V*(z)) > dim(Im(w)) = k.

By (20), we conclude moreover that 11 admits at least k exponents

greater than % > x a.e, tangent to the disks. 0

8.2. The invariant measure gives no weight to sources.

Definition 8.2. A point x is called a source if it is a periodic point
with only positive Lyapunov exponents.

Claim 8.3 (No sources). i gives 0 measure to sources.

Proof. Tt is a classical theorem that every ergodic measure with only
positive Lyapunov exponents is carried by a source. However, 11 has
absolutely continuous conditionals, hence gives zero measure to pe-
riodic orbits. Therefore almost all ergodic components of p are not
sources. 0
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8.3. Entropy and exponents. In this sub-section we prove a lower
bound to the entropy by the positive Lyapunov exponents. In partic-
ular this implies the presence of negative Lyapunov exponents. Since
our measure is not given by a disintegration w.r.t a partition subordi-
nated to an intermediate unstable foliation, we cannot use conditional
entropies. The proof relies on a technique of Besicovitch-Bowen covers.

Definition 8.4 (Pesin blocks). Let v be an f-invariant ergodic proba-
bility measure which admits a positive Lyapunov exponent. Denote by
X = x(¥) == (x1,m1,..., Xe,, M) the positive Lyapunov exponents,
and dimensions of the corresponding Oseledec subspaces, of p in a de-
creasing order.
(1) Let 0 < 7 < 7y = qoogmin{xe, Xi — Xig1 1 0 < € — 1}, and
let Cy () be the Lyapunov change of coordinates for points in
LR, = {Lyapunov reqular points with an index x} (see [30]).
(2) Let PRy = {x € LR, : limsup, , . =log ||C’£$(f”(x))|| =
0,V0 <7< TX}, the set of x-Pesin regular points which carries
u. PR = Ux PR, s called the set of Pesin regular points.
(3) Given x € PiRX, let E;(x) be the Oseledec subspace of x corre-
sponding to x;.
(4) A Pesin block A%’T) is a subset of le,_x‘oog PRy which is a
level set [q; > %] of a measurable function q, : le/*x\oog PR, —
(0,1) s.t. (a) =L = e*7 (b) ¢.(-) < —L—. Often we omit
o ICxH ()17
the subscript £ when the dependence on € is clear from the con-
text.

Definition 8.5. Let i = [ fi,dfi(z) be the ergodic decomposition of [i.
Set x1(x) > ... > Xu@) (x) > 0 to be the list of all positive exponents of
Ly, for pi-a.e .

Remark: Note, by Corollary 8.1, u(x) > k for pi-a.e x.
We are now in a position to prove Theorem B.

Theorem 8.6 (Entropy and exponents). For ji-a.e x,

u(z)—k+1

()= Y ).

i=u(x)

Proof. Let w > k st. p({zx : w(x) = u}) > 0. Let h > 0, and let
X1 > o> X st for x = (X1,ma, 00 X, M), and 0 < 7 < 7y, we
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have 7i(2;) > 0 where w.l.o.g. £ > I and (recall Definition 8.4),
Q,={x¢€ A%’T) cu(x) =u,hg, (f) =hE£7}
By [6, Lemma 3.1, Theorem 3.4|, for ji-a.e z,
hz, (f) =lim lim sup -1 log fi(B(z,m,e™ ™))

r—=0 5500 n

—1
=lim lim inf — log fi( B(z,n,e™"")),

r—0 n—oo n
where B(z,n,e”™) = {y : V0 < j < n,d(z,y) < e ™} with d(-,-)
being the Riemannian distance on M. Therefore, there exists n, € N
and 0 <r <7 s.t. u(K;) > (1—71)u(Q,) where,

K. ={xe€Q,:Vn>n., pm(B(z,ne ™)) = e’"hﬁw(f)i’”}.

Let w € W s.t. 0, 0w (K,;) > 0. Let zg be a g, o w'-density
point of K. Recall that by Corollary 7.26, o 0w ! = v,. Recall also
that by Corollary 8.1, for every z € Im(w) N K,

Im(w) € Vi (). (21)

For p-a.e w, let L, := max d/\‘fl’f : (by Proposition 7.2), so for all
T KT n Im(w)a

I/w(B(x, n, 6_”7")) S Lw . 6_"2?;?“ miXie?)d‘rn’ (22)

by (21).

Let n > n!, and cover Biy(w)(20,e™"") N K, by a cover C, of balls of
the form B(:,n,e™""), centered at elements of K, N B (2o, e ")
and with a multiplicity bounded by e3?™. This is possible by [6,
Lemma 2.2]. Then,

- B —nT ﬂKT 3dmn
Vol _(xguem). _ Sd) <#Cn < .e—A(m (23)
Ly -e i=u  MiXig gg& M
Se"hﬁw (f)+n7'63d7'n.

Since zg is a density point, we may assume w.l.o.g. that v (B(xg,e )N
K;) > tvo(B(zg, e ")) > 12e ™. Thus in total,

1 o i mix; p—3drn —nrk < ePhao (N+ddmn
212
We get ha, (f) > S5 myxa(x) = 10dr, for fi-a.e o € Q,. Since 7 > 0

was arbitrary and x was arbitrary, we are done.
B O

Corollary 8.7. ha(f) > [ " v (x)dfi(x).

i=u(x)
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Proof. 1t follows from the affinity of both sides of the equation in The-
orem 8.6 w.r.t. the ergodic decomposition. U

8.4. Disintegration by embedded disks. Recall the definition of
Vs in Definition 7.1 for any w, and the following remark.

Lemma 8.8. The measure [i can be written as i = [ vdp’, where p’
is a probability on W s.t. p'-a.e @ : [0,1]*¥ — M is a C"~1! embedding.

Proof. First, by the definition of v, if Im(w’) C Im(w), then

Vo ltm(ew) = Voo (Im(@")) - v
For proof, see for example [4, Theorem 4.10].

By Sard’s lemma, v (w[[Jac(w) = 0]]) = 0. We write the open set
[Jac(ww) # 0] C [0,1]* as a countable disjoint (up to zero volume set)
union of subcubes C' such that w|c is a diffeomorphism onto its image.
Then we let Py = {w|c, C}.

We condider the probability p’ on W defined as follows

Vh e C(W / Z Ve (Im(w")) - h(w)dp(w).
w' €Pw
Since Vw =Y ep. Vo(Im(@')) v, weget i = [ > cp ve(Im(w'))-
Ve dp(ww fyw/dp @'). O

9. THE STRONG VIANA CONJECTURE

9.1. Hyperbolic SRB measures for co-dimension 1. As a first
step towards the proof of Theorem D, we prove the existence of a
hyperbolic SRB measure in the co-dimension 1 case.

Claim 9.1. If k =d —1, then i from §6 is a hyperbolic SRB measure.

Proof. By Theorem 8.6 and Corollary 8.1, almost every ergodic com-
ponent of u has positive entropy, and hence by the Ruelle inequality
it admits a negative Lyapunov exponent. Therefore, there are at most
(d — 1)-many positive Lyapunov exponents at almost every point. By
Corollary 8.1, almost every point admits at least (d — 1)-many positive
Lyapunov exponents. Thus in total, almost every point admits exactly
(d—1)-many positive Lyapunov exponents, and one negative exponent.
By Theorem 8.6, a.e ergodic component of ji satisfies the entropy for-
mula, thus it is a hyperbolic SRB measure with exactly (d — 1)-many
positive Lyapunov exponents.

O

9.2. The strong Viana conjecture. In this last section we prove
Theorem D and Theorem C.
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9.2.1. New negative exponents.

Definition 9.2. For k€ {1,...,d — 1} and x € M, we set

() = hmo hzriiljp hﬂlnf 1 ana(T),
where
%l:+17q,n,A(‘r) = Lc{l n} o Z q)k—H °© fe (z),
An<#t’<n EGL
and i
1 [ A" do f1)

o = ~logt ——— .
()= 8T e g o]

Remark: The exponent s, ,(x) does not depend on the choice of

the norm on A'TM, [ = 1,--- ,d. For an appropriate norm, the ratio

W—fif;ull is just the inverse of the (k + 1)-th singular value of d, f9.

Definition 9.3. For x € M we denote by pw(x) the limit set of the

empirical measures {1\ } 50 where 1 = LS octan Oft(wy- Given k €

{1,...,d—1}, set

Ber1(z) := sup esssup, Xii1-
vepw(z)

Proposition 9.4.

ey < max{—PB1,0}.
Proof. Let 6 > 0. Let A > 0 and ¢ s.t. for infinitely many ¢; > qq,
s (w) < lminfsq o oA(2) + 8. For all ¢; > qo, for all n > n;, let

L, 4 which attains the minimum s.t. #L,, > A-n and »,(z) <
#[’;”1% D tec, q q’i(ﬂd o fi(x) +

Then for any subsequence n; T 00 8.t. n% > <, Oft(a) — v (that is for
any v € pw(z)), by a diagonal argument there exists a sub-subsequece
{ni}i>0 € {ne}iso st Zfeﬁn 5fe (@) = Vg for all ¢; > qo.

We can fix g5, > qo s. t for all g 2 q(;,,,,

([0, = max{—xz1,0} £ V0]) >1—A-4. (24)

Assume w. l.o.g. that g5, € {g;, i € N}. Then, indeed, vy, - A < v
and f@kqji{‘ dvgs, > .4 (x) — 6.

Then anyy([q),gq_i’l”) > ,,1(2)—V/6]) > &; otherwise for all § > 0 small
enough so ¢ - log My — Vo < =96,

/<I>kqi1” dvy,, < 8log Mp+se,, (2)—V5 < 3, (x)—0, a contradiction.



GENERALIZED u-GIBBS MEASURES FOR C* DIFFEOMORPHISMS 61

Therefore,
V(@) 2 550, (0) = VD)) 2 A,
and by (24), we get

v([max{—xi11,0} > 5., (z) — 2V3]) > 0.

Therefore, s, (z) < inf,epu) ess — inf, max{—xz11,0} + 2V for
all 0 > 0 sufficiently small, and so by the continuity of ¢ — max{—t, 0},

24 (7) < Veiprif(x) ess — inf, max{—xx+1,0}

= max{—supess — sup, Xx+1, 0} = max{—/pr41(z),0}.

Lemma 9.5. When x is not a source we have

Proof. If B4(x) > 0 there is v € pw(z) with an ergodic component £
satisfying x4(§) > 0. Therefore £ is the atomic measure at a source.
Then we have necessarily pw(z) = {v} = {{} and z is a source. O

Recall that x411(z) denotes the (k + 1)-th Lyapunov exponent at x
(with multiplicity).
Lemma 9.6. For an f-invariant probability v, for v-a.e x, » ,(v) =
max{—xx+1(x),0} and Bri1(x) = xp1().
Proof. v-a.e x is typical w.r.t. an ergodic component of v, hence we

. . 1

may assume w.l.o.g. that v is ergodic. Let A € <0, W),
and let 0 < 7 < A% Given x, let ¢,, € N s.t. for all ¢ > g,
Cbgﬁl(m) = max{0, —xxr1(z)} £ 7.

Let ¢, sufficiently large so v([¢zr < ¢-]) > 1—73. Let n. s.t. v(Q;) >
1 — 7, where

1
Q= {:E 1Vn > ng, Ezl[qz,fsm o fi(x) > 1~ T}-

I<n
Then for any x € ,, for all n > n,, for all ¢ > ¢,
_ A—1 T
%k—i-l,q,n,A(x) = (maX{O, _Xk-i-l(x)} + T) A + Z ’ log Mf

Therefore limy, 56, , , A(2) = max{0, —xx11(2)} & VA, for all p >
p, for all x € €).. Then we are done as the measure of 2, can be made
arbitrarily close to 1, and we may send ¢ to co and A to 0.

The assertion concerning [ follows easily from the definition as
pw(z) = {v} for a typical point z for an ergodic measure v. O



62 S. BEN OVADIA, D. BURGUET
Definition 9.7. For x >0 and k € {1,...,d — 1}, let

Hypf’< = {x € M : \i(), 54, ,(x) > X}'

Remark: Notice, in particular there is no condition on the angles
between expanding or contracting directions for points in Hypi.

9.2.2. Invariant measure with non-zero Lyapunov exponents. Recall the
construction of the sets E,, C E from Definition 5.20, as a sequence of
subsets of Hyp’;, where we assume Vol(Hypl;) > 0.

Theorem 9.8 (Strong Viana Conjecture). If Vol(Hypf() > 0, then
there exists a x-hyperbolic SRB measure with exactly k positive Lya-
punov exponent almost everywhere.

Proof. We provide a proof for a stronger statement, where we only use
the fact that for x € Hypi, we have \g(z) > x and Sriqi(x) < —x
(recall Proposition 9.4).

For all N € N* we let Cy C BH'HLip (0, N) s.t. UhECN BH'HLip (h7 %) is a
finite cover of By, (0, N) C Lip(M). Then

=) Z N#CN —n(h)]

N>1helCn

defines a convex metric on P(M) compatible with the weak-* topology,
ie. dlan+ (1 —a)v,an’' + (1 —a)') < ad(n,n')+ (1 —a)d(v,v') for any
a € [0,1] and any v,v" € P(M).

Let IC(P(M)) be the set of compact subsets of P(M) endowed with
the Hausdorft-Gromov distance.

Since the map = — pw(x) is Borel (see for example [18, Appendix BJ),
there is a compact subset E' C E with a measure such that x — pw(z)
is continuous on E'. Then pw(E’) = |J,cp pw(x) is compact. By
Egorov’s theorem, there exists a compact subset of positive measure
E" C FE'| s.t. d(l/g(g ,pw(E")) oy, 0 on E”. We carry out the

n o0
construction of zi and p as in §6 by the set £, choosing E,,, C E”. We
prove now that ypy1 < —x ji-a.e.

It is enough to show that any weak limit of ﬁn = [ P g\, has
its k + l-exponent negative a.e, since VM, uM < p-i,. By taking
a subsequence of {n] }]>0 we may assume that [in; 18 converging to a
probability z. Hence, u < p - ji.

Recall the measure ), is supported on E)'. By Lemma 6.5, for all
x € E, and y € P’(x), we have d(l/gsn),pw(x)) < d(ué"),pw( ) +
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\%ZNE 2%. Therefore SUD,¢ d(yggn),pw(E')) 7% 0. We “dis-
cretize” the measure fi, : let «, be a partition of E and fix xﬁ €
A C E}, for all A € ay, such that iy, == > o, An(A) - V(Zp) satisfies

d(fin, 1,) == 0.

Let £} € pw(E'), such that d( gA) = d(v "p),pw(E’))_ Write
§n = ZAE& An(A) -5;?. Then we have,
d(fi, &) < ) Al 75’4) < sup d(v\"P), pw(E')) =% 0.

"
AEOén =€k

Let ¢ € P(pw(E")) be a limit point of (3,4, An(A) - 5553)” (recall
that P(pw(E")) is compact). Then i = [£dd(€), and so xpi1 < —X
p-a.e, as v-a.e £ belongs to pw(E'), where by the definition of fjq, we
have &-a.e xri1 < —X-

Therefore, it follows that yr.1 < —x p-a.e, and so ji-a.e, as the Lya-
punov exponents are f-invariant functions. Since almost every ergodic
component of 1 is also a G-u-Gibbs measure with a disintegration on
disks of dimension k, and it admits k& exponents larger than y almost
everywhere, it follows that almost every such an ergodic component
is therefore a y-hyperbolic SRB measure with exactly k-positive Lya-
punov exponents.

Remark: The same proof applies to show that (note that (41 may
be non-positive),

(1) If the set [Ay > x > Br41] has positive volume for some x > 0,
there is a u-Gibbs measure with exactly k Lyapunov exponents
greater than y, i.e. p has absolultely continuous conditionals
with respect to the k-unstable manifold.

(2) If the set [\ > x > 0 > [y41] has a positive volume, there is an
SRB measure (a-priori perhaps not hyperbolic) with exactly k
positive Lyapunov exponents, and they are greater than y. In
particular this provides an alternative proof of Claim 9.1 which
does not involve the entropic characterization of SRB measures.

U

We conclude now the proofs of Theorem C and Theorem D by es-
tablishing the basin property.

Corollary 9.9. Vol-a.e z € Hypf( (resp. Vol-a.e x with Ag—1(z) > 0)
lies in the basin of attraction of an ergodic x-hyperbolic SRB measure
with exactly k positive Lyapunov exponent almost everywhere.
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Proof. Assume for contradiction that there is a positive volume sub-
set of Hypf< s.t. no point in it lies in the basin of attraction of a x-
hyperbolic SRB measure with exactly k positive Lyapunov exponents.
In particular, there is a disk D, and a subset E of Hyp]g N D of positive
disk volume s.t. xa, po (2, (T D)) > x for all x € E, for some py € N
(recall §2.2). Carry out the construction of p by this subset (recall §6).

Let T > 0 s.t. (A¥’§)> > u(l) — g (recall the remark following

Corollary 5.21) where Ag%) _ U A%’%)_

Xk>—Xk+1>X
Then for infinitely many n’s, there is a positive proportion of E,,

X
(w.r.t. disk volume) of points whose n-orbit meets B% <A¥’2)>, a

X
%—neighborhood of Ag °z) , with a frequency greater than 1%.

Given such a point « € E,, there is a time ¢ € BG,(x) s.t. w,(x)

meets the %—local stable foliation of Ag’g). We may assume w.l.o.g.
that ¢ > %n. Moreover, by the uniform hyperbolicity estimates for BG
times, there exists ap > 0 s.t. every such tranversal intersection is with
an angle at least ap. In addition, we can assume that the intersection

happens within more than %T from the boundary of wy(z), and that
wy(x) spans across B(a/, 1) with 2/ € Ag’%).

Let = [ peuzdp(x) be the disintegration of p by conditionals on
unstable leaves as in [35]." Recall that peu(y) ~ Agu(y) for p-a.e . Then,
by the Lebesgue density theorem, let rp € (0, 57) s.t. pu(Kr) > u(l)—g
where
her(o(Ba.r) 0 A )

Acua) (B(z, 7))

Let h € C(M) s.t. h|BrT(KT) =1, hl(BQrT(KT))C =0,and 0 < h < 1.
Then p°(h) > g > 0.

Therefore, there is a positive disk volume set of points for which h
is positive on its orbit. However, the support of h is (1 — 2(sin ar)?)-

o 063) | 9
Kr:=<xe A2 :Vre(0,2rr], >1—sin“arp.

x8

volume-saturated by the stable leaves of u on Ag ) (by Pesin’s abso-
lute continuity, and the fact the the support of A is contained in Pesin
charts).

By Claim 7.18 with § < %sinaT, it follows that if x € E, { €

BG,(z), and w(z) spans across B(z/,ry) with 2’ € K, then at most
Ginor) of the volume of @y(z) does not meet the stable foliation of

sin ap

4Note that in Theorem 9.8, we in fact showed that the measure i from §6 is a
x-hyperbolic SRB measure with exactly k positive Lyapunov exponents a.e.
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K7, as more than that would imply losing more than 2sin® ap of the
chart’s volume. However, as long as w.l.o.g. (1 + 15)sinar < 1, w,(z)

must intersect the stable foliation of A% ») on the orbit of E.

Hence there is a positive disk volume set of points which lie on the
stable leaf of an ergodic component of p, which is a y-hyperbolic SRB
measure with exactly k& positive Lyapunov exponent- a contradiciton!

The same proof applies to show that Vol-a.e x with Ay_1(x) > 0 lies
in the basin of an ergodic hyperbolic SRB measure. 4

APPENDIX A. ANGLE ESTIMATES

A.1. Exterior Powers. We endow R? with the Euclidean norm || -
|| and denote by (-,-) the associated inner product. For each k =
1,...,d — 1, the induced Euclidean norm on the k-th exterior power
AF (Rd) is defined for indecomposable vectors Z of AF (Rd), ie., Z =
21 A ... Az, with z; € RY, by the determinant of the Gram matrix of
Zlyevey Rt

1Z1* = det ({2, 2)), ;

and then extended by bilinearity. The associated inner product
will also be denoted by (,) and the corresponding operator norm on

AFL (R?,RY) and £ (R4 ARL (RE,RY)) by || - ||

A.2. Grassmanian. The Grassmanian Grass(k, d) is the set of k-planes
in R%. When Z = z; A ... A 2 is an indecomposable vector of A* (Rd),

we denote by ¢(Z) the k-plane spanned by zi,...,z;. Notice that a

k-plane is defined, up to a scalar, by a unique indecomposable vector

of AF(R?). This is the so-called Pliicker embedding of the Grassma-

nian Grass(k,d) in the projective space P AF (R?) which we denote

by ¢ : Grass(k,d) — P A" (R?). This embedding with the Euclidean

norm on A* (Rd) induced a distance on Grass(k,d), called the Cayley

distance, as follows:

ny— (420
cosd. (1(Z),0(Z") = TZIZT

A.2.1. Stationary Angles Between Planes. Given two k-planes F' and
G, we define the angle Z/F, G between F' and G as follows:

ZF,G = maxmin Zu, v.
ueF veG

This angle is related to the orthogonal projectors onto F' and G:
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Lemma A.1.

sinZE, F = |pg — pr|| .
with pg and pg the orthogonal projector on E and F, and |||| the oper-
ator norm induced by the Euclidean norm.

In fact, one can define a sequence of k-angles (0x),_, , between F’

and G, known as the stationary angles. They are built by induction as
follows:

01 = minmin Zu, v = Zuq,v;.
uel veG

and foralli=1,...,d—1:

01 = min min Zu,v = Lu;, v;.
u€FulVect(uq,...,u;) vEGwlVect(vi,...,v;)

This sequence does not depend on the choice of the vectors u; € F
and v; € G which realize the minima in the previous constructions.
Observe that 6, > ...60,;. The last stationary angle 6, coincides with
the angle ZF, G. The Cayley distance is related to the stationary angles
and the angle / as follows:

cos d.( H cos (0;) < cos LF,G.

A.3. Estimates. For a linear map A : R¥ — R? we let V; = A(R¥) and
by abuse of notations we write AF(A) for AF(A)(e; A---Aeg) € AF(R?).

Lemma A.2. Let A, B be linear map from R* to RY. We assume that
|AF(A) = AM(B)|| < K ||AF(A)|| with K < %, then

K2
< - .
d.(Va,Vp) < arccos (1 T K))

In particular for K = 1/10 we get LV, Vg < d.(Va,Vg) < 7/6.
Proof. We first remark that

INB) z [[A* A = [[A*(A) = A*(B)

> (1 ) A+

It follows that

[AF(A) = AF(B)|| < ——= ¢||A'f ) IAEB)]].

But the square of the left member can be rewritten as



GENERALIZED u-GIBBS MEASURES FOR C*° DIFFEOMORPHISMS 67

[AF(A) = AMB)||” = |ARA)|]” + |ARB)||* = 2(A"(B), AF(A)).

Therefore we conclude that

(N(A), AMB) IV + IAEBIE [[ARB) = AR A
INCATARBY —  2IARATIABYT  2(IARA) [ IAB)]
K2
>1-—

= T oK)

[l

Lemma A.3. Let D be a C' embedded k-disk of R? an E be a vector
subspace of R? of dimension k with /T,D,E < 5 forallz e D.

Then, for any x there is € > 0 such that D N B(x,€) = I'y, where
V:E, CE— EtisaC' function with ||da| < 1.

Proof. Tt is enough to see that any vector v € T,D writes as v =
vg +vg. with vg € E, vgr € E+ where ||Jvg| = ||z|/(1 + |lpr.p — pel)
and [[vp. || < ||=]| - [lpr.0 — pell O

APPENDIX B. COVERING NUMBER OF C" SMOOTH DISKS

For a subset E of R? we let Cov(E, R) be the minimal number of
euclidean balls of radius R covering F.

Lemma B.1. Let o : [0,1]* — R be a C™ map witk k < d. Then there
is a constant C, 4 depending on r and d such that

Cov (Im(0), 1) < Cpamax (1, |&o])/" max || A o]

Proof. By Lemma 4 in [17] (or Chapters 5 and 7 of [51]) it holds for any
polynomial map o of degree less than r. We deduce the general case
by polynomial interpolation. We first subdivide [0, 1]* into subcubes
C of size max{l, ||d"c|}~/". Let oc = o o fc with 6¢c : [0,1)' — C
being an affine reparametrization of C. Then ||d"oc|] < 1. Consider
the Lagrange interpolation polynomial Pc of o¢ at the center of C.
We have || Pc — o¢||, < 1. Moreover by Lemma 6.2 of [51] we have for
all x € [0,1]", for all [ = 1,..., k and for some constant C; depending
only on d with the convention || A® o¢|| =1

I
| A" Po(a)l| < Ca) | N doc()|ldsoc — doPe|™,
=0
< dCy max | Al do||.
0<I<k
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Therefore we have for some constants C, ;4 which may change at each
step

Cov(Im(og), 1) < 2¢Cov(Im(Pc), 2)

< C, 4 max max || A' dPgl|
“o<i<k

< C,q max max || Al dog||.
T 0<i<k

Thus,

(1]

Cov(Im(c),1) < C,4l|d o ||*'" max | Abdoc.
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