NEUTRALIZED LOCAL ENTROPY AND DIMENSION BOUNDS FOR INVARIANT
MEASURES

S. BEN OVADIA AND F. RODRIGUEZ-HERTZ

ABSTRACT. We introduce a notion of a point-wise entropy of measures (i.e local entropy) called neutralized
local entropy, and compare it with the Brin-Katok local entropy. We show that the neutralized local
entropy coincides with Brin-Katok local entropy almost everywhere. Neutralized local entropy is computed
by measuring open sets with a relatively simple geometric description. Our proof uses a measure density
lemma for Bowen balls, and a version of a Besicovitch covering lemma for Bowen balls. As an application, we
prove a lower point-wise dimension bound for invariant measures, complementing the previously established
bounds for upper point-wise dimension.

1. INTRODUCTION AND MAIN RESULTS

One of the most useful tools in studying dynamical systems are dynamical covers and partitions of a
measure. That is, given an invariant measure, a cover or a partition modulo the measure, whose elements
have a significant structure w.r.t the dynamics. The pursuit for such objects creates a tension between
searching for elements with a simple geometric description, with which it is easy to work, and searching
for elements with significant dynamical structure, which allows to control their orbits and measure. Two
charecteristic examples of this tension are geometric balls, and Bowen balls.

Geometric balls allow one to utilize strong geometric properties such as the Lebesgue density theorem, or
the Besicovitch covering lemma. Bowen balls on the other hand, allow one to estimate their measure in terms
of the entropy (see [BK83]), and control their image under the dynamics for a fixed amount of iterations;
while having a possibly very complicated geometric shape.

Pesin theory allows one to linearize locally the action of the dynamics on typical orbits. However, the
size of the neighborhood where the linearization is valid may deteriorate along the orbit, although in a
sub-exponential rate. Given an ergodic measure with positive metric entropy, the Ruelle inequality says
it must have some positive and some negative Lyapunov exponents ([Rue78]). When an orbit admits a
central direction, i.e an invariant sub-space of the tangent space corresponding to 0 Lyapunov exponents,
the central direction may not be integrable into an invariant manifold. In addition, the differential may
contract or expand tangent vectors in the central direction, in a sub-exponential way. These effects make it
very hard, and generally not attainable, to get a simple description of the set of points which remain close
to the orbit for a fixed amount of steps.

Furthermore, even in the absence of 0 Lyapunov exponents, the decay of the size of the Pesin chart (i.e
neighborhood with a local linearization of the dynamics) does not allow to control the set of points which
remain close to the orbit by a fixed distance (i.e Bowen balls). Hence, phasing-out sub-exponential effects
such as the central direction or the deterioration of the size of Pesin charts becomes very useful. Removing
these effects allows one to treat the action of the dynamics along an orbit as if they were linear and hyperbolic,
and so simplifying greatly the geometric description of the set of points which shadow the orbit (or part of
it).

Our goal in this paper is to address exactly this difficulty. Our proof relies on a sub-exponential measure

density lemma over Bowen balls (rather than geometric balls as in the Lebesgue density lemma).

In our setup M is a closed Riemannian manifold, d = dimM > 2, and f € DiffH'ﬁ(M), B > 0. Let pu
be an f-invariant Borel probability measure. The purpose of this paper is to compute the neutralized local
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entropy defined by,

: : -1 —rn
Eu(x) := lim lin sup —log pu(B(z,n,e™™)), (1)

where B(z,n,e™™) = {y € M : d(f(y), f'(y)(z)) < e ™,V0 < i < n}. One can check the following
properties for the neutralized local entropy:

(a)
Eulzx) € [hEK(m),d -log My] p-a.e, (2)

where My := maxzen{||daf],[|def "]}, and k™ (z) is the local entropy at z given by the Brin-
Katok formula, [BK83].! The upper bound is given by the classical lemma which states that
lim,_,q W < d for prra.e z, and by the fact that B(z,n,e™"™) 2 Bz, M;") for all n > 0

and sufficiently small r > 0.
(b)
Euof=E, pae. (3)

This can be seen by the following two inequalities:

(1) Eu(f(x)) > Eu(x): since
,U,(B(f_l(l'),n, e—rn)) = M(f[B(f_l(m)an»e_rn)D < u(B(x,n, Mfe_rn))a
(II) &.(f(x)) < E,(x): since

u(B(f ™ (@),n,e™™) = p(f Bl + 1,6 5N > p(B(a,n+ 1,677 ),

The significance of the neutralized entropy is that it estimates the asymptotic measure of sets with a
distinctive geometric shape. Unlike the sequence {B(z,n,r)}n>0 which can develop a very complicated
geometric shape for large n- due to a central direction, or even for a non-uniformly hyperbolic trajectory-
the sequence {B(z,n,e”")},>0 can have a nice description a.e for any r > 0, by neutralizing any sub-
exponential effects. Sets with a more explicit geometric description are very useful for the construction of
covers (or consequently even partitions), and so controlling the measure of such sets is important.

In fact, one can guess that by the lack of diversity for intrinsic dynamical invariants, the neutralized local
entropy must coincide with other notions of local entropy (or the metric entropy in the ergodic case). This
paper is dedicated to the proof of this statement for smooth systems.

Thieullen [Thi92a] studied a similar notion to the neutralized local entropy, called a-entropy, for certain
systems on infinite-dimensional systems (see also [Thi92b, Thi91]). Other generalizations of entropy have
also been studied in terms of ergodic theory for some systems by [TV02, TVO03].

As an application of the neutralized local entropy, in Theorem 4.1 we prove a lower bound for the point-
wise dimension of ergodic invariant measures: for almost every point

i inf 2EHBE) S g

=0 logr

where d* and d° are the point-wise dimension of the conditional measures of u along the unstable and the
stable laminations, resp. (see §4 for details). This extends the previous result in [BPS99] for hyperbolic
measures, and complements the upper bound in [LY85b]. In particular, using the notion of neutralized
local entropy, the proof of Theorem 4.1 is relatively elementary as it only uses covers and does not require
constructing adapted partitions.

lhEK(m) = lim¢_,0 lim sup %1 log.,u(B(x., n,€)) = lime_,o lim inf %1 log u(B(z,n,€)), where the limits exist, the equality holds
p-a.e, and B(z,n,e) = {y € M : d(f*(z), f"(y)) < eV0<i<n}.
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2. COVERING, DIFFERENTATION, AND ERGODIC THEOREMS

Let M be a closed Riemannian manifold, d = dimM > 2, and let f € Diﬁ”HB(M)7 5> 0.
Notation: Throughout the paper, given 4, B,C > 0, we write A = B - e*® to mean Be~¢ < A < BeC.

Definition 2.1 (Pesin blocks). Let p be an f-invariant ergodic probability measure which admits a positive
Lyapunov exponent. Denote by x = X(/‘) = (X1,M1, .-, Xe,,Me,) the positive Lyapunov exponents, and
dimensions of the corresponding Oseledec subspaces, of p in a decreasing order.
(1) Let 0 <7 <7y := oo min{Xe,, Xi — Xi+1 1 4 < € — 1}, and let Cy - (-) be the Lyapunov change of
coordinates for points in LR, = {Lyapunov regular points with an index x} (see [KM95]).
(2) Let PRy = {z € LR, : lim_supn_H[Oo Llog [|CLL(f™ (@) = 0,Y0 < 7 < Tx}, the set of x-Pesin
regular points which carries p. PR := Ux PRy is called the set of Pesin regular points.
(3) Given x € PR, let Ej(x) be the Oseledec subspace of x corresponding to x;;.
(4) A Pesin block A%’T) is a subset of U\x’—zloo<7 PRy which is a level set lgr > %] of a measurable
function qr + Uy <, PRy = (0,1) s.t (a) q;—ff =et", (b) ¢ (1) < —L—+. Often we omit

I ROk
the subscript £ when the dependence on £ is clear from the context.

Lemma 2.2 (Besicovitch-Bowen covering lemma). Let AX™ (0 < 7 < 7x) be a Pesin block, and let
zo € AXT) . Let B(xo) be the Pesin chart of zo for AXT). Let A C A7) N B(xy) be a measurable
subset. Then A can be covered by a cover of exponential Bowen balls of points in A (i.e B(-,n,e™ ")), with
multiplicity bounded by €37, where n is sufficiently large w.r.t AX7) | and € > 27.

The idea of the proof follows the principle steps of the proof of the classical Besicovitch covering lemma
(see [DiB02, § 18]), using a certain volume doubling property for exponential Bowen balls.

Proof. Let n € N sufficiently large so e™“" is smaller than the Pesin chart size for A% Set Ay := A, and
choose z1 € A;. Given k, set Apq := A\ U§:1 B(zj,n,e ") and choose x11 € Apy1. Continue in this

process as long as A\ U?zl B(z;,n,e” ") is not empty.

Claim 1: Vk < j, B(z;,n, %e‘”e) N B(xg,n, %e‘"e) =a.
Proof: Otherwise, Vi < n, d(f'(zx), f'(z;)) < %6*5", whence z; € B(xg,n,e” "), in contradiction to the
choice of {x;}i>1.

Claim 2: 3N € N s.t Uszl B(zg,n,e” ") D A.

Proof: For any k > 1, Vol(B(z,n, %e‘fn)) = (OFl. g7X"" . gmdasengtdrn where ¢ X' = Hi<2X e Xinmi
my; is the multiplicity of x;, des := Zi:Xi<0 dimF;, and C is a constant depending on M, d, and A Then
N < Vol(M) -

—_ C—I.S*X"n.efdfnf—dcssn’

Claim 3: Up_, A% 2 A.

Proof: The process continues unless A is covered.

Claim 4: Vk < N, #{j < N : B(xj,n,e" ") N B(xy,n,e ") # @} < Cqe?™7, where Cy is a constant
depending on M and on A7),

Proof: Let k < N, and let k # j < N s.t B(xj,n,e ") N B(zk,n,e ") # &. Then

1
B(zj,n, ge_"s) C B(xzj,n,e ") C B(zk,n,3e” ).

Then

maxg<n Vol(B(xg,n,3e™ "))

#{j < N:B(zj,n,e )N B(xg,n,e ") # 2} < < (02322,

minj<y Vol(B(z;,n, 5e~"¢))

Claim 5: We can divide {x}}r<y into sub-collections C;, i = 1,...,[Cqe?4™ + 1], where for any i <
[Cye?™ 1], {B(x,n,e~") : z € C;} is a mutually disjoint collection. In particular, for n sufficiently large,
|'Cd62n‘r + 1“ < €3dn‘r.
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Proof: Let K, := fC’deQ"dT + 1]. We associate xy with Cy, for all k < K,,. For each k > K,,, we allocate
it into one of the pre-existing collections in the following way.

Given B(zk,+1,m,e" "), by claim 4, there exists at least one ik, 11 < K, st B(zgk, 41,1, ") N
B(wiy, ,sn,e”") = @; so allocate 2k, 11 to Ciy, ;-

Next, consider B(zk, 12,n,e "), at least two of the K, + 1-first balls do not intersect it. If any of the
balls 2, ..., K, do not intersect B(zk, +2,n,e "), allocate it to the first associated collection as such. If all
of the ballsof 1,...,ix,+1 —1,iKk,+1 +1,..., K, intersect it, then allocate it to C which now contains
three disjoint balls.

We continue by induction. Assume that the balls {B(z;,n,e"“")}j < K,, + 1 — 1 have all been allocated
into one of the K,,-many disjoint sub-collections. Consider B(zk, +i,n, e~ "), which is disjoint from at least
I balls in {B(zj,n,e”")}j < K, +1— 1. This implies that least one of the collections C;, i < K, is disjoint
from B(zk, +1,n,e "), to which we may allocate it. O

Ky +1

Lemma 2.3 (Bowen-Lebesgue density lemma). Let p be an f-invariant probability measure. Let A be a
measurable set s.t (A) > 0. Then for p-a.e x € A,

w(B(xz,n,e )N A)

-1
lim lim sup — log

=0.
150 moeo N w(B(z,n,e=""))
Proof. First, assume that 3\ > 0 s.t (w.l.o.g) for p-a.e x € A,
-1 B TN A
lim lim sup — log w(B(x,n, e ™) N A) >\
r=0 n u(B(z,n,e=rm))

Let 0 <r < é% s.t u(A®) > 0 where

p(B(z,n,e”™)NA) _ TA
(Bl em) ~ 80

-1
A® = {z € A:limsup — log
n

Then it follows that p(A®")) > 0 where A1) := A N AXT) for some index y and 7 < min{%, 7, } (this
can be achieved by first dividing the parameter space of x by the Oseledec dimensions, then by boxes around
each /' of size %TX, and then further by boxes of size 7 := min{, %TX}; whence %TX < 7y)-

Let N > 1 large and = € A(l), and set

pw(B(z,n,e”™)NA) _ 6A
(B em) ~ 8

-1
nY :=min{n > N : — log
n

Set for all n > N,
AW = {z e AD . pl¥ = p}.

By Lemma 2.2, we can choose a finite subset C,, C AP st Usec, Blz,n,e™™) 2 A'D while {B(z,n,e7"™)}sec,

has an overlap bound smaller than €37 < 3937 < esn (for all n large enough depending on M and A(X’T)).
Then,

p(AD) = (( U Bne™) mAg”) < 37 u(Ble e NAD) < 37 (Bl n,e ) 0 A)

z€Cp z€Cy, zeCy
<3 uBlan,e e < e Rredny( | Blane ™) <en B
vECn z€Cp



Remark: A possible heuristic way to interpret Lemma 2.3 is the following: we think of belonging to a
measurable set as satisfying some property. Then, for almost any point which satisfies a certain property,
more and more points which spend a long portion of their orbit close to this point inherit this property as
well. That is, a portion of the exponential Bowen ball, with bigger and bigger exponential portion bounds,
lies in the measurable set as well.

Corollary 2.4 (log-differentation lemma). Let p be an f-invariant probability measure, and let g € M(u)
be a measurable function and A € B be a measurable set with u(A) > 0. Then for p-a.e x € A,

-1 1
lim lim sup — lo —/ e~mlIW=9@lq , (y)d =0.
e—0 n—>oop n 8 (u(B(x,n,e‘”f)) B(z,n,e—nc) Aly)dny)

Proof. Let 6 > 0, and let a € R s.t u(E) > 0 where E := ANg~!a—$,a+ §]]. Let z € E, n > 0, and
€ > 0, then
! / —nlg(y)—g(@) ! —n
T ay e La(y)du(y) 2 —————"~ e " du(y)
/J,(B(.'E,’I’L,e en)) B(z,n,e€m) ,u(B(ac,n,e en)) B(z,n,e"<")NE
_spBn ™) 0 E)
w(B(z,n,e"n))

Then by Lemma 2.2, for p-a.e v € F, hm hrrln_)solip Log WB(I nfe_m) e~™9W) =91 , (y)dpu(y) <

d. Since 0 > 0 was arbitrary (and the limit is independent of a), we are done. O

Theorem 2.5 (Log-Ergodic Theorem). Let p be an f-invariant probability measure, let A be a measurable
set s.t p(A) >0, and let g € L' (). Then for u-a.e x € A,

—1 1 n—1 —j n—1 —j
lim 1i g ——— 1 ce— 12520 9o TP (W) =520 9of T (@)l g —0.
lm lgl_igp " 0og 1(B(z,n, ) /B(xne oy Aly)-e g j w(y)

Proof. Let pn = [ ppdu(z) be the ergodic decomposition of p. Since g € L' (u), for p-a.e z, g € L*(p1;). Then
for pra.e @, limg, o0 L Z?:_Ol (9— [ gdps)o f~9(x) = 0. Let § > 0, and let ns > 0 s.t u(As) > e~ u(A) where

n—1
As =K ye A:VYn > ng, Z /gduy f—j(y) < nd
7=0

Let x € Ag, then for all n > ng and r > 0,
/ Da(y) - e 558 80 W)= 535 905 @)l gy )
B(z,n,e=m")
> 1a,(y)-e”! S50 (9= gduy)of T (W)l =nl [ gdpy— [ gdpa|—1 725 (9= gdum)of—f(w)\dlu(y)

B(xz,n,e~"")
2 6725"/ La,(y) - e MW= ldp(y),
B(z,n,e="")

where G(y) := [ gdu,. Then by the log-differentiation lemma (Corollary 2.4) for G, and since § > 0 was
arbltrary, we are done. (Il

3. NEUTRALIZED LOCAL ENTROPY IS ENTROPY

Lemma 3.1. Let p be an f-invariant Borel probability, and let = [ pydu(x) be its ergodic decomposition.
Then hBK( ) = hu, (f) p-a.e.

Proof. Let Ey := {x : h}¥(x) > hy,(f) + A}, and assume that there exists A > 0 s.t u(Ey) > 0 (notice

that Ey is f-invariant). Let Gy := {x : pz(Ex) = 1} with ay := pu(Gy) > 0 (o.w u(Ey) = 0). Write

= ﬁ fGA pzdp(x), and pe := %(1 — px) where a. :=1—ay. Then u = aypx + acpe and for py-a.e x,
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hix () = 1 () = by, () + A
However, this is a contradiction, since integrating both sides by px admits h,, (f) > hu, (f) + A, a con-
tradiction! Hence hj}™(z) < hy,, (f) p-ae, but [hRX(x)du(z) = [ hy, (f)dp(z), hence hpX(x) = hy, (f)
[-a.e. ]

Lemma 3.2. Let p be an f-invariant Borel probability, and K be a p-positive measure set, and let 6 > 0.
Assume that 3A > 0 s.t hEK(m) < h+ A for p-a.e x € K. Then for all n large enough w.r.t § and K, there
exist a measurable subset K5 C K and a subset A, s and 0 < p <9 s.t

(1) U%Am5 B(x,n,p) 2 Kj,
B(Ks) -5

(2) Wy =z €

(3) #An 5 < en(h+A+6).

Proof. For p-a.e x € K, lim,_,o lim sup _Tl log u(B(xz,n,7)) < h+ A. Set K5 C K and ns € N s.t Vo € K,
Vn > ns, p(B(z,n, £)) > e A4 and pu(K;) > e O pu(K), for some 0 < p < 4.

Let n > ns. Set K' := Ks, and let 2; € K'. K*! := K\ B(x4,n, p), and choose ;4 € K.

For any i # j, B(xi,n, §) N B(zj,n, §) = @, hence we have at most e HAT) _many elements in {z;}; =:
A,.5. Moreover, one can check that UIE.A”,s B(z,n,p) 2 K. O

)

Corollary 3.3. Let xo >0, 7 € (0, 1555), € > 47 small (w.r.t xo), v > /€, L €N, and let n' s.t p(K) >0
where

K C {:I: Lyap. reg. s.t xpin (), Xonin () > X0 : (4)

(x(=),7) —ip (x(2),7)
Vn >z e AS N ( U FIAS ]) }
n(1+v)<i<n(1+27)

Assume that hEK < h+ A for u-a.e x € K. Then there exists K; C K s.t u(K;) > e "u(K) and for alln
large enough, 3A, C K; s.t J,e 4 B(z,n,e”") 2 K. and #A, < en(1427) (bt At3de)

Proof. Let K, and n., as in Lemma 3.2, for some 0 < p < 7.
Let n > max{n,,n’}, and let C,, be a Besicovitch cover of K, by balls of radius e~
For each such ball B, we cover K, N B with at most e”(!1+2V)(A+A+7)_many Bowen balls of the form
B(-, [n(14+27)], p) by Lemma 3.2. Hence in total we cover K, with at most ByCjse?d (1420 +A+7)_many
elements, where By is the Besicovitch constant of M, and C)y is a constant s.t Vol(B(x,e=2")) > ﬁe’zdm
for all x € M and n large.
Let B € Cp, and let A7
[[n(t+)]; [n(1+29)]],
B(z, |[n(1+27)],p) N B C B(x, j., p) N B(z,2e*") C B(x,n,e” "), (5)

for all n large enough depending on ¢ and e (we prove (5) in the end of this lemma). Thus in total,
{B(z,n,e=") : x € AF ., B € Cp} is a cover of K, by exponential Bowen balls, of cardinality bounded by
en(1427)(h+A+3de) o1 3]l n large enough.

2en

as in Lemma 3.2 for BN K,. Let x € AP

n,T?

and notice that for j, €

T

To prove (5), we work with Pesin charts, which is where we need the assumption from (4).

Let x € K. We wish to show that for all n large enough (depending on ¢), Vi € [1,n], Vy € B(z, j., p) N
B(z,2e72"), fi(y) € B(f'(z),e ). Letting 1; be the Pesin chart of fi(x), it is enough to show that
|7 o fo(vy)] < e i, where vy, = v (y).

Write ¥; " o fi o bg(vy) = v = v° +v° +v¥, where v* € E'(2), t € {s,c,u}. Set f; := ;o f oy, and
F; := fi_10---0fy. We assume for the simplicity of presentation that all of the negative Lyapunov exponents
of x are equal, and that all of the positive Lyapunov exponents of x are equal, otherwise decompose vs and
v, into corresponding components.

A standard result of Pesin theory tells us that the maps f; can be put in the form f; =37, . .y Dive +
ht(v), |kl < 7, and where D; are linear self-maps of EY, and X (®)+7 > | DY, ||Ds|| < e X @)+,
X @ > DI, Dy < X @+, and [|D; 1, 1Dl < €.
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Therefore the stable and central components of F,(v,) remain small enough, and we are left to bound
v = (Fp(vy))". Since fi=(y) € B(f¥*(x), p), similar contraction estimates hold for f~', and we get |vy| <
e~ (X" (@)=2n)n(1+7) | Thus, |(F,(v))*| < e~ " @)=2)n047) (X" (@)421)n < g=1nlxo—47) < e~ 1 for € > 0 small
enough (w.r.t o). O

Theorem 3.4. Let f € Diffl+6(M), where M is a closed Riemannian manifold with dimM =d > 2. Let p
be an f-invariant Borel probability on M. Then

Eulx) = hEK(w) [-a.e.

Proof. We start with a reduction. Let p = a™pt + a®u° where p admits a positive Lyapunov exponent
a.e, and x° has all exponent less or equal to 0 a.e. Then &, < &+, and for p%-a.e z, £,(z) =0 = hE’K(a:)
(by dimension bounds). Therefore we may assume w.l.o.g that p admits a positive Lyapunov exponent a.e.
Moreover, write = Y.< a;j; where for every ¢ > 1, p;-a.e, all non-zero Lyapunov exponents are greater

than % in absolute value. Thus if for every i > 1 we have hE’iK > &, Wi-a.e, then by Lemma 3.1,
ht = hp > &, > €, pimae, Vi > 1= h)N > €, prae.

Then it is enough to assume that the non-zero Lyapunov exponents of p are uniformly bounded from below
in absolute value by a constant xo > 0.
It is enough to assume for contradiction that 3\ € (0,min{x3,3}) s.t &, > B + 2\ p-a.e, since if

= axpix + (1 —ax)puy where ay >0 and £, > h?X + 2X py-a.e , then once more by Lemma 3.1,
Eun 2 & > WS 20 = hpS + 22X, pa-ace.

Finally, we make the following reduction: let G ) = {2 : Eu(x) = € £ %,hEK(x) =h+ %}, then let
p=a i + (1 —ae '), where ag py > 0 and p' is carried by G(g py. Then, p'-a.e

Ew > Eu > hS + 20 = hS + 2\ (6)

Moreover, similarly, we may assume w.l.o.g that &, > VX a.e. Therefore we may assume for contradiction
that £, and hp™ are “almost constant” w.r.t to the gap between them which is uniformly bounded from
below.

There exists 0 < r < 2130l 4% 5. 4y(4;) > 1% where Ay = {2 € A+ limsup <L log u(B(x, n,e™"™)) >
hBK (z) + 2},
We can then choose 0 < 7 < min{ 55} and £ € N s.t pu(Az) > 1 — 2X* where

Ay :={z € A; Lyapunov reg.: z € A%(I)’T)}.

Let o = [ padp(z) be the ergodic decomposition of p. Then by the Markov inequality, p({z : pz(A2) >
1—V2M}) > 1 —V2X\. Then p({x € As : pp(Az) > 1 —+/2X2}) > 1 —2)2. So by the ergodic theorem
Ing € N s.t u(Az) > 1 — 3\2 where

Az ={2 € Ay :Vn >no3j € [n(1+4X?),n(1+8)\%)] s.t f/(z) € As}.
Let K, C As as in Corollary 3.3 s.t u(K,) > 0 (notice, the restrictions on K in Corollary 3.3 are given

by Lemma 3.2, which in turn are merely Brin-Katok estimates; which are inherited by subsets). Let N > ng
large, then for all x € K, set

Tz -

-1 6
nd := min{n > N : — log u(B(z,n,e”"™)) > h+ g}

For all n > N, set K,, := {r € K, : nlY =n}.
By Corollary 3.3, we can cover K, with a cover whose cardinality is less or equal to "

exponential Bowen balls of the form B(z,n,e "), x € K,,. Hence, u(K,) < (148X (ht3+3dr) . o—n(ht )

whence 0 < p(K;) <> oy e—ns Moo, 0, a contradiction! Hence hBK <&, < hEK p-a.e. O

14+8A%)(h+ 4 +3dr)  of

Remark: Theorem 3.4 implies that £, (z) = lim,_,o liminf,_,o =t log u(B(z,n,e~"™)) for p-a.e x since

~1 -1

BK T o . . —rn — BK

hy.” (¢) = lim lim inf —=log u(B(w, n,7)) < lim liminf —=log u(B(z,n,e™"™")) < Eu(x) = by," (2)-
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4. LOWER-DIMENSION BOUNDS FOR INVARIANT MEASURES

In [LY85b], the authors consider an ergodic f-invariant measure y, where f is a C? diffeomorphism of a
closed Riemannian manifold M. The authors consider two important partitions- £ and £° sub-ordinated
to the unstable and to the stable laminations respectively, and consider the conditional measures of y w.r.t
to these partitions. The authors then go on and prove that the conditional measures pieu(.y and pes(.) are
exact-dimensional for almost every point, with the dimensions being constant and denoted by d* and d°
respectively. Moreover, the authors prove that the point-wise upper-dimension of p-a.e point is bounded by

d<d*+d°+d°,
where d° = d°(u) := #{0 Lyapunov exponent of u}.
In [BPS99], the authors extend the results of [LY85b] by relaxing the regularity assumption of f to C1+#

(8 > 0) by proving the Lipschitz property of intermediate foliations; and bound from below the point-wise
dimension of ergodic invariant measures under the additional assumption of hyperbolicity:

d“ +d* <d<d.

In particular, it follows as a consequence that a hyperbolic measure is exact-dimensional, since d° = 0.

The purpose of this section, is to extend these results, as an application of Theorem 3.4. We give lower
bounds to the point-wise dimension of invariant measures, which coincide with the lower bounds from [BPS99]
when the measure is hyperbolic. In general, invariant measures with 0 Lyapunov exponents need not be
exact-dimensional, and the bounds from [LY85b] are tight. In particular, our proof is aimed to be short and
accessible by using the neutralized local entropy instead of adapted partitions.

Given an ergodic f-invariant measure, let d° and d“ be the point-wise dimension of the conditional
measures {j¢s(.)} and {pgu(.y}, respectively, which are introduced in [LY85b].

Theorem 4.1. Let p be an f-invariant ergodic measure, where f € DiffHB(M) (B >0 and M a closed
Riemannian manifold). Then for p-a.e x,

1 B
&+ d* < d(z) = lim inf 2BABE@ 7))
7—0 log

Proof. We start with two simple reductions. Given r > 0, and x > 0, let ' := max{e™X : e™"X < r,n € N}.
Then,

log u(B(x,7)) logr’ logu(B(x,r)) logu(B(x,r"))
logr “logr  log u(B(z, 1)) log 7/

Xy, log p(B(a, "))

>(1 -
( log r log r/

Then it is enough to prove liminf,,_, w > d* 4 d®, for some x > 0. The second assumption
we make is that p admits both positive and negative Lyapunov exponents, since otherwise d° = d* = 0, and
the statement is trivial.” Set x := 3 min{|x;(p)| : xi(u) # 0} > 0.

We now can start with the construction for the proof. Assume that p admits positive exponents, and so
we prove d > d*. The case of the negative exponents is treated subsequently, and we improve the bound.
2
Let 6 € (0, x), and let € € (0, %) and ns € N s.t e X < 7 and pu(As) > 1 — & where
é

As:={z € A%’T) 1V > g, e o) (B (2, e7X)) < e_Xdu’ﬂ+n6’
,U(B(x, —-n, e_En)) — e—m‘)ui&n, /J(B(l', n, e—en)) _ e_”gui‘S"’
,LL(B(LL" —-n,n, 26_6n)) = 6_25uni6n}’

where x = x(u) and 7 € (0, 1557), and B(-,—n,e”") denotes an exponential Bowen balls for f71, while
B(:, —n,n,2e” ") denotes a two-sided exponential Bowen ball.

2If there are either no positive or no negative Lyapunov exponents, then by the Ruelle inequality h,(f) = 0. Therefore, by
[LY85a, LY85b] ([BPS99, Appendix] guarantees that our C'*8 setup is sufficient), hs(u) = hy(p) = 0 and d* = d° = 0.
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By Lemma 2.3, there exists A5 C As and ms > ns s.t p(A5) >1—20 where?

(
(B(z,n,e” "))
(

x,n,e"") N As)

1
5:={x € As :Vn > ms, — log < 48de}. (7)
n

w
u(B
Let 2 € A% which is a Lebesgue density point s.t u(B(z,e "X)N A%) > e~ u(B(z,e~"X)) for all n > n, >
ms, and let n > n,.
Then cover A{NB(z, e X") as in Lemma 2.2, by a cover C" of balls B(-,n, e~ ") with multiplicity bounded
by e3drn

Claim: For p-a.e x € Aj, for all n large enough, p(lJC" N A4s) < e~Xxd"n+2von,
Proof: For z € Aj, define
Sp(x) == U B(y,n,e” ") N As.
yEALNB(z,e~x")
Assume that p({z € Aj : limsup =t log (S, (z)) < xd* — 2V/6}) > 0. Then set A, = {{zx € A :
=Llog u(Sn(z)) < xd* — V3}}, and so by the Borel-Cantelli lemma there are infinitely many n € N s.t
p(Ay) > e7¢. Then there exists x € Aj s.t preu(q)(An) > ™"

Cover &“(z) N A, by B(-,e X"e2") in a Besicovitch manner, which means we can find a mutually
disjoint sub-collection of measure at least Cide_m, F. Let B(y,e xnt2n) B(y/ e~xnt2n) ¢ F and let
z € B(y,e™X) N A and 2/ € B(y,e X") N A;. Let w € B(z,n,e”") N £%(z) N By, e X"*2") and
w' € B(2',n,e” ") NEY(x) N By, e X"+in),

If B(z,n,e )N B(z',n,e”") # &, then w € B(w’,n,4e” "), which is impossible since both w and w’
lie on £¥(x) with distance at least 2 - (e X" +2en — e=Xn+51) > o=X" hetween them.

Then, VB, B" € F, centered at y and y' respectively, Sy, (y) N Sn(y') = @. However, #F > — o
(since B(y,e "0=29) N E%(y) C Beu(y)(y, e "X 739)). Thus,

—en

—€n

1> #F . e xd"+nVs > ©

. —xd*+n3 %\/Sn
— e—nd'“(x+35)+5n € 2 € ’

a contradiction! O

It follows that for p-a.e x € Kj, for all n large enough,
e—nxdu-}-\/gn Z M(U N A5) Z e—SdTn . #Cu . Bnncn /’L(B ) A§) Z €—3d7'n . #Cu . e—né‘“—(;n . 6—48den.
e uw

Thus,
40" < en(é'u,—d“x+6\/3). (8)

This concludes the bound
M(B(x,e_"")) < 66 . N(B(x’e—xn) N Ai;) < 66 . #Cu X e—n(é‘“-i—é) < 66 . en(é‘u—d”x-i-ﬁ\/g) . e—n(&'“—i-&).
Hence d > d* — 7+/5 where § > 0 is arbitrary.

For the case of the negative exponents, construct similarly a cover C* of A5 N B(z, e X") by exponential
Bowen balls for f~1, denoted by B(-,—n,e~"). Then similarly one gets that #C* < en(Eu=d"x+6V8) e
then define the cover C':= {B* N B": B* € C*,B" € C*, and B* N B* N A} # @}. It follows immediately
that

#C S #Cu . #Cs S en(QEufdsxfdux+12\/g)' (9)
Moreover, for every element B € C, B C B(xp,—n,n,2e” ") where zp € Aj by the triangle inequality.
Therefore,

M(B(I,eixn)) < el . #C - efn(2£“75) < el . efn(dSer“)XJrlS\/é_n. (10)

Since § > 0 was arbitrary, we are done. O

w(B(z,n,e”"")NA)
w(B(z,n,e=""))
argument extends as is to the quantitative estimate of (7) whenever € > 0 is small w.r.t x.

9
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Remark: Note that the estimate from above of the measure of a ball in Theorem 4.1 is quite coarse: All
elements of C* and of C*® are of size ~ e~ in the central direction, which is much longer than the diameter
of the ball e™X™. While this over-shooting may seem wasteful, one may may not expect an invariant measure
to be concentrated in the central-direction, and in fact generally an invariant measure may even be atomic
in the central direction, thus the estimate is tight for the general case. In some cases where we have more
information regarding the central direction, we may say a bit more, as we show below in Corollary 4.2.

Corollary 4.2. Under the assumptions of Theorem 4.1, if u admits a measurable lamination by central
leaves almost everywhere, then a.e,

o log (B, )

=d(p)=d>d*+d"*+d°
m it log d(p) =d > d* +d" +d°,
where d° is the lower point-wise dimension of the conditional measures on the lamination by central leaves.

Proof. Let £° be the measurable partition of u into central leaves. Notice that d° and d are invariant
functions, and are constant a.e.

Let 6 > 0. We consider the set AJ, which is the set of density points of A§ which also satisfy dimension
bounds, where Aj is as in the proof of Theorem 4.1. That is, for all x € A}, and all n > nfs; > ns,

pee (@) (Blx, e X" m) 0 Af) < emdxnton,
ooy (B, €=27)) > e 3en, (1)
Furthermore, by the Borel-Cantelli lemma, there are infinitely many n € N s.t u(A,) > e ", where
Ay = {x € A} u(B(x, e X"~")) > -xdn=dony,

Ifforallx € A,, “(ﬁ(’g(f(:,’i;i:;;)) < e~%" then let F be a Besicovitch cover of A,, by balls B(-, e~ X"~¢"),
It follows that,

BﬂAn —den —den
< Y uBna) = X TS ) < ot 3 ) < g
BeF BeF H BeF

= a contradiction! Thus, by the definition of A,,, there exists x € A,, with
M(An n B(LL‘, e—xn—en)) > e—den . H(B(x’e—xn—en» > e—den—ngxn—én' (12)

Let T, (z) := B(x,e X" )N B(x, —n,n, 2e "), then by (12) and by the bounds from Theorem 4.1, (9),
g~ den—ndxn—on <u(B(z,e ™ X" NA,) < “(U CNB(z,e X" ™MYN A,)

< . —Xn—eny .
SHC peoB o BN AN B(z,e )< #C BeCIBNA, #0 H(Tn(ys) M An)

<o nx(d"+d*)+12VEn+2nE,, w(To(ys) N Ay), (13)

max
BEC:BNA,#0
where yp is a point in BN A,,.

We wish to bound the second term on the r.h.s of (13). We use the fact that B(-, —n, n,2e™") is saturated
by central leaves, and get that for all B € C,

H(Tm) 0 4n) ST 04D = [ o (Tl ()

Hee(z) <Tn<yB)) —2en
= —se Mee(y) (B(ys, e7~"))dp(2)
/gc[Tn(yB)ﬁAn] fiee () (B(yg, e~2em)) "¢ 2 Nl

( (11)) Se—xdcn+6n+3den/ ugc(z)(B(yB,€_2€"))du(y)
gc[Tn(yB)mAn]
§67X46n+5n+3d6nu(3(y3, —n,n, 267677/)) < efxgcn+§n+3denef2n£u+6n' (14)

Plugging (14) back into (13), we get
e—den—nglxn—én < e—nx(d“+d‘g)+12\/gn+2n5# . e—xgcn+26n+3den—25#n
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Therefore,
d>d®+d"+d° —19dV5,
which concludes the proof since § > 0 is arbitrary. O

Remarks:
(1) Let d and d° be the upper point-wise dimension of y and of Hee(.), resp. One can show similarly to

Corollary 4.2 that d > d* + d* + d’, by adapting the definitions of the sets Af and A,,, while the
structure of the proof remains the same.

(2) In both Theorem 4.1 and Corollary 4.2, the non-ergodic case is treated similarly to the ergodic case,
where Aj restricts further to a subset where the values of d, d, d", and d" are almost constant.

Corollary 4.3. Assume that p admits a measurable lamination by central leaves W€(-) almost everywhere.
Let £° be a measurable partition subordinated to the central lamination, and let Ay« .y be the induced Rie-
mannian volume on W(-). If the conditional measures of p satisfy jiee.y K Awe(.) a.e, then p is exact and
H-a.e,

d=d°+d" + dimE*°,
where dimE*€ is the dimension of the central Oseledec subspace.

Proof. By Corollary 4.2, and by [LY85b, Theorem F], u-a.e,
d>d>d°+d* +dimE® > d.
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