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Abstract. We introduce a notion of a point-wise entropy of measures (i.e local entropy) called neutralized
local entropy, and compare it with the Brin-Katok local entropy. We show that the neutralized local
entropy coincides with Brin-Katok local entropy almost everywhere. Neutralized local entropy is computed
by measuring open sets with a relatively simple geometric description. Our proof uses a measure density
lemma for Bowen balls, and a version of a Besicovitch covering lemma for Bowen balls. As an application, we
prove a lower point-wise dimension bound for invariant measures, complementing the previously established
bounds for upper point-wise dimension.

1. Introduction and main results

One of the most useful tools in studying dynamical systems are dynamical covers and partitions of a
measure. That is, given an invariant measure, a cover or a partition modulo the measure, whose elements
have a significant structure w.r.t the dynamics. The pursuit for such objects creates a tension between
searching for elements with a simple geometric description, with which it is easy to work, and searching
for elements with significant dynamical structure, which allows to control their orbits and measure. Two
charecteristic examples of this tension are geometric balls, and Bowen balls.

Geometric balls allow one to utilize strong geometric properties such as the Lebesgue density theorem, or
the Besicovitch covering lemma. Bowen balls on the other hand, allow one to estimate their measure in terms
of the entropy (see [BK83]), and control their image under the dynamics for a fixed amount of iterations;
while having a possibly very complicated geometric shape.

Pesin theory allows one to linearize locally the action of the dynamics on typical orbits. However, the
size of the neighborhood where the linearization is valid may deteriorate along the orbit, although in a
sub-exponential rate. Given an ergodic measure with positive metric entropy, the Ruelle inequality says
it must have some positive and some negative Lyapunov exponents ([Rue78]). When an orbit admits a
central direction, i.e an invariant sub-space of the tangent space corresponding to 0 Lyapunov exponents,
the central direction may not be integrable into an invariant manifold. In addition, the differential may
contract or expand tangent vectors in the central direction, in a sub-exponential way. These effects make it
very hard, and generally not attainable, to get a simple description of the set of points which remain close
to the orbit for a fixed amount of steps.

Furthermore, even in the absence of 0 Lyapunov exponents, the decay of the size of the Pesin chart (i.e
neighborhood with a local linearization of the dynamics) does not allow to control the set of points which
remain close to the orbit by a fixed distance (i.e Bowen balls). Hence, phasing-out sub-exponential effects
such as the central direction or the deterioration of the size of Pesin charts becomes very useful. Removing
these effects allows one to treat the action of the dynamics along an orbit as if they were linear and hyperbolic,
and so simplifying greatly the geometric description of the set of points which shadow the orbit (or part of
it).

Our goal in this paper is to address exactly this difficulty. Our proof relies on a sub-exponential measure
density lemma over Bowen balls (rather than geometric balls as in the Lebesgue density lemma).

In our setup M is a closed Riemannian manifold, d = dimM ≥ 2, and f ∈ Diff1+β(M), β > 0. Let µ
be an f -invariant Borel probability measure. The purpose of this paper is to compute the neutralized local
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entropy defined by,

Eµ(x) := lim
r→0

lim sup
n→∞

−1

n
logµ(B(x, n, e−rn)), (1)

where B(x, n, e−rn) := {y ∈ M : d(f i(y), f i(y)(x)) ≤ e−rn, ∀0 ≤ i ≤ n}. One can check the following
properties for the neutralized local entropy:

(a)

Eµ(x) ∈ [hBK
µ (x), d · logMf ] µ-a.e, (2)

where Mf := maxx∈M{󰀂dxf󰀂, 󰀂dxf−1󰀂}, and hBK
µ (x) is the local entropy at x given by the Brin-

Katok formula, [BK83].1 The upper bound is given by the classical lemma which states that

lims→0
log µ(B(x,s))

log s ≤ d for µ-a.e x, and by the fact that B(x, n, e−rn) ⊇ B(x,M−n
f ) for all n ≥ 0

and sufficiently small r > 0.
(b)

Eµ ◦ f = Eµ µ-a.e. (3)

This can be seen by the following two inequalities:
(I) Eµ(f(x)) ≥ Eµ(x): since

µ(B(f−1(x), n, e−rn)) = µ(f [B(f−1(x), n, e−rn)]) ≤ µ(B(x, n,Mfe
−rn)),

(II) Eµ(f(x)) ≤ Eµ(x): since

µ(B(f−1(x), n, e−rn)) ≥ µ(f−1[B(x, n+ 1, e−r n
n+1 ·(n+1))]) ≥ µ(B(x, n+ 1, e−r(n+1))).

The significance of the neutralized entropy is that it estimates the asymptotic measure of sets with a
distinctive geometric shape. Unlike the sequence {B(x, n, r)}n≥0 which can develop a very complicated
geometric shape for large n- due to a central direction, or even for a non-uniformly hyperbolic trajectory-
the sequence {B(x, n, e−rn)}n≥0 can have a nice description a.e for any r > 0, by neutralizing any sub-
exponential effects. Sets with a more explicit geometric description are very useful for the construction of
covers (or consequently even partitions), and so controlling the measure of such sets is important.

In fact, one can guess that by the lack of diversity for intrinsic dynamical invariants, the neutralized local
entropy must coincide with other notions of local entropy (or the metric entropy in the ergodic case). This
paper is dedicated to the proof of this statement for smooth systems.

Thieullen [Thi92a] studied a similar notion to the neutralized local entropy, called α-entropy, for certain
systems on infinite-dimensional systems (see also [Thi92b, Thi91]). Other generalizations of entropy have
also been studied in terms of ergodic theory for some systems by [TV02, TV03].

As an application of the neutralized local entropy, in Theorem 4.1 we prove a lower bound for the point-
wise dimension of ergodic invariant measures: for almost every point

lim inf
r→0

logµ(B(x, r))

log r
≥ du + ds,

where du and ds are the point-wise dimension of the conditional measures of µ along the unstable and the
stable laminations, resp. (see §4 for details). This extends the previous result in [BPS99] for hyperbolic
measures, and complements the upper bound in [LY85b]. In particular, using the notion of neutralized
local entropy, the proof of Theorem 4.1 is relatively elementary as it only uses covers and does not require
constructing adapted partitions.

1hBK
µ (x) = lim󰂃→0 lim sup −1

n
log µ(B(x, n, 󰂃)) = lim󰂃→0 lim inf −1

n
log µ(B(x, n, 󰂃)), where the limits exist, the equality holds

µ-a.e, and B(x, n, 󰂃) = {y ∈ M : d(f i(x), f i(y)) ≤ 󰂃, ∀0 ≤ i ≤ n}.
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2. Covering, differentation, and Ergodic theorems

Let M be a closed Riemannian manifold, d = dimM ≥ 2, and let f ∈ Diff1+β(M), β > 0.
Notation: Throughout the paper, given A,B,C > 0, we write A = B · e±C to mean Be−C ≤ A ≤ BeC .

Definition 2.1 (Pesin blocks). Let µ be an f -invariant ergodic probability measure which admits a positive
Lyapunov exponent. Denote by χ = χ(µ) := (χ1,m1, . . . ,χℓχ ,mℓχ) the positive Lyapunov exponents, and

dimensions of the corresponding Oseledec subspaces, of µ in a decreasing order.

(1) Let 0 < τ ≤ τχ := 1
100d min{χℓχ ,χi − χi+1 : i ≤ ℓχ − 1}, and let Cχ,τ (·) be the Lyapunov change of

coordinates for points in LRχ = {Lyapunov regular points with an index χ} (see [KM95]).

(2) Let PRχ = {x ∈ LRχ : lim supn→±∞
1
n log 󰀂C−1

χ,τ (f
n(x))󰀂 = 0, ∀0 < τ ≤ τχ}, the set of χ-Pesin

regular points which carries µ. PR :=
󰁖

χ PRχ is called the set of Pesin regular points.

(3) Given x ∈ PRχ, let Ej(x) be the Oseledec subspace of x corresponding to χj.

(4) A Pesin block Λ
(χ,τ)

ℓ is a subset of
󰁖

|χ′−χ|∞<τ PRχ′ which is a level set [qτ ≥ 1
l ] of a measurable

function qτ :
󰁖

|χ′−χ|∞<τ PRχ′ → (0, 1) s.t (a) qτ◦f
qτ

= e±τ , (b) qτ (·) ≤ 1

󰀂C−1
χ,τ (·)󰀂

d
β
. Often we omit

the subscript ℓ when the dependence on ℓ is clear from the context.

Lemma 2.2 (Besicovitch-Bowen covering lemma). Let Λ(χ,τ) (0 < τ ≤ τχ) be a Pesin block, and let

x0 ∈ Λ(χ,τ). Let B(x0) be the Pesin chart of x0 for Λ(χ,τ). Let A ⊆ Λ(χ,τ) ∩ B(x0) be a measurable
subset. Then A can be covered by a cover of exponential Bowen balls of points in A (i.e B(·, n, e−n󰂃)), with

multiplicity bounded by e3dτn, where n is sufficiently large w.r.t Λ(χ,τ), and 󰂃 ≥ 2τ .

The idea of the proof follows the principle steps of the proof of the classical Besicovitch covering lemma
(see [DiB02, § 18]), using a certain volume doubling property for exponential Bowen balls.

Proof. Let n ∈ N sufficiently large so e−󰂃n is smaller than the Pesin chart size for Λ(χ,τ). Set A1 := A, and

choose x1 ∈ A1. Given k, set Ak+1 := A \
󰁖k

j=1 B(xj , n, e
−n󰂃) and choose xk+1 ∈ Ak+1. Continue in this

process as long as A \
󰁖k

j=1 B(xj , n, e
−n󰂃) is not empty.

Claim 1: ∀k < j, B(xj , n,
1
3e

−n󰂃) ∩B(xk, n,
1
3e

−n󰂃) = ∅.

Proof: Otherwise, ∀i ≤ n, d(f i(xk), f
i(xj)) ≤ 2

3e
−󰂃n, whence xj ∈ B(xk, n, e

−n󰂃), in contradiction to the
choice of {xl}l≥1.

Claim 2: ∃N ∈ N s.t
󰁖N

k=1 B(xk, n, e
−󰂃n) ⊇ A.

Proof: For any k ≥ 1, Vol(B(xk, n,
1
3e

−󰂃n)) = C±1 · e−χun · e−dcs󰂃ne±dτn, where e−χun =
󰁔

i≤ℓχ
e−χin·mi ,

mi is the multiplicity of χi, dcs :=
󰁓

i:χi≤0 dimEi, and C is a constant depending on M , d, and Λ(χ,󰂃). Then

N ≤ Vol(M)

C−1·e−χun·e−dτn·e−dcs󰂃n
.

Claim 3:
󰁖N

k=1 Ak ⊇ A.
Proof: The process continues unless A is covered.

Claim 4: ∀k ≤ N , #{j ≤ N : B(xj , n, e
−n󰂃) ∩ B(xk, n, e

−n󰂃) ∕= ∅} ≤ Cde
2dnτ , where Cd is a constant

depending on M and on Λ(χ,τ).
Proof: Let k ≤ N , and let k ∕= j ≤ N s.t B(xj , n, e

−n󰂃) ∩B(xk, n, e
−n󰂃) ∕= ∅. Then

B(xj , n,
1

3
e−n󰂃) ⊆ B(xj , n, e

−n󰂃) ⊆ B(xk, n, 3e
−n󰂃).

Then

#{j ≤ N : B(xj , n, e
−n󰂃) ∩B(xk, n, e

−n󰂃) ∕= ∅} ≤ maxk≤N Vol(B(xk, n, 3e
−n󰂃))

minj≤N Vol(B(xj , n,
1
3e

−n󰂃))
≤ C232de2dτn.

Claim 5: We can divide {xk}k≤N into sub-collections Ci, i = 1, . . . , ⌈Cde
2ndτ + 1⌉, where for any i ≤

⌈Cde
2dnτ +1⌉, {B(x, n, e−󰂃n) : x ∈ Ci} is a mutually disjoint collection. In particular, for n sufficiently large,

⌈Cde
2nτ + 1⌉ ≤ e3dnτ .
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Proof: Let Kn := ⌈Cde
2ndτ + 1⌉. We associate xk with Ck for all k ≤ Kn. For each k > Kn, we allocate

it into one of the pre-existing collections in the following way.
Given B(xKn+1, n, e

−󰂃n), by claim 4, there exists at least one iKn+1 ≤ Kn s.t B(xKn+1, n, e
−󰂃n) ∩

B(xiKn+1
, n, e−󰂃n) = ∅; so allocate xKn+1 to CiKn+1

.
Next, consider B(xKn+2, n, e

−󰂃n), at least two of the Kn + 1-first balls do not intersect it. If any of the
balls 2, . . . ,Kn do not intersect B(xKn+2, n, e

−󰂃n), allocate it to the first associated collection as such. If all
of the balls of 1, . . . , iKn+1 − 1, iKn+1 + 1, . . . ,Kn intersect it, then allocate it to CiKn+1

which now contains
three disjoint balls.

We continue by induction. Assume that the balls {B(xj , n, e
−󰂃n)}j ≤ Kn + l − 1 have all been allocated

into one of the Kn-many disjoint sub-collections. Consider B(xKn+l, n, e
−󰂃n), which is disjoint from at least

l balls in {B(xj , n, e
−󰂃n)}j ≤ Kn + l − 1. This implies that least one of the collections Ci, i ≤ Kn, is disjoint

from B(xKn+l, n, e
−󰂃n), to which we may allocate it. □

Lemma 2.3 (Bowen-Lebesgue density lemma). Let µ be an f -invariant probability measure. Let A be a
measurable set s.t µ(A) > 0. Then for µ-a.e x ∈ A,

lim
r→0

lim sup
n→∞

−1

n
log

µ(B(x, n, e−nr) ∩A)

µ(B(x, n, e−nr))
= 0.

Proof. First, assume that ∃λ > 0 s.t (w.l.o.g) for µ-a.e x ∈ A,

lim
r→0

lim sup
−1

n
log

µ(B(x, n, e−rn) ∩A)

µ(B(x, n, e−rn))
≥ λ.

Let 0 < r < 1
3d

λ
4 s.t µ(A(0)) > 0 where

A(0) := {x ∈ A : lim sup
−1

n
log

µ(B(x, n, e−rn) ∩A)

µ(B(x, n, e−rn))
≥ 7λ

8
}.

Then it follows that µ(A(1)) > 0 where A(1) := A(0) ∩ Λ(χ,τ) for some index χ and τ ≤ min{ r
2 , τχ} (this

can be achieved by first dividing the parameter space of χ by the Oseledec dimensions, then by boxes around

each χ′ of size 1
2τχ′ , and then further by boxes of size τ := min{ r

2 ,
1
2τχ′}; whence 1

2τχ′ ≤ τχ).

Let N ≥ 1 large and x ∈ A(1), and set

nN
x := min{n ≥ N :

−1

n
log

µ(B(x, n, e−rn) ∩A)

µ(B(x, n, e−rn))
≥ 6λ

8
}.

Set for all n ≥ N ,

A(1)
n := {x ∈ A(1) : nN

x = n}.

By Lemma 2.2, we can choose a finite subset Cn ⊆ A
(1)
n s.t

󰁖
x∈Cn

B(x, n, e−rn) ⊇ A
(1)
n while {B(x, n, e−rn)}x∈Cn

has an overlap bound smaller than e3dτn ≤ e3d
r
2n ≤ e

λ
8 n (for all n large enough depending on M and Λ(χ,τ)).

Then,

µ(A(1)
n ) =µ

󰀣
(
󰁞

x∈Cn

B(x, n, e−rn)) ∩A(1)
n

󰀤
≤

󰁛

x∈Cn

µ(B(x, n, e−rn) ∩A(1)
n ) ≤

󰁛

x∈Cn

µ(B(x, n, e−rn) ∩A)

≤
󰁛

x∈Cn

µ(B(x, n, e−rn))e−
6λ
8 n ≤ e−

6λ
8 ne

λ
8 nµ(

󰁞

x∈Cn

B(x, n, e−rn)) ≤ e−
5λ
8 n.

Then,

µ(A(1)) =
󰁛

n≥N

µ(A(1)
n ) ≤

󰁛

n≥N

e−
5λ
8 n ≤ (

󰁛

n≥0

e−
5λ
8 n) · e− 5λ

8 N N→∞−−−−→ 0, a contradiction!

□
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Remark: A possible heuristic way to interpret Lemma 2.3 is the following: we think of belonging to a
measurable set as satisfying some property. Then, for almost any point which satisfies a certain property,
more and more points which spend a long portion of their orbit close to this point inherit this property as
well. That is, a portion of the exponential Bowen ball, with bigger and bigger exponential portion bounds,
lies in the measurable set as well.

Corollary 2.4 (log-differentation lemma). Let µ be an f -invariant probability measure, and let g ∈ M(µ)
be a measurable function and A ∈ B be a measurable set with µ(A) > 0. Then for µ-a.e x ∈ A,

lim
󰂃→0

lim sup
n→∞

−1

n
log

󰀣
1

µ(B(x, n, e−n󰂃))

󰁝

B(x,n,e−n󰂃)

e−n|g(y)−g(x)|1A(y)dµ(y)

󰀤
= 0.

Proof. Let δ > 0, and let a ∈ R s.t µ(E) > 0 where E := A ∩ g−1[[a − δ
2 , a + δ

2 ]]. Let x ∈ E, n ≥ 0, and
󰂃 > 0, then

1

µ(B(x, n, e−󰂃n))

󰁝

B(x,n,e−󰂃n)

e−n|g(y)−g(x)|1A(y)dµ(y) ≥
1

µ(B(x, n, e−󰂃n))

󰁝

B(x,n,e−󰂃n)∩E

e−nδdµ(y)

=e−nδ µ(B(x, n, e−󰂃n) ∩ E)

µ(B(x, n, e−󰂃n))
.

Then by Lemma 2.2, for µ-a.e x ∈ E, lim
󰂃→0

lim sup
n→∞

−1
n log 1

µ(B(x,n,e−n󰂃))

󰁕

B(x,n,e−n󰂃)

e−n|g(y)−g(x)|1A(y)dµ(y) ≤

δ. Since δ > 0 was arbitrary (and the limit is independent of a), we are done. □

Theorem 2.5 (Log-Ergodic Theorem). Let µ be an f -invariant probability measure, let A be a measurable
set s.t µ(A) > 0, and let g ∈ L1(µ). Then for µ-a.e x ∈ A,

lim
r→0

lim sup
n→∞

−1

n
log

1

µ(B(x, n, e−nr))

󰁝

B(x,n,e−nr)

1A(y) · e−|
󰁓n−1

j=0 g◦f−j(y)−
󰁓n−1

j=0 g◦f−j(x)|dµ(y) = 0.

Proof. Let µ =
󰁕
µxdµ(x) be the ergodic decomposition of µ. Since g ∈ L1(µ), for µ-a.e x, g ∈ L1(µx). Then

for µ-a.e x, limn→∞
1
n

󰁓n−1
j=0 (g−

󰁕
gdµx) ◦ f−j(x) = 0. Let δ > 0, and let nδ ≥ 0 s.t µ(Aδ) ≥ e−δµ(A) where

Aδ :=

󰀻
󰀿

󰀽y ∈ A : ∀n ≥ nδ,

󰀏󰀏󰀏󰀏󰀏󰀏

n−1󰁛

j=0

(g −
󰁝

gdµy) ◦ f−j(y)

󰀏󰀏󰀏󰀏󰀏󰀏
≤ nδ

󰀼
󰁀

󰀾 .

Let x ∈ Aδ, then for all n ≥ nδ and r > 0,
󰁝

B(x,n,e−nr)

1A(y) · e−|
󰁓n−1

j=0 g◦f−j(y)−
󰁓n−1

j=0 g◦f−j(x)|dµ(y)

≥
󰁝

B(x,n,e−nr)

1Aδ
(y) · e−|

󰁓n−1
j=0 (g−

󰁕
gdµy)◦f−j(y)|−n|

󰁕
gdµy−

󰁕
gdµx|−|

󰁓n−1
j=0 (g−

󰁕
gdµx)◦f−j(x)|dµ(y)

≥ e−2δn

󰁝

B(x,n,e−nr)

1Aδ
(y) · e−n|G(y)−G(x)|dµ(y),

where G(y) :=
󰁕
gdµy. Then by the log-differentiation lemma (Corollary 2.4) for G, and since δ > 0 was

arbitrary, we are done. □

3. Neutralized local entropy is entropy

Lemma 3.1. Let µ be an f -invariant Borel probability, and let µ =
󰁕
µxdµ(x) be its ergodic decomposition.

Then hBK
µ (x) = hµx

(f) µ-a.e.

Proof. Let Eλ := {x : hBK
µ (x) ≥ hµx(f) + λ}, and assume that there exists λ > 0 s.t µ(Eλ) > 0 (notice

that Eλ is f -invariant). Let Gλ := {x : µx(Eλ) = 1} with aλ := µ(Gλ) > 0 (o.w µ(Eλ) = 0). Write
µλ := 1

µ(Gλ)

󰁕
Gλ

µxdµ(x), and µc :=
1
ac
(1− µλ) where ac := 1− aλ. Then µ = aλµλ + acµc and for µλ-a.e x,
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hBK
µλ

(x) ≥ hBK
µ (x) ≥ hµx(f) + λ.

However, this is a contradiction, since integrating both sides by µλ admits hµλ
(f) ≥ hµλ

(f) + λ, a con-
tradiction! Hence hBK

µ (x) ≤ hµx
(f) µ-a.e, but

󰁕
hBK
µ (x)dµ(x) =

󰁕
hµx

(f)dµ(x), hence hBK
µ (x) = hµx

(f)
µ-a.e. □

Lemma 3.2. Let µ be an f -invariant Borel probability, and K be a µ-positive measure set, and let δ > 0.
Assume that ∃∆ > 0 s.t hBK

µ (x) ≤ h+∆ for µ-a.e x ∈ K. Then for all n large enough w.r.t δ and K, there
exist a measurable subset Kδ ⊆ K and a subset An,δ and 0 < ρ ≤ δ s.t

(1)
󰁖

x∈An,δ
B(x, n, ρ) ⊇ Kδ,

(2) µ(Kδ)
µ(K) ≥ e−δ,

(3) #An,δ ≤ en(h+∆+δ).

Proof. For µ-a.e x ∈ K, limr→0 lim sup −1
n logµ(B(x, n, r)) ≤ h +∆. Set Kδ ⊆ K and nδ ∈ N s.t ∀x ∈ Kδ,

∀n ≥ nδ, µ(B(x, n, ρ
3 )) ≥ e−n(h+∆+δ), and µ(Kδ) ≥ e−δµ(K), for some 0 < ρ ≤ δ.

Let n ≥ nδ. Set K
1 := Kδ, and let x1 ∈ K1. Ki+1 := Ki \B(xi, n, ρ), and choose xi+1 ∈ Ki+1.

For any i ∕= j, B(xi, n,
ρ
3 )∩B(xj , n,

ρ
3 ) = ∅, hence we have at most en(h+∆+δ)-many elements in {xi}i =:

An,δ. Moreover, one can check that
󰁖

x∈An,δ
B(x, n, ρ) ⊇ Kδ. □

Corollary 3.3. Let χ0 > 0, τ ∈ (0, χ0

100d ), 󰂃 ≥ 4τ small (w.r.t χ0), γ ≥
√
󰂃, ℓ ∈ N, and let n′ s.t µ(K) > 0

where

K ⊆
󰁱
x Lyap. reg. s.t χu

min(x),χ
s
min(x) ≥ χ0 : (4)

∀n ≥ n′,x ∈ Λ
(χ(x),τ)

ℓ ∩
󰀓 󰁞

n(1+γ)≤i≤n(1+2γ)

f−i[Λ
(χ(x),τ)

ℓ ]
󰀔󰁲

.

Assume that hBK
µ ≤ h+∆ for µ-a.e x ∈ K. Then there exists Kτ ⊆ K s.t µ(Kτ ) ≥ e−τµ(K) and for all n

large enough, ∃An ⊆ Kτ s.t
󰁖

x∈A B(x, n, e−󰂃n) ⊇ Kτ and #An ≤ en(1+2γ)(h+∆+3d󰂃).

Proof. Let Kτ and nτ as in Lemma 3.2, for some 0 < ρ ≤ τ .
Let n ≥ max{nτ , n

′}, and let Cn be a Besicovitch cover of Kτ by balls of radius e−2󰂃n.
For each such ball B, we cover Kτ ∩ B with at most en(1+2γ)(h+∆+τ)-many Bowen balls of the form

B(·, ⌊n(1+2γ)⌋, ρ) by Lemma 3.2. Hence in total we coverKτ with at most BdCMe2d󰂃nen(1+2γ)(h+∆+τ)-many
elements, where Bd is the Besicovitch constant of M , and CM is a constant s.t Vol(B(x, e−2󰂃n)) ≥ 1

CM
e−2d󰂃n

for all x ∈ M and n large.
Let B ∈ Cn, and let AB

n,τ as in Lemma 3.2 for B ∩ Kτ . Let x ∈ AB
n,τ , and notice that for jx ∈

[⌊n(1 + γ)⌋, ⌊n(1 + 2γ)⌋],
B(x, ⌊n(1 + 2γ)⌋, ρ) ∩B ⊆ B(x, jx, ρ) ∩B(x, 2e−2󰂃n) ⊆ B(x, n, e−󰂃n), (5)

for all n large enough depending on ℓ and 󰂃 (we prove (5) in the end of this lemma). Thus in total,
{B(x, n, e−󰂃n) : x ∈ AB

n,τ , B ∈ Cn} is a cover of Kτ by exponential Bowen balls, of cardinality bounded by

en(1+2γ)(h+∆+3d󰂃) for all n large enough.

To prove (5), we work with Pesin charts, which is where we need the assumption from (4).
Let x ∈ K. We wish to show that for all n large enough (depending on ℓ), ∀i ∈ [1, n], ∀y ∈ B(x, jx, ρ) ∩

B(x, 2e−2󰂃n), f i(y) ∈ B(f i(x), e−󰂃n). Letting ψi be the Pesin chart of f i(x), it is enough to show that

|ψ−1
i ◦ f i ◦ ψ0(vy)| ≤ e−

5
4 󰂃n, where vy := ψ−1

0 (y).

Write ψ−1
i ◦ f i ◦ ψ0(vy) = v = vs + vc + vu, where vt ∈ Et(x), t ∈ {s, c, u}. Set fi := ψ−1

i+1 ◦ f ◦ ψi, and
Fi := fi−1◦ · · ·◦f0. We assume for the simplicity of presentation that all of the negative Lyapunov exponents
of x are equal, and that all of the positive Lyapunov exponents of x are equal, otherwise decompose vs and
vu into corresponding components.

A standard result of Pesin theory tells us that the maps fi can be put in the form fi =
󰁓

t∈{s,c,u} Dtvt +

ht
i(v), 󰀂ht

i󰀂C1 ≤ τ , and where Dt are linear self-maps of Et, and eχ
s(x)+τ ≥ 󰀂D−1

s 󰀂, 󰀂Ds󰀂 ≤ e−χs(x)+τ ,
e−χu(x)+τ ≥ 󰀂D−1

u 󰀂, 󰀂Du󰀂 ≤ eχ
u(x)+τ , and 󰀂D−1

c 󰀂, 󰀂Dc󰀂 ≤ eτ .
6



Therefore the stable and central components of Fn(vy) remain small enough, and we are left to bound
vu = (Fn(vy))

u. Since f jx(y) ∈ B(f jx(x), ρ), similar contraction estimates hold for f−1, and we get |vuy | ≤
e−(χu(x)−2τ)n(1+γ). Thus, |(Fn(v))

u| ≤ e−(χu(x)−2τ)n(1+γ)e(χ
u(x)+2τ)n ≤ e−γn(χ0−4τ) ≤ e−

5
4 󰂃n for 󰂃 > 0 small

enough (w.r.t χ0). □

Theorem 3.4. Let f ∈ Diff1+β(M), where M is a closed Riemannian manifold with dimM = d ≥ 2. Let µ
be an f -invariant Borel probability on M . Then

Eµ(x) = hBK
µ (x) µ-a.e.

Proof. We start with a reduction. Let µ = a+µ+ + a0µ0 where µ+ admits a positive Lyapunov exponent
a.e, and µ0 has all exponent less or equal to 0 a.e. Then Eµ ≤ Eµ+ , and for µ0-a.e x, Eµ(x) = 0 = hBK

µ (x)
(by dimension bounds). Therefore we may assume w.l.o.g that µ admits a positive Lyapunov exponent a.e.
Moreover, write µ =

󰁓
i≥1 aiµi where for every i ≥ 1, µi-a.e, all non-zero Lyapunov exponents are greater

than 1
i in absolute value. Thus if for every i ≥ 1 we have hBK

µi
≥ Eµi

µi-a.e, then by Lemma 3.1,

hBK
µ = hBK

µi
≥ Eµi ≥ Eµ, µi-a.e, ∀i ≥ 1 ⇒ hBK

µ ≥ Eµ, µ-a.e.
Then it is enough to assume that the non-zero Lyapunov exponents of µ are uniformly bounded from below
in absolute value by a constant χ0 > 0.

It is enough to assume for contradiction that ∃λ ∈ (0,min{χ3
0,

1
2}) s.t Eµ ≥ hBK

µ + 2λ µ-a.e, since if

µ = aλµλ + (1− aλ)µ
−
λ where aλ > 0 and Eµ ≥ hBK

µ + 2λ µλ-a.e , then once more by Lemma 3.1,

Eµλ
≥ Eµ ≥ hBK

µ + 2λ = hBK
µλ

+ 2λ, µλ-a.e.

Finally, we make the following reduction: let G(E,h) := {x : Eµ(x) = E ± λ
2 , h

BK
µ (x) = h ± λ

2 }, then let
µ = a(E,h)µ

′ + (µ− a(E,h)µ
′), where a(E,h) > 0 and µ′ is carried by G(E,h). Then, µ

′-a.e

Eµ′ ≥ Eµ ≥ hBK
µ + 2λ = hBK

µ′ + 2λ. (6)

Moreover, similarly, we may assume w.l.o.g that Eµ ≫
√
λ a.e. Therefore we may assume for contradiction

that Eµ and hBK
µ are “almost constant” w.r.t to the gap between them which is uniformly bounded from

below.

There exists 0 < r ≤ min{1,χ0}
3d

λ4

4 s.t µ(A1) ≥ 1−λ3 where A1 := {x ∈ A : lim sup −1
n logµ(B(x, n, e−rn)) >

hBK
µ (x) + 7λ

8 }.
We can then choose 0 < τ ≤ min{ r

400} and ℓ ∈ N s.t µ(A2) ≥ 1− 2λ4 where

A2 := {x ∈ A1 Lyapunov reg. : x ∈ Λ
(χ(x),τ)

ℓ }.
Let µ =

󰁕
µxdµ(x) be the ergodic decomposition of µ. Then by the Markov inequality, µ({x : µx(A2) ≥

1 −
√
2λ4}) ≥ 1 −

√
2λ4. Then µ({x ∈ A2 : µx(A2) ≥ 1 −

√
2λ2}) ≥ 1 − 2λ2. So by the ergodic theorem

∃n0 ∈ N s.t µ(A3) ≥ 1− 3λ2 where

A3 :=
󰀋
x ∈ A2 : ∀n ≥ n0∃j ∈ [n(1 + 4λ2), n(1 + 8λ2)] s.t f j(x) ∈ A2

󰀌
.

Let Kτ ⊆ A3 as in Corollary 3.3 s.t µ(Kτ ) > 0 (notice, the restrictions on Kτ in Corollary 3.3 are given
by Lemma 3.2, which in turn are merely Brin-Katok estimates; which are inherited by subsets). Let N ≥ n0

large, then for all x ∈ Kτ set

nN
x := min{n ≥ N :

−1

n
logµ(B(x, n, e−rn)) > h+

6λ

8
}.

For all n ≥ N , set Kn := {x ∈ Kτ : nN
x = n}.

By Corollary 3.3, we can cover Kn with a cover whose cardinality is less or equal to en(1+8λ2)(h+λ
8 +3dr), of

exponential Bowen balls of the form B(x, n, e−nr), x ∈ Kn. Hence, µ(Kn) ≤ en(1+8λ2)(h+λ
8 +3dr) · e−n(h+ 6λ

8 ),

whence 0 < µ(Kτ ) ≤
󰁓

n≥N e−nλ
8

N→∞−−−−→ 0, a contradiction! Hence hBK
µ ≤ Eµ ≤ hBK

µ µ-a.e. □

Remark: Theorem 3.4 implies that Eµ(x) = limr→0 lim infn→∞
−1
n logµ(B(x, n, e−rn)) for µ-a.e x since

hBK
µ (x) = lim

r→0
lim inf
n→∞

−1

n
logµ(B(x, n, r)) ≤ lim

r→0
lim inf
n→∞

−1

n
logµ(B(x, n, e−rn)) ≤ Eµ(x) = hBK

µ (x).
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4. Lower-dimension bounds for invariant measures

In [LY85b], the authors consider an ergodic f -invariant measure µ, where f is a C2 diffeomorphism of a
closed Riemannian manifold M . The authors consider two important partitions- ξu and ξs sub-ordinated
to the unstable and to the stable laminations respectively, and consider the conditional measures of µ w.r.t
to these partitions. The authors then go on and prove that the conditional measures µξu(·) and µξs(·) are
exact-dimensional for almost every point, with the dimensions being constant and denoted by du and ds

respectively. Moreover, the authors prove that the point-wise upper-dimension of µ-a.e point is bounded by

d ≤ du + ds + dc,

where dc = dc(µ) := #{0 Lyapunov exponent of µ}.
In [BPS99], the authors extend the results of [LY85b] by relaxing the regularity assumption of f to C1+β

(β > 0) by proving the Lipschitz property of intermediate foliations; and bound from below the point-wise
dimension of ergodic invariant measures under the additional assumption of hyperbolicity:

du + ds ≤ d ≤ d.

In particular, it follows as a consequence that a hyperbolic measure is exact-dimensional, since dc = 0.
The purpose of this section, is to extend these results, as an application of Theorem 3.4. We give lower

bounds to the point-wise dimension of invariant measures, which coincide with the lower bounds from [BPS99]
when the measure is hyperbolic. In general, invariant measures with 0 Lyapunov exponents need not be
exact-dimensional, and the bounds from [LY85b] are tight. In particular, our proof is aimed to be short and
accessible by using the neutralized local entropy instead of adapted partitions.

Given an ergodic f -invariant measure, let ds and du be the point-wise dimension of the conditional
measures {µξs(·)} and {µξu(·)}, respectively, which are introduced in [LY85b].

Theorem 4.1. Let µ be an f -invariant ergodic measure, where f ∈ Diff1+β(M) (β > 0 and M a closed
Riemannian manifold). Then for µ-a.e x,

ds + du ≤ d(x) := lim inf
r→0

logµ(B(x, r))

log r
.

Proof. We start with two simple reductions. Given r > 0, and χ > 0, let r′ := max{e−nχ : e−nχ ≤ r, n ∈ N}.
Then,

logµ(B(x, r))

log r
=
log r′

log r
· logµ(B(x, r))

logµ(B(x, r′))
· logµ(B(x, r′))

log r′

≥(1− χ

log r
) · logµ(B(x, r′))

log r′
.

Then it is enough to prove lim infn→∞
log µ(B(x,e−nχ))

−nχ ≥ du + ds, for some χ > 0. The second assumption

we make is that µ admits both positive and negative Lyapunov exponents, since otherwise ds = du = 0, and
the statement is trivial.2 Set χ := 1

3 min{|χi(µ)| : χi(µ) ∕= 0} > 0.

We now can start with the construction for the proof. Assume that µ admits positive exponents, and so
we prove d ≥ du. The case of the negative exponents is treated subsequently, and we improve the bound.

Let δ ∈ (0,χ), and let 󰂃 ∈ (0, δ2

8 ) and nδ ∈ N s.t e−χnδ ≪ 1
ℓ3δ

and µ(Aδ) ≥ 1− δ where

Aδ := {x ∈ Λ
(χ,τ)

ℓδ
: ∀n ≥ nδ,µξu(x)(B

u(x, e−χn)) ≤ e−χdun+nδ,

µ(B(x,−n, e−󰂃n)) = e−nEµ±δn, µ(B(x, n, e−󰂃n)) = e−nEµ±δn,

µ(B(x,−n, n, 2e−󰂃n)) = e−2Eµn±δn},

where χ = χ(µ) and τ ∈ (0, 󰂃
100d ), and B(·,−n, e−󰂃n) denotes an exponential Bowen balls for f−1, while

B(·,−n, n, 2e−󰂃n) denotes a two-sided exponential Bowen ball.

2If there are either no positive or no negative Lyapunov exponents, then by the Ruelle inequality hµ(f) = 0. Therefore, by

[LY85a, LY85b] ([BPS99, Appendix] guarantees that our C1+β setup is sufficient), hs(µ) = hu(µ) = 0 and du = ds = 0.
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By Lemma 2.3, there exists A′
δ ⊆ Aδ and mδ ≥ nδ s.t µ(A′

δ) ≥ 1− 2δ where3

A′
δ := {x ∈ Aδ : ∀n ≥ mδ,

1

n
log

µ(B(x, n, e−󰂃n))

µ(B(x, n, e−󰂃n) ∩Aδ)
≤ 48d󰂃}. (7)

Let x ∈ A′
δ which is a Lebesgue density point s.t µ(B(x, e−nχ)∩A′

δ) ≥ e−δµ(B(x, e−nχ)) for all n ≥ nx ≥
mδ, and let n ≥ nx.

Then cover A′
δ∩B(x, e−χn) as in Lemma 2.2, by a cover Cu of balls B(·, n, e−󰂃n) with multiplicity bounded

by e3dτn.

Claim: For µ-a.e x ∈ A′
δ, for all n large enough, µ(

󰁖
Cu ∩Aδ) ≤ e−χdun+2

√
δn.

Proof: For x ∈ A′
δ, define

Sn(x) :=
󰁞

y∈A′
δ∩B(x,e−χn)

B(y, n, e−󰂃n) ∩Aδ.

Assume that µ({x ∈ A′
δ : lim sup −1

n logµ(Sn(x)) ≤ χdu − 2
√
δ}) > 0. Then set An := {{x ∈ A′

δ :
−1
n logµ(Sn(x)) ≤ χdu −

√
δ}}, and so by the Borel-Cantelli lemma there are infinitely many n ∈ N s.t

µ(An) ≥ e−󰂃. Then there exists x ∈ A′
δ s.t µξu(x)(An) ≥ e−󰂃n.

Cover ξu(x) ∩ An by B(·, e−χne2󰂃n) in a Besicovitch manner, which means we can find a mutually
disjoint sub-collection of measure at least 1

Cd
e−󰂃n, F . Let B(y, e−χn+2󰂃n), B(y′, e−χn+2󰂃n) ∈ F , and let

z ∈ B(y, e−χn) ∩ A′
δ and z′ ∈ B(y′, e−χn) ∩ A′

δ. Let w ∈ B(z, n, e−󰂃n) ∩ ξu(x) ∩ B(y, e−χn+ 󰂃
2n) and

w′ ∈ B(z′, n, e−󰂃n) ∩ ξu(x) ∩B(y′, e−χn+ 󰂃
2n).

If B(z, n, e−󰂃n) ∩ B(z′, n, e−󰂃n) ∕= ∅, then w ∈ B(w′, n, 4e−󰂃n), which is impossible since both w and w′

lie on ξu(x) with distance at least 2 · (e−χn+2󰂃n − e−χn+ 󰂃
2n) ≥ e−χn between them.

Then, ∀B,B′ ∈ F , centered at y and y′ respectively, Sn(y) ∩ Sn(y
′) = ∅. However, #F ≥ e−󰂃n

e−ndu(χ+3󰂃)+δn

(since B(y, e−n(χ−2󰂃)) ∩ ξu(y) ⊆ Bξu(y)(y, e
−n(χ−3󰂃))). Thus,

1 ≥ #F · e−χdu+n
√
δ ≥ e−󰂃n

e−ndu(χ+3󰂃)+δn
· e−χdu+n

√
δ ≥ e

1
2

√
δn,

a contradiction! □
It follows that for µ-a.e x ∈ K ′

δ, for all n large enough,

e−nχdu+
√
δn ≥ µ(

󰁞
Cu ∩Aδ) ≥ e−3dτn ·#Cu · min

B∈Cu
µ(B ∩Aδ) ≥ e−3dτn ·#Cu · e−nEµ−δn · e−48d󰂃n.

Thus,

#Cu ≤ en(Eµ−duχ+6
√
δ). (8)

This concludes the bound

µ(B(x, e−χn)) ≤ eδ · µ(B(x, e−χn) ∩A′
δ) ≤ eδ ·#Cu · e−n(Eµ+δ) ≤ eδ · en(Eµ−duχ+6

√
δ) · e−n(Eµ+δ).

Hence d ≥ du − 7
√
δ where δ > 0 is arbitrary.

For the case of the negative exponents, construct similarly a cover Cs of A′
δ ∩B(x, e−χn) by exponential

Bowen balls for f−1, denoted by B(·,−n, e−󰂃n). Then similarly one gets that #Cs ≤ en(Eµ−dsχ+6
√
δ). We

then define the cover C := {Bs ∩ Bu : Bs ∈ Cs, Bu ∈ Cu, and Bs ∩ Bu ∩ A′
δ ∕= ∅}. It follows immediately

that

#C ≤ #Cu ·#Cs ≤ en(2Eµ−dsχ−duχ+12
√
δ). (9)

Moreover, for every element B ∈ C, B ⊆ B(xB ,−n, n, 2e−󰂃n) where xB ∈ A′
δ by the triangle inequality.

Therefore,

µ(B(x, e−χn)) ≤ eδ ·#C · e−n(2Eµ−δ) ≤ eδ · e−n(ds+du)χ+13
√
δn. (10)

Since δ > 0 was arbitrary, we are done. □

3While formally Lemma 2.3 is only stated for the limit limr→0 lim supn→∞
−1
n

log
µ(B(x,n,e−nr)∩A)

µ(B(x,n,e−nr))
= 0, the quantitative

argument extends as is to the quantitative estimate of (7) whenever 󰂃 > 0 is small w.r.t χ.
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Remark: Note that the estimate from above of the measure of a ball in Theorem 4.1 is quite coarse: All
elements of Cu and of Cs are of size ∼ e−󰂃n in the central direction, which is much longer than the diameter
of the ball e−χn. While this over-shooting may seem wasteful, one may may not expect an invariant measure
to be concentrated in the central-direction, and in fact generally an invariant measure may even be atomic
in the central direction, thus the estimate is tight for the general case. In some cases where we have more
information regarding the central direction, we may say a bit more, as we show below in Corollary 4.2.

Corollary 4.2. Under the assumptions of Theorem 4.1, if µ admits a measurable lamination by central
leaves almost everywhere, then a.e,

lim inf
r→0

logµ(B(x, r))

log r
:= d(µ) = d ≥ ds + du + dc,

where dc is the lower point-wise dimension of the conditional measures on the lamination by central leaves.

Proof. Let ξc be the measurable partition of µ into central leaves. Notice that dc and d are invariant
functions, and are constant a.e.

Let δ > 0. We consider the set A′′
δ , which is the set of density points of A′

δ which also satisfy dimension
bounds, where A′

δ is as in the proof of Theorem 4.1. That is, for all x ∈ A′′
δ , and all n ≥ n′

δ ≥ nδ,

µξc(x)(B(x, e−χn+n󰂃) ∩A′
δ) ≤ e−dcχn+δn,

µξc(x)(B(x, e−2󰂃n)) ≥ e−3d󰂃n. (11)

Furthermore, by the Borel-Cantelli lemma, there are infinitely many n ∈ N s.t µ(An) ≥ e−󰂃n, where

An := {x ∈ A′′
δ :µ(B(x, e−χn−󰂃n)) ≥ e−χdn−δn}.

If for all x ∈ An,
µ(An∩B(x,e−χn−n󰂃))

µ(B(x,e−χn−󰂃n)) ≤ e−d󰂃n, then let F be a Besicovitch cover ofAn by ballsB(·, e−χn−󰂃n).

It follows that,

e−󰂃n ≤
󰁛

B∈F
µ(B ∩An) =

󰁛

B∈F

µ(B ∩An)

µ(B)
µ(B) ≤ e−d󰂃n

󰁛

B∈F
µ(B) ≤ e−d󰂃n · Cd,

⇒ a contradiction! Thus, by the definition of An, there exists x ∈ An with

µ(An ∩B(x, e−χn−󰂃n)) ≥ e−d󰂃n · µ(B(x, e−χn−󰂃n)) ≥ e−d󰂃n−ndχn−δn. (12)

Let Tn(x) := B(x, e−χn+󰂃n)∩B(x,−n, n, 2e−󰂃n), then by (12) and by the bounds from Theorem 4.1, (9),

e−d󰂃n−ndχn−δn ≤µ(B(x, e−χn−󰂃n) ∩An) ≤ µ(
󰁞

C ∩B(x, e−χn−󰂃n) ∩An)

≤#C · max
B∈C:B∩An ∕=∅

µ(B ∩An ∩B(x, e−χn−󰂃n) ≤ #C · max
B∈C:B∩An ∕=∅

µ(Tn(yB) ∩An)

≤e−nχ(du+ds)+12
√
δn+2nEµ · max

B∈C:B∩An ∕=∅
µ(Tn(yB) ∩An), (13)

where yB is a point in B ∩An.

We wish to bound the second term on the r.h.s of (13). We use the fact that B(·,−n, n, 2e−󰂃n) is saturated
by central leaves, and get that for all B ∈ C,

µ(Tn(yB) ∩An) ≤µ(ξc[Tn(yB) ∩An]) =

󰁝

ξc[Tn(yB)∩An]

µξc(z)(Tn(yB))dµ(z)

=

󰁝

ξc[Tn(yB)∩An]

µξc(z)(Tn(yB))

µξc(z)(B(yB , e−2󰂃n))
µξc(y)(B(yB , e

−2󰂃n))dµ(z)

( ∵ (11)) ≤e−χdcn+δn+3d󰂃n

󰁝

ξc[Tn(yB)∩An]

µξc(z)(B(yB , e
−2󰂃n))dµ(y)

≤e−χdcn+δn+3d󰂃nµ(B(yB ,−n, n, 2e−󰂃n)) ≤ e−χdcn+δn+3d󰂃ne−2nEµ+δn. (14)

Plugging (14) back into (13), we get

e−d󰂃n−ndχn−δn ≤ e−nχ(du+ds)+12
√
δn+2nEµ · e−χdcn+2δn+3d󰂃n−2Eµn.
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Therefore,

d ≥ ds + du + dc − 19d
√
δ,

which concludes the proof since δ > 0 is arbitrary. □
Remarks:

(1) Let d and d
c
be the upper point-wise dimension of µ and of µξc(·), resp. One can show similarly to

Corollary 4.2 that d ≥ ds + du + d
c
, by adapting the definitions of the sets A′′

δ and An, while the
structure of the proof remains the same.

(2) In both Theorem 4.1 and Corollary 4.2, the non-ergodic case is treated similarly to the ergodic case,

where Aδ restricts further to a subset where the values of d, d, dc, and d
c
are almost constant.

Corollary 4.3. Assume that µ admits a measurable lamination by central leaves W c(·) almost everywhere.
Let ξc be a measurable partition subordinated to the central lamination, and let λW c(·) be the induced Rie-
mannian volume on W c(·). If the conditional measures of µ satisfy µξc(·) ≪ λW c(·) a.e, then µ is exact and
µ-a.e,

d = ds + du + dimEc,

where dimEc is the dimension of the central Oseledec subspace.

Proof. By Corollary 4.2, and by [LY85b, Theorem F], µ-a.e,

d ≥ d ≥ ds + du + dimEc ≥ d.

□
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Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2002.

[KM95] Anatole Katok and Leonardo Mendoza. Dynamical systems with non-uniformly hyperbolic behavior, Supplement to
“Introduction to the modern theory of dynamical systems”, volume 54 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, 1995.

[LY85a] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying
Pesin’s entropy formula. Ann. of Math. (2), 122(3):509–539, 1985.

[LY85b] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and
dimension. Ann. of Math. (2), 122(3):540–574, 1985.

[Rue78] David Ruelle. An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat., 9(1):83–87, 1978.
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1992.
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