
THERMODYNAMIC FORMALISM OUT OF

EQUILIBRIUM, AND GIBBS PROCESSES

S. BEN OVADIA, F. RODRIGUEZ-HERTZ

Abstract. We study the thermodynamic formalism of systems where
the potential depends randomly on an exterior system. We define the
pressure out of equilibrium for such a family of potentials, and prove a
corresponding variational principle. We present an application to ran-
dom dynamical systems. In particular, we study an open condition for
random dynamical systems where the randomness is driven by a Gibbs
process, and prove hyperbolicity estimates that were previously only
known in the i.i.d setting.
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1. Intorduction

Given an ensemble of particles and a finite collection of states, the Helmholtz
free energy is the difference between the potential energy of a distribution,
and its entropy scaled by the inverse temperature. Minimizing the Helmholtz
free energy is equivalent to maximizing the difference between the entropy
and the potential energy scaled by the temperature. In Ruelle’s thermo-
dynamic formalism ([Rue67]), the variational principle states that given a
potential − 1

τ φ ∈ Höl(Σ) (τ > 0 is the temperature), where Σ is a one-sided
compact and topologically transitive topological Markov shift,

max{hν(T ) +
󰁝

φdν : ν is T -inv. and erg.} = P (φ),

1
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where T : Σ → Σ is the left-shift, and

P (φ) := lim sup
n→∞

1

n
log

󰁛

|w|=n,wn−1=a

e
󰁓n−1

k=0 φ◦Tk(wωa), (1)

for any [a] ⊆ Σ and ωa ∈ [a]. Indeed, the value of P (φ) is independent of
the choice of [a] ⊆ Σ and ωa ∈ [a], as φ is Hölder continuous. That is, Ruelle
showed that minimizing the free Helmholtz energy over invariant measures
(that is over steady states) can be achieved, and that the minimal value can
be expressed as the logarithm of the reciprocal of the spectral radius of an
associated operator (called the Ruelle operator).

The variational principle is an optimization problem over a collection of
measures, with deep physical motivation. Since the pioneering work of Ru-
elle, several important extensions have been studied, with different related
optimization problems. An important extension is in the study of extensions.

In [LW77] Ledrappier and Walters study the following optimization. Let
X and Y be two compact metric spaces, let T : X → X and S : Y → Y be
two continuous maps, and let π : X → Y be a surjection s.t 󰁥π ◦ T = S ◦ 󰁥π.
Then, given an S-invariant ν and a potential φ ∈ C(X), Ledrappier and
Walters optimize

sup{hµ(T |S) +
󰁝

φdµ : µ is T -invariant and µ ◦ 󰁥π−1 = ν},

where hµ(T |S) is the relative entropy. That is, they optimize the contri-
bution of the potential together with the entropy coming from the fibers
alone, under the constraint where the invariant measures project to a fixed
measure ν on the base.

In [DKS08], Denker, Kifer, and Stadlbauer study a notion of random
topological pressure, and prove that it satisfies a relative variational prin-
ciple as well (see also [Kif01] for a definition of random pressure). In their
setting, the fibers are countable Markov shifts, and they study the asso-
ciated composition of random Ruelle operators w.r.t to a probability pre-
serving transformation on the base dynamics (see [BG95] for results in the
compact-shift fibers setting). This is a somewhat opposite approach to the
one we are taking, as we study randomness given by a shift space, but the
fibers are a general compact metric space; In particular, our fiber dynamics
are not given by the random composition of Ruelle operators. In addition,
we do not fix a probability measure on the base (nor fibers), but instead
seek an optimization over all probabilities. A full description of our setting
appears below.

Another extension of Ruelle’s variational principle is studied in [BKL23],

where the authors study an exponential growth rate as in (1), where
󰁓n−1

k=0 φ◦
T k is generalized to n ·G( 1n

󰁓n−1
k=0 φ ◦ T k) where G is a continuous function.

In this paper we study another extension of Ruelle’s variational principle,
with applications to random dynamics (in particular to Gibbs processes).
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We consider a compact metric space X, and a Hölder continuous skew-

product over Σ: 󰁥F : Σ×X → Σ×X, 󰁥F (ω, t) = (Tω, Fω(t)), together with
a family of Hölder continuous potentials φt : Σ → R, which depend in a
Hölder continuous way on t ∈ X. Let π : Σ × X → Σ be the projection
(ω, t) 󰀁→ ω. Then we study the following optimization problem:

sup{h󰁥ν◦π−1(T )+

󰁝
φt(ω)d󰁥ν(ω, t) : 󰁥ν is an 󰁥F -invariant probability on Σ×X}.

In other words, we optimize while allowing the potential to be random. We
introduce the corresponding pressure out of equilibrium:

P̌ ({φt}t∈X) := lim sup
n→∞

sup
t∈X

1

n
log

󰁛

|w|=n,wn−1=a

e
󰁓n−1

k=0 φ
Fk
ω (t)

◦Tk(wωa),

where F k
ω := FTk−1ω ◦ · · · ◦Fω. Our variational principle assets that (Propo-

sition 3.4 and Theorem 3.8),

P̌ ({φt}t∈X) = max{h󰁥ν◦π−1(T ) +

󰁝
φt(ω)d󰁥ν(ω, t) : 󰁥ν is an 󰁥F -inv.}.

The notion of pressure out equilibrium rises naturally in the study of skew-
products (where we are removing the fiber entropy from the optimization
process).

The pressure out of equilibrium also rises naturally when studying random
dynamical systems. In the recent years significant progress was made in the
study of smooth dynamical systems, where the diffeomorphism is composed
randomly. See for example [BQ16, BRH17, DD].

This model is important as every physical system in fact interacts with
a larger system, and so the laws of motion themselves may depend ran-
domly on a larger system. In this setting, it is natural to assume that the
typical behavior of the larger system is given by a physical measure (e.g
SRB) or a measure of maximal entropy- both of which are Gibbs measures.
Consequently, we are interested in random dynamical systems where the
randomness is driven by a Gibbs process. However, almost all previous re-
sults treat the i.i.d case, where the random composition is taken over a finite
set of diffeomorphisms.

An important open class of random dynamical systems is systems which
satisfy the uniform expansion on average condition:

inf
(x,ξ)∈T 1M

󰁝

Σ
log |dxfωξ|dµ(ω) > 0,

where fω ∈ Diff1+α(M) (ω 󰀁→ fω may not be constant on partition sets) and
M is a closed Riemannian manifold. The prevalence of this condition has
been studied for example in [DK07, Pot22, ES23, BEFRH].
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In that setting, we prove the following hyperbolicity estimates (Theorem
4.6): ∃β, γ, C > 0 s.t

∀n ≥ 0, sup
(x,ξ)∈T 1M

󰁝

Σ
|dxfn

ω |−βdµ(ω) ≤ Ce−γn, (2)

where fn
ω := fTn−1ω ◦ · · ·◦fω. One can think of the estimate in (2) as a “non

i.i.d version of Azuma’s inequality”. In this setting, even a Markov process
is a non-trivial extension of the i.i.d case (i.e Bernoulli process).

2. Pressure out of equilibrium

Setup:

(1) Let X be a compact metric space.
(2) Let Σ be a one-sided compact topological Markov shift, endowed

with the left-shift T : Σ → Σ.
(3) Let F : Σ → Cα(X,X) be a Hölder continuous map, denoted by

ω 󰀁→ Fω, where Fω is a α-Hölder homeomorphism of X.
(4) Let {φt}t∈X ⊆ Höl(Σ) be a equi-ölder family of potentials:

supt∈X 󰀂φt󰀂Höl < ∞.
(5) Set F k

ω := FTk−1ω ◦ · · · ◦ Fω.

Definition 2.1. We define the pressure out of equilibrium as

P̌ ({φt}t∈X) := lim sup
n→∞

1

n
log sup

t∈X
Žn(φt, a),

where

Žn(φt, a) :=
󰁛

|w|=n,wn−1=a

e

󰁓n−1
k=0 φ

Fk
wωa (t)

◦Tk(wωa)

and [a] ⊂ Σ and ωa ∈ [a].

Remark:

(1) Note, since Σ is compact and topologically transitive, the definition
of the POE does not depend on a. Since the family {φt}t∈X is equi-
Hölder, the definition of the POE also does not depend on the choice
of ωa ∈ [a].

(2) Note, Žn(φt, a) is not of the composit form Lφn ◦ · · · ◦ Lφ11[a]! For
each word of length n, the sequence of potentials in its corresponding
weight depends on the word.

(3) The notation of Definition 2.1 is abused, as Žn(φt, a) should in fact
be Žn({φs}s∈X , t, a). However, in order to not have too heavy of a
notation, we keep the abused, yet clear notation of Definition 2.1.

Lemma 2.2. The following limit exists:

P̌ ({φt}t∈X) = lim
n→∞

1

n
log sup

t∈X
Žn(φt, a).
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Proof. First we note that since Σ is compact, as in the remark following
Definition 2.1, there exists a constant CΣ,φ > 1 so we can write

P̌ ({φt}t∈X) = lim sup
n→∞

sup
t

1

n
log

󰀓
C±1
Σ,φ

󰁛

[a]⊆Σ

󰁛

|w|=n,wn−1=a

e

󰁓n−1
k=0 φ

Fk
wωa (t)

◦Tk(wωa)
󰀔

= lim sup
n→∞

sup
t

1

n
log

󰀓 󰁛

[a]⊆Σ

󰁛

|w|=n,wn−1=a

e

󰁓n−1
k=0 φ

Fk
wωa (t)

◦Tk(wωa)
󰀔

= lim sup
n→∞

1

n
logZn({φt}t),

where Zn({φt}t) := supt
󰁓

|w|=n e

󰁓n−1
k=0 φ

Fk
θw

(t)
◦Tk(θw)

and θw ∈ [w] maximizes
󰁓n−1

k=0 φFk
θw

(t) ◦ T k(θw).

Then we notice that for all n,m ∈ N,

logZn+m({φt}t) ≤ logZn({φt}t) + logZm({φt}t),
since the collection of admissible words of length n+m is smaller or equal
to the concatenation of all words of length n and all words of length m, and
supt{At ·Bt} ≤ suptAt · suptBt.Then by Fekete’s lemma, we are done. □

3. Variational principle

The proof of the variational principle for Hölder continuous potentials
on TMSs goes through Ruelle operators. We cannot use the techniques of
Ruelle operators in this setting, as the POE is not the spectral radius of a
Ruelle operator, nor of a random composition of Ruelle operators!

3.1. Upper bound.

Definition 3.1 (Maximal asymptotic instability). Let 󰁥F : Σ × T 1M →
Σ×X, 󰁥F ((ω, t)) := (Tω, Fω(t)), and let 󰁥φ := Σ×X → R, 󰁥φ((ω, t)) := φt(ω).

Then 󰁨φ : Σ → Σ,

󰁨φ(ω) := lim sup
n→∞

sup
t

1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t),

is called the maximal asymptotic instability potential of {φt}t∈X .

Remark: The terminology stems from the comparison between 󰁨φ and φ
(i.e the case where {φt}t∈X is a singleton).

Definition 3.2. If substituting the lim sup supt by a lim inf inft in Definition

3.1 does not change 󰁨φ for ν-a.e ω, then we say that {φt}t∈X is asymptotically
stable w.r.t ν.

Theorem 3.3.

P̌ ({φt}t) ≤ sup
ν erg. inv. prob.

󰁱
hν(T ) +

󰁝
󰁨φ(ω)dν(ω)

󰁲
.
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This proof follows the ideas of Walters in [Wal75].

Proof. Let tn s.t supt
󰁓

|w|=n

e

󰁓n−1
k=0 φ

Fk
θw

(t)
◦Tk(θw)

=
󰁓

|w|=n

e

󰁓n−1
k=0 φ

Fk
θw

(tn)
◦Tk(θw)

for some θw ∈ [w]. Set

󰁨νn :=

󰁓
|w|=n

e

󰁓n−1
k=0 φ

Fk
θw

(tn)
◦Tk(θw)

δθw

󰁓
|w|=n

e

󰁓n−1
k=0 φ

Fk
θw

(tn)
◦Tk(θw)

, and νn :=
1

n

n−1󰁛

j=0

󰁨νn ◦ T−j .

Choose nj ↑ ∞ s.t νnj → ν, and note 1
nj

log
󰁓

|w|=nj

e

󰁓nj−1

k=0 φ
Fk
θw

(tnj )
◦Tk(θw)

→

P̌ ({φt}t) (recall Lemma 2.2).

It is enough to show that hν(T ) +
󰁕 󰁨φ(ω)dν(ω) ≥ P̌ ({φt}t) since the l.h.s

respects the ergodic decomposition, and it is clear that ν is invariant. Let
C be the partition into cylinders of length one. Then,

H󰁨νn

󰀓 n−1󰁢

i=0

T−j [C]
󰀔
+

󰁝 n−1󰁛

j=0

φ
F j
ω(tn)

◦ T j(ω)d󰁨νn

=
󰁛

|w|=n

󰁨νn({θw}) · (
n−1󰁛

j=0

φ
F j
θw

(tn)
◦ T j(θw)− log 󰁨ν({θw}))

= log
󰁛

|w|=n

e

󰁓n−1
k=0 φ

Fk
θw

(tn)
◦Tk(θw)

≡ log
󰁛

|w|=n

eSn(θw). (3)

Fix 1 ≤ q < n, and for any 0 ≤ j ≤ q − 1 set a(j) := [n−j
q ]. Then

󰁚n−1
i=0 T−j [C] =

󰁚a(j)−1
r=0 T−rq+j

󰁚q−1
i=0 T

−i[C] ∨
󰁚

l∈R T−l[C], where #R ≤ 2q.
Then,

log
󰁛

|w|=n

eSn(θw) =H󰁨νn

󰀓 n−1󰁢

i=0

T−j [C]
󰀔
+

󰁝
Sn(ω)d󰁨νn(ω) (4)

≤
a(j)−1󰁛

r=0

H󰁨νn

󰀓
T−rq+j

q−1󰁢

i=0

T−i[C]
󰀔
‘

+H󰁨νn

󰀓 󰁢

l∈R
T−l[C]

󰀔
+

󰁝
Snd󰁨νn

≤
a(j)−1󰁛

r=0

H󰁨νn◦T−(rq+j)

󰀓 q−1󰁢

i=0

T−i[C]
󰀔
+ 2q log#C +

󰁝
Snd󰁨νn.
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Summing (4) over 0 ≤ j ≤ q − 1 and dividing by n, we get

q

n
log

󰁛

|w|=n

eSn(θw) ≤ 1

n

n−1󰁛

p=0

H󰁨νn◦T−p

󰀓 q−1󰁢

i=0

T−i[C]
󰀔
+

2q2

n
log#C + q

󰁝
1

n
Snd󰁨νn

≤Hνn

󰀓 q−1󰁢

i=0

T−i[C]
󰀔
+

2q2

n
log#C + q

󰁝
1

n
Snd󰁨νn

=q ·
󰀓1
q
Hνn

󰀓 q−1󰁢

i=0

T−i[C]
󰀔
+

2q

n
log#C

+

󰁝

Σ×T 1M

󰁥φd( 1
n

n−1󰁛

i=0

󰁥νn ◦ 󰁥F−k)
󰀔
, (5)

where 󰁥νn := 󰁨νn × δtn .
Let π : Σ×X → Σ be the projection onto the first coordinate, then π is

continuous and 󰁥νn ◦ π−1 = 󰁨νn. Moreover, π ◦ 󰁥F = T ◦ π, and hence

(
1

n

n−1󰁛

i=0

󰁥νn ◦ 󰁥F−k) ◦ π−1 = νn. (6)

We may assume w.l.o.g that 1
nj

󰁓nj−1
i=0 󰁥νn ◦ 󰁥F−k −−−→

j→∞
󰁥ν, and so

󰁥ν ◦ π−1 = ν. (7)

Dividing by q, sending nj → ∞, and then sending q → ∞, on both sides
of (5), we conclude that for all n ∈ N,

P̌ ({φt}t) ≤hν(T ) +

󰁝
󰁥φd󰁥ν = hν(T ) +

󰁝
1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥Fd󰁥ν (∵ 󰁥ν = 󰁥ν ◦ 󰁥F−1)

≤hν(T ) +

󰁝
sup
t

󰁱 1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F (ω, t)
󰁲
d󰁥ν, (8)

and in fact since n is arbitrary,

P̌ ({φt}t) ≤hν(T ) + lim sup
n

󰁝
sup
t

󰁱 1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F (ω, t)
󰁲
d󰁥ν (9)

≤hν(T ) +

󰁝
lim sup sup

t

󰁱 1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F (ω, t)
󰁲
d󰁥ν (∵ Fatou lemma)

=hν(T ) +

󰁝
󰁨φd󰁥ν = hν(T ) +

󰁝
󰁨φ ◦ πd󰁥ν

=hν(T ) +

󰁝
󰁨φd(󰁥ν ◦ π−1) = hν(T ) +

󰁝
󰁨φdν.

□
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Proposition 3.4.

max
󰁱
h󰁥ν◦π−1(T )+

󰁝
󰁥φd󰁥ν : 󰁥ν erg. 󰁥F -inv.

󰁲
= max

󰁱
hν(T )+

󰁝
󰁨φdν : ν erg. T -inv.

󰁲
,

where π : Σ×X → Σ is the projection onto Σ. In particular the maximum
is attained.

Proof. Given an 󰁥F -invariant probability 󰁥ν, write ν := 󰁥ν ◦ π−1. Then,

󰁝
󰁥φd󰁥ν = lim sup

n

󰁝
󰁥φd󰁥ν = lim sup

n

󰁝
1

n

n−1󰁛

j=0

󰁥φ ◦ 󰁥F j(ω, t)d󰁥ν(ω, t) (10)

≤ lim sup
n

󰁝
sup
t

1

n

n−1󰁛

j=0

󰁥φ ◦ 󰁥F j(ω, t)d󰁥ν(ω, t)

= lim sup
n

󰁝
sup
t

1

n

n−1󰁛

j=0

󰁥φ ◦ 󰁥F j(ω, t)d󰁥ν ◦ π−1(ω)

≤
󰁝

lim sup
n

sup
t

1

n

n−1󰁛

j=0

󰁥φ ◦ 󰁥F j(ω, t)d󰁥ν ◦ π−1(ω)

=

󰁝
󰁨φdν (∵ Fatou’s lemma).

Hence it is clear that,

max
󰁱
h󰁥ν◦π−1(T )+

󰁝
󰁥φd󰁥ν : 󰁥ν erg. 󰁥F -inv.

󰁲
≤ sup

󰁱
hν(T )+

󰁝
󰁨φdν : ν erg. T -inv.

󰁲
,

where the maximum on l.h.s exists since π is continuous and Σ is entropy
expansive.

We continue to show the other inequality. Let νn s.t Pνn(
󰁨φ) → supν′

󰁱
hν′(T )+

󰁕 󰁨φdν ′
󰁲
. Given ω ∈ Σ, set nj(ω) to be the first integer larger than nj−1(ω)

s.t 1
nj(ω)

󰁓nj(ω)−1
k=0

󰁥φ◦ 󰁥F k(ω, tnj(ω)(ω)) ≥ lim sup supt
1
n

󰁓n−1
k=0

󰁥φ◦ 󰁥F k(ω, t)− 1
j .
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Then,

sup
ν′

󰁱
hν′(T ) +

󰁝
󰁨φdν ′

󰁲
= lim

n

󰀓
hνn(T ) +

󰁝
󰁨φdνn

󰀔

= lim
n

󰀓
hνn(T )

+

󰁝
lim
j

1

nj(ω)

nj(ω)−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, tnj(ω)(ω))dνn

󰀔

(∵ dominated convergence) = lim
n

󰀓
hνn(T )

+ lim
j

󰁝
1

nj(ω)

nj(ω)−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, tnj(ω)(ω))dνn

󰀔

= lim
n

󰀓
hνn(T ) + lim

j

󰁝
󰁥φd󰁥νn,j

󰀔
, (11)

where 󰁥νn,j :=
󰁕

1
nj(ω)

󰁓nj(ω)−1
k=0 (δω × δtnj(ω)

) ◦ 󰁥F−kdνn(ω). Assume w.l.o.g

that 󰁥νn,j → 󰁥νn → 󰁥ν, and that νn → ν.
Claim: 󰁥νn ◦ π−1 = νn and 󰁥ν ◦ π−1 = ν.
Proof: Let g ∈ C(Σ), then by the point-wise ergodic theorem and dom-

inated convergence,

󰁝
g ◦ πd󰁥νn,j =

󰁝
1

nj(ω)

nj(ω)−1󰁛

k=0

g ◦ T kdνn −−−→
j→∞

󰁝
gdνn.

Hence 󰁥νn ◦ π−1 = νn. Therefore, by the continuity of π, 󰁥ν ◦ π−1 = ν. QED

Since (Σ, T ) is entropy expansive, lim suphνn(T ) ≥ hν(T ). Plugging this
back in (11), we get

sup
ν′

󰁱
hν′(T ) +

󰁝
󰁨φdν ′

󰁲
≤ h󰁥ν◦π−1(T ) +

󰁝
󰁥φd󰁥ν. (12)

Then supν′
󰁱
hν′(T ) +

󰁕 󰁨φdν ′
󰁲

= max󰁥ν′
󰁱
h󰁥ν′◦π−1(T ) +

󰁕 󰁥φd󰁥ν ′
󰁲
. We now

continue to prove that the supremum is attained over ν. By (12) and (10),

since 󰁥ν is 󰁥F -invariant, and since 󰁥ν ◦ π−1 = ν,

sup
ν′

󰁱
hν′(T ) +

󰁝
󰁨φdν ′

󰁲
≤ hν(T ) +

󰁝
󰁨φdν.

□

Remark: Proposition 3.4 implies that the maximum of maxν

󰁱
hν(T ) +

󰁕 󰁨φdν
󰁲

is indeed attained, even though 󰁨φ is not continuous. Even when

{φt}t = {φ}, 󰁨φ(ω) still depends on the empirical measure of ω. See also
Lemma 3.5 and the remark following it.
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3.2. Lower bound. The following proposition is our main statement, as
it effectively allows us to carry out the non-trivial operation of taking the
supremum of t ∈ X to be after taking the limit on n in almost all estimates.

Lemma 3.5. 󰁨φ ◦ T = 󰁨φ.

Proof. For all ω ∈ Σ, Fω : X → X is a homeomorphism, hence

󰁨φ(ω) = lim sup
n

sup
t∈X

1

n

n−1󰁛

k=0

󰁥φ(T kω, F k
ω (t))

= lim sup
n

󰀓
sup

Fω(t)∈X

1

n

n−2󰁛

k=0

󰁥φ(T kTω, F k
Tω(Fω(t))) +

󰁥φ(ω, F−1
ω (Fω(t)))

n

󰀔

= lim sup
n

sup
Fω(t)∈X

1

n

n−1󰁛

k=0

󰁥φ(T kTω, F k
Tω(Fω(t))) = 󰁨φ ◦ T (ω). (13)

□

Proposition 3.6 (Main Proposition). For all ω ∈ Σ there exists a closed
Lω ⊆ P(X) s.t ∀σ ∈ Lω,

󰁨φ(ω) =
󰁝

󰁥φ(ω, t)dσ,

and LTω = Lω. In particular, given an ergodic T -invariant probability ν on
Σ, there exists σν ∈ P(X) s.t

σν ∈ Lω for ν-a.e ω ∈ Σ.

Proof. Given ω ∈ Σ, let nj(ω) ↑ ∞ and tj(ω) ∈ X s.t

(I) limj→∞ supt∈X
1
nj

󰁓nj−1
k=0

󰁥φ ◦ 󰁥F k((ω, t)) = 󰁨φ(ω),
(II) 1

nj

󰁓nj−1
k=0

󰁥φ◦ 󰁥F k((ω, tj(ω)))−supt∈X
1
nj

󰁓nj−1
k=0

󰁥φ◦ 󰁥F k((ω, t)) −−−→
j→∞

0,

(III) 1
nj(ω)

󰁓nj(ω)−1
k=0 δFk

ω (tj(ω)) has a weak-* limit in P(X).

In total, there exists σω ∈ P(X) s.t

󰁨φ(ω) = lim
j

1

nj(ω)

nj(ω)−1󰁛

k=0

󰁥φ ◦ 󰁥F k((ω, tj(ω))),

and lim
j

1

nj(ω)

nj(ω)−1󰁛

k=0

δFk
ω (tj(ω)) = σω, (14)
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where σω is a probability measure on X. Then,

󰁨φ(ω) = lim
j

1

nj(ω)

nj(ω)−1󰁛

k=0

󰁥φ ◦ 󰁥F k((ω, tj(ω)))

= lim
j

󰁝
󰁥φd( 1

nj(ω)

nj(ω)−1󰁛

k=0

δFk
ω (tj(ω))) =

󰁝
󰁥φ(ω, t)dσω(t). (15)

Denote by Lω = {σω : achieved by nj and tj satisfying (I),(II),(III) above}.
By (13), for any admissible subsequence nj(ω), we can choose nj(Tω) =
nj(ω)− 1. Moreover, for all t ∈ X,

1

nj

nj−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t) =
1

nj − 1

nj−1−1󰁛

k=0

󰁥φ(Tω, Fω(t)) + oj(1).

Hence, we can choose tj(Tω) = Fω(tj(ω)). By the definition of σω in (14),

σTω = lim
j

1

nj − 1

nj−1−1󰁛

k=0

δFk
Tω(tj(Tω)) = lim

j

1

nj − 1

nj−1−1󰁛

k=0

δFk
Tω(Fω(tj(ω)))

= lim
j

1

nj − 1

nj−1−1󰁛

k=0

δFk
Tω(Fω(tj(ω)))

= lim
j

1

nj − 1

nj−1−1󰁛

k=0

δFk+1
ω (tj(ω))

= σω.

This provides us with a one-to-one matching between all elements of Lω and
those of LTω.

To see that Lω is closed, let σi ∈ Lω s.t σi → σ. For each σn, let {ni
j} s.t

󰁥φ(ω) = limj supt
1
ni
j

󰁓ni
j−1

k=0
󰁥φ ◦ 󰁥F k((ω, t)) and tij s.t

sup
t

1

ni
j

ni
j−1󰁛

k=0

󰁥φ ◦ 󰁥F k((ω, t))− 1

ni
j

ni
j−1󰁛

k=0

󰁥φ ◦ 󰁥F k((ω, tij)) −−−→
j→∞

0.

Then consider 1
ni
ji

󰁓ni
ji
−1

k=0 δFk
ω (tiji

), where ji ↑ ∞ is a sequence of j’s so

(1) d( 1
ni
ji

󰁓ni
ji
−1

k=0 δFk
ω (tiji

),σi) ≤ 1
i ,

(2)
󰀏󰀏󰀏 sup

t

1
ni
ji

ni
ji
−1󰁓

k=0

󰁥φ ◦ 󰁥F k((ω, t))− lim sup sup
t

1
n

n−1󰁓
k=0

󰁥φ ◦ 󰁥F k((ω, t))
󰀏󰀏󰀏 ≤ 1

i ,

(3)
󰀏󰀏󰀏 supt 1

ni
j

󰁓ni
j−1

k=0
󰁥φ ◦ 󰁥F k((ω, t))− 1

ni
j

󰁓ni
j−1

k=0
󰁥φ ◦ 󰁥F k((ω, tij))

󰀏󰀏󰀏 ≤ 1
i ,

(4) 1
ni
ji

󰁓ni
ji
−1

k=0 δFk
ω (tiji

) −−−→
i→∞

σ′.

Then σ′ must coincide with σ, and σ′ ∈ Lω.

We continue to prove that given an erg. T -inv. ν, ∃σν ∈ P(X) s.t
σν ∈ Lω for ν-a.e ω.
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Let i ∈ N, and since P(X) is a metric separable space (hence Lindelöf), we
have a countable cover {B(σi

j ,
1
2i
)}j∈N. Define Eσi

j
:= {ω : B(σi

j ,
1
2i
) ∩Lω ∕=

∅}, and note that Eσi
j
= T−1[Eσi

j
] since LTω = Lω for all ω. Then there

exists σi
ji(ν)

s.t ν(Eσi
ji(ν)

) = 1.

We cover B(σi
ji(ν)

, 1
2i
) by balls of radius 1

2i+1 intersected with B(σi
ji(ν)

, 1
2i
),

and continue this way, and we get that ∃{σi
ji(ν)

}i≥0 s.t ∃!σν
󰁗

i≥0B(σi
ji(ν)

, 1
2i
)

while for any ω ∈
󰁗

i≥0Eσi
ji(ν)

(which is a full ν-measure set), and for all

i ≥ 0, d(σi
ji(ν)

,Lω) ≤ 1
2i
. Since Lω is closed, σν ∈ Lω, and we are done. □

Definition 3.7. The invariant family of probability measures Lω given by
Proposition 3.6 is called the instability kernel of ω.

Theorem 3.8 (Variational Principle).

P̌ ({φt}t) = max
ν erg. inv. prob.

󰁱
hν(T ) +

󰁝
󰁨φ(ω)dν(ω)

󰁲
.

Proof. We already showed the upper bound in Theorem 3.3, and by Propo-
sition 3.4 we know that the maximum is attained. We are only left to show
the lower bound. Let ν be an ergodic T -invariant probability measure.

Let σν be the probability measure given by Proposition 3.6. By (15), for

all k,
󰁕 󰁨φ(ω)dν(ω) =

󰁕 󰁥φ(T kω, F k
ω (t))dσν(t)dν(ω). Then,

exp
󰀓
n(hν(T ) +

󰁝
󰁨φdν)

󰀔

=exp
󰀓
n(hν(T ) +

󰁝 󰁝
1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t)dσν(t)dν(ω))
󰀔

( ∵ Fubini) = exp
󰀓
n(hν(T ) +

󰁝 󰁝
1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t)dν(ω)dσν(t))
󰀔

( ∵ Jensen) ≤
󰁝

exp
󰀓
n(hν(T ) +

󰁝
1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t)dν(ω))
󰀔
dσν(t)

≤ sup
t

exp
󰀓
n(hν(T ) +

󰁝
1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t)dν(ω))
󰀔
.

Let 󰂃 > 0 and let n󰂃 ∈ N s.t ν(K󰂃) ≥ 1− 󰂃, where

K󰂃 :=
󰁱
ω ∈ Σ : ∀n ≥ n󰂃, ν([ω0, . . . ,ωn−1]) = enhν(T )±󰂃n

󰁲
.
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Then,for all n ≥ n󰂃,

exp
󰀓
n(hν(T ) +

󰁝
󰁨φdν)

󰀔

≤ sup
t

exp
󰀓
n(hν(T ) +

󰁝

K󰂃

1

n

n−1󰁛

k=0

󰁥φ ◦ 󰁥F k(ω, t)dν(ω))
󰀔
e󰂃󰀂

󰁥φ󰀂∞n

≤ sup
t

e󰂃󰀂
󰁥φ󰀂∞n

ν(K󰂃)

󰁝

K󰂃

exp
󰀓
nhν(T ) +

n−1󰁛

k=0

ν(K󰂃)󰁥φ ◦ 󰁥F k(ω, t)
󰀔
dν(ω)

( ∵ Jensen)

≤e󰂃󰀂
󰁥φ󰀂∞n sup

t

󰁛

|w|=n:

[w]∩K󰂃 ∕=∅

ν([w])enhν(T )e
󰁓n−1

k=0 ν(K󰂃)󰁥φ◦ 󰁥Fk(θwω,t)+C{φt}t∈X

≤e
2󰂃󰀂󰁥φ󰀂∞n+C{φt}t∈X sup

t

󰁛

|w|=n:

[w]∩K󰂃 ∕=∅

e−nhν(T )+󰂃nenhν(T )e
󰁓n−1

k=0
󰁥φ◦ 󰁥Fk(θwω,t)

≤e
2󰂃(󰀂󰁥φ󰀂∞+1)n+C{φt}t∈X Žn({φt}t∈X),

where Zn({φt}t) := supt
󰁓

|w|=n e

󰁓n−1
k=0 φ

Fk
θw

(t)
◦Tk(θw)

and θw ∈ [w] maximizes
󰁓n−1

k=0
󰁥φ ◦ 󰁥F k(θw, t).

Therefore, hν(T ) +
󰁕 󰁨φdν ≤ P̌ ({φt}t∈X) + 󰂃(1 + 2󰀂󰁥φ󰀂∞) for all 󰂃 > 0.

Then by sending 󰂃 → 0, we are done. □

4. Hyperbolicity estimates for a uniformly expanding on
average Gibbs process

In this section we apply the results of §3 in the setting of Gibbs processes.
Setup:

(1) Let M be a closed Riemannian manifold of dimension d ≥ 2.
(2) Let f : Σ → Diff1+α(M) be a Hölder continuous map, denoted by

ω 󰀁→ fω.
(3) Let µ be a T -invariant probability measure on Σ, and assume further

that µ is a Gibbs measure for the potential ψ ∈ Höl(Σ).
(4) Assume w.l.o.g that P (ψ) = 0, where P (·) denotes the Gurevich

pressure (otherwise replaces ψ by ψ − P (ψ) which does not change
µ).

(5) Given t = (x, ξ) ∈ T 1M , write ϕt(ω) := log |dxfωξ|, and note that
supt∈T 1M 󰀂ϕt󰀂Höl < ∞.

(6) Assume that (M, f, µ) admits uniform expansion on average: ∃χ > 0
s.t

inf
t∈T 1M

󰁝

Σ
ϕt(ω)dµ(ω) ≥ χ.

Remark:
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(1) Note that items (4) and (5) above hold when µ is an SRB measure
on an Anosov system. This requires reducing the case of a two-sided
shift to a one-sided shift, see Lemma A.1.

(2) We do not require ω 󰀁→ fω to be constant on partition sets.
(3) The random dynamical system fω ∼ µ is called a Gibbs process. It

naturally extends Bernoulli processes and Markov processes.

Gibbs processes translate naturally to the setting of thermodynamic for-
malism out of equilibrium (recall §2):

(1) X := T 1M ,

(2) Fω(x, ξ) := (fω(x),
dxfωξ
|dxfωξ|).

We wish to prove that there exist β, γ > 0 s.t for all n sufficiently large, for
all (x, ξ) ∈ T 1M , 󰁝

Σ
|dxfn

ω ξ|−βdµ(ω) ≤ e−γn. (16)

Remark: By the Markov inequality, (16) implies that for all (x, ξ) ∈ T 1M ,
every word ω ∈ Σ expands uniformly, aside for an exponentially small ex-
ceptional set of words. Such estimates have proved themselves to be the
fundamental estimates which are used in the study of exponential mixing
of random dynamical system (see for example [DD]). Previously, such esti-
mates were shown for i.i.d dynamical systems (i.e µ is a Bernoulli measure,
and ω 󰀁→ fω is constant on partition sets). However, the physical motivation
suggests that the randomness which drives our dynamics should be given by
a Gibbs measure, hence motivating our extension.

4.1. Reduction to thermodynamic formalism out of equilibrium.

Theorem 4.1. Assume that (Σ, T ) is topologically transitive. Then, for all
β ∈ (0, 1), for all n ∈ N and all t = (x, ξ) ∈ T 1M ,

󰁝
|dxfn

ω ξ|−βdµ = 󰁥C±1
ψ,ϕ · Žn(φt, a),

where, φt := ψ + βϕt, 󰁥Cψ,ϕ ≥ 1 is a global constant and [a] ⊂ Σ.

Proof. Let n ∈ N and t = (x, ξ) ∈ T 1M . For all [a] ⊂ Σ fix some ωa ∈
[a], and let θw ∈ [w] be some element of the cylinder. Set ϕ

(n)
t (ω) :=

󰁓n−1
k=0 ϕFk

ω (t)(T
kω), ψ(n) =

󰁓n−1
k=0 ψ ◦ T k, and φ

(n)
t (ω) :=

󰁓n−1
k=0 φFk

ω (t)(T
kω).

Then,
󰁝

|dxfn
ω ξ|−βdµ =

󰁝
e−βϕ

(n)
t (ω)dµ = C±1

ϕ

󰁛

|w|=n

µ([w])e−βϕ
(n)
t (θw)

=(CψCϕ)
±1

󰁛

|w|=n

eψ
(n)(θw)−βϕ

(n)
t (θw) = (CψCϕ)

±1
󰁛

|w|=n

eφ
(n)
t (θw)

=(CψCϕ)
±1

󰁛

[a]⊂Σ

C±1
a

󰁛

|w|=n,wn−1=a

eφ
(n)
t (w·ωa), (17)
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where ωa ∈ [a] is any element of [a], and Ca := Na · supt 󰀂φt󰀂∞ where

∀[b] ⊂ Σ, a
nab−−→ b

nba−−→ a with nab, nba ≤ Na.
□

Remark:

(1) The proof Theorem 4.1 in fact implies the following more general
statement:

∀t ∈ X,

󰁝
e
β
󰁓n−1

k=0 ϕ
Fk
ω (t)

◦Tk(ω)
dµψ(ω) = 󰁥C±1

ψ,ϕ · Žn(ψ + βϕt, a).

(2) Theorem 4.1 demonstrates that our definition of the pressure out
of equilibrium (recall §2) is in fact optimal. If one wishes to gain
hyperbolicity estimates such as in (16), then the POE is optimal
quantity to study.

Corollary 4.2.

lim sup
1

n
log sup

t

󰁝
|dxfn

ω ξ|−βdµ ≤ P̌ ({φt}t).

Remark: By Corollary 4.2, proving that the POE is negative for all β > 0
sufficiently small, would prove (16).

Our plan to prove (16) is composed of three steps:

(1) Reducing the expression of (16) to an estimate of the POE (§4.1).
(2) Providing a bound to the POE in terms of topological pressure (§3,

§4.3).
(3) Perturbative theory of Ruelle operators to bound the topological

pressure (§4.2).
We start by recalling the perturbative theory of Ruelle operators, and

gaining the desired estimates for the spectral radius.

4.2. Perturbative theory of Ruelle operators.

Setup:

(1) For β > 0, φt := ψ + βϕt.
(2) Lφt : Cc(Σ) → Cc(Σ) is the associated Ruelle operator defined by

(Lφth)(ω) :=
󰁛

Tω′=ω

eφt(ω′)h(ω′).

(3) By assumption µ is a Gibbs measure of ψ, hence µ = hψ · pψ where

Lψhψ = eP (ψ)hψ and L∗
ψpψ = eP (ψ)pψ. Recall that P (ψ) = 0. Then

one can check that ∃Cψ > 1 s.t for every word |w| = n,

µ([w]) = C±1
ψ eψ

(n)(θw), for any θw ∈ [w].

Theorem 4.3 (Aaronson & Denker). Ruelle operators of Hölder continuous
potentials on compact TMSs are quasi-compact.
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Corollary 4.4. Lφt = Pt +Nt where

(1) Pth := eP (φt)hφt ·
󰁕
hdνφt,

(2) NtPt = PtNt = 0,

(3) 󰀂Nn
t 󰀂 = O(ρn), with ρ ∈ (0, eP (φt)).

See [Sar09, § 5.2] for details.

Theorem 4.5. For all β > 0 sufficiently small, for all t ∈ T 1M , P (φt) ≤
−χ

2β.

Proof. Note, β 󰀁→ P (ψ − βϕt) is analytic in a neighborhood of 0.
By the mean value theorem, for all β0 > 0 sufficiently small, there exist

ξ0 ∈ (0,β0) and ξ1 ∈ (0, ξ0) s.t

P (ψ − β0ϕt) =P (ψ)− β0
d

dβ

󰀏󰀏󰀏
β=ξ0

P (ψ − βϕt) = −β0
d

dβ

󰀏󰀏󰀏
β=ξ0

P (ψ − βϕt)

=− β0
d

dβ

󰀏󰀏󰀏
β=0

P (ψ − βϕt)

− β0 ·
󰀓 d

dβ

󰀏󰀏󰀏
β=ξ0

P (ψ − βϕt)−
d

dβ

󰀏󰀏󰀏
β=0

P (ψ − βϕt)
󰀔

=− β0
d

dβ

󰀏󰀏󰀏
β=0

P (ψ − βϕt)− β0 · ξ0 ·
d2

dβ2

󰀏󰀏󰀏
β=ξ1

P (ψ − βϕt).

By the linear response formula,

d

dβ

󰀏󰀏󰀏
β=0

P (ψ − βϕt) = −
󰁝

ϕtdµ ≤ −χ,

so

P (ψ − β0ϕt) ≤− χβ0 − β0 · ξ0 ·
d2

dβ2

󰀏󰀏󰀏
β=ξ1

P (ψ − βϕt)

≤− χβ0 + β2
0 ·

󰀏󰀏󰀏
d2

dβ2

󰀏󰀏󰀏
β=ξ1

P (ψ − βϕt)
󰀏󰀏󰀏. (18)

By the Green-Kubo formula, and since d2

dx2

󰀏󰀏󰀏
x=a

f(x) = d2

dx2

󰀏󰀏󰀏
x=0

f(x+ a),

d2

dβ2

󰀏󰀏󰀏
β=ξ1

P (ψ − βϕt) =
d2

dβ2

󰀏󰀏󰀏
β=0

P ((ψ − ξ1ϕt)− βϕt) (19)

=Varµψ−ξ1ϕt
(ϕt) + 2

󰁛

k≥1

Covµψ−ξ1ϕt
(ϕt,ϕt ◦ T k),

where ϕt := ϕt −
󰁕
ϕtdµψ−ξ1ϕt .

Since

sup
t

󰀂ϕt󰀂Höl < ∞,

we get that for all β0 > 0 sufficiently small the r.h.s of (19) is bounded
uniformly in t, as it depends only on the rate of mixing of the opera-
tor e−P (ψ−ξ1ϕt)Lψ−ξ1ϕt which is a perturbation of Lψ of multiplicative size



THERMODYNAMIC FORMALISM OUT OF EQUILIBRIUM 17

e2ξ1·supt 󰀂ϕt󰀂∞ , where ξ1 ≤ β0. Therefore, there exists Kψ > 0 s.t

sup
t

󰀏󰀏󰀏
d2

dβ2

󰀏󰀏󰀏
β=ξ1

P (ψ − βϕt)
󰀏󰀏󰀏 ≤ Kψ,

whenever β0 is smaller than half the spectral gap of Lψ divided by supt 󰀂ϕt󰀂∞.
Plugging this back in (18), we get that for all β0 > 0 sufficiently small,

P (ψ − β0ϕt) ≤ −χβ0 + β2
0Kψ ≤ −χ

2
β0.

□
Remark: Theorem 4.5 is essential, as linear algebra (or functional analysis)
can estimate the difference between Lψ and Lφt , and consequently |P (ψ)−
P (φt)|, but much finer analysis which relies on additional information is
needed in order to know the sign of P (ψ)− P (φt), including a bound from
below. This makes Theorem 4.5 independent from the rest of the techniques
we use, and crucial. Its proof is where we use the assumption of uniform
expansion on average.

4.3. Bounding the POE by the topological pressure. Theorem 4.6
below relies on the variational principle proved in §3.
Theorem 4.6.

lim sup
1

n
log sup

(x,ξ)∈T 1M

󰁝
|dxfn

ω ξ|−βdµ ≤ −χβ

2
.

Proof. By Corollary 4.2, it is enough to show that the POE is bounded by
−χβ

2 . Then,

P̌ ({φt}t) = sup
ν erg. inv. prob.

󰁱
hν(T ) +

󰁝
󰁨φ(ω)dν(ω)

󰁲
(∵ Theorem 3.8)

= sup
ν erg. inv. prob.

󰁱
hν(T ) +

󰁝 󰁝
󰁥φ(ω, t)dσν(t)dν(ω)

󰁲
(∵ Proposition 3.6)

= sup
ν erg. inv. prob.

󰁱󰁝 󰁫
hν(T ) +

󰁝
󰁥φ(ω, t)dν

󰁬
dσν

󰁲

= sup
ν erg. inv. prob.

󰁱󰁝 󰁫
hν(T ) +

󰁝
φtdν

󰁬
dσν

󰁲

≤ sup
ν,η erg. inv. prob.

󰁱󰁝 󰁫
hη(T ) +

󰁝
φtdη

󰁬
dσν

󰁲

=sup
ν

󰁱
sup
η

󰁝 󰁫
hη(T ) +

󰁝
φtdη

󰁬
dσν

󰁲

≤ sup
ν

󰁱󰁝
sup
η

󰁫
hη(T ) +

󰁝
φtdη

󰁬
dσν

󰁲

=sup
ν

󰁱󰁝
P (φt)dσν

󰁲
≤ sup

ν

󰁱󰁝
−βχ

2
dσν

󰁲
= −βχ

2
(∵ Theorem 4.5).

□
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Appendix A. Reduction to a one-sided shift

Let Σ± be a two-sided shift.

Lemma A.1. Assume that for every ω,ω′ ∈ Σ± which lie on the same stable
leaf, the limit limn→∞ f−n

ω ◦ fn
ω′ converges in C1+α norm with a uniform

exponential rate. Then there exists a Hölder continuous mapping ω 󰀁→ f+
ω s.t

f+
(ωi)i∈Z

= f+
(ωi)i≥0

and f+
ω is C1+α-cohomologous to fω, where the coboundary

depends in a Hölder manner on ω.

Proof. For every [a] ⊂ Σ±, fix ωa ∈ [a]. Denote by [ωa,ω] the Smale bracket.
Define Cω := limn→∞ f−n

ω ◦fn
[ωω0 ,ω]

. Note that Cω is a C1+α diffeomorphism,

as it admits an inverse C−1
ω = limn→∞ f−n

[ωω0 ,ω]
◦ fn

ω . Then set f+
ω := C−1

Tω ◦
fω ◦ Cω, which is a C1+α diffeomorphism.

We first show that ω 󰀁→ f+
ω is Hölder continuous. Let ω,ω′ ∈ Σ± with

d(ω,ω) = e−N < 1, and write ω0 = ω′
0 = a. It is enough to show that

ω 󰀁→ Cω is Hölder continuous. By the uniform exponential convergence, let
K > 0 and and θ ∈ (0, 1) s.t

dC1+α(Cω, Cω′) ≤2Ke−θn + dC1+α(fn
ω ◦ f−n

[ωa,ω]
, fn

ω′ ◦ f−n
[ωa,ω′]). (20)

Choose n = r · N , where r ∈ (0, 1) will be specified later. Let K, τ > 0 s.t
ω 󰀁→ fω is (K ′, τ)-Hölder continuous. Then one can check by induction that

d(fn
ω ◦ f−n

ω′ , Id) ≤ Bn · e−τ(N−n) for all N large enough so Bn · e−τ(N−n) ≤ 1,

where B is a constant depending on maxω{󰀂fω󰀂C1+α , 󰀂f−1
ω 󰀂C1+α}, K, and

K ′. By choosing r > 0 sufficiently small we can guarantee that

d(fn
ω ◦ f−n

ω′ , Id) ≤ K ′′e−
τ
2
N .

Then, for all N large enough (and r > 0 sufficiently small),

dC1+α(fn
ω ◦ f−n

[ωa,ω]
, fn

ω′ ◦ f−n
[ωa,ω′]) ≤ K ′′′e−

τ
3
N .

Finally, putting this together with (20), we conclude that ω 󰀁→ Cω is Hölder
continuous.

We continue to show that f+
ω depends only the non-negative coordinates

of ω:

f+
ω =C−1

Tω ◦ fω ◦ Cω = lim
n

f−n
[ωω1 ,Tω] ◦ f

n
Tω ◦ fω ◦ f−n−1

ω ◦ fn+1
[ωω0 ,ω]

= lim
n

f−n
[ωω1 ,Tω] ◦ f

n+1
[ωω0 ,ω]

,

which depends only on (ωi)i≥0. □

Remark:󰁝
log |dxf+

ω ξ|dµ =

󰁝
log

󰀏󰀏󰀏dCω(x)fω
dxCωξ

|dxCωξ|

󰀏󰀏󰀏

+ log |dxCωξ|+ log
󰀏󰀏󰀏dfω◦CωC

−1
Tω

dxfω ◦ Cωξ

|dxfω ◦ Cωξ|

󰀏󰀏󰀏dµ.
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Then if ({fω}, µ) satisfies the uniform expansion on average property with a
constant χ, and maxω d(Cω, Id) is sufficiently small w.r.t χ and minω 󰀂d·fω󰀂co,
then ({f+

ω }, µ) also satisfies the uniform expansion on average condition.
This can always be arranged by refining the alphabet of Σ± into all admis-
sible words of length m for some sufficiently large m.
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