QUANTUM ERGODICITY, MIXED QUANTIZATION AND PARTIAL
HYPERBOLICITY
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ABSTRACT. We establish stable quantum ergodicity for spin Hamiltonians, also known as
Pauli-Schrédinger operators. Our approach combines new analytic techniques of mixed quan-
tization, inspired by local index theory, with stable ergodicity results for partially hyperbolic
systems.

1. INTRODUCTION

1.1. Backgrounds. The quantum ergodicity theorem (QE) of Shnirelman [23], Colin de Verdiere
[7] and Zelditch [24] asserts that for a compact Riemannian manifold with ergodic geodesic flow,
the Laplacian has a density one subsequence of eigenfunctions that tends to be equidistributed.

In [2, 3], Bismut-Ma-Zhang obtained the asymptotics of analytic torsions for a series of
highly nonunitary flat vector bundles. As a global spectral invariant, the analytic torsion is
generally difficult to calculate explicitly. To address this, they introduced a seminal technique of
differential operators with coefficients in Toeplitz operators [3, §9]. This was further developed
by Puchol [19] for asymptotic holomorphic torsions and Ma [15] for full asymptotic torsions.

Inspired by the framework and the technique in [2, 3, 19, 15], Ma-Ma [13] established a
uniform version of QE for a series of unitary flat vector bundles, where the corresponding
dynamical system is the horizontal geodesic flow. Later, a similar but weaker, non-uniform
version of QE was also obtained by Ceki¢-Lefeuvre [6, Theorem 5.1.7].

In this article, we present a more general version of QE. Roughly speaking, we show that
if a small perturbation is introduced to the setup in [13], the QE still holds for the perturbed
operator, and the corresponding perturbed flow remains ergodic. In other words, the results in
[13] are stable both analytically and dynamically. Below, we provide a detailed explanation.

1.2. QE. First, we introduce our main analytic results on QE.

1.2.1. Geometric setup. Let (X, g”™) be an r-dimensional compact Riemannian manifold with
the Levi-Civita connection V¥ and the volume form dvy induced by g”*X.

Let N be a compact complex manifold and (L, ") a positive line bundle over N. Let g7V
be the Kéhler metric on TN induced by the first Chern form ¢; (L, h%) and dvy the associated
volume form. For p € N*, let LP = L®P, the p-th tensor power of L, and H®O(N, LP) the
space of holomorphic sections of LP over N.

Suppose that 71(X) acts holomorphically on N, and this action lifts to a holomorphic iso-
morphism on L. Therefore, H©0) (N, LP) is a finite dimensional complex representation of
m1(X), and we can define a series of flat vector bundles {F}},en+ over X by

E, = m(X)\(X x HOO(N, LP)),

N (1.1)
={(@,5) € X x HOO(N,LP)} /((&,5) ~ (7, 7s) for any v € m1(X)).

where X is the universal covering of X. Let Vf? be the natural flat connection and Al}F » the
Hermitian metric induced by the L2-metric on H(®0(N, LP). We form 4" = m(X)\(X x N),

a flat N-bundle over X, and .2 = m(X)\(X x L), a line bundle over .#". Note that we use
1
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the left m (X )-action on X to be consistent with the notations commonly used in hyperbolic
geometry.

We put natural projections ¢g: A4~ — X and 7: T*X — X and let ¢*T™* X be the fibre product
of ¢ and m. Let S*X be the unit cotangent bundle of X and similarly we denote ¢*S*X the
pull-back. Clearly we have ¢*T*X = 71 (X)\(T*X x N) and ¢*S*X = m1(X)\(S*X x N). We
can equip ¢*T™X with a symplectic structure wg«r+x and a volume form dvg«7+x induced by
W+ x, see (3.9) for details.

In the following, we use (z,£) to denote a point of 7*X or S*X and (z,£,w) a point of
qg*T* X or ¢*S*X.

1.2.2. Hamiltonian operator and Hamiltonian flow. Let {F }pen+ be a series of self-adjoint
Hamiltonian operators, where #f» acts on C*°(X, F,). We assume that 7 > belongs to the
class of Toeplitz pseudo-differential operators, and we denote by 2 € C*°(¢*T*X) its principal
symbol, see § 3.2 for details.

We list all eigenvalues { A ; }ien= of 52 Fp with multiplicity and associated orthonormal eigen-
sections {uyp;tien+, that is,

2
AP = Npitip,i, H“p,i”m(x,Fp) =1 (1.2)

Let 17" denote the Hamiltonian flow of % on ¢*T*X with respect to wgT+x. For any
c € R, let s~ !(c) be the corresponding level set of .7, on which 17* also restricts to a flow.
Let dvyp-1() be the ¢ -invariant Liouville measure on #~!(c) induced by dvger+x .

Now we can summarize all the geometric objects in the following diagram

F, = m(X)\(X x HOO(N, IP)) <4 @p — 2y (X)\(X x LP)

X < d Lmzm@%@xN)
;X L fPX:wLQwWXxN) (1.3)
S* X g fﬁsz@é“?fo)'

7 j%_%)

where Rgq, denotes the direct image.

As an important special case, if /> = p~2Af?, the nonnegative Laplacian, then we have
H(x,&,w) = ||€]|Zx, A 71(1) = ¢*S* X and Y7 is the horizontal geodesic flow Gy on ¢*T*X,
which is an extension of the geodesic flow g; on T*X. Also, if #F? is a small perturbation
of p~2Af» then  is a small perturbation of ||£||2. s, and for generic ¢ > 0, J#~!(c) is
diffeomorphic to ¢*S* X through the map

(z,&,w) € H7He) = (2,6/ [€llpex s w) € ¢"S™X. (1.4)

This explains how 2#~!(c) fits into the diagram (1.3) and the dashed arrow means it is not
commutative with other arrows.
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1.2.3. Mized quantization and QFE. Now we briefly describe the mized quantization procedure.
For of € C*° (q*T*X ), its mixed quantization, Opy, (7}, ), is the image under the composi-
tion of the following two maps

O (T X) 225 0 (T X, 7 End(F,)) 22 Bnd(L2(X, F)). (L.5)

Here T),. is the Berezin-Toeplitz quantization along the fiber N, regulating the behavior of
an infinite number of linear spaces, and Opy,(-) is the Weyl quantization along the base space
T* X, governing high-frequency eigensections. Therefore, combining them enables simultaneous
control of the high-frequency eigensections of an infinite number of bundles.

Indeed, the mixed quantization is mainly restricted to specific symbol classes UpezS* (¢*T*X) C
c* (q*T*X), see (3.1) for details. For any &/ € S%(¢*T*X), the averaged integral function
over the energy surfaces is defined by

1
ceR+— Vol 7-1(0)) /;f—l(c) A A yp-1(c)- (1.6)

Now we state our main QE result, and see Theorem 3.13 for an integrated version.

Theorem 1.1. Suppose that the Hamiltonian flow 7¢ of # on the energy surface (€7 (c), dvyp-1(c))

is ergodic over a certain interval ¢ € [a,b]. Then there is a subset B C {(p,j) € N*? | a <
Ap,j < b} with the following density one condition

y {j eN*|(p,j) €B}
im —— =1,
p=ro0 HJ eEN*[a< )\ < b}‘

(1.7)

in which eigensections tend to be equidistributed on ' ~'(c) for ¢ € [a,b]. That is, for any
o € S°(q*T*X) such that the function (1.6) is constant for c € [a,b], we have

Jim sup (Opp-1(Tor p)Up 5 Up ) 12(X, )

(pj)€B (1.8)
1

— A dv -1 (1051 | = 0.
Vol(#~1([a, b)) /jm[a,bp A ()

We are left with a question, under what condition is the dynamical assumption in Theorem
1.1 satisfied? This is the main theme of our dynamical part.

1.3. Ergodic partially hyperbolic flows. In this subsection, we specialize (1.3) to
(N, e1(L, hY)) = (CP", wys), (1.9)

the complex projective space with the Fubini-Study form. Furthermore, we assume that 71 (X)
acts on CP" through a representation

p: (X)) — SUp41. (1.10)
Now we state our main dynamical result, see Theorem 4.13 for more details.

Theorem 1.2. Suppose that X has Anosov geodesic flow and p given in (1.10) has dense image
in SUpy1. For any open set ¢*S*X C K C ¢*(T*X), there exist ¢ > 0 and k € N such that if
| — Hg”%*X‘C’C(K) < g, then (wt‘%p,dv%p,l(c)) is ergodic in a certain interval ¢ € [a, b].

Remark 1.3. By (1.4), the flow /¥ acts on ¢*S*X = J#~!(c), but it is not necessarily
an extension of a flow along the base S*X, in other words, wtﬂ may not preserve the CP"-
fibre structure. The absence of a ¢/ -invariant CP"-foliation poses a major obstacle. Also, it is
crucial that the perturbed flow 4/ is still Hamiltonian, so we retain a 7/ -invariant symplectic
form, which is used in several key points in our proof.



QUANTUM ERGODICITY, MIXED QUANTIZATION AND PARTIAL HYPERBOLICITY 4

1.4. Main result. By combining Theorems 1.1 and 1.2, we obtain their intersection, which
constitutes our main result.
Let Ocpr(—1) be the tautological line bundle over CP" give by

Ocpn(—1) = {(w,v) € CP" x C"*! | v € w}. (1.11)

Let Ocpr (1) be the dual bundle of Ocpr(—1) and Ocpr (p) = Ocpr (1)®P. Tt is a classical result
that

HOO(CP", Ocpr (p)) = SymPC™H, (1.12)

where SymPC"*! denotes the p-th symmetric tensor product of C"*1, or equivalently,
SymPC" ™ = Clzo, . . ., 20y, (1.13)
the space of homogeneous polynomials of degree p with complex variables (zo, ..., z,), see for

example Huybrechts [12, Proposition 2.4.1].
Now in (1.3) we take

(N, L, HOO(N, LP)) = (CP", Ocpn (1), Sym?C™ 1), (1.14)

and 1 (X) acts on (CP", Ocpn (1)) through the representation p given in (1.10). Note that the
nonnegative Laplacian p~2Af? in this case is refered as Pauli-Schridinger spin-p/2 operator.

Theorem 1.4. Under the setup (1.3) and (1.14), we assume that p in (1.10) has dense image
in SU,y1 and ST is a small perturbation of p~2Afr.  Then on the dynamical side, the
Hamiltonian flow wff of S on the energy surface ~'(c) is ergodic for a certain interval
c € [a,b]. On the analytic side, there is a subset B C {(p,5) € N2 | a < \p; < b} with density
one condition (1.7) and the eigensections satisfy the equidistribution property (1.8).

Remark 1.5. Note that the components of our main result, Theorem 1.4, originate from four
distinct areas. Dynamically, along the base, it involves the stable ergodicity of accessible
uniformly hyperbolic flows, and along the fiber, it concerns Lie group action stable ergodicity.
Analytically, along the base, equidistribution corresponds to semiclassical quantization, while
along the fiber, it relates to geometric quantization. This interplay gives the result special
interest and leads one to expect deeper connections among these fields.

1.5. An example. To explain Theorem 1.4, we present an example to which it applies, and
see § 5.2 for more general applications.

We put (X, N) = (I'y\H2,CP') in (1.3), a genus 2 hyperbolic surface, where To\H? is a
genus 2 hyperbolic surface, I'y € PSL(2,R) and

FQ = {al,bl,ag,bg ’ [al,bl] . [ag,bg] = 1}. (1.15)
We choose an irrational 6 € R and set
—ifr/2 Or ;oo On
_ (e _ [ cos isin =3
plan) =) = (70w« pla = = (27 UEE). o

then p extends to a representation p: I's — SU(2), and p(I'2) C SU(2) is dense since 6 behaves
like an Euler angle.

Consider a vector bundle I's\(H? x suy), where 'y acts on sup through (1.15), (1.16) and
the adjoint action of SUs on sup. Let us take ©1,05 € C°(T'x\H?, I'y\ (H? x suz)), and we can
view ©1, 0y € C®(I'5\H?,I's\(H? x End(SymPC?))) through the sus action on Sym?C2. Let n
be a 1-form on X and we define

QUAEIXSIIC?) _ =216, 0, € ¢°°(Ty\H?, T*(Ny\H?) @ T5\ (H? x End(Sym”C?))). (1.17)
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Let (z1,22) be the upper half plane coordinates of I's\H?, then we can form the following
perturbed Hamiltonian operator

T2\ (H2XSymPC?) _ _xg<(p—1vgjl\(ﬂ2xsym"€2) _ ®F2\(H2xsympc2),*(6m))

(p PENESIE) | graEsmeen g, ) (1.18)

+ (p' V2 (HExSymPC) _ gPa\(E xSym? € (g ) |

- (pr DA E S @F2\(H2Xsym"‘cg)(8m))>

31
in which ©F2\(H?xSym”C?) plays the role of a field. So long as ch( x) is small enough for a
suitable k£ € N, Theorem 1.4 can be applied to 2 \(H? XSymPC?) |

1.6. Comparison with related work. Schrader-Taylor [22] and Zelditch [25] studied the
QE for the Laplacian of a series of vector bundles associated with a principal bundle, under
the dynamical assumptions in [22, Theorem 9.1] and [25, (0.1)], which resemble the ergodicity
assumption on the Hamiltonian flow on energy surfaces in Theorem 1.1. However, they did not
provide non-trivial examples for which these dynamical assumptions hold, as discussed in [22,
§ 8] and [25, (3.20)].

Nearly simultaneously with an early version of this manuscript, Cekié¢-Lefeuvre [6, Theorem
5.1.10] obtained QE for the Laplacian of a series of principal bundles near a flat bundle. In this
case, the Hamiltonian flow is an extension of the geodesic flow, and the corresponding stable
ergodicity is established using the denseness of holonomy similar to the flat case. The stability
of denseness is based on a flow version of Burns-Wilkinson [5, Theorem B], however, this seems
to lack a detailed proof, as discussed in [6, §5.1.3].

For comparison, let us recall the example provided in (1.18), which is a special case of our
main result Theorem 1.4. The connection (VI2\E?xSym?C2) 4 p@la\(HXxSym?C2)) §g ot prin-
cipal, requiring the development of the symbol class of Toeplitz pseudo-differential operators.
Moreover, the corresponding Hamiltonian flow is not an extension of the geodesic flow, and this
introduces essential additional difficulties compared to the case of an extension of the geodesic
flow. Our main theorem provides broader results on both the analytic and dynamical sides.

1.7. Acknowledgment. We would like to thank Emilio Corso for helpful discussions, Xiaonan
Ma for critical reading on an early version of this manuscript, and Stephanne Nonnenmacher
for bringing our attention to this subject. We would like to thank Anatole Katok Center
for Dynamical Systems and Geometry for support. Q. M. would like to thank Sherry Gong,
Nigel Higson, Zhizhang Xie, Guoliang Yu for hospitality and was supported by the NSF grants
DMS-1952669 and DMS-2247322.

2. SEMICLASSICAL AND GEOMETRIC QUANTIZATIONS

In this section, we review some properties of Weyl and Berezin-Topeliez quantizations. These
two quantization formalisms share many similarities, such as product and trace formulas, and
can be compared with each other. For more details, see Zworski [26] and Ma-Marinescu [16, 17].

2.1. Weyl quantization. Let us choose a finite good covering {U;} of X such that any finite
intersection U;, N --- N Uj;, is differentiably contractible, see for instance Bott-Tu [4, Theorem
5.1]. Let (F, V) be a unitary flat vector bundle on X with a flat Hermitian metric hf', then
it can be represented by a unitary representation p: 71(X) — End(C4™c ) such that

F = m(X)\(X x clime £y, (2.1)
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Moreover, we can trivialize locally F|y, = C4mcF guch that the transition maps ¢ij € C(U;N
Uj, End(C4me F)) are constant unitary matrices. Let ||-||» denote the norm on F induced by
R and || gna(ry the operator norm on End(F).

Let {¢;} be a partition of unity subordinate to {U;}. Then we can define the semiclassical
Sobolev norm HHH’,; (x,F), forany 0 <h <1,k > 0and u e C*(X, F),

Il em =22 > W0 @2, py: (2:2)

i BENT|BI<k

and through the dual with respect to the L2-metric,
2 2
HUHH;k(X,F) = Sup ‘<u7u,>L2(X,F)‘ (23)

[|w HHﬁ(X,F):l

Let m: T* X — X be the natural projection. For d € Z, we define the symbol class Sfl; as the
set of smooth sections A(x,&) € C°(T*X,7*End(F)) such that for any j € N, the following
Kohn-Nirenberg norm is finite

(d —d+|B2||| 581 HP2
max sup f o) 8 A(z,€) 2.4
Uze{U}

We then set Sz = ez S%.
Let {¢;} be a set of nonnegative smooth functions such that supp(¢;) C U; and ¢; = 1 on
an open set containing supp(¢;).

Definition 2.1. For A € S}i, its Weyl quantization is defined by
Opy(4) = Z iOpp (01 A)pi (2.5)
where 0 < h < 1 and Opy,(¢;A) is the Weyl quantization on R”, that is,
Opa(0idy) () = e [ [ T ) guiar'de. (26)
The integral in (2.6) is in general divergent, and it should be viewed as a map between

Sobolev spaces, see [10, Proposition E.19] and [26, Theorem 4.23].

Proposition 2.2. For any d,k € Z, there are C > 0,1 € N such that for any A € S% and
0 < h <1, we have

HOph( )HH‘H’“(X F)—HE(X,F) S <C ’A| (2'7)

Let h>W > be the space of smoothing operators, that is, By € h*W ;> if for any i € N,
there is C' > 0 such that

||Bh||H X, F)—H} (X, F) < On'. (2.8)
Definition 2.3. The space U4 % of pseudo-differential operators is defined by
U = {Opy(An) + By, | An € S§, By, € W} (2.9)
Now we list some useful properties of the Weyl quantization.
Lemma 2.4. For A € 8%, we have
Opy(A4)" = Opy(47), (2.10)
where the adjoint is with respect to the L*-metric (-, VL2(X,F)-

We have the following product formula [26, Theorem 9.5] with an estimate on the remainder
term.
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Proposition 2.5. The space of pseudo-differential operators is an algebra, in particular, for
Ae S? and A’ € S%, we have

J
Opy,(A)Op,(A') = h'Opy, (A#tiA") + W Ry, j1 (A, A'). (2.11)
=0

where A#; A € S;l;ﬁdri and Ry, j1(A,A') € \I’CI?-'_dQ_j_l. Indeed, for any k € N, there are
C > 0,¢ € N such that

A AT < oA | (2.12)

similarly, for any k € Z, there are C > 0,¢ € N such that for any 0 < h < 1,

d d
HRh’j'H(A’A/)HH’}j(X,F)—>H:+d1+d27j71(X,F) <C |A|g 1) }A/‘g 2) . (2.13)
Also,
~ 1
AftoA = AN, A A =" 2\ﬁ(a@ A0y A — 0y, A0, A). (2.14)
j=1

Let wr+x be the canonical symplectic form on 7% X and dvr+x = wi. /7! the corresponding
volume form on 7% X, then locally we have

wrex =Y _d&; Ndzy, dop-x = [ d&; A daj. (2.15)
j=1 Jj=1

Proposition 2.6. For any A € S;°°, the operator Opy(A) is of trace class on L*(X, F) for
any 0 < h <1, and we have a trace formula

(2mh)" L2(X,F) _/ 1 T*F
dimCFTr [Opp,(A)] = - dim(cFTr [A]ldvr+x. (2.16)

Moreover, there is C > 0 such that for any bounded linear operator Ty,: L*(X, F) — H, "1 (X, F),
it is of trace class on L*(X,F) and we have
(2mh)"
dim¢ F

and we note that here r 4+ 1 is not optimal.

2
‘TrL (X, F) [Th]( < CIThll 2 pysir (. (2.17)

2.2. Berezin-Toeplitz quantization. Let N be a compact complex manifold with com-
plex dimension dim¢ N = n. Let (L,h%) be a positive holomorphic line bundle on N and
c1(L,h*) its first Chern form. Then let g™ be the associated Kéhler metric on TN and
dvy = c1(L, h")"/n! the induced volume form on N.

For p € N* let LP = L®P, the p-th tensor power of L and H(O’O)(N, LP) the space of
holomorphic sections of LP over N. Let (., '>H<o,o)(N7Lp) be the L?*product on HOO (N, LP)

induced by (dvy, ") and P,: L?(N, LP) — H(9(N, LP) the associated orthogonal projection.
Definition 2.7. The Berezin-Toeplitz quantization of f € C°°(N) is a sequence of linear
operators {Ty, € End(L*(N, L))} en given by Ty, = P,fP,, in other words, for any s, s’ €
HOO(N, LP), we have

Tras. v = [ Fw)(s(w).5/(w))gardoy (w). (2.18)

By (2.18), we have the following obvious result.
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Lemma 2.8. For any f € C*°(N), we have
HTf,pHEnd(H(o,O)(N,Lp)) < |f|00(N) > (2-19)
also, the adjoint of the quantization is given by
T3, =Ts . (2.20)
By the Hirzebruch-Riemann-Roch theorem [16, Theorem 1.4.6], we have the following as-
ymptotic dimension formula
dime HCO(N, LP) = Vol(N)p" + O(p™ ). (2.21)

According to the proof of [16, Lemma 7.2.4], we have the following trace formula with an
estimate of the remainder.

Proposition 2.9. There is C > 0 such that for any f € C*°(N) and p € N*,

1 (0,0) p a
dimc HOO) (N, Lp) r [Tt N fdoy

<CpHFlozeny - (2.22)

Following [16, Definition 7.2.1], we now define Toeplitz operators.

Definition 2.10. A Toeplitz operator is a family of operators {7, € End(L*(N, Lp))}peN*

such that T, = P,T,,P,, and that there exists {f; € C*°(N)};en such that for any k € N, there
is C' > 0 such that

From the proof of [16, Theorem 7.4.1], we have the following product formula with an
estimate of the remainder.

< CpF L (2.23)
End(H(©.0)(N,LP))

k
T, - Zpiijj»P
§=0

Proposition 2.11. The set of Toeplitz operators is an algebra. In particular, for any k € N,
there is C > 0 such that for any f, f' € C*°(N) and p € N*,

k
HTf,pr’,p - ZP_JTCj(f,f’),p‘
§=0

—k—1 ,
End(H (0:0)(N,LP)) S Cp ‘f‘02k+2(N) ' ‘f ‘02k+2(N) y (2.24)

where Cj(-,-) is a smooth bidifferential operator of total degree no more than 2j. Also,

Colf. SV = £ Gl f) = CrF 1) = = {F v, (2.25)

=

where {-,-}§ denotes the Poisson bracket of the symplectic form 2mey (L, hY).

3. MIXED QUANTIZATION AND QUANTUM ERGODICITY

In this section, we construct the mixed quantization, which involves semiclassical and geo-
metric quantizations, and use it to deduce QE.

3.1. Mixed quantization on ¢*T*X. For d € Z, define the symbol class Sd(q*T*X) as the
set of smooth functions &7 (z, &, w) € C>(¢*T*X) such that for any j € N, the following norm
is finite

]%|(.d) = max sup (§>*d+|62|‘8518?242{(x,§,~

J /317/82€Nr7|[31|’|/82|<j7IeUi,gGT;X
UiE{Ui}

)}Cj(q—l(x))v (31)

where ¢~ '(z) = N.
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For o7 € S%¢*T*X) and p € N*, let T, p be its fibrewise Berezin-Toeplitz quantization,
that is, Ty ,(7,§) = Toy(z.¢,.) p- Locally we have for 1, B2 € N",

651652 (Tﬂ,p) = Ta£16§2M7p7 (32)
which, together with (2.4), (2.19) and (3.1), implies that Ty, € Sjl;p and for any j € N,
d d
’Tﬂ,pw '< |d|§ : (3.3)

Definition 3.1. We define the space \I'dT of Toeplitz operator valued pseudo-differential op-
erators as follows, for a series of pseudo-differential operators {.7,},en+, in which .7, acts on
C*(X, F,), we say that {7}, },en+ € U if there exists {7 € S%(¢*T*X)}ien such that for any
j € Nand ¢ € Z, there is C > 0 with

Let 7% = Ngez U5

<Cp 7L (3.4)

J
Ty =Y 0 "0py-1 (T p)
=0

L+d
Hptl (Xva)_)H;;—1 (X,Fp)

By (2.11), (2.24) and (3.2), we have the following product formula.

Proposition 3.2. The set of Toeplitz operator valued pseudo-differential operators is an alge-
bra. In particular, for any o/ € S4(¢*T*X) and /' € S (¢*T*X), we have

J
Oppfl (Tﬂ,p)opp71 (Toi’,p) = Zp_lopp71 (TW*,LQf/7p) + p_]_lRp,j—&-l(d, ‘Qf,>7 (35)
=0

where of x; ' € SN2 and Ry, ;11 (, ') € \I/dT1+d2. Moreover, for any k € N, there are
C > 0,¢ € N such that

At [ < o™ 4", (3.6)

and for any k € Z, there are C > 0,¢ € N such that for any 0 < h < 1,

[ Rpji1 (A, A <clAl™ |ai®), (3.7)

) |’H}’f(X,F)—>H:+d1+d2 (X,F)

Also,
A xd =dd, o A =C(A, A+ A1 (3.8)

Remark 3.3. In (3.5), the order of each term in the expansion and the remainder term remains
the same, (dy + d2). This is because when expanding the product along the fibre, the order
does not decrease. But when one of &7 and &' is fibrewisely constant, what is, & € 4 (T*X)
or &' € S%(T*X), we have o *; &' € SU+2=t and R, ;11(o, ") € \I/dTlerQ_]_l since the
fibrewise expansion vanishes.

Let wg+r=x be the symplectic form on ¢*7™ X and dvg«r-x the associated volume form locally
given by

r - ¢1 (L, hE)"
WerT* X = Z dfj A dl‘j + 21y (L, hL), dvq*T*X = H dfj VAN d(L‘jl(n'). (3.9)

j=1 j=1

Equivalently, the symplectic form (w,. ¢ + 2mc1(L, h%)) on T*X x N is m (X)-invariant, and
it descents to wg+7+x. Let {-, }4=r+x be the Poisson bracket of wg«7+x.
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Lemma 3.4. For any o/ € SU(¢*T*X) and &' € ST (¢*T*X), by (2.25), (3.5), (3.8) and
(3.9), we have
1
p _
[Opp—l (Ter ) Opp—l(Tﬂ’,p)] = 7,—_101313—1 (T{%,M’}Q*T*X,p) +O(p 2)\I,dTl+d2, (3.10)

and in the special case described in Remark 3.3, the remainder term can be refined to O(p_2)\pd1+d2—2.
T

By (2.16), (2.22) and (3.3), we have the following trace formula.

Proposition 3.5. For o7 € S™°(¢*T*X), we have

2mp )" L2(X,F,) 1 / ~1,7/(0)

—— T P Op,-1 (T, - A dvgrex| < C oA P 3.11

dim(c Fp r [ pp 1( ﬂﬁp)} VOI(N) T+ X Uq T*X p ’ ‘2 ( )
3.2. Local Weyl law. Let us consider a Hamiltonian {7 € W2} cn+, which is a series of
self-adjoint differential operators, and let % € S?(¢*T*X) be its real principal symbol, which
corresponds to the term % in (3.4), that is,

AT = Opy1 (T p) + O gz, (3.12)
We further assume that 7 is elliptic in the sense that there exists C' > 0 such that
H(x,§,w) = C ||§H§T*X (3.13)

outside a compact subset of ¢*T*X.
We have the following estimate on the resolvent of J#%7.

Proposition 3.6. For any ¢ € Z, there is C > 0 such that for any A € C\R,

[ =N e it ey < CL+ A/ [Ima]) T (3.14)
p p

Proof. Since (3.14) takes a weaker form than that in [26, Remark 14.6], we can provide an
elementary proof here. By the self-adjointness assumption on .7, we have

I (((A77 = Nu,u) o o) = ~TmA Jullz2 x5 (3.15)
and therefore .
F - -1
12 =2 2 x ) 12y < AT (3.16)
By (3.12) and (3.13), we easily obtain
HUHH;I(X,FP) < C( H(%Fp - )\)UHLz(X’Fp) + (14 |A]) HUHL2(X,FP) ), (3.17)
which, together with (3.16), implies
F, -1 -1
H(%ﬂ 7 =) HL?(X,F,,)—>H§_1(X,F,,) S C(l + (1 [A]) [TmA| )’ (3.18)

which is stronger than (3.14) for ¢ = 0. For a vector field V over X, we have

p—lvgp(%ﬁ_’p . )\)—1 :(%Fp o )\)—lp—lvgp (3 19)
_ 1P - '
+ (T = N pT VP (o — 2T

Since p_lv‘l;” is a fibrewisely constant differential operator, we can apply (3.10) to see that
[,%”Fp,p*IV€p] € V2. Iterating from (3.18), we get for £ € N,

1E5 =X e stz (< CLAF A/ JmA) ), (3.20)
P P

which is stronger than (3.14).
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Now we consider negative norms. By the self-adjointness of 7 f» and (3.18), we get
F, -1 o )1
O =30 2 | = 1 T =30 |
F -1
< Hu||Hp—711(X7Fp) H(%” P — ) U/”H;_I(X,Fp) (3.21)

/
<C HuHHp‘fl(X,Fp) [ u HLQ(X,FP) ;
where we lost some regularity. From this, we obtain

| (2" — A)_lHH_jl( < C 4+ A/ [TmA|. (3.22)

X,Fp)—L2(X,Fp)
When ¢ < —2, combining (3.20) and the argument use in (3.21), we get
F, -1 —£-1
(o7 = X) “Hﬁ,l(x,FpHH;ft?(X,Fp) < C(A+ A/ ImAl) . (3.23)

This completes the proof of (3.14). O

Let .(R) be the Schwartz function space with a series of norms {|-|,}sen given by

— 197
6l = jmax sup |NO36(1)] (3.24)

Now we give the functional calculus of 77,

Theorem 3.7. For any j € N, there are C > 0,¢ € N such that for any p € N* and ¢ € S (R),
we have ¢(HA1r) € ¥, and

H¢(%Fp) - Opp*1 (Tda(jf),p) HLQ(X,FP)%LQ(X,FP) < Cp_l |¢|£ : (325)

Proof. We follow the approach in the proof of [26, Theorem 14.9]. The assertion ¢(#%%) €
W > is deduced from Proposition 3.6, Helffer-Sjéstrand formula [26, Theorem 11.8] and Beals
theorem [26, Theorem 9.12]. Note that for the almost analytic continuation 5 of ¢ and any
i € N, there exist C' > 0,¢ € N such that [9x¢(A)| < CJImAJ (1 + |A]2)~ |¢|,, hence the term
(1 + |ADIHT in (3.14) makes no difference.

For the principal symbol of ¢( ), by (2.7), (3.5) and (3.12), we get

(A = N)Opy1 (Tirrny-1p) =1+ 0 L+ AN TN ) ¢ o) oy (3:26)
then from (3.16) we have

Opp-1 (Tr—x)-1p) = (T - N+ o1+ W)k\Im/\|*k*1)L2(X7Fp)_)L2(X7Fp). (3.27)

Now apply the Helffer-Sjostrand formula again, we obtain (3.25). 0

Theorem 3.8. There are C > 0,i,f € N such that for any 0 < h < 1,¢ € S (R) and
o € S°(q*T*X), we have the following local Weyl law

|
L. SOV A dvp
VoI(N) /q*T* P dvrex (3.28)

<Cp~1ol, || .

Proof. Following the proof of [26, Theorem 15.3], by (2.7), (2.17), (2.19), (3.5), (3.11), (3.25)
and the obvious inequality

2rp~H)” 2
o IO ()0, -+ (Ta)] -
p

1
dimc F),
where T' € End(F),), we get (3.28). O

TeP m) <l (3.29)
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Corollary 3.9. For any a > 0, we have the following Weyl law

lim @mp” )" \{ < Apj <a}| = )Vol(%_l([o,a])). (3.30)

p—00 dlm(c F

Proof. By setting & = 1 in Theorem 3.8 and approx1mating the function 1y, from above
and below by functions in . (R), we get (3.30).

3.3. Egorov theorem. Let ¢/ be the Hamiltonian flow of .7 with respect to weT* X, that
is,
%(@% ) ={H, A Ygrex. (3.31)
For p € N* and t € R, we define the Schrodinger propagator UtFp of #Fr by
Ufr = V-1 A (3.32)
The following Egorov theorem asserts that the operator UtF P is the quantization of @bff .

Theorem 3.10. There are j,k € N such that for any T > 0, there is C > 0 such that for any
peN 0<t<T and &/ € S™(¢*T*X), we have

HU ?Op,1(Ter p)UL " — Op,- (Wfﬁ,p)‘

Proof. Follow the proof of [26, Theorem 15.2], we can deduce (3.33) from (3.10) and (3.12). O

3.4. Quantum ergodicity. For &/ € S%(¢*T*X) and ty € R, its time average (&), €
C>*(¢*T*X) is defined by

Clar|D. (3.33)

L2(X,F,)—L2(X,F,)

(D )to = tl/oo(@bff-sz%)dt, (3.34)

0
and for 0 < a < b < 0o, we define its quantum variance Varf‘;)(;zi ) by

(2mp~1)"

Fy of) =
Vara’b( ) dim(c Fp

(Opp-1(Ter p)tp. 5, “p,j>L2(X,Fp)
SRS (3.35)
) .

1 /
- A A 11, 7
Vol(~1([a, b])) 21 (o) H~1([a,b])

where {u;}ien+ are the orthonormal eigensections of #f7 as in (1.2).
We have the following concentration property for w, ; in (3.35).

Lemma 3.11. There are k € N,C > 0 and a compact set 7~ ([a,b]) C K C ¢*T*X such that
for any o7 € SO(¢*T*X) with supp(=/) N K = (), we have

HOpp T%vp uPJHL2 X,F, ) Cp—l |JZ{‘[E;O) (336)

Proof. In (3.12), the remainder term is in W2, so we cannot straightforwardly obtain from
(1.2) that

10,1 (T(—p-2x, ) p) il 2(x ) < CP (3.37)

Instead, by (3.5) we get
Opp71(T(1+‘§|§T*X)_1(%_P_2)‘p,j)v ) =Opy- ( (1+|E\ JTex ) 1,p)0pp’1(T(f—l”{‘)/\p,.i)vp) (3.38)
by (2.7) we have

<Cp L. )
e S Cp (3.39)

HOPp-l (T<1+|5|§T*X)-lw—p—w,j),p)“pd‘
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Similarly, by (3.5) we have

Opy-1(Tet ) =OPp1 (Tos 116 )2 —p-220,5)-1) OPpt (Tl )1 (-2, )

(3.40)
- 0
+ 00 | g
which, together with (2.7) and (3.39), implies (3.36). O

Now we give an estimate for Varf%(sz% )

Theorem 3.12. There is k € N such that for any 0 < a < b < oo and 0 < tg < 0o, there exist
Cap,Capto > 0 such that for any o/ € SYUq*T*X) and p € N*, we have

)
— AV 114
Vol(~1([a,0]) J w1 ([ap) A ()
+ Coprp (1|2,

Proof. By (3.36), using a cut-off function on ¢*T* X, we can suppose without loss of generality
that o € S™°(¢*T*X). From (3.32), we have UtFpupvj = e*“p_umup,j, therefore,

2

F
Var 5 (&) <Capl||(# )t

L2(#1([ap)  (3.41)

F F
(UZ20py-1 (T ) Uy "t “p,j>L2(X,Fp) = (Opy1 ( )up,, “p,j>L2(X7Fp)- (3.42)
In (3.28), we take a nonnegative ¢ € . (R) with supp(¢) C (0,00) and ¢ = 1 on [a, b], then
(3.41) follows immediately from (2.7), (2.10), (2.11), (2.17), (3.33) and (3.42). O

We have the following integrated form of QE.

Theorem 3.13. Suppose that the Hamiltonian flow ¢ is ergodic on (A ~1(c), dv yp-1(c)) for
any c € [a,b], then for any o/ € SY(¢*T*X) satisfies the assumption (1.6), we have

; Fp —_
plggo Var () = 0. (3.43)

Proof. Let p — oo and then ¢ty — oo in (3.41), then we obtain (3.43) from the mean ergodic
theorem. O

Using a diagonal argument to Theorem 3.13, we deduce Theorem 1.1.

4. STABLE ERGODICITY

In this section, we present our main dynamical theorem on the ergodicity of a small pertur-
bation of the horizontal geodesic flow.

Throughout this section, we shall work under the setup (1.3), (1.9) and (1.10), also, we
suppose that p given in (1.10) has dense image and X has Anosov geodesic flow. For ease of
notations, we use y = (z, &) to denote a point of S*X and z = (x,£, w) a point of ¢*S*X.

4.1. Unperturbed dynamical system. Recall that g;: S*X — S*X denotes the geodesic
flow, hence an Anosov flow preserving the Liouville measure dvg+x. Meanwhile, G;: ¢*S* X —
q*S*X denotes the horizontal geodesic flow, a CP"-extension of the geodesic flow g, that
preserves the augmented Liouville measure dvg«gs«x.

We have the following G} invariant decomposition of the tangent bundle of ¢*S* X

Tq* S*X = ECt @ E5Ct @ EwCt (4.1)

and let le/cu’Gt be the corresponding local stable and unstable foliations.

Let us define a vector field X+« x over ¢*S*X by the direction of Gy, namely

d
Xq*S*X = & t:OGt’ (42)
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then the central vector bundle E%C* further has the following Gy-invariant decomposition
EcGt = C. X5+ x @ ker gy, (4.3)
and ker g, corresponds to the foliation F of the CP"-fibre structure, that is,
F(z) = q ' (a()) = CP". (4.4)
The authentic central foliation F&* is defined by

Fo) = |J Gi(F() = [-.7] xCP" (4.5)

te|—7,7]

where 7 > 0 is small.

Using the horizontal parallel transport, for 2’ € W3/%Gt(z), we can define the holonomy
map HZ,"’Gt: F(z) = F(2'). For a su-path y¢t = (z1, - -- s 215Gy |)» let us define R g, : F(21) —
F(246+|) by the composition of holonomies

_ ,G G
R, = H%/fétﬁlzmcu - HE G (4.6)
In particular, if ¥¥* projects to a su-loop on S*X, in other words, ¢(z1) = q(z}44|), then

F(z1) = F(214¢,|) and we can view R a, € SU,11 by p given in (1.10). From the dense image
assumption on p, we easily have the following result.

Lemma 4.1. For any z € ¢*S*X, there exist su-paths '71Gt, . ,’yff from F(z) to itself such
that the subgroup

I = <Rﬁt,. : .,cht> C SUp41 (4.7)

generated by Rth, . ,vat is dense in SUp41.
1 4

4.2. Perturbed dynamical system. First, we recall the general Hamiltonian dynamical sys-
tem (y7”, #1(c), dv%q(c)) discussed in (1.3), and we shall also denote 17 by 1), for short.
When 5 (z, &, w) = ||€[|F x and ¢ = 1, we recover exactly (G, ¢*S* X, dv,.gx). Therefore, we
assume that 7 is a small perturbation of ||¢[|%. y, then J#~1(c) & ¢*S*X through (1.4) and
we get a perturbed dynamical system.

Similar to (4.1), we have the following 14-invariant decomposition

TH " (c) = BVt @ E5Vt @ B (4.8)

and let Wl‘:)/cu’wt be the corresponding local stable and unstable foliations.
Following Hirsch-Pugh-Shub [11, Theorems 6.1(f), 6.8], we obtain the existance of a per-
turbed central foliation F¥* similar to (4.5).

Proposition 4.2. There exists 19 > 0 such that for all 7 € [—70,70], for all k > 0 suffi-
ciently large and for all € > 0, there exists 6 > 0 such that if ¢¥;: ¢*S* X — ¢*S*X satisfies
dck(q*s*x)(Gl,wl) < 0, then there exists a central foliation F¥* of ¢*S*X by C*-leaves such
that for all z € ¢*S* X,

(1) there exists J,: FCt(z) — F¥t(2) which is a C*-smooth diffeomorphism,

(2) let I: FCt(2) — FCGt(2) be the identity map, then dew(J., I.) < e,

(3) the map z — J, is a Hélder continuous map with respect to the C*-norm, where we

view FCt(z) = [—7,7] x CP™ for z in a small region.

In particular, F¥* is a foliation by C*-local leaves whose induced Riemannian volume is bounded
uniformly from below and from above.
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We define the perturbed holonomy HZ,“ Y F¥(z) — F¥(2') as the unique intersection
point

s/uwt( )7 5/“( ) ]_'dft( ) (4.9)

zz loc

where 2/ € W% and 2" € F¥(2).

loc

Analogous to (4.2), let X,»—1 be the vector field on #~1(c) representing the direction of v,

d
dt lt=0

Unfortunately, in general, E“¥t does not admit a v-invariant decomposition as in (4.3), nor
does it provide a ,-invariant CP"-foliation analogous to (4.4). This is a major obstacle in our
proof.

The key idea for addressing this absence is that F¥*(z) is tangent to E“%¢(z), which contains
C - Xy-1(,). Consequently, we can treat F ¥t(z) as a saturation by small 1/s-orbit segments of

J.(F(2)). We then can use the quotient (E“**/C- Xp—1(c)s F¥ [14) to achieve an effect similar
to (ker gy, F).

Xop-1(¢) = Yt (4.10)

4.3. Reducing to a perturbation of SU,,1-action. We have the following k-bunching prop-
erty.

Lemma 4.3. For every k € N There exists § > 0 such that for all ¢,: ¢*S* X — ¢*S* X with
dew g5+ x) (Y1, G1) < do, we have

H(wl)*‘E&%H ’ H(wl)* Ec,th

where |-||, is the conorm.

Proof. For Gy, we have the strict inequality ||[(G1)«|gsc:|| < 1, and (G1)s|ge.c, acts as an
isometry, hence (4.11) holds for every k € N. It is easy to see that this property is stable under
C'-perturbations. O

Note that hyperbolic splittings can be detected by using cone fields. Carrying a cone field
within itself is a C! open condition, and hence it persists under perturbation. The above
k-bunching is used to show the following result, see Pugh-Shub-Wilkinson [21, Page 545] and
Hirsch-Pugh-Shub [11, Theorem 6.7].

Proposition 4.4. For any k > 0 and any € > 0, there exists § > 0, a > 0, and C > 0
such that for all flow ¥y: ¢*S*X — ¢*S*X with dokg=g+x (1/)1,G1) < 9, the holonomy maps
HESL: FY(z1) = FU(22) and H3S s FO(2) — FO (25) satzsfy

den (J VHECTL HY, Gl) e, (4.12)

zZ122

whenever d(z1,2,),d(22,2,) < a, and d*¥t(z1, 22),d5%t (2}, 25) < C, where d*¥t(-,-),d*>C(-, )

denotes the distance in the induced Riemannian metric of VVI‘Z;“, WS /Gt respectively. Moreover,

a stmilar statement holds when replacing the roles of s and u.
Now we state a classical result for Anosov geodesic flows.

Lemma 4.5. There exist C > 0 and K € N such that for all z € ¢*S* X, the loops Y1, ...,
are all composed of at most K-many segments, each segment of length at most C.

The following result shows that we can control the perturbed su-path, see [11, Theorem 6.8].
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Proposition 4.6. For any € > 0, we have 6 > 0 such that when dek(geg+x)(G1,%1) < 6,
then for every z € ¢*S*X, there exist ’yf’t,...,’yft which are su-paths from FY(z) to itself,

all of which are composed of at most K + dim S*X — 1-many segments. In addition, ’yf}t =
(271/”, . .,z;.bt,z’l, ooy 2 x 1) shadows ’int = (zth, . ,z]Gt iGt
to zicjfl through an s-path with respect to Gy, then zz»bt connects to zﬁl via an s-path with respect
:
most (C' + 1), the segments which connect z}m to 2} and z| to 22+1 are of length at most €. A
stmilar statement holds for the path segments where the roles of s and u are reversed.

), in the sense that if z;™* connects

to ¢, and d(ziGt, z;‘/”) < €. Moreover, the segments which connect z;‘p’/ to z;, are of length at

For any su-path 4%t = (z1,-- -, 2|yt |), similar to (4.6), we define a C*-smooth map R, F¥t(z) —
Fir (Z|wt|) by
— S/Uﬂﬁ/ oo S/’LL,’I,Z)
th - szd,t‘t_lzh%‘ Hz122 L. (413)
Let us denote
¥ = <Rﬁ,t, o R ), (4.14)

which acts on F¥¢(z). By Proposition 4.6, %@bt is composed of at most (C' +dimS* X — 1)-many
segments, each approximating a segment of %-G ¢ together with Proposition 4.4, we get

dor (R, J- Ry, J7h) < Cle. (4.15)

Since HZ,"’% commutes with 1;, we can regard Y as acting on F¥t(z) /vy = CP". There-
fore, we can view Y as a perturbation of I'C* given in (4.7). Next we shall equip F¥t(z) /v
with a ['Y*-invariant measure. This step is crucially dependent on the Hamiltonian property.

4.4. Symplectic quotient and leavewise stable ergodicity. Indeed, we have the following
stronger result.

Proposition 4.7. There exists symplectic form w g, )y, 0N F¥t(2) /vy such that

(Hjé,%wt)*w}'abt (2") /e = w]-"l’t (2) /1" (416)

Proof. First, wg 7 x) descents to a symplectic form w 1) sy, locally on H71(c) /¢y Indeed,
this is a toy version of Marsden-Weinstein symplectic quotient, see for instance McDuff-Salamon
[18, §5.4]. It relies on the definition of the Hamiltonian flow,

LX%71(0> (i:wq*(T*X)) = d = 0, (4'17)

where i.: # 7 1(c) — ¢*(T*X) is the natural embedding used in (1.3) and the second equality
holds because 7 is a constant on J#~1(c).

We can give a more concrete description. Let us take a representative S, C fw‘(z) of
F¥(2) /1y, for example J.(F(2)), then we pullback ijwgs(p+y) throught S, < J#7*(c) to get
wg.. Any other representative S, can be written as the image of a map

f(Zl) = ¢t(z1)(21)7 (418)

where z1 € S, and t(-) is a function on S,. We have f*wg; = wg,. To see this, first note that
wgr+x 18 -invariant, hence at the point f(z1), we have w:(zl)‘*’s; = wg,, and the difference
[fws, — wf(znwgg involves the the contraction of i%wg«(7+x) with the direction of 1/, which
vanishes by (4.17).

Now we turn to (4.16). As the local leaf of the central foliation, F¥* is t-invariant in the
sense that F¥t(1,(2)) = 1s(F¥(z)). Consequently, if two points in F¥*(z) and in F¥*(2')
which are connected via a stable or unstable leaf, we may push them forward by %, under
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which wzy, (2)/% and wry, (+) /4, T€Mains invariant, while the two points become arbitrarily
close. O

By (4.13), (4.14) and (4.16), we obtain the following result.

Corollary 4.8. The I‘ft -acClion preserves Wry, .y /p, s thus also the induced volume dv v, () =
n

YF (=)

Remark 4.9. By the construction in the proof of Proposition 4.7, we form a volume dv For(z) =

wg, Ndt on F wt(z). It is independent of the representative S, and is invariant with respect to
both 1 and T'Y*.

Now since dv]wt(z) iy 18 induced by the symplectic form WEVL () /by by applying the Moser’s
trick, see for instance [18, Lemma 3.2.1], we can assume that dvry, (2)/1, 18 & constant multiple
of the Fubini-Study volume on CP" without loss of generality. Under these conditions the
group action stable ergodicity results of Dolgopyat-Krikorian [9, Corollary 2] and DeWitt [8,
Theorem 1] apply, yielding the following leavewise stable ergodicity.

Proposition 4.10. There exist k € N and § > 0 such that if dek(grs+x)(G1,91) < 6, then for
all z € ¢*S*X, the TY*-action (F¥*(2) /1, dv g (2 ,) @8 €rgodic.

4.5. Flow stable ergodicity. First, we state the following important result of Pugh-Shub
[20].

Proposition 4.11. For any k > 0 and any volume preserving ¥ : ¢*S* X — ¢*S*X such that
den g5+ x) (Y1, G1) is sufficiently small (hence with bunching), for every i -invariant set B
such that

(1) B is s-saturated modulo the volume,
(2) B is u-saturated modulo the volume,

B must be su-saturated modulo the volume, where su-saturation means saturation by su-paths.
We have the following classical Anosov absolute continuity.

Proposition 4.12. For any z € ¢*S*X, let B be a measurable subset of F¥t(z), then
dv g, () (B) = 0 if and only if dvyp-1(¢(Acc(B)) = 0, where Acc(B) is the accessibility class
of B, that is, the saturation by su-paths.

Now we are ready to prove our main dynamical result, the ergodicity of ;.

Theorem 4.13. There exist k € N and § > 0, such that for dekg-g+x)(G1,91) < 6,
(Y1, dvyp-1(c)) is ergodic. In particular, (G, dvgs+x) is ergodic.

Proof. For o/ € C(¢*S*X), we set

1
(o)1 = / A o ydt. (4.19)
0
Since )¢ preserves dv y-1(.), the limits
1 i o 1 i
lim — Y ()ioy], lim — 3 (of)109] (4.20)
j= J 5L im0 j =,
NSJ IS

are well-defined for dv y-1(.-a.e.
For any a € R, let us define
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By the pointwise ergodic theorem for every ergodic component of dv-1(), it is clear that
B? is s-saturated, B" is u-saturated, and both are equal to B modulo the volume. Hence B
satisfies the assumptions of Theorem 4.11, and hence there exists B’ which is su-saturated and
dvyp—1(c)(BAB') = 0. Moreover, we may assume that B’ is ¢-invariant, as B is ¢;-invariant.

By Theorem 4.12, dv -1(¢)(B') > 0 if and only if dvzy, () (B’ NFY¥t) > 0 for all z, otherwise
if the intersection is of 0 induced volume, since B’ is its own accessibility class, B’ must be
of 0 volume. We rely on the observation that B’ must intersect in a non-empty way every
F¥(2), z € ¢*S*X. This follows from the following observation: g; is an accessible map on
S* X, which admits an su-path between any two points in S* X, composed of at most K-many
segments, each of length at most C. Perturbing G; a bit induces a new su-path for 11, which
is between a small neighborhood of any z, and a small neighborhood of any F¥:(%/), for any
2,72 € ¢*S*X. Therefore, B' N F¥t(z) # @ for every z € ¢*S*X.

Assume that dv y—1(,)(B') > 0. Let z € ¢*S*X, and note that B'NF"*(z) is invariant under

holonomies into F¥¢(z), hence it is 'Y invariant. Moreover, since B’ is 1s-invariant, and
preserves dv z—-1(.), by Proposition 4.10, B’ has a full measure in F¥t (z), hence its complement
has a zero measure, hence (B’)¢ has zero volume..

It follows that dv y—1()(B) € {0, 1}, for every a € R and every & € C(¢*S*X). It is an easy
consequence of the pointwise ergodic theorem that in that case (¥r,dv-1()) is ergodic. [

5. MOMENT MAP AND APPLICATIONS
In this section, we present more general examples to which Theorems 1.1, 1.2 and 1.4 apply.

5.1. Moment map. We use the notation asin § 1.2 and § 2.2. In particular, L is a holomorphic
line bundle over the complex manifold N.

Let U be a compact connected Lie group with its Lie algebra u. We assume that U acts
holomorphically on N, and this action lifts to a holomorphic unitary action on L. For a € u,
let £L denote the Lie derivative of a on C*°(N, L), that is,

LEs(w) = %L:Oem(s(e_t“w)). (5.1)

Let V¥ be the Chern connection on L, then the Kostant formula [1, Definition 7.5] gives a
moment map pr: N — u* by
omi(ur,a) = VE - L, (5.2)

Since U acts holomorphically and unitarily on det T(:9 N the determinant line bundle of
the holomorphic tangent bundle TWON on N, we also have an associated moment map and
denote it by pgo 0 N — u.

Similar to (5.1), let £L” denote the Lie derivative on C*°(N, L?), then Bismut-Ma-Zhang [3,
Theorem 3.1] asserts that when restricts to the holomorphic sections H (0,0) (N, LP), pilﬁgp is
a Toeplitz operator in the sense of (2.23).

Proposition 5.1. For any a € u, we have
—1 pLP _
P L |H(0v0)(N,LP) = _27“/_71T<ML+p*1udetT(l,O)N,a),p- (5.3)

5.2. More examples. Now we suppose further that the m(X)-action in (1.1) is induced by
a representation

p:m(X) — U. (5.4)

Let U(u) be the universal enveloping algebra of u, and U(u)S/ C U(u) the subspace generated

by monomials with degree less or equal to j. Using (5.3), we can define a principal symbol map

oj: U(u)gj — C°(N)

ap---a; — (—1)j (QW\/jl<ML, a1>) e (27\/?1<ML, aj>). (5:5)
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We set B
U (W) = m(X)\(X x Uu)¥), (5.6)
then (5.5) extends to a map
ojr UW)S — C(N) (5.7)
where .4 is defined in (1.3).

Let us choose sequences {©; € C° (X, T*X @ % (u)~7) }izo and {V; € C(X, % (u)¥) }5:0,
then we define , i
S T e 59
j=0 j=0

Since the action of u on H®9 (N, LP) induces an action of % (u)<7 on F,, we can view
Ofr ¢ C®(X,T*X ® End(F,)), VI € C®(X,End(E,)). (5.9)

Let {e;}]_; be a local orthonormal frame of T'X, then we define a perturbed Hamiltonian
A = Z —(p—lvé?’ — @Fp’*(ei)) (p—lvﬁ}’ + @Fp(ei))
i=1 (5.10)

+p_1(p_1V€pT_Xei + @FP(VZiXei)) + VFP + VFIM*‘

where ©f7 plays the role of a field and V7 a potential.
We define the principal symbol © € C®(A4,¢*TX) of ©fr and the principal symbol V €
C>(N) of Ve by

J4 k
0=> 0i(0), V=> oiVi). (5.11)
=1 =1

The principal symbol # of ' is given by
H = =g" (V=16 = 6(9:,)) (V=1¢ + 6(0,))) + V + V. (5.12)

Hence (3.13) is verified, and Theorem 1.1 can be applied to #f» given in (5.10).
Now we restrict to the case

(X, N, L, HOO(N, [?),U,u) = (D\H", CP", Ocpn (1), Sym?C" !, SU,, 41, St 11).  (5.13)

We refer to Ma-Ma [14, §5.1] for examples of p: I' — SU,4; with dense image, both generic
and arithmetic. If ‘Gi’ck( X) s \4 Ck(x) Are small, then Theorem 1.4 is applicable. In particular,

this generalizes the example in (1.18).
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