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Abstract. LetM be a closed Riemannian manifold, let f ∈ Diff1+β(M),
and denote by m the Riemannian volume form of M . We prove that
if m ◦ f−n −−−−→

n→∞
µ exponentially fast (see §1.2), then µ is an SRB

measure. We provide new examples.
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1. Introduction

1.1. Motivation. An important object in smooth ergodic theory is SRB
measures, named after Sinai, Ruelle, and Bowen. SRB measures are invari-
ant measures whose conditional measures on unstable leaves are absolutely
continuous w.r.t the induced Riemannian volume on unstable leaves (see
[You02] for more details and properties of SRB measures).

Aside for potential physicality and compatibility with the Riemannian
volume in dissipative systems, SRB measures are important as possible limit
points of the Riemannian volume under the dynamics. In [Bow08] Bowen
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shows that for Axiom A attractors which support an SRB measure, the
volume measure of the saturation of the attractor by stable leaves converges
exponentially fast under the dynamics to the unique SRB measure supported
on the attractor (the notion of rate of convergence relates to a fixed space
of test functions). However, in the general case it is not clear if one can
expect to always achieve an SRB measure as a limit point of the pushed
Riemannian volume. In particular, some “nice” systems do not admit an
SRB measure (see [HY95]).

This gives rise to the natural question: When can we achieve an SRB
measure through pushing forwards the Riemannian volume of a smooth
dynamical system?

In particular, the study of existence of SRB measures is important in
light of the motivation from the field of thermodynamics, to understand
large complicated physical systems at their equilibrium, often when they
admit many particles. The large amount of particles implies that the phase
space will have a large dimension as well, which is the dimension of the
dynamical systems which we study.

Therefore, it is important to understand the existence of SRB measures
for dynamical systems of large dimension. In addition, one seeks a criterion
to determine the existence of an SRB measure which is easy to check on
a given system. That is, given a simulation or an experiment which can
repeated, we wish to have a criterion which is testable to determine if a
system admits an SRB measure. This objective is demonstrated in the
famous Viana conjecture ([Via98]), whose importance lies mostly in the
relatively testable condition which it offers.

However, systems of large dimension may admit 0 Lyapunov exponents,
even in the presence of positive entropy. The lack of a hyperbolic structure
is one of the main challenges of Smooth Dynamics in general, and for Ther-
modynamic Formalism and the study of SRB measures in particular. There
are no previous results which offer a testable condition for the existence of
SRB measures for general systems (i.e large dimension, possible 0 Lyapunov
exponents) in the absence of some additional structure, such as a dominated
splitting or partial hyperbolicity.

Our results offer a testable condition which applies to any C1+β system,
for SRB measures which may admit 0 Lyapunov exponents. We provide
such examples in §5.

Before we describe the results of this paper and how they relate to this
question, we wish to mention another fundamental field of studies in smooth
ergodic theory, and how it relates to this question.

The smooth realization problem posed by von Neumann is the question of
what dynamical systems (X,T, ν) (not necessarily smooth) can be realized
through a measure theoretic isomorphism as a smooth system (M, f,m),
where M is a closed Riemannian manifold, f is a smooth diffeomorphism
of M , and m = m ◦ f−1 is the Riemannian volume of M . Notice that
an immediate restriction of the smoothly-realizable dynamical systems is
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having finite metric entropy. A recent advancement in this direction is
due to Dolgopyat, Kanigowski, and Rodriguez-Hertz, where they prove
that for smooth systems which preserve volume, exponential mixing im-
plies Bernoulli ([DKRH]). Exponential mixing is a property of the smooth
structure, as it requires specifying a space of regular test functions on which
the mixing estimates hold; however their result nonetheless explores a re-
striction on the ergodic properties of smooth systems. See also [PSS] and
the corresponding discussion in [Kat23].

A natural extension of the smooth realization problem can then be, what
dynamical systems (X,T, ν) can be realized through a measure theoretic iso-
morphism as a smooth system (M, f, µ), where M is a closed Riemannian
manifold, f is a smooth diffeomorphism of M , and µ = limnm ◦ f−n, where

m is the Riemannian volume of M . Similarly,
󰁕
g◦fnhdm

exp−−→
󰁕
gdm

󰁕
hdm

whenm = m◦f−1, can be naturally extended to
󰁕
g◦fnhdm

exp−−→
󰁕
gdµ

󰁕
hdm

where m is not necessarily invariant, but µ is. Can we say that µ is Bernoulli
in that case? We believe that the answer is positive based on a consequence
of this work, as we explain in §1.2.

The problem of finding a Banach space of test functions which admits
certain properties is not a trivial issue. Another instance of that same
challenge is proving the spectral gap property, which requires defining a
suitable Banach space of test functions on which the dynamics act as a
linear operator with a spectral gap. Often the space of such test functions
is non-trivial in the sense that one studies functions which are regular on
stable leaves, but may have merely measurable behavior w.r.t the topology
of the ambient manifold.

Moreover, the relationship between properties such as a spectral gap (on
some “reasonable” Banach space) and exponential mixing is still an open
mystery. In what cases can one have exponential mixing without a spectral
gap? These types of questions are generally still open, while being funda-
mental.

Finally, an additional natural property in this family would be the expo-
nential convergence of the volume to an invariant measure, as in (5). This
property on its own is not enough to conclude any stronger ergodic prop-
erties (e.g f = IdM , or even f = A × IdS1 where A is a volume-preserving
linear Anosov map of the torus). However, we show that it is indeed enough
to conclude that the limiting measure is an SRB measure, possibly in the
degenerate sense that hµ(f) =

󰁕 󰁓
χ+dµ = 0.

To sum up the two independent directions of study we mentioned: We
wish to understand when can limits of the pushed volume be SRB mea-
sures for thermodynamic purposes; and also we wish to understand what
properties restrict smooth systems in terms of ergodic properties and the
extended smooth realization problem. Possible future lines of study include
exploring the relationship between different smooth ergodic properties, such
as exponential mixing and a spectral gap.
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1.2. Main results. M is a d-dimensional closed Riemannian manifold, f ∈
Diff1+β(M), and m denotes the Riemannian volume form of M . Let us first
introduce three different notions of exponential convergence: ∃C > 0,α ∈
(0, 1], γ > 0 s.t ∀g, h ∈ Hölα(M),

(1)

󰀏󰀏󰀏󰀏󰀏
1

N

n+N−1󰁛

k=n

m(g ◦ fk)− µ(g)

󰀏󰀏󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α · e−γ·min{n,N},

(2)
󰀏󰀏󰀏m(g ◦ fn)− µ(g)

󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α · e−γn,

(3)

󰀏󰀏󰀏󰀏
󰁝

g ◦ fn · hdm−
󰁝

gdµ

󰁝
hdm

󰀏󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α󰀂h󰀂α · e−γn.

It is clear that (3)⇒(2)⇒(1). We also say that the volume is almost
exponentially mixing (however the volume need not be f -invariant) if

(4)

󰀏󰀏󰀏󰀏
󰁝

g ◦ fn · hdm
󰀏󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α󰀂h󰀂α · e−γn, whenever

󰁝
hdm = 0.

Note that (4) is proper even when m is not f -invariant; but when m =
m ◦ f−1 it is equivalent to m being exponentially mixing. The advantage of
condition (4) is that it does not require a-priori a background f -invariant
measure in order to test it.

The main results of the manuscript are structured in the following way:

(1) In §2 we show that exponential convergence in the sense of (1) to an
ergodic limit point implies that the limit point is an SRB measure
(not necessarily with a positive entropy). The purpose of this section
is didactic. We show in addition that in this case where µ is ergodic,
it is also a weakly physical measure (see Definition 2.7) with a full
Basin (see Theorem 2.8).

(2) In §3 we prove that exponential convergence in the sense of (1) to
a limit point (not necessarily ergodic) implies that the limit point is
an SRB measure (still not necessarily with positive entropy). Note
that one cannot expect more ergodic properties without additional
assumptions.

(3) In §4 we show that almost exponential mixing of the volume in the
sense of (4) implies the existence of an f -invariant µ such that m ◦
f−n −−−→

n→∞
µ exponentially fast (in the strong sense of (3)), and

consequently that condition (3) implies that µ must either be the
unique (and hence ergodic) SRB measure of the system, and has
positive entropy, or that µ is a Dirac mass at a fixed point which is an
SRB measure in the degenerate sense that hµ(f) =

󰁕 󰁓
χ+dµ = 0.

Note that the degenerate case cannot be ruled out, as illustrated in
the remark after Theorem 4.2.
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(4) In §5 we study a family of new examples where we check our criterion
and conclude the existence of an SRB measure (which has positive
entropy and may admit 0 Lyapunov exponents).

Remark:

(1) The importance of the criterion in (4) lies in its testability. As it
requires exponential convergence only for Hölder continuous func-
tions, without a-priori any background invariant measure or quanti-
ties which depend on an infinite trajectory, it can be tested on balls
of the form B = B(·, e−󰂃n). While the indicator function of a ball
is not a Hölder function, it is enough to test (4) only on such func-
tions (and 1B −m(B)), as Hölder functions can be approximated by
linear combinations of indicator functions of such balls with an ex-
ponentially small error term. Checking that indeed an exponentially
small ball of initial conditions mixes exponentially in a phase space
is highly testable for simulations or repeated experiments.

(2) There are no previous results proving physicality (or weak notions
of it) for measures with 0 Lyapunov exponents. In §2.4 we prove
a notion of weak physicality with full basin for the SRB measure
which we construct. This proof has to rely on new techniques, as
the standard approach of saturating volume by stable leaves is not
valid in the presence of 0 Lyapunov exponents. In addition, weak
physicality with full basin implies that there can be no other physical
measure, aside for potentially the SRB measure which we construct.

(3) In the case we treat in §4, when hµ(f) > 0, we believe that the
methods of [DKRH] can be extended to show that µ is Bernoulli.
This is a consequence of the observation that the proof of [DKRH]
only truly requires the conditional measures on unstable leaves to
be smooth, and Proposition 4.3 gives the right notion of exponential
mixing on unstable leaves for their methods to be extended.

(4) In addition, notice that the assumption of (1) is formally weaker than
(2). The weaker assumption allows one to rely on some averaging
in order to gain exponential convergence, rather than just pushing
forwards the volume.

Our proof relies on the following tools: We use coverings by exponen-
tial Bowen balls of the form B(·, n, e−nδ) which have the following three
properties:

(1) limδ→0 lim sup −1
n logµ(B(·, n, e−nδ)) = hµx(f) µ-a.e, where

µ =
󰁕
µxdµ(x) is its ergodic decomposition (see [BORH24]),

(2) If x is a Pesin regular point, then for all n large enough, ∀k ≤ n,
fk[B(x, n, e−nδ)] is contained in the Pesin chart of fk(x),

(3) Subsets of Pesin blocks can be covered by exponential Bowen balls
with exponentially low multiplicity, for all n large enough (see
[BORH24, Lemma 2.2]).
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Furthermore, our proof of the results of §4 relies on the construction of
fake cs-foliations which are absolutely continuous in small exponential neigh-
borhoods of Pesin regular points. These fake foliations were constructed by
Dolgopyat, Kanigowski, and Rodriguez-Hertz in [DKRH].

The key idea of the proof of §2 and §3 is a type of shadowing argument,
where since we cannot mix on exponential Bowen balls of n steps, we break
down the orbit segment of n steps into 1

󰂃 -many orbit segments of n󰂃-many
steps. Thus we can study points which remain close to a large measure set
of “good points”, but not necessarily lie in the Bowen ball of any “good
point” for the whole n steps.

2. The ergodic case

2.1. Preliminary parameter choices. For didactic purposes, we treat
first the ergodic case, as the argument is much clearer in that case. In this
section (and in §3) we assume that ∃C, γ,α > 0 s.t

(5) ∀g ∈ Hölα(M),

󰀏󰀏󰀏󰀏󰀏
1

N

n+N−1󰁛

k=n

m(g ◦ fk)− µ(g)

󰀏󰀏󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α · e−γ·min{n,N},

the weakest notion of exponential convergence. Assume that µ is ergodic.
Let 󰂃 > 0, and set:

(1) Let K󰂃 be a set s.t µ(K󰂃) ≥ e−󰂃4 of points s.t µ(B(·,−n󰂃, e−2δn)) and

µ(B(·,−n󰂃, e−δn)) = e−n󰂃(hµ(f)±󰂃2) for all n ≥ n󰂃, for some δ ∈ (0, 󰂃2)
(see [BORH24]).

(2) Let ℓ = ℓ(󰂃) ∈ N s.t µ(Λ
(χ,τ)

ℓ ) ≥ e−󰂃4 , with 0 < τ < min{τχ, 1
3dδ

3},

where Λ
(χ,τ)

ℓ is a Pesin block (see [BORH24, Definition 2.1]).

(3) Set E󰂃 := Λ
(χ,τ)

ℓ ∩ K󰂃. Then µ(E󰂃) ≥ e−󰂃3 for all sufficiently small

󰂃 > 0. W.l.o.g assume that 󰂃 = 1
p2
, and that p2|n when we choose

some large n s.t e−δn ≪ 1
ℓ , so the ceiling values can be omitted.1

(4) Let n ≥ n󰂃, and let 󰁨A(n)
󰂃 be a cover of E󰂃 by Bowen ballsB(·,−n󰂃, e−2δn)

with multiplicity bounded by e3dτn ≤ eδ
3n ≤ e󰂃

6n, and in particu-

lar with cardinality bounded by #A(n)
󰂃 ≤ en󰂃(hµ(f)+󰂃2)e󰂃

6n, as in

[BORH24, Lemma 2.2]. SetA(n)
󰂃 := {B(x, n󰂃, e−δn) : B(x, n󰂃, e−2δn) ∈

󰁨A(n)
󰂃 }.

2.2. Large asymptotic-volume set of points shadowed by a set of
µ-good points.

1That is, n takes values in {m · p2}m≥1 for some p ∈ N.
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Lemma 2.1. Let 0 ≤ i ≤ (1− 2
√
󰂃)1󰂃 . Then for all 󰂃 > 0 sufficiently small,

∃n′
󰂃 ≥ n󰂃 s.t for all n ≥ n′

󰂃,

1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(M \
󰁞

A(n)
󰂃 ) ≤ 󰂃2.

Proof.

1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(M \
󰁞

A(n)
󰂃 )

= 1− 1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(
󰁞

A(n)
󰂃 )

= 1− 1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(1󰁖
A(n)

󰂃
).

For every B ∈ C(n)
󰂃 , define g

(n)
B be a Lipschitz function s.t

g
(n)
B |B(xB ,n󰂃,e−2δn) = 1, g

(n)
B |B(xB ,n󰂃,e−δn)c = 0, and Lip(g(n)) ≤ e2n󰂃 logMf ,

where Mf := max
M

{󰀂d·f󰀂, 󰀂d·f−1󰀂}. Notice: 1󰁖
A(n)

󰂃
= max

B∈A(n)
󰂃

1B ≥

max
B∈C(n)

󰂃

g
(n)
B =: g(n).

Claim: Lip(g(n)) ≤ e2n󰂃 logMf .
Proof: We prove that if g1 and g2 are L-Lipschitz, then g1 ∨ g2 :=

max{g1, g2} is L-Lipschitz. The claim for g(n) follows by induction. Let
x, y ∈ M . If g1(x) ≥ g2(x) and g1(y) ≥ g2(y), or if g2(x) ≥ g1(x) and
g2(y) ≥ g1(y), then

|(g1 ∨ g2)(x)− (g1 ∨ g2)(y)|
|x− y| ≤ L

by the Lipschitz properties of g1 and g2.
We therefore may assume that w.l.o.g g1(x) ≥ g2(x) and g1(y) ≤ g2(y)

(otherwise switch the roles of g1 and g2). Then,

g1(x) ≤ L · |x− y|+ g1(y) ≤ L · |x− y|+ g2(y),

and so
g1(x)− g2(y) ≤ L · |x− y|.

Similarly,

g2(y)− g1(x) ≤ L · |x− y|.
Therefore, |g1(y)− g2(x)| ≤ L · |x− y|, and so

|(g1 ∨ g2)(x)− (g1 ∨ g2)(y)| = |g1(x)− g2(y)| ≤ L · |x− y|.
This concludes the proof of the claim.
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By the exponential convergence of the volume averages given by (5),

1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(1󰁖
A(n)

󰂃
) ≥ 1√

󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(g(n))

=µ(g(n))± Ce−γ
√
󰂃ne2󰂃 logMfn

≥µ( max
B∈ 󰁨A(n)

󰂃

1B)− Ce−γ
√
󰂃ne2󰂃 logMfn

=µ(
󰁞

󰁨A(n)
󰂃 )− Ce−γ

√
󰂃ne2󰂃 logMfn

≥µ(E󰂃)− Ce−γ
√
󰂃ne2󰂃 logMfn

≥e−󰂃2 − Ce−γ
√
󰂃ne2󰂃 logMfn.

Then for all 󰂃 > 0 s.t γ
√
󰂃 > 2 logMf 󰂃 and 󰂃4

2 ≥ 2 󰂃6

6 , and for all n large

enough so Ce−γ
√
󰂃ne2󰂃 logMfn ≤ 󰂃6

6 , we have

1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(M \
󰁞

A(n)
󰂃 ) ≤1− e−󰂃2 + Ce−γ

√
󰂃ne2󰂃n logMf

≤󰂃2 − 󰂃4

2
+

󰂃6

6
+

󰂃6

6
≤ 󰂃2.

□

Definition 2.2.

Sn := {x ∈
󰁞

A(n)
󰂃 : for all 0 ≤ i ≤ (1− 2

√
󰂃)
1

󰂃
, f−in󰂃(x) ∈

󰁞
A(n)

󰂃 }

is the set of points in
󰁖

A(n)
󰂃 which are shadowed by E󰂃 for at least (1−2

√
󰂃)n-

many steps backwards.

Theorem 2.3. Let n′
󰂃 ≥ 0 as in Lemma 2.1, then for all 󰂃 > 0 sufficiently

small and for all n ≥ n′
󰂃,

1√
󰂃n

n−1󰁛

k=n(1−
√
󰂃)

m ◦ f−k(Sn) ≥ e−󰂃
3
4 .

Proof. Let n ≥ n′
󰂃. Let B ∈ C(n)

󰂃 . We break down the pull-back of B as
follows: f−n[B] = f−n󰂃 ◦ · · · ◦ f−n󰂃[B], where the composition chain has 1

󰂃
many steps.
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1√
󰂃n

n−1󰁛

k=n(1−
√
󰂃)

m ◦ f−k(Sn)

=
1√
󰂃n

n−1󰁛

k=n(1−
√
󰂃)

m ◦ f−k
󰀓󰁱

x ∈
󰁞

A(n)
󰂃 : for all 0 ≤ i ≤ (1− 2

√
󰂃)
1

󰂃
,

f−in󰂃(x) ∈
󰁞

A(n)
󰂃

󰁲󰀔

=
1√
󰂃n

n−1󰁛

k=n(1−
√
󰂃)

m ◦ f−k

󰀳

󰁃
(1−2

√
󰂃) 1

󰂃󰁟

i=0

f in󰂃[
󰁞

A(n)
󰂃 ]

󰀴

󰁄

≥1−
(1−2

√
󰂃) 1

󰂃󰁛

i=0

1√
󰂃n

n−1󰁛

k=n(1−
√
󰂃)

m ◦ f−k(M \ f in󰂃[
󰁞

A(n)
󰂃 ])

=1−
(1−2

√
󰂃) 1

󰂃󰁛

i=0

1√
󰂃n

−i󰂃n+n−1󰁛

k=−i󰂃n+n(1−
√
󰂃)

m ◦ f−k(M \
󰁞

A(n)
󰂃 )

≥1− (
1− 2

√
󰂃

󰂃
+ 1) · 󰂃2 (∵ Lemma 2.1).

For all 󰂃 > 0 small enough so 1− 󰂃− 󰂃2 ≥ e−󰂃
3
4 , the theorem follows. □

2.3. A cover by exponential Bowen balls via concatenation.

Definition 2.4. Let C(n)
󰂃 :=

󰁚 1−2
√
󰂃

󰂃
i=0 f in󰂃[A(n)

󰂃 ].

Remark: Notice that C(n)
󰂃 covers Sn, and that #C(n)

󰂃 ≤ (#A(n)
󰂃 )

1
󰂃 ≤

e
1
󰂃
(n󰂃hµ(f)+󰂃2.5n) ≤ enhµ(f)+󰂃

3
2 n.

Lemma 2.5. Let B ∈ C(n)
󰂃 , then for all n large enough and 󰂃 > 0 small

enough (independently of B), 1√
󰂃

󰁓n−1
k=(1−

√
󰂃)n

m ◦ f−k(B) ≤ e−χun+2󰂃
1
3 n,

where e−χun :=
󰁔

χi>0 e
−χu

i n.

Proof. Let y ∈ B, then B ⊆ B(y,−n(1 − 2
√
󰂃), 2e−δn). For every k ∈

[(1 −
√
󰂃n), n − 1], m ◦ f−k[B] ≤ e2d

√
󰂃n logMfm(B(f−n(1−2

√
󰂃)(y), n(1 −

2
√
󰂃), 2e−δn)). We show that m(B(f−n(1−2

√
󰂃)(y), n(1 − 2

√
󰂃), 2e−δn)) ≤

e−(χu−󰂃)n+2󰂃
1
3 n.

Write x := f−n(1−2
√
󰂃)(y). Let xi s.t fn󰂃i(x) ∈ B(xi, n󰂃, 2e

−δn), xi ∈
f−n󰂃[E󰂃], 0 ≤ i ≤ 1−2

√
󰂃

󰂃 .
Assume for contradiction that there exists a volume form

ωu
0 ∈ ∧dimHu(µ)TyM s.t |ωu

0 | ≥ e−(χu−󰂃)n+󰂃
1
3 n, and s.t ∢(dxψ−1

x0
ωu
0 , E

u) ≤ 󰂃2,
where Eu is the unstable direction of x0 in its Pesin chart ψx0 ; and finally



10 S. BEN OVADIA, F. RODRIGUEZ-HERTZ

assume that expx ω
u
0 ⊆ f−n(1−2

√
󰂃)[B] (when we think of ωu

0 as the paral-
lelogram it defines in TxM). We will show a contradiction by showing that

fn(1−2
√
󰂃)[expx ω

u
0 ] contains a geodesic of length greater than 2e−δn, which

contradicts B(fn(1−2
√
󰂃)(x), n(1− 2

√
󰂃), 2e−δn) ⊇ B ⊇ fn(1−2

√
󰂃)[expx ω

u
0 ].

The choice of ωu
0 implies that |dxfn󰂃ωu

0 | ≥ e−(χu−󰂃)n(1−󰂃)+󰂃
1
3 n(1−󰂃). Note,

since fn󰂃(x0), f
n󰂃(x1) ∈ Λ

(χ,τ)

ℓ , we have fn󰂃(x0), x1 ∈ Λ
(χ,τ)

eτn󰂃ℓ, while also

having 2e−δn ≪ e−τn󰂃 1
ℓ for all n large enough. By the Hölder continuity of

the unstable spaces of points in Λ
(χ,τ)

eτn󰂃ℓ ([KdlLPW01, Appendix A]), dxf
n󰂃ωu

0

projects to ωu
1 ∈ ∧dimHu(µ)Tfn󰂃(x)M s.t ∢(dxψ−1

x1
ωu
1 , E

u) ≤ 󰂃2 and s.t |ωu
1 | ≥

(1− 󰂃) · e−(χu−󰂃)n(1−󰂃)+󰂃
1
3 n(1− 󰂃).

Continuing by induction, let ωu
1−2

√
󰂃

󰂃

be a component of dxf
(1−2

√
󰂃)nωu

0 s.t

|ωu
1−2

√
󰂃

󰂃

| ≥ e󰂃
1
3 n−2

√
󰂃(χu−󰂃)n(1− 󰂃)

1−2
√
󰂃

󰂃 .

Now, for all 󰂃 > 0 small enough so 2d
√
󰂃 logMf + 󰂃 > 󰂃

1
3 , we have for all

n large enough, |ωu
1−2

√
󰂃

󰂃

| ≥ 2de−δn, and we are done. □

Corollary 2.6. hµ(f) = χu =:
󰁓

χi(µ)>0 χi(µ).

Proof. Let 󰂃 > 0 small enough and n large enough for Theorem 2.3 and
Lemma 2.5. Then,

e−󰂃
3
4 ≤ 1√

󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(Sn) ≤
1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(
󰁞

C(n)
󰂃 )

≤#C(n)
󰂃 · max

B∈C(n)
󰂃

1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(B) ≤ enhµ(f)+󰂃
3
2 n · e−χun+2󰂃

1
3 n.

Whence since this holds for arbitrarily large n, hµ(f) ≥ χu − 3󰂃
1
3 . Since

󰂃 > 0 is arbitrarily small, and by the Ruelle inequality, hµ(f) = χu. □

2.4. Physicality. Given a subsequence (nk)k ⊆ N, we denote by d((nk)k)
the upper-density lim supN

1
N#{k : nk ≤ N}.

Definition 2.7. A Borel probability measure ν is called weakly physical with
a basin

Bν :=
󰁱
y ∈ M :∃nk ↑ ∞ with d((nk)k) = 1 s.t ∀g ∈ C(M),

1

nk

nk−1󰁛

j=0

g ◦ f j(y) →
󰁝

gdν
󰁲

if m(Bν) > 0. If m(Bν) = 1, we say that ν is weakly physical with a full
basin.



EXPONENTIAL VOLUME LIMITS 11

Theorem 2.8 (Weak physicality). The measure µ is weakly physical with a
full basin.

Proof. The idea of the proof is similar to how we prove the entropy formula
for µ, where we show that the volume of points which shadow “good” µ-
points is large, but we add an additional restriction to the set of “good”
µ-points asking them to be µ-generic; and show that trajectories which
shadow them inherit this property.

Since C(M) is separable, there exists a countable set L(M) ⊆ C(M) s.t
∀h ∈ C(M), for all τ ′ > 0, there exists g ∈ L(M) s.t 󰀂g − h󰀂∞ ≤ τ ′.

Let 󰂃 > 0, and for g ∈ L(M) let L(·) be a monotone uniform-continuity
function of g.2 Write L(M) = {gi}i≥0, and set L󰂃 := mini≤ 1

󰂃
Lgi . We may

assume w.l.o.g that for all g ∈ L(M), 󰀂g󰀂∞ ∈ (0, 1].

Step 1: Further restricted set of “good” µ-points.
Proof: Consider the set E󰂃 from §2.1, and assume further w.l.o.g that

for every x ∈ E󰂃, for all n ≥ n󰂃,

(6)
1

n

n−1󰁛

k=0

gi ◦ fk(x) =

󰁝
gidµ± 󰂃2, for all i ≤ 1

󰂃
.

Step 2: Large volume of points shadowing “good” µ-points.
Proof: Recall the definition of the set Sn from Definition 2.2, and recall

Theorem 2.3. Notice, for every n ≥ (n󰂃
1
󰂃2

· 1
1−2

√
󰂃
)3, for every 󰂃

1
3n ≤ N ≤

n(1 − 2
√
󰂃), for every y ∈ f−n[Sn], for all 󰂃 > 0 small and n large w.r.t 󰂃,

for all g ∈ {gi}i≤ 1
󰂃
,

(7)
1

N

N−1󰁛

k=0

g ◦ fk(y) =

󰁝
gdµ± (L−1

󰂃 (e−δn) + 3󰂃
1
6 󰀂g󰀂∞) =

󰁝
gdµ± 󰂃

1
7 .

Set

T n
󰂃 := f−n[Sn] and T󰂃 := lim sup

n
T n
󰂃 .

Notice that m(T󰂃) = limnm(
󰁖

n′≥n T n′
󰂃 ) ≥ e−󰂃

3
4 , and for every y ∈ T󰂃, there

exists (n󰂃
k)k ⊆ N with d((n󰂃

k)k) ≥ 1− 󰂃
1
3 s.t for all k, for all g ∈ {gi}i≤ 1

󰂃
,

(8)
1

n󰂃
k

n󰂃
k−1󰁛

j=0

g ◦ f j(y) =

󰁝
gdµ± 󰂃

1
7 .

Step 3: Full volume of future-generic points on an upper-density 1 sub-
seueqnce.

2That is, ∀󰁨󰂃 > 0, d(x, y) ≤ L(󰁨󰂃) ⇒ |g(x)− g(y)| ≤ 󰁨󰂃.
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Proof: Let 󰂃ℓ ↓ 0, and let 󰁨T := lim sup
ℓ

T󰂃ℓ . In particular, m(T ) =

limℓ0 m(
󰁖

ℓ≥ℓ0

T󰂃ℓ) ≥ lim inf
ℓ0

e
−󰂃

3
4
ℓ0 = 1.

Let y ∈ 󰁨T and define recursively a sequence in the following way: Let

󰂃ℓi ↓ 0 s.t y ∈ ∩i≥0T󰂃ℓi . Let (nk)
N0
k=0 := (⌈󰂃

1
3
ℓ0
n
󰂃ℓ0
0 ⌉, . . . , n󰂃ℓ0

0 ); now assume

we have (nk)
Ni
k=0, let kℓi+1

be the first k s.t 󰂃
1
3
ℓi+1

n
󰂃ℓi+1

k > nNi , and add

(⌈󰂃
1
3
ℓi+1

n
󰂃ℓi+1

kℓi+1
⌉, . . . , n󰂃ℓ+1

kℓi+1
) to the end of (nk)

Nℓ
k=0. In particular, d((nk)k) ≥

1− 󰂃
1
3
ℓi
for all ℓi, whence d((nk)k) = 1.

Now, for every y ∈ 󰁨T , for every i ≥ 0, for all k ≥ 0, for all g ∈ L(M),

󰁝
gdµ− 󰂃

1
7
ℓi
≤ lim inf

1

n
󰂃ℓi
k

n
󰂃ℓi
k −1󰁛

j=0

g ◦ f j(y)

≤ lim sup
1

n
󰂃ℓi
k

n
󰂃ℓi
k −1󰁛

j=0

g ◦ f j(y) ≤
󰁝

gdµ+ 󰂃
1
7
ℓi
,

⇒ 1

nk

nk−1󰁛

j=0

g ◦ f j(y) −−−→
k→∞

󰁝
gdµ.(9)

Step 4: µ is weakly physical with a full basin.
Proof: Let

T :=
󰁱
y ∈ M :∃nk ↑ ∞ with d((nk)k) = 1 s.t ∀g ∈ L(M),

1

nk

nk−1󰁛

j=0

g ◦ f j(y) −−−→
k→∞

󰁝
gdµ

󰁲
,

then 󰁨T ⊆ T and so m(T ) = 1. Given y ∈ T , τ ′ > 0, and h ∈ C(M), let
g ∈ L(M) s.t 󰀂g − h󰀂∞ ≤ τ ′. then for all k large enough w.r.t g,

1

nk

nk−1󰁛

j=0

h ◦ f j(y) =
1

nk

nk−1󰁛

j=0

g ◦ f j(y)± τ ′ =

󰁝
gdµ± 2τ ′ =

󰁝
hdµ± 3τ ′.

Then 1
nk

󰁓nk−1
j=0 h ◦ f j(y) −−−→

k→∞

󰁕
hdµ. □

Remark: Note that the weak physicality of µ does not depend on µ being
hyperbolic, nor on the absolute continuity of the stable foliation.

Corollary 2.9. There exists at most one physical measure for (M, f), and
if it exists it must be µ.
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3. The non-ergodic case

3.1. Entropy formula via entropy shadowing. Up until now we treated
the case where µ is ergodic. This simplification serves as a didactic tool to
make the proof more intuitive and easy to follow; The proof in the non-
ergodic case is more complicated, since we wish to eventually prove that󰁕
hµx(f)dµ(x) =

󰁕
χu(x)dµ(x) (where µ =

󰁕
µxdµ(x) is the ergodic decom-

position of µ and χu(x) :=
󰁓

χ+(x)), however it may be that neither of
these functions are constant µ-a.e; And so in particular we can neither con-

trol # ∨
1
󰂃
i=0 f

in󰂃[A(n)
󰂃 ] by enhµ(f) = en

󰁕
hµx (f)dµ(x), nor is the volume of each

element in ∨
1
󰂃
i=0f

in󰂃[A(n)
󰂃 ] controlled by e−n

󰁕
χudµ. While χu(·) is continuous

on Pesin blocks, hµx is merely measurable.
We treat this added difficulty by restricting to Lusin sets, and use a sort

of “entropy shadowing” property, where if a trajectory remains close to
different points with good local entropy estimates, then all said shadowed
points must have similar local entropy.

Theorem 3.1. hµ(f) =
󰁕
χu(x)dµ(x).

Proof. Let µ =
󰁕
µxdµ(x) be the ergodic decomposition of µ. Let 󰂃 > 0,

and let Ejh,jχ1 ,...,jχd
:= {x : hµx(f) ∈ [jh · 󰂃5 − 󰂃5

2 , jh · 󰂃5 + 󰂃5

2 ),χi(x) ∈
(jχi · 󰂃5 − 󰂃5

2 , jχi · 󰂃5 + 󰂃5

2 ], i ≤ d}, j ∈ {0, . . . , 2d logMf

󰂃5
}d+1. Assume w.l.o.g

that µ(Ej) > 0 for all j, and let ρ󰂃 := 󰂃 · (minj{µ(Ej)})4 > 0.

For each j, we define the set E
j
ρ󰂃 as in §2.1, for the measure µj :=

1
µ(Ej)

󰁕
Ej

µxdµ(x). Then it follows that µ(
󰁖
· j E

j
󰂃 ) ≥ e−ρ3󰂃 .

Let L󰂃 be a Lusin set for the function x 󰀁→ hµx(f) s.t ∀j, µj(L
j
󰂃) ≥ e−2ρ3󰂃 ,

where L
j
󰂃 := L󰂃∩Ej . Since the Lusin theorem tells us that L󰂃 can be chosen

to be closed, there exists 0 < r󰂃 :=
1
2 sup{r > 0 : ∀x, y ∈ L󰂃, d(x, y) ≤ r ⇒

|hµx(f) − hµy(f)| ≤ 󰂃5}. Similarly, assume that L󰂃 is a Lusin set for the
function x 󰀁→ χ(x), with the same estimates w.r.t the | · |∞-norm.

Finally, given n ∈ N, set G
j,n
󰂃 := L

j
󰂃 ∩ fn󰂃[L

j
󰂃 ], and so µ(

󰁖
· j G

j,n
󰂃 ) ≥ e−ρ2󰂃 .

Cover each G
j,n
󰂃 with 󰁨Aj,n

󰂃 - a cover by exponential Bowen balls

B(·,−n󰂃, e−2δn), as in §2.1. Hence #Aj,n
󰂃 = en󰂃(hµj (f)±2󰂃2), where Aj,n

󰂃 :=

{B(x, n󰂃, e−δn) : B(x, n󰂃, e−2δn) ∈ 󰁨Aj,n
󰂃 }, similarly to §2.1.

Set Sn :=
󰁗 1−2

√
󰂃

󰂃
i=0 f in󰂃[

󰁖
j

󰁖
Aj,n

󰂃 ]. As in Theorem 2.3, 1√
󰂃n

󰁓n−1
k=(1−

√
󰂃)n

m◦

f−k(Sn) ≥ e−ρ
3
4
󰂃 (for all 󰂃 > 0 sufficiently small).

Then, for any j, as in Lemma 2.1, for all n large enough (s.t 󰂃 = 1
N6 and

N6|n), 1√
󰂃n

󰁓n−1
k=(1−

√
󰂃)n

m ◦ f−k(
󰁖

Aj,n
󰂃 ) ≥ 1

2µ(G
j,n
󰂃 ) ≥ 1

2µ(Ej)e
−ρ2󰂃 ≫ 2ρ

3
4
󰂃 ,
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whence

(10)
1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(
󰁞

Aj,n
󰂃 ∩ Sn) ≥

1

5
µ(Ej) ≥ ρ󰂃.

Notice, given B ∈ ∨
1−2

√
󰂃

󰂃
i=0 f in󰂃[

󰁖
j A

j,n
󰂃 ] s.t B =

󰁗 1−2
√
󰂃

󰂃
i=0 f in󰂃[Bi] with Bi ∈

Aji,n
󰂃 , and given D ∈ Aj,n

󰂃 s.t D ∩B ∕= ∅, we have
(11)

|hµj (f)− hµji
(f)| ≤ 󰂃3 and |

󰁝
χudµj −

󰁝
χudµji | ≤ 󰂃3 for all i ≤ 1− 2

√
󰂃

󰂃

(as long as n is large enough so 2e−δn ≤ r󰂃, since hµ·(f) = hµfn󰂃(·)(f) and

χ(·) = χ(fn󰂃(·))).
Write

Âj,n
󰂃 :=

󰁱
D ∈ Aj,n

󰂃 :

1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(D) ≤ e󰂃
3
2 n 1√

󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(D ∩ Sn)
󰁲

and write Ǎj,n
󰂃 := Aj,n

󰂃 \Âj,n
󰂃 . Then #Âj,n

󰂃 ≥ en󰂃(hµj (f)−2󰂃2)e−󰂃
3
2 n; otherwise

0 < ρ󰂃 ≤
1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(
󰁞

Aj,n
󰂃 ∩ Sn)

≤#Ǎj,n
󰂃 · e−n󰂃(hµj (f)−󰂃2)

e−n󰂃
3
2 + e

n󰂃(hµj (f)−󰂃2)−n󰂃
1
3 · e−n󰂃

1
3 (hµj (f)−󰂃2)

≤2e−
1
2
n󰂃

3
2 −−−→

n→∞
0,

a contradiction!

Now, recall that Aj,n
󰂃 is a cover of multiplicity bounded by e2󰂃

2n, and

hence so is Âj,n
󰂃 . As in [BORH24, Lemma 2.2], there exists a pair-wise

disjoint sub-cover Aj,n
󰂃 ⊆ Âj,n

󰂃 s.t #Aj,n
󰂃 ≥ #Âj,n

󰂃 e−2󰂃2n. Finally, notice

that ∨
1−2

√
󰂃

󰂃
i=0 f in󰂃[∨j′A

j′,n
󰂃 ] refines Aj,n

󰂃 . Therefore it follows that for any j,

there exists Dj ∈ Aj,n
󰂃 s.t

#
󰁱
B ∈ ∨

1−2
√
󰂃

󰂃
i=0 f in󰂃[∨j′A

j′,n
󰂃 ] : B ∩Dj ∕= ∅

󰁲

≤
#{B ∈ ∨

1−2
√
󰂃

󰂃
i=0 f in󰂃[∨j′A

j′,n
󰂃 ] : ∃D′ ∈ Aj,n

󰂃 s.t B ∩D′ ∕= ∅}

#Aj,n
󰂃

≤C󰂃 · e
n(1−2

√
󰂃)(hµj(f)

+󰂃3)

e
n󰂃(hµj(f)

−2󰂃2)−n󰂃
3
2−n󰂃2

,
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where C󰂃 := (
2d logMf

󰂃5
)
d+1
󰂃 . For all n large enough s.t e−n󰂃3 ≤ 1

C󰂃
, we have

(12) #{B ∈ ∨
1−2

√
󰂃

󰂃
i=0 f in󰂃[∨j′A

j′,n
󰂃 ] : B ∩Dj ∕= ∅} ≤ e

nhµj (f)+2󰂃
3
2 n

.

Therefore, in total,

e
−n󰂃(hµj (f)−󰂃2) ≤µ(Dj) ≤ 2

1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(Dj)

≤2en󰂃
3
2 1√

󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(Dj ∩ Sn)

≤2en󰂃
3
2 · enhµj (f)+2󰂃

3
2 n · max

B∩Dj ∕=∅

1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−k(B)

≤2en󰂃
3
2 · enhµj (f)+2󰂃

3
2 n

· max
B∩Dj ∕=∅

1√
󰂃n

n−1󰁛

k=(1−
√
󰂃)n

m ◦ f−(k−(1−2
√
󰂃)n)(f−(1−2

√
󰂃)n[B])

≤2en󰂃
3
2 · enhµj (f)+2󰂃

3
2 n · max

B∩Dj ∕=∅
e2

√
󰂃d logMfnm(f−(1−2

√
󰂃)n[B])

≤2en󰂃
3
2 · enhµj (f)+2󰂃

3
2 n · e2

√
󰂃d logMfne−n(1−2

√
󰂃)(χu(µj)−󰂃2)e2󰂃

1
3 n.

Where the last inequality is by (11) similarly to Lemma 2.5. Then,

e
−nhµj (f) ≤ e−nχu(µj)e10d logMf 󰂃

1
3 n,

and since 󰂃 > 0 is allowed to be arbitrarily small, for µ-a.e x hµx(f) ≥ χu(x),
and we are done. □

4. Volume is almost exponentially mixing

4.1. Exponential decay of correlations implies exponential conver-
gence. While checking the condition at (5) may seem difficult since one has
to a-priori know the measure µ, here we present a condition which implies
(5) without comparing to an explicit f -invariant measure.

Proposition 4.1. Assume that there exist C, γ,α > 0 s.t for all g, h ∈
Hölα(M) s.t

󰁕
hdm = 0,

󰀏󰀏󰀏󰀏
󰁝

g ◦ fn · hdm
󰀏󰀏󰀏󰀏 ≤ C󰀂g󰀂α󰀂h󰀂αe−γn.

Then there exists an f -invariant Borel probability µ s.t m ◦ f−n −−−→
n→∞

µ

exponentially fast, and moreover (3) holds.
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Proof. We start by proving that the exponential convergence property ap-
plies to the Jacobian of f (recall that d·f , d·f

−1 are β-Hölder continuous):

Step 1: ∃C ′′ ≥ C, γ′ ∈ (0, γ) s.t ∀g, h ∈ Hölβ(M) with
󰁕
hdm = 0,󰀏󰀏󰁕 g ◦ fn · hdm

󰀏󰀏 ≤ C ′′󰀂g󰀂β󰀂h󰀂βe−γ′n.

Proof: Let {ψi}Ni=1 be a partition of unity ofM , s.t for all i ≤ N , 0 ≤ ψi ≤ 1
is a C∞ function which is supported on a ball Ui with a C∞ diffeomorphism
Θi : BRd(0, 1) → Ui. Let g be a β-Hölder function (w.l.o.g 󰀂g󰀂∞ ≤ 1), and
assume that g is supported on some set Ui.

Let η > 0 to be determined later, and let Kn : BRd(0, e−ηn) → R be the

cone function kernel: Kn(t) = (e−ηn − |t|) · Hn
e−ηn where Hn = Cd

e−ηnd satisfies󰁕
Kn(t)dt = 1. Extend Kn naturally to Rd by taking the value 0 outside

BRd(0, e−ηn). Set gn := (g ◦ Θi ∗Kn) ◦ Θ−1
i . Then one can check that the

following properties hold:

(1) 󰀂Kn󰀂α ≤ 󰀂Kn󰀂Lip = Hn
e−ηn = Cd · eηn(d+1) where Cd is a constant

depending only on d,
(2) 󰀂gn󰀂α ≤ Vol(BRd(0, 1)) · Lip(Θ−1

i ) · 󰀂Kn󰀂α,
(3) |gn(x)− g(x)| ≤ Lip(Θi) · 󰀂g󰀂β · e−ηnβ .

Notice, given g, h ∈ Hölβ(M) with
󰁕
hdm = 0 (w.l.o.g 󰀂g󰀂∞, 󰀂h󰀂∞ ≤ 1),

we can write g =
󰁓N

i=1 ψi · g, h =
󰁓N

i=1 ψi · h, and
󰁓N

i=1

󰁕
h · psiidm = 0,

where ψig and ψih are β-Hölder for all i ≤ N . Therefore,

󰁝
g ◦ fhdm =

N󰁛

i=1

N󰁛

j=1

󰁝
(ψig) ◦ fn(ψjh−

󰁝
ψjhdm)dm.

Set gi := ψi · g and hj := ψj · h−
󰁕
ψj · hdm, then

󰁝
gi ◦ fnhjdm =

󰁝
(gi − gin) ◦ fnhjdm+

󰁝
gin ◦ fn(hj − hjn)dm

+

󰁝
gin ◦ fn · (

󰁝
hjndm)dm+

󰁝
gin ◦ fn · (hjn −

󰁝
hjndm)dm.

On the r.h.s, all three first summands are exponentially small by item (3).

The last summand on the r.h.s is bounded by Ce−γn󰀂gin󰀂α󰀂h
j
n󰀂α ≤ Ce−γn ·

C2
dVol(BRd(0, 1))2Lip(Θ−1

i )Lip(Θ−1
j )e2ηn(d+1) ≤ C ′

dC0e
− γ

2
n whenever η :=

γ
4(d+1) and C0 := maxi≤N{Lip(Θi),Lip(Θ

−1
i )}. Therefore for γ′ := ηβ ∈

(0, γ2 ),

󰀏󰀏󰀏󰀏
󰁝

g ◦ fnhdm

󰀏󰀏󰀏󰀏 ≤ N2 ·
󰀓
C0󰀂g󰀂βe−ηβn + (1 + C0󰀂g󰀂βe−ηnβ)C0󰀂h󰀂βe−ηnβ

+C0󰀂h󰀂βe−ηnβ + C ′
dC0e

− γ
2
n
󰀔
≤ C ′′󰀂g󰀂β󰀂h󰀂βe−γ′n.
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Step 2: There exist a constant C ′′
f > 0 and an f -invariant Borel probability

µ s.t ∀g, h ∈ Hölβ(M),

󰀏󰀏󰀏󰀏
󰁝

g ◦ fnhdm−
󰁝

gdµ

󰁝
hdm

󰀏󰀏󰀏󰀏 ≤ C ′′
f e

−γ′n󰀂g󰀂β󰀂h󰀂β .

Proof: Fix h ∈ Hölβ(M) with h ≥ 0 and h ∕≡ 0, and let g ∈ Hölβ(M).

Define the sequence ahn(g) :=
󰁕
g ◦ fnhdm, and notice

󰀏󰀏󰀏ahn+1(g)− ahn(g)
󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏
󰁝

g ◦ fnJac(f−1)h ◦ f−1dm−
󰁝

g ◦ fnhdm

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
󰁝

g ◦ fnHdm

󰀏󰀏󰀏󰀏 ,

where H := Jac(f−1)h ◦ f−1 − h ∈ Hölβ(M) with
󰁕
Hdm = 0. Therefore,

|ahn+1(g) − ahn(g)| ≤ Cf󰀂h󰀂β󰀂g󰀂βe−γ′n, for a constant Cf depending on f .

Thus the sequence {ahn(g)}n≥0 is a Cauchy sequence and has a limit defined󰁕
hdm · µh(g). Notice:

(1) µh(a1g1 + a2g2) = a1µh(g1) + a2µh(g2),
(2) µh(1) = 1,
(3) g ≥ 0 ⇒ µh(g) ≥ 0,
(4) µh(g) ≤ 󰀂g󰀂∞.

Therefore by the Riesz representation theorem, µh(·) defines a Borel prob-
ability measure on M . Moreover, it is easy to check that µh(g) = µh(g ◦ f)
from definition, therefore µh is f -invariant.

Given h1, h2 ∈ Hölβ(M) with h1, h2 ≥ 0 and h1, h2 ∕≡ 0, then

󰀏󰀏󰀏󰀏
1󰁕

h1dm
ah1
n (g)− 1󰁕

h2dm
ah2
n (g)

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
󰁝

g ◦ fn ·
󰀕

h1󰁕
h1dm

− h2󰁕
h2dm

󰀖
dm

󰀏󰀏󰀏󰀏 −−−→n→∞
0.

Therefore µh(g) is independent of the choice of h, and can be denoted by
µ(g). Given h ∈ Hölβ(M) with 󰀂h󰀂∞ ≤ 1 and h ∕≡ 0, we can write h =
h+ − h−, where 0 ≤ h+, h− ≤ 1 and 󰀂h+󰀂β , 󰀂h−󰀂β ≤ 󰀂h󰀂β . Assume w.l.o.g
h+, h− ∕≡ 0. Then for σ ∈ {−,+},

󰀏󰀏󰀏󰀏a
hσ

n (g)−
󰁝

hσdm · µ(g)
󰀏󰀏󰀏󰀏 ≤ C ′

f󰀂h󰀂β󰀂g󰀂βe−γ′n

⇒
󰀏󰀏󰀏󰀏a

h
n(g)−

󰁝
hdm · µ(g)

󰀏󰀏󰀏󰀏 ≤ 2C ′
f󰀂h󰀂β󰀂g󰀂βe−γ′n.

In particular, for h ≡ 1, we get m ◦ f−n −−→
exp

µ. □
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4.2. Positive entropy, ergodicity, and uniqueness. In this section we
assume the following strong notion of exponential convergence:

∃C > 0,α ∈ (0, 1],γ > 0 : ∀g, h ∈ Hölα(M),
󰀏󰀏󰀏󰀏
󰁝

g ◦ fn · hdm− µ(g) ·m(h)

󰀏󰀏󰀏󰀏 ≤ C · 󰀂g󰀂α · 󰀂h󰀂α · e−γn.(13)

Recall Proposition 4.1, where we show that (13) holds whenever the vol-
ume is almost exponentially mixing (recall (4)). The condition of almost
exponential mixing of the volume is inspired by the setup studied by Dol-
gopyat, Kangowski, and Rodriguez-Hertz in [DKRH] (however notice that
the volume need not be invariant in our setup).

We continue to show that under the assumption of (13), unless µ is a
Dirac delta measure at a fixed point (a necessary condition, see the remark
following Theorem 4.2), indeed µ must be an ergodic SRB measure with
at least one positive Lyapunov exponent almost everywhere, and it is the
unique SRB measure of (M, f). A nice corollary of our proof is that every f -
invariant Borel probability measure on M has a uniform bound form below
on its maximal Lyapunov exponent in terms of the rate of mixing, aside at
most for µ in the case where µ is a Dirac delta measure.

Theorem 4.2 (Positive exponents). The following dichotomy holds:

(1) for every ergodic f -invariant Borel probability ν, maxi χ
+
i (x) > γ

2d
ν-a.e,

(2) µ is a Dirac delta measure at a fixed point with χu(µ) = 0, and every
other ergodic f -invariant Borel probability ν has maxi χ

+
i (x) > γ

2d
ν-a.e.

In particular, if µ is not a Dirac delta measure at a fixed point, then
maxi χ

+
i (x) ≥

γ
2d µ-a.e.

Proof. Let ν be an ergodic f -invariant Borel probability s.t maxi χ
+
i (x) ≤

γ
2d − 8(d + 1)󰂃 ν-a.e, where w.l.o.g 0 < 󰂃 ≪ γ

2d . Let x be a ν-typical point.

Let n large s.t f i[B(x, n, e−󰂃n)] is contained in the Pesin chart of f i(x)
for all 0 ≤ i ≤ n. Let gx be a Lipschitz function s.t gx|B(x,n,e−2󰂃n) = 1,

gx|B(x,n,e−󰂃n)c = 0, and Lip(gx) ≤ e(
γ
2d

−3(d+1)󰂃)n.

Let p and q s.t µ(B(p, e−󰂃n)), µ(B(q, e−󰂃n)) ≥ e−n(d+1)󰂃 for all n large
enough, and let gt|B(t,e−2󰂃n) = 1, gt|B(t,e−󰂃n)c = 0, and Lip(gt) ≤ e2󰂃n, t ∈
{p, q}. Then by (13), for t ∈ {p, q} and all n large enough,
󰁝

gt ◦ fngxdm =µ(gt)m(gx)± 4Ce−γne2󰂃ne(
γ
2d

−3(d+1)󰂃)n

=e±󰂃µ(gt)m(gx) > 0 (∵ µ(gt)m(gx) ≥ e−n(d+1)2󰂃−( γ
2d

+󰂃)dn).

Thus in particular B(p, e−󰂃n) ∩B(fn(x), e−󰂃n) ∕= ∅ and
B(q, e−󰂃n) ∩B(fn(x), e−󰂃n) ∕= ∅, and so d(p, q) ≤ 4e−󰂃n −−−→

n→∞
0. Therefore

µ = δp = δq.
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Moreover, if we assume further that x is ν-generic, for any h ∈ Lip+(M),

m(gx)(h ◦ fn(x)± Lip(h)e−󰂃n) =

󰁝
h ◦ fngxdm

=µ(h)m(gx)± 4Ce−γne󰂃ne(
γ
2d

−3(d+1)󰂃)n

=m(gx)(µ(h)± 4Ce−
γ
2
ne󰂃ne(

γ
2d

−3(d+1)󰂃)ne󰂃dn).

Averaging over n = N, . . . , 2N , for N ∈ N large,

ν(h) ←−−−−
∞←N

1

N

2N−1󰁛

n=N

h ◦ fn(x)± Lip(h)e−󰂃N

= µ(h)± 4Ce−
γ
2
Ne󰂃Ne(

γ
2d

−3(d+1)󰂃)Ne󰂃dN −−−−→
N→∞

µ(h).

Therefore µ(h) = ν(h), and so by the Riesz representation theorem, ν = µ

(since Lip+(M)
C(M)

= C+(M)). □

Remark: The assumption that µ is not a Dirac delta measure is necessary,
as can be seen by the north-pole south-pole example: Let S1 be the unit
circle, let f ∈ Diff1+β(S1), and let two fixed points, N ∈ S1 with a derivative
bigger than 1, and S ∈ S1 with a derivative smaller than 1. One can check
that in this case |

󰁕
S1 g◦fnhdm−g(S)m(h)|, g, h ∈ Lip(S1), is exponentially

small as in (13), by using a partition of unity which separates N and S. This
example extends to a closed surface using a D-A system with two repellers,
and a fixed attracting point.

By Theorem 3.1 and Theorem 4.2, it follows from [LY85] that µ has ab-
solutely continuous conditionals on unstable leaves a.e. The following theo-
rem is a corollary of this fact together with (13). The proof uses absolutely
continuous fake cs-foliations in exponentially small charts, constructed in
[DKRH]. These foliations are used to treat the trajectory of an exponen-
tially small ball as the trajectory of single unstable leaf, where the condi-
tional measure of µ is equivalent to the induced Riemannian volume, which
lets us compare the two measures.
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Proposition 4.3. Assume that there exists an ergodic SRB measure ν with
hν(f) > 0. For every 󰂃 ∈ (0, γ

4 logMf
) there is a set G󰂃 with ν(G󰂃) ≥ e−󰂃 s.t

∀x ∈ G󰂃, ∀δ ∈ (0, 󰂃), ∀n ≥ n󰂃,δ, ∀g ∈ Höl+α (M),

µ(g) ≥ e−7δ2d

νξu(x)(Bu(x, e−δn) ∩K󰂃)Wcs
n (x))

(14)

·
󰁝

Bu(x,e−δn)∩K󰂃

(g ◦ fn − 󰀂g󰀂α−Höle
− δ

2
nα)dνξu(x)

−C󰀂g󰀂α−Höle
−(γ−2δ)n,

where ξu is a measurable partition subordinated to the unstable foliation of
ν, νξu(·) are the respective conditional measures, and K󰂃 is a Pesin block

with ν(K󰂃) ≥ e−󰂃2.

For the definition of a measurable partition subordinated to the unstable
foliation of ν, see [LY85], and the respective conditional measures exists
ν-a.e by the Rokhlin disintegration theorem.

Proof.
Step 1: νξu(x) = C±1 1

mξu(x)(1)
mξu(x) on a large set, where mξu(x) is the

induced Riemannian volume on ξu(x) and C > 0 is a constant close to 1.
Proof: Let ξu be a partition measurable partition subordinate to the

unstable foliation of ν s.t ξu(x) ⊇ Bu(x, rx) for ν-a.e x (see [LY85]). Let
ν =

󰁕
νξu(x)dν(x) be the corresponding disintegration of ν given by the

Rokhlin disintegration theorem. By Theorem 4.2, and [LY85], for ν-a.e x,
νξu(x) ∼ mξu(x).

Denote by ρx the Radon-Nikodym derivative
dνξu(x)

dmξu(x)
. By the construction

of ξu, ρx(x) is uniformly bounded a.e, since the elements of ξu are contained

in local unstable leaves, and moreover log ρx is β
3 -Hölder continuous with a

uniform Hölder constant (see [LY85] for more details of this classical result).
Therefore, given 󰂃 > 0 and a small δ ∈ (0, 󰂃), there exists ℓ󰂃 = ℓ󰂃(δ) s.t

ν

󰀕
Λ
(χ(ν),δ3τχ(ν))

ℓ󰂃

󰀖
≥ e−󰂃2 .3 Let 0 < χ ≤ min{χi(ν) : χi(ν) ∕= 0, i ≤ d}

(w.l.o.g δ ≤ χ
2 ), and set K󰂃 := Λ

(χ(ν),δ3τχ(ν))

ℓ󰂃
. For all x ∈ K󰂃, the local

unstable leaf of x contains a relative open ball of radius at least 1
2ℓ󰂃

.

Step 2: Absolutely continuous fake cs-foliation in B(x, n󰂃, e−δn), for x ∈
K󰂃, by [DKRH, § 5,6].

Proof: Given x ∈ K󰂃, and n large enough so e−
δ
3
n ≪ 1

ℓ󰂃
, let V cs

n (x) be a

“fake central-stable leaf” at x, constructed in [DKRH, Lemma 2.6]. That is,

3χ(ν) = (χ1, . . . ,χk(ν)) where χi+1 < χi, χi > 0 ⇐⇒ i ≥ ℓχ(ν) and τχ(ν) :=
1

100d
min{χℓχ(ν)

,χi(ν)− χi+1(ν) : i ≤ ℓχ(ν) − 1} (see [BORH24, Definition 2.1]).
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for every x ∈ K󰂃 there exists a local submanifold of x transversal to ξu(x),
V cs
n (x), s.t ∀0 ≤ i ≤ n,

(1) f i[BV cs
n (x)(x, e

−δn)] ⊆ B(f i(x), e−
δ
2
n),

(2) f i[V cs
n (x)] is a graph of a function with a Lipschitz constant smaller

or equal to
2τχ(ν)

χ ≤ δ2 over ψf i(x)[R
cs ∩B(0, e−

δ
2
n)] (where ψy is the

Pesin chart of y),
(3) {V cs(y) : y ∈ B(x, e−δn) ∩ K󰂃} is a foliation of B(x, e−δn) ∩ K󰂃

([DKRH, § 5]).

Moreover, by [DKRH, Proposition 6.4],

(4) For all n large enough (when δ > 0 is small enough), the holonomy
map π along {V cs(x′)}x′∈K󰂃∩ξu(x) from ξu(x) ∩ K󰂃 to ξu(y), y ∈
K󰂃 ∩B(x, e−δn), has a Jacobian Jac(π) = e±δ2 .

In fact it follows that Jac(π|Bu(x,e−δn)) = eo(1).

Step 3: For every x ∈ K󰂃 and n large enough, and for every g ∈ Höl+α (M),
1

νξu(x)(Wcs
n (x))

󰁕
Wcs

n (x) g◦f
ndνξu(x) = (µ(g)±e−

γ
2
n󰀂g󰀂α−Höl)e

±δ, where Wcs
n (x)

is a foliation box in the chart of x.
Proof: We start by defining Wcs

n (x) for x ∈ K󰂃. Let R(x, e−δne2δ
2
) :=

ψx(R(0, e−δne2δ
2
)), where ψx is the Pesin chart of x, and R(·, r) is a ball

of radius r w.r.t to the metric | · |′ := max{| ·u |2, | ·cs |2}, where u, cs
are the corresponding components in the chart of x. In particular, given

y ∈ K󰂃 ∩ Bu(x, e−δn), BV cs
n (y)(y, e

−δn) ⊆ R(x, e−δne2δ
2
), since V cs

n (y) is the

graph of a δ2-Lipschitz function in the chart of x. We define Wcs
n (x) :=󰁖

y∈K󰂃∩Bu(x,e−δn)BV cs
n (y)(y, e

−δn).

Let x be a νξu(x)-density point of K󰂃 s.t
νξu(x)(K󰂃∩Bu(x,r))

νξu(x)(B
u(x,r)) ≥ e−δ2 , ∀r ∈

(0, 2e−δn). By the Hölder continuity of log ρx,

mξu(x) = (ρx(x))
−1e±2e−

β
3 δn

µξu(x) on Bu(x, 2e−δn). Therefore,
mξu(x)(K󰂃∩B(x,e−δn))

mξu(x)(B(x,e−δn))
≥ e−2δ2 for all n large enough. Finally, let h be a Lips-

chitz function s.t
h|

R(x,e−δneδ
2
)
= 1, h|

R(x,e−δne2δ
2
)c

= 0, Lip(h) ≤ 2e2δn. In particular,

m(Wcs(x)) ≥ e−2δ2dm(h).
In addition, by the absolute continuity of the foliation Wcs(x) and since

the induced leaf volume of each laminate in Wcs(x) is comparable up to a

e±2δ2d factor, 1
m(Wcs

n (x))m|Wcs
n (x) = e±3δ2d 1

mξu(x)(Wcs
n (x))mξu(x)|Wcs

n (x) for sets
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saturated by W cs(x) for all n large enough. Thus by Step 2,

1

m(h)

󰁝
h · g ◦ fndm =

m(Wcs
n (x))

m(h)
· 1

m(Wcs
n (x))

󰁝
h · g ◦ fndm

≥ m(Wcs
n (x))

m(B(x, e−δn))
· m(B(x, e−δn))

m(h)

· 1

m(Wcs
n (x))

󰁝
1Wcs

n (x) · g ◦ fndm

≥e−2δ2d · e−2δ2d · e−3δ2d 1

mξu(x)(Wcs
n (x))

·
󰁝

Wcs
n (x)

(g ◦ fn − 󰀂g󰀂α−Höle
− δ

2
nα)dmξu(x)

≥e−7δ2d

· 1

νξu(x)(Wcs
n (x))

󰁝

Wcs
n (x)

(g ◦ fn − 󰀂g󰀂α−Höle
− δ

2
nα)dνξu(x).(15)

By (13), the l.h.s equals to µ(g) ± C · 󰀂g󰀂α−Höle
−(γ−2δ)n, and for all δ > 0

small enough, we are done by choosing G󰂃 to be a density set of K󰂃 with
uniform estimates as in step 3. □

Remark: An upper bound for (14) can be achieved similarly through (15),
although the error term will not be exponentially small in n; however the
error term is to the already averaged quantity.

Corollary 4.4 (Uniqueness). The system (M, f) admits exactly one ergodic
SRB measure, and it is the measure µ. In particular, µ is ergodic.

Proof. Let ν be an ergodic SRB measure (in the sense of the entropy for-
mula), we wish to show that ν = µ. Therefore assume that ν ∕= µ, and by
Theorem 4.2, hν(f) =

󰁓
χ+(ν) > 0. Let g ∈ Lip(M) s.t 0 ≤ g ≤ 1. Let

󰂃 > 0, and x ∈ G󰂃 which is ν-generic for g. Assume further that x is a
νξu(x)-density point of En′ := {x′ ∈ K󰂃 : ∀n ≥ n′, 1

n

󰁓2n−1
k=n g ◦ fk = e±δν(g)}

s.t
νξu(x)(B

u(x,e−δn)∩En′ )

νξu(x)(B
u(x,e−δn))

≥ e−δ, for some large n′. Then, for all n large

enough, µ(g) ≥ e−δ(e−7dδ2ν(g) − 󰀂g󰀂Lipe−
nαδ
3 ). If ν(g) = 0, then µ(g) = 0,

otherwise for all n large enough w.r.t g, µ(g) ≥ e−8dδ2ν(g), hence ν = µ.

In particular, µ ≥ e−8dδ2ν (by the Riesz representation theorem, and since

Lip+(M)
C(M)

= C(M)). Since δ > 0 is arbitrary, µ ≥ ν for every ergodic
SRB measure ν s.t hν(f) > 0.

Assume that µ can be written as µ = aµ1 + (1 − a)µ−µ1

1−a with a ∈ (0, 1)

and µ1 ⊥ (µ − µ1). If µ admitted an ergodic component with no positive
Lyapunov exponents, then by Theorem 4.2 µ is a Dirac mass at a fixed
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point, which contradicts the fact that µ ≥ ν with hν(f) > 0. Therefore µ1

admits a positive Lyapunov exponent a.e. Therefore µ ≥ µ1.
Let G be a set s.t µ1(G) = 1 and (µ − µ1)(G) = 0. Then 1 > a =

aµ1(G) = µ(G) ≥ µ1(G) = 1, a contradiction! Thus µ is ergodic and has
positive entropy. □
Remark: The weak physicality with full Basin of µ (Theorem 2.8) also
implies that (M, f) may admit no physical measures aside for at most µ.

5. Applications

In this section we describe a new family of examples, which by using our
criterion we can show that they admit non-trivial SRB measures. More
specifically, this family of systems is achieved as a skew-product, however
they admit an SRB measure which has positive exponents both in the base
dynamics and in the fiber, in addition to having 0 Lyapunov exponents.

There are not many tools which allow to study systems with 0 Lyapunov
exponents, especially in the lack of additional structure (such as partial
hyperbolicity or dominated splitting). Nonetheless, we will show that our
condition can be checked easily.

Definition 5.1 (Hyperbolic set). Given a closed Riemannian manifold N

and A ∈ Diff1+β(N), a set Λ is called hyperbolic if it is A-invariant and
there exists a continuous map x 󰀁→ Hu(x) and x 󰀁→ Hs(x) on Λ and con-
stants C > 0 and λ ∈ (0, 1) s.t for all n ≥ 0, for all x ∈ Λ,

(1) ∀ξ ∈ Hs(x), |dxAnξ| ≤ Cλn|ξ|,
(2) ∀ξ ∈ Hu(x), |dxA−nξ| ≤ Cλn|ξ|,
(3) dxA[H

s(x)] = Hs(A(x)) and dxA
−1[Hu(x)] = Hu(A−1(x)).

Definition 5.2 (Non-wandering set). Given a closed Riemannian manifold

N and A ∈ Diff1+β(N), then

Ω(A) := {x ∈ N :∀U open neighborhood of x, ∀N ∈ N,

∃n ≥ N s.t An[U ] ∩ U ∕= ∅}
is called non-wandering set.

The following definition is due to Smale.

Definition 5.3 (Axiom A with a connected attractor). Given a closed Rie-

mannian manifold N and A ∈ Diff1+β(N), A : N → N is called an Axiom
A diffeomorphism if

(1) The non-wandering set of A, Ω(A), is a hyperbolic set compact.
(2) The set of periodic points of A is dense in Ω(A).
(3) All attractors of A are connected.

The following lemma is classical in the study of perturbed Axiom A sys-
tems, and relies on the structural stability of Axiom A systems. For a proof,
see for example [Via, Lemma 4.16].
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Lemma 5.4. Let A : N → N be an Axiom A with a connected attractor
diffeomorphism of a closed Riemanninan manifold N , and denote the volume
of N by ν. Then there exists 󰂃A > 0, λ ∈ (0, 1) and C > 0 s.t for all

n ∈ N, for all {A(1), . . . , A(n)} ⊆ BC1+β(N)(A, 󰂃A), for all ϕ,ψ ∈ Lip(N)

with
󰁕
ψdν = 0,

󰀏󰀏󰀏
󰁝

ϕ ◦A(n) ◦ · · · ◦A(1) · ψdν
󰀏󰀏󰀏 ≤ Cλn · 󰀂ϕ󰀂Lip · 󰀂ψ󰀂Lip.

Definition 5.5 (Axiom A skew product). Let M be a closed Riemannian
manifold. Let N be a closed Riemannian manifold, and let
A : M → {Axiom A diffeo.s of N} be a C1+β map in the C1+β(N) topology.
Then the pair (M,A) is called an Axiom A skew product.

Theorem 5.6. Let M be a closed Riemannian manifold, and let f ∈ Diff1+β(M)
be a volume preserving diffeomorphism. Let N be a closed Riemannian man-
ifold, and let A : N → N be an Axiom A C1+β diffeomorphism of N with a
connected attractor. Then there exists 󰂃 > 0 depending on A, s.t for every
Axiom A skew product (M,A) with Im(A) ⊆ BC1+β(N)(A, 󰂃), the system

F : M ×N → M ×N, F (x, y) := (f(x), Ax(y))

satisfies that VolM×N ◦F−n converges exponentially fast to an SRB measure,
where Ax denotes the diffeomorphism A(x).

Proof. Let 󰂃 = 󰂃A be given by Lemma 5.4. Denote by m the Riemannian
volume of M and by ν the Riemannian volume of N .

Let C > 0, and let λ ∈ (0, 1) be given by Lemma 5.4. By following
the proof of Lemma 4.1, we may assume w.l.o.g that Lemma 5.4 applies to
ψ ∈ Hölβ(N).

We show that (m× ν) ◦ F−n −−→
exp

µ, for some F -invariant probability µ.

Let ϕ ∈ Lip(M × N). Fix x ∈ M , and write ϕx,n(y) := ϕ(fn(x), y) which
lies in Lip(N) and satisfies 󰀂ϕx,n󰀂Lip ≤ 󰀂ϕ󰀂Lip. Then by the invariance of
m,

󰁝
ϕ ◦ Fn+1dm× ν =

󰁝 󰁝
ϕx,n+1(Afn+1(x) ◦ . . . ◦Ax(y))dν(y)dm(x)

=

󰁝 󰁝
ϕf−1(x),n+1(Afn+1(f−1(x)) ◦ . . . ◦Af−1(x)(y))dνdm

=

󰁝 󰁝
ϕx,n(Afn(x) ◦ . . . ◦Ax(Af−1(x)(y)))dνdm

=

󰁝 󰁝
ϕx,n(Afn(x) ◦ . . . ◦Ax(y)) · Jacy(A−1

f−1(x)
)dνdm
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Then,
󰀏󰀏󰀏
󰁝

ϕ ◦ Fn+1d(m× ν)−
󰁝

ϕ ◦ Fnd(m× ν)
󰀏󰀏󰀏

=
󰀏󰀏󰀏
󰁝 󰀓 󰁝

ϕx,n(Afn(x) ◦ . . . ◦Ax(y)) · (Jacy(A−1
f−1(x)

)− 1)dν
󰀔
dm

󰀏󰀏󰀏

≤
󰁝 󰀏󰀏󰀏

󰁝
ϕx,n(Afn(x) ◦ . . . ◦Ax(y)) · ψxdν

󰀏󰀏󰀏dm,

where ψx(y) := Jacy(A
−1
f−1(x)

)− 1 lies in Hölβ(N), satisfies
󰁕
ψxdν = 0, and

has a β-Hölder norm bounded uniformly in x by CA. Then, by Lemma 5.4,
󰀏󰀏󰀏
󰁝

ϕ ◦ Fn+1d(m× ν)−
󰁝

ϕ ◦ Fnd(m× ν)
󰀏󰀏󰀏 ≤ CACλn󰀂ϕ󰀂Lip.

Therefore, for all ϕ ∈ Lip(M ×N), the sequence {
󰁕
ϕ ◦ Fnd(m× ν)}n≥0

is a Cauchy sequence and converges exponentially fast. As in the proof of
Lemma 4.1, it is not hard to check that the map ϕ 󰀁→ limn

󰁕
ϕ◦Fnd(m× ν)

defines a bounded linear functional on Lip(M ×N), and so it defines an F -
invariant measure. By Theorem 3.1, this measure is an SRB measure. More-
over, it admits positive exponents (which may be due to both the base and
fiber dynamics) and hence positive entropy; While possibly also 0 Lyapunov
exponents (depending on whether m admits 0 Lyapunov exponents). □
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