ROSATI AND FROBENIUS

DAVID T.-B. G. LILIENFELDT

Abstract

These are the notes of two talks I gave at the Honda-Tate seminar at the Hebrew University of Jerusalem on April 30, 2023 and May 7, 2023. Let q be a power of a prime number. Given an abelian variety over a finite field with q elements, we define the geometric Frobenius endomorphism and show that its characteristic polynomial is a q-Weil polynomial. This relies crucially on the positivity of the Rosati involution, a result whose proof we also give. These expository notes are entirely based on the book [1] and contain no novel mathematical contributions on my part, except for the mistakes I may have introduced. I thank Shaul Zemel for spotting some of those mistakes in a previous version.

1. Introduction: the Honda-Tate theorem

We begin by recalling necessary notations, conventions, facts, and definitions about abelian varieties:

- k : arbitrary field with fixed algebraic closure \bar{k}
- Variety/k: separated k-scheme of finite type that is geometrically integral
- Curve/k: 1-dimensional variety $/ k$
- Abelian variety/ k : complete group variety $/ k$
- Elliptic curve/k: 1-dimensional abelian variety $/ k$
- Dual of abelian variety $X / k: X^{t}:=\mathrm{Pic}_{X / k}^{0}$ connected component of the identity of the Picard scheme
- Poincaré bundle: universal line bundle P_{X} on $X \times \operatorname{Pic}_{X / k}$ (trivialized along the zero section $\left.0 \times \operatorname{Pic}_{X / k}\right)$ restricted to $X \times X^{t}$
- Isogeny of abelian varieties/ k : homomorphism $f: X \longrightarrow Y$ such that $\operatorname{dim}(X)=\operatorname{dim}(Y)$ and $\operatorname{ker}(f)$ is a finite group scheme
- Polarization of abelian variety X / k : symmetric isogeny $\lambda: X \longrightarrow X^{t}$ such that (id, $\left.\lambda\right)^{*} P_{X}$ is an ample line bundle on X
- $q=p^{m}$: power of a prime number
- q-Weil number: algebraic integer π such that $|\iota(\pi)|=\sqrt{q}$ for all complex embeddings $\iota: \mathbb{Q}[\pi] \hookrightarrow \mathbb{C}$
- Conjugacy: two q-Weil numbers are conjugate if their minimal polynomials over \mathbb{Q} are equal.

The goal of the seminar is to prove the following result:

Theorem 1.1 (Honda-Tate). The map that assigns to a simple abelian variety X over \mathbb{F}_{q} its geometric Frobenius endomorphism π_{X} gives a bijection of sets
$\left\{\right.$ isogeny classes of simple abelian varieties $\left./ \mathbb{F}_{q}\right\} \xrightarrow{\sim}\{$ conjugacy classes of $q-$ Weil numbers $\}$.
The injectivity of the map in Theorem 1.1 is a consequence of Tate's theorem [1, §16.3], while the surjectivity is due to Honda [1, §16.5]. The proof will be covered in the next lectures. The goal of today is to define the geometric Frobenius endomorphism of an abelian variety over \mathbb{F}_{q} and explain in what sense this endomorphism is a q-Weil number. We follow [1, §16.1].

2. Rosati

A crucial ingredient in the proof that "the geometric Frobenius is a q-Weil number" is the positivity of the Rosati involution for polarized abelian varieties. We therefore begin by proving this result over an arbitrary field k.
2.1. The endomorphism algebra. Let X be an abelian variety of dimension g over k. Let $\operatorname{End}(X)$ denote the ring of endomorphism of $X($ defined over $k)$ and let $\operatorname{End}^{0}(X):=\operatorname{End}(X) \otimes \mathbb{Q}$ denote the associated endomorphism algebra.
2.1.1. Poincaré splitting. The abelian variety X is isogenous over k to a product of powers of simple abelian varieties

$$
\begin{equation*}
X \sim_{k} Y_{1}^{m_{1}} \times \ldots \times Y_{n}^{m_{n}} \tag{2.1}
\end{equation*}
$$

such that $Y_{i} \not \chi_{k} Y_{j}$ for $i \neq j$ [1, Corollary 12.5]. A homomorphism between two simple abelian varieties is either trivial or an isogeny. In particular, $D_{i}:=\operatorname{End}^{0}\left(Y_{i}\right)$ is a division algebra for each i, and we have

$$
\begin{equation*}
\operatorname{End}^{0}(X)=M_{m_{1}}\left(D_{1}\right) \times \ldots \times M_{m_{n}}\left(D_{n}\right) \tag{2.2}
\end{equation*}
$$

2.1.2. Endomorphism algebras of Tate modules. For any prime $\ell \neq \operatorname{char}(k)$, we have the Tate module $T_{\ell}(X):=\lim _{\leftarrow} X\left[\ell^{n}\right](\bar{k}) \simeq \mathbb{Z}_{\ell}^{2 g}$ and the associated \mathbb{Q}_{ℓ}-vector space $V_{\ell}(X):=T_{\ell}(X) \otimes \mathbb{Q}_{\ell} \simeq$ $\mathbb{Q}_{\ell}^{2 g}$. Any endomorphism $f \in \operatorname{End}(X)$ preserves torsion points and thus induces endomorphisms $T_{\ell}(f) \in \operatorname{End}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(X)\right)$ and $V_{\ell}(f) \in \operatorname{End}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(X)\right)$. The resulting map

$$
\operatorname{End}(X) \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{End}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(X)\right)
$$

is injective with torsion-free cokernel [1, Theorem 12.10]. As a consequence, $\operatorname{End}(X)$ is a free \mathbb{Z}-module of rank $\leq 4 g^{2}$.
2.1.3. Characteristic polynomial. Associated to an endomorphism $f \in \operatorname{End}(X)$ there is a unique monic polynomial $P_{f}(t) \in \mathbb{Q}[t]$ of degree $2 g$ satisfying the property

$$
\begin{equation*}
P_{f}(n):=\operatorname{deg}\left([n]_{X}-f\right), \text { for all } n \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

See [1, Proposition 12.15] for a justification of the existence of such a polynomial. The uniqueness is clear since polynomials only have finitely many zeros. The polynomial P_{f} is called the characteristic polynomial of f.
If $f \in \operatorname{End}^{0}(X)$, then we choose $n \in \mathbb{Z}$ such that $n f \in \operatorname{End}(X)$ and define

$$
\operatorname{deg}(f):=n^{-2 g} \operatorname{deg}(n f) \quad \text { and } \quad P_{f}(t):=n^{-2 g} P_{n f}(n t) .
$$

Then $P_{f}(t) \in \mathbb{Q}[t]$ is a monic polynomial of degree $2 g$ satisfying

$$
\begin{equation*}
P_{f}(r):=\operatorname{deg}(r-f), \text { for all } r \in \mathbb{Q}, \tag{2.4}
\end{equation*}
$$

where $r-f$ is interpreted as an element of $\operatorname{End}^{0}(X)$.
Definition 2.1. Following [1, Definition 12.16], we define the trace of $f \in \operatorname{End}^{0}(X)$ to be

$$
\operatorname{trace}(f)=-(2 g-1) \text { th coefficient of } P_{f} \text {. }
$$

For all $\ell \neq \operatorname{char}(k), P_{f}(t)$ is equal to the characteristic polynomial $P_{\ell, f} \in \mathbb{Q}_{\ell}[t]$ of $V_{\ell}(f)$ acting on the $2 g$-dimensional \mathbb{Q}_{ℓ}-vector space $V_{\ell}(X)$ [1, Theorem 12.18], i.e.,

$$
\begin{equation*}
P_{f}(t)=P_{\ell, f}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-V_{\ell}(f)\right) . \tag{2.5}
\end{equation*}
$$

As a consequence, we have
(a) $P_{f}(f)=0$ [1, Corollary 12.19]
(b) $P_{f} \in \mathbb{Z}[t]$ for all $f \in \operatorname{End}(X)$ [1, Corollary 12.20]
(c) $\operatorname{trace}(f g)=\operatorname{trace}(g f)$, for all $f, g \in \operatorname{End}^{0}(X)$ [1, Corollary 12.21].
2.2. The Rosati involution. Let X be an abelian variety over k and let $\lambda: X \longrightarrow X^{t}$ be a polarization. The Rosati involution is an involution of the endomorphism algebra

$$
\dagger: \operatorname{End}^{0}(X) \longrightarrow \operatorname{End}^{0}(X),
$$

which depends on the polarization λ. If $f \in \operatorname{End}^{0}(X)$, then

$$
f^{\dagger}:=\lambda^{-1} \circ f^{t} \circ \lambda,
$$

where $f^{t}: X^{t} \longrightarrow X^{t}$ is the dual homomorphism and λ^{-1} makes sense after tensoring with \mathbb{Q}, i.e. in $\operatorname{Hom}\left(X^{t}, X\right) \otimes \mathbb{Q}$, since λ is an isogeny. Note that \dagger is an involution by symmetry of λ.
2.2.1. Characteristic polynomial. We clearly have $\operatorname{deg}(f)=\operatorname{deg}\left(f^{\dagger}\right)$. Moreover, if $n \in \mathbb{Z}$, then

$$
[n]_{X}^{\dagger}=\lambda^{-1} \circ[n]_{X}^{t} \circ \lambda=\lambda^{-1} \circ[n]_{X^{t}} \circ \lambda=\lambda^{-1} \circ \lambda \circ[n]_{X}=[n]_{X} .
$$

As a consequence, for all $n \in \mathbb{Z}$, we have

$$
P_{f}(n)=\operatorname{deg}\left([n]_{X}-f\right)=\operatorname{deg}\left(\left([n]_{X}-f\right)^{\dagger}\right)=\operatorname{deg}\left([n]_{X}^{\dagger}-f^{\dagger}\right)=\operatorname{deg}\left([n]_{X}-f^{\dagger}\right)=P_{f^{\dagger}}(n) .
$$

It follows that

$$
\begin{equation*}
P_{f}=P_{f^{\dagger}} \quad \text { and } \quad \operatorname{trace}(f)=\operatorname{trace}\left(f^{\dagger}\right) . \tag{2.6}
\end{equation*}
$$

2.2.2. Polarizations and line bundles. Let L be a line bundle on X. Consider the associated Mumford bundle

$$
\Lambda(L):=m^{*} L \otimes \operatorname{pr}_{1}^{*} L^{-1} \otimes \operatorname{pr}_{2}^{*} L^{-1}
$$

on $X \times X$, where $m: X \times X \longrightarrow X$ is the group operation map (i.e., $m(x, y)=x+y$). Viewing $\Lambda(L)$ as a family of line bundles on the first copy of X parametrized by the second copy of X gives rise to a map

$$
\varphi_{L}: X \longrightarrow X^{t}, \quad x \mapsto\left[t_{x}^{*} L \otimes L^{-1}\right] .
$$

This is a homomorphism by the Theorem of the Cube [1, Theorem 2.7]. Moreover, it is symmetric (i.e., $\lambda^{t}=\lambda$) by symmetry of the construction. If L is ample (i.e., there exists $n, N \in \mathbb{N}$ and a closed immersion $\pi: X \longrightarrow \mathbb{P}^{N}$ such that $\left.L^{n}=\pi^{*} \mathcal{O}(1)\right)$, then φ_{L} is a polarization on X. Conversely, a homomorphism $\lambda: X \longrightarrow X^{t}$ is a polarization if and only if there exists a finite separable extension $k \subset K$ and an ample line bundle L on X_{K} such that $\varphi_{L}=\lambda_{K}$ [1, Corollary 11.5].

In the proof of the next result we will use the fact that any line bundle L is isomorphic to $\mathcal{O}_{X}(D)$ for some Weil divisor D (determined up to linear equivalence). Here, $\mathcal{O}_{X}(D)$ is the line bundle whose space of global sections is given by

$$
H^{0}\left(X, \mathcal{O}_{X}(D)\right)=\left\{f \in k(X)^{\times} \mid \operatorname{div}(f)+D \geq 0\right\}
$$

Concretely, D is obtained by taking any global section of L and taking its vanishing locus. The map $L \mapsto c_{1}(L):=[D]$ establishes the well-known isomorphism

$$
c_{1}: \operatorname{Pic}(X) \simeq \mathrm{CH}^{1}(X)
$$

between isomorphism classes of line bundles on X and the codimension 1 Chow group of Weil divisors modulo ratonal (i.e., linear) equivalence. The element $c_{1}(L)$ is the first Chern class, which explains the notation. We recall that a line bundle L is ample if and only if L is non-degenerate (i.e., φ_{L} is an isogeny) and effective (i.e., $L \simeq \mathcal{O}_{X}(D)$ for some effective divisor D) [1, Proposition 2.22].
The Chow ring $\mathrm{CH}(X)=\bigoplus_{i=0}^{g} \mathrm{CH}^{i}(X)$ of algebraic cycles modulo rational equivalence is graded by codimension with product given by the intersection product

$$
\mathrm{CH}^{i}(X) \times \mathrm{CH}^{j}(X) \longrightarrow \mathrm{CH}^{i+j}(X), \quad\left(\left[Z_{1}\right],\left[Z_{2}\right]\right) \mapsto\left[Z_{1} \cdot Z_{2}\right],
$$

for representatives Z_{1} and Z_{2} that intersect transversally. If D is a Weil divisor, so that $[D] \in \mathrm{CH}^{1}(X)$, then we abusively write D^{g} for $\operatorname{deg}\left([D]^{g}\right) \in \mathbb{Z}$, the degree of the g-fold self-intersection $[D]^{g} \in \mathrm{CH}^{g}(X)$. Similarly, if D^{\prime} is another Weil divisor, we write $D^{g-1} \cdot D^{\prime}$ for $\operatorname{deg}\left([D]^{g-1} \cdot\left[D^{\prime}\right]\right)$. In this notation, if $L \simeq \mathcal{O}_{X}(D)$, then the Riemann-Roch theorem for abelian varieties [1, Theorem 9.11] can be stated as the equality

$$
\begin{equation*}
\operatorname{deg}\left(\varphi_{L}\right)=\left(\frac{c_{1}(L)^{g}}{g!}\right)^{2}=\left(\frac{D^{g}}{g!}\right)^{2} \tag{2.7}
\end{equation*}
$$

2.2.3. Positivity of the Rosati involution.

Theorem 2.2 (Theorem 12.26 of [1]). Let X be an abelian variety of dimension g over k with a polarization $\lambda: X \longrightarrow X^{t}$ and associated Rosati involution \dagger.
i) If $\lambda=\varphi_{L}$ for some ample line bundle $L=\mathcal{O}_{X}(D)$ and $f \in \operatorname{End}(X)$, then

$$
\operatorname{trace}\left(f f^{\dagger}\right)=2 g \frac{D^{g-1} \cdot f^{*} D}{D^{g}}
$$

ii) The bilinear pairing

$$
\operatorname{End}^{0}(X) \times \operatorname{End}^{0}(X) \longrightarrow \mathbb{Q}, \quad(f, g) \mapsto \operatorname{trace}\left(f g^{\dagger}\right)
$$

is symmetric and positive-definite.
Remark 2.3. The above formula i) makes sense for L ample, since $D^{g} \neq 0$ in this case. This follows from Riemann-Roch (2.7) and the fact that L is non-degenerate, i.e., φ_{L} is an isogeny, which implies that $\operatorname{deg}\left(\varphi_{L}\right) \neq 0$.

Proof. By property (c) of the trace discussed in 2.1 .3 , we have trace $\left(f f^{\dagger}\right)=\operatorname{trace}\left(f^{\dagger} f\right)$. In particular, trace $\left(f f^{\dagger}\right)$ is the $(2 g-1)$ th coefficient of the characteristic polynomial $P_{f \dagger f}(t) \in \mathbb{Q}[t]$ by Definition 2.1. By (2.4), for all $n \in \mathbb{Z}$ we have

$$
\begin{aligned}
\operatorname{deg}\left(\varphi_{L}\right) P_{f^{\dagger} f}(n) & =\operatorname{deg}\left(\varphi_{L}\right) \operatorname{deg}\left([n]_{X}-\lambda^{-1} f^{t} \lambda f\right) \\
& =\operatorname{deg}\left(n \varphi_{L}-f^{t} \varphi_{L} f\right) \\
& =\operatorname{deg}\left(\varphi_{L^{n}}-\varphi_{f^{*} L}\right) \\
& =\operatorname{deg}\left(\varphi_{L^{n} \otimes f^{*} L^{-1}}\right) .
\end{aligned}
$$

Applying Riemann-Roch (2.7) to both sides of this equality yields

$$
\left(c_{1}(L)^{g}\right)^{2} P_{f^{\dagger} f}(n)=\left(c_{1}\left(L^{n} \otimes f^{*} L^{-1}\right)^{g}\right)^{2}=\left(\left(n c_{1}(L)-c_{1}\left(f^{*} L\right)\right)^{g}\right)^{2} .
$$

Consider the polynomial $Q(t)=\sum_{j=0}^{g} b_{j} t^{j} \in \mathbb{Q}[t]$ of degree g with coefficients defined by

$$
b_{j}:=\binom{g}{j}(-1)^{g-j}\left(c_{1}(L)^{j} \cdot c_{1}\left(f^{*} L\right)^{g-j}\right) .
$$

Then, for all $n \in \mathbb{Z}$, we have

$$
Q(n)=\left(n c_{1}(L)-c_{1}\left(f^{*} L\right)\right)^{g} .
$$

We deduce the equality of polynomials

$$
\left(c_{1}(L)^{g}\right)^{2} P_{f^{\dagger} f}(t)=Q(t)^{2} .
$$

Comparing the $(2 g-1)$ th coefficients yields

$$
\left(c_{1}(L)^{g}\right)^{2} \operatorname{trace}\left(f^{\dagger} f\right)=2 g c_{1}(L)^{g}\left(c_{1}(L)^{g-1} \cdot c_{1}\left(f^{*} L\right)\right),
$$

and i) follows since $c_{1}\left(f^{*} L\right)=f^{*} c_{1}(L)=f^{*} D$.
The pairing in $i i^{\prime}$ is symmetric by (2.6). To see that it is positive-definite, it is enough to base-change to \bar{k}. Then there exists an ample line bundle $L \simeq \mathcal{O}_{X}(D)$ such that $\lambda=\varphi_{L}$. We need to prove that for $0 \neq f \in \operatorname{End}^{0}(X)$, $\operatorname{trace}\left(f f^{\dagger}\right)>0$. Because the trace is homogeneous of degree 2 , it is enough to prove this for $f \in \operatorname{End}(X)$. We may then apply i). According to [3, $\S 21$ Proof of Theorem 1], for any effective divisor S and any ample divisor T, we have $T^{g-1} \cdot S>0$. In particular, $D^{g}>0$, so by i) it suffices to prove that $f^{*} D$ is effective because then $D^{g-1} \cdot f^{*} D>0$. For a proof that $f^{*} D$ is effective, we refer to [1, End of proof of Lemma 12.9].

We end this section with a useful result.
Proposition 2.4 (Proposition 14.4 i) of [2]). Let X be an abelian variety over k with a polarization $\lambda: X \longrightarrow X^{t}$. Then $|\operatorname{Aut}(X, \lambda)|<\infty$.

Proof. Let α be an automorphism of X that respects the polarization λ. This means that $\alpha^{t} \circ \lambda \circ \alpha=\lambda$, or in other words $\alpha^{\dagger} \alpha=\operatorname{id}_{X}$. In particular, $\operatorname{trace}\left(\alpha^{\dagger} \alpha\right)=2 g$. This shows that

$$
\operatorname{Aut}(X, \lambda) \subset \operatorname{End}(X) \cap\left\{\alpha \in \operatorname{End}(X) \otimes \mathbb{R} \mid \operatorname{trace}\left(\alpha^{\dagger} \alpha\right)=2 g\right\}
$$

$\operatorname{But} \operatorname{End}(X)$ is a free \mathbb{Z}-module and thus a discrete subset of the compact $\operatorname{End}(X) \otimes \mathbb{R}$ (a product of spaces of matrices with coefficients in real division algebras (2.2). The condition trace $\left(\alpha^{\dagger} \alpha\right)=2 g$ being a closed condition, we conclude that $\operatorname{Aut}(X, \lambda)$ is finite.

3. Frobenius

Let $m \in \mathbb{N}$ and let p be a prime. In this section we specialize to the case $k=\mathbb{F}_{q}$ for $q=p^{m}$. We fix an algebraic closure $\overline{\mathbb{F}}_{q} \supset \mathbb{F}_{q}$.

3.1. Frobenius morphisms.

3.1.1. The absolute Frobenius. Let X be an \mathbb{F}_{p}-scheme. The absolute Frobenius is the morphism of \mathbb{F}_{p}-schemes

$$
\operatorname{Frob}_{X}: X \longrightarrow X
$$

given by the identity on topological spaces and by raising to the p-th power on sections. More precisely, the map on sheaves $\operatorname{Frob}_{X}^{\#}: \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}$ takes a section s to s^{p}. If $f: X \longrightarrow Y$ is a morphism of \mathbb{F}_{p}-schemes, then

$$
\begin{equation*}
\operatorname{Frob}_{Y} \circ f=f \circ \operatorname{Frob}_{X} \tag{3.1}
\end{equation*}
$$

because $f^{\#}\left(s^{p}\right)=f^{\#}(s)^{p}$ for any section s of \mathcal{O}_{Y}.
3.1.2. The relative Frobenius. Let S be an \mathbb{F}_{p}-scheme and let X be an S-scheme with structure morphism $\pi: X \longrightarrow S$. Define $X^{(p)}:=X \times_{\text {Frob }_{S}} S$ with projection map $W: X^{(p)} \longrightarrow X$. Using (3.1) and the universal property of fiber products, there is a unique morphism of S-schemes $F_{X / S}: X \longrightarrow X^{(p)}$ such that $W \circ F_{X / S}=$ Frob $_{X}$. This morphism is called the relative Frobenius.
To fix ideas, consider $S=\operatorname{Spec}(R)$ for some \mathbb{F}_{p}-algebra R and let $X=\operatorname{Spec}\left(R\left[t_{1}, \ldots, t_{m}\right] / I\right)$ for some ideal $I=\left(f_{1}, \ldots, f_{n}\right) \subset R\left[t_{1}, \ldots, t_{m}\right]$. Note that $\operatorname{Frob}_{S}: \operatorname{Spec}(R) \longrightarrow \operatorname{Spec}(R)$ is the morphism induced by the map of $\mathbb{F}_{p^{-}}$algebras $\varphi: R \longrightarrow R, r \mapsto r^{p}$. Let $f_{i}^{(p)}$ denote the polynomial f_{i} but with coefficients raised to the p-th power and let $I^{(p)}:=\left(f_{1}^{(p)}, \ldots, f_{n}^{(p)}\right)$. Then

$$
X^{(p)}=X \times_{\operatorname{Frob}_{S}} S=\operatorname{Spec}\left(R\left[t_{1}, \ldots, t_{m}\right] / I \otimes_{\varphi} R\right)=\operatorname{Spec}\left(R\left[t_{1}, \ldots, t_{m}\right] / I^{(p)}\right)
$$

and the relative Frobenius is induced by the map of R-algebras

$$
R\left[t_{1}, \ldots, t_{m}\right] / I^{(p)} \longrightarrow R\left[t_{1}, \ldots, t_{m}\right] / I, \quad r \mapsto r, \quad t_{i} \mapsto t_{i}^{p} .
$$

On the other hand, the absolute Frobenius Frob $_{X}$ is induced by the map of \mathbb{F}_{p}-algebras

$$
R\left[t_{1}, \ldots, t_{m}\right] / I \longrightarrow R\left[t_{1}, \ldots, t_{m}\right] / I, \quad r \mapsto r^{p}, \quad t_{i} \mapsto t_{i}^{p} .
$$

FInally, the morphism $W: X^{(p)} \longrightarrow X$ is induced by the map

$$
R\left[t_{1}, \ldots, t_{m}\right] / I \longrightarrow R\left[t_{1}, \ldots, t_{m}\right] / I^{(p)}, \quad r \longrightarrow r^{p}, \quad t_{i} \mapsto t_{i} .
$$

3.1.3. The geometric Frobenius. Let $S=\operatorname{Spec}\left(\mathbb{F}_{q}\right)$ with $q=p^{m}$. The geometric Frobenius is the morphism of S-schemes $\pi_{X}:=\operatorname{Frob}_{X}^{m}$ given by the m-th iterated power of the absolute Frobenius. It is a morphism of S-schemes because $\mathrm{Frob}_{S}^{m}=\mathrm{id}_{S}$. It can also be described by iterating the absolute Frobenius m times

$$
\begin{equation*}
\pi_{X}=F_{X / \mathbb{F}_{q}}^{m}=F_{X\left(p^{m-1}\right) / \mathbb{F}_{q}} \circ F_{X^{\left(p^{m-2}\right)} / \mathbb{F}_{q}} \circ \ldots \circ F_{X^{(p)} / \mathbb{F}_{q}} \circ F_{X / \mathbb{F}_{q}} . \tag{3.2}
\end{equation*}
$$

3.2. The roots of geometric Frobenius. Let X be an abelian variety of dimension g over \mathbb{F}_{q}. If $\mathbb{F}_{q} \subset K$ is a field extension, then π_{X} acts on $X(K)$ by taking $(x: \operatorname{Spec}(K) \longrightarrow X)$ to $\pi_{X} \circ x=x \circ \pi_{\operatorname{Spec}(K)}$. If we consider a closed immersion $X \longrightarrow \mathbb{P}^{N}$ for some $N \in \mathbb{N}$, then in projective coordinates we have

$$
\pi_{X}\left(\left[x_{0}: \ldots: x_{N}\right]\right)=\left[x_{0}^{q}: \ldots: x_{N}^{q}\right] .
$$

Let $n \in \mathbb{N}$ and consider the extension $\mathbb{F}_{q} \subset \mathbb{F}_{q^{n}} \subset \overline{\mathbb{F}}_{q}$ of degree n. We then have

$$
X\left(\mathbb{F}_{q^{n}}\right)=\left\{x \in X\left(\overline{\mathbb{F}}_{q}\right) \mid \pi_{X}^{n}(x)=x\right\} .
$$

Because $0 \in X\left(\mathbb{F}_{q}\right)$, we have $\pi_{X}(0)=0$ and π_{X} is a endomorphism. It commutes with all other endomorphisms by (3.1), so it lies in the center of $\operatorname{End}^{0}(X)$. Define the Verschiebung map

$$
\begin{equation*}
V_{X / \mathbb{F}_{q}}:=F_{X^{t} / \mathbb{F}_{q}}^{t}: X^{(p)} \longrightarrow X . \tag{3.3}
\end{equation*}
$$

We then have

$$
\begin{equation*}
V_{X / \mathbb{F}_{q}} \circ F_{X / \mathbb{F}_{q}}=[p]_{X} \quad \text { and } \quad F_{X / \mathbb{F}_{q}} \circ V_{X / \mathbb{F}_{q}}=[p]_{X(p)} \tag{3.4}
\end{equation*}
$$

(see the proof of [1, Proposition 7.34]). In particular, $F_{X / \mathbb{F}_{q}}$ is an isogeny of degree p^{g}. It follows from (3.2) that π_{X} is an isogeny of degree q^{g}. We let f_{X} denote its characteristic polynomial as defined in ${ }_{2}$ 2.1.3. We recall that it is a monic polynomial $f_{X}(t) \in \mathbb{Z}[t]$ (by property (b) of 82.1 .3) of degree $2 g$ satisfying $f_{X}(n)=\operatorname{deg}\left([n]_{X}-\pi_{X}\right)$ for all $n \in \mathbb{Z}$.

Lemma 3.1. Suppose that X is elementary (i.e., a power of a simple abelian variety). Then $\mathbb{Q}\left[\pi_{X}\right] \subset \operatorname{End}^{0}(X)$ is a number field and f_{X} is a power of the minimal polynomial $\min \left(\pi_{X} ; \mathbb{Q}\right)$ of π_{X} over \mathbb{Q}.

Proof. Suppose that $X=Y^{m}$ with Y a simple abelian variety. Then $D=\operatorname{End}^{0}(Y)$ is a division algebra and $\operatorname{End}^{0}(X)=M_{m}(D)$. Observe that $\mathbb{Q}\left[\pi_{X}\right]$ lies in the center $\left\{\operatorname{diag}(z) \in M_{m}(D) \mid\right.$ $z \in Z(D)\}$ of $\operatorname{End}^{0}(X)=M_{m}(D)$, which is a field. Since $f_{X} \in \mathbb{Z}[t]$ is monic of degree $2 g$ with $f_{X}\left(\pi_{X}\right)=0$, we see that $\pi_{X}^{-1} \in \mathbb{Q}\left[\pi_{X}\right]$ and we deduce that $\mathbb{Q}\left[\pi_{X}\right]$ is a field with $\left[\mathbb{Q}\left[\pi_{X}\right]: \mathbb{Q}\right] \leq 2 g$.
Let $\alpha \in \overline{\mathbb{Q}}$ be a root of f_{X}. Let $\ell \neq p$ be a prime and recall that $P_{\ell, \pi_{X}}(t)=\operatorname{det}\left(t \cdot \operatorname{id}-V_{\ell}\left(\pi_{X}\right)\right)=f_{X}$ (2.5). Thus α is an eigenvalue of $V_{\ell}\left(\pi_{X}\right)$. Let $g:=\min \left(\pi_{X} ; \mathbb{Q}\right)$. Then $g(\alpha)$ is an eigenvalue of $g\left(V_{\ell}\left(\pi_{X}\right)\right)$. But $g\left(V_{\ell}\left(\pi_{X}\right)\right)=V_{\ell}\left(g\left(\pi_{X}\right)\right)=0$ so $g(\alpha)=0$. Hence, all roots of f_{X} are roots of g. This implies that f_{X} divides a power of g. By irreducibility of g, this forces f_{X} to equal a power of g.

Theorem 3.2. Let X be an abelian variety of dimension g over \mathbb{F}_{q}. Then
i) Every complex root α of f_{X} has absolute value $|\alpha|=\sqrt{q}$.
ii) If α is a complex root of f_{X}, then so it $\bar{\alpha}=q / \alpha$ and they occur with the same multiplicity. If $\alpha=\sqrt{q}$ or $\alpha=-\sqrt{q}$ occurs as a root, then it occurs with even multiplicity.

Proof. i) It suffices to treat the case where X is simple. Indeed, by (2.1), X is isogenous over k to a product $X_{1} \times \ldots \times X_{m}$ of simple abelian varieties. If $\ell \neq p$, then at the level of Tate modules this isogeny gives an isomorphism of $V_{\ell}(X)$ with the direct sum of the $V_{\ell}\left(X_{i}\right)$. This isomorphism respects the various geometric Frobenii. Thus, in terms of characteristic polynomials we get a decomposition

$$
P_{\ell, \pi_{X}}=P_{\ell, \pi_{X_{1}}} \ldots P_{\ell, \pi_{X_{m}}},
$$

and consequently a decomposition $f_{X}=f_{X_{1}} \ldots f_{X_{m}}$.
Suppose now that X is a simple abelian variety over \mathbb{F}_{q} and let $\lambda: X \longrightarrow X^{t}$ be a polarization with Rosati involution \dagger. We claim that $\pi_{X} \circ \pi_{X}^{\dagger}=[q]_{X}$. Indeed, we have

$$
\pi_{X} \circ \lambda^{-1} \circ \pi_{X}^{t} \circ \lambda=\lambda^{-1} \circ \pi_{X^{t}} \circ \pi_{X}^{t} \circ \lambda
$$

by (3.1). It thus suffices to show that $\pi_{X^{t}} \circ \pi_{X}^{t}=[q]_{X^{t}}$. Recall from (3.3) that $F_{X / \mathbb{F}_{q}}^{t}=V_{X^{t} / \mathbb{F}_{q}}$ and thus, by using (3.4) and (3.2), we obtain

$$
\pi_{X^{t}} \circ \pi_{X}^{t}=F_{X^{t} / \mathbb{F}_{q}}^{m} \circ V_{X^{t} / \mathbb{F}_{q}}^{m}=\left[p^{m}\right]_{X^{t}}=[q]_{X^{t}}
$$

By Lemma 3.1 and the simplicity of $X, \mathbb{Q}\left[\pi_{X}\right]$ is a number field and $f_{X}=\min \left(\pi_{X} ; \mathbb{Q}\right)^{m}$ for some $m \in \mathbb{N}$. It follows that the complex roots of f_{X} are the $\iota\left(\pi_{X}\right)$ for all complex embeddings $\iota: \mathbb{Q}\left[\pi_{X}\right] \hookrightarrow \mathbb{C}$. Since $\pi_{X}^{\dagger}=q / \pi_{X}$, the Rosati involution preserves $\mathbb{Q}\left[\pi_{X}\right]$. Since $f_{X}=\min \left(\pi_{X} ; \mathbb{Q}\right)^{m}$, we have $\operatorname{trace}(x)=m \operatorname{Tr}_{\mathbb{Q}\left[\pi_{X}\right] / \mathbb{Q}}(x)$ for all $x \in \mathbb{Q}\left[\pi_{X}\right]$. It follows from Theorem 2.2 that $\mathbb{Q}\left[\pi_{X}\right]$ is a number field with an involution \dagger such that the quadratic form $\mathbb{Q}\left[\pi_{X}\right] \longrightarrow \mathbb{Q}, x \mapsto \operatorname{Tr}_{\mathbb{Q}\left[\pi_{X}\right] / \mathbb{Q}}\left(x x^{\dagger}\right)$ is positive-definite. This places strong restrictions on $\mathbb{Q}\left[\pi_{X}\right]:$ in fact, $\mathbb{Q}\left[\pi_{X}\right]$ is either
(a) totally real with $\dagger=\mathrm{id}$,
(b) a CM-field with $\iota\left(x^{\dagger}\right)=\overline{\iota(x)}$ for all $x \in \mathbb{Q}\left[\pi_{X}\right]$ and all complex embeddings $\iota: \mathbb{Q}\left[\pi_{X}\right] \hookrightarrow \mathbb{C}$.

In any case, we obtain $\left|\iota\left(\pi_{X}\right)\right|^{2}=\iota\left(\pi_{X} \pi_{X}^{\dagger}\right)=q$.
We now justify the above classification (we refer to [3, p. 193-194] for more details). Let F be the subfield of $\mathbb{Q}\left[\pi_{X}\right]$ fixed by \dagger. Suppose first that $\mathbb{Q}\left[\pi_{X}\right]=F$. Then $\dagger=$ id and $\operatorname{Tr} \mathbb{Q}\left[\pi_{X}\right] / \mathbb{Q}\left(x^{2}\right)>0$ for all $0 \neq x \in \mathbb{Q}\left[\pi_{X}\right]$, i.e., $\mathbb{Q}\left[\pi_{X}\right]$ is a number field with positive-definite trace form. Let v be an infinite place and consider the completion $\mathbb{Q}\left[\pi_{X}\right]_{v}$. Then $\operatorname{Tr}_{\mathbb{Q}\left[\pi_{X}\right]_{v} / \mathbb{R}}\left(x_{v}^{2}\right)>0$ for all $0 \neq x_{v} \in \mathbb{Q}\left[\pi_{X}\right]_{v}$ excludes $\mathbb{Q}\left[\pi_{X}\right]_{v}=\mathbb{C}$. Thus, all infinite places are real and we are in case (a). Suppose next that $\mathbb{Q}\left[\pi_{X}\right] \neq F$. Then $\mathbb{Q}\left[\pi_{X}\right]=F(\sqrt{\alpha})$ for some $\alpha \in F$ and $(\sqrt{\alpha})^{\dagger}=-\sqrt{\alpha}$. By the same argument as in the previous case, the subfield F is totally real. For all $x \in \mathbb{Q}\left[\pi_{X}\right], \operatorname{Tr}_{\mathbb{Q}\left[\pi_{X}\right] / \mathbb{Q}}(x)$ coincides with the trace $\operatorname{Tr}(x)$ of left multiplication by x on $\mathbb{Q}\left[\pi_{X}\right]$. Now, $\mathbb{Q}\left[\pi_{X}\right]$ is a 2-dimensional F-algebra with a positive involution in the sense that $\operatorname{Tr}\left(x x^{\dagger}\right)>0$ for all $0 \neq x \in \mathbb{Q}\left[\pi_{X}\right]$. It follows that the extension of \dagger to $\mathbb{Q}\left[\pi_{X}\right] \otimes_{F} \mathbb{R}$ is a positive involution. Let v be an archimedean place of F (necessarily real). Then $\mathbb{Q}\left[\pi_{X}\right] \otimes_{v} \mathbb{R}$ is a 2-dimensional \mathbb{R}-algebra with a positive involution. Note that $\mathbb{Q}\left[\pi_{X}\right] \otimes_{v} \mathbb{R}$ is either \mathbb{R}^{2} or \mathbb{C}. However, the standard involution on \mathbb{R}^{2} is not positive since for $\alpha=(x, y) \in \mathbb{R}^{2}$, $\operatorname{Tr}(\alpha \bar{\alpha})=2 x y$. This excludes $\mathbb{Q}\left[\pi_{X}\right] \otimes_{v} \mathbb{R}=\mathbb{R}^{2}$ and we are in case (b).
ii) If \sqrt{q} or $-\sqrt{q}$ occurs as a root, then we are in case (a) above, i.e., $\mathbb{Q}\left[\pi_{X}\right]$ is totally real and \sqrt{q} and $-\sqrt{q}$ are the only possible roots. Hence $f_{X}(t)=(t-\sqrt{q})^{n}(t+\sqrt{q})^{2 g-n}$ and $f_{X}(0)=(-1)^{n} q^{g}$. But $f_{X}(0)=\operatorname{deg}\left(f_{X}\right)=q^{g}$ by definition of the characteristic polynomial, hence n is even.

References

[1] Bas Edixhoven, Ben Moonen, Gerard van der Geer, Abelian varieties, http://van-der-geer.nl/~gerard/AV.pdf
[2] James S. Milne, Abelian varieties, https://www.jmilne.org/math/CourseNotes/AV.pdf
[3] David Mumford, Abelian varieties, https://wstein.org/edu/Fall2003/252/references/mumford-abvar/ Mumford-Abelian_Varieties.pdf

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Israel

