ROSATI AND FROBENIUS

DAVID T.-B. G. LILIENFELDT

ABSTRACT. These are the notes of two talks I gave at the Honda—Tate seminar at the Hebrew
University of Jerusalem on April 30, 2023 and May 7, 2023. Let q be a power of a prime number.
Given an abelian variety over a finite field with q elements, we define the geometric Frobenius
endomorphism and show that its characteristic polynomial is a g-Weil polynomial. This relies
crucially on the positivity of the Rosati involution, a result whose proof we also give. These
expository notes are entirely based on the book [I] and contain no novel mathematical contributions
on my part, except for the mistakes I may have introduced. I thank Shaul Zemel for spotting some
of those mistakes in a previous version.

1. INTRODUCTION: THE HONDA-TATE THEOREM

We begin by recalling necessary notations, conventions, facts, and definitions about abelian varieties:

k: arbitrary field with fixed algebraic closure k

Variety/k: separated k-scheme of finite type that is geometrically integral
Curve/k: 1-dimensional variety/k

Abelian variety/k: complete group variety/k

Elliptic curve/k: 1-dimensional abelian variety/k

Dual of abelian variety X/k: X! := Picg( Jk connected component of the identity of the
Picard scheme

Poincaré bundle: universal line bundle Py on X x Picy/;, (trivialized along the zero section
0 x Picxy) restricted to X x Xt

Isogeny of abelian varieties/k: homomorphism f: X — Y such that dim(X) = dim(Y)
and ker(f) is a finite group scheme

Polarization of abelian variety X/k: symmetric isogeny A: X — X such that (id, \)* Py
is an ample line bundle on X

q = p™: power of a prime number

g-Weil number: algebraic integer 7 such that [.(7)| = /g for all complex embeddings
t: Qr] = C

Conjugacy: two g-Weil numbers are conjugate if their minimal polynomials over QQ are equal.

The goal of the seminar is to prove the following result:
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Theorem 1.1 (Honda-Tate). The map that assigns to a simple abelian variety X over Fy its
geometric Frobenius endomorphism mx gives a bijection of sets

{isogeny classes of simple abelian varieties/F,} — {conjugacy classes of ¢ — Weil numbers}.

The injectivity of the map in Theorem is a consequence of Tate’s theorem [I], §16.3], while the
surjectivity is due to Honda [I], §16.5]. The proof will be covered in the next lectures. The goal of
today is to define the geometric Frobenius endomorphism of an abelian variety over [F, and explain
in what sense this endomorphism is a g-Weil number. We follow [I], §16.1].

2. RosATI

A crucial ingredient in the proof that “the geometric Frobenius is a ¢-Weil number” is the positivity
of the Rosati involution for polarized abelian varieties. We therefore begin by proving this result
over an arbitrary field k.

2.1. The endomorphism algebra. Let X be an abelian variety of dimension g over k. Let
End(X) denote the ring of endomorphism of X (defined over k) and let End®(X) := End(X) ® Q
denote the associated endomorphism algebra.

2.1.1. Poincaré splitting. The abelian variety X is isogenous over k to a product of powers of simple
abelian varieties

(2.1) X ) Y™ XX Y

such that Y; o, Y for i # j [I, Corollary 12.5]. A homomorphism between two simple abelian
varieties is either trivial or an isogeny. In particular, D; := EndO(Yi) is a division algebra for each i,
and we have

(2.2) End®(X) = M,,,(D1) X ... x My, (Dy).

2.1.2. Endomorphism algebras of Tate modules. For any prime ¢ # char(k), we have the Tate
module Ty(X) := lim X [("](k) ~ Zzg and the associated Qg-vector space Vp(X) := Ty(X) ® Qp =~
—
Q?g . Any endomorphism f € End(X) preserves torsion points and thus induces endomorphisms
Ti(f) € Endg, (Ty(X)) and V,(f) € Endg,(V,(X)). The resulting map
End(X) ® Zy — Endz, (T;(X))

is injective with torsion-free cokernel [I, Theorem 12.10]. As a consequence, End(X) is a free
Z-module of rank < 4¢2.

2.1.3. Characteristic polynomial. Associated to an endomorphism f € End(X) there is a unique
monic polynomial P(t) € Q[t] of degree 2¢ satisfying the property

(2.3) P¢(n) := deg([n]x — f), for all n € Z.

See [Il, Proposition 12.15] for a justification of the existence of such a polynomial. The uniqueness is
clear since polynomials only have finitely many zeros. The polynomial P is called the characteristic
polynomial of f.

If f € End’(X), then we choose n € Z such that nf € End(X) and define
deg(f) := n~% deg(nf) and Py(t) := n"29P,s(nt).

Then P(t) € Q[t] is a monic polynomial of degree 2¢g satisfying

(2.4) Py¢(r) := deg(r — f), for all 7 € Q,
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where r — f is interpreted as an element of End®(X).
Definition 2.1. Following [, Definition 12.16], we define the trace of f € End’(X) to be
trace(f) = —(2g — 1)th coefficient of Pj.

For all ¢ # char(k), Pf(t) is equal to the characteristic polynomial Py € Qg[t] of V;(f) acting on
the 2g-dimensional Qg-vector space Vp(X) [1, Theorem 12.18], i.e.,

(2.5) Py(t) = Ppy(t) = det(t - id — Vi(f)).
As a consequence, we have
(a) P¢(f) =0 [1, Corollary 12.19]
(b) Py € Z[t] for all f € End(X) [II, Corollary 12.20]
(c) trace(fg) = trace(gf), for all f, g € End®(X) [I, Corollary 12.21].

2.2. The Rosati involution. Let X be an abelian variety over k£ and let \: X — X! be a
polarization. The Rosati involution is an involution of the endomorphism algebra

t: End®(X) — End’(X),
which depends on the polarization \. If f € End®(X), then
fJr =\"lo ftol,

where ff: Xt — X! is the dual homomorphism and A~ makes sense after tensoring with Q, i.e.
in Hom(X?!, X) ® Q, since A is an isogeny. Note that { is an involution by symmetry of \.

2.2.1. Characteristic polynomial. We clearly have deg(f) = deg(fT). Moreover, if n € Z, then
)l =A""onk o A=A onlxi o A= A" oo n]x = [n]x.
As a consequence, for all n € Z, we have

Pj(n) = deg([n]x — f) = deg((In]x — f)7) = deg([nl — ) = deg([n]x — f7) = Pyi(n).
It follows that
(2.6) Py = Py and trace(f) = trace(fT).

2.2.2. Polarizations and line bundles. Let L be a line bundle on X . Consider the associated Mumford
bundle

AL):=m*LepriL ' @pryL~!
on X x X, where m: X x X — X is the group operation map (i.e., m(z,y) = z +y). Viewing
A(L) as a family of line bundles on the first copy of X parametrized by the second copy of X gives
rise to a map
or: X — X', e [Leo LY.

This is a homomorphism by the Theorem of the Cube [I, Theorem 2.7]. Moreover, it is symmetric
(i.e., At = \) by symmetry of the construction. If L is ample (i.e., there exists n, N € N and a closed
immersion 7: X — PV such that L™ = 7*O(1)), then ¢, is a polarization on X. Conversely, a

homomorphism \: X — X! is a polarization if and only if there exists a finite separable extension
k C K and an ample line bundle L on Xg such that ¢ = Ax [I, Corollary 11.5].
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In the proof of the next result we will use the fact that any line bundle L is isomorphic to Ox (D)
for some Weil divisor D (determined up to linear equivalence). Here, Ox (D) is the line bundle
whose space of global sections is given by

HY(X,0x(D)) = {f € k(X)* | div(f) + D > 0}.
Concretely, D is obtained by taking any global section of L and taking its vanishing locus. The
map L — ¢1(L) := [D] establishes the well-known isomorphism
c1: Pic(X) ~ CHY(X)

between isomorphism classes of line bundles on X and the codimension 1 Chow group of Weil
divisors modulo ratonal (i.e., linear) equivalence. The element ¢ (L) is the first Chern class, which
explains the notation. We recall that a line bundle L is ample if and only if L is non-degenerate (i.e.,
¢r, is an isogeny) and effective (i.e., L ~ Ox (D) for some effective divisor D) [I, Proposition 2.22].

The Chow ring CH(X) = @Y, CHY(X) of algebraic cycles modulo rational equivalence is graded
by codimension with product given by the intersection product
CH'(X) x CH/(X) — CH™(X),  ([Z41],[%]) = [21 - Z3),

for representatives Z; and Z, that intersect transversally. If D is a Weil divisor, so that [D] € CH!(X),
then we abusively write DY for deg([D]9) € Z, the degree of the g-fold self-intersection [D]9 € CHY(X).
Similarly, if D’ is another Weil divisor, we write D9~ - D’ for deg([D]9~! - [D']). In this notation, if
L ~ Ox(D), then the Riemann-Roch theorem for abelian varieties [I, Theorem 9.11] can be stated
as the equality

(27) des(p1) = (;?)2 - (1;,)2

2.2.3. Positivity of the Rosati involution.

Theorem 2.2 (Theorem 12.26 of [1]). Let X be an abelian variety of dimension g over k with a
polarization \: X — X' and associated Rosati involution t.

i) If A = ¢ for some ample line bundle L = Ox (D) and f € End(X), then

D91 f*D
P

trace(ff1) =2 Do

ii) The bilinear pairing
End’(X) x End’(X) — Q, (f,g) — trace(fg")
is symmetric and positive-definite.

Remark 2.3. The above formula i) makes sense for L ample, since DY # 0 in this case. This follows
from Riemann—Roch (2.7 and the fact that L is non-degenerate, i.e., ¢ is an isogeny, which implies

that deg(pr) # 0.

Proof. By property (c) of the trace discussed in §2.1.3] we have trace(ffT) = trace(fTf). In
particular, trace(ffT) is the (29 — 1)th coefficient of the characteristic polynomial Py f(t) € Q[t] b
Definition By (2.4), for all n € Z we have

deg(pr)Pyi (n) = deg(ypr) deg([n]x — A" fAS)
(ner — florf)

(prn — @peL)
_deg(chn@)f* 1).

= deg



ROSATI AND FROBENIUS 5
Applying Riemann—Roch to both sides of this equality yields
(c1(L)?)*Ppig(n) = (er(L" ® fL7H)9)% = ((ne1 (L) — er(f*L))9)%
Consider the polynomial Q(t) = ?:0 bjtj € Q[t] of degree g with coefficients defined by

b= (4) 0wy el o).

Then, for all n € Z, we have
Q(n) = (ner(L) — ar(f°L))?.
We deduce the equality of polynomials
(c1(L)?)? Pyif(t) = Q(1)*.
Comparing the (2¢g — 1)th coefficients yields
(e1(L)9)?trace(fT f) = 2ge1(L)? (er (L)?" - er(f7L)),
and 1) follows since ¢ (f*L) = f*c1(L) = f*D.

The pairing in i) is symmetric by . To see that it is positive-definite, it is enough to base-change
to k. Then there exists an ample line bundle L ~ Ox (D) such that A = . We need to prove that
for 0 # f € End®(X), trace(ffT) > 0. Because the trace is homogeneous of degree 2, it is enough to
prove this for f € End(X). We may then apply ). According to [3, §21 Proof of Theorem 1], for
any effective divisor S and any ample divisor 7, we have 79! . S > 0. In particular, DI > 0, so by
i) it suffices to prove that f*D is effective because then D9=! - f*D > 0. For a proof that f*D is
effective, we refer to [I, End of proof of Lemma 12.9)]. O

We end this section with a useful result.
Proposition 2.4 (Proposition 14.4 i) of [2]). Let X be an abelian variety over k with a polarization
A: X — Xt Then |Aut(X,\)| < cc.
Proof. Let a be an automorphism of X that respects the polarization . This means that afoloa = ),
or in other words afa = idy. In particular, trace(a’a) = 2¢. This shows that

Aut(X,\) € End(X) N {a € End(X) ® R | trace(a’a) = 2g}.
But End(X) is a free Z-module and thus a discrete subset of the compact End(X) ®R (a product of
spaces of matrices with coefficients in real division algebras (2.2))). The condition trace(afa) = 2g
being a closed condition, we conclude that Aut(X, \) is finite. O

3. FROBENIUS

Let m € N and let p be a prime. In this section we specialize to the case k = F, for ¢ = p™. We fix
an algebraic closure F, O F,.

3.1. Frobenius morphisms.
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3.1.1. The absolute Frobenius. Let X be an Fj,-scheme. The absolute Frobenius is the morphism of
Fp-schemes
Frobx: X — X

given by the identity on topological spaces and by raising to the p-th power on sections. More
precisely, the map on sheaves Frobf(: Ox —> Ox takes a section s to sP. If f: X — Y is a
morphism of [F,-schemes, then

(3.1) Froby o f = f o Froby
because f7(sP) = f#(s)P for any section s of Oy-.

3.1.2. The relative Frobenius. Let S be an F,-scheme and let X be an S-scheme with structure
morphism 7: X — S. Define X®) := X XFrobg O With projection map W': X® — X. Using
and the universal property of fiber products, there is a unique morphism of S-schemes
Fxjs: X — X (P) such that W o Fy /s = Frobx. This morphism is called the relative Frobenius.

To fix ideas, consider S = Spec(R) for some Fp-algebra R and let X = Spec(R[t1,...,tn]/I) for
some ideal I = (f1,..., fn) C R[t1,...,tm]. Note that Frobg: Spec(R) — Spec(R) is the morphism
induced by the map of Fj-algebras p: R — R, r — rP. Let fi(p ) denote the polynomial f; but with
coefficients raised to the p-th power and let 1) := (fl(p), e T(Lp)). Then

X® = X Xpyong S = Spec(Rlt1, . .., tm]/I @y R) = Spec(R[t1, . .., tm]/IP)
and the relative Frobenius is induced by the map of R-algebras
Rlt1, ..t/ TP — Rlty, ... tm) /I,  Te7, b th.
On the other hand, the absolute Frobenius Frobx is induced by the map of [Fj-algebras
Rlt1,... tm]/I — R[t1,...,tm]/I, re Pt
FInally, the morphism W: X® — X is induced by the map
Rlt1, ... tm]/I — R[t1, ... tm]/ 1P, r—s P, it

3.1.3. The geometric Frobenius. Let S = Spec(F,) with ¢ = p™. The geometric Frobenius is the
morphism of S-schemes 7x := Frob’y given by the m-th iterated power of the absolute Frobenius. It
is a morphism of S-schemes because Frobd’ = idg. It can also be described by iterating the absolute
Frobenius m times

(32) X — F)”?‘/Fq — FX(pm_l)/Fq o FX(pm—Q)/Fq ©0...0 FX(p)/]Fq o FX/Fq

3.2. The roots of geometric Frobenius. Let X be an abelian variety of dimension g over
F,. If F; C K is a field extension, then 7mx acts on X (K) by taking (x: Spec(K) — X) to
TX 0T = T O Mgpee(k)- I We consider a closed immersion X — PV for some N € N, then in
projective coordinates we have

mx([zo: ... an]) = [2d: ..o 2]

Let n € N and consider the extension F, C Fyn C Fq of degree n. We then have

X(Fgn) = {z € X(Fy) | % (2) = }.

Because 0 € X (F,), we have 7x(0) = 0 and 7x is a endomorphism. It commutes with all other
endomorphisms by (3.1)), so it lies in the center of EndO(X ). Define the Verschiebung map

(3.3) Vx/p, = Fxipp,: XP — X,
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We then have
(34) Vx/r, © Fxr, = [Plx and Fxr, o Vxr, = [Plxw
(see the proof of [I, Proposition 7.34]). In particular, F' x/F, 1s an isogeny of degree pJ. It follows

from (3.2) that mx is an isogeny of degree ¢9. We let fx denote its characteristic polynomial as

defined in §2.1.3] We recall that it is a monic polynomial fx(t) € Z[t] (by property (b) of §2.1.3) of
degree 2g satisfying fx(n) = deg([n]x — 7wx) for all n € Z.

Lemma 3.1. Suppose that X is elementary (i.e., a power of a simple abelian variety). Then
Q[rx] € End®(X) is a number field and fx is a power of the minimal polynomial min(rx;Q) of
wx over Q.

Proof. Suppose that X = Y™ with Y a simple abelian variety. Then D = End’ (Y) is a division
algebra and End’(X) = M,,(D). Observe that Q[rx] lies in the center {diag(z) € M,,(D) |
z € Z(D)} of End®(X) = M,,(D), which is a field. Since fx € Z[t] is monic of degree 2g with
fx(mx) =0, we see that w}l € Q[rx] and we deduce that Q[rx] is a field with [Q[rx]: Q] < 2g.

Let a € Q be a root of fx. Let £ # p be a prime and recall that Py, (t) = det(t-id — Vi(rx)) = fx
(2.5). Thus « is an eigenvalue of Vy(mx). Let g := min(rx;Q). Then g(a) is an eigenvalue of
g(Va(rx)). But g(Vi(mx)) = Vi(g(mx)) = 0 so g(a) = 0. Hence, all roots of fx are roots of g. This
implies that fx divides a power of g. By irreducibility of g, this forces fx to equal a power of g. [

Theorem 3.2. Let X be an abelian variety of dimension g over Fy. Then
i) Every complex oot o of fx has absolute value |a| = |/g.

i) If a is a complex root of fx, then so it & = q/a and they occur with the same multiplicity.
If oo = \/q or oo = —./q occurs as a root, then it occurs with even multiplicity.

Proof. i) It suffices to treat the case where X is simple. Indeed, by , X is isogenous over k to a
product X7 x ... x X, of simple abelian varieties. If £ # p, then at the level of Tate modules this
isogeny gives an isomorphism of V;(X) with the direct sum of the V;(X;). This isomorphism respects
the various geometric Frobenii. Thus, in terms of characteristic polynomials we get a decomposition

Pé,ﬂ'x = PZ,ﬂxl cee Pf,frxma
and consequently a decomposition fy = fx, ... fx,,-

Suppose now that X is a simple abelian variety over Fy and let \: X — X ¢ be a polarization with

Rosati involution {. We claim that mx o 7'(;( = [¢]x. Indeed, we have

rx ol torbio=ATtomyionl oA
by (3.1). It thus suffices to show that my: o % = [¢]x¢. Recall from (3.3) that % R, = Vxt/p, and
thus, by using (3.4) and (3.2]), we obtain

Txt O7T§( = F;{nt/ﬂrq (e] V)?Lt/]Fq = [pm]

xt = [q]xt-

By Lemma and the simplicity of X, Q[rx] is a number field and fx = min(nx;Q)™ for
some m € N. It follows that the complex roots of fx are the ¢(mx) for all complex embeddings
t: Q[rx]| — C. Since 77& = q/mx, the Rosati involution preserves Q[rx]. Since fx = min(mwx;Q)™,
we have trace(r) = mTrgr,)/q(7) for all z € Q[rx]. It follows from Theorem [2.2| that Q[rx] is a
number field with an involution f such that the quadratic form Q[rx] — Q,x — Trgpry | o(za) is
positive-definite. This places strong restrictions on Q[rx]: in fact, Q[rx] is either

(a) totally real with T = id,
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(b) a CM-field with «(zt) = 1(z) for all # € Q[rx] and all complex embeddings ¢: Q[rx] < C.

In any case, we obtain |¢(7x) 2 = L(Trxﬂ';() =q.

We now justify the above classification (we refer to [3, p. 193-194] for more details). Let F' be the
subfield of Q[rx] fixed by . Suppose first that Q[rx] = F. Then { = id and Trgp,]/q(z?) > 0
for all 0 # x € Q[rx], i.e., Q[rx] is a number field with positive-definite trace form. Let v be an
infinite place and consider the completion Q[rx],. Then Trg ), /&(22) > 0 for all 0 # z, € Q[mx],
excludes Q[rx], = C. Thus, all infinite places are real and we are in case (a). Suppose next that
Q[rx] # F. Then Q[rx] = F(\/a) for some a € F and (y/a) = —y/a. By the same argument as in
the previous case, the subfield F is totally real. For all x € Q[rx], Trgpry)/@(7) coincides with the
trace Tr(z) of left multiplication by =z on Q[rx]. Now, Q[rx] is a 2-dimensional F-algebra with a
positive involution in the sense that Tr(xx') > 0 for all 0 # = € Q[rx]. It follows that the extension
of T to Q[rx] ®F R is a positive involution. Let v be an archimedean place of F' (necessarily real).
Then Q[rx] ®, R is a 2-dimensional R-algebra with a positive involution. Note that Q[rx]| ®, R is
either R? or C. However, the standard involution on R? is not positive since for a = (z,y) € R?,
Tr(a@) = 2zy. This excludes Q[rx] ®, R = R? and we are in case (b).

i1) If \/q or —,/q occurs as a root, then we are in case (a) above, i.e., Q[rx] is totally real and /g

and —,/q are the only possible roots. Hence fx(t) = (t — /g)"(t + /)* " and fx(0) = (—1)"¢.
But fx(0) = deg(fx) = ¢ by definition of the characteristic polynomial, hence n is even. O
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