ROSATI AND FROBENIUS

DAVID T.-B. G. LILIENFELDT

ABSTRACT. These are the notes of two talks I gave at the Honda–Tate seminar at the Hebrew University of Jerusalem on April 30, 2023 and May 7, 2023. Let q be a power of a prime number. Given an abelian variety over a finite field with q elements, we define the geometric Frobenius endomorphism and show that its characteristic polynomial is a q-Weil polynomial. This relies crucially on the positivity of the Rosati involution, a result whose proof we also give. These expository notes are entirely based on the book [1] and contain no novel mathematical contributions on my part, except for the mistakes I may have introduced. I thank Shaul Zemel for spotting some of those mistakes in a previous version.

1. INTRODUCTION: THE HONDA-TATE THEOREM

We begin by recalling necessary notations, conventions, facts, and definitions about abelian varieties:

- k: arbitrary field with fixed algebraic closure k
- Variety/k: separated k-scheme of finite type that is geometrically integral
- Curve/k: 1-dimensional variety/k
- Abelian variety/k: complete group variety/k
- Elliptic curve/k: 1-dimensional abelian variety/k
- Dual of abelian variety X/k: $X^t := \operatorname{Pic}_{X/k}^0$ connected component of the identity of the Picard scheme
- Poincaré bundle: universal line bundle P_X on $X \times \operatorname{Pic}_{X/k}$ (trivialized along the zero section $0 \times \operatorname{Pic}_{X/k}$) restricted to $X \times X^t$
- Isogeny of abelian varieties/k: homomorphism $f: X \longrightarrow Y$ such that $\dim(X) = \dim(Y)$ and $\ker(f)$ is a finite group scheme
- Polarization of abelian variety X/k: symmetric isogeny $\lambda: X \longrightarrow X^t$ such that $(id, \lambda)^* P_X$ is an ample line bundle on X
- $q = p^m$: power of a prime number
- q-Weil number: algebraic integer π such that $|\iota(\pi)| = \sqrt{q}$ for all complex embeddings $\iota: \mathbb{Q}[\pi] \hookrightarrow \mathbb{C}$
- Conjugacy: two q-Weil numbers are conjugate if their minimal polynomials over \mathbb{Q} are equal.

The goal of the seminar is to prove the following result:

Date: May 8, 2023.

Theorem 1.1 (Honda–Tate). The map that assigns to a simple abelian variety X over \mathbb{F}_q its geometric Frobenius endomorphism π_X gives a bijection of sets

{isogeny classes of simple abelian varieties/ \mathbb{F}_q } $\xrightarrow{\sim}$ {conjugacy classes of q – Weil numbers}.

The injectivity of the map in Theorem 1.1 is a consequence of Tate's theorem [1, §16.3], while the surjectivity is due to Honda [1, §16.5]. The proof will be covered in the next lectures. The goal of today is to define the geometric Frobenius endomorphism of an abelian variety over \mathbb{F}_q and explain in what sense this endomorphism is a q-Weil number. We follow [1, §16.1].

2. Rosati

A crucial ingredient in the proof that "the geometric Frobenius is a q-Weil number" is the positivity of the Rosati involution for polarized abelian varieties. We therefore begin by proving this result over an arbitrary field k.

2.1. The endomorphism algebra. Let X be an abelian variety of dimension g over k. Let $\operatorname{End}(X)$ denote the ring of endomorphism of X (defined over k) and let $\operatorname{End}^{0}(X) := \operatorname{End}(X) \otimes \mathbb{Q}$ denote the associated endomorphism algebra.

2.1.1. Poincaré splitting. The abelian variety X is isogenous over k to a product of powers of simple abelian varieties

(2.1)
$$X \sim_k Y_1^{m_1} \times \ldots \times Y_n^{m_n},$$

such that $Y_i \not\sim_k Y_j$ for $i \neq j$ [1, Corollary 12.5]. A homomorphism between two simple abelian varieties is either trivial or an isogeny. In particular, $D_i := \text{End}^0(Y_i)$ is a division algebra for each i, and we have

(2.2)
$$\operatorname{End}^{0}(X) = M_{m_{1}}(D_{1}) \times \ldots \times M_{m_{n}}(D_{n}).$$

2.1.2. Endomorphism algebras of Tate modules. For any prime $\ell \neq \operatorname{char}(k)$, we have the Tate module $T_{\ell}(X) := \lim_{\leftarrow} X[\ell^n](\bar{k}) \simeq \mathbb{Z}_{\ell}^{2g}$ and the associated \mathbb{Q}_{ℓ} -vector space $V_{\ell}(X) := T_{\ell}(X) \otimes \mathbb{Q}_{\ell} \simeq \mathbb{Q}_{\ell}^{2g}$. Any endomorphism $f \in \operatorname{End}(X)$ preserves torsion points and thus induces endomorphisms $T_{\ell}(f) \in \operatorname{End}_{\mathbb{Z}_{\ell}}(T_{\ell}(X))$ and $V_{\ell}(f) \in \operatorname{End}_{\mathbb{Q}_{\ell}}(V_{\ell}(X))$. The resulting map

 $\operatorname{End}(X)\otimes \mathbb{Z}_{\ell}\longrightarrow \operatorname{End}_{\mathbb{Z}_{\ell}}(T_{\ell}(X))$

is injective with torsion-free cokernel [1, Theorem 12.10]. As a consequence, End(X) is a free \mathbb{Z} -module of rank $\leq 4g^2$.

2.1.3. Characteristic polynomial. Associated to an endomorphism $f \in \text{End}(X)$ there is a unique monic polynomial $P_f(t) \in \mathbb{Q}[t]$ of degree 2g satisfying the property

(2.3)
$$P_f(n) := \deg([n]_X - f), \text{ for all } n \in \mathbb{Z}.$$

See [1, Proposition 12.15] for a justification of the existence of such a polynomial. The uniqueness is clear since polynomials only have finitely many zeros. The polynomial P_f is called the *characteristic polynomial* of f.

If $f \in \text{End}^0(X)$, then we choose $n \in \mathbb{Z}$ such that $nf \in \text{End}(X)$ and define

$$\deg(f) := n^{-2g} \deg(nf) \qquad \text{and} \qquad P_f(t) := n^{-2g} P_{nf}(nt)$$

Then $P_f(t) \in \mathbb{Q}[t]$ is a monic polynomial of degree 2g satisfying (2.4) $P_f(r) := \deg(r - f)$, for all $r \in \mathbb{Q}$, where r - f is interpreted as an element of $\operatorname{End}^{0}(X)$.

Definition 2.1. Following [1, Definition 12.16], we define the trace of $f \in \text{End}^0(X)$ to be

$$\operatorname{trace}(f) = -(2g-1)$$
th coefficient of P_f .

For all $\ell \neq \operatorname{char}(k)$, $P_f(t)$ is equal to the characteristic polynomial $P_{\ell,f} \in \mathbb{Q}_\ell[t]$ of $V_\ell(f)$ acting on the 2*g*-dimensional \mathbb{Q}_ℓ -vector space $V_\ell(X)$ [1, Theorem 12.18], i.e.,

(2.5)
$$P_f(t) = P_{\ell,f}(t) = \det(t \cdot \operatorname{id} - V_{\ell}(f)).$$

As a consequence, we have

- (a) $P_f(f) = 0$ [1, Corollary 12.19]
- (b) $P_f \in \mathbb{Z}[t]$ for all $f \in \text{End}(X)$ [1, Corollary 12.20]
- (c) $\operatorname{trace}(fg) = \operatorname{trace}(gf)$, for all $f, g \in \operatorname{End}^0(X)$ [1, Corollary 12.21].

2.2. The Rosati involution. Let X be an abelian variety over k and let $\lambda: X \longrightarrow X^t$ be a polarization. The Rosati involution is an involution of the endomorphism algebra

$$\dagger \colon \operatorname{End}^0(X) \longrightarrow \operatorname{End}^0(X),$$

which depends on the polarization λ . If $f \in \text{End}^0(X)$, then

$$f^{\dagger} := \lambda^{-1} \circ f^t \circ \lambda,$$

where $f^t: X^t \longrightarrow X^t$ is the dual homomorphism and λ^{-1} makes sense after tensoring with \mathbb{Q} , i.e. in Hom $(X^t, X) \otimes \mathbb{Q}$, since λ is an isogeny. Note that \dagger is an involution by symmetry of λ .

2.2.1. Characteristic polynomial. We clearly have $\deg(f) = \deg(f^{\dagger})$. Moreover, if $n \in \mathbb{Z}$, then

$$[n]_X^{\dagger} = \lambda^{-1} \circ [n]_X^t \circ \lambda = \lambda^{-1} \circ [n]_{X^t} \circ \lambda = \lambda^{-1} \circ \lambda \circ [n]_X = [n]_X.$$

As a consequence, for all $n \in \mathbb{Z}$, we have

$$P_f(n) = \deg([n]_X - f) = \deg(([n]_X - f)^{\dagger}) = \deg([n]_X^{\dagger} - f^{\dagger}) = \deg([n]_X - f^{\dagger}) = P_{f^{\dagger}}(n).$$

It follows that

(2.6)
$$P_f = P_{f^{\dagger}}$$
 and $\operatorname{trace}(f) = \operatorname{trace}(f^{\dagger}).$

2.2.2. Polarizations and line bundles. Let L be a line bundle on X. Consider the associated Mumford bundle

$$\Lambda(L) := m^*L \otimes \mathrm{pr}_1^*L^{-1} \otimes \mathrm{pr}_2^*L^{-1}$$

on $X \times X$, where $m: X \times X \longrightarrow X$ is the group operation map (i.e., m(x, y) = x + y). Viewing $\Lambda(L)$ as a family of line bundles on the first copy of X parametrized by the second copy of X gives rise to a map

$$\varphi_L \colon X \longrightarrow X^t, \qquad x \mapsto [t_x^* L \otimes L^{-1}].$$

This is a homomorphism by the Theorem of the Cube [1, Theorem 2.7]. Moreover, it is symmetric (i.e., $\lambda^t = \lambda$) by symmetry of the construction. If L is ample (i.e., there exists $n, N \in \mathbb{N}$ and a closed immersion $\pi: X \longrightarrow \mathbb{P}^N$ such that $L^n = \pi^* \mathcal{O}(1)$), then φ_L is a polarization on X. Conversely, a homomorphism $\lambda: X \longrightarrow X^t$ is a polarization if and only if there exists a finite separable extension $k \subset K$ and an ample line bundle L on X_K such that $\varphi_L = \lambda_K$ [1, Corollary 11.5].

In the proof of the next result we will use the fact that any line bundle L is isomorphic to $\mathcal{O}_X(D)$ for some Weil divisor D (determined up to linear equivalence). Here, $\mathcal{O}_X(D)$ is the line bundle whose space of global sections is given by

$$H^0(X, \mathcal{O}_X(D)) = \{ f \in k(X)^{\times} \mid \operatorname{div}(f) + D \ge 0 \}.$$

Concretely, D is obtained by taking any global section of L and taking its vanishing locus. The map $L \mapsto c_1(L) := [D]$ establishes the well-known isomorphism

$$c_1: \operatorname{Pic}(X) \simeq \operatorname{CH}^1(X)$$

between isomorphism classes of line bundles on X and the codimension 1 Chow group of Weil divisors modulo ratonal (i.e., linear) equivalence. The element $c_1(L)$ is the first Chern class, which explains the notation. We recall that a line bundle L is ample if and only if L is non-degenerate (i.e., φ_L is an isogeny) and effective (i.e., $L \simeq \mathcal{O}_X(D)$ for some effective divisor D) [1, Proposition 2.22].

The Chow ring $CH(X) = \bigoplus_{i=0}^{g} CH^{i}(X)$ of algebraic cycles modulo rational equivalence is graded by codimension with product given by the intersection product

$$\operatorname{CH}^{i}(X) \times \operatorname{CH}^{j}(X) \longrightarrow \operatorname{CH}^{i+j}(X), \qquad ([Z_{1}], [Z_{2}]) \mapsto [Z_{1} \cdot Z_{2}],$$

for representatives Z_1 and Z_2 that intersect transversally. If D is a Weil divisor, so that $[D] \in CH^1(X)$, then we abusively write D^g for deg $([D]^g) \in \mathbb{Z}$, the degree of the g-fold self-intersection $[D]^g \in CH^g(X)$. Similarly, if D' is another Weil divisor, we write $D^{g-1} \cdot D'$ for deg $([D]^{g-1} \cdot [D'])$. In this notation, if $L \simeq \mathcal{O}_X(D)$, then the Riemann–Roch theorem for abelian varieties [1, Theorem 9.11] can be stated as the equality

(2.7)
$$\deg(\varphi_L) = \left(\frac{c_1(L)^g}{g!}\right)^2 = \left(\frac{D^g}{g!}\right)^2$$

2.2.3. Positivity of the Rosati involution.

Theorem 2.2 (Theorem 12.26 of [1]). Let X be an abelian variety of dimension g over k with a polarization $\lambda: X \longrightarrow X^t$ and associated Rosati involution \dagger .

i) If $\lambda = \varphi_L$ for some ample line bundle $L = \mathcal{O}_X(D)$ and $f \in \text{End}(X)$, then

$$\operatorname{trace}(ff^{\dagger}) = 2g \frac{D^{g-1} \cdot f^* D}{D^g}.$$

ii) The bilinear pairing

$$\operatorname{End}^0(X) \times \operatorname{End}^0(X) \longrightarrow \mathbb{Q}, \qquad (f,g) \mapsto \operatorname{trace}(fg^{\dagger})$$

is symmetric and positive-definite.

Remark 2.3. The above formula i) makes sense for L ample, since $D^g \neq 0$ in this case. This follows from Riemann–Roch (2.7) and the fact that L is non-degenerate, i.e., φ_L is an isogeny, which implies that $\deg(\varphi_L) \neq 0$.

Proof. By property (c) of the trace discussed in §2.1.3, we have $\operatorname{trace}(ff^{\dagger}) = \operatorname{trace}(f^{\dagger}f)$. In particular, $\operatorname{trace}(ff^{\dagger})$ is the (2g-1)th coefficient of the characteristic polynomial $P_{f\dagger f}(t) \in \mathbb{Q}[t]$ by Definition 2.1. By (2.4), for all $n \in \mathbb{Z}$ we have

$$\deg(\varphi_L)P_{f^{\dagger}f}(n) = \deg(\varphi_L)\deg([n]_X - \lambda^{-1}f^t\lambda f)$$
$$= \deg(n\varphi_L - f^t\varphi_L f)$$
$$= \deg(\varphi_{L^n} - \varphi_{f^*L})$$
$$= \deg(\varphi_{L^n\otimes f^*L^{-1}}).$$

Applying Riemann–Roch (2.7) to both sides of this equality yields

$$(c_1(L)^g)^2 P_{f^{\dagger}f}(n) = (c_1(L^n \otimes f^*L^{-1})^g)^2 = ((nc_1(L) - c_1(f^*L))^g)^2.$$

Consider the polynomial $Q(t) = \sum_{j=0}^{g} b_j t^j \in \mathbb{Q}[t]$ of degree g with coefficients defined by

$$b_j := \binom{g}{j} (-1)^{g-j} (c_1(L)^j \cdot c_1(f^*L)^{g-j}).$$

Then, for all $n \in \mathbb{Z}$, we have

$$Q(n) = (nc_1(L) - c_1(f^*L))^g.$$

We deduce the equality of polynomials

$$(c_1(L)^g)^2 P_{f^{\dagger}f}(t) = Q(t)^2.$$

Comparing the (2g-1)th coefficients yields

$$(c_1(L)^g)^2$$
trace $(f^{\dagger}f) = 2gc_1(L)^g(c_1(L)^{g-1} \cdot c_1(f^*L)),$

and i) follows since $c_1(f^*L) = f^*c_1(L) = f^*D$.

The pairing in *ii*) is symmetric by (2.6). To see that it is positive-definite, it is enough to base-change to \bar{k} . Then there exists an ample line bundle $L \simeq \mathcal{O}_X(D)$ such that $\lambda = \varphi_L$. We need to prove that for $0 \neq f \in \text{End}^0(X)$, trace $(ff^{\dagger}) > 0$. Because the trace is homogeneous of degree 2, it is enough to prove this for $f \in \text{End}(X)$. We may then apply *i*). According to [3, §21 Proof of Theorem 1], for any effective divisor S and any ample divisor T, we have $T^{g-1} \cdot S > 0$. In particular, $D^g > 0$, so by *i*) it suffices to prove that f^*D is effective because then $D^{g-1} \cdot f^*D > 0$. For a proof that f^*D is effective, we refer to [1, End of proof of Lemma 12.9]. \Box

We end this section with a useful result.

Proposition 2.4 (Proposition 14.4 i) of [2]). Let X be an abelian variety over k with a polarization $\lambda: X \longrightarrow X^t$. Then $|\operatorname{Aut}(X, \lambda)| < \infty$.

Proof. Let α be an automorphism of X that respects the polarization λ . This means that $\alpha^t \circ \lambda \circ \alpha = \lambda$, or in other words $\alpha^{\dagger} \alpha = \operatorname{id}_X$. In particular, trace $(\alpha^{\dagger} \alpha) = 2g$. This shows that

$$\operatorname{Aut}(X,\lambda) \subset \operatorname{End}(X) \cap \{\alpha \in \operatorname{End}(X) \otimes \mathbb{R} \mid \operatorname{trace}(\alpha^{\dagger}\alpha) = 2g\}.$$

But $\operatorname{End}(X)$ is a free \mathbb{Z} -module and thus a discrete subset of the compact $\operatorname{End}(X) \otimes \mathbb{R}$ (a product of spaces of matrices with coefficients in real division algebras (2.2)). The condition $\operatorname{trace}(\alpha^{\dagger}\alpha) = 2g$ being a closed condition, we conclude that $\operatorname{Aut}(X, \lambda)$ is finite. \Box

3. Frobenius

Let $m \in \mathbb{N}$ and let p be a prime. In this section we specialize to the case $k = \mathbb{F}_q$ for $q = p^m$. We fix an algebraic closure $\overline{\mathbb{F}}_q \supset \mathbb{F}_q$.

3.1. Frobenius morphisms.

3.1.1. The absolute Frobenius. Let X be an \mathbb{F}_p -scheme. The absolute Frobenius is the morphism of \mathbb{F}_p -schemes

$$\operatorname{Frob}_X \colon X \longrightarrow X$$

given by the identity on topological spaces and by raising to the *p*-th power on sections. More precisely, the map on sheaves $\operatorname{Frob}_X^{\#} \colon \mathcal{O}_X \longrightarrow \mathcal{O}_X$ takes a section *s* to s^p . If $f \colon X \longrightarrow Y$ is a morphism of \mathbb{F}_p -schemes, then

because $f^{\#}(s^p) = f^{\#}(s)^p$ for any section s of \mathcal{O}_Y .

3.1.2. The relative Frobenius. Let S be an \mathbb{F}_p -scheme and let X be an S-scheme with structure morphism $\pi: X \longrightarrow S$. Define $X^{(p)} := X \times_{\operatorname{Frob}_S} S$ with projection map $W: X^{(p)} \longrightarrow X$. Using (3.1) and the universal property of fiber products, there is a unique morphism of S-schemes $F_{X/S}: X \longrightarrow X^{(p)}$ such that $W \circ F_{X/S} = \operatorname{Frob}_X$. This morphism is called the relative Frobenius.

To fix ideas, consider $S = \operatorname{Spec}(R)$ for some \mathbb{F}_p -algebra R and let $X = \operatorname{Spec}(R[t_1, \ldots, t_m]/I)$ for some ideal $I = (f_1, \ldots, f_n) \subset R[t_1, \ldots, t_m]$. Note that $\operatorname{Frob}_S \colon \operatorname{Spec}(R) \longrightarrow \operatorname{Spec}(R)$ is the morphism induced by the map of \mathbb{F}_p -algebras $\varphi \colon R \longrightarrow R$, $r \mapsto r^p$. Let $f_i^{(p)}$ denote the polynomial f_i but with coefficients raised to the p-th power and let $I^{(p)} := (f_1^{(p)}, \ldots, f_n^{(p)})$. Then

$$X^{(p)} = X \times_{\operatorname{Frob}_S} S = \operatorname{Spec}(R[t_1, \dots, t_m]/I \otimes_{\varphi} R) = \operatorname{Spec}(R[t_1, \dots, t_m]/I^{(p)})$$

and the relative Frobenius is induced by the map of R-algebras

$$R[t_1,\ldots,t_m]/I^{(p)} \longrightarrow R[t_1,\ldots,t_m]/I, \qquad r \mapsto r, \quad t_i \mapsto t_i^p.$$

On the other hand, the absolute Frobenius Frob_X is induced by the map of \mathbb{F}_p -algebras

$$R[t_1,\ldots,t_m]/I \longrightarrow R[t_1,\ldots,t_m]/I, \qquad r \mapsto r^p, \quad t_i \mapsto t_i^p.$$

Finally, the morphism $W: X^{(p)} \longrightarrow X$ is induced by the map

$$R[t_1,\ldots,t_m]/I \longrightarrow R[t_1,\ldots,t_m]/I^{(p)}, \quad r \longrightarrow r^p, \quad t_i \mapsto t_i.$$

3.1.3. The geometric Frobenius. Let $S = \operatorname{Spec}(\mathbb{F}_q)$ with $q = p^m$. The geometric Frobenius is the morphism of S-schemes $\pi_X := \operatorname{Frob}_X^m$ given by the m-th iterated power of the absolute Frobenius. It is a morphism of S-schemes because $\operatorname{Frob}_S^m = \operatorname{id}_S$. It can also be described by iterating the absolute Frobenius m times

(3.2)
$$\pi_X = F_{X/\mathbb{F}_q}^m = F_{X^{(p^{m-1})}/\mathbb{F}_q} \circ F_{X^{(p^{m-2})}/\mathbb{F}_q} \circ \dots \circ F_{X^{(p)}/\mathbb{F}_q} \circ F_{X/\mathbb{F}_q}.$$

3.2. The roots of geometric Frobenius. Let X be an abelian variety of dimension g over \mathbb{F}_q . If $\mathbb{F}_q \subset K$ is a field extension, then π_X acts on X(K) by taking $(x: \operatorname{Spec}(K) \longrightarrow X)$ to $\pi_X \circ x = x \circ \pi_{\operatorname{Spec}(K)}$. If we consider a closed immersion $X \longrightarrow \mathbb{P}^N$ for some $N \in \mathbb{N}$, then in projective coordinates we have

$$\pi_X([x_0:\ldots:x_N]) = [x_0^q:\ldots:x_N^q].$$

Let $n \in \mathbb{N}$ and consider the extension $\mathbb{F}_q \subset \mathbb{F}_{q^n} \subset \overline{\mathbb{F}}_q$ of degree n. We then have

$$X(\mathbb{F}_{q^n}) = \{ x \in X(\overline{\mathbb{F}}_q) \mid \pi_X^n(x) = x \}.$$

Because $0 \in X(\mathbb{F}_q)$, we have $\pi_X(0) = 0$ and π_X is a endomorphism. It commutes with all other endomorphisms by (3.1), so it lies in the center of $\operatorname{End}^0(X)$. Define the Verschiebung map

(3.3)
$$V_{X/\mathbb{F}_q} := F_{X^t/\mathbb{F}_q}^t \colon X^{(p)} \longrightarrow X.$$

We then have

(3.4)
$$V_{X/\mathbb{F}_q} \circ F_{X/\mathbb{F}_q} = [p]_X \quad \text{and} \quad F_{X/\mathbb{F}_q} \circ V_{X/\mathbb{F}_q} = [p]_{X^{(p)}}$$

(see the proof of [1, Proposition 7.34]). In particular, F_{X/\mathbb{F}_q} is an isogeny of degree p^g . It follows from (3.2) that π_X is an isogeny of degree q^g . We let f_X denote its characteristic polynomial as defined in §2.1.3. We recall that it is a monic polynomial $f_X(t) \in \mathbb{Z}[t]$ (by property (b) of §2.1.3) of degree 2g satisfying $f_X(n) = \deg([n]_X - \pi_X)$ for all $n \in \mathbb{Z}$.

Lemma 3.1. Suppose that X is elementary (i.e., a power of a simple abelian variety). Then $\mathbb{Q}[\pi_X] \subset \operatorname{End}^0(X)$ is a number field and f_X is a power of the minimal polynomial $\min(\pi_X; \mathbb{Q})$ of π_X over \mathbb{Q} .

Proof. Suppose that $X = Y^m$ with Y a simple abelian variety. Then $D = \text{End}^0(Y)$ is a division algebra and $\text{End}^0(X) = M_m(D)$. Observe that $\mathbb{Q}[\pi_X]$ lies in the center $\{\text{diag}(z) \in M_m(D) \mid z \in Z(D)\}$ of $\text{End}^0(X) = M_m(D)$, which is a field. Since $f_X \in \mathbb{Z}[t]$ is monic of degree 2g with $f_X(\pi_X) = 0$, we see that $\pi_X^{-1} \in \mathbb{Q}[\pi_X]$ and we deduce that $\mathbb{Q}[\pi_X]$ is a field with $[\mathbb{Q}[\pi_X]: \mathbb{Q}] \leq 2g$.

Let $\alpha \in \overline{\mathbb{Q}}$ be a root of f_X . Let $\ell \neq p$ be a prime and recall that $P_{\ell,\pi_X}(t) = \det(t \cdot \operatorname{id} - V_\ell(\pi_X)) = f_X$ (2.5). Thus α is an eigenvalue of $V_\ell(\pi_X)$. Let $g := \min(\pi_X; \mathbb{Q})$. Then $g(\alpha)$ is an eigenvalue of $g(V_\ell(\pi_X))$. But $g(V_\ell(\pi_X)) = V_\ell(g(\pi_X)) = 0$ so $g(\alpha) = 0$. Hence, all roots of f_X are roots of g. This implies that f_X divides a power of g. By irreducibility of g, this forces f_X to equal a power of g. \Box

Theorem 3.2. Let X be an abelian variety of dimension g over \mathbb{F}_q . Then

- i) Every complex root α of f_X has absolute value $|\alpha| = \sqrt{q}$.
- ii) If α is a complex root of f_X , then so it $\bar{\alpha} = q/\alpha$ and they occur with the same multiplicity. If $\alpha = \sqrt{q}$ or $\alpha = -\sqrt{q}$ occurs as a root, then it occurs with even multiplicity.

Proof. i) It suffices to treat the case where X is simple. Indeed, by (2.1), X is isogenous over k to a product $X_1 \times \ldots \times X_m$ of simple abelian varieties. If $\ell \neq p$, then at the level of Tate modules this isogeny gives an isomorphism of $V_{\ell}(X)$ with the direct sum of the $V_{\ell}(X_i)$. This isomorphism respects the various geometric Frobenii. Thus, in terms of characteristic polynomials we get a decomposition

$$P_{\ell,\pi_X} = P_{\ell,\pi_{X_1}} \dots P_{\ell,\pi_{X_m}},$$

and consequently a decomposition $f_X = f_{X_1} \dots f_{X_m}$.

Suppose now that X is a simple abelian variety over \mathbb{F}_q and let $\lambda \colon X \longrightarrow X^t$ be a polarization with Rosati involution \dagger . We claim that $\pi_X \circ \pi_X^{\dagger} = [q]_X$. Indeed, we have

$$\pi_X \circ \lambda^{-1} \circ \pi_X^t \circ \lambda = \lambda^{-1} \circ \pi_X^t \circ \pi_X^t \circ \lambda$$

by (3.1). It thus suffices to show that $\pi_{X^t} \circ \pi_X^t = [q]_{X^t}$. Recall from (3.3) that $F_{X/\mathbb{F}_q}^t = V_{X^t/\mathbb{F}_q}$ and thus, by using (3.4) and (3.2), we obtain

$$\pi_{X^t} \circ \pi_X^t = F_{X^t/\mathbb{F}_q}^m \circ V_{X^t/\mathbb{F}_q}^m = [p^m]_{X^t} = [q]_{X^t}.$$

By Lemma 3.1 and the simplicity of X, $\mathbb{Q}[\pi_X]$ is a number field and $f_X = \min(\pi_X; \mathbb{Q})^m$ for some $m \in \mathbb{N}$. It follows that the complex roots of f_X are the $\iota(\pi_X)$ for all complex embeddings $\iota: \mathbb{Q}[\pi_X] \hookrightarrow \mathbb{C}$. Since $\pi_X^{\dagger} = q/\pi_X$, the Rosati involution preserves $\mathbb{Q}[\pi_X]$. Since $f_X = \min(\pi_X; \mathbb{Q})^m$, we have trace $(x) = m \operatorname{Tr}_{\mathbb{Q}[\pi_X]/\mathbb{Q}}(x)$ for all $x \in \mathbb{Q}[\pi_X]$. It follows from Theorem 2.2 that $\mathbb{Q}[\pi_X]$ is a number field with an involution \dagger such that the quadratic form $\mathbb{Q}[\pi_X] \longrightarrow \mathbb{Q}, x \mapsto \operatorname{Tr}_{\mathbb{Q}[\pi_X]/\mathbb{Q}}(xx^{\dagger})$ is positive-definite. This places strong restrictions on $\mathbb{Q}[\pi_X]$: in fact, $\mathbb{Q}[\pi_X]$ is either

(a) totally real with $\dagger = id$,

(b) a CM-field with $\iota(x^{\dagger}) = \overline{\iota(x)}$ for all $x \in \mathbb{Q}[\pi_X]$ and all complex embeddings $\iota : \mathbb{Q}[\pi_X] \hookrightarrow \mathbb{C}$. In any case, we obtain $|\iota(\pi_X)|^2 = \iota(\pi_X \pi_X^{\dagger}) = q$.

We now justify the above classification (we refer to [3, p. 193-194] for more details). Let F be the subfield of $\mathbb{Q}[\pi_X]$ fixed by \dagger . Suppose first that $\mathbb{Q}[\pi_X] = F$. Then $\dagger = \operatorname{id}$ and $\operatorname{Tr}_{\mathbb{Q}[\pi_X]/\mathbb{Q}}(x^2) > 0$ for all $0 \neq x \in \mathbb{Q}[\pi_X]$, i.e., $\mathbb{Q}[\pi_X]$ is a number field with positive-definite trace form. Let v be an infinite place and consider the completion $\mathbb{Q}[\pi_X]_v$. Then $\operatorname{Tr}_{\mathbb{Q}[\pi_X]_v/\mathbb{R}}(x_v^2) > 0$ for all $0 \neq x_v \in \mathbb{Q}[\pi_X]_v$ excludes $\mathbb{Q}[\pi_X]_v = \mathbb{C}$. Thus, all infinite places are real and we are in case (a). Suppose next that $\mathbb{Q}[\pi_X] \neq F$. Then $\mathbb{Q}[\pi_X] = F(\sqrt{\alpha})$ for some $\alpha \in F$ and $(\sqrt{\alpha})^{\dagger} = -\sqrt{\alpha}$. By the same argument as in the previous case, the subfield F is totally real. For all $x \in \mathbb{Q}[\pi_X]$, $\operatorname{Tr}_{\mathbb{Q}[\pi_X]/\mathbb{Q}}(x)$ coincides with the trace $\operatorname{Tr}(x)$ of left multiplication by x on $\mathbb{Q}[\pi_X]$. Now, $\mathbb{Q}[\pi_X]$ is a 2-dimensional F-algebra with a positive involution in the sense that $\operatorname{Tr}(xx^{\dagger}) > 0$ for all $0 \neq x \in \mathbb{Q}[\pi_X]$. It follows that the extension of \dagger to $\mathbb{Q}[\pi_X] \otimes_v \mathbb{R}$ is a positive involution. Let v be an archimedean place of F (necessarily real). Then $\mathbb{Q}[\pi_X] \otimes_v \mathbb{R}$ is a 2-dimensional \mathbb{R} -algebra with a positive involution. Note that $\mathbb{Q}[\pi_X] \otimes_v \mathbb{R}$ is either \mathbb{R}^2 or \mathbb{C} . However, the standard involution on \mathbb{R}^2 is not positive since for $\alpha = (x, y) \in \mathbb{R}^2$, $\operatorname{Tr}(\alpha\bar{\alpha}) = 2xy$. This excludes $\mathbb{Q}[\pi_X] \otimes_v \mathbb{R} = \mathbb{R}^2$ and we are in case (b).

ii) If \sqrt{q} or $-\sqrt{q}$ occurs as a root, then we are in case (a) above, i.e., $\mathbb{Q}[\pi_X]$ is totally real and \sqrt{q} and $-\sqrt{q}$ are the only possible roots. Hence $f_X(t) = (t - \sqrt{q})^n (t + \sqrt{q})^{2g-n}$ and $f_X(0) = (-1)^n q^g$. But $f_X(0) = \deg(f_X) = q^g$ by definition of the characteristic polynomial, hence n is even. \Box

References

- [1] Bas Edixhoven, Ben Moonen, Gerard van der Geer, Abelian varieties, http://van-der-geer.nl/~gerard/AV.pdf
- [2] James S. Milne, Abelian varieties, https://www.jmilne.org/math/CourseNotes/AV.pdf
- [3] David Mumford, Abelian varieties, https://wstein.org/edu/Fall2003/252/references/mumford-abvar/ Mumford-Abelian_Varieties.pdf

EINSTEIN INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM, ISRAEL

E-mail address: davidterborchgram.lilienfeldt@mail.huji.ac.il