
ROSATI AND FROBENIUS

DAVID T.-B. G. LILIENFELDT

Abstract. These are the notes of two talks I gave at the Honda–Tate seminar at the Hebrew
University of Jerusalem on April 30, 2023 and May 7, 2023. Let q be a power of a prime number.
Given an abelian variety over a finite field with q elements, we define the geometric Frobenius
endomorphism and show that its characteristic polynomial is a q-Weil polynomial. This relies
crucially on the positivity of the Rosati involution, a result whose proof we also give. These
expository notes are entirely based on the book [1] and contain no novel mathematical contributions
on my part, except for the mistakes I may have introduced. I thank Shaul Zemel for spotting some
of those mistakes in a previous version.

1. Introduction: the Honda-Tate theorem

We begin by recalling necessary notations, conventions, facts, and definitions about abelian varieties:

• k: arbitrary field with fixed algebraic closure k̄

• Variety/k: separated k-scheme of finite type that is geometrically integral

• Curve/k: 1-dimensional variety/k

• Abelian variety/k: complete group variety/k

• Elliptic curve/k: 1-dimensional abelian variety/k

• Dual of abelian variety X/k: Xt := Pic0X/k connected component of the identity of the

Picard scheme

• Poincaré bundle: universal line bundle PX on X × PicX/k (trivialized along the zero section

0× PicX/k) restricted to X ×Xt

• Isogeny of abelian varieties/k: homomorphism f : X −→ Y such that dim(X) = dim(Y )
and ker(f) is a finite group scheme

• Polarization of abelian variety X/k: symmetric isogeny λ : X −→ Xt such that (id, λ)∗PX
is an ample line bundle on X

• q = pm: power of a prime number

• q-Weil number: algebraic integer π such that |ι(π)| =
√
q for all complex embeddings

ι : Q[π] ↪→ C

• Conjugacy: two q-Weil numbers are conjugate if their minimal polynomials over Q are equal.

The goal of the seminar is to prove the following result:
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Theorem 1.1 (Honda–Tate). The map that assigns to a simple abelian variety X over Fq its
geometric Frobenius endomorphism πX gives a bijection of sets

{isogeny classes of simple abelian varieties/Fq}
∼−→ {conjugacy classes of q −Weil numbers}.

The injectivity of the map in Theorem 1.1 is a consequence of Tate’s theorem [1, §16.3], while the
surjectivity is due to Honda [1, §16.5]. The proof will be covered in the next lectures. The goal of
today is to define the geometric Frobenius endomorphism of an abelian variety over Fq and explain
in what sense this endomorphism is a q-Weil number. We follow [1, §16.1].

2. Rosati

A crucial ingredient in the proof that “the geometric Frobenius is a q-Weil number” is the positivity
of the Rosati involution for polarized abelian varieties. We therefore begin by proving this result
over an arbitrary field k.

2.1. The endomorphism algebra. Let X be an abelian variety of dimension g over k. Let
End(X) denote the ring of endomorphism of X (defined over k) and let End0(X) := End(X)⊗Q
denote the associated endomorphism algebra.

2.1.1. Poincaré splitting. The abelian variety X is isogenous over k to a product of powers of simple
abelian varieties

(2.1) X ∼k Y m1
1 × . . .× Y mn

n ,

such that Yi 6∼k Yj for i 6= j [1, Corollary 12.5]. A homomorphism between two simple abelian

varieties is either trivial or an isogeny. In particular, Di := End0(Yi) is a division algebra for each i,
and we have

(2.2) End0(X) = Mm1(D1)× . . .×Mmn(Dn).

2.1.2. Endomorphism algebras of Tate modules. For any prime ` 6= char(k), we have the Tate

module T`(X) := lim
←
X[`n](k̄) ' Z2g

` and the associated Q`-vector space V`(X) := T`(X) ⊗ Q` '

Q2g
` . Any endomorphism f ∈ End(X) preserves torsion points and thus induces endomorphisms

T`(f) ∈ EndZ`
(T`(X)) and V`(f) ∈ EndQ`

(V`(X)). The resulting map

End(X)⊗ Z` −→ EndZ`
(T`(X))

is injective with torsion-free cokernel [1, Theorem 12.10]. As a consequence, End(X) is a free
Z-module of rank ≤ 4g2.

2.1.3. Characteristic polynomial. Associated to an endomorphism f ∈ End(X) there is a unique
monic polynomial Pf (t) ∈ Q[t] of degree 2g satisfying the property

(2.3) Pf (n) := deg([n]X − f), for all n ∈ Z.
See [1, Proposition 12.15] for a justification of the existence of such a polynomial. The uniqueness is
clear since polynomials only have finitely many zeros. The polynomial Pf is called the characteristic
polynomial of f .

If f ∈ End0(X), then we choose n ∈ Z such that nf ∈ End(X) and define

deg(f) := n−2g deg(nf) and Pf (t) := n−2gPnf (nt).

Then Pf (t) ∈ Q[t] is a monic polynomial of degree 2g satisfying

(2.4) Pf (r) := deg(r − f), for all r ∈ Q,
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where r − f is interpreted as an element of End0(X).

Definition 2.1. Following [1, Definition 12.16], we define the trace of f ∈ End0(X) to be

trace(f) = −(2g − 1)th coefficient of Pf .

For all ` 6= char(k), Pf (t) is equal to the characteristic polynomial P`,f ∈ Q`[t] of V`(f) acting on
the 2g-dimensional Q`-vector space V`(X) [1, Theorem 12.18], i.e.,

(2.5) Pf (t) = P`,f (t) = det(t · id− V`(f)).

As a consequence, we have

(a) Pf (f) = 0 [1, Corollary 12.19]

(b) Pf ∈ Z[t] for all f ∈ End(X) [1, Corollary 12.20]

(c) trace(fg) = trace(gf), for all f, g ∈ End0(X) [1, Corollary 12.21].

2.2. The Rosati involution. Let X be an abelian variety over k and let λ : X −→ Xt be a
polarization. The Rosati involution is an involution of the endomorphism algebra

† : End0(X) −→ End0(X),

which depends on the polarization λ. If f ∈ End0(X), then

f † := λ−1 ◦ f t ◦ λ,

where f t : Xt −→ Xt is the dual homomorphism and λ−1 makes sense after tensoring with Q, i.e.
in Hom(Xt, X)⊗Q, since λ is an isogeny. Note that † is an involution by symmetry of λ.

2.2.1. Characteristic polynomial. We clearly have deg(f) = deg(f †). Moreover, if n ∈ Z, then

[n]†X = λ−1 ◦ [n]tX ◦ λ = λ−1 ◦ [n]Xt ◦ λ = λ−1 ◦ λ ◦ [n]X = [n]X .

As a consequence, for all n ∈ Z, we have

Pf (n) = deg([n]X − f) = deg(([n]X − f)†) = deg([n]†X − f
†) = deg([n]X − f †) = Pf†(n).

It follows that

(2.6) Pf = Pf† and trace(f) = trace(f †).

2.2.2. Polarizations and line bundles. Let L be a line bundle on X. Consider the associated Mumford
bundle

Λ(L) := m∗L⊗ pr∗1L
−1 ⊗ pr∗2L

−1

on X ×X, where m : X ×X −→ X is the group operation map (i.e., m(x, y) = x + y). Viewing
Λ(L) as a family of line bundles on the first copy of X parametrized by the second copy of X gives
rise to a map

ϕL : X −→ Xt, x 7→ [t∗xL⊗ L−1].
This is a homomorphism by the Theorem of the Cube [1, Theorem 2.7]. Moreover, it is symmetric
(i.e., λt = λ) by symmetry of the construction. If L is ample (i.e., there exists n,N ∈ N and a closed
immersion π : X −→ PN such that Ln = π∗O(1)), then ϕL is a polarization on X. Conversely, a
homomorphism λ : X −→ Xt is a polarization if and only if there exists a finite separable extension
k ⊂ K and an ample line bundle L on XK such that ϕL = λK [1, Corollary 11.5].
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In the proof of the next result we will use the fact that any line bundle L is isomorphic to OX(D)
for some Weil divisor D (determined up to linear equivalence). Here, OX(D) is the line bundle
whose space of global sections is given by

H0(X,OX(D)) = {f ∈ k(X)× | div(f) +D ≥ 0}.
Concretely, D is obtained by taking any global section of L and taking its vanishing locus. The
map L 7→ c1(L) := [D] establishes the well-known isomorphism

c1 : Pic(X) ' CH1(X)

between isomorphism classes of line bundles on X and the codimension 1 Chow group of Weil
divisors modulo ratonal (i.e., linear) equivalence. The element c1(L) is the first Chern class, which
explains the notation. We recall that a line bundle L is ample if and only if L is non-degenerate (i.e.,
ϕL is an isogeny) and effective (i.e., L ' OX(D) for some effective divisor D) [1, Proposition 2.22].

The Chow ring CH(X) =
⊕g

i=0 CHi(X) of algebraic cycles modulo rational equivalence is graded
by codimension with product given by the intersection product

CHi(X)× CHj(X) −→ CHi+j(X), ([Z1], [Z2]) 7→ [Z1 · Z2],

for representatives Z1 and Z2 that intersect transversally. IfD is a Weil divisor, so that [D] ∈ CH1(X),
then we abusively writeDg for deg([D]g) ∈ Z, the degree of the g-fold self-intersection [D]g ∈ CHg(X).
Similarly, if D′ is another Weil divisor, we write Dg−1 ·D′ for deg([D]g−1 · [D′]). In this notation, if
L ' OX(D), then the Riemann–Roch theorem for abelian varieties [1, Theorem 9.11] can be stated
as the equality

(2.7) deg(ϕL) =

(
c1(L)g

g!

)2

=

(
Dg

g!

)2

.

2.2.3. Positivity of the Rosati involution.

Theorem 2.2 (Theorem 12.26 of [1]). Let X be an abelian variety of dimension g over k with a
polarization λ : X −→ Xt and associated Rosati involution †.

i) If λ = ϕL for some ample line bundle L = OX(D) and f ∈ End(X), then

trace(ff †) = 2g
Dg−1 · f∗D

Dg
.

ii) The bilinear pairing

End0(X)× End0(X) −→ Q, (f, g) 7→ trace(fg†)

is symmetric and positive-definite.

Remark 2.3. The above formula i) makes sense for L ample, since Dg 6= 0 in this case. This follows
from Riemann–Roch (2.7) and the fact that L is non-degenerate, i.e., ϕL is an isogeny, which implies
that deg(ϕL) 6= 0.

Proof. By property (c) of the trace discussed in §2.1.3, we have trace(ff †) = trace(f †f). In
particular, trace(ff †) is the (2g − 1)th coefficient of the characteristic polynomial Pf†f (t) ∈ Q[t] by
Definition 2.1. By (2.4), for all n ∈ Z we have

deg(ϕL)Pf†f (n) = deg(ϕL) deg([n]X − λ−1f tλf)

= deg(nϕL − f tϕLf)

= deg(ϕLn − ϕf∗L)

= deg(ϕLn⊗f∗L−1).
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Applying Riemann–Roch (2.7) to both sides of this equality yields

(c1(L)g)2Pf†f (n) = (c1(L
n ⊗ f∗L−1)g)2 = ((nc1(L)− c1(f∗L))g)2.

Consider the polynomial Q(t) =
∑g

j=0 bjt
j ∈ Q[t] of degree g with coefficients defined by

bj :=

(
g

j

)
(−1)g−j(c1(L)j · c1(f∗L)g−j).

Then, for all n ∈ Z, we have

Q(n) = (nc1(L)− c1(f∗L))g.

We deduce the equality of polynomials

(c1(L)g)2Pf†f (t) = Q(t)2.

Comparing the (2g − 1)th coefficients yields

(c1(L)g)2trace(f †f) = 2gc1(L)g(c1(L)g−1 · c1(f∗L)),

and i) follows since c1(f
∗L) = f∗c1(L) = f∗D.

The pairing in ii) is symmetric by (2.6). To see that it is positive-definite, it is enough to base-change
to k̄. Then there exists an ample line bundle L ' OX(D) such that λ = ϕL. We need to prove that
for 0 6= f ∈ End0(X), trace(ff †) > 0. Because the trace is homogeneous of degree 2, it is enough to
prove this for f ∈ End(X). We may then apply i). According to [3, §21 Proof of Theorem 1], for
any effective divisor S and any ample divisor T , we have T g−1 · S > 0. In particular, Dg > 0, so by
i) it suffices to prove that f∗D is effective because then Dg−1 · f∗D > 0. For a proof that f∗D is
effective, we refer to [1, End of proof of Lemma 12.9]. �

We end this section with a useful result.

Proposition 2.4 (Proposition 14.4 i) of [2]). Let X be an abelian variety over k with a polarization
λ : X −→ Xt. Then |Aut(X,λ)| <∞.

Proof. Let α be an automorphism ofX that respects the polarization λ. This means that αt◦λ◦α = λ,
or in other words α†α = idX . In particular, trace(α†α) = 2g. This shows that

Aut(X,λ) ⊂ End(X) ∩ {α ∈ End(X)⊗ R | trace(α†α) = 2g}.

But End(X) is a free Z-module and thus a discrete subset of the compact End(X)⊗R (a product of
spaces of matrices with coefficients in real division algebras (2.2)). The condition trace(α†α) = 2g
being a closed condition, we conclude that Aut(X,λ) is finite. �

3. Frobenius

Let m ∈ N and let p be a prime. In this section we specialize to the case k = Fq for q = pm. We fix
an algebraic closure F̄q ⊃ Fq.

3.1. Frobenius morphisms.
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3.1.1. The absolute Frobenius. Let X be an Fp-scheme. The absolute Frobenius is the morphism of
Fp-schemes

FrobX : X −→ X

given by the identity on topological spaces and by raising to the p-th power on sections. More

precisely, the map on sheaves Frob#
X : OX −→ OX takes a section s to sp. If f : X −→ Y is a

morphism of Fp-schemes, then

(3.1) FrobY ◦ f = f ◦ FrobX

because f#(sp) = f#(s)p for any section s of OY .

3.1.2. The relative Frobenius. Let S be an Fp-scheme and let X be an S-scheme with structure

morphism π : X −→ S. Define X(p) := X ×FrobS S with projection map W : X(p) −→ X. Using
(3.1) and the universal property of fiber products, there is a unique morphism of S-schemes

FX/S : X −→ X(p) such that W ◦ FX/S = FrobX . This morphism is called the relative Frobenius.

To fix ideas, consider S = Spec(R) for some Fp-algebra R and let X = Spec(R[t1, . . . , tm]/I) for
some ideal I = (f1, . . . , fn) ⊂ R[t1, . . . , tm]. Note that FrobS : Spec(R) −→ Spec(R) is the morphism

induced by the map of Fp-algebras ϕ : R −→ R, r 7→ rp. Let f
(p)
i denote the polynomial fi but with

coefficients raised to the p-th power and let I(p) := (f
(p)
1 , . . . , f

(p)
n ). Then

X(p) = X ×FrobS S = Spec(R[t1, . . . , tm]/I ⊗ϕ R) = Spec(R[t1, . . . , tm]/I(p))

and the relative Frobenius is induced by the map of R-algebras

R[t1, . . . , tm]/I(p) −→ R[t1, . . . , tm]/I, r 7→ r, ti 7→ tpi .

On the other hand, the absolute Frobenius FrobX is induced by the map of Fp-algebras

R[t1, . . . , tm]/I −→ R[t1, . . . , tm]/I, r 7→ rp, ti 7→ tpi .

FInally, the morphism W : X(p) −→ X is induced by the map

R[t1, . . . , tm]/I −→ R[t1, . . . , tm]/I(p), r −→ rp, ti 7→ ti.

3.1.3. The geometric Frobenius. Let S = Spec(Fq) with q = pm. The geometric Frobenius is the
morphism of S-schemes πX := FrobmX given by the m-th iterated power of the absolute Frobenius. It
is a morphism of S-schemes because FrobmS = idS . It can also be described by iterating the absolute
Frobenius m times

(3.2) πX = FmX/Fq
= F

X(pm−1)/Fq
◦ F

X(pm−2)/Fq
◦ . . . ◦ FX(p)/Fq

◦ FX/Fq
.

3.2. The roots of geometric Frobenius. Let X be an abelian variety of dimension g over
Fq. If Fq ⊂ K is a field extension, then πX acts on X(K) by taking (x : Spec(K) −→ X) to
πX ◦ x = x ◦ πSpec(K). If we consider a closed immersion X −→ PN for some N ∈ N, then in
projective coordinates we have

πX([x0 : . . . : xN ]) = [xq0 : . . . : xqN ].

Let n ∈ N and consider the extension Fq ⊂ Fqn ⊂ F̄q of degree n. We then have

X(Fqn) = {x ∈ X(F̄q) | πnX(x) = x}.
Because 0 ∈ X(Fq), we have πX(0) = 0 and πX is a endomorphism. It commutes with all other

endomorphisms by (3.1), so it lies in the center of End0(X). Define the Verschiebung map

(3.3) VX/Fq
:= F tXt/Fq

: X(p) −→ X.
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We then have

(3.4) VX/Fq
◦ FX/Fq

= [p]X and FX/Fq
◦ VX/Fq

= [p]X(p)

(see the proof of [1, Proposition 7.34]). In particular, FX/Fq
is an isogeny of degree pg. It follows

from (3.2) that πX is an isogeny of degree qg. We let fX denote its characteristic polynomial as
defined in §2.1.3. We recall that it is a monic polynomial fX(t) ∈ Z[t] (by property (b) of §2.1.3) of
degree 2g satisfying fX(n) = deg([n]X − πX) for all n ∈ Z.

Lemma 3.1. Suppose that X is elementary (i.e., a power of a simple abelian variety). Then
Q[πX ] ⊂ End0(X) is a number field and fX is a power of the minimal polynomial min(πX ;Q) of
πX over Q.

Proof. Suppose that X = Y m with Y a simple abelian variety. Then D = End0(Y ) is a division
algebra and End0(X) = Mm(D). Observe that Q[πX ] lies in the center {diag(z) ∈ Mm(D) |
z ∈ Z(D)} of End0(X) = Mm(D), which is a field. Since fX ∈ Z[t] is monic of degree 2g with
fX(πX) = 0, we see that π−1X ∈ Q[πX ] and we deduce that Q[πX ] is a field with [Q[πX ] : Q] ≤ 2g.

Let α ∈ Q̄ be a root of fX . Let ` 6= p be a prime and recall that P`,πX (t) = det(t · id−V`(πX)) = fX
(2.5). Thus α is an eigenvalue of V`(πX). Let g := min(πX ;Q). Then g(α) is an eigenvalue of
g(V`(πX)). But g(V`(πX)) = V`(g(πX)) = 0 so g(α) = 0. Hence, all roots of fX are roots of g. This
implies that fX divides a power of g. By irreducibility of g, this forces fX to equal a power of g. �

Theorem 3.2. Let X be an abelian variety of dimension g over Fq. Then

i) Every complex root α of fX has absolute value |α| = √q.

ii) If α is a complex root of fX , then so it ᾱ = q/α and they occur with the same multiplicity.
If α =

√
q or α = −√q occurs as a root, then it occurs with even multiplicity.

Proof. i) It suffices to treat the case where X is simple. Indeed, by (2.1), X is isogenous over k to a
product X1 × . . .×Xm of simple abelian varieties. If ` 6= p, then at the level of Tate modules this
isogeny gives an isomorphism of V`(X) with the direct sum of the V`(Xi). This isomorphism respects
the various geometric Frobenii. Thus, in terms of characteristic polynomials we get a decomposition

P`,πX = P`,πX1
. . . P`,πXm

,

and consequently a decomposition fX = fX1 . . . fXm .

Suppose now that X is a simple abelian variety over Fq and let λ : X −→ Xt be a polarization with

Rosati involution †. We claim that πX ◦ π†X = [q]X . Indeed, we have

πX ◦ λ−1 ◦ πtX ◦ λ = λ−1 ◦ πXt ◦ πtX ◦ λ
by (3.1). It thus suffices to show that πXt ◦ πtX = [q]Xt . Recall from (3.3) that F tX/Fq

= VXt/Fq
and

thus, by using (3.4) and (3.2), we obtain

πXt ◦ πtX = FmXt/Fq
◦ V m

Xt/Fq
= [pm]Xt = [q]Xt .

By Lemma 3.1 and the simplicity of X, Q[πX ] is a number field and fX = min(πX ;Q)m for
some m ∈ N. It follows that the complex roots of fX are the ι(πX) for all complex embeddings

ι : Q[πX ] ↪→ C. Since π†X = q/πX , the Rosati involution preserves Q[πX ]. Since fX = min(πX ;Q)m,
we have trace(x) = mTrQ[πX ]/Q(x) for all x ∈ Q[πX ]. It follows from Theorem 2.2 that Q[πX ] is a

number field with an involution † such that the quadratic form Q[πX ] −→ Q, x 7→ TrQ[πX ]/Q(xx†) is
positive-definite. This places strong restrictions on Q[πX ]: in fact, Q[πX ] is either

(a) totally real with † = id,
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(b) a CM-field with ι(x†) = ι(x) for all x ∈ Q[πX ] and all complex embeddings ι : Q[πX ] ↪→ C.

In any case, we obtain |ι(πX)|2 = ι(πXπ
†
X) = q.

We now justify the above classification (we refer to [3, p. 193-194] for more details). Let F be the
subfield of Q[πX ] fixed by †. Suppose first that Q[πX ] = F . Then † = id and TrQ[πX ]/Q(x2) > 0
for all 0 6= x ∈ Q[πX ], i.e., Q[πX ] is a number field with positive-definite trace form. Let v be an
infinite place and consider the completion Q[πX ]v. Then TrQ[πX ]v/R(x2v) > 0 for all 0 6= xv ∈ Q[πX ]v
excludes Q[πX ]v = C. Thus, all infinite places are real and we are in case (a). Suppose next that
Q[πX ] 6= F . Then Q[πX ] = F (

√
α) for some α ∈ F and (

√
α)† = −

√
α. By the same argument as in

the previous case, the subfield F is totally real. For all x ∈ Q[πX ], TrQ[πX ]/Q(x) coincides with the
trace Tr(x) of left multiplication by x on Q[πX ]. Now, Q[πX ] is a 2-dimensional F -algebra with a
positive involution in the sense that Tr(xx†) > 0 for all 0 6= x ∈ Q[πX ]. It follows that the extension
of † to Q[πX ]⊗F R is a positive involution. Let v be an archimedean place of F (necessarily real).
Then Q[πX ]⊗v R is a 2-dimensional R-algebra with a positive involution. Note that Q[πX ]⊗v R is
either R2 or C. However, the standard involution on R2 is not positive since for α = (x, y) ∈ R2,
Tr(αᾱ) = 2xy. This excludes Q[πX ]⊗v R = R2 and we are in case (b).

ii) If
√
q or −√q occurs as a root, then we are in case (a) above, i.e., Q[πX ] is totally real and

√
q

and −√q are the only possible roots. Hence fX(t) = (t−√q)n(t+
√
q)2g−n and fX(0) = (−1)nqg.

But fX(0) = deg(fX) = qg by definition of the characteristic polynomial, hence n is even. �

References

[1] Bas Edixhoven, Ben Moonen, Gerard van der Geer, Abelian varieties, http://van-der-geer.nl/~gerard/AV.pdf
[2] James S. Milne, Abelian varieties, https://www.jmilne.org/math/CourseNotes/AV.pdf
[3] David Mumford, Abelian varieties, https://wstein.org/edu/Fall2003/252/references/mumford-abvar/

Mumford-Abelian_Varieties.pdf

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Israel

E-mail address: davidterborchgram.lilienfeldt@mail.huji.ac.il

http://van-der-geer.nl/~gerard/AV.pdf
https://www.jmilne.org/math/CourseNotes/AV.pdf
https://wstein.org/edu/Fall2003/252/references/mumford-abvar/Mumford-Abelian_Varieties.pdf
https://wstein.org/edu/Fall2003/252/references/mumford-abvar/Mumford-Abelian_Varieties.pdf

	1. Introduction: the Honda-Tate theorem
	2. Rosati
	2.1. The endomorphism algebra
	2.2. The Rosati involution

	3. Frobenius
	3.1. Frobenius morphisms
	3.2. The roots of geometric Frobenius

	References

