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Overview

Setup

• X is an Abelian variety over k

• chark ̸= ℓ a prime

• ks is the separable closure of k

• Recall that the Tate module is

Z2g
ℓ

∼= TℓX = lim
←

X (ks)[ℓ
n],

and define VℓX := Qℓ ⊗ TℓX
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Overview

Goal

• Recall that Tℓ is functorial, and there is a Zℓ-linear

Tℓ : Zℓ ⊗ Hom(X ,Y ) → HomGal(ks/k)(TℓX ,TℓY )

• Tate’s Theorem: this is an isomorphism

• What we know: this map is injective with torsion-free
cokernel
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Reductions

It suffices to show that

Vℓ : Qℓ ⊗ Hom(X ,Y ) → Qℓ ⊗ HomGal(ks/k)(TℓX ,TℓY )

is an isomorphism

Proof.
Qℓ is flat over Zℓ, so

Tℓ injective ⇒ Vℓ injective

Coker(Tℓ) = 0 ⇔ Qℓ ⊗ Coker(Tℓ) = 0

Qℓ ⊗ Coker(Tℓ) = Coker(Vℓ).

Hence Vℓ surjective ⇒ Tℓ surjective.
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Reductions

It suffices to show that, for any Abelian variety Z ,

Vℓ : Qℓ ⊗ End(Z ) → Qℓ ⊗ EndGal(ks/k)(TℓZ )

is an isomorphism.

Proof.
Given X ,Y , put Z = X × Y . Then Tℓ respects the
decomposition

End(Z ) = End(X )⊕ Hom(X ,Y )⊕ Hom(Y ,X )⊕ End(Y ).

If this has an isomorphism to EndGal(ks/k)(VℓZ ), its second
component is an isomorphism to HomGal(ks/k)(VℓX ,VℓY ).
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Strategy

• We now assume k = Fq, so ks = k

• Fix X over k

• The crux of the argument is a key lemma

• The lemma will also yield an important fact: VℓX is
semisimple as a Gal(k/k)-representation.

Lemma
For all Gal(k/k)-subrepresentations W ⊆ VℓX , there is some
u ∈ Zℓ ⊗ End(X ) such that Vℓ(u)VℓX = W .

We will use: There are finitely many isomorphism classes of
Abelian varieties of dimension g over Fq
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

Facts we will use:

• There is a correspondence between étale k-group schemes
and Gal(ks/k)-groups (group action by automorphisms)
and we can consider Hn as the ks-points of a subgroup
scheme Hn ⊆ X [ℓn]

• For any isogeny f : X → Y with kernel N and ℓ-Sylow
subgroup Nℓ(ks), there is an exact sequence

0 → TℓX
Tℓ(f )−−−→ TℓYn → Nℓ(ks) → 0.
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

We will move to Zℓ coefficients and use lattices!
Notation:

• W ′ := W ∩ TℓX a Gal(k/k)-stable sublattice

• Un := W ′ + ℓnTℓX a Gal(k/k)-stable sublattice

• Hn ⊆ X (k)[ℓn] is the image of Un under the quotient
TℓX → TℓX/ℓnTℓX ∼= X (k)[ln]
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

Define a quotient πn : X → X/Hn =: Yn. Knowing [ℓn]Hn = 0
and Yn is a categorical quotient, we have a factorization

Yn

X X

ιnπn

[ℓn]

for some homomorphism ιn. Since πn is surjective and [ℓn] has
finite kernel, we have ιn is surjective with finite kernel, hence
an isogeny. By the exact sequence above,
Tℓ(ιn) : TℓYn → TℓX is injective. After identifying
TℓYn ⊆ TℓX , we identify Tℓ(πn) = [ℓn].
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

|Hn(ks)| divides |X (k)[ℓn]| = ℓ2gn ⇒
Hn(ks) is its own ℓ-Psylow subgroup ⇒

0 → TℓX
Tℓπn−−→ TℓYn → Hn(ks) → 0

is exact ⇒
ℓnTℓX ⊆ TℓYn ⊂ TℓX and TℓYn/ℓ

nTℓX = Un/ℓ
nTℓX ⇒

TℓYn
∼= Un (as sublattices and Galois representations).
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

There are finitely many isomorphism classes pigeonholing
{Yn}n∈N, yielding an increasing {ni}i∈N such that there are
isomorphisms {αi : Yn1

∼−→ Yni}i∈N. Define ui by compositions

Yn1 Yni

X X

αi

ιniπn1

ui

and apply Tℓ ⇒
TℓYn1 TℓYni

TℓX TℓX .

Tℓ(αi )

ℓn·
Tℓ(ui )

Key Observation: Zl ⊗ End(X ) is compact! Moving to a
subsequence, we can assume ui → u ∈ Zl ⊗ End(X )
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Proof of Key Lemma: ∀W ⊆ Vℓ subreps

∃u ∈ Zl ⊗ End(X ) s.t. Vℓ(u)VℓX = W

• Recall Un = W ′ + ℓnTℓX , so Un
∼= Yn descending sets,

hence Tℓ(u)TℓX ⊂
⋂

i∈N Uni = W ′.

• Claim: ℓn1W ′ ⊆ Tℓ(u)TℓX . Assume x ∈ ℓn1W ′. Then
∃yi ∈ TℓX with Tℓ(ui)(yi) = x , so

Tℓ(u)(yi)− x = Tℓ(u − ui)(yi) → 0

But the image of Tℓ(u) is closed. This proves the claim.

• Tensoring
ℓn1W ′ ⊆ Tℓ(u)TℓX ⊆ W ′

with Qℓ proves the lemma.
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Semisimplicity of ρℓ

For our fixed X , let ρℓ : Gal(k/k) → GL(VℓX ) be the action
on VℓX .

Proposition
The representation ρℓ is semisimple.

Proof.
This amounts to finding a complement to any
subrepresentation W . Take u from the lemma.

Qℓ ⊗ End(X ) semisimple ⇒
∃e ∈ Qℓ ⊗ End(X ) idempotent : (u) = (e) ⇒

∃a, b : e = ua, u = eb
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Semisimplicity of ρℓ

Proof.
Note (1− e) ∈ Z (Qℓ ⊗ End(X )) (also idempotent), so
Vℓ(1− e)VℓX is Galois-stable. It is a compliment to Vℓ(e)VℓX .
Claim: Vℓ(e)VℓX = Vℓ(u)VℓX

W = Vℓ(u)VℓX = Vℓ(e)Vℓ(b)VℓX ⊆
Vℓ(e)VℓX = Vℓ(u)Vℓ(a)VℓX ⊆ Vℓ(u)VℓX = W
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Main Theorem

Theorem (Tate)
The functor Tℓ is an isomorphism on Hom-sets.

Proof.
We know injectivity.
Surjectivity strategy: characterize image R ⊆ EndVℓX of
Qℓ ⊗ End(X ) using double centralizer theorem. It says

R = ZEnd(VℓX ) (R)

(because everything is semisimple). So it suffices to show

∀c ∈ EndR(VℓX ) ∀φ ∈ Gal(k/k) : cρℓ(φ) = ρℓ(φ)c
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Main Theorem
Proof.
Define the graph VℓX ⊕ VℓX ⊇ Γφ := {(v , ρℓ(φ)v)}v∈VℓX a
Galois-stable subspace. Take the corresponding
u ∈ Qℓ ⊗ End(X × X ) from the lemma, and define

γ :=

(
c 0
0 c

)
∈ M2(R) ⊆ End(VℓX ⊕ VℓX ).

Then γ is central in M2(R), but Vℓ(u) is also in M2(R). So
Vℓ(u)γ = γVℓ(u) and

γΓφ = γVℓ(u)(VℓX ⊕ VℓX ) = Vℓ(u)γ(VℓX ⊕ VℓX ) ⊆ Γφ.

Taking the bottom-right entry of the matrix, this means

∀v ∈ VℓX : cρℓ(φ)v = ρℓ(φ)cv .
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