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Main results proved in this course:

1. Free groups are linear

2. Prove that an in�nite system of equations in the free group is equivalent to a �nite subsystem

3. Free groups have the Hopf property

4. Describe fg groups that are universally equivalent to the free groups.

1 Free groups and group presentations

1.1 Words and relations

Let S be a set of symbols. To each s ∈ S, we associate a formal inverse, that is, an extra symbol s−1.
The set of inverses is denoted S−1

De�nition 1.1: A word w in S is a �nite (possibly empty) sequence of the form s1 . . . sn where each
si is an element of S ∪ S−1. We say a word is reduced if no subsequence of the form ss−1 or s−1s
appears. We sometimes write w(S).

Example 1.2: S = {a, b}. Then S−1 = {a−1, b−1}. The word w = w(a, b) = aba−1bb is reduced,
the word v = v(a, b) = abb−1aa isn't. Their formal inverses are b−1b−1ab−1a and a−1a−1bb−1a−1

respectively.

Let now G be a group and S be a subset of G.

De�nition 1.3: Let w = s1 . . . sn be a word in S. The element g of G represented by w is the product
s1 · . . . · sn where · denotes the group operation and s−1 is taken to be the group inverse of S. By
convention the empty word represents the trivial element. We write w =G g.

Example 1.4: Let S = {a, b}, and w = ab.

• Let G = (S4, ◦) be the group of permutations on 4 elements. Let a = (12) and b = (23): then
w =S4 (12)(23) = (132). If we take w = aba−1, then w =S4 (12)(23)(12) = (13)

• Let G = (Z2,+). Let a = (1, 0) and b = (0, 1). Then w =G (1, 0) + (0, 1) = (1, 1). Note that the
word v = ba also represents the element (1, 1) - and both w, v are reduced.

Thus several distinct words may represent the same element (for example ss−1 and s−1s always
both represent the trivial element). It is important to keep in mind the distinction between "words"
(abstract sequences of symbols) and "elements" (which belong to the group).

De�nition 1.5: Say S generates G if any element of G is represented by a word in S - i.e., if any
element is a product of elements in S and their inverses. Say G is �nitely generated if it admits a
�nite subset S which generates it.
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Example 1.6: • {1} generates (Z,+), but also {2, 3}.

• S = { elementary matrices } generates GLn(R) (recall - elementary matrix has either 1's on
diagonal, and one non zero entry somewhere, or is diagonal with all entries equal to 1 except one,
and multiplying by an elementary matrix on the right corresponds to performing an elementary
operation on the columns of the matrix).

• Transpositions generate the symmetric group Sn

1.2 Free groups

De�nition 1.7: A relation between the elements of S is a nonempty reduced word which represents
the trivial element. If S generates G, and there are no relations between the elements of S, the group
G is said to be free on S.

Lemma 1.8: If G is free on S, there is exactly one reduced word representing each element.

Proof. On an example: suppose w1 = ab−1aa and w2 = ba are distinct reduced words which represent
the same group element, i.e. ab−1aa =G ba, we get (ab−1aa)(a−1b−1) = ab−1ab−1 = 1. The reduction
stops before the word is empty because w1 and w2 are distinct - thus we get a nontrivial reduced word
representing the identity - a contradiction.

Thus if G is free on S, we can think of each element as a reduced word in S.

Building free groups. In fact, this gives us a way to build free groups: given a set of symbols S, we
de�ne a group F (S) whose elements are reduced words in S, and whose product operation is that of
concatenation-reduction (i.e. to compute the product of two reduced words, write the words one after
the other, and reduce if needed until you get a reduced word). We call F (S) the free group on S.
(Warning - there are some things to check to see that this is indeed a group, for example, associativity
is not obvious).

Example 1.9: Free group on {a, b}: reduced words on a, b e.g. aaba−1, abbbab, product: aab−1a−1 ·
abbbab = aabbab.

Remark 1.10: Consider the free goup on {a, b}: it is free on a, b i.e. there are no relations between a
and b, but this does not mean that there are no relations between the elements of the group at all! Ex:
set x = ab, y = b−1a−1, then xy = 1.

The following lemma is key. It says that it is very easy to de�ne group morphisms with source G.

Lemma 1.11: Given any group H and a choice of images {hs | s ∈ S} for the elements of S, there is
a unique group morphism G→ H sending each s to hs.

Idea: send the reduced word sε11 . . . sεkk (which is an element in G) on the product hε1s1 . . . h
εk
sk

in H.
In fact, this universal property can be used as a de�nition of what it means for a group G to be

free on S:

Proposition 1.12: G is free on S i� for any group H and any choice {hs | s ∈ S} of images for the
elements of H, there exists a unique morphism h : G→ H such that h(s) = hs for every s ∈ S.

Proof. If G has the universal property can build a morphism f : G → F (S) sending s to s. On the
other hand F (S) has the universal property as well, so there is a natural morphism h : F (S) → G.
The composition h ◦ f �xes the elements of S, so it must be the identity. Thus f is an isomorphism,
in particular G is free on S.

Exercise 1: Show that the free group on {a, b} is also free on {ab, b}.
Hence a group can be free on several di�erent sets of elements! However, we can show that any two

such sets must have the same cardinality.
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Exercise 2: If S and S′ have distinct cardinalities (say �nite), the free groups on S and S′ respectively
are not isomorphic.

Remark 1.13: In particular, if G is free on S and also on T , we have |S| = |T |.
De�nition 1.14: If G is free on S we call S a basis for G, and |S| the rank of G.

Note that the free group of rank 1 is just Z. It is the only (nontrivial) one which is abelian.

1.3 Group presentations

In general however if we take a generating set for a group G, there will be relations between the
elements of S. One can in fact build G by taking the free group on S and "adding" the relations the
elements of S satisfy in G. Let us now see how to make this formal.

The following is a corollary of Lemma 1.11:

Corollary 1.15: Any group is the quotient of a free group.

Proof. Let G be a group with generating set S. We build an abstract set Ŝ = {ŝ | s ∈ S}, and the free
group F (Ŝ) on Ŝ. We let π be the morphism F (Ŝ)→ G de�ned by sending each ŝ to the corresponding
s. It exists by Lemma above, and is surjective because S generates.

We will now drop the hat, and think of this morphism as π : F (S)→ G.

Remark 1.16: Note that if the reduced word w(S) is a relation between the elements of S (in G), then
the element w(S) of F (S) is sent to 1 by the morphism π, i.e. relations are in the kernel. Conversely,
it is easy to see that any element of the kernel is a relation.

In particular G is free on S i� Kerπ is trivial, that is i� π is an isomorphism.

Example 1.17: Let G = Z/3Z be the cyclic group of order 3. Let a be a generator, S = {a}. We
have relations: aaa = 1, a6 = 1, etc. Note that the second relation is a consequence of the �rst one, so
really we don't need to specify it. (Do it also in additive notation?)

- Exercise 4.1, 4.2: inverses, products of relations and conjugates of relations are consequences of
the relations. Hence also products of conjugates of relations.

Exercise 3: Let G be a group, S a generating set. Let u, v be relations between the elements of S
(they are reduced words, so we think of them as elements of F (S)), and let w be a reduced word

1. Show that uv (the product of u and v in F (S)) is a relation.

2. Show that wuw−1 is a relation.

3. Deduce that if r1, . . . , rn are relations, any element of the form Πk
i=1ui(S)r±1

i u−1
i (S) for some

k ∈ N, ui ∈ G is a relation.

Exercise 4: Let G be a group, and let A be a subset of G. Show that the set

{Πk
i=1ui(S)a±1

i u−1
i (S) | k ∈ N, ai ∈ A, ui ∈ G}

is a normal subgroup of G, and that it is in fact the smallest normal subgroup of G which contains A.
We denote it 〈〈A〉〉.

The idea of a presentation of a group G with generating set S is that we want to �nd a set of
relations R such that all the other relations are consequences of the relations in R.

De�nition 1.18: (Let S generate G, and π : F (S) → G). Let R be a subset of F (S) such that
Kerπ = 〈〈R〉〉, that is Kerπ is the smallest normal subgroup of F (S) containing R. Then we say G
admits the presentation 〈S | R〉.

By the �rst isomorphism theorem, we get that G ' F (S)/Kerπ = F (S)/〈〈R〉〉.
In other words, G admits the presentation G = 〈S | R〉 if
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1. the elements in R are relations between the elements of S;

2. any relation between the elements of S is a consequence of the relations in R, i.e., belongs to
〈〈R〉〉.

Example 1.19: • 〈a, b |〉 is a presentation of F (a, b);

• 〈a | a7〉 is a presentation of Z/7Z

• 〈a, b | aba−1b−1〉 is a presentation of Z2.

We sometimes write 〈a, b | ab = ba〉 instead, the meaning is the obvious one.

Building a group with presentation 〈S | R〉 We can also choose a set of reduced word R in F (S)
and build a group which admits the presentation G = 〈S | R〉 simply by setting G = F (S)/〈〈R〉〉.

To build a morphism with source the group 〈S | R〉, it is enough to choose images for the generators
which satisfy the relations given by R.

Proposition 1.20: Let G = 〈S | R〉, and let H be any group. For any choice of elements {hs | s ∈ S},
there is a morphism G→ H sending s to hs for each s ∈ S i� the elements hs satisfy the relations in
R, that is, for any reduced word s1 . . . sr in R we have hs1 . . . hsr =H 1.

Example 1.21: • G = 〈a | a7〉 - to de�ne a morphism need to �nd an order 7 element in H.

• G = 〈a, b | aba−1b−1〉 - to de�ne a morphism G→ H need to �nd two commuting elements in H.

1.4 Subgroups of free groups

Let us now consider subgroups of free groups. First example: the free group on {a, b, c} contains the
free group on {a, b} as a subgroup. This type of examples shows that if k ≤ l then Fk embeds in Fl.

But in fact, free groups of any rank embed in F2.

Exercise 5: Consider the subgroup H of F(a, b) generated by S = {hn = bnab−n, n ∈ N}, and show it
is free on S.

In fact we have

Theorem 1.22: Any subgroup of a free group is free.

2 Equations over groups

2.1 Equations over �elds

Over a �eld K we are used to think about polynomial equations, that is, equation of the form P (X) = 0
where P is a polynomial with coe�cients in K - i.e. an element of K[X]. More generally, equation
with several variables: P (X1, . . . , Xn) = 0 with P ∈ K[X1, . . . , Xn]. One can also consider systems of
equations, that is, sets of (possibly in�nityely many) polynomial equations.

Example 2.1: X2 − 2X − 5 = 0, X3
1 + 3X1X2 +X2

2 − 7 = 0

(we will sometimes abuse notation and identify the polynomial P and the equation P (X) = 0)

De�nition 2.2: A tuple (u1, . . . , un) ∈ Kn is a solution of the equation P (X1, . . . , Xn) = 0 if we have
P (u1, . . . , un) = 0.

The set of solutions to a system Σ of equations on n variables is a subset of Kn, we call such subsets
"varieties".

Remark 2.3: Equations have "consequences" - if (u1, . . . , un) is a solution of P (X1, . . . , Xn) = 0, it
is a solution of Q = 0 for every polynomial Q in the ideal (P ) generated by P . Similarly a solution to
the system Σ also satis�es Q = 0 for every Q in the ideal generated by the polynomials corresponding
to the equations in Σ.
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Exercise 6: Check this.

Recall: an ideal is a subset I ⊆ K[X1, . . . , Xn] which is stable by 1. addition (if P1, P2 ∈ I then
(P1+P2) ∈ I) and 2. multiplication by any polynomial (if P ∈ I and Q ∈ K[X1, . . . , Xn] then PQ ∈ I).

The ideal generated by a set A ⊆ K[X1, . . . , Xn] is the smallest ideal containing A, it can be shown
to be exactly the set

{Q1P1 + . . .+QrPr | r ∈ N, Pi ∈ A and Qi ∈ K[X1, . . . , Xn] for i = 1, . . . , r}

2.2 Equations over groups

Let G be a group.

De�nition 2.4: An equation over G is an expression of the form w(x1, . . . , xn) = 1, where w is a
word in the variables x1, . . . , xn and their inverses. We can also allow the use of constants from G, to
get equations with constants w(x1, . . . , xn, a1, . . . , ak) = 1. Can also de�ne systems of equations.

A tuple (u1, . . . , un) of Gn is a solution to the equation w(x1, . . . , xn, a1, . . . , ak) = 1 if the element
represented by the word w(u1, . . . , un, a1, . . . , ak) is trivial in G.

Example 2.5: x7 = 1, x2 = a, xax−1a−1 = 1, xay2b = 1, ...

An alternative point of view: let Σ be a system of equations in n variables over the group G (suppose
at �rst without constants): that is,

Σ = {w1(x1, . . . , xn) = 1, w2(x1, . . . , xn) = 1, . . .}

We build a group GΣ de�ned by the presentation:

GΣ = 〈x1, . . . , xn | w1(x1, . . . , xn), w2(x1, . . . , xn), . . .〉

Proposition 2.6: There is a one to one correspondence between: solutions to the system Σ in G on
the one hand and homomorphisms GΣ → G on the other hand

Proof. Given a solution (u1, . . . , un) to Σ, there is a unique morphism GΣ → G which sends xi to ui.
Conversely, if θ : GΣ → G is a morphism, then the tuple (θ(x1), . . . , θ(xn)) is a solution for Σ (see
paragraph on group presentations).

Remark 2.7: Like for equations over �elds, equations over groups have "consequences": if u is a
solution to the equation x2 = 1, it will also be a solution to x4 = 1, if u is a solution to the equation
xax−1a−1 = 1, it will also be a solution to xa2x−1a−2 = 1.

Exercise 7: How could we characterize all the consequences of a set of equations - what is the analogue
of the ideal IΣ of K[X1, . . . , Xn] in the �eld case? ANSWER (case where Σ is without constants) �rst
need to think what the analogue of K[X1, . . . , Xn] is: it's the free group on x1, . . . , xn, and the set of
consequences is the subgroup normally generated by the words corresponding to equations of Σ

3 Equational noetherianity of the free group

Our aim now is to prove

Theorem 3.1: If G is a free group, and Σ is a system of equations over G, there exists a �nite subset
Σ0 of Σ such that Σ and Σ0 are equivalent.

(that is, any tuple (u1, . . . , un) ∈ Fn which is a solution to Σ0 in fact satis�es all the equations of
Σ)
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Remark 3.2: This is true of equations over �elds: Recall that the ring of polynomials K[X1, . . . , Xn]
is Noetherian, that is, there are no in�nite ascending chains of ideals. In particular if Σ is an in�nite
set of polynomials P1(X1, . . . , Xn), P2(X1, . . . , Xn), . . ., if we de�ne Ij = (P1, . . . , Pj) we have that for
some m, the ideal Im contains all of Σ. In particular all of the equations Pj = 0 for j > m are
"consequences" of the �rst m equations.

This means precisely that the system of equations Σ is equivalent to the �nite subsystem P1 =
0, . . . , Pm = 0.

In fact, the proof in the free group cases precisely rests on the fact that this is true in R. The other
ingredient is linearity of the free group:

Proposition 3.3: Let F be a �nitely generated free group. Then F embeds in the group SL2(R).

Let us prove Theorem 3.1 using this

Proof. We think of F as a subgroup of SL2(R), in particular, we think of its elements as 2-by-2 matrices
- that is, as elements of R4. Each equation w(x1, . . . , xk) = 1 in Σ translates as 4 polynomial equations
in the coe�cients of the xi's viewed as elements of R4. Denote by Σ̂ the set of polynomial equations
on the coe�cients of the xi's obtained in this way: by the previous remark, it is equivalent to a �nite
subsystem Σ̂0. This �nite subsystem is induced by a �nite subsystem Σ0 of Σ, such that that any
element of R4k which satis�es Σ0 also satis�es Σ. This is in particular true of elements of F, which
proves the claim.

We must now prove Proposition 3.3.

Proof. We will show that SL2(Z) contains a free group of rank 2. Since the free group of rank 2 contains
subgroups of arbitrarily large rank, any fg free group embeds in SL2(Z).

Consider the subgroup F of SL2(Z) generated by the two matrices α =

(
1 2
0 1

)
and β =

(
1 0
2 1

)
.

We will show it is free on {α, β}. Note that for any n ∈ Z we have αn =

(
1 2n
0 1

)
and βn =(

1 0
2n 1

)
Consider the linear action of SL2(Z) on R2. Let U = {(x, y) | |y| > |x|}, and V = {(x, y) | |y| < |x|}.

Note that αn(U) ⊆ V and βn(V ) ⊆ U for any n ∈ Z with n 6= 0.
Let w be a non empty reduced word in α, β: assume �rst that w starts and ends by a power of α.

Take x ∈ U : then w · x is in V , so it cannot be equal to x. Thus the element represented by w is not
trivial.

Reduce to this case by conjugating w by an appropriate power of α. Show that the conjugate w′

of w is non trivial, thus w itself is non-trivial.

4 Hopf property for the free group

From the linearity of the free group we will now deduce another property - the fact that it is Hopf.
We start by a very general remark: if A is a set, we can look at maps A → A. If A is �nite, a

surjective map is necessarily also injective. In fact, this can be seen as a characterization of �niteness
for sets (A is �nite i� any surjective map A → A is also injective). Counterexample for in�nite sets:
e.g. A = N, f(0) = 0 and f(n) = n− 1 for n > 1.

(Think: what is the analogue for vector spaces? �nite dimension!)
For a group G, the natural analogue is to look at morphisms f : G→ G.

De�nition 4.1: We say G has the Hopf property if any surjective morphism G→ G is also injective.

Example: �nite groups are Hopf (just look at f as a map between sets!). The group (Z/2Z)N is not
Hopf - take f to be a left shift (forget the �rst coordinate).

Proposition 4.2: Free groups are Hop�an.
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In fact, to prove this we will show �rst

Proposition 4.3: Free groups are residually �nite.

De�nition 4.4: We say a group G is residually �nite if for any non trivial element g ∈ G, there
exists a morphism h : G→ A where A is a �nite group, such that h(g) 6= 1.

Note that a subgroup of a residually �nite group is residually �nite.

Proof. We show SL2(Z) is residually �nite: letM be a matrix which is not the identity. Let n be larger
than the absolute value of all the entries of the matrix. Consider the map πn : SL2(Z) → SL2(Z/nZ)
which consists in taking the entries of a matrix modulo n: this is a group morphism to a �nite group
(check this!), and πn(M) is non trivial.

Since F can be thought of as a subgroup of SL2(Z), it is itself residually �nite.

We now prove

Proposition 4.5: Residually �nite groups are Hop�an.

Proof. Let G be a residually �nite group. Suppose f : G → G is surjective but not injective. Let
g ∈ Kerf with g 6= 1. By residual �niteness there is a morphism h : G → A with h(g) 6= 1. Consider
the morphisms h ◦ fk, show they are all di�erent (each one kills some element that the ones of lower
power do not kill). This gives an in�nite number of morphisms from a fg group to a �nite group, a
contradiction.

We deduce from the Hopf property the following corollary

Corollary 4.6: Suppose G is a free group of rank n. Any generating set S of G has size at least n. If
S it consists of exactly n elements, then it is a basis of G.

Proof. Suppose G is free on a1, . . . , an, and let {u1, . . . , um} be another generating set for G. Let
F = F(s1, . . . , sm) be the free group on s1, . . . , sm.

We build a morphism τ ◦ σ : F(S)→ F(S) as follows: �rst, let σ : F (S)→ G send si to ui, then let
τ : F(S)→ G send ai to si for i ≤ m,n and ai to 1 for m < i ≤ n (if such i's exist).

If m ≤ n then τ ◦ σ is surjective, it is in fact an isomorphism by Hopf property. In particular we
must have in fact m = n. Since there are no relations between the ai's, there are no relations between
the si's and G is free on S.

We further deduce

Proposition 4.7: Two elements g, h which do not commute in a free group do not satisfy any other
non trivial relation.

Proof. The subgroup H generated by g, h is free, since every subgroup of a free group is free. Now H
has rank at most 2, since it is generated by 2 elements. If it were of rank 0 or 1 it would be abelian,
but it contains noncommuting elements so it has rank 2. By the corollaery above, {g, h} is a basis for
H - thus there are no relations between h and g.

5 First-order logic

The simplest example of a �rst order formula on groups is an equation. But we also allow:

• inequations;

• conjunction and disjunction of equations and inequations;

• using quanti�ers on the variables.
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Example 5.1: ∀y xy = yx and x 6= 1

∃z z2y−1 6= 1 or z3 = 1

Important: the variables x, y, . . . always represent elements of the group. They cannot repre-
sent integers, or subsets of the group.

Example 5.2: The following are NOT �rst-order formulas:

• ∀x ∃n xn = 1;

• ∃n ∃x1∃y1 . . . ∃xn∃yn z = [x1, y1] . . . [xn, yn];

• ∀H ≤ G (∀x xHx−1 = H)⇒ (H = 1 or H = G).

Remark 5.3: It is not hard to see that every �rst-order formula is equivalent to a formula where all
the quanti�ers are at the beginning, that is, something of the form

∆1x1 ∆2x2 . . .∆rxr AND
m
i=1 OR

ni
j=1 wij(x1, . . . , xr) = ( 6=) 1 (∗)

where for each k, ∆k ∈ {∀,∃}
De�nition 5.4: A �rst-order formula is said to be universal if it is equivalent to a formula of the
form (∗) in which only ∀ quanti�ers appears at the beginning.

Consider the formula ∃x∃y z = [x, y]. Its "truth value" on a group G depends on the value we
assign to the variable z.

De�nition 5.5: A variable z that appears in a formula φ is said to be free in φ if neither ∀z nor ∃z
appear before it. If a �rst-order formula φ has free variables x1, . . . , xn, we will denote it φ(x1, . . . , xn).

A �rst order formula without free variables is also called a sentence.

De�nition 5.6: Given a group G and a sentence φ, we say G satis�es φ if φ is true on G. We then
write G |= φ.

Example 5.7: φ : ∀x ∀y xyx−1y−1 = 1.
A group G satis�es φ i� it is abelian.

Let G be group. Some properties of G can be expressed by �rst-order sentences (e.g. abelianity),
some others cannot.

Question: How much can we say about a group just with �rst-order sentences?

De�nition 5.8: The �rst-order theory of a group G is the set Th(G) of sentences satis�ed by G.

If G1 ' G2, then Th(G1) = Th(G2). Conversely?

Exercise 8: 1. If G1 is �nite, and Th(G1) = Th(G2), show that G1 ' G2.

2. Show that Th(Z) 6= Th(Z2).

3. If G1 �nitely generated abelian and G2 �nitely generated, and Th(G1) = Th(G2), show that
G1 ' G2.

6 The space of marked groups

The following is a way to "draw" groups:

De�nition 6.1: Let G be a group, let S be a �nite generating set for G - we assume that 1 6∈ S. The
Cayley graph X(G,S) is the labelled graph given by
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• vertex set G;

• edge set {{g, gs} | g ∈ G, s ∈ S};

• label s on the edge {g, gs}.

Example 6.2: Draw X(Z, {1}), Z2, ...

De�nition 6.3: A marked group is a pair (G,S) where G is a group and S = (s1, . . . , sk) is an ordered
generating set for G.

Two marked groups (G, (s1, . . . , sk)) and (G′, (s′1, . . . , s
′
k′)) are identi�ed if k = k′ and the bijection

si 7→ s′i extends to an isomorphism.
The set of all (isomorphism classes of) marked groups (G,S) where S is a k-tuple is denoted Gk.
Note that if G is a group and T, S are distinct generating sets, then (G,S) and (G,T ) are not in

general equal as marked groups.

Exercise 9: Show that (Z, 1) ans (Z,−1) are isomorphic as marked groups (and thus identi�ed in
G∞). Show that (Z, (2, 3)) and (Z, (1, 3)) are not.

Here are two other ways to think about marked groups:

Remark 6.4: • a marked group is a group G together with an epimorphism π : Fk → G (if
a1, . . . , ak standard basis of Fk, the marking S is given by si = π(ai)).

• choosing a point in Gk corresponds exactly to choosing a normal subgroup in Fk.

We want to say that two marked groups are close if their generators satisfy the same relations of a
given length:

De�nition 6.5: Let (G,S) and (G′, S′) be two points in Gk. Let

R((G,S), (G′, S′)) = max{n | ∀w reduced word on k letters with l(w) ≤ n,
w(S) =G 1 ⇐⇒ w(S′) =G′ 1}

The space of marked groups is the set Gk endowed with the metric d de�ned by:

d((G,S), (G′, S′)) = 2−R((G,S),(G′,S′))

Exercise 10: Check this is a metric

So (G,S) and (G′, S′) are at least 2−r-close, i� they satisfy exactly the same relations of length at
most r.

Geometrically:

Exercise 11: R((G,S), (G′, S′)) ≥ r i� the balls of radius r/2 of their Cayley graphs are isomorphic
as labeled graphs (that is, there is a graph isomorphism between them which sends edges labeled si to
edges labeled s′i)

Examples of convergent sequences:

Example 6.6: • the sequence (Z/m, (1)) converges to (Z, (1)) as m tends to ∞.

Indeed, R((Z/m, (1)), (Z, (1))) ≥ m − 1 since in (Z/m, (1)) there are no relations of length less
than m;

• the sequence (Z, (1, 2m)) converges to Z2 with the standard generating set as m tends to ∞.

Indeed, R((Z, (1, 2m)), (Z, (1))) ≥ 2m (in (Z, (1, 2m)) aside from the relations induced by com-
mutation of the form akbja−kb−j , the shortest relation is a2mb which has length 2m+ 1).

By a similar argument it can be shown that Zn can be obtained as a limit of some marking of Z.
Proposition 6.7: The set A = {(G,S) ∈ Gk | G is abelian } is both open and closed.
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Proof. Let (G,S) ∈ A. Then any group (G′, S′) at distance less than 2−4 is abelian, indeed then for
all i, j we have s′is

′
j(s
′
i)
−1(s′j)

−1 = 1.
Suppose that (Gn, Sn)→ (G,S) and Gn abelian for all n. For n large enough d((Gn, Sn), (G,S)) <

2−4 so (G,S) satis�es the same relations of length 4 as (Gn, Sn) so (G,S) is abelian.

In a similar way we can show:

Proposition 6.8: Let φ be a universal formula in the language of groups. The set Uφ = {(G,S) ∈
Gk | G |= φ} is closed.

Proof. Suppose that (Gn, Sn) → (G,S). Suppose G 6|= φ: we can �nd witnesses g1, . . . gp ∈ G such

that none of the conjunctions
∧M
j=1 wi,j(g1, . . . , gp) = (6=)1 hold. The gi can be seen as words g̃i(S) in

S.
Let R be larger than the lengths of all the wi,j(g̃1(S), . . . , g̃p(S)) seen as words in S.
For n large enough (Gn, Sn) and (G,S) satisfy exactly the same relations of length R, hence

g̃1(Sn), . . . , g̃p(Sn) in Gn witness the fact that Gn 6|= φ.

Remark 6.9: In particular recover that A is closed since A = Uφ for φ : ∀x∀y xy = yx.
But cannot extend the openness to the general case: in abelian case, you know that if a group fails

to satisfy φ, can �nd "witnesses" of length 1, in general the length of these witnesses is arbitrary.

7 Limit groups

De�nition 7.1: We de�ne Lk to be the closure in Gk of the set

F = {(G,S) | G is free }

Caution! do not require of G to be free on S.

De�nition 7.2: We say that G is a limit group if there exists an integer k and a marking S =
(s1, . . . , sk) such that (G,S) ∈ Lk.
Exercise 12: If G is a limit group, then for any marking S of G, there exists a sequence (Gn, Sn)
converging to (G,S) with Gn free.

Exercise 13: Show that every �nitely generated subgroup of a limit group is a limit group.

Example 7.3: • Free groups are limit groups;

• Free abelian groups are limit groups (limits of Z).

First properties of limit groups:

Proposition 7.4: • Limit groups are torsion free;

• Limit groups are commutative transitive;

• Any two elements in a limit group which do not commute generate a free group of rank 2.

Proof. By the proposition above, any universal formula satis�ed by free groups is also satis�ed by limit
groups.

• Fix n. The following formula holds in any free group: ∀x x = 1 ∨ xn 6= 1), thus it holds in all
limit groups.

• All free groups satisfy ∀x, y, z{y 6= 1∧ [x, y] = 1∧ [y, z] = 1} → [x, z] = 1, hence so does any limit
group.
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• True in free groups by Remark 4.7. Thus for any non empty reduced word w on two elements
the formula φw : ∀x, y[x, y] 6= 1→ w(x, y) 6= 1 holds in F, hence in any limit group. Thus if a, b
are elements in a limit group which do not commute, no non trivial word on a, b represents the
trivial element, hence a and b generate a free group of rank 2.

Example 7.5: The group F2 × Z is NOT a limit group, since it is not commutative transitive

Proposition 7.6: Let G be a fg group. Then G is a non abelian limit group i� it has the same
universal theory as F2.

Remark 7.7: All non abelian free groups have the same universal theory. Indeed, for any k > 1 we
have that F2 ≤ Fk so Th∀(Fk) ⊆ Th∀(F2), and Fk embeds in F2 so the other inclusion also holds.

Proof. Suppose G is a non abelian limit group: it contains two noncommuting elements, hence it
contains a copy of F2, hence Th∀(G) ⊆ Th∀(F2). On the other hand, if φ is a universal formula
satis�ed by all free groups, it will be satis�ed by G since this is a closed property.

Suppose G is a fg group which has the same universal theory as F2. Let S = (s1, . . . , sk) be a �nite
generating set for G. For each N , write the following formula:

φN : ∃x1, . . . , xk
∧

w∈BN (Fk)

w(x1, . . . , xk) = (6=)1

where we put = if w(s1, . . . , sk) =G 1 and 6= otherwise. This holds in G, hence it holds in F2 (if not, its
negation, which is a universal formula, would hold in F2). Let S(n) = (s1(n), . . . , sk(n)) be witnesses
that this holds. It is easy to see that (F2, S(n)) converges to (G,S), so G is a limit group.
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