Geometry and first-order logic in groups

Chloe Perin

September 26, 2016

Minicourse for the Second israeli workshop for women in mathematics, Jerusalem, 25-29 September 2016.

Main results proved in this course:

- 1. Free groups are linear
- 2. Prove that an infinite system of equations in the free group is equivalent to a finite subsystem
- 3. Free groups have the Hopf property
- 4. Describe fg groups that are universally equivalent to the free groups.

1 Free groups and group presentations

1.1 Words and relations

Let S be a set of symbols. To each $s \in S$, we associate a formal inverse, that is, an extra symbol s^{-1} . The set of inverses is denoted S^{-1}

Definition 1.1: A word w in S is a finite (possibly empty) sequence of the form $s_1 \ldots s_n$ where each s_i is an element of $S \cup S^{-1}$. We say a word is reduced if no subsequence of the form ss^{-1} or $s^{-1}s$ appears. We sometimes write w(S).

Example 1.2: $S = \{a, b\}$. Then $S^{-1} = \{a^{-1}, b^{-1}\}$. The word $w = w(a, b) = aba^{-1}bb$ is reduced, the word $v = v(a, b) = abb^{-1}aa$ isn't. Their formal inverses are $b^{-1}b^{-1}ab^{-1}a$ and $a^{-1}a^{-1}bb^{-1}a^{-1}$ respectively.

Let now G be a group and S be a subset of G.

Definition 1.3: Let $w = s_1 \ldots s_n$ be a word in S. The element g of G represented by w is the product $s_1 \cdot \ldots \cdot s_n$ where \cdot denotes the group operation and s^{-1} is taken to be the group inverse of S. By convention the empty word represents the trivial element. We write $w =_G g$.

Example 1.4: Let $S = \{a, b\}$, and w = ab.

- Let $G = (S_4, \circ)$ be the group of permutations on 4 elements. Let a = (12) and b = (23): then $w =_{S_4} (12)(23) = (132)$. If we take $w = aba^{-1}$, then $w =_{S_4} (12)(23)(12) = (13)$
- Let $G = (\mathbb{Z}^2, +)$. Let a = (1, 0) and b = (0, 1). Then $w =_G (1, 0) + (0, 1) = (1, 1)$. Note that the word v = ba also represents the element (1, 1) and both w, v are reduced.

Thus several distinct words may represent the same element (for example ss^{-1} and $s^{-1}s$ always both represent the trivial element). It is important to keep in mind the distinction between "words" (abstract sequences of symbols) and "elements" (which belong to the group).

Definition 1.5: Say S generates G if any element of G is represented by a word in S - i.e., if any element is a product of elements in S and their inverses. Say G is finitely generated if it admits a finite subset S which generates it.

Example 1.6: • $\{1\}$ generates $(\mathbb{Z}, +)$, but also $\{2, 3\}$.

- $S = \{$ elementary matrices $\}$ generates $GL_n(\mathbb{R})$ (recall elementary matrix has either 1's on diagonal, and one non zero entry somewhere, or is diagonal with all entries equal to 1 except one, and multiplying by an elementary matrix on the right corresponds to performing an elementary operation on the columns of the matrix).
- Transpositions generate the symmetric group S_n

1.2 Free groups

Definition 1.7: A relation between the elements of S is a nonempty reduced word which represents the trivial element. If S generates G, and there are no relations between the elements of S, the group G is said to be free on S.

Lemma 1.8: If G is free on S, there is exactly one reduced word representing each element.

Proof. On an example: suppose $w_1 = ab^{-1}aa$ and $w_2 = ba$ are distinct reduced words which represent the same group element, i.e. $ab^{-1}aa =_G ba$, we get $(ab^{-1}aa)(a^{-1}b^{-1}) = ab^{-1}ab^{-1} = 1$. The reduction stops before the word is empty because w_1 and w_2 are distinct - thus we get a nontrivial reduced word representing the identity - a contradiction.

Thus if G is free on S, we can think of each element as a reduced word in S.

Building free groups. In fact, this gives us a way to build free groups: given a set of symbols S, we define a group F(S) whose elements are reduced words in S, and whose product operation is that of concatenation-reduction (i.e. to compute the product of two reduced words, write the words one after the other, and reduce if needed until you get a reduced word). We call F(S) the free group on S. (Warning - there are some things to check to see that this is indeed a group, for example, associativity is not obvious).

Example 1.9: Free group on $\{a, b\}$: reduced words on a, b e.g. $aaba^{-1}, abbbab$, product: $aab^{-1}a^{-1} \cdot abbbab = aabbab$.

Remark 1.10: Consider the free goup on $\{a, b\}$: it is free on a, b i.e. there are no relations between a and b, but this does not mean that there are no relations between the elements of the group at all! Ex: set x = ab, $y = b^{-1}a^{-1}$, then xy = 1.

The following lemma is key. It says that it is very easy to define group morphisms with source G.

Lemma 1.11: Given any group H and a choice of images $\{h_s \mid s \in S\}$ for the elements of S, there is a unique group morphism $G \to H$ sending each s to h_s .

Idea: send the reduced word $s_1^{\epsilon_1} \dots s_k^{\epsilon_k}$ (which is an element in G) on the product $h_{s_1}^{\epsilon_1} \dots h_{s_k}^{\epsilon_k}$ in H. In fact, this universal property can be used as a definition of what it means for a group G to be free on S:

Proposition 1.12: G is free on S iff for any group H and any choice $\{h_s \mid s \in S\}$ of images for the elements of H, there exists a unique morphism $h: G \to H$ such that $h(s) = h_s$ for every $s \in S$.

Proof. If G has the universal property can build a morphism $f: G \to F(S)$ sending s to s. On the other hand F(S) has the universal property as well, so there is a natural morphism $h: F(S) \to G$. The composition $h \circ f$ fixes the elements of S, so it must be the identity. Thus f is an isomorphism, in particular G is free on S.

Exercise 1: Show that the free group on $\{a, b\}$ is also free on $\{ab, b\}$.

Hence a group can be free on several different sets of elements! However, we can show that any two such sets must have the same cardinality.

Exercise 2: If S and S' have distinct cardinalities (say finite), the free groups on S and S' respectively are not isomorphic.

Remark 1.13: In particular, if G is free on S and also on T, we have |S| = |T|.

Definition 1.14: If G is free on S we call S a **basis** for G, and |S| the rank of G.

Note that the free group of rank 1 is just \mathbb{Z} . It is the only (nontrivial) one which is abelian.

1.3 Group presentations

In general however if we take a generating set for a group G, there will be relations between the elements of S. One can in fact build G by taking the free group on S and "adding" the relations the elements of S satisfy in G. Let us now see how to make this formal.

The following is a corollary of Lemma 1.11:

Corollary 1.15: Any group is the quotient of a free group.

Proof. Let G be a group with generating set S. We build an abstract set $\hat{S} = \{\hat{s} \mid s \in S\}$, and the free group $F(\hat{S})$ on \hat{S} . We let π be the morphism $F(\hat{S}) \to G$ defined by sending each \hat{s} to the corresponding s. It exists by Lemma above, and is surjective because S generates.

We will now drop the hat, and think of this morphism as $\pi : F(S) \to G$.

Remark 1.16: Note that if the reduced word w(S) is a relation between the elements of S (in G), then the element w(S) of F(S) is sent to 1 by the morphism π , i.e. relations are in the kernel. Conversely, it is easy to see that any element of the kernel is a relation.

In particular G is free on S iff Ker π is trivial, that is iff π is an isomorphism.

Example 1.17: Let $G = \mathbb{Z}/3\mathbb{Z}$ be the cyclic group of order 3. Let *a* be a generator, $S = \{a\}$. We have relations: aaa = 1, $a^6 = 1$, etc. Note that the second relation is a consequence of the first one, so really we don't need to specify it. (Do it also in additive notation?)

- Exercise 4.1, 4.2: inverses, products of relations and conjugates of relations are consequences of the relations. Hence also products of conjugates of relations.

Exercise 3: Let G be a group, S a generating set. Let u, v be relations between the elements of S (they are reduced words, so we think of them as elements of F(S)), and let w be a reduced word

- 1. Show that uv (the product of u and v in F(S)) is a relation.
- 2. Show that wuw^{-1} is a relation.
- 3. Deduce that if r_1, \ldots, r_n are relations, any element of the form $\prod_{i=1}^k u_i(S)r_i^{\pm 1}u_i^{-1}(S)$ for some $k \in \mathbb{N}, u_i \in G$ is a relation.

Exercise 4: Let G be a group, and let A be a subset of G. Show that the set

$$\{\Pi_{i=1}^{k} u_i(S) a_i^{\pm 1} u_i^{-1}(S) \mid k \in \mathbb{N}, a_i \in A, u_i \in G\}$$

is a normal subgroup of G, and that it is in fact the smallest normal subgroup of G which contains A. We denote it $\langle \langle A \rangle \rangle$.

The idea of a presentation of a group G with generating set S is that we want to find a set of relations R such that all the other relations are consequences of the relations in R.

Definition 1.18: (Let S generate G, and $\pi : F(S) \to G$). Let R be a subset of F(S) such that $\text{Ker}\pi = \langle \langle R \rangle \rangle$, that is $\text{Ker}\pi$ is the smallest normal subgroup of F(S) containing R. Then we say G admits the presentation $\langle S | R \rangle$.

By the first isomorphism theorem, we get that $G \simeq F(S)/\text{Ker}\pi = F(S)/\langle\langle R \rangle\rangle$. In other words, G admits the presentation $G = \langle S | R \rangle$ if

- 1. the elements in R are relations between the elements of S;
- 2. any relation between the elements of S is a consequence of the relations in R, i.e., belongs to $\langle \langle R \rangle \rangle$.

Example 1.19: • $\langle a, b | \rangle$ is a presentation of F(a, b);

- $\langle a \mid a^7 \rangle$ is a presentation of $\mathbb{Z}/7\mathbb{Z}$
- $\langle a, b \mid aba^{-1}b^{-1} \rangle$ is a presentation of \mathbb{Z}^2 .

We sometimes write $\langle a, b \mid ab = ba \rangle$ instead, the meaning is the obvious one.

Building a group with presentation $\langle S | R \rangle$ We can also choose a set of reduced word R in F(S) and build a group which admits the presentation $G = \langle S | R \rangle$ simply by setting $G = F(S)/\langle \langle R \rangle \rangle$.

To build a morphism with source the group $\langle S | R \rangle$, it is enough to choose images for the generators which satisfy the relations given by R.

Proposition 1.20: Let $G = \langle S | R \rangle$, and let H be any group. For any choice of elements $\{h_s | s \in S\}$, there is a morphism $G \to H$ sending s to h_s for each $s \in S$ iff the elements h_s satisfy the relations in R, that is, for any reduced word $s_1 \dots s_r$ in R we have $h_{s_1} \dots h_{s_r} =_H 1$.

Example 1.21: • $G = \langle a \mid a^7 \rangle$ - to define a morphism need to find an order 7 element in H.

• $G = \langle a, b \mid aba^{-1}b^{-1} \rangle$ - to define a morphism $G \to H$ need to find two commuting elements in H.

1.4 Subgroups of free groups

Let us now consider subgroups of free groups. First example: the free group on $\{a, b, c\}$ contains the free group on $\{a, b\}$ as a subgroup. This type of examples shows that if $k \leq l$ then \mathbb{F}_k embeds in \mathbb{F}_l . But in fact, free groups of any rank embed in \mathbb{F}_2 .

Exercise 5: Consider the subgroup H of $\mathbb{F}(a, b)$ generated by $S = \{h_n = b^n a b^{-n}, n \in \mathbb{N}\}$, and show it is free on S.

In fact we have

Theorem 1.22: Any subgroup of a free group is free.

2 Equations over groups

2.1 Equations over fields

Over a field K we are used to think about polynomial equations, that is, equation of the form P(X) = 0where P is a polynomial with coefficients in K - i.e. an element of K[X]. More generally, equation with several variables: $P(X_1, \ldots, X_n) = 0$ with $P \in K[X_1, \ldots, X_n]$. One can also consider systems of equations, that is, sets of (possibly infinityly many) polynomial equations.

Example 2.1: $X^2 - 2X - 5 = 0$, $X_1^3 + 3X_1X_2 + X_2^2 - 7 = 0$

(we will sometimes abuse notation and identify the polynomial P and the equation P(X) = 0)

Definition 2.2: A tuple $(u_1, \ldots, u_n) \in K^n$ is a solution of the equation $P(X_1, \ldots, X_n) = 0$ if we have $P(u_1, \ldots, u_n) = 0$.

The set of solutions to a system Σ of equations on n variables is a subset of K^n , we call such subsets "varieties".

Remark 2.3: Equations have "consequences" - if (u_1, \ldots, u_n) is a solution of $P(X_1, \ldots, X_n) = 0$, it is a solution of Q = 0 for every polynomial Q in the ideal (P) generated by P. Similarly a solution to the system Σ also satisfies Q = 0 for every Q in the ideal generated by the polynomials corresponding to the equations in Σ .

Exercise 6: Check this.

Recall: an ideal is a subset $I \subseteq K[X_1, \ldots, X_n]$ which is stable by 1. addition (if $P_1, P_2 \in I$ then $(P_1+P_2) \in I$) and 2. multiplication by any polynomial (if $P \in I$ and $Q \in K[X_1, \ldots, X_n]$ then $PQ \in I$).

The ideal generated by a set $A \subseteq K[X_1, \ldots, X_n]$ is the smallest ideal containing A, it can be shown to be exactly the set

$$\{Q_1P_1 + \ldots + Q_rP_r \mid r \in \mathbb{N}, P_i \in A \text{ and } Q_i \in K[X_1, \ldots, X_n] \text{ for } i = 1, \ldots, r\}$$

2.2 Equations over groups

Let G be a group.

Definition 2.4: An equation over G is an expression of the form $w(x_1, \ldots, x_n) = 1$, where w is a word in the variables x_1, \ldots, x_n and their inverses. We can also allow the use of constants from G, to get equations with constants $w(x_1, \ldots, x_n, a_1, \ldots, a_k) = 1$. Can also define systems of equations.

A tuple (u_1, \ldots, u_n) of G^n is a solution to the equation $w(x_1, \ldots, x_n, a_1, \ldots, a_k) = 1$ if the element represented by the word $w(u_1, \ldots, u_n, a_1, \ldots, a_k)$ is trivial in G.

Example 2.5: $x^7 = 1, x^2 = a, xax^{-1}a^{-1} = 1, xay^2b = 1, ...$

An alternative point of view: let Σ be a system of equations in n variables over the group G (suppose at first without constants): that is,

$$\Sigma = \{w_1(x_1, \dots, x_n) = 1, w_2(x_1, \dots, x_n) = 1, \dots\}$$

We build a group G_{Σ} defined by the presentation:

$$G_{\Sigma} = \langle x_1, \dots, x_n \mid w_1(x_1, \dots, x_n), w_2(x_1, \dots, x_n), \dots \rangle$$

Proposition 2.6: There is a one to one correspondence between: solutions to the system Σ in G on the one hand and homomorphisms $G_{\Sigma} \to G$ on the other hand

Proof. Given a solution (u_1, \ldots, u_n) to Σ , there is a unique morphism $G_{\Sigma} \to G$ which sends x_i to u_i . Conversely, if $\theta : G_{\Sigma} \to G$ is a morphism, then the tuple $(\theta(x_1), \ldots, \theta(x_n))$ is a solution for Σ (see paragraph on group presentations).

Remark 2.7: Like for equations over fields, equations over groups have "consequences": if u is a solution to the equation $x^2 = 1$, it will also be a solution to $x^4 = 1$, if u is a solution to the equation $xax^{-1}a^{-1} = 1$, it will also be a solution to $xa^2x^{-1}a^{-2} = 1$.

Exercise 7: How could we characterize all the consequences of a set of equations - what is the analogue of the ideal I_{Σ} of $K[X_1, \ldots, X_n]$ in the field case? ANSWER (case where Σ is without constants) first need to think what the analogue of $K[X_1, \ldots, X_n]$ is: it's the free group on x_1, \ldots, x_n , and the set of consequences is the subgroup normally generated by the words corresponding to equations of Σ

3 Equational noetherianity of the free group

Our aim now is to prove

Theorem 3.1: If G is a free group, and Σ is a system of equations over G, there exists a finite subset Σ_0 of Σ such that Σ and Σ_0 are equivalent.

(that is, any tuple $(u_1, \ldots, u_n) \in \mathbb{F}^n$ which is a solution to Σ_0 in fact satisfies all the equations of Σ)

Remark 3.2: This is true of equations over fields: Recall that the ring of polynomials $K[X_1, \ldots, X_n]$ is Noetherian, that is, there are no infinite ascending chains of ideals. In particular if Σ is an infinite set of polynomials $P_1(X_1, \ldots, X_n), P_2(X_1, \ldots, X_n), \ldots$, if we define $I_j = (P_1, \ldots, P_j)$ we have that for some m, the ideal I_m contains all of Σ . In particular all of the equations $P_j = 0$ for j > m are "consequences" of the first m equations.

This means precisely that the system of equations Σ is equivalent to the finite subsystem $P_1 = 0, \ldots, P_m = 0$.

In fact, the proof in the free group cases precisely rests on the fact that this is true in \mathbb{R} . The other ingredient is linearity of the free group:

Proposition 3.3: Let \mathbb{F} be a finitely generated free group. Then \mathbb{F} embeds in the group $SL_2(\mathbb{R})$.

Let us prove Theorem 3.1 using this

Proof. We think of \mathbb{F} as a subgroup of $\mathrm{SL}_2(\mathbb{R})$, in particular, we think of its elements as 2-by-2 matrices - that is, as elements of \mathbb{R}^4 . Each equation $w(x_1, \ldots, x_k) = 1$ in Σ translates as 4 polynomial equations in the coefficients of the x_i 's viewed as elements of \mathbb{R}^4 . Denote by $\hat{\Sigma}$ the set of polynomial equations on the coefficients of the x_i 's obtained in this way: by the previous remark, it is equivalent to a finite subsystem $\hat{\Sigma}_0$. This finite subsystem is induced by a finite subsystem Σ_0 of Σ , such that that any element of \mathbb{R}^{4k} which satisfies Σ_0 also satisfies Σ . This is in particular true of elements of \mathbb{F} , which proves the claim.

We must now prove Proposition 3.3.

Proof. We will show that $SL_2(\mathbb{Z})$ contains a free group of rank 2. Since the free group of rank 2 contains subgroups of arbitrarily large rank, any fg free group embeds in $SL_2(\mathbb{Z})$.

Consider the subgroup F of $SL_2(\mathbb{Z})$ generated by the two matrices $\alpha = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. We will show it is free on $\{\alpha, \beta\}$. Note that for any $n \in \mathbb{Z}$ we have $\alpha^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$ and $\beta^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0\\ 2n & 1 \end{pmatrix}$

Consider the linear action of $SL_2(\mathbb{Z})$ on \mathbb{R}^2 . Let $U = \{(x, y) \mid |y| > |x|\}$, and $V = \{(x, y) \mid |y| < |x|\}$. Note that $\alpha^n(U) \subseteq V$ and $\beta^n(V) \subseteq U$ for any $n \in \mathbb{Z}$ with $n \neq 0$.

Let w be a non empty reduced word in α, β : assume first that w starts and ends by a power of α . Take $x \in U$: then $w \cdot x$ is in V, so it cannot be equal to x. Thus the element represented by w is not trivial.

Reduce to this case by conjugating w by an appropriate power of α . Show that the conjugate w' of w is non-trivial, thus w itself is non-trivial.

4 Hopf property for the free group

From the linearity of the free group we will now deduce another property - the fact that it is Hopf.

We start by a very general remark: if A is a set, we can look at maps $A \to A$. If A is finite, a surjective map is necessarily also injective. In fact, this can be seen as a characterization of finiteness for sets (A is finite iff any surjective map $A \to A$ is also injective). Counterexample for infinite sets: e.g. $A = \mathbb{N}$, f(0) = 0 and f(n) = n - 1 for n > 1.

(Think: what is the analogue for vector spaces? finite dimension!)

For a group G, the natural analogue is to look at morphisms $f: G \to G$.

Definition 4.1: We say G has the Hopf property if any surjective morphism $G \to G$ is also injective.

Example: finite groups are Hopf (just look at f as a map between sets!). The group $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ is not Hopf - take f to be a left shift (forget the first coordinate).

Proposition 4.2: Free groups are Hopfian.

In fact, to prove this we will show first

Proposition 4.3: Free groups are residually finite.

Definition 4.4: We say a group G is residually finite if for any non trivial element $g \in G$, there exists a morphism $h: G \to A$ where A is a finite group, such that $h(g) \neq 1$.

Note that a subgroup of a residually finite group is residually finite.

Proof. We show $SL_2(\mathbb{Z})$ is residually finite: let M be a matrix which is not the identity. Let n be larger than the absolute value of all the entries of the matrix. Consider the map $\pi_n : SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z})$ which consists in taking the entries of a matrix modulo n: this is a group morphism to a finite group (check this!), and $\pi_n(M)$ is non trivial.

Since \mathbb{F} can be thought of as a subgroup of $SL_2(\mathbb{Z})$, it is itself residually finite.

We now prove

Proposition 4.5: Residually finite groups are Hopfian.

Proof. Let G be a residually finite group. Suppose $f: G \to G$ is surjective but not injective. Let $g \in \operatorname{Ker} f$ with $g \neq 1$. By residual finiteness there is a morphism $h: G \to A$ with $h(g) \neq 1$. Consider the morphisms $h \circ f^k$, show they are all different (each one kills some element that the ones of lower power do not kill). This gives an infinite number of morphisms from a fg group to a finite group, a contradiction.

We deduce from the Hopf property the following corollary

Corollary 4.6: Suppose G is a free group of rank n. Any generating set S of G has size at least n. If S it consists of exactly n elements, then it is a basis of G.

Proof. Suppose G is free on a_1, \ldots, a_n , and let $\{u_1, \ldots, u_m\}$ be another generating set for G. Let $\mathbb{F} = \mathbb{F}(s_1, \ldots, s_m)$ be the free group on s_1, \ldots, s_m .

We build a morphism $\tau \circ \sigma : \mathbb{F}(S) \to \mathbb{F}(S)$ as follows: first, let $\sigma : F(S) \to G$ send s_i to u_i , then let $\tau : \mathbb{F}(S) \to G$ send a_i to s_i for $i \leq m, n$ and a_i to 1 for $m < i \leq n$ (if such i's exist).

If $m \leq n$ then $\tau \circ \sigma$ is surjective, it is in fact an isomorphism by Hopf property. In particular we must have in fact m = n. Since there are no relations between the a_i 's, there are no relations between the s_i 's and G is free on S.

We further deduce

Proposition 4.7: Two elements g, h which do not commute in a free group do not satisfy any other non trivial relation.

Proof. The subgroup H generated by g, h is free, since every subgroup of a free group is free. Now H has rank at most 2, since it is generated by 2 elements. If it were of rank 0 or 1 it would be abelian, but it contains noncommuting elements so it has rank 2. By the corollaery above, $\{g, h\}$ is a basis for H - thus there are no relations between h and g.

5 First-order logic

The simplest example of a first order formula on groups is an equation. But we also allow:

- inequations;
- conjunction and disjunction of equations and inequations;
- using quantifiers on the variables.

Example 5.1: $\forall y \ xy = yx$ and $x \neq 1$

 $\exists z \ z^2 y^{-1} \neq 1 \text{ or } z^3 = 1$

Important: the variables x, y, \ldots always represent **elements of the group**. They cannot represent integers, or subsets of the group.

Example 5.2: The following are NOT first-order formulas:

- $\forall x \exists n \ x^n = 1;$
- $\exists n \exists x_1 \exists y_1 \dots \exists x_n \exists y_n \ z = [x_1, y_1] \dots [x_n, y_n];$
- $\forall H \leq G \; (\forall x \; xHx^{-1} = H) \Rightarrow (H = 1 \text{ or } H = G).$

Remark 5.3: It is not hard to see that every first-order formula is equivalent to a formula where all the quantifiers are at the beginning, that is, something of the form

$$\Delta_1 x_1 \, \Delta_2 x_2 \, \dots \, \Delta_r x_r \, AND_{i=1}^m \, OR_{i=1}^{n_i} \, w_{ij}(x_1, \dots, x_r) \, = (\neq) \, 1 \ (*)$$

where for each $k, \Delta_k \in \{\forall, \exists\}$

Definition 5.4: A first-order formula is said to be **universal** if it is equivalent to a formula of the form (*) in which only \forall quantifiers appears at the beginning.

Consider the formula $\exists x \exists y \ z = [x, y]$. Its "truth value" on a group G depends on the value we assign to the variable z.

Definition 5.5: A variable z that appears in a formula ϕ is said to be free in ϕ if neither $\forall z$ nor $\exists z$ appear before it. If a first-order formula ϕ has free variables x_1, \ldots, x_n , we will denote it $\phi(x_1, \ldots, x_n)$.

A first order formula without free variables is also called a **sentence**.

Definition 5.6: Given a group G and a sentence ϕ , we say G satisfies ϕ if ϕ is true on G. We then write $G \models \phi$.

Example 5.7: ϕ : $\forall x \ \forall y \ xyx^{-1}y^{-1} = 1$. A group *G* satisfies ϕ iff it is abelian.

Let G be group. Some properties of G can be expressed by first-order sentences (e.g. abelianity), some others cannot.

Question: How much can we say about a group just with first-order sentences?

Definition 5.8: The first-order theory of a group G is the set Th(G) of sentences satisfied by G.

If $G_1 \simeq G_2$, then $\operatorname{Th}(G_1) = \operatorname{Th}(G_2)$. Conversely?

Exercise 8: 1. If G_1 is finite, and $Th(G_1) = Th(G_2)$, show that $G_1 \simeq G_2$.

- 2. Show that $\operatorname{Th}(\mathbb{Z}) \neq \operatorname{Th}(\mathbb{Z}^2)$.
- 3. If G_1 finitely generated abelian and G_2 finitely generated, and $\operatorname{Th}(G_1) = \operatorname{Th}(G_2)$, show that $G_1 \simeq G_2$.

6 The space of marked groups

The following is a way to "draw" groups:

Definition 6.1: Let G be a group, let S be a finite generating set for G - we assume that $1 \notin S$. The Cayley graph X(G,S) is the labelled graph given by

- vertex set G;
- edge set $\{\{g, gs\} \mid g \in G, s \in S\};$
- label s on the edge $\{g, gs\}$.

Example 6.2: Draw $X(\mathbb{Z}, \{1\}), \mathbb{Z}^2, ...$

Definition 6.3: A marked group is a pair (G, S) where G is a group and $S = (s_1, \ldots, s_k)$ is an ordered generating set for G.

Two marked groups $(G, (s_1, \ldots, s_k))$ and $(G', (s'_1, \ldots, s'_{k'}))$ are identified if k = k' and the bijection $s_i \mapsto s'_i$ extends to an isomorphism.

The set of all (isomorphism classes of) marked groups (G, S) where S is a k-tuple is denoted \mathcal{G}_k .

Note that if G is a group and T, S are distinct generating sets, then (G, S) and (G, T) are not in general equal as marked groups.

Exercise 9: Show that $(\mathbb{Z}, 1)$ and $(\mathbb{Z}, -1)$ are isomorphic as marked groups (and thus identified in \mathcal{G}_{∞}). Show that $(\mathbb{Z}, (2, 3))$ and $(\mathbb{Z}, (1, 3))$ are not.

Here are two other ways to think about marked groups:

- **Remark 6.4:** a marked group is a group G together with an epimorphism $\pi : \mathbb{F}_k \to G$ (if a_1, \ldots, a_k standard basis of \mathbb{F}_k , the marking S is given by $s_i = \pi(a_i)$).
 - choosing a point in \mathcal{G}_k corresponds exactly to choosing a normal subgroup in \mathbb{F}_k .

We want to say that two marked groups are close if their generators satisfy the same relations of a given length:

Definition 6.5: Let (G, S) and (G', S') be two points in \mathcal{G}_k . Let

$$\begin{split} R((G,S),(G',S')) &= \max\{n \mid \forall w \text{ reduced word on } k \text{ letters with } l(w) \leq n, \\ w(S) &=_G 1 \iff w(S') =_{G'} 1 \rbrace \end{split}$$

The space of marked groups is the set \mathcal{G}_k endowed with the metric d defined by:

$$d((G,S), (G',S')) = 2^{-R((G,S), (G',S'))}$$

Exercise 10: Check this is a metric

So (G, S) and (G', S') are at least 2^{-r} -close, iff they satisfy exactly the same relations of length at most r.

Geometrically:

Exercise 11: $R((G, S), (G', S')) \ge r$ iff the balls of radius r/2 of their Cayley graphs are isomorphic as labeled graphs (that is, there is a graph isomorphism between them which sends edges labeled s_i to edges labeled s'_i)

Examples of convergent sequences:

Example 6.6: • the sequence $(\mathbb{Z}/m, (1))$ converges to $(\mathbb{Z}, (1))$ as m tends to ∞ .

- Indeed, $R((\mathbb{Z}/m, (1)), (\mathbb{Z}, (1))) \ge m 1$ since in $(\mathbb{Z}/m, (1))$ there are no relations of length less than m;
- the sequence (Z, (1, 2m)) converges to Z² with the standard generating set as m tends to ∞.
 Indeed, R((Z, (1, 2m)), (Z, (1))) ≥ 2m (in (Z, (1, 2m)) aside from the relations induced by commutation of the form a^kb^ja^{-k}b^{-j}, the shortest relation is a^{2m}b which has length 2m + 1).

By a similar argument it can be shown that \mathbb{Z}^n can be obtained as a limit of some marking of \mathbb{Z} . **Proposition 6.7:** The set $\mathcal{A} = \{(G, S) \in \mathcal{G}_k \mid G \text{ is abelian }\}$ is both open and closed. *Proof.* Let $(G, S) \in \mathcal{A}$. Then any group (G', S') at distance less than 2^{-4} is abelian, indeed then for all i, j we have $s'_i s'_j (s'_i)^{-1} (s'_j)^{-1} = 1$.

Suppose that $(G_n, S_n) \to (G, S)$ and G_n abelian for all n. For n large enough $d((G_n, S_n), (G, S)) < 2^{-4}$ so (G, S) satisfies the same relations of length 4 as (G_n, S_n) so (G, S) is abelian.

In a similar way we can show:

Proposition 6.8: Let ϕ be a universal formula in the language of groups. The set $\mathcal{U}_{\phi} = \{(G, S) \in \mathcal{G}_k \mid G \models \phi\}$ is closed.

Proof. Suppose that $(G_n, S_n) \to (G, S)$. Suppose $G \not\models \phi$: we can find witnesses $g_1, \ldots, g_p \in G$ such that none of the conjunctions $\bigwedge_{j=1}^M w_{i,j}(g_1, \ldots, g_p) = (\neq)1$ hold. The g_i can be seen as words $\tilde{g}_i(S)$ in S.

Let R be larger than the lengths of all the $w_{i,j}(\tilde{g}_1(S), \ldots, \tilde{g}_p(S))$ seen as words in S.

For *n* large enough (G_n, S_n) and (G, S) satisfy exactly the same relations of length *R*, hence $\tilde{g}_1(S_n), \ldots, \tilde{g}_p(S_n)$ in G_n witness the fact that $G_n \not\models \phi$.

Remark 6.9: In particular recover that \mathcal{A} is closed since $\mathcal{A} = \mathcal{U}_{\phi}$ for $\phi : \forall x \forall y \ xy = yx$.

But cannot extend the openness to the general case: in abelian case, you know that if a group fails to satisfy ϕ , can find "witnesses" of length 1, in general the length of these witnesses is arbitrary.

7 Limit groups

Definition 7.1: We define \mathcal{L}_k to be the closure in \mathcal{G}_k of the set

$$\mathcal{F} = \{ (G, S) \mid G \text{ is free } \}$$

Caution! do not require of G to be free on S.

Definition 7.2: We say that G is a limit group if there exists an integer k and a marking $S = (s_1, \ldots, s_k)$ such that $(G, S) \in \mathcal{L}_k$.

Exercise 12: If G is a limit group, then for any marking S of G, there exists a sequence (G_n, S_n) converging to (G, S) with G_n free.

Exercise 13: Show that every finitely generated subgroup of a limit group is a limit group.

Example 7.3: • Free groups are limit groups;

• Free abelian groups are limit groups (limits of \mathbb{Z}).

First properties of limit groups:

Proposition 7.4: • *Limit groups are torsion free;*

- Limit groups are commutative transitive;
- Any two elements in a limit group which do not commute generate a free group of rank 2.

Proof. By the proposition above, any universal formula satisfied by free groups is also satisfied by limit groups.

- Fix n. The following formula holds in any free group: $\forall x \ x = 1 \lor x^n \neq 1$), thus it holds in all limit groups.
- All free groups satisfy $\forall x, y, z \{ y \neq 1 \land [x, y] = 1 \land [y, z] = 1 \} \rightarrow [x, z] = 1$, hence so does any limit group.

• True in free groups by Remark 4.7. Thus for any non empty reduced word w on two elements the formula $\phi_w : \forall x, y[x, y] \neq 1 \rightarrow w(x, y) \neq 1$ holds in \mathbb{F} , hence in any limit group. Thus if a, b are elements in a limit group which do not commute, no non trivial word on a, b represents the trivial element, hence a and b generate a free group of rank 2.

Example 7.5: The group $\mathbb{F}_2 \times \mathbb{Z}$ is NOT a limit group, since it is not commutative transitive

Proposition 7.6: Let G be a fg group. Then G is a non abelian limit group iff it has the same universal theory as \mathbb{F}_2 .

Remark 7.7: All non abelian free groups have the same universal theory. Indeed, for any k > 1 we have that $\mathbb{F}_2 \leq \mathbb{F}_k$ so $\operatorname{Th}_{\forall}(F_k) \subseteq \operatorname{Th}_{\forall}(\mathbb{F}_2)$, and \mathbb{F}_k embeds in \mathbb{F}_2 so the other inclusion also holds.

Proof. Suppose G is a non abelian limit group: it contains two noncommuting elements, hence it contains a copy of \mathbb{F}_2 , hence $\operatorname{Th}_{\forall}(G) \subseteq \operatorname{Th}_{\forall}(\mathbb{F}_2)$. On the other hand, if ϕ is a universal formula satisfied by all free groups, it will be satisfied by G since this is a closed property.

Suppose G is a fg group which has the same universal theory as \mathbb{F}_2 . Let $S = (s_1, \ldots, s_k)$ be a finite generating set for G. For each N, write the following formula:

$$\phi_N : \exists x_1, \dots, x_k \bigwedge_{w \in B_N(\mathbb{F}_k)} w(x_1, \dots, x_k) = (\neq) 1$$

where we put = if $w(s_1, \ldots, s_k) =_G 1$ and \neq otherwise. This holds in G, hence it holds in \mathbb{F}_2 (if not, its negation, which is a universal formula, would hold in \mathbb{F}_2). Let $S(n) = (s_1(n), \ldots, s_k(n))$ be witnesses that this holds. It is easy to see that $(\mathbb{F}_2, S(n))$ converges to (G, S), so G is a limit group. \Box