
Introduction to geometric group theory

July 23, 2017

Please bring to my attention any mistake or typo by writing to chloeperin@gmail.com.

Idea of geometric group theory: to understand the algebraic properties of a group, it is useful to
see it as the group of symmetries of something (preferably with a geometric structure whatever that
means).

Where do groups come from? Apart from "classic objects" such as Z,R, most groups we know
are given as groups of symmetries (we will see in the sequel another way of de�ning groups, which is
completely algebraic - group presentations).

Example: 1. Sn group of permutations on n elements, An alternating group;

2. Dk group of symmetries of a regular k-gon;

3. D∞ group of symmetries of the marked real line (a subgroup of Isom(R));

4. GLn(R) group of invertible linear transformations of the vector space Rn; O(n) orthogonal group
(=group of isometries);

5. Group of symmetries of the cube;

6. Groups of symmetries of tilings of the plane: square tiling, triangle groups

Given any mathematical object O, we can de�ne its group of symmetries - they are bijective maps
from O to itself preserving the structure on the object. Eg: permutations if the object is a set, linear
maps if it's a vector space, isometries if it's a metric space, homeomorphisms if it's a topological space,
etc. If we endow the set of symmetries of O with the product given by composition, we get a group
Sym(O).

In fact historically groups �rst appeared in Galois' work when he tried to understand solutions of
polynomial equations through the group of symmetries of the roots.

Klein's Erlangen program in 1872 claimed that the way to understand geometry is through groups,
i.e. that each geometry (euclidean, a�ne, projective, ...) can be understood by looking at its group of
symmetries.

Geometric group theory, which arose in the late 1980's, can be thought of as implementing Erlangen
program in reverse: to understand a group, one should understand what geometric objects it acts on
(where the term "geometric" is taken in a loose sense here). Thus one asks two types of questions:

1. If I know a group G admits an action with properties xyz on a space of type T , what does it tell
me about G?

2. Does the group G have an action with properties xyz on a space of type T?

Thus a typical question of geometric group theory: is Aut(Fn) linear? i.e. something given as a
group of symmetries of a group, can it be thought of as a group of symmetries of a vector space? (It
is not - for n ≥ 3- Formanek and Procesi 1992)
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1 Cayley graph and group presentations

Let us �rst think about the second question in much generality - i.e. without assuming anything on
the group G.

Note that it is always possible to see a group as a group of permutations of a set - namely, the
underlying set of the group.

Remark 1.1: Let G be a group. Then G acts on itself by left translation, i.e. g · h = gh (check this
is an action). The only element which acts like the identity permutation (�xes everyone) is the trivial
element, hence the action is faithful. This gives an embedding G ↪→ Sym(G) given by g 7→ σg where
σg(h) = gh (make sure you see why it's a morphism, and why injectivity corresponds to faithfulness of
the action).

We can do better than this: we will see that any group can be seen as a group of symmetries of an
(oriented, labelled) graph - the Cayley graph.

1.1 Cayley graph

De�nition 1.2: Let G be a group, let S be a generating set for G such that 1 6∈ S. The Cayley graph
of G with respect to S is an oriented graph whose vertices are the elements of G and where there is
an edge (g, gs) for each g ∈ G and s ∈ S. We can label the edge (g, gs) by s, thus making X(G,S) an
oriented labelled graph.

Note that if s2 = 1 then (g, gs) and (gs, g) are both edges in X(G,S). We often take the convention
to identify them to form one unoriented edge. We sometimes forget the orientation, or the labeling.

Example 1.3: • Z with generating sets {1}, {2, 3};

• Z2 with standard generating set;

• Z/nZ;

• S3 with respect to (12), (123);

• Dn with respect to a rotation and a re�ection. D∞.

Lemma 1.4: Cayley graphs are connected (as non oriented graphs) and regular.

Proof. Connected because S generates. Regular: each vertex has an incoming edge labelled s and
an outcoming edge labelled s (these two edges are identi�ed if s2 = 1). The valence is therefore
2 |S| −

∣∣{s ∈ S | s2 = 1}
∣∣

Remark 1.5: The group G acts on X(G,S): if h ∈ G, we associate to it the symmetry of X(G,S)
which sends the vertex g to the vertex hg for each g ∈ G, and the edge (g, gs) to the edge (hg, hgs) for
each g ∈ G and s ∈ S. This action is faithful. Note that the action preserves orientation and labelling
of the graph.

Example 1.6: Action of Z, Z2 on their various Cayley graphs.

Exercise 1.7: Draw the Cayley graph of (Z/2Z)2, and of (Z/2Z)3 relative to the standard generating
sets, and understand the action of the group on the Cayley graph.

The geometric (or topological) realization of a graph is the quotient space formed by taking a copy
of the interval [0, 1] for each edge and identifying common endpoints. It is a topological space. In fact,
we even have a natural metric on this space induced by setting each edge to be isometric to the interval
[0, 1] (easy to de�ne the length of a path, then take distance between two points to be inf of length of
paths joining them).

Remark 1.8: The action of G on the graph X(G,S) gives an action of G on the geometric realiza-
tion of X(G,S) by isometries. From now on blur the distinction between X(G,S) and its geometric
realization.
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Lemma 1.9: If S does not contain elements of order 2, the action is free (i.e. no non trivial element
�xes a point).

Proof. Suppose g · x = x. If x is a vertex, x ∈ G and g · x = gx, thus gx = x implies g = 1.
If x is on an edge between vertices h and hs, then g must stabilize this edge - if it �xes the endpoints,

as above this means g = 1. If it swaps them, we have gh = hs and ghs = h so hss = h so s2 = 1.

Example 1.10: Action of Z/2 on its Cayley graph not free.

1.2 Words and paths

De�nition 1.11: Let S be a set. We introduce a symbol s−1 (the formal inverse) for each symbol
s ∈ S, and set S−1 = {s−1 | s ∈ S}. A word in S ∪ S−1 is a �nite sequence of elements of S ∪ S−1

(we will often abuse the terms and say a word in S). The empty word is usually denoted by e or by 1.

Remark 1.12: If S is a generating set for a group G, to a word w in S ∪ S−1 given by sε11 . . . sεkk
corresponds a unique path pw in the Cayley graph starting at the vertex 1 and going along the edges
labelled by the si, going with the orientation if εi = +1 and against the orientation εi = −1. Conversely
any �nite path in X(G,S) starting at 1 gives us a word in S ∪ S−1.

Example 1.13: In Z2, look at the words aabbab−1, bbaaa, aba−1a−1.

The path pw has endpoint at the vertex g = sε11 · . . . · s
εk
k where · represents the product law of G

and we take (obviously) s−1 to be the inverse of s in the group G.

Remark 1.14: More often we write g = sε11 . . . sεkk (omitting the product symbol), which can lead to
some confusion. For example, if S = {a, b} the words abb−1 and a are distinct, while the elements

of the group abb−1 and a are the same. In the Cayley graph: the paths are distinct, but they have the
same endpoints. Sometimes clarify by writing abb−1 =G a.

De�nition 1.15: We say that the word w represents the element g.

Note that if we start the path at h instead of 1, you will reach the vertex hg.

De�nition 1.16: Let G be a group and let S be a generating set for G. The word length of an element
g of G relative to S is

lS(g) = min{r | g = sε11 . . . sεrr for si ∈ S and εi ∈ {1,−1}}.

with the convention that lS(1) = 0.

Note that this is exactly the length of the shortest path between 1 and g in the Cayley graph, that
is (according to our choice of the metric in the geometric realization of a graph), the distance between
1 and g.

De�nition 1.17: Let G be a group and let S be a generating set for G. The word metric on G relative
to S is

dS(g, h) = lS(g−1h)

In other words: by how many generators (or inverses of) do you need to multiply g to get h? Note
that this is the distance between g and h in the Cayley graph.

Example 1.18: In Z2 with standard basis {a, b}, the path corresponding to aba−1b−1 is a loop - its
endpoint is 1. This is because aba−1a−1 =Z2 1.

De�nition 1.19: If w is a word on S such that w =G 1, we call w a relation between the generators
S.

Sometimes the equation w =G 1 is called a relaTION, and w itself is called a relaTOR.
Note that in any group, ss−1 is a relation - these are not interesting.

De�nition 1.20: A word w is reduced if whenever si = si+1 we have εi = εi+1.
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In other words, a word is reduced i� the corresponding path in the Cayley graph has no backtrack
- call it a reduced path. EXCEPT if have taken the convention of identifying edges corresponding to
elements of S of order 2. In this case a path might have backtrack but correspond to a reduced word
(eg ss for s ∈ S with s2 = 1).

1.3 Free groups

The idea of presentations is to de�ne a group by giving a set of generators and some relations between
these generators that should "imply" all the relations that exist. First, we consider the case where we
want the generators to have as few relations as possible.

De�nition 1.21: Let G be a group, S a generating set. Say G is free on S if no non empty reduced
word represents the trivial element.

Remark 1.22: Thus if G is free on S then X(G,S) is a tree (it is a connected graph where there are
no cycles without backtrack). If X(G,S) is a tree and S contains no element of order 2 then G is free
on S.

Example 1.23: The subgroup F of SL2(Z) generated by the two matrices α =

(
1 2
0 1

)
and β =(

1 0
2 1

)
is free on {α, β}. Note that for any n ∈ Z we have αn =

(
1 2n
0 1

)
and βn =

(
1 0

2n 1

)
Consider the linear action of SL2(Z) on R2. Let U = {(x, y) | |y| > |x|}, and V = {(x, y) | |y| < |x|}.

Note that αn(U) ⊆ V and βn(V ) ⊆ U for any n ∈ Z with n 6= 0.
Let w be a non empty reduced word in α, β: assume �rst that w starts and ends by a power of α.

Take x ∈ U : then w · x is in V , so it cannot be equal to x. Thus the element represented by w is not
trivial.

Reduce to this case by conjugating w by an appropriate power of α. Show that the conjugate w′

of w is non trivial, thus w itself is non-trivial.

This is a typical example of GGT proposition: look at action of the group on the space to deduce
something algebraic. In fact, the technique we used here can be formalized to give the so-called
ping-pong lemma (see later).

Remark 1.24: In fact, a lot of linear groups (i.e. groups of matrices) contain free subgroup - Tits
alternative (72) any �nitely generated group of matrices either contains a free subgroup or is virtually
solvable.

So we know how to �nd free groups "in nature", if we have an appropriate action. But we can also
build free groups abstractly.

Given a set S (of any cardinality), consider the set of words on S we de�ne an equivalence relation
by saying two words are equivalent if they can be obtained one from the other by a �nite sequence of
insertions or deletions of subsequences ss−1 or s−1s.

Given two equivalence classes, choose representatives w = u1 . . . uk and w′ = v1 . . . vl: the product
[w][w′] is de�ned to be the equivalence class [ww′] of the concatenation ww′ = u1 . . . ukv1 . . . vl. It is
possible to check that the equivalence class does not depend on the choice of the representatives w,w′.

Lemma 1.25: Each class contains exactly one reduced word.

It is not hard to see that the set of equivalence classes together with the product operation we
de�ned forms a group that we call F (S). Its neutral element is the class of the empty word [ε]. The
inverse of the class [u1 . . . uk] is the class [u−1

k . . . u−1
1 ].

Lemma 1.26: The group F (S) is free on S.

Proof. We really mean "is free on {[s] | s ∈ S}"...Let sε11 . . . sεkk be a non empty reduced word. We
have [s1]ε1 . . . [sk]εk = [sε11 . . . sεkk ]. Now we know that each class contains exactly one reduced element,
hence this is not the trivial element (the only reduced word in the class corresponding to the trivial
element is the empty word). This proves the result.
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In view of the Lemma above, we can think of an element in F (S) as a reduced word on S ∪ S−1.
The product of two reduced words is given by concatenation plus reduction.

Example 1.27: S = {a, b}, take w = abb−1a−1 and w′ = ab and reduce ww′ to ab.

The following lemma is key. It says that it is very easy to de�ne group morphisms with source
F (S).

Lemma 1.28: Given any group G and a map h : S → G given by s 7→ gs of G, there is a unique
group morphism H : F (S)→ G extending h.

Idea: send the reduced word sε11 . . . sεkk (which is an element in F (S)) on the product gε1s1 . . . g
εk
sk

in
G.

Proof. Formal approach - if w = sε11 . . . sεkk send [w] to gε1s1 . . . g
εk
sk

- need to check this is well de�ned,
i.e. that if we choose another representative we get the same image. Once we know this it is easy to
show that this is a morphism.

H([w][w′]) = H([ww′]) = gε1s1 . . . g
εk
sk
gδ1t1 . . . g

δl
tl

and on the other hand
H([w])H([w′]) = gε1s1 . . . g

εk
sk
gδ1t1 . . . g

δl
tl

Using this we can show that any group free on a subset of its elements in fact looks like one of the
formal groups that we constructed.

Proposition 1.29: Suppose G is free on S, then G is isomorphic to F (S).

Proof. Consider the homomorphism F (S) → G given by extending the identity map S → S. It
is surjective, since S generates G. It is injective: pick an element in the kernel, take its reduced
representative w = sε11 . . . sεkk , we have H([w]) = sε11 . . . sεkk = 1. Since G is free on S and w is reduced
it must be the empty word. Thus H is also injective.

We also prove

Lemma 1.30: Let S, S′ be sets. Then F (S) is isomorphic to F (S′) i� |S| = |S′|.
Thus the isomorphism type of G depends only on the cardinality of S. When it is �nite of cardinality

k, we denote G by Fk.
Note that however free groups on sets of di�erent cardinalities are distinct.

Proof. Suppose |S| = |S′|. Take h extending S → S′ bijection and h′ extending S′ → S inverse
bijection, then h′ ◦ h is a group morphism F (S) → F (S) which extends the identity on S: by the
Lemma this must be the identity (using uniqueness), hence h and h′ are isomorphisms.

Other direction: count the number of morphisms G → Z/2: each of the 2|S| choices of image for
S gives a unique morphism by universal property, and every morphism is obtained in this way. Thus
2|S| morphisms. If G isomorphic to G′, there are exactly as many morphisms G′ → Z/2 as G→ Z/2,
hence |S| = |S′| (for in�nite cardinals this requires the generalized continuum hypothesis or remark
that card of G equals that of |S|).

Note that if G is free on S the set S is generating, and there are no non-trivial relations between
the elements of S - by a natural analogy with vector spaces we give

De�nition 1.31: If G is free on S, we say S is a basis for G. We call |S| the rank of the free group
(note that it is independent of the choice of the basis by the previous proposition).
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From now on we will drop the formalism of equivalence classes and think of elements in the free
group over S as reduced words on S.

So far two characterizations of free groups: either group with a generating set on which there
are no nontrivial relations, or the abstract group of (equivalence classes of) words on a set S with
concatenation. But in fact the lemma above gives a third characterization, via a "universal property".

Proposition 1.32: A group G is free on S ⊆ G i� for any group H, any map h : S → H admits a
unique extension to a morphism G→ H.

Proof. Assume that every map S → H to a group H, admits a unique extension G→ H. Consider the
identity map S → F (S), and its unique morphism extension i : G→ F (S). On the other hand, F (S)
satis�es the universal property, so there is a unique extension j : F (S) → G to the identity S → G.
This gives a homomorphism i ◦ j : F (S) → F (S) extending S → S: again by universal property of
F (S), there is a unique such morphism, the identity. Thus G isomorphic to F (S) via i: deduce from
this that G is free on S.

Again this is consistent with the use of the term "basis" - in a vector space V , to specify a linear
map from V , it is enough to specify the image of a basis, and the map is uniquely determined.

Exercise 1.33: Show that if u is a proper power in F (S), it cannot be part of a basis.

Some things to be careful about with free groups:

Remark 1.34: 1. Not every group admits a basis, only free groups!

2. Not every generating set contains a basis.

3. A free group admits lots of bases, for example {a, ba} is a basis for F(a, b) (show that the mor-
phisms a 7→ a, a 7→ ba and a 7→ a, a 7→ ba−1 are inverses, hence isomorphisms).

4. If S is a subset of G which is free (i.e. no nontrivial reduced word on S represents the identity
element) but not generating, it cannot in general be extended to a basis of G.

5. A free group of rank k may have free subgroups of rank n > k, indeed of in�nite rank!

Exercise 1.35: Consider the subgroup H of F(a, b) generated by S = {hn = bnab−n, n ∈ N}, and
show it is free on S.

Clearly here S cannot be extended to a basis of F (a, b)!

1.4 Group presentations

So drawing the Cayley graph X(G,S) of a group G with respect to S, we see relations between elements
of S as loops. In general there are non trivial relations as well. Example of Z2: we have aba−1b−1 = 1
but also b(aba−1b−1)b−1 and ab2a−1b−2 etc. But in some sense we do not need to give explicitly these
other relations, they are consequences of the �rst one. If r is a relation on S then so is wrw−1 for any
word w, and if r1, r2 are relations on S then so is r1r2.

What are all the relations on S in G? They are the (reduced) words on S which represent the
identity element in G. Consider the free group F (S) on S (as built above) and the unique morphism
F (S)→ G extending the identity. It is surjective since S generates G. Each word is sent to the element
it represents in G. Thus elements of the kernel are precisely relations between the generators.

De�nition 1.36: Let G be a group and S a generating set. Let R ⊆ F (S). Denote by π the morphism
F (S)→ G extending the identity on S. We say that G admits the presentation 〈S | R〉 if R normally
generates Ker π, that is, if Ker π is the smallest normal subgroup containing R (we denote this subgroup
by 〈〈R〉〉).
Exercise 1.37: Show that an element g ∈ F (S) is in the subgroup normally generated by R i�
g = Πm

j=1ujrju
−1
j for elements u1, . . . , um of F (S) and rj ∈ R ∪R−1 for all j.
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Remark 1.38: We can also build a group with any presentation we choose: given a set S and a set
R of words in S, the quotient F (S)/〈〈R〉〉 obviously admits the presentation 〈S | R〉. Note that this is
a way to specify a group algebraically, not geometrically.

Example 1.39: 1. 〈a, b |〉 is the free group on a, b;

2. 〈a, b | aba−1b−1〉 is Z2;

The idea is that by giving a presentation of a group, we can specify unambiguously a group in a
compact form, which should be handy for computations. They are a great tool, but it is not always
easy to "recognize" a group from the presentation.

Exercise 1.40: "Recognize" the groups given by the following presentations

• 〈a, b, c | a2cb−1 = aba−1b−1〉

• 〈a, b | aba−1b−1; a4 = 1〉

• 〈a, b, c | a2, b2, c2, abc〉

• 〈r, s | r6; s2; srs−1 = r−1〉

In fact it is not even easy to see from the presentation basic things like: is the group �nite? The
famous Burnside problem is an example: in 1902, Burnside asked whether there could be a �nitely
generated group which is in�nite but in which any element has a �nite order. (If drop the �nitely
generated requirement, take Z/2Z × Z/2Z × . . .). An important variation is the bounded Burnside
problem, which asks whether a �nitely generated group in which all the elements have bounded order
is necessarily �nite. It is not too hard to see that this problem is equivalent to the following question

Question 1: Consider the group

Bn,m = 〈a1, . . . , an | w(a1, . . . , an)m = 1〉

Is it in�nite?

This is the Burnside problem (1902) - Burnside proved �niteness for m = 2, 3, Sanov for m = 4,
Marshall Hall for m = 6.

Novikov and Adian (1968) showed it is in�nite for n ≥ 2 and m odd ≥ 667.

Exercise 1.41: Show that the group 〈a, b | w(a, b)2 = 1 for all words w〉 is �nite. [Hint: show �rst
that it is abelian].

1.5 Morphism from a presentation

We saw that any choice of images in a target group G for the generators of a free group F (S) extend
to a morphism. If the group is not free, but admits a presentation 〈S | R〉, how do we need to choose
our images to make sure this extends to a morphism?

Proposition 1.42: Let G be the group 〈S | R〉. Let H be any group.
Given any map S → H given by s 7→ s̄, there exists a morphism G→ H extending it if and only if

the relations of R are satis�ed by the elements s̄, i.e. if for any word r(s1, . . . , sm) in R, the product
rH(s̄1, . . . , s̄m) is trivial in H.

Notation: if w(s1, . . . , sm) is a reduced word sε1i1 . . . s
εk
ik

in F (S), and if g1, . . . , gm are elements in a
group G, we denote by wG(g1, . . . , gm) the element of G given by the product gε1i1 . . . g

εk
ik
.

Proof. Denote by π the morphism F (S)→ G extending S → G.
Suppose there exists a morphism θ : G→ H extending s 7→ s̄. Then

rH(s̄1, . . . , s̄m) = θ(rG(s1, . . . , sm)) = θ(1) = 1

since θ is a morphism.
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For the other direction, let φ : F (S) → H be the unique morphism extending s 7→ s̄. For any
r(s1, . . . , sm) ∈ R, we have that φ(r(s1, . . . , sm)) = rH(s̄1, . . . , s̄m) = 1 by hypothesis. Thus Kerφ
contains R, and it is normal - it must thus contain 〈〈R〉〉 = Kerπ. Hence φ factors through π i.e.
φ = φ′ ◦ π. The morphism φ′ : G→ H extends s 7→ s̄.

Exercise 1.43: Let G = 〈a1, b1, a2, b2, c | c = w(a1, b1) = v(a2, b2)〉. Show that there exists an
isomorphism τ : G→ G with τ(a1) = a1, τ(b1) = b1, τ(a2) = ca2c

−1, τ(b2) = cb2c
−1.

1.6 Geometric viewpoint - Van Kampen diagrams

Geometric viewpoint: relations are loops in the Cayley graph based at 1. What does the conjugate of
a relation looks like? The product of two relations?

See on the examples above in Z2. A big loop can be "paved" by smaller loops. A presentation is a
way to give enough small loops so as to be able to recover all of the big ones.

We formalize this idea with Van Kampen diagrams.

De�nition 1.44: (diagram) A diagram M is (the topological realization of a) �nite connected planar
graph M . We think of edge as doubles, each edge comes with an orientation and with its oppositely
oriented edge. Note that the bounded components of R2 −M are homeomorphic to the open unit disk.

Denote by M̂ the union of M with the bounded components of R2 −M .
A boundary cycle of M is a cycle of minimal length which contains all the edges in the boundary

of M (there might be several).

De�nition 1.45: (Van Kampen diagrams) If 〈S | R〉 is a presentation (we assume the words in R to
be reduced), a Van Kampen diagram associated to P is a diagram with

1. a basepoint v0;

2. a labelling of the edges by elements of S, such that if e is labelled by s then ē labelled by s−1;

3. for each region, there is a choice of starting vertex an orientation for the boundary such that the
boundary label is in R.

If the di�erents words labelling boundary cycles starting at v0 are reduced, we say that the diagram is
reduced.

Remark 1.46: If M is a Van Kampen diagram associated to the presentation 〈S | R〉 of a group G,
there is a morphism of oriented labelled graphs from M to the Cayley graph X(G,S). If M is reduced,
the morphism is locally injective.

Lemma 1.47: A word w in the letters A represents the identity in G = 〈A | R〉 i� there exists a
reduced Van Kampen diagram whose boundary is labelled by w.

We show the "only if" on an example

Example 1.48: Take the presentation 〈x, y, t | xt2, x2ty〉, and consider the relation (xt2)t−2(x2ty)t2 =
x3tyt2.

In general: if w is a relation, can write it as a product of conjugates of elements of R - draw the
diagram with a balloon for each factor, and fold until there is nothing left to fold.

1.7 Presentations as a computing tool - Dehn's algorithmic questions

If we want to use presentations to compute things algorithmically, we need them to have some �niteness
properties.

De�nition 1.49: We say that a group is �nitely generated if it admits a presentation 〈S | R〉 where
S is �nite, and �nitely presented if it admits a presentation 〈S | R〉 where both S and R are �nite.

Remark 1.50: A �nitely generated group is countable. Is every countable group �nitely generated?
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Exercise 1.51: Show that there are countable non �nitely generated groups.

1. Let S be an in�nite set, and consider the free group F (S): suppose it admits a �nite generating
set U . Each U is a word in �nitely many of the letters s, so there is a �nite subset S0 of S
such that the subgroup generated by U is contained in the subgroup generated by S0. But let
s ∈ S − S0: this means s can be written as a product of elements of S0 and gives a non trivial
relation between elements of S.

2. (Q,+) is countable, but not fg as a group: if (p1/q1, . . . , pk/qk) were a generating set, any element
in (q1 . . . qk)Q would be an integer - not the case.

Question 2: Does every countable group embed in a fg group? in a fp group?

Question 3: Are there �nitely generated groups which are not �nitely presented?

We will see how to answer this in the sequel...
Even if we restrict ourselves to �nite presentations, it is not clear that we can answer any question

algorithmically. In 1912, Dehn asked the following questions:

Question 4: (Word problem) Is there an algorithm which, when given as an input a �nite presentation
〈s1, . . . , sm | r1, . . . , rl〉 for a group G, and a word w(s1, . . . , sm), decides whether w represents the
identity in G, i.e. whether or not wG(s1, . . . , sm) = 1?

Remark 1.52: This is equivalent to deciding whether two words represent the same element.

Example 1.53: The word problem is solvable in the free group given by the free presentation. Idea:
there is an algorithm which "reduces" a word.

Remark 1.54: It is easy to �nd an algorithm which given a presentation 〈S | R〉 for a group
G and a word w(s1, . . . , sm), terminates if and only if wG(s1, . . . , sm) = 1. Indeed, we saw that
wG(s1, . . . , sm) = 1 i� w(s1, . . . , sm) ∈ 〈〈R〉〉 i� there exist an integer k, elements ui ∈ F (S) and
ri ∈ R ∪R−1 such that the following equality holds in F (S)

w(s1, . . . , sm) = Πk
i=1ui(S)r±1

i u−1
i (S).

We can thus build an algorithm which enumerates all the reduced words in 〈〈R〉〉: start by enumer-
ating all the (�nitely many) products with k ≤ 1 and lS(uj) ≤ 1, then those with k ≤ 2 and l(uj) ≤ 2,
etc (compute the product as a word, then reduce the word). If the (reduced) word w shows up, stop.

A variant on the word problem is the following

Question 5: (Conjugacy problem) Is there an algorithm which, when given as an input a �nite presen-
tation 〈s1, . . . , sm | r1, . . . , rl〉 for a group G, and two words w(s1, . . . , sm) and u(s1, . . . , sm), decides
whether w and u represent conjugate elements of G?

Remark 1.55: (Word problem is easier than the conjugacy problem) If a group has solvable conjugacy
problem, it has solvable word problem (deciding whether a word is trivial is the same as deciding whether
it is conjugate to the identity.)

There are many possibilities for the choice of R, i.e. a group admits many di�erent presentations.
One can also choose a di�erent generating set. This led Dehn to ask the following question

Question 6: (Isomorphism problem) Is there an algorithm which, when given as an input two �nite
presentations 〈s1, . . . , sm | r1, . . . , rl〉 and 〈t1, . . . , tk | u1, . . . , uj〉, decides whether the groups given by
these presentations are isomorphic?

Remark 1.56: If we remove the "�nitely presented" condition, of course there are some groups with
unsolvable word problem: take S to be a non recursive subset of N (see De�nition 1.77) and look at:
〈a1, a2, . . . | ai for i in S〉 How can we make this �nitely generated? presented?

We will see that the answers to these questions are negative - however, it is still interesting to know
for which classes of groups these hold.
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1.8 Building new groups from old ones - amalgamated products and HNN
extensions

Example 1.57: Direct product, semidirect product, quotients

In both direct and semidirect product, there are "relations" between the elements of the 2 groups
we wish to combine.

De�nition 1.58: Let A,B be two subgroups of a group G such that

1. A,B generate G;

2. no product a1b1 . . . arbr where ai ∈ A− {1} for all j and bj ∈ B − {1} for all j < r is trivial.

Then we say that G is the free product of A and B, and we write G = A ∗B.
Remark 1.59: The second condition is equivalent to

(ii)' no product d1d2 . . . dr where di ∈ A ∪B − {1} and di ∈ A i� di+1 ∈ B for all i < r is trivial.

(we sometimes call such a product an "alternating product"). Indeed, clearly the product in (ii) is
alternating so (ii)′ → (ii). To see the inverse direction, note that if d1d2 . . . dr is an alternating
product with d1 ∈ B, we can pick a ∈ A− {1} and condider the product ad1 . . . dra

−1. It is a product
like in (ii), hence it is not trivial. But this implies that d1 . . . dr is non trivial.

Example 1.60: The free group on {a, b} is the free product of A = 〈a〉 ' Z with B = 〈b〉 ' Z.

Remark 1.61: If g is a �nite order element in A ∗ B, then some conjugate of g lies in A or in
B - indeed, up to conjugation we can write any element which does not satisfy this requirement as
g = a1b1 . . . arbr with a1 6= 1 and br 6= 1, and then we see that no power of g is trivial.

Constructive approach:

Proposition 1.62: Given two groups A and B, pick presentations 〈SA | RA〉 and 〈SB | RB〉 respec-
tively for A and B. Let G be the group given by the presentation 〈SA, SB | RA, RB〉. The groups
generated by SA, SB in G are (isomorphic to) A,B respectively, and G is the free product of these two
subgroups.

Exercise 1.63: Show that if G = A ∗ B, we also have G = A ∗ aBa−1 for any a ∈ A. Is this true if
replace a by any g in G?

Example 1.64: 1. In�nite dihedral group Z/2Z ∗ Z/2Z

2. For those who know π1: wedge sum of two space (Van Kampen)

Now suppose we want to create a group out of A and B but that we want to identify two subgroups,
in A and B respectively, which are isomorphic.

De�nition 1.65: Let A = 〈SA | RA〉, B = 〈SB | RB〉, C a group with embeddings C → A, c 7→ cA,
C → B, c 7→ cB. The amalgamated product of A with B over C is the quotient of A ∗B by the normal
subgroup generated by the elements cAc−1

B for all c ∈ C. It is denoted by A ∗C B (abuse of notation).

If 〈SA | RA〉 and 〈SA | RA〉 are presentations of A and B respectively, we can write each element cA
(resp cB) as a word cA(SA) (respectively cB(SB)) in the letters SA (respectively SB). The amalgamated
product A ∗CA=CB

B is given by

〈SA ∪ SB | RA ∪RB ∪ {cA(SA) = cB(SB) for every element c of C}〉

Another related construction is the HNN extension: given a group with two isomorphic subgroups,
add an element which "forces them" to be conjugate.

De�nition 1.66: Let A and C be groups, and suppose there are two embeddings C → A, c 7→ c1,
C → A, c 7→ c2.

The HNN extension of A over C is the quotient of the free product A ∗ 〈t〉 by the subgroup normally
generated by elements of the form tc1t

−1c−1
2 . It is denoted by A∗C (abuse of notation) or by A∗C1=C2
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Idea: we have two copies of C, and we want to force them to be conjugate. Problem - does A
embed in G?

Lemma 1.67: The surjective morphism A ∗ 〈t〉 → A∗C is injective on A.

Proof. We consider the full presentation A = 〈t, A− {1} | RA〉. The group G admits the presentation
〈a ∈ A− {1} | RA, tct−1 = φ(c) for all c ∈ C〉.

We want to show that if we think of an element a ∈ A−{1} as a (one letter) word in the generators
of this presentation, it does not represent the identity element in G. Choose a minimal counterexample
in the following way: among all the elements a ∈ A−{1} so that the word w = a represents the identity
element in G, choose one which admits a reduced Van Kampen diagram M with minimal number of
regions.

If there are no edges labeled by t, all regions are labeled by (conjugates of) relations from RA, soM
is in fact a Van Kampen diagram for the presentation 〈A−{1} | RA〉 of A. Hence a represents the trivial
element already in A - this is a contradiction. Let thus e be an edge of M labeled by t. Since e does
not lie on the boundary, there are two possibilities: 1. two regions with labels tc1t−1φ(c1), tc1t

−1φ(c1)
share e. But then we can replace them by a single region also labeled by a relation. 2. one region
labeled by tct−1φ(c) has its two t-edges identi�ed. But then we get that c or φ(c) admits a Van Kampen
diagram with strictly less regions than M , a contradiction. Thus no element a ∈ A− {1} is such that
a represents the identity element in G.

The following is a generalization of this lemma. It says essentially that if a word in the generators
A − {1} ∪ {t} of the HNN represents the identity, it means that one of the "relations" appears as a
subword, more correctly, a subword of the form tc1t

−1 or t−1c2t.

Lemma 1.68: (Britton's lemma) Let G = A∗C = 〈A, t | tat−1 = φ(a)〉 be an HNN extension. Let w
be an element of A ∗ 〈t〉 given by w = a0t

ε1a1t
ε2 . . . tεnan with εi = ±1 and ai are nontrivial elements

of A.
If w represents the identity in G, then n ≥ 1 and there is i such that

(i) either εi = 1, εi+1 = −1, and ai ∈ C,

(ii) or εi = −1, εi+1 = +1, and ai ∈ φ(C).

To prove Britton's Lemma, we will use Van Kampen diagrams (the proof is taken from Miller III
and Schupp, The geometry of HNN extensions).

Proof. (of Britton's Lemma) We consider the full presentation A = 〈t, A − {1} | RA〉. The group G
admits the presentation 〈a ∈ A− {1} | RA, tct−1 = φ(c) for all c ∈ C〉.

The previous Lemma shows that we must have n ≥ 1.
Now suppose w = a0t

ε1a1t
ε2 . . . tεnan represents the identity in G. Choose a reduced Van Kampen

diagram with boundary label w with minimal number of regions.
Using the same argument as in the proof of the previous lemma, we can show that all the edges

labeled by t must lie on the boundary of M . Indeed, if e is an interior edge labeled by t, either it
belongs to two di�erent regions which can be identi�ed to produce a smaller diagram, or there is a
region labeled by tc1t−1c−1

2 which has its two t-edges identi�ed, but then we get that c1 or c2 admits
a Van Kampen diagram which contradicts the proof of the previous lemma.

Now t edges come by pairs (each pair corresponding to a region), and pairs cannot "cross" - choose
an innermost pair corresponding to a region labeled by tc1t−1c−1

2 . We must have that the word labeling
the boundary subpath of M between the two edges represents the same element as c1 or as c2 in A,
hence it also lies in C1 or in C2. This proves the claim.

Corollary 1.69: If f ∈ A∗C is a �nite order element, then f lies in a conjugate of A.

Proof. We may assume f non trivial. Suppose f can be written as a0t
k1a1 . . . t

krar with r > 0 (i.e.
that t appears at least once).
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Up to conjugating f , may assume that ar = 1 (here use r > 0), that if a0 = 1, then k1kr > 0, that
if a0 in C1 then k1 < 0 or kr > 0, and that if a0 ∈ C2, then k1 > 0 or kr < 0.

Because fk is trivial, Britton's lemma tells us that either

• a0 = 1 but in this case we know k1kr > 0 and the word fk cannot represent the trivial element;

• a0 is in C1 and kr > 0 and k1 < 0 (but we ensured this cannot be);

• a0 is in C2 and kr < 0 and k1 > 0 (but we ensured this cannot be).

1.9 Some answers to our questions

We saw that not every countable group is fg (free group on in�nitely many elements, Z/2Z(N)). How-
ever, we get a compromise:

Proposition 1.70: Every countable group embeds in an fg group

Proof. Let a0, a1, a2, . . . enumerate the non trivial elements of the group G. Consider the group A =
G∗〈s〉: it is generated by {s, a0, a1, . . .}. Its two subgroups H1 generated by S1 = {a0, sa1s, s

2a2s
2, . . .}

and H2 generated by S2 = {sa1s, s
2a2s

2, . . .} respectively are isomorphic: indeed, can show Hi is free
on Si.

Build the HNN extension A∗H1=H2
: it is the quotient of A ∗ 〈t〉 by the relations tsiaisit−1 =

si+1ai+1s
(i+1), so it is generated by {t, s, a0} ( have a1 = s−1ta0t

−1s−1, then a2 = s−2ta1st
−1s−2, etc.

)
By Britton's lemma, A embeds in this group, hence so does G.

What about embedding in an FP group? The following two propositions shows this is not possible:

Proposition 1.71: There are uncountably many �nitely generated groups.

Proof. For each in�nite subset P of the set P of prime numbers, de�ne the group ZP =
⊕

p∈P Z/pZ.
Each of these subgroups can be embedded in an fg group GP using the method above (HNN extension
of ZP ∗ 〈s〉 over some free subgroups). Now if P and Q are distinct subsets of the primes, GP and GQ
are not isomorphic: indeed, let p ∈ P −Q: GP contains a subgroup isomorphic to Z/pZ, while if GQ
contained such a subgroup, it would have to be a conjugate of a subgroup of ZQ ∗ 〈s〉, so by Remark
1.61 it would have to be a subgroup of ZQ - not the case.

Remark 1.72: There are up to isomorphism countably many �nitely presented groups. Indeed, if �x
a max number n of generators, and a max number and size r of relations, there are only �nitely many
possibilities.

Note that this shows in particular that there exist �nitely generated groups which are not �nitely
presented. In fact, we have:

Remark 1.73: There are up to isomorphism countably many �nitely generated subgroups of �nitely
presented groups. Indeed, given a fp group G, �x a �nite presentation of it. Count its fg subgroups: if
�x a max on number of generators for a subgroup H, and a max for the length of these generators as
words in the generators of G, there are only �nitely many possibilities for H.

Thus more generally, there exist fg groups which do not embed in fp groups.
In fact Higman proved in 1961:

Proposition 1.74: A group G embeds in an fp group H if and only if it is recursively presented (i.e. it
has a presentation with �nitely many generators and a set of relators which is recursively enumerable).
Moreover, if G is torsion free and recursively presented, we may assume H is also torsion free.
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Recursively enumerable - that can be enumerated by an algorithm.
A note on the proof of Higman Theorem: it is fairly easy to see that any fg subgroup of a fp group

is recursively presented, the other direction is much harder. The group H is constructed from G by a
sequence of HNN extensions, hence Corollary 1.69 implies the "moreover" part of the result.

What is "an algorithm"? We need a mathematical model for this.
An algorithm is a �nite set of instructions that can be implemented by a Turing machine.
Given an input (a1, . . . , ak), a Turing machine will apply the set of instructions. Two things can

happen: either 1. after �nitely many steps, it reaches its "stopping state" and produces an output
f(a1, . . . , ak) which is a positive natural number or 2. it never reaches the stopping state. In other
words, Turing machines compute functions de�ned on subsets of Nk to N (never stops i� the function
was not de�ned there).

De�nition 1.75: A function which can be computed by a Turing machine is called computable, or
equivalently, recursive.

Equivalently we can give

De�nition 1.76: The class of recursive (partial) functions is the smallest class of functions containing
: the constant functions, the projection-to-a-coordinate functions, the successor function; and closed
under: composition, recurrence (f(a+1) = g(f(a), a)) and the µ "search operator" ( µ(f)(a) = min{b |
g(b, a) = 0).

BUT: not all functions are recursive!
Proof idea: Can encode Turing machines by a number, i.e. can associate uniquely to each machine

(and thus to each recursive function f) a natural number e - conversely denote by fe the function
computed by the TM encoded by e. Remark: we can do this in such a way that the function U which
to a pair (e, x) associates fe(x) is recursive (universal Turing machine).

Now consider the function H such that H(e) is 0 if fe(e) is unde�ned, and is unde�ned otherwise.
Suppose H were recursive: it would be computed by a TM, let u be this TM's code. Consider now
H(u): if fu(u) is unde�ned, it is de�ned and equals 0, and if fu(u) is de�ned, it is unde�ned. But
fu(u) = H(u) so this yields a contradiction.

De�nition 1.77: Let D ⊆ N. We say D is recursive if the characteristic function of D is recursive.
We say D is recursively enumerable if the function ID given by ID(n) = 1 if n ∈ D and ID(n)

unde�ned otherwise is recursive.

The proof above shows that the set

{e | fe(e) is de�ned }

is not recursive.
Note that its complement N−A is recursively enumerable (apply the universal Turing machine to

U(e, e), if it stops, output 1). Thus we have produced a set which is recursively enumerable but not
recursive.

Remark 1.78: If S is an alphabet, and W is the set of words on S, we can order the words by
lexicographic order (�x an order on S ∪S−1), this gives a bijection W → N. Then we say that a subset
D of W is recursive (respectively recursively enumerable) if f(D) is. Easy to see this does not depend
on choice of ordering we started with.

Undecidability of the word problem.

Proposition 1.79: There exists a �nitely generated torsion free group with undecidable word problem.

(the fact that it is torsion free will be useful for the proof of Theorem 1.82 below).

Proof. First, �nd a non FG example: let S be non recursive. G = 〈t, a1, a2, . . . | tait−1 = ai∀i ∈ S〉.
It is an HNN extension of G along the subgroup generated by ai's with i ∈ S. By Britton's lemma,

the word tait−1a−1
i is trivial i� i ∈ S, thus there cannot be an algorithm deciding whether this is true.
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To get FG group, take: G = 〈t, a, b | tbiab−it−1 = biab−i∀i ∈ S〉. It is an HNN extension of F(a, b)
hence it is torsion free by Corollary 1.69.

Exercise 1.80: Show that if H is a �nitely generated subgroup of G, and H has unsolvable word
problem, then G has unsolvable word problem.

Corollary 1.81: There exists a �nitely presented torsion free group with undecidable word problem.

Proof. In proof above, if S recursively enumerable but not recursive, by Higman's theorem we can in
fact embed G in a torsion free fp group G′ which will thus also have unsolvable word problem by the
exercise above.

Proposition 1.82: The isomorphism problem is unsolvable in general.

Proof. Suppose G = 〈A | R〉 with A = {a1, . . . , am} is a torsion free FP group with unsolvable word
problem.

Let Hw = 〈A, s, t | R, t(siais−i)t−1 = siws−i〉. If w = 1 in G, then ai = 1 in Hw so Hw is the free
group on s, t.

If w is not equal to 1, Hw is an HNN extension of G∗ < s > with stable letter t where you make
the subgroups < siais

−i > and < siws−i > (which are both free of rank n - thanks to the fact that G
is torsion free) conjugate by t, thus it contains a copy of G, thus it has unsolvable word problem, thus
it is not free.

Hence Hw is isomorphic to F2 i� w = 1 in G.

Classes of groups for which this is solvable: �nite, abelian, polycyclic-by-�nite, nilpotent, torsion
free hyp, torsion-free toral relatively hyperbolic, limit groups

Not solvable for: solvable of derived length 3.
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2 Quasi-isometry

Problem of Cayley graph: depends on the choice of the generating set. Example of Z: the graph still
looks the same viewed from far away. Notion of "coarse geometry". Careful quasi-isometric Cayley
graphs does not imply isomorphic groups.

What properties do quasi-isometric groups have in common? Quasi-isometry invariants.

2.1 Quasi-isometric embeddings

De�nition 2.1: Let (X, dX) and (Y, dY ) be metric spaces, and C ≥ 1, D > 0. A map f : X → Y is a
(C,D)-quasi-isometric embedding if for all x1, x2 in X we have

1

C
dX(x1, x2)−D ≤ dY (f(x1), f(x2)) ≤ CdX(x1, x2) +D

Careful! A quasi-isometric embedding need not be an embedding...also, it is not necessarily con-
tinuous.

The constant are not so important.

Remark 2.2: There is some symmetry in the de�nition between d(f(x1), f(x2)) and d(x1, x2). Equiv-
alent formulation: dY (f(x1), f(x2)) ≤ CdX(x1, x2) +D AND dX(x1, x2) ≤ CdY (f(x1), f(x2)) + CD.

Exercise 2.3: The following are quasi-isometric embeddings.

• Z in R

• logarithmic spiral c : t 7→ (t cos(log t), t sin(log t)).

This one isn't:

• Z→ R given by n 7→ n3.

De�nition 2.4: Let f : X → Y be a (C,D)-quasi-isometric embedding. Suppose moreover that for
any y ∈ Y there exists x such that

dY (f(x), y) ≤ D

Then we say that f is a quasi-isometry, and that X and Y are quasi-isometric.

Example 2.5: • Z→ R;

• Z2 → R2

• A metric space has �nite diameter i� it is QI to a point;

• The inclusion of G with the word metric in X(G,S) is a QI.

Equivalent de�nition of quasi-isometry

Proposition 2.6: Two metric spaces X and Y are quasi-isometric i� there exist maps f : X → Y
and h : Y → X and constants C,D > 0 such that for any x, x′ ∈ X and y, y′ ∈ Y

dY (f(x), f(x′)) ≤ CdX(x, x′) +D and dX(h(y), h(y′)) ≤ CdY (y, y′) +D

dX(x, h(f(x))) ≤ D and dY (y, f(h(y))) ≤ D.

Proof. Suppose X,Y quasi isometric. For any point y of Y , let Ny be the (nonempty) set of points
x of X whose image by f is within a distance Df of y. By axiom of choice, there exists a function
h : Y → X such that h(y) ∈ Ny.

Let x, x′ ∈ X. Since f is a (Cf , Df )-quasi isometric embedding, the �rst inequality holds for any
C ≥ Cf , D ≥ Df . Let y, y′ ∈ Y and set x = h(y), x′ = h(y′) - by de�nition of h we have d(f(x), y) ≤ Df
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and d(f(x′), y′) ≤ Df . Since f is a quasi isometric embedding we have that d(x, x′) = d(h(y), h(y′)) ≤
Cfd(f(x), f(x′)) +DfCf hence

d(x, x′) = d(h(y), h(y′)) ≤ Cf (d(y, y′) + 2Df ) +DfCf = Cfd(y, y)′ + 3DfCf

which gives the second inequality for any C ≥ Cf and D ≥ 3DfCf .
Let x ∈ X, if y = f(x) then h(y) is a point x′ ∈ X such that d(f(x′), f(x)) ≤ Df , but we also have

d(x, x′) ≤ Cfd(f(x), f(x′)) + CfDf so d(x, h(f(x))) = d(x, x′) ≤ 2CfDf . Let y ∈ Y , by de�nition
f(h(y)) is at a distance at most Df of y.

Taking C = Cf and D = 3CfDf yields the result.

Using this result, it is easy to show that QI is an equivalence relation.

2.2 Quasiisometry of groups

The following proposition shows that quasi-isometry is indeed the right notion to deal with the depen-
dence of the Cayley graph on the generators.

Proposition 2.7: Let G be a group, and let S1, S2 be two �nite generating sets for G. The identity is
a quasi-isometry between (G, dS1

) and (G, dS2
).

Proof. Let f : G → G denote the identity, and let C1 = max{lS2(s) | s ∈ S1} and C2 = max{lS1(s) |
s ∈ S2}.

It is not hard to see that lS2
(g) ≤ C1lS1

(g) and similarly for C2.We have

dS2(f(g), f(g′)) = lS2(g−1g′) ≤ C1lS1(g−1g′) = C1dS1(g, g′),

similarly dS1(f(g), f(g′)) ≤ C2dS2(g, g′).
Since obviously the identity is an inverse of itself, we are done.

The isometry class of a group seen as a metric space via the word metric depends on the choice of
generating set, but what the proposition above shows is that the quasi-isometry class doesn't.

Note that the assumption that the Si are �nite is important: look at Z with generating set N+:
this has �nite diameter. From now on unless speci�ed otherwise we consider only �nite generating sets
- and talk about the QI type of G, without specifying the generating set.

Question. What does the QI class of a group tell us about it? How precisely does it de�ne the
group?

Up to isomorphism? NO. There are some groups which are QI though they are not isomorphic.

Example 2.8: G is QI to the trivial group i� it is �nite. Trivial group = metric space with a single
point. Thus G QI to trivial group i� it has �nite diameter (see remark in previous Section).

Now if G is �nite, clearly it has �nite diameter. Conversely, if it has �nite diameter it means that
∀g ∈ G we can write G as a product of at most R elements of S ∪ S−1. Since S is �nite, so is G.

Example 2.9: Z× Z/2, D∞ and Z are all QI though they are not isomorphic. In fact, Z× Z/2 and
D∞ are even isometric.

In fact both examples are an instance of the following results:

Proposition 2.10: If H is a subgroup of �nite index of a fg group G, then H and G are quasi-
isometric.

Corollary 2.11: Groups which are commensurable (i.e. which admit isomorphic �nite index sub-
groups) are QI.

Exercise 2.12: Prove this by choosing suitable systems of generators for H and G.
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We will see it in the next section as a consequence of a more general result (Svarc-Milnor Lemma).
So one might wonder if up to �nite index, the quasi-isometry class of a group determines its

isomorphism type. This is not the case in general (not so easy to see! See Remark 8.21 in Bridson
Hae�iger, or Proposition 30 in de la Harpe), but it works for some cases:

Proposition 2.13: A fg group QI to Z is virtually Z, i.e. it contains Z as a subgroup of �nite index.

Proposition 2.14: A group whose Cayley graph is quasiisometric to a tree is virtually free.

Remark - the corresponding result for groups which are QI to a free abelian group is true, but much
harder!

2.3 �varc-Milnor lemma

The �varc-Milnor lemma is a way to determine the quasi-isometry class of a group. It says that if a
group admits a su�ciently nice action on a metric space, then this metric space is quasi isometric to
the Cayley graph.

Need some de�nitions �rst.

De�nition 2.15: Let X be a metric space. A geodesic segment is the isometric embedding of a segment
[0, a] of R in X, i.e. a map γ : [0, a]→ X such that for any s, t ∈ [0, a] we have

dX(γ(s), γ(t)) = |s− t| .

Geodesic ray: replace [0, a] by [0,∞). Geodesic line/ geodesic: replace [0, a] by R.

Example 2.16: Geodesic rays in R2 are exactly segments of lines. Let γ : [0, a]→ R2; t 7→ (x(t), y(t))
be a geodesic segment.

Wlog we may assume that γ(0) = (0, 0) and γ(a) = (0, b). We must in fact have a = d(γ(0), γ(a)) =
b. In particular

∫ a
0
x′(t)dt = [x(t)]a0 = a.

For any t0 ∈ [0, a] we have

√
(x′(t0))2 + (y′(t0))2 = ‖γ′(t0)‖ = lim

t→t0

‖γ(t)− γ(t0)‖
|t− t0|

= 1

hence
∫ a

0

√
(x′(t))2 + (y′(t))2dt = a.

We see that we must have x′(t) =
√

(x′(t))2 + (y′(t))2 for all t, in particular y′(t) = 0 and x′(t) = 1
for all t. Hence y(t) = 0 and x(t) = t for all t.

De�nition 2.17: A metric space X is said to be geodesic if for any points x, y in X, there exists a
geodesic segment γ : [0, a]→ X such that γ(0) = x and γ(a) = y.

Example 2.18: R2 is geodesic, but R2 − {0} isn't. If X is the geometric realization of a graph, then
X is geodesic.

De�nition 2.19: A metric space X is said to be proper if closed balls (sets of the form BR(x0) = {x |
d(x0, x) ≤ R}) are compact.

Example 2.20: Rn is proper (compact subsets of Rn are exactly closed and bounded subsets)

When is a graph endowed with the usual metric proper? First let us show the following:

Remark 2.21: Let X be the geometric realization of a graph. A subgraph A of X is compact i� it is
�nite. Indeed, if A is in�nite, a sequence of midpoint of distinct edges has no convergent subsequence.
For the converse, note that any sequence of points in a �nite graph has a subsequence which lives in
one of its edges.

Lemma 2.22: The geometric realization X of a graph is proper i� it is locally �nite (that is, every
vertex has �nite valency)
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Proof. Suppose X has a vertex with in�nite valency. The ball of radius 1 around that vertex is not
compact so X is not proper. Suppose X is locally �nite. Consider a closed ball B = BR(x0): the
minimal subgraph A containing B is bounded (it is within distance R + 1 of x0) and locally �nite,
hence �nite. By the remark above, A is thus compact. Since B is a closed subset of a compact set, it
is itself compact.

We give the following de�nition in the context of metric spaces, but it can be given for a general
topological space.

De�nition 2.23: Let G be a group acting on a metric space X. Say the action is properly discontinuous
if for any compact subset K of X, the set

{g ∈ G | g ·K ∩K 6= ∅}

is �nite.

In particular, point stabilizers are �nite - it is a "freeness" condition.

Remark 2.24: Some textbooks de�ne this by "any point has an open neighborhood U such that the set
{g ∈ G | g · U ∩ U 6= ∅} is �nite. For locally compact spaces, this is equivalent.

Also, note that "properly discontinuous" is a special case of a proper action: in general, one also
considers the group G to be endowed with a topology, and says that the action is proper if the map
(g, x) 7→ (gx, x) is proper. Properly discontinuous is if moreover the group is endowed with the discrete
topology.

It also ensures that the quotient is Hausdor� in the quotient topology.

Example 2.25: • Any action of a group on a graph where stabilizers of points are �nite is properly
discontinuous - indeed, let K be compact: wlog we may assume it's a subgraph. The set VK of
its vertices is �nite. Now since elements of G send vertices to vertices, we get

{g ∈ G | g ·K ∩K 6= ∅} =
⋃

v,v′∈VK

{g | g · v = v′}

Now if g, h ∈ {g | g · v = v′}, we get g−1h · v = v hence the sets {g | g · v = v′} are �nite. This
proves the claim.

• Action of Z on R, of Z2 on R2.

• Action of π1 of a locally compact path-connected topological space on its universal cover (as-
suming it admits one). Indeed, the action of π1(X) on X̃ is free and properly discontinuous.
(Equivalent de�nition: it satis�es: for any point x ∈ X̃, there exists a neighborhood U of x such
that for any g ∈ G− {1} we have U ∩ g · U = ∅).

• The action of an in�nite group on a compact set cannot be properly discontinuous: for example,
the action of Z on S1 by an irrational rotation is not properly discontinuous even though it is
free.

Exercise 2.26: Show that the subgroup of isometries of R generated by the translation of length 1 and
that of length a for a irrational is free abelian. Show that its action on R is not properly discontinuous.

Again the following de�nition can also be given in the wider context of topological spaces.

De�nition 2.27: An action of a group G on a metric space X is said to be cocompact if there exists
a compact K such that X =

⋃
g∈G g ·K.

Example 2.28: • The action of a group on a graph is cocompact i� there are �nitely many orbits
of vertices and edges. For example, the action of a group on its Cayley graph is cocompact (all
the vertices are in the same orbit, and there is one orbit of edges for each s ∈ S).

• The actions of Z on R (take closed bounded interval of length 1), of Z2 on R2 (take square of
side 1) are cocompact.
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• More generally, the action of the π1 of a COMPACT locally compact path-connected topological
space on its universal cover is cocompact.

• The action of Z on R2 is not cocompact.

The following proposition is sometimes called the "fundamental theorem of geometric group theory".

Proposition 2.29: (�varc-Milnor lemma) Let X be a proper geodesic metric space. Let G be a group
acting on X cocompactly and properly discontinuously by isometries. Then G is �nitely generated, and
quasi-isometric to X via the orbit map g 7→ g · x0.

Proof. Let K compact be such that X =
⋃
g∈G g ·K. Since K is compact, it has �nite diameter, thus

it is contained in a closed ball B = B(x0, r) of radius r around a point x0.
Let S = {g ∈ G | g ·B(x0, 3r) ∩B(x0, 3r) 6= ∅}. It is �nite by hypothesis of proper discontinuity.
Let C = maxs∈S dX(x0, s · x0).
Let g be in G, consider a geodesic segment γ between x0 and g ·x0, and points x1, x2, . . . , xk = g ·x0

on this segment such that d(xi−1, xi) < r and k is minimal for this property (i.e. k = dd(x0, g ·x0)/re).
Each xi lies in a translate of B. In particular, we can �nd a sequence g0 = 1, g1, g2, . . . , gk = g in

G such that xi ∈ gi ·B. Since

d(gi−1 · x0, gi · x0) ≤ d(gi−1 · x0, xi−1) + d(xi−1, xi) + d(xi, gi · x0) ≤ 3D

we get that gi−1B ∩ giB is non empty, so that gi+1 = gis for some s ∈ S. Hence g is the product of k
elements of S and S generates G.

We have that
lS(g) ≤ k ≤ 1

r
d(x0, g · x0) + 1.

On the other hand, for any sequence s′1, . . . , s
′
k′ such that g = s′1, . . . , s

′
k′ , we get by the triangular

inequality that

d(x0, g · x0) ≤
k′∑
i=1

d(x0, si · x0) ≤ Ck′

hence d(x0, g · x0) ≤ ClS(g).
The map g 7→ g · x0 is thus a quasi-isometric embedding. Its image is quasi dense since the balls

g ·BR(x0) cover X. This it is a quasi-isometry.

Consequences:

Proposition 2.30: If G has �nite index in H then they are QI.

Proof. Consider the action of G on X(H,S): it is free (action of H on X(H,S) is free), hence it is
properly discontinuous by Example 2.25 above. It is cocompact: let H = tGhi , and let x be a vertex
of X(H,S). Note that any vertex y of X(H,S) is of the form h · x for some h ∈ H, hence y = ghi · x
for g ∈ G and some i. Thus any vertex of X(H,S) is in the orbit under G of one of h1 · x, . . . , hl · x.
Similarly, let e1, . . . , er be representatives of the orbits of edges under H: any edge of X(H,S) is in
the orbit under G of one of the hi · ej . By the �varc-Milnor lemma, we get that G is QI to X(H,S),
hence to H.

As we saw, this implies that commensurable groups are quasi-isometric, in other words that groups
which are isomorphic "up to �nite index" are QI. The following proposition shows that if groups are
isomorphic "up to a �nite kernel", then they are quasi-isometric.

Proposition 2.31: Let G be a �nitely generated group, and let N be a �nite normal subgroup of G.
Then G is quasi isometric to G/N . If H is a group which admits a �nite normal subgroup N ′ such
that G/N ' H/N ′ then G and H are QI.

Proof. Exercise.
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It is possible to show that the free group F(a, b) admits a free subgroup of rank n as a subgroup of
index n− 1 for all n (we prove this in the sequel). Thus we get

Proposition 2.32: All the �nitely generated free groups of rank ≥ 2 are quasi isometric. In particular,
all the regular trees of valency 2k are quasiisometric.

(In fact can show that all regular trees of valency k are quasiisometric. )

Example 2.33: The group Zn acts by translations on Rn. The action is properly discontinuous and
cocompact. Hence Zn is quasiisometric to Rn.

Generalize this in two ways: 1. symmetries of other tilings of the plane; 2. other covering maps.

Example 2.34: Triangle group: group generated by re�ections in the sides of an equilateral triangle.
Point and edge stabilizers are �nite, hence the action is properly discontinuous. Action is cocompact:
the closed triangle is a fundamental domain. Hence this group is quasi-isometric to R2. Presentation
of the group: 〈r, s, t | r2; s2; t2; (rs)3; (st)3; (rt)3〉

In fact can do this for any triangle of angles π/p;π/q;π/r such that π/p+π/q+π/r = π (can show
that only triple for which this happens are (3, 3, 3), (2, 2, 4) and (6, 3, 2))

In fact, this contains a Z2 with �nite index so that's another way to get this result.

Example 2.35: Let X be a metric space which admits a universal cover π : X̃ → X on which the
metric lifts (i.e., there is a metric on X̃ such that dX(p, q) = infp′∈π−1(p),q′∈π−1(q) dX̃(p′, q′)). (It is
enough for this to be satis�ed that the action of π1(X) on X̃ be by isometries)(Example: R2 covering
T2).

If X is compact, then π1(X) is quasi isometric to X̃.

Example 2.36: Recall de�nition of manifold: topological space which is locally homeomorphic to Rn
for some n. We want to put a metric on the manifold (inducing the same topology). Many ways to do
so.

One way: maybe can show that in fact any neighborhood is isometric to an open subset of Rn (then
need to add some compatibility condition). Then call this a �at metric.

Ex: build the torus as a quotient of the action of Z2 on R2 - because the action is by isometries,
the metric goes down to the quotient, and we get a �at metric on the torus.

In fact, this is always how �at metrics come to be! Fact: a (connected) topological manifold M
of dimension n can be endowed with a �at metric i� its universal cover is Rn, and in this case the
covering map is a local isometry.

Another way: if any neighborhood is isometric to an open set in Hn ( with same compatibility con-
dition). Then call this a hyperbolic metric. Fact: a (connected) topological manifold M of dimension
n can be endowed with a hyperbolic metric i� its universal cover is Hn, and in this case the covering
map is a local isometry.

LetM be a compact and connected manifold. If it admits a �at metric, then π1(x) is quasi isometric
to Rn. If it admits a hyperbolic metric, then π1(M) is isometric to Hn

So just by looking at π1(M), can exclude a given topological from admitting a certain Riemannian
metric. Also, Rn and Hn are not quasi isometric, so we see the topology of the manifold dictates what
kinds of metric it can be endowed with.

A much stronger result is Mostow's rigidity theorem, whose proof also uses the �varc-Milnor Lemma.

Theorem 2.37: Let M , N be two complete �nite volume hyperbolic manifolds of dimension at least
3 (i.e. manifolds endowed with a metric which makes them locally isometric to Hn). If π1(M) and
π1(N) are isomorphic, then M and N are isometric.

2.4 Quasi-isometry invariants

How do we prove that spaces or groups are NOT quasi-isometric? What are quasi isometric invariants
that can help us distinguish between quasi-isometry classes? For the moment, we gave only one: the

20



property of having �nite diameter is an invariant of QI. In this section, we will present a few more (for
a long list, see de la Harpe p115).

Given a quasi-isometry invariant, what does it tell us about the algebraic property of a group?

2.4.1 Ends of a group

Quasi-isometry class = what does the space look like "on a large scale"? For example, what does it
look like at in�nity?

De�nition 2.38: Number of ends of a graph. Let Γ be a graph, with a �xed vertex v. Let en(Γ) be the
number of unbounded components of Γ−Bv(n). It is not hard to see that if m ≥ n then em(Γ) ≥ en(Γ).

We de�ne the number of ends of Γ to be e(Γ) = limn→∞ en(Γ) - note that it can be in�nite.

Remark 2.39: It is not hard to see that e(Γ) does not depend on the choice of v.

Example 2.40: Finite graph has 0 ends. Comb graph has n ends. Cayley graph of Z has 2 ends.
Cayley graph of Z2 has one end. Cayley graph of F2 has in�nitely many ends.

Lemma 2.41: Let X,X ′ be quasi isometric graphs. Then e(X) = e(X ′).

Proof. Let φ : X → X ′ be a (C,D)-quasi isometry, choose a base vertex v in X, and let v′ = φ(v).
Wlog can assume there exists a quasi-inverse φ̂ : X ′ → X which is also a (C,D)-quasiisometry.

If x, y are two points in X which can be joined by a path x = x0, x1, . . . , xk = y outside of Bv(n),
then the images by φ of the vertices in this path lie outside of Bv′(n/C − D). Now two vertices
at distance one such as xi and xi+1 can be joined by a path of length at most C + D in X ′ - by
joining these up we get a path between x and y which lies outside of Bv′(n/C −D − (C +D)). Thus
every connected component of X −Bv(n) is sent into a connected component of X ′−Bv′(f(n)) where
f(n) = n/C − D − (C + D). It is easy to see that an unbounded component must be sent into an
unbounded component.

Note that if e(X) = e(X ′) =∞ we are done. We may thus assume that e(X ′) is �nite. In this case
there exists n0 ∈ N such that for all n ≥ n0, we have en(X ′) = e(X ′). Suppose wlog that e(X) > e(X ′)
- we can assume that for n ≥ n0 we have en(X) > e(X ′).

Let us now see that for n such that n, f(n) > n0, distinct unbounded components Y1, Y2 of X−Bvn
cannot be sent in the same connected component of X ′ − Bv′(f(n)). Pick two points y1 ∈ Y1 and
y2 ∈ Y2 which cannot be joined by a path outside of Bv(n). If φ(y1) and φ(y2) are in the same
connected component of Bv′(f(n)), then they are in the same connected component of Bv′(Cn+2CD)

by assumption on n. Thus φ̂(φ(y1)) and φ̂(φ(y2)) can be joined by a path lying outside of Bv(f(Cn+
2CD)) = Bv(n + D), which means that y1 and y2 can be joined by a path lying outside of Bv(n) - a
contradiction.

This proves the claim.

Thus in particular the number of ends of a Cayley graph is an invariant of the group - we thus
de�ne

De�nition 2.42: Let G be a �nitely generated group. The number of ends of G is e(G) = e(X(G,S))
where S is a �nite generating set for G

Because of the symmetry inherent to Cayley graphs, a group cannot admit any number of ends.

Proposition 2.43: (Freudenthal-Hopf theorem) Let G be a group. Then e(G) ∈ {0, 1, 2,∞}.

Proof. Denote by X a Cayley graph for G, and set v to be the vertex corresponding to the identity
element. Suppose G has at least three ends, and let n be such that en(X) ≥ 3 - the graph X −Bv(n)
contains at least 3 connected components X0, X1, X2. Pick a vertex vg corresponding to an element
g ∈ G in X0 with d(v, g) > 2n. In the action of G on X, the element g sends the vertex v to vg, in
particular X −Bvg (n) has at least 3 unbounded connected components g ·X0, g ·X1, g ·X2 - suppose
wlog that v ∈ g ·X2.
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We now show that both X0, X1 are contained in g ·X0. Indeed, any point in X1, X2 is joined to v
by a path which does not pass through X0, in particular it does not pass through Bvg (n).

Now set N = d(v, vg) + n: we see that X − Bv(N) contains at least 4 unbounded connected
components - namely X1−Bv(N), X2−Bv(N), g ·X1−Bv(N), g ·X2−Bv(N). This can be generalized
to any number instead of 3.

We can in fact characterize exactly what it means for a group to be in each one of these four possible
cases.

Theorem 2.44: (Stalling's theorem) Let G be a �nitely generated group. Then

1. e(G) = 0 i� the group is �nite;

2. e(G) = 2 i� the group is virtually Z;

3. if e(G) > 2 then it splits as a non trivial amalgamated product over a �nite group G = A ∗H B.

Thus a one-ended group is a group which is not virtually Z and does not admit a splitting as an
amalgamated product over a �nite group.

Note that if G is torsion free, the only �nite subgroup is the trivial group.

2.4.2 Growth of a group

De�nition 2.45: Let G be a group endowed with a �nite generating set S. The growth function of G
relative to S is the function β(G,S) : N→ N de�ned by

β(G,S)(n) =
∣∣B(G,S)(n) = {g ∈ G | lS(g) ≤ n}

∣∣
In other words, it is the cardinal of the ball of radius n in (G, lS).

Example 2.46: 1. Growth of F (S) with |S| = k: to choose a word of length l is choosing a reduced
path in the Cayley graph of F (S) with respect to S. Thus we have (2k)(2k−1) . . . (2k−1) possible
choices (with l − 1 ocurrences of (2k − 1)). We get β(F (S),S)(n) = 1 + (2k)

∑n
l=1(2k − 1)l−1.

2. Growth of free abelian groups of rank 2 with canonical generating set: the ball of radius n in Z2

has cardinality (n+ 1)2 + n2 (can be decomposed into a square of side length n+ 1 and another
one of side length n).

Exercise 2.47: Show that the growth function of the group Zd relative to the canonical generating
set is a polynomial of degree d.

De�nition 2.48: Let β1, β2 be two non decreasing functions N → N. Say that β2 dominates β1 if
there exists A,B > 0 such that β1(n) ≤ Aβ2(An+B) +B for all n ∈ N.

Say that β1 and β2 are equivalent if they dominate each other.

Note in particular that if β1 is linear (resp. polynomial, exponential) then so is β2.

Lemma 2.49: If a group G embeds quasi isometrically in a group H then the growth function of H
dominates the growth function of G.

In particular, the equivalence class of the growth function is a quasiisometry invariant groups.

Proof. Let (G, lS) and (H, lT ) be groups. Suppose f : G→ H is a (C,D)-quasiisometric embedding.
First note that all the balls in a group endowed with the word metric have the same cardinality

(left action by isometries).
Denote by Bn the ball of radius n around 1 in (G, dS). Then f(B) is contained in a ball of

radius Cn + D in (H, dT ), so βH(Cn + D) ≥ |f(Bn)|. On the other hand, if f(g) = f(g′) then
dS(g, g′) ≤ C(dT (f(g), f(g′)) +D) = CD so |Bn| ≤ βG(CD) |f(Bn)| so we get

βG(n) = |Bn| ≤ βG(CD)βH(Cn+D)

Since βG(CD) is a constant, we get our result.
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Remark 2.50: In particular, if H has �nite index in G then H and G have equivalent growth functions.

Example 2.51: Fg in�nite abelian groups have polynomial growth functions. Indeed, they contain
with �nite index a free abelian group.

Exercise 2.52: Show that the growth of �nitely generated in�nite nilpotent groups is bounded by a
polynomial. [Recall that G is nilpotent if it admits a �nite central series, i.e. a sequence

G = G0 ≥ G1 ≥ . . . ≥ Gr = 1

such that Gi/Gi+1 is central in G/Gi for all i, i.e. for any elements g ∈ G and gi ∈ Gi, the commutator
[g, gi] is in Gi+1 (in particular, Gi/Gi+1 is abelian).]

With some more work can show that a nilpotent group has polynomial growth. Gromov proved
that the converse is (almost) true.

Theorem 2.53: (Gromov's polynomial growth theorem) A �nitely generated group has polynomial
growth i� it is virtually nilpotent.
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3 Actions on trees

The aim of this section is to give an overview of Bass-Serre theory. The main result of Bass-Serre
theory is that given an action of a group on a tree, one can give a presentation of G in terms of the
vertex and edge stabilizers of the action.

3.1 Free groups and trees

We saw that the Cayley graph X(F (S), S) of the free group F (S) is a tree, so F (S) acts on a tree.
Moreover the action is free. Let us examine this action more closely.

What is its quotient? There is one orbit of vertices, and an orbit of edge for each element in S.
Thus the quotient is a rose graph: one vertex, and |S| loops.

Note that the quotient map is a covering map (look at the neighborhood of a point in the interior
of an edge, and at a neighborhood of the vertex).

This is an instance of a more general fact

Proposition 3.1: Let X be a Hausdor� and path connected space. Let G be a group which acts freely
and properly discontinuously on X. Then p : X → G\X is a covering map.

Remark 3.2: In fact, we have seen that if a group G acts on a graph with �nite vertex stabilizers then
the action properly discontinuous, so if X is a graph freeness automatically implies proper discontinuity.

Let us go back to our speci�c example of F (S) acting on its Cayley graph. Since X(F, S) is a tree,
it is simply connected so this is in fact a universal cover.

The following is a fundamental theorem of covering space theory.

Theorem 3.3: Let X be a nice (Hausdor�, connected, locally path connected) simply connected space,
let x ∈ X. If a group G acts on X in a free and properly discontinuous way, G is isomorphic to
π1(X\G, p(x)) via the application which to g ∈ G associates p ◦ γg where γg is a path joining x to g ·x.

The theorem thus implies that F (X,S) is the fundamental group of the rose, and that the loops
corresponding to the elements of S are exactly the petals of the rose.

Remark 3.4: Let Y be a graph. By collapsing a maximal subtree Y0 of Y , one gets a space which is
homotopy equivalent to a rose, hence which has a free fundamental group. Thus the fundamental group
of a graph is always free, of rank corresponding to the number of edges that lie outside of a maximal
subtree.

Theorem 3.5: A group acts freely on a tree i� it is free.

Proof. Since we have seen that the free group F (S) acts freely on its Cayley graph with respect to
S, which is a tree, there remains only one direction to prove. By Remark 3.2, if G acts freely on the
tree Y then the quotient map Y → G\Y is a covering map. Since Y is simply connected, this is in
fact a universal cover so we have π1(G\Y ) = G. But G\Y is a graph, hence its fundamental group is
free.

Note that is also possible to give an elementary proof which does not rely on covering space theory.

Corollary 3.6: Any subgroup of a free group is free.

Proof. Let H be a subgroup of a free group G. The group G acts freely on its Cayley graph X which
is a tree. Thus H also acts on X, and the action is also free (if points don't have stabilizers in the big
group they don't have any in the small group). Hence H is itself free.

A useful point of view on free groups. (Unlectured) Seeing the free group as the fundamental
group of the rose enables one to use the power of covering space theory to deduce algebraic properties
of the free groups - we give an example.
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Recall that if p : X → Y is a covering map between path connected spaces, then it induces an
injective map p∗ : π1(X,x)→ π1(Y, p(x)) given by p∗([γ]) = [p◦γ]. Moreover if p is an n-sheeted cover
then p∗(π1(X,x)) has index n in π1(Y, p(x)).

Example 3.7: Consider a �nite sheeted cover q : R̂ → R of the rose with 2 petals. Its fundamental
group is a �nite index subgroup of the free group F (a, b). But its fundamental group is itself free, since
R̂ is a graph. One can see that an n sheeted cover will have fundamental group free of rank n+ 1 (by
counting vertices and edges - know the number of edges not in a maximal subtree).

For example, draw the cover corresponding to subgroup generated by

{an, b, aba−1, a2ba−2, . . . , an−1ba1−n}.

Thus for any m ≥ 2, the free group Fm embeds in F2 as a subgroup of �nite index.

3.2 Non free actions on trees

What happens if G acts on a tree, but not freely?

Amalgamated product case

Proposition 3.8: Suppose G acts on a tree T without inversion so that there is one orbit of edges
and two orbits of vertices. Then G can be written as an amalgamated product Stab(p) ∗Stab(e) Stab(q)
where e is an edge of T with endpoint p, q.

We gave a constructive de�nition of amalgamated products:

De�nition 3.9: Let A = 〈SA | RA〉, B = 〈SB | RB〉, C a group with embeddings C → A, c 7→ cA,
C → B, c 7→ cB. The amalgamated product of A with B over C is the quotient of A ∗B by the normal
subgroup generated by the elements cAc−1

B for all c ∈ C. It is denoted by A ∗C B (abuse of notation).

To prove that a given group is an amalgamated product of two of its subgroups, we will use the
following lemma:

Lemma 3.10: Let G be a group, let A,B be subgroups of G and C = A ∩B. If

1. A and B generate G;

2. no alternating product of elements of A−C and B−C (i.e. for example of the form a1b1 . . . bkak
with ai ∈ A− C, bi ∈ B − C) is trivial.

then G is the amalgamated product of A and B over C.

Proof. By de�nition of amalgamated products, there is a surjective morphism p : A ∗ B → A ∗C B
whose kernel is the normal closure of R = {cAc−1

B | c ∈ C}.
On the other hand, by the universal property of free products, there is a unique morphism π :

A ∗B → G induced by the inclusions of A,B in G. Condition 1. ensures that π is surjective. Clearly
R ⊆ Kerπ, so π factors through p as π = π′ ◦ p. We now want to show that π′ is in fact injective.

Note that for any w ∈ A ∗ B, there exists w′ = (a0)b1a1 . . . bkak(bk+1) with ai ∈ A − C and
bi ∈ B − C such that w and w′ represent the same element of A ∗C B, so they have the same image
by p and thus also by π - in fact, this is not quite true because w could be just an element of C. In
summary w′ is either an alternating product of elements of A−C and B−C, or an element of C itself.

Now if w ∈ Kerπ, so is w′. By condition 2., we must therefore have that w′ is an element of C.
But the only such element in Kerπ is 1. Thus p(w) = p(1) = 1. Thus we proved Kerπ = Kerp - this
implies p = π hence G = A ∗C B.

We �rst prove the following lemma.

Lemma 3.11: Show that g · p is at distance 1 of h · q if and only if g = hvu where v ∈ Stab(q) and
u ∈ Stab(p) if and only if h = gu′v′ where v′ ∈ Stab(q) and u′ ∈ Stab(p).
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Proof. The second equivalence follows by taking v′ = v−1 and u′ = u−1.
It is easy to see that vu · p is at distance 1 of q. Hence hvu · p is at distance 1 of h · q.
To prove the converse, we �rst translate by h−1: note that there is an edge f between h−1g · p and

q. Since there is only one orbit of edges, there is an element sending e to f : this element v must �x
q, so v ∈ Stab(q), and send p to h−1g · p. Hence h−1g · p = v · p, thus v−1h−1g = u ∈ Stab(p): this
proves the result.

We can now prove the Proposition.

Proof. We �rst show that Stab(p) and Stab(q) generate. Let g ∈ G. Consider the path p, h1 · q, g1 ·
p, h2 · q, . . . , hk · q, gk · p = g · p between p and g · p. By the lemma above, g = hkvu for some v in
Stab(q) and u ∈ Stab(p), hence by induction the result is proved.

Consider an alternating product u0v1u1 . . . vkukvk+1 where ui ∈ Stab(p), vi ∈ Stab(q), and ui, vi /∈
Stab(e) for any 1 ≤ i ≤ k.

The sequence p, u0 · q, u0v1 · p, . . . , u0v1 . . . vkukvk+1 · p = p de�nes a path in X by the Lemma
above. If u0v1u1 . . . vkukvk+1 represents the trivial element in G, in fact it is a cycle. Now T is a tree,
so the path must backtrack at some point: wlog we have u0v1u1 . . . ui−1vi−1 · p = u0v1u1 . . . uivi · p.
Hence we get p = uivi · p, that is, uivi = u for some u ∈ Stab(p). Thus u−1ui = vi which contradicts
the hypotheses on the ui's.

Hence no such alternating product represents the trivial element, and G is the amalgamated product
Stab(p) ∗Stab(e) Stab(q).

In fact, the converse is true:

Proposition 3.12: If G = A ∗C B, then G admits an action on a tree whose quotient is a segment,
in which there is an edge e = (p, q) with Stab(e) = C, Stab(p) = A and Stab(q) = B.

HNN extension case We have a vsimilar result corresponding to HNN extensions.

Proposition 3.13: If a group G acts on a tree T without inversion so that there is one orbit of edges
and one orbit of vertices, then G can be written as an HNN extension Stab(p)∗Stab(e) with stable letter
t, where e is an edge of T with endpoint p, t · p.

Also here the converse holds

Proposition 3.14: If G = A∗C , then G admits an action on a tree whose quotient is a loop graph
(one edge and one vertex), such that the vertex stabilizers are conjugate to A, and the edge stabilizers
are conjugate to C.

Remark 3.15: Suppose G acts on a tree T without inversion, and pick an edge e of T : by collapsing
all the edges which are not in the orbit of e, we get a new tree T ′ on which G still acts, and the stabilizer
of the image e′ of e in T ′ is still Stab(e). By the two propositions above, G admits a splitting (either
as an amalgamated product or as an HNN) over Stab(e).

Hence if G acts on a tree T without inversion, it admits splittings over each of the edge stabilizers.

Remark 3.16: Special case: if G acts on a tree with trivial edge stabilizers, then G splits as a free
product.

More generally, given an action of a group G without inversions on a tree T , Bass-Serre theory
gives a presentation of G in terms of the stabilizers of edges and vertices of T .
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4 Hyperbolic groups

Around 300BC, the hellenistic mathematician Euclid wrote his (world famous) book "The elements",
which contains the �rst systematic treatement of geometry.

In Book I, he gives a number of de�nitions for points, lines, etc. and �ve axioms:

1. Each pair of points can be joined by one and only one straight line segment.

2. Any straight line segment can be inde�nitely extended in either direction.

3. There is exactly one circle of any given radius with any given center.

4. All right angles are congruent to one another.

and a �fth which is equivalent (given the other four) to

5' Given a line and a point not on it, there is exactly one line going through the given point that is
parallel to the given line.

This last axiom, often called "the parallel axiom", looks much more complicated than the other
four, and mathematicians tried to deduce it from the other axioms for centuries, mostly by replacing
it by other axioms which they thought were simpler. In the 19th century, people (Gauss, Bolyai,
Lobachevsky) began to try to prove this by contradiction: if we assume that given a point p and a
line L, there are in�nitely many line going through p which are parallel to (i.e. do not meet) L, what
happens? But instead of running into a contradiction, these mathematician worked out more and more
results of this alternate geometry, and began to become convinced of its consistency.

The consequences were strange to the Euclidean mind: one would get that the set of points at a
�xed distance of a line was not itself a line, that the sum of the angles of a triangle was always strictly
less than π (in fact, the fact that the sum of the angles of a triangle is equal to π is equivalent to the
parallel axiom).

The study of curved surfaces (ex: the two-holed torus) laid the basis for construction of analytic
models of this new set of axioms. Other models, including the one we give below, were worked out by
Henri Poincare at the end of the 19th century/beginning of the 20th. A central such model is that of
the half hyperbola, which gave its name to this particular �avor of non-euclidean geometry: hyperbolic
geometry.

Hyperbolic geometry is central in the works of Minkowski and Einstein on relativity. For more on
the historical development of hyperbolic geometry see the �rst section of "Hyperbolic geometry" by
Cannon, Floyd, Kenyon and Parry (available online).

But before we give an explicit model of hyperbolic geometry, here is another model of non-euclidean
geometry that had in fact be known for centuries before...(note though that it does not satisfy the �rst
four axioms of Euclid so its status is a bit di�erent)

Example 4.1: (Spherical geometry) Let S2 denote the sphere in R3. We call lines on S2 the great
circles - they are the curves minimizing distance locally, so they are indeed the analogues of lines in
Euclidean plane in that sense.

In this space, given a point p and a line L, how many lines going through p are parallel (i.e.
non-intersecting) to L? None! Any two great circles intersect.

Note also that the sum of angles of a triangle on a sphere is always greater than π (consider for
example a triangle with a right angle at the North pole and two points on the equator: the sum of its
angle is 3π/2).

The following metric space is a model of "hyperbolic geometry", that is, it is an example of a space
which satis�es the �rst four axioms of Euclid, but in which given a point and a line there are in�nitely
many lines going through the point which do not meet the given line.

Example 4.2: Let H2 denote the upper half plane, that is, the set of points {(x, y) ∈ R2 | y > 0}.
We want to endow H2 with a metric, which we will call the hyperbolic metric.
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We �rst de�ne the hyperbolic length of a curve γ : [a, b] → H2 (i.e. a C1 map) by the following
formula:

lh(γ) =

∫ b

a

|γ′(t)|
γy(t)

dt

We can then de�ne a function

dh(p, q) = inf{lh(γ) | γ a piecewise C 1 curve joining p to q in H2}

It is possible to show that this de�nes a metric on H2.
It can also be shown that the shortest curve joining two points is either a piece of vertical line, or a

piece of a half-circle centered on the real axis - if we take these to be the "lines" of our space, the �rst
four axioma of Euclid are indeed satis�ed. Moreover, it is easy to see that there are in�nitely many
parallels to a given line through a given point.

Another model of the same space is the Poincare disk:

D2 = {z ∈ C | |z| = 1}

endowed with the metric dD2 induced by the length function for curves given by

lh(γ) =

∫ b

a

|γ′(t)|
1− (γ2

x(t) + γ2
y(t))

dt

The two models are isometric via the map (H2, dH2)→ (D2, dD2) de�ned by z 7→ i−z
zi−1 . Lines are arcs

of circles orthogonal to the boundary of the disks as well as diameters.
See Escher representations of these two models.

4.1 Hyperbolic metric spaces

One can also try to build combinatorial models that capture the behaviour of hyperbolic geometry,
which we can think of as approximation to hyperbolic geometry. One such attempt was made by
Gromov in the 80's, who gave a de�nition of hyperbolicity for a metric space. The de�nition we give
is not Gromov's original one, but is equivalent to it when the metric space is geodesic. It is attributed
to Rips.

Recall De�nition 2.17. Let X be a geodesic metric space.

De�nition 4.3: A geodesic triangle in X is a triple (γ0, γ1, γ2) of geodesic segments γi : [0, Li] → X
such that γ0(L0) = γ1(0), γ1(L1) = γ2(0), γ2(L2) = γ0(0).

De�nition 4.4: Let A be a subset of a metric space X, and let ε ≥ 0. The ε-neighborhood of A in X
is given by

Bε(A) = {x ∈ X | ∃a ∈ A such that d(x, a) < ε}.

De�nition 4.5: Let δ ≥ 0. A geodesic triangle (γ0, γ1, γ2) is said to be δ-slim if each of its sides is
contained in a δ-neighbourhood of the union of the two other sides.

The space X is said to be δ-hyperbolic if all its geodesic triangles are δ-slim.

Example 4.6: Any metric space with �nite diameter D is D-hyperbolic.

Example 4.7: R2 with its usual metric is not hyperbolic: consider the triangle between (0, 0), (0, 3δ)
and (3δ, 0).

Example 4.8: A metric tree (built from a graph-tree by identifying every edge with the interval [0, 1])
is 0-hyperbolic (triangles are tripods).

In fact, the converse is almost true: if X is a geodesic 0-hyperbolic space, then X is a real tree.

De�nition 4.9: An arc in a metric space X joining points p and q is the image of a continuous
injective map γ : [0, a]→ X so that γ(0) = p and γ(a) = q.

A real tree is a geodesic metric space in which any two points are joined by a unique arc.
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Example 4.10: • SNCF metric on R2: d(u, v) = |v − u| if v = λu, and d(u, v) = |u|+ |v| if not.

• Comb metric on R2: d(u, v) = |yv − yu| if xv = xu, and d(u, v) = |yu|+ |xv − xu|+ |yv| if not.
How about a non bounded example where δ 6= 0?

Lemma 4.11: The hyperbolic plane H2 is δ-hyperbolic, and the best hyperbolicity constant δ is ln(1 +√
2).

Want to show that the notion of hyperbolicity is invariant by quasi-isometry but for this need notion
of quasigeodesic. Problem: the image by a quasi-isometry of a geodesic segment is not necessarily a
geodesic.

De�nition 4.12: A (C,D)-quasi-isometric embedding c : I → X is called

• a (C,D)-quasigeodesic segment in X if I = [a, b];

• a (C,D)-quasigeodesic ray if I = [0,∞);

• a (C,D)-quasigeodesic (or quasigeodesic line) if I = R.

Remember the logarithmic spiral (section on quasi-isometries): it is a quasigeodesic.

Exercise 4.13: Geodesic segments are exactly (1, 0)-quasigeodesics.The image of a geodesic seg-
ment/ray/line by a (C,D)-quasi-isometry is a (C,D)-quasigeodesic. The image of a quasigeodesic
segment/ray/line by a quasi-isometry is a quasigeodesic segment/ray/line.

Theorem 4.14: (Stability of quasigeodesic segments). Let X be a δ hyperbolic space. Let C ≥ 1, D ≥
0. There exists a constant R = R(C,D, δ) such that for any (C,D)-quasigeodesic segment γ : [a, b]→
X, if c is a geodesic segment joining γ(a) to γ(b), then Im(γ) remains within a R-neighborhood of
Im(c), and Im(c) remains within a R-neighborhood of Im(γ).

To prove this we need the following lemma which enables us to replace a quasigeodesic by a "nicer"
one:

Lemma 4.15: Let X be a geodesic space. Let γ : [a, b]→ X be a (C,D)-quasigeodesic segment. There
exists a continuous map γ1 : [a, b]→ X such that

(i) γ(a) = γ1(a) and γ(b) = γ1(b);

(ii) γ1 is a (C,D′)-quasigeodesic segment with D′ = 2C + 3D;

(iii) l(γ1 |[s,t]) ≤ K1d(γ1(s), γ1(t)) +K2 for any s, t ∈ [a, b] and constants Ki which depend only on C
and D;

(iv) the images of γ and γ1 are contained in (C +D)-neighborhoods of one another.

What do we mean in (iii) when we talk about the length of γ1 |[s,t]?
De�nition 4.16: Let δ : [a, b]→ X be a continuous map. We de�ne the length of δ to be

l(δ) = sup{
n∑
i=1

dX(δ(ai−1), δ(ai)) | a = a0 < a1 < . . . < an = b, n ∈ N}

If this sup is not in�nite, say that δ is recti�able.

Proof of the lemma:

Proof. We de�ne γ′ by a concatenation of geodesic segments joining the points γ(a), γ(m), γ(m +
1), . . . , γ(m+ p), γ(b) where {m, . . . ,m+ p} are the integer points of [a, b]. We parameterize it contin-
uously by a map γ1 : [a, b] → X such that for each k ∈ {a,m, . . . ,m + p, b} we have γ(k) = γ1(k). In
particular, (i) is satis�ed.
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For any t ∈ [a, b], let [t] denote a point of a,m,m+ 1, . . . ,m+ p, b closest to t. For any t in [a, b] we
have |t− [t]| ≤ 1/2, hence any point γ(t) on γ([a, b]) is at a distance at most C/2 +D of γ([t]), which
lies on Im(γ1). On the other hand, for each m ≤ k ≤ m+ p, we have d(γ(k), γ(k+ 1)) ≤ C+D since γ
is a (C,D)-quasigeodesic. Hence any point on γ1([a, b]) is at a distance at most (C +D)/2 of a point
of the form γ(k) or γ(a), γ(b). Thus we see that (iv) is satis�ed.

Note that γ1([t]) = γ([t]) for all t. We get

d(γ1(t), γ1(s)) ≤ d(γ1([t]), γ1([s])) + C +D

= d(γ([t]), γ([s])) + C +D

≤ C |[t]− [s]|+D + (C +D)

≤ C(|t− s|+ 1) + C + 2D

≤ |t− s|+ 2C + 2D

and

(1/C) |t− s| −D ≤ d(γ(t), γ(s))

≤ d(γ([t]), γ([s])) + C + 2D

= d(γ1([t]), γ1([s])) + C + 2D

≤ d(γ1(t), γ1(s)) + C + 2D + C +D

so γ1 is a (C, 2C + 3D)-quasigeodesic segment which proves (ii).
To prove (iii), �rst note that for every integers k, l in [a, b] we have:

l(γ1 |[k,l]) =

l−1∑
j=k

d(γ1(j), γ1(j + 1)) ≤ |l − k| (C +D)

and l(γ1 |[a,l]) ≤ (l−a+ 1)(C+D) and l(γ1 |[k,b]) ≤ (b−k+ 1)(C+D). So for any t, s in [a, b] we have

l(γ1 |[t,s]) ≤ l(γ1 |[[t],[s]]) + (C +D) ≤ (|[t]− [s]|+ 1)(C +D)

On the other hand we proved that

d(γ1(t), γ1(s)) ≥ (1/C) |t− s| − (2C + 4D) ≥ (1/C)(|[t]− [s]| − 1)− (2C + 4D)

So |[t]− [s]| ≤ Cd(γ1(t), γ1(s)) + C(2C + 4D) + 1 and �nally we get

l(γ1 |[t,s]) ≤ C(C +D)d(γ1(t), γ1(s)) + C(C +D)(2C + 4D) + 2(C +D).

We need another lemma, which shows that geodesics stay close to short curves.

Lemma 4.17: Suppose X is a hyperbolic metric space. Let γ : [a, b] be a continuous path with l(γ) <∞
(recti�able). For any x on a geodesic segment [γ(a), γ(b)], we have

d(x, Im(γ)) ≤ δ |log2(l(γ))|+ 1

Note that this does not hold in Euclidean space: consider a right angle triangle ABC of sides AB
and BC of lengths x and AC of length

√
2x2: the midpoint of AC is at distance

√
2x/2 of any other

point.
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Proof. Assume without loss of generality that γ is parametrized proportionally to length (i.e. that
there exists α with l(γ |[s,t]) = α |t− s| for all s, t).

Pick N ∈ N such that l(γ) ≤ 2N . We show by induction on N that l(γ) ≤ δN + 1.
For N = 0, it is clear (then d(γ(a), γ(b)) ≤ 1). Suppose it is true for N , and let x be a point

on [γ(a), γ(b)], and consider the triangle γ(a), γ(a/2 + b/2), γ(b). Some point x′ on (wlog) the side
[γ(a), γ(a/2 + b/2)] is at a distance at most δ from x. By induction, x′ is at a distance at most
(N − 1)δ + 1 from Im(γ). This proves the claim.

We can now prove Theorem 4.14.

Proof. We have a (C,D)-quasigeodesic segment γ : [a, b] → X, and a geodesic segment c joining γ(a)
to γ(b). By Lemma 4.15 above we can assume that γ is continuous and satis�es conditions (i)− (iv).

Let Mγ = sup{d(x, Im(γ)) | x ∈ Im(c)}, and let x0 be the point at which this sup is reached. Let
y and z be the points of the chosen geodesic segment [γ(a), γ(b)] at a distance exactly 2Mγ from x0

(or γ(a), γ(b) respectively if their distance from x0 is less than 2Mγ). Let y′, z′ be points on Im(γ) at
distance ≤Mγ from y, z.

Consider the path β from y to z going through a geodesic segment between y and y′, then the path
γ up to z′, and back to z through a geodesic segment between z′ and z. By part (3) of the Lemma
above we get that

l(β) ≤ l(γ |[y′,z′]) + 2Mγ ≤ K1(6Mγ) +K2 + 2Mγ

By the Lemma 4.17 we get:

Mγ ≤ δ |log2(l(β))|+ 1 ≤ δ |log2(K1(6Mγ) +K2 + 2Mγ)|+ 1

The RHS grows logarithmically with Mγ while the LHS grows linearly, hence Mγ must be bounded
above (for all curves γ) by some constant M0 which depends only on δ, C, and D. Thus [γ(a), γ(b)]
lies in BM0

(Im(γ)).
Let now u be such that d(γ(u), Im(c)) is maximal. Now Im(c) is contained in BM0

(γ([a, u))) ∪
BM0(γ((u, b])). By connectedness of Im(c) there must be a point w of Im(c) which lies in both neigh-
borhoods, that is, at distance ≤ M0 of both γ(s) and γ(t) for s < u < t. The distance d(γ(s), γ(t))
is at most 2M0, hence the length of γ |[t,s] is at most K12M0 + K2. Hence any point of γ |[t,s], in
particular γ(u) is at a distance at most K1M0 + K2/2 + M0 of w. Thus Im(γ) is contained in the
(K1M0 +K2/2 +M0)-neighborhood of [γ(a), γ(b)].

This enables us to prove the following corollaries.

Corollary 4.18: A metric space Y is hyperbolic if and only if for any constants C ≥ 1, D ≥ 0 there
exists M(C,D) such that any (C,D)-quasigeodesic triangle is M -thin.

Proof. One direction is obvious since geodesic triangles are (1, 0)-quasigeodesic triangles. Let R =
R(δ, C,D) be such that any (C,D)-quasigeodesic segment in Y is within an R-neighborhood of any
geodesic segment joining its endpoints. Let γ0, γ1, γ2 be a (C,D)-quasigeodesic triangle. Let β0, β1, β2

be geodesic segments joining the endpoints of γ0, γ1, γ2. A point x on γ0 is at distance at most R from
a point on β0, which is itself at distance at most δ from a point of β1 (wlog), which in turn lies within
distance R of a point y of γ1. Setting M = 2R+ δ proves the claim.

Corollary 4.19: Suppose that f : X → Y is a (C,D)-quasi-isometric embedding. If Y is δ-hyperbolic,
then X is δ′-hyperbolic for some δ′ which depends only on δ, C,D.

Proof. Let γ0, γ1, γ2 be a geodesic triangle in X. The (C,D)-quasigeodesic triangle f ◦γ0, f ◦γ1, f ◦γ2 is
M -thin by the previous lemma so any point f(x) on f◦γ0 is at distance at mostM of f(y) for some point
y on γ1 or γ2. Since f is a (C,D)-quasiisometric embedding, we get d(x, y) ≤ Cd(f(x), f(y)) + D ≤
CM +D. Setting δ′ = CM +D �nishes the proof.

31



4.2 Hyperbolic groups - de�nition

The following de�nition is due to Rips and Gromov.

De�nition 4.20: We say that a group G is hyperbolic if its Cayley graph (endowed with the metric
which identi�es each edge to the interval [0, 1]) is a hyperbolic metric space.

By the theorem above, this does not depend on the choice of a generating set.

Example 4.21: 1. Every �nite group is hyperbolic.

2. Free groups are hyperbolic.

3. Z2 is NOT hyperbolic.

4. SL2(Z) is hyperbolic.

5. The fundamental groups of orientable surfaces of genus at least 2 is hyperbolic (such surfaces
admit metrics for which the universal cover is isometric to H2 - but the fundamental group, as
we saw, acts properly discontinuously cocompactly on the universal cover in this case, hence it
is quasi-isometric to H2).

4.3 Finite presentation of hyperbolic groups

The following proposition shows that in a sense, hyperbolicity is a strong constraint on a group:
remember that we saw that there are only countably many �nitely presented groups, while the class
of �nitely generated groups is uncountable.

Proposition 4.22: Hyperbolic groups are �nitely presented.

We need the following lemma, which shows that geodesic segments with close endpoints remain
close throughout. Note that this is more precise than Theorem 4.14, since we even know which point
of c′ is close to c(t).

Lemma 4.23: Let c : [0, T ]→ X and c′ : [0, T ′]→ X be geodesic segments. Suppose that c(0) = c′(0).
Then for any t ≥ 0 we have that

d(c(t), c′(t)) ≤ 2(δ + d(c(T ), c′(T ′)))

where for any t > T , we de�ne c(t) to be equal to c(T ).

Proof. Let t′ ∈ [0, T ′] and let D = d(c(t), c′(t′)). Then the triangle inequality on c(0) = c′(0), c(t), c′(t′)
gives

|d(c(0), c(t))− d(c′(0), c′(t′))| = |t′ − t| ≤ d(c(t), c′(t′))

Hence d(c(t), c′(t)) ≤ d(c(t), c′(t′)) + d(c′(t′), c′(t)) ≤ 2d(c(t), c′(t′)).
Consider "the" geodesic triangle between c(0), c(T ) and c′(T ′), and a point c(t). If c(t) is δ-close

to some point c′(t′) on the side [c(0), c′(T ′)], then d(c(t), c′(t)) < 2δ. If not, then c(t) is within
distance δ of the side between c(T ) and c′(T ′). Thus c(t) is within δ+ d(c(T ), c(T ′)) of c′(T ′). We get
d(c(t), c′(t)) < 2(δ + d(c(T ), c(T ′))).

We prove �nite presentation of hyperbolic groups:

Proof. Let S be a �nite generating set for G. All the relations between the elements of S can be written
as products of relations of the form csd−1 where s is in S and c, d are geodesic words ( a word s1 . . . sr
is said to be geodesic if the path given by following the edges labelled s1, . . . , sr in the Cayley graph
of G with respect to S is geodesic).

Hence it su�ces to show that �nitely many relations imply all the relations of this type.
Let w be a relation between the elements of S of this form, w = csd−1, with c = u1 . . . ul and

d = v1 . . . vm for ui, vj ∈ S ∪S−1. Note that |l −m| ≤ 1 (triangle inequality), wlog assume that l ≤ m.
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Let αn be a geodesic word such that αn =G c−1
n dn. By the previous Lemma we know that the

length of αn is at most 2δ + 2.
Note that

cnαnd
−1
n = cn−1unαnv

−1
n d−1

n = [cn−1αn−1d
−1
n−1][dn−1(αn−1unαnv

−1
n )d−1

n−1]

and that αn−1unαnv
−1
n is a relation in G of length at most 4δ + 6.

By induction on n, we can show that clαld−1
l can be written as a product of conjugates of relations

of length at most 4δ+ 6. If m = l we are done since cl = c, wlog αl = s and dl = dm = d. If m = l+ 1
we have

csd−1 = (clαld
−1
l )dl(α

−1
l sv−1

l+1)d−1
l

and (α−1
l sv−1

l+1) is a relation of length at most 2δ + 4 in G.
Thus the relations of lengths at most 4δ + 6 imply all the other relations of G: since there are

�nitely many such relations, we have found a �nite presentation for G.

Note that in fact we proved something stronger: starting from any �nite set of generators for G,
we can �nd a �nite presentation with this set of relators.

Though it may seem hard to come by examples of hyperbolic groups, among �nitely presented
groups, hyperbolic groups are everywhere:

Theorem 4.24: A "random" �nitely presented group is hyperbolic.

This can be shown for several randomness notions, for example: one �xes the number n of generators
and m of relators, and on considers all �nite presentations of groups with n generators and m relations
of length at most t on these generators. If we denote by P (t) the probability that a presentation chosen
uniformly among these gives a hyperbolic group, then P (t)→ 1 as t→∞.

In fact, a famous statement of Gromov is that any property which is true of all groups is trivial,
and this is what prompted him to look for a class of groups which would be very generic, yet still
interesting.

4.4 Word problem in hyperbolic groups

This puts in perspective the following result of Gromov, which we will now prove:

Theorem 4.25: Hyperbolic groups have solvable word problem.

In fact, what we show is a weak version of this: every hyperbolic group admits a presentation for
which the word problem is solvable.

The proof relies on an idea of Dehn.

De�nition 4.26: Let S be an alphabet. A reduced word w in S is cyclically reduced if w = s1s2 . . . sn
with s1 6= s−1

n .

Note that any reduced word admits a cyclically reduced conjugate, and that this can be computed
algorithmically.

De�nition 4.27: A presentation 〈S | R〉 is said to be symmetric if for any r ∈ R, r is cyclically
reduced and all the cyclically reduced conjugates of r, r−1 are in R.

Exercise 4.28: Given a �nite presentation 〈S | R〉, describe an algorithm which computes a �nite
presentation 〈S | R′〉 of the same group which is moreover symmetric.

De�nition 4.29: A �nite symmetric presentation 〈S | R〉 of a group is called a Dehn presentation if
any word w on S which represents the identity in G contains a subword v which is more than half of
a relator, more precisely, for some r in R the word v is also a subword of r and we have r = uv with
u a subword of r satisfying lS(u) < lS(v).

Note that the symmetry condition is not always included, it just makes the proofs neater.
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Proposition 4.30: (Dehn's algorithm). If 〈S | R〉 is a Dehn presentation then the word problem for
the group G = 〈S | R〉 is solvable.

Proof. Consider the following algorithm: First, make a list L of all the pairs (v, u) such that v, u are
subwords of an element r of R with r = vu and lS(v) > lS(u) (this list is �nite). Given a word w on
S, we apply the following procedure:

1. If w is empty, stop - the corresponding element is trivial.

2. If w is non empty, compute a cyclically reduced conjugate w′ of w - it is at most as long as w,
and it represents the trivial element in G i� w does.

3. List all subwords of w′, and check whether for one of these subwords v, there exists u such that
(v, u) ∈ L.

4. If not, by de�nition of a Dehn's presentation this means that w′, hence w, does not represent the
trivial element in G - stop.

5. If there is such a u, and if w′ = w1vw2 for w1, w2 subwords of w′, then w′ =G w1u
−1w2.

Compute the reduced word w′′ representing the element w1u
−1w2: it is strictly shorter than w′,

and represents the trivial element in G i� w′ does.

6. Return to step 1. replacing w by w′′.

Since the length of the word we apply the loop to strictly decreases with each iteration, the process
must stop.

Theorem 4.31: A hyperbolic group admits a Dehn's presentation.

In fact, the converse is also true (we won't prove this).
Given Proposition 4.30, we immediately get that hyperbolic group have solvable word problem.
To prove Theorem 4.31, we will need the two following lemmas

Lemma 4.32: Let X be a δ-hyperbolic metric space, and let k ≥ 8δ. Let γ : [a, b] → X be a k-local
geodesic segment, i.e. for any s, t ∈ [a, b] with |t− s| < k we have d(γ(s), γ(t)) = |t− s|. Then if c is
a geodesic segment joining γ(a) to γ(b), we have

Im(γ) ⊆ B2δ(Im(c))

Proof. Let x = γ(t) realise the maximal distance from Im(c). Assume �rst that we can choose y, z
points on either side of x such that d(y, z) < k so that γ is a geodesic segment between y and z, but
d(y, x), d(x, z) > 4δ. Let y′, z′ be points of ı(c) closest to y, z respectively. By cutting the quadrilateral
y, z, z′, y′ diagonally into two geodesic triangles, we see that there exists a point w on one of the sides
other than [y, z] such that d(x,w) < 2δ.

If w is on y, y′ we get a contradiction: indeed we have d(x, y′) ≤ d(x,w) + d(w, y′) < 2δ + d(w, y′)
while

d(y, y′) = d(y, w) + d(w, y′) ≥ [d(y, x)− d(x,w)] + d(w, y′)

> [4δ − 2δ] + d(w, y′) ≥ 2δ + d(w, y)

≥ d(x, y′)

which contradicts the choice of x. Similarly, w cannot be on [z, z′]. Thus it is on [y′, z′] ⊆ Im(c) and
we are done. If no such y′, z′ can be chosen, we apply a similar argument (exercise).

From this we get the following result, which can be thought of as saying that a loop in a hyperbolic
space always has a "shortcut" between two points which are at bounded distance apart in the loop.

Lemma 4.33: Let X be a δ-hyperbolic space. Let γ : [a, b]→ X be a non-constant loop in X. Then γ
is not a 8δ-local geodesic.
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Proof. If |b− a| ≤ 8δ, then taking s = a, t = b is enough since d(γ(a), γ(b)) = 0 < |b− a|. We can thus
assume that |b− a| > 8δ.

Suppose that γ is a 8δ-local geodesic segment - by Lemma 4.32, we know that Im(γ) remains within
the 2δ neighborhood of the constant geodesic at γ(0). Now d(γ(0), γ(3δ)) = 3δ since γ is a 8δ-local
geodesic - but this gives a contradiction.

We can now prove that hyperbolic groups admit a Dehn presentation.

Proof. Let π : F (S) → G be the canonical surjective map. Denote by R0 the set of words in S such
that r ∈ Ker(π), r is cyclically reduced, and there are subwords u, v of r such that

• r=uv ;

• lS(v) ≤ 8δ + 1;

• d(1, π(u)) = lS(u);

• lS(u) < lS(v).

Note that the condition d(1, π(u)) = lS(u) implies that any path labeled by the word u is a geodesic
segment. Take R to be the set of all cyclically reduced conjugates of elements of R0, so that 〈S | R〉 is
a symmetric presentation.

Let w be a nontrivial word in S such that π(w) = 1. We want to show it can be written as a
product of conjugates of elements of R (so that the presentation 〈S | R〉 is indeed a presentation for
G), and that there exists a subword of w which represents more than half of a relator (to show that it
is in fact a Dehn presentation). We prove both by induction on the length n of w.

The word w labels a cycle γ : [0, n] → X(G,S) in the Cayley graph, where n = lS(w) and we
assume that the parametrization is such that γ sends [j − 1, j] isometrically onto the j-th edge. By
Lemma 4.33, we see that we can �nd k, l integers in [0, n] with |l − k| ≤ 8δ + 1 such that γ |[k,l] is not
a geodesic segment. By our choice of parametrization, we must have d(γ(k), γ(l)) < |l − k|. Denote by
v the label of the path γ |[k,l], and by u the label of a geodesic segment between γ(l) and γ(k). We can
assume without loss of generality that the concatenation of [γ(l), γ(k)] and γ |[k,l] has no backtrack
(otherwise we could chose l, k closer).

We see that v is a subword of w, that w = w1vw2 for subwords w1, w2 of w, and that uv labels a
cycle in the Cayley graph, so that π(uv) = 1. By our no backtrack hypothesis, uv is cyclically reduced.
Since lS(v) ≤ 8δ + 1, and lS(u) < lS(v), r = uv is in R.

If w1, w2 are empty this concludes the proof. If not, by induction hypothesis w1u
−1w2 (which is

strictly shorter than w) can be written as a product of conjugates of elements of R, hence so can
w = (w1u

−1w2)w−1
2 (uv)w2. This �nishes the proof.

Note that hyperbolic groups also have solvable conjugacy problem, and Sela showed that the iso-
morphism problem is solvable for torsion-free hyperbolic groups.

4.5 Subgroups of hyperbolic groups

Is a subgroup of a hyperbolic group always hyperbolic?
This cannot be true in such generality. First, there might be some non �nitely generated subgroups,

for example, we saw that the free group on in�nitely many generators can be seen as a subgroup of
F2. There are also examples of �nitely generated but non �nitely presented subgroups which embed
in hyperbolic groups (via the Rips construction); and even of �nitely presented but non hyperbolic
subgroups of hyperbolic groups (harder, due to Noel Brady).

Can a hyperbolic group contain a Z2? A priori, it could contain a twisted copy (i.e. a non quasi-
isometrically embedded copy). But in fact, this cannot be. This comes from the following facts

Theorem 4.34: Let g be an element of a hyperbolic group G. Then the centralizer C(g) of g is
quasiisometrically embedded, and if g has in�nite order 〈g〉 has �nite index in C(g).
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If G contained a copy of Z2, the centralizer of any of its elements should contain Z2, which would
contradict its being virtually cyclic.

Note that another consequence of the theorem is that if any two elements of G commute, they
generate a virtually cyclic group. If they don't commute, what do they generate?

In free groups:

Remark 4.35: Let a, b be two elements of a free group F: they generate a subgroup of F, which must
be free, and of rank at most 2. If a, b do not commute, the rank is exactly 2.

In fact, it is possible to show:

Proposition 4.36: Su�ciently high powers of in�nite order noncommuting elements in a hyperbolic
group generate a free subgroup.

In fact, conjecture: a group is hyperbolic i� it has �nite K(1) and contains no Baumslag-Solitar
subgroup.
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5 Limit groups

Another class of "geometrically de�ned" groups. Hyperbolic groups were close to free groups because
their Cayley graphs are almost trees. Here is another class of groups which are close to free groups, in
another sense.

5.1 The space of marked groups

De�nition 5.1: A marked group is a pair (G,S) where G is a group and S = (s1, . . . , sk) is an ordered
generating set for G.

Two marked groups (G, (s1, . . . , sk)) and (G′, (s′1, . . . , s
′
k′)) are identi�ed if k = k′ and the bijection

si 7→ s′i extends to an isomorphism.
The set of all (isomorphism classes of) marked groups (G,S) where S is a k-tuple is denoted Gk.
Note that if G is a group and T, S are distinct generating sets, then (G,S) and (G,T ) are not in

general equal as marked groups.

Exercise 5.2: Show that (Z, 1) and (Z,−1) are isomorphic as marked groups (and thus identi�ed in
G∞). Show that (Z, (2, 3)) and (Z, (1, 3)) are not.

Here are two other ways to think about marked groups:

Remark 5.3: • a marked group is a group G together with an epimorphism π : Fk → G (if
a1, . . . , ak standard basis of Fk, the marking S is given by si = π(ai)).

• choosing a point in Gk corresponds exactly to choosing a normal subgroup in Fk.

We want to say that two marked groups are close if their generators satisfy the same relations of a
given length:

De�nition 5.4: Let (G,S) and (G′, S′) be two points in Gk. Let

R((G,S), (G′, S′)) = max{n | ∀w reduced word on k letters with l(w) ≤ n,
w(S) =G 1 ⇐⇒ w(S′) =G′ 1}

The space of marked groups is the set Gk endowed with the metric d de�ned by:

d((G,S), (G′, S′)) = 2−R((G,S),(G′,S′))

Exercise 5.5: Check this is a metric

So (G,S) and (G′, S′) are at least 2−r-close, i� they satisfy exactly the same relations of length at
most r.

Geometrically:

Exercise 5.6: R((G,S), (G′, S′)) ≥ r i� the balls of radius r/2 of their Cayley graphs are isomorphic
as labeled graphs (that is, there is a graph isomorphism between them which sends edges labeled si to
edges labeled s′i)

Examples of convergent sequences:

Example 5.7: • the sequence (Z/m, (1)) converges to (Z, (1)) as m tends to ∞.

Indeed, R((Z/m, (1)), (Z, (1))) ≥ m − 1 since in (Z/m, (1)) there are no relations of length less
than m;

• the sequence (Z, (1, 2m)) converges to Z2 with the standard generating set as m tends to ∞.

Indeed, R((Z, (1, 2m)), (Z, (1))) ≥ 2m (in (Z, (1, 2m)) aside from the relations induced by com-
mutation of the form akbja−kb−j , the shortest relation is a2mb which has length 2m+ 1).

By a similar argument it can be shown that Zn can be obtained as a limit of some marking of Z.
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Proposition 5.8: The metric space Gk is compact.

Proof. Gk = {K E Fk} ⊆ {0, 1}Fk which is compact by Tychonov (the topology on Gk is indeed the
topology induced by the product topology on {0, 1}Fk : two marked groups are close if the kernels of
the corresponding quotient maps agree on a large �nite number of elements).

Thus it is enough to show that Gk is closed. Let Kn be a sequence of normal subgroups of Fk and
suppose Kn converges to a subset K of Fk in the product topology. We need to show K ∈ Gk, that is,
that K is a normal subgroup of Fk.

Let k, k′ ∈ K. For all n large enough, both k and k′ are in Kn. Now Kn is a subgroup of Fk so
k−1k′ lies in Kn for all n large enough. Thus it also lies in K.

Similarly, if k ∈ K and h ∈ Fk, for all n large enough k ∈ Kn hence hkh−1 ∈ Kn by normality.
Thus hkh−1 ∈ K.

Proposition 5.9: The set A = {(G,S) ∈ Gk | G is abelian } is both open and closed.

Proof. Let (G,S) ∈ A. Then any group (G′, S′) at distance less than 2−4 is abelian, indeed then for
all i, j we have s′is

′
j(s
′
i)
−1(s′j)

−1 = 1.
Suppose that (Gn, Sn)→ (G,S) and Gn abelian for all n. For n large enough d((Gn, Sn), (G,S)) <

2−4 so (G,S) satis�es the same relations of length 4 as (Gn, Sn) so (G,S) is abelian.

In a similar way we can show:

Proposition 5.10: Let φ be a universal formula in the language of groups. The set Uφ = {(G,S) ∈
Gk | G |= φ} is closed.

Here we are talking about �rst-order formulas - the language of groups is the set of symbols
L = (·,−1 , 1). A universal formula in this language is a formula (which is equivalent to a formula) of
the form

∀x1 . . . xp

N∨
i=1

M∧
j=1

wi,j(x1, . . . , xp) = (6=)1.

An existential formula is equivalent to a formula of the form

∃x1 . . . xp

N∨
i=1

M∧
j=1

wi,j(x1, . . . , xp) = (6=)1.

Proof. Suppose that (Gn, Sn) → (G,S). Suppose G 6|= φ: we can �nd witnesses g1, . . . gp ∈ G such
that none of the conjunctions

∧M
j=1 wi,j(g1, . . . , gp) = (6=)1 hold. The gi can be seen as words g̃i(S) in

S.
Let R be larger than the lengths of all the wi,j(g̃1(S), . . . , g̃p(S)) seen as words in S.
For n large enough (Gn, Sn) and (G,S) satisfy exactly the same relations of length R, hence

g̃1(Sn), . . . , g̃p(Sn) in Gn witness the fact that Gn 6|= φ.

Remark 5.11: In particular recover that A is closed since A = Uφ for φ : ∀x∀y xy = yx.
But cannot extend the openness to the general case: in abelian case, you know that if a group fails

to satisfy φ, can �nd "witnesses" of length 1, in general the length of these witnesses is arbitrary.

5.2 Limit groups

De�nition 5.12: We de�ne Lk to be the closure in Gk of the set

F = {(G,S) | G is free }

Caution! do not require of G to be free on S.

De�nition 5.13: We say that G is a limit group if there exists an integer k and a marking S =
(s1, . . . , sk) such that (G,S) ∈ Lk.
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Exercise 5.14: If G is a limit group, then for any marking S of G, there exists a sequence (Gn, Sn)
converging to (G,S) with Gn free.

Exercise 5.15: Show that every �nitely generated subgroup of a limit group is a limit group.

Example 5.16: • Free groups are limit groups;

• Free abelian groups are limit groups (limits of Z).

First properties of limit groups:

Proposition 5.17: • Limit groups are torsion free;

• Limit groups are commutative transitive;

• Any two elements in a limit group which do not commute generate a free group of rank 2.

Proof. By the proposition above, any universal formula satis�ed by free groups is also satis�ed by limit
groups.

• Fix n. The following formula holds in any free group: ∀x x = 1 ∨ xn 6= 1), thus it holds in all
limit groups.

• All free groups satisfy ∀x, y, z{y 6= 1∧ [x, y] = 1∧ [y, z] = 1} → [x, z] = 1, hence so does any limit
group.

• True in free groups by Remark 4.35. Thus for any non empty reduced word w on two elements
the formula φw : ∀x, y[x, y] 6= 1→ w(x, y) 6= 1 holds in F, hence in any limit group. Thus if a, b
are elements in a limit group which do not commute, no non trivial word on a, b represents the
trivial element, hence a and b generate a free group of rank 2.

Example 5.18: The group F2 × Z is NOT a limit group, since it is not commutative transitive

5.3 Equivalent characterizations of limit groups

5.3.1 Universal theory

Proposition 5.19: Let G be a fg group. Then G is a non abelian limit group i� it has the same
universal theory as F2.

Remark 5.20: 1. All non abelian free groups have the same universal theory. Indeed, for any k > 1
we have that F2 ≤ Fk so Th∀(Fk) ⊆ Th∀(F2), and Fk embeds in F2 so the other inclusion also
holds.

2. Let G,G′ be groups. Then Th∀(G) = Th∀(G
′) i� Th∃(G) = Th∃(G

′). (This is because the
negation of a universal formula is an existential formula).

Proof. Suppose G is a non abelian limit group: it contains two noncommuting elements, hence it
contains a copy of F2, hence Th∀(G) ⊆ Th∀(F2). On the other hand, if φ is a universal formula
satis�ed by all free groups, it will be satis�ed by G since this is a closed property.

Suppose G is a fg group which has the same universal theory as F2. Let S = (s1, . . . , sk) be a �nite
generating set for G. For each N , write the following formula:

φN : ∃x1, . . . , xk
∧

w∈BN (Fk)

w(x1, . . . , xk) = (6=)1

where we put = if w(s1, . . . , sk) =G 1 and 6= otherwise. This holds in G, hence it holds in F2 (if not, its
negation, which is a universal formula, would hold in F2). Let S(n) = (s1(n), . . . , sk(n)) be witnesses
that this holds. It is easy to see that (F2, S(n)) converges to (G,S), so G is a limit group.
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5.3.2 Fully residually free

De�nition 5.21: Say that a group G is residually free if for any nontrivial element g, there exists a
morphism f : G→ F where F is a free group such that f(g) 6= 1.

Say that a group is fully residually free if for any �nite set of non trivial elements g1, . . . , gq, there
is a morphism f : G→ F such that for all i we have f(gi) 6= 1.

Lemma 5.22: Let G be a fg fully residually free group. Then G is limit .

Proof. Suppose G is fully residually free, and generated by a �nite set S. For each n ∈ N, let fn : G→
F(n) be a homomorphism which does not kill the non trivial elements of S-word length at most n. Let
Sn = fn(S) and let Gn be the (free) subgroup of F(n) generated by Sn. Clearly for any word w on S,
if w(S) = 1 in G then w(Sn) = fn(w(S)) = 1 in Gn, and for any w of length at most n, if w(S) 6= 1
then w(Sn) 6= 1. Thus (Gn, Sn)→ (G,S).

In fact, the converse is also true so we have:

Proposition 5.23: Let G be a fg group. Then G is limit i� it is fully residually free.

But this is harder to prove. Let's do it.

Remark 5.24: If we know that the limit group G admits a �nite presentation 〈S | r1(S), . . . , rq(S)〉,
then it is easy: indeed, let m be the maximum of the length of the ri's and of the lengths of the elements
that we wish to preserve, and let (G′, S′) be a marked free group which satis�es exactly the same relations
of length m as (G,S). Then the map G → G′ given by S 7→ S′ extends to a homomorphism, since
all the relations of the presentation of G hold in G′, and this homomorphism does not kill any of the
elements we wanted to preserve.

But we do not know that G is fp. In fact, it is true but very hard to show that all limit groups are
in fact fp.

We will use the following fact

Lemma 5.25: Free groups are equationally Noetherian, namely for any (possibly in�nite) system
Σ(x1, . . . , xk) of equations (i.e. expressions w(x1, . . . , xk) = 1 where w reduced word), there exists a
�nite subsystem Σ0(x1, . . . , xk) such that a tuple (a1, . . . , ak) in a free group satis�es Σ i� it satis�es
Σ0.

Remark 5.26: This is true of equations over �elds: Recall that the ring of polynomials K[X1, . . . , Xn]
is Noetherian, that is, there are no in�nite ascending chains of ideals. In particular if Σ is an in�nite
set of polynomials P1(X1, . . . , Xn), P2(X1, . . . , Xn), . . ., if we de�ne Ij = (P1, . . . , Pj) we have that for
some m, the ideal Im contains all of Σ. In particular all of the equations Pj = 0 for j > m are
"consequences" of the �rst m equations.

This means precisely that the system of equations Σ is equivalent to the �nite subsystem P1 =
0, . . . , Pm = 0.

Proof. We saw that F embeds in SL2(R) which we can see as a subvariety of R4. Each equation
w(x1, . . . , xk) = 1 in F translates as 4 polynomial equations in the coe�cients of the xi's viewed as
elements of R4.

The set VΣ = {(a1, . . . , ak) ∈ R4k | Σ(a1, . . . , ak)} is a subvariety of R4k, it is the intersection of
the decreasing sequence of varieties VΣp

= {(a1, . . . , ak) ∈ R4k | Σp(a1, . . . , ak)} where Σp consists of
the �rst p equations.

By Noetherianity of the polynomial rings on R, VΣ = VΣp for some p, so VΣ ∩Fk = VΣp ∩Fk which
proves the claim.

We can now prove the proposition

Proof. Suppose G = 〈S | r1(S), r2(S), . . .〉. By equational Noetherianity of the free group, there exists
p such that for any S′ ∈ F, ri(S′) = 1 for all i i� ri(S) = 1 for i ≤ p. We can thus proceed with the
proof as in the case where G is fp.
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5.4 Morphisms to the free group

We didn't get to this part eventually but I leave it for those of you who might be interested...
We show the following result

Proposition 5.27: Let G be a �nitely presented group. There exists �nitely many limit quotients
ηi : G→ Li of L such that any morphism f : G→ Li factors through one of the morphisms ηi.

Note that if G itself is limit, the result is trivial.

Remark 5.28: Let 〈s1, . . . , sk | Σ(s1, . . . , sk)〉 be a presentation for G. The set Hom(G,F) of all
morphisms from G to a free group can be thought of as the set of solution to the system of equation
Σ(x1, . . . , xk) in F - understanding morphisms from G to free groups is thus a way of understanding
equations over free groups.

Note also that we may in fact �x the rank of F to 2, since any �nitely generated free group embeds
in F2 (in fact we even know that the image of a morphism from G to a free group is a free subgroup of
rank at most k).

Consider a quotient p : G→ G′ between �nitely generated groups. Any morphism f : G′ → F gives
a morphism f ◦ p : G → F, and by surjectivity of p if f1, f2 are distinct then so are f1 ◦ p and f2 ◦ p.
Thus Hom(G′,F) ↪→ Hom(G,F).

Lemma 5.29: Consider a sequence of surjective morphisms G1 → G2 → G3 → . . .. The corresponding
sequence Hom(G1,F) ←↩ Hom(G2,F) ←↩ Hom(G3,F) . . . must stabilize (i.e. the inclusions are all
equalities for i large enough)

Proof. We choose a generating set s1, . . . , sk for G1, and take the images of the si as generating sets
for each Gi (we abuse notation and still denote them by si). Let 〈s1, . . . , sk | Σi(s1, . . . , sk)〉 be a
presentation for Gi : we may assume that the system Σi is properly contained in the system Σi+1.
The set Hom(Gi,F) can be thought of as the set of solution to the system of equation Σi(x1, . . . , xk)
in F - by equational Noetherianity, the system

⋃
i Σi is equivalent to a �nite subsystem, thus there is

q such that for all i ≥ q, the sets of solutions to Σi in F is the same as the set of solutions to Σq - in
other words, the sequence Hom(Gi,F)←↩ Hom(Gi+1,F) stabilizes.

To prove the proposition, we introduce the following notion

De�nition 5.30: Let H be a group. We denote by Hom(H,F) the set of homomorphisms from H to
a free group. The residually free quotient of H is the group

RF (H) = H/
⋂

f∈Hom(H,F)

Kerf

We denote the quotient map by π : H → RF (H).

Remark 5.31: • Any homomorphism from H to a free group factors through RF (H) : indeed,
the elements in Kerπ =

⋂
f∈Hom(H,F) Kerf are in the kernel of all the morphisms from H to a

free group.

• The residually free quotient RF (H) is residually free: let h ∈ RF (H)−{1}, there is a non trivial
element h′ ∈ H such that π(h′) = h. Since h′ is not in Kerπ, it means that there is a morphism
f : H → F such that f(h′) 6= 1. Now f = f̄ ◦ π for some morphism f̄ : RF (H) → F which
satis�es f̄(h) 6= 1.

• Consider a proper quotient p : R→ R′ between residually free groups. The inclusion Hom(R′,F) ↪→
Hom(R,F) is strict: if r ∈ Kerp− {1}, there is a morphism f : R→ F such that f(r) 6= 1 - this
morphism cannot come from a morphism R′ → F.

We can now prove the proposition
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Proof. As noted, we may assume that G is not a limit group, in particular it is not fully residually
free. This means that there exists a �nite set of non-trivial elements {g1, . . . , gr} such that for any
morphism f : G → F, we have f(gi) = 1 for some i. Thus we get �nitely many proper quotients
pi : G→ Qi = G/〈〈gi〉〉 through which any element of Hom(G,F) factors, but the Qi are not necessarily
limit groups.

Any morphism from Qi to a free group factors through RF (Qi) - it is still true that any element
of Hom(G,F) factors through one of the RF (Qi). Now for each RF (Qi) which is not a limit group,
we may proceed as we did with G to �nd �nitely many proper quotients through which any morphism
RF (Qi)→ F factors. We keep going in this way until we get to limit group.

This has to stop, otherwise we get an in�nite sequence of proper epimorphisms between residu-
ally free groups R1 → R2 → R3 → . . .: the corresponding sequence of embeddings Hom(G1,F) ←↩
Hom(G2,F)←↩ Hom(G3,F) . . . must stabilize by Lemma 5.29, but by our remark above the inclusions
are all strict.

From this last remark, together with Lemma 5.29, we immediately get

Corollary 5.32: Any sequence of proper quotients

R1 � R2 � R3 � . . .

between residually free groups Ri is �nite.

Proposition 5.27 is in fact a compactness result, as shown by the following alternative proof. We
will use the fact (true, but hard) that all limit groups are in fact �nitely presented.

De�nition 5.33: If (G,S) is a marked group, say thats (G′, S′) is a marked quotient of (G,S) if G′

is a quotient of G via an epimorphism π : G → G′ which sends S to S′. In other words, (G′, S′) is a
marked quotient of (G,S) i� any relation satis�ed by the elements of S is satis�ed by the elements of
S′.

Denote by G(G,S) the set of marked quotients of (G,S).

Remark 5.34: • G(G,S) is a closed set: if (Gn, Sn) → (G′, S′), any relation satis�ed by S in G
is satis�ed by Sn in Gn for all n, hence it is satis�ed by S′ in G′.

• Let (G′′, S′′), (G′, S′) ∈ G(G,S). Then (G′′, S′′) is a marked quotient of (G,S) i� the quotient
map G→ G′′ factors through the quotient map G→ G′.

• If G admits a �nite presentation 〈S | R〉, then (G,S) admits a neighborhood U in Gk which
consists entirely of marked quotients of (G,S), i.e. U ⊆ G(G,S).

Proof. Consider the set L(G,S) = G(G,S) ∩ Lk of marked limit quotients of (G,S). It is a closed
subset of Gk hence it is compact.

As we said, any marked group in L(G,S) is �nitely presented, hence it admits a neighborhood
which consists entirely of quotients of itself. By compactness, there is a �nite cover of L(G,S) by
neighborhoods U(L1, S1), . . . , U(Lm, Sm).

Let now f : G → F be a morphism to a free group, without loss of generality we may assume
f surjective. Hence (F, f(S)) is a marked quotient of (G,S), in fact it is a marked limit quotient of
(G,S). In particular, it lies in one of the neighborhoods U(Li, Si). This implies that (F, f(S)) is a
marked quotient of (Li, Si), in other words, that the quotient map f : G → F factors through the
morphism pi : G→ Li.

Proposition 5.27 is a �rst step in giving a full parametrization of the set of homomorphisms from
a given �nitely generated group to a free group. Indeed we have

Theorem 5.35: (Makanin-Razborov diagram) Let G be a �nitely generated group. There exists a �nite
tree T with root vertex G such that

• every vertex other than G is a limit group;
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• every edge from a vertex L to one of its sons L′ is an epimorphism π : L→ L′;

• every leaf is a free group;

and such that for any morphism f from G to some free group F, there exists

• a branch in the tree G
π1 // // L1 π2 // // L2 π2 // // . . .

πr // // Lr = F

• a sequence σ1, . . . , σ)r with σi ∈ Aut(Li);

• an injective morphism j : F ↪→ F;

such that
f = j ◦ σr ◦ πr ◦ σr−1 ◦ . . . ◦ σ1 ◦ π1

The tree is called the Makanin-Razborov diagram for G. As noted, Proposition 5.27 gives the �rst
�oor of this diagram. The fact that branches are �nite is a consequence of Corollary 5.32.
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