Exercises set 3

This is the third exercise of the course. To be handed in by January 29th, directly to me or via email to perin@math.huji.ac.il.

Solutions in english or typeset much appreciated, but of course hebrew and handwritten are fine (please write as clearly as possible).

You are required to hand in solutions for 5 out of the following 7 exercises.

Exercise 1: (Maximal possible growth function) Let G be a group endowed with a finite generating set S. Show that the cardinality of the ball of radius n in (G, d_S) is at most $1 + k \sum_{0 \le m < n} (k-1)^m$ where k = 2|S|. Show that this bound is attained for all n iff the group is free on S.

Exercise 2: (Finding free subgroups of amalgamated products) Let G be the amalgamated product $A *_C B$, and let T be the corresponding tree on which G acts with two orbits of vertices and one orbit of edges.

- 1. Show that an element $g \in G$ lies in a conjugate of A or B if and only if it fixes a vertex v in T.
- 2. Let H be a subgroup of G which does not intersect any conjugate of A or B non-trivially. Show that H is a free group.

Exercise 3: (Finite order elements in amalgamated products) Let $G = A *_C B$ be an amalgamated product. By using the corresponding action on a tree, show that if $g \in G$ has finite order (i.e. $g^m = 1$ for some $m \in \mathbb{N}$), then g lies in a conjugate of A or in a conjugate of B.

Exercise 4: (Actions of elements of the free group on its Cayley graph) Consider the action of F(a, b) on its Cayley graph T.

- 1. Let $g = baab^{-1}$. Draw (a piece of) T, and draw the paths joining $g^{-2}, g^{-1}, 1, g, g^2$. Show that there exists a line in T which is preserved by g, and on which g acts as a translation with translation length 2.
- 2. Show that for any nontrivial element $g \in F(a, b)$, there is a line A_g preserved by g on which g acts by translation. What is the translation length l(g)?
- 3. Show that for any point $x \in T$ we have $d(x, g \cdot x) = 2d(x, A_g) + l(g)$, and deduce that A_g is exactly the set of points minimally displaced by g.

Exercise 5: (Types of isometries of trees) Let G be a group acting on (the geometric realization of) a tree T (by isometries). We call translation length of an element g of G the number

$$l(g) = \inf\{d(x, g \cdot x) \mid x \in T\}$$

1. Show that this inf is a min.

We call "axis of g", and denote by Ax(g), the set $\{x \in T \mid d(x, g \cdot x) = l(g)\}$.

- 2. Suppose l(g) = 0. Show that the set Ax(g) is a subtree of T.
- 3. Suppose l(g) > 0. Show that Ax(g) is a line, on which g acts by a translation of length l(g). (Hint: remember Exercise 4).
- 4. Show that for any point $y \in T$ we have $d(y, g \cdot y) = 2d(y, Ax(g)) + l(g)$.

Exercise 6: (Isometries of the hyperbolic plane) In this exercise, you can think of the hyperbolic upper half plane model \mathbb{H}^2 either with real coordinates ($\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$) or with complex coordinates ($\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$) according to convenience.

- 1. Show that the following transformations are isometries of \mathbb{H}^2 : reflection through the y-axis $((x, y) \mapsto (-x, y) \text{ or } z \to \overline{z})$, horizontal translation $((x, y) \mapsto (x + a, y) \text{ or } z \mapsto z + a)$, dilation by a factor $\lambda \in \mathbb{R}$ $((x, y) \mapsto (\lambda x, \lambda y) \text{ or } z \mapsto \lambda z)$, and reflection in the unit (half) circle $((x, y) \mapsto (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$ or $z \mapsto 1/\overline{z})$.
- 2. Show that any map of the form $z \mapsto \frac{az+b}{cz+d}$ for $a, b, c, d \in \mathbb{R}$ satisfying ad bc = 1 is an isometry of \mathbb{H}^2 . (Hint: write it as a composition of the isometries above).
- 3. Shows that this gives a morphism from $SL_2(\mathbb{R})$ to the group of isometries of \mathbb{H}^2 .
- 4. What is its kernel?

Remark: In fact, the image of $SL_2(\mathbb{Z})$ by this morphism is exactly the group of all orientation preserving isometries of \mathbb{H}^2 .

Exercise 7: (Geodesic segments in \mathbb{H}^2)

- 1. Show that the path with the shortest length joining the points U = (0, u) et V = (0, v) in \mathbb{H}^2 is unique, and that it is the vertical straight line segment.
- 2. Show that any orientation preserving isometry of \mathbb{H}^2 (see exercise and remark above) sends the *x*-axis to another vertical line or to a half circle centered on the *y*-axis (you may want to consider the image of the point iy when $y \to 0$ and $y \to \infty$ to begin with). Show that any half circle can be obtained in this way.
- 3. Deduce that the shortest path in \mathbb{H}^2 between two points P, Q is an arc of the unique circle whose center is on the x-axis which goes through P and Q.