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Abstract. In their seminal paper, Lubotzky, Phillips and Sarnak
(LPS) defined the notion of regular Ramanujan graphs and gave an
explicit construction of infinite families of (p + 1)-regular Ramanujan
Cayley graphs, for infinitely many primes p. In this paper we extend the
work of LPS and its successors to bigraphs (biregular bipartite graphs),
in several aspects: we investigate the combinatorial properties of various
generalizations of the notion of Ramanujan graphs, define a notion of
Cayley bigraphs, and give explicit constructions of infinite families of
(p3 + 1, p + 1)-regular Ramanujan Cayley bigraphs, for infinitely many
primes p.

Both the LPS graphs and our ones are arithmetic, arising as quotients
of Bruhat-Tits trees by congruence subgroups of arithmetic lattices in a
p-adic group, PGL2(Qp) for LPS and PU3(Qp) for us. In both cases the
Ramanujan property relates to the Ramanujan Conjecture (RC), on the
respective groups. But while for PGL2 the RC holds unconditionally,
this is not so in the case of PU3. We find explicit cases where the RC does
and does not hold, and use this to construct arithmetic non-Ramanujan
(p3 +1, p+1)-Cayley bigraphs as well, and prove that nevertheless they
satisfy the Sarnak-Xue density hypothesis.

On the combinatorial side, we present a pseudorandomness
characterization of Ramanujan bigraphs, and a more general notion
of biexpanders. We also show that the graphs we construct exhibit
the cutoff phenomenon with bounded window size for the mixing
time of non-backtracking random walks, either as a consequence of
the Ramanujan property, or of the Sarnak-Xue density hypothesis.
Finally, we present some other applications which follow from our work:
golden and super golden gates for PU3, Ramanujan and non-Ramanujan
complexes of type Ã2, optimal strong approximation for p-arithmetic
subgroups of PSU3 and vanishing of the first Betti numbers of Picard
modular surfaces.
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1. Introduction

A connected (k+1)-regular graph X was defined in [LPS88] to be a
Ramanujan graph if every eigenvalue λ of its adjacency matrix satisfies either

(1.1) λ = ±(k + 1), or |λ| ≤ 2
√
k.

The main result of [LPS88] is an explicit construction of infinite families of
regular Ramanujan graphs, which are furthermore Cayley graphs, now called
the LPS graphs.

A natural question that arises is how to define, and how to construct non-
regular Ramanujan graphs. In this paper we commence a systematic study
of this problem, building a complete theory for the case of biregular bipartite
graphs (bigraphs, for short).

To see where Definition (1.1) comes from, we recall that 2
√
k is the spectral

radius of the infinite (k+1)-regular tree. The eigenvalues ±(k+1) are
usually called trivial, thus X is Ramanujan when its nontrivial eigenvalues
are bounded by the spectral radius of its covering tree.

However, an equivalent definition is that X is Ramanujan if its nontrivial
eigenvalues all belong to the adjacency spectrum of the covering tree, which
was shown to be [−2

√
k, 2
√
k] by Kesten [Kes59]. Already in the case of

bigraphs, the natural generalizations of these definitions do not agree: The
spectrum of the (K+1, k+1)-biregular tree, for k < K, is[

−
√
K −

√
k,−
√
K +

√
k
]
∪
{
0
}
∪
[√

K −
√
k,
√
K +

√
k
]
,

so being bounded by the spectral radius
√
K +

√
k is not the same as being

in the spectrum. We call these two definitions Weakly-Ramanujan and adj-
Ramanujan respectively.1

In fact, we introduce an even stronger definition, for which we reserve
the term Ramanujan graph. For regular graphs it is still equivalent to the
standard definition, but in general it is stronger, and has the benefit of
controlling the spectrum of other operators on the graph, notably the non-
backtracking operator. We argue that this is the "right" definition, as we
show that it is spectrally optimal, and that it yields stronger combinatorial
and probabilistic expansion properties, such as Diaconis’ total-variation
cutoff phenomenon.

In this paper we construct bigraphs which are Ramanujan in the strongest
sense, and which have an explicit Cayley-like description à la LPS.

The LPS graphs arise as quotients of the regular tree by congruence
arithmetic lattices in PGL2(Qp) (see also [Mar88]), and it is clear that
using other p-adic Lie groups of rank one, one can obtain biregular graphs.

1We remark that [MSS15] proves the existence of weakly-Ramanujan bigraphs of every
degrees, but their method cannot guarantee adj-Ramanujanness.
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The story becomes complicated since the Ramanujan conjecture, which
underlies the graph Ramanujan property, and is true for PGL2(Qp) by
the work of Deligne, is simply false in general. In this work we find
specific congruence arithmetic lattices in the group PU3(Qp) for which the
Ramanujan conjecture does hold, and use them to construct infinite families
of Ramanujan bigraphs. On the other hand, we present other arithmetic
lattices which violate the Ramanujan conjecture, and devise from these
lattices infinite families of non-Ramanujan graphs, which are nonetheless
adj-Ramanujan.

All this illustrates the delicate connection between the automorphic
representations of PU3 corresponding to congruence lattices, and the
combinatorial properties of their quotient graphs. Under this relation, the
graphs are Ramanujan when the Naive Ramanujan Conjecture holds for
these representations of PU3. On the other hand, for the adj-Ramanujan
property it suffices that the Generalized Ramanujan Conjecture holds. Note
that in the LPS case the NRC holds for all congruence lattices in PGL2,
while in our case of PU3, the NRC is not true in general, and we have to
work harder to find specific lattices for which the NRC holds.

Another challenge is to give an explicit description of the graphs one
obtains as quotients of the tree. The presentation of the LPS graphs as
Cayley graphs arises from a special feature of the lattices they use, which is
a simply-transitive action on the associated tree. This machinery does not
serve us as Cayley graphs are always regular. We introduce a new notion
of Cayley bigraphs, which is strongly explicit, and find special lattices that
allow us to present our Ramanujan and non-Ramanujan graphs as Cayley
bigraphs – see Example 1.1 for such a family.

1.1. Non-regular Ramanujan graphs. Ramanujan graphs were
motivated by the search for expanders, graphs with nontrivial eigenvalues
of small magnitude, which have many applications in mathematics and
computer science (see [HLW06, Lub12]). The Alon-Boppana theorem
[LPS88, Nil91] states that (regular) Ramanujan graphs are spectrally
optimal: it says that for any ε > 0, there is no infinite family of
(k+1)-regular graphs with all nontrivial eigenvalues bounded by 2

√
k − ε.

Turning to the general case, let X be a finite (undirected) graph,
TX its universal covering tree, ρ(ATX ) the spectral radius of ATX , and
pfX the Perron-Frobenius eigenvalue of AX . We call Spec0(AX) =
Spec(AX)\ {±pfX} the nontrivial spectrum of X.

A generalized Alon-Boppana Theorem due to [Gre95] asserts that no
infinite family of graphs with a common covering tree T can have all of
its nontrivial eigenvalues bounded by ρ(AT ) − ε. This leads to the first
definition of Ramanujan graphs:
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Definition (1). The graph X is Weakly Ramanujan if every nontrivial
eigenvalue of AX is bounded (in absolute value) by ρ (ATX ).

This definition goes back to [Gre95], and is the one used in [MSS15], where
the authors prove the existence of infinite families of weakly Ramanujan
bigraphs of any degrees. It turns out however, that one can do better,
insisting that the nontrivial eigenvalues actually belong to the spectrum of
the covering tree.

Definition (2). The graph X is adj-Ramanujan if every nontrivial
eigenvalue of AX belongs to Spec(ATX ).

This definition is motivated by two fundamental perspectives:

Extremal behavior: If Xi is a sequence of finite graphs covered by a
common tree T and sup {girth(Xi)} = ∞, then every λ ∈ Spec (AT ) is
a limit point of

⋃
i Spec(AXi). This is an extension of the Alon-Boppana

theorem, realized independently by various researchers (going back at least
to [McK81], [GŻ99, Thm. 2]). It follows from convergence of moments of the
spectral measure of AXi , and in fact holds more generally, for a sequence of
quotients of any infinite graph whose injectivity radii are unbounded.

Random behavior [BC19]: For any ε > 0, the non-trivial spectrum
of a random cover of X is contained in an ε-neighborhood of Spec(ATX )
asymptotically almost surely (as the cover size grows to ∞).

The notion of Ramanujan graphs that we propose is stronger than the
two above, and originates in the study of the generalization of Ramanujan
graphs to simplicial complexes of general dimension.

Definition (3). Let X be a finite graph or simplicial complex with universal
cover U . Denoting G = Aut (U), we say that an operator T on (all, or some)
cells of U is geometric if it commutes with G, and an eigenvalue of T acting
on X is considered trivial if its eigenfunction, lifted to U , is constant on
each orbit of the derived group G′ = [G,G]. We call X a Ramanujan
(graph/complex) if the nontrivial spectrum of every geometric operator T
acting on X is contained in Spec (TU ).

Definition (3), for which we reserve the term Ramanujan, is somewhat
harder to digest than the previous ones. It may also be harder to verify as it
asks for “Ramanujanness” of every geometric operator, but for this reason it is
also the most useful, as the combinatorial results in Section 4 demonstrate.
Nevertheless, for regular graphs it can be shown to be equivalent to the
the standard definition (1.1) which takes into account only the adjacency
operator, and we will show that for the graphs studied in this paper it is
equivalent to a statement regarding the adjacency spectrum, which takes
into account eigenvalue multiplicity, and not only magnitude (see Theorem
6.5(2) and Corollary 3.3(1)).
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While definition (3) arose from the study of higher-dimensional simplicial
complexes2, already for graphs it enables the study of the “non-backtracking”
(NB) operator B = BX , which acts on functions on the directed edges in X
by

(1.2) (Bf)(v→u) =
∑

v ̸=w∼u
f(u→w).

This operator indeed commutes with Aut (TX), and it is highly useful in
graph theory. Denoting Spec0(BX) = SpecBX\{±pfBX

} (where pfBX
is the

Perron-Frobenius eigenvalue of BX), we are naturally led to consider two
more “Ramanujanness” definitions for a graph X:

(4) NB-Ramanujan : every µ ∈ Spec0(BX) satisfies µ ∈ SpecBTX .

(5) Riemann Hypothesis: every µ ∈ Spec0(BX) satisfies |µ| ≤ ρ (BTX ).
This could also be called “weakly NB-Ramanujan”. The chosen name reflects
the fact that ρ (BTX ) =

√
pfBX

[AFH15], which implies that |µ| ≤ ρ (BTX )
is precisely the Riemann Hypothesis for the Ihara zeta function of the graph
X – see Section 4.4 for more about this perspective.

Observing our five Ramanujan definitions, it is clear that (5) ⇐ (4) ⇐
(3) ⇒ (2) ⇒ (1) tautologically for any graph. It turns out that for regular
graphs the five definitions are actually equivalent, so there is little meaning
in asking which is the right one. In fact, there are papers which consider
(regular) Ramanujan graphs, which actually exploit Ramanujanness of B,
such as [LP16], and this is not guaranteed by Ramanujanness of A in general.

In this paper we study the case of biregular bipartite graphs, which we
call bigraphs for short, and where the various definitions no longer agree. We
suggest a notion of biexpanders (Definition 4.2), which is a weakened version
of the (full) Ramanujan property for bigraphs, and which seems to capture
bigraph pseudorandomness better than the classical definition of expanders,
which relates to the adjacency spectrum alone.

The trivial adjacency eigenvalues of a finite (K+1, k+1)-regular bigraph
X are ±pfX = ±

√
(K+1)(k+1), and its covering tree is the biregular tree

TK+1,k+1. Throughout the paper we shall assume K > k, as the regular case
K = k is well understood. The spectrum of TK+1,k+1 was shown in [GM88]
to be
(1.3)
Spec(ATK+1,k+1

) =
[
−
√
K −

√
k,−
√
K +

√
k
]
∪
{
0
}
∪
[√

K −
√
k,
√
K +

√
k
]
.

2See [Bal00, CSŻ03, Li04, LSV05a, Sar07, Fir16, Kam16, Kan16, LLP20]; the definition we
propose here agrees with [EP22,CP22] for quotients of Bruhat-Tits buildings. From the
number-theoretic perspective, it is equivalent to all Iwahori-spherical local factors of the
associated infinite-dimensional automorphic representations being tempered.
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This means that that X is weakly/adj-Ramanujan if and only if every
nontrivial eigenvalue λ ∈ Spec0(AX) satisfies

|λ| ≤
√
K +

√
k (weakly Ramanujan bigraph),

λ = 0 or
∣∣λ2 −K − k∣∣ ≤ 2

√
Kk (adj-Ramanujan bigraph).(1.4)

One can show by examples that (1) ⇏ (2) ⇏ (3) for bigraphs, but it
turns out that (3), (4), (5) are equivalent (see Corollary 3.3, Theorem 6.5
and Remark 6.6). The trivial eigenvalues of BX are ±pfBX

= ±
√
Kk, and

X is NB-Ramanujan (equivalently, Ramanujan) if and only if every µ ∈
Spec0(BX) satisfies

µ ∈ Spec(BTK+1,k+1
) =

{
z ∈ C

∣∣∣ |z| = 4
√
Kk
}
∪
{
±i
√
k,±1

}
(Ramanujan bigraph).

(1.5)

1.2. Ramanujan bigraphs and applications. The main results of this
paper are a study of the extremal combinatorial properties of Ramanujan
bigraphs, some of which turn out to be different from their regular
counterparts, and giving an explicit construction of such graphs. The
question of giving an efficient description for biregular graphs which is
obtained as a quotient of an infinite tree by an infinite group is already
interesting: our goal is to give a bigraph analogue of the famous LPS
(Lubotzky-Philips-Sarnak) graphs [LPS88]. These are regular Ramanujan
graphs which have a neat description as Cayley graphs of finite groups, but by
definition, Cayley graphs are always regular. In order to describe explicitly
our Ramanujan bigraphs, we introduce in Section 2 a new construction which
we call a Cayley bigraph. Let us give an example to convey the flavor of our
construction:

Example 1.1. Let q be a prime with q ≡ 1 (mod 3). Fix ρ ∈ Fq with
ρ2 = −3 (one always exists). Consider the following set of 9 elements of
order 3 in the group PSL3(Fq):

Sq =

{
1
2

(
2
−1 −a
3/a −1

)
, 12

(
−1 −a

2
3/a −1

)
, 12

(
−1 −a
3/a −1

2

) ∣∣∣∣ a ∈ Fq

a3 = ρ3

}
⊆ PSL3 (Fq) .

The bigraph X2,q
E is defined as follows: its left side is L = PSL3(Fq), its

right side is

R =
⋃
s∈Sq

PSL3(Fq)/⟨s⟩ =
{{
ℓ, ℓs, ℓs2

} ∣∣ ℓ ∈ L, s ∈ Sq}
(each right vertex is a coset of ⟨s⟩ = {I, s, s2}), and the edges are defined by
membership, i.e. ℓ ∼ r if and only if ℓ ∈ r (for ℓ ∈ L and r ∈ R).

The graphs X2,q
E are studied in Section 2.1 (the set Sq is the reduction

of {A+
a,b | 0 ≤ a, b ≤ 2} from (2.5) modulo q). They are (9, 3)-biregular,

and form a special case of (p3+1, p+1)-regular Cayley bigraphs we denote
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Xp,q
E , described in Theorem 8.3 below. The non-backtracking spectrum of

some Xp,q
E graphs is shown in Figure 1.1. They are all adj-Ramanujan, but

not Ramanujan: the eigenvalues ±ip3/2 appear in their non-backtracking
spectrum, but not in that of their covering tree.

One can obtain proper Ramanujan bigraphs from Xp,q
E as well: When

q ≡ 1 (mod 3), the group PSL3 (Fq) naturally acts on Xp,q
E , and the quotient

of Xp,q
E by the subgroup

( ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
≤ PSL3(Fq) is Ramanujan. This quotient

can also be described as a Schreier bigraph (see Definition 2.6), associated
with the action of PSL3(Fq) on the projective plane P2(Fq).

The graphs Xp,q
E arise from an arithmetic lattice Λp

E described in (1.10),
which we named “Eisenstein”. In Section 5 we construct three more lattices,
giving rise to more families Xp,q

G , Xp,q
M , Xp,q

C . We give now a simplified version
of our main Theorem (8.3) for the Eisenstein graphs Xp,q

E . The results for
the other lattices from Section 5 are similar, with the exception that the
graphs Xp,q

M , Xp,q
C are fully Ramanujan, and so is Xp,q

G , assuming a conjecture
regarding levels in A-packets (Conjecture 7.8). Figure 1.2 shows the non-
backtracking spectrum of some Xp,q

G , Xp,q
M graphs, which is indeed contained

in the spectrum of the tree.

Theorem (8.3, simplified). Let p, q be primes with p ≡ 2 (mod 3), q /∈
{3, p}, and ω = −1+

√
−3

2 . Let

(1.6) Sp :=

{
g ∈M3 (Z [ω])

∣∣∣∣∣ g∗g = p2I, g is not scalar,

g ≡
(

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 3)

}
,

and let Sp =
⊔

i S
i
p be the partition induced by the equivalence relation

g ∼ h if and only if g∗h ∈ pM3(Z[ω]).

Denote

Gq :=

{
PSL3 (Fq) q ≡ 1 (mod 3)

PSU3 (Fq) q ≡ 2 (mod 3) ,
and Si

p,q := Si
p (mod q)

(⋆)

⊆ Gq

where (⋆) implies mapping ω to a root of x2+x+1 in Fq or in Fq2 according
to q (mod 3). The Cayley bigraphs

Xp,q
E = CayB

(
Gq,

{
Si
p,q

}
i

)
(see Definition 2.4) satisfy:

(1) Xp,q
E is an adj-Ramanujan (p3+1, p+1)-regular bigraph, with left side of

size |Gq| ≈ q8/3.
(2) Xp,q

E is non-Ramanujan.
(3) The family

{
Xp,q

E

}
q

satisfies the Sarnak-Xue density hypothesis (see
details in Theorem 8.3).
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(4) The group Gq acts on the set

Yq :=

{
P2(Fq) q ≡ 1 (mod 3){
v ∈ P2(Fq[ω])

∣∣ v∗ ·v = 0
}

q ≡ 2 (mod 3)
,

and the Schreier bigraphs Y p,q
E = SchB(Y q,

{
Si
p,q

}
i
) are (fully)

Ramanujan.
(5) The girth of Xp,q

E is larger than 2 logp q.
(6) The family

{
Xp,q

E

}
q

exhibits bounded cutoff: the non-backtracking
random walk on Xp,q

E goes from (1 − ε)-mixing to ε-mixing (in total-
variation) in a number of steps which does not depend on q.

(7) (Diameter) For small enough ε > 0, and ℓ ≥ 1
2 logq |EXp,q

E
|+2 logq

(
1
ε

)
+

3, for any e ∈ EXp,q
E

we have∣∣∣∣{e′ ∈ EXp,q
E

∣∣∣∣ there is a non-backtracking path
of length ℓ from e to e′

}∣∣∣∣ ≥ (1− ε) |EXp,q
E
|.

Furthermore, for any two directed edges e1, e2 in Xp,q
E there is a non-

backtracking path from e1 to e2 of length at most logq |EXp,q
E
|+ 10.

The cutoff result which appears in the theorem is a good example of
the extremal expansion quality of Ramanujan graphs: we show in Section
4.3 that this property holds both for Ramanujan bigraphs, and for adj-
Ramanujan bigraphs which satisfy the Sarnak-Xue density hypothesis.
Other combinatorial expansion results are obtained in Sections 4.1 and 4.2:
a pseudorandomness result which we call "Clash counting", which can be
viewed a bigraph substitute for the Expander Mixing Lemma for regular
graphs, and a sparsification result which relates Ramanujan bigraphs to finite
projective geometries. Another classical perspective on Ramanujan graphs is
given by the Riemann Hypothesis for the Ihara zeta functions, which counts
prime cycles in the graph: this is explored in Section 4.4.

In addition to bigraphs, the lattices constructed in this paper also give new
examples of Golden Gates (optimal topological generators) for the compact
group PU(3), and explicit constructions of Ramanujan complexes of type Ã2.
These applications were the focus of the paper [EP22], and we comment on
them briefly in Sections 8.3 and 8.4. A new feature we encounter here is the
failure of the Ramanujan conjecture for the Eisenstein lattices, from which
we obtain the first explicit examples of non-Ramanujan (Cayley) complexes
of type Ã2, namely, the Cayley complexes Xp,q

E when p ≡ 1 (mod 3). Several
examples are shown in Figure 1.4, with the “endoscopic” (non-Ramanujan)
spectrum marked in red. Sections 8.5 and 8.6 explore two other applications
of our work, to optimal strong approximation and to the Betti numbers of
certain Picard surfaces.
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Figure 1.1. The non-backtracking spectrum of some of the
(p3+1, p+1)-regular bigraphs Xp,q

E . These are Cayley bigraphs
of PSL3(q) for q ≡ 1 (3), and of PSU3(q) for q ≡ 2 (3). They
are adj-Ramanujan, but not Ramanujan: the eigenvalues
±i
√
K = ±ip3/2 are neither trivial nor in the spectrum of

the covering tree Tp3+1,p+1.

It should be noted that all of the Ramanujan bigraphs which we construct
in this paper are (p3 + 1, p + 1)-regular for some prime p. A natural, and
likely challenging question is:

Question. For which values of K, k do there exist infinite families of
Ramanujan (K+1, k+1)-bigraphs?

This question is open for every pair which is not of the form K = k3

with k being a prime-power3. It is also open for the weaker notion of adj-
Ramanujan! Only for weakly-Ramanujan we know that such families exist
for all K, k, by the pioneering work of [MSS15].

1.3. Number theory. Let us briefly describe the number theory which lies
behind our construction, and the main challenges which arise in trying to
generalize LPS to the biregular case. The LPS graphs are finite Cayley
graphs obtained as quotients of the (p+1)-regular Bruhat-Tits tree associated
with SL2(Qp), by congruence subgroups of a special arithmetic lattice, which
acts simply-transitively on the tree. Several p-adic algebraic groups have
biregular Bruhat-Tits trees (see [Tit79,Car01] for a complete list), and we

3In this paper we restrict to prime k. We work with imaginary quadratic extensions of
Q, and by replacing these with more general CM-fields one can make p a prime-power, at
the cost of losing the explicit Cayley bigraph description.
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Figure 1.2. The non-backtracking spectrum of some
Ramanujan bigraphs Xp,q

G and Xp,q
M . These are (p3+1, p+1)-

regular Cayley bigraphs of either PSL3(q) or PSU3(q),
according to q (see Section 8.2 for details).

focus on the case of U3(Qp), whose tree is (p3+1, p+1)-biregular. By [Tit66],
all co-compact arithmetic lattices in U3 come from either:

(I) Classical matrix unitary groups (isometry groups of three-dimensional
Hermitian spaces).

(II) Unitary groups of division algebras with an involution of the second
kind.

The graphs we study are the quotients of the tree by congruence subgroups
of such lattices. In order for them to be Ramanujan, the infinite-dimensional
automorphic representations associated with these subgroups should have
tempered local factors. This holds for arithmetic lattices in SL2(Qp) by
the work of Deligne (the Ramanujan-Petersson conjecture) and the Jacquet-
Langlands correspondence, but in U3 the story becomes more complicated.
By the works of Harris-Taylor [HT01, Thm. C] and Rogawski [Rog90, Thm.
14.6.3] (see also [Clo02, Prop. 1.4]), this is true for lattices of type (II); this
is used in [BC11,BFG+15] to present Ramanujan bigraphs as quotients of
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trees by congruence subgroups of lattices of type (II). This however does not
give an explicit description in the spirit of LPS. The explicit Cayley graph
description in LPS, and Cayley bigraph description in this paper, require
that the lattice we begin with act simply-transitively on the Bruhat-Tits
tree4, which is not the case in [BC11,BFG+15].

In order to give an explicit description of Ramanujan bigraphs, in
Section 5 we construct several lattices of type (I) which act simply-
transitively on the tree of U3(Qp). But switching to type (I) has
its cost – the Ramanujan property does not necessarily hold anymore!
This is the failure of the Naive Ramanujan Conjecture, first observed in
[HP79] (see also the surveys [Sar05, Li20]). Its refined version, called
the Generalized Ramanujan Conjecture only asserts that generic cuspidal
automorphic representations have tempered local factors. This was proved
for cohomological representations of U(1, n) by Shin [Shi11]. Combining
this with Rogawski’s work [Rog90] we deduce the GRC for definite U(3),
but we are left with the considerable task of understanding the non-generic
representations which may (and sometimes do) arise for our lattices.

To relate the Ramanujan conjecture to Ramanujan bigraphs, we study
in Section 6 the representation theory of U3(Qp), and give representation-
theoretic conditions for a quotient of its Bruhat-Tits tree to be Ramanujan
and adj-Ramanujan. In Section 7 we specialize to quotients by congruence
subgroups of arithmetic lattices, and examine the possible failure of the
Ramanujan property for the automorphic representations associated with
them. The implications of our results to bigraphs are the following:

(1) Congruence subgroups of type (I) lattices (and thus all congruence
lattices) give adj-Ramanujan bigraphs.

(2) Some of the lattices constructed in Section 5 give (fully) Ramanujan
bigraphs.

(3) The principal congruence subgroups of the Eisenstein lattice Λp
E (see

Section 5) give non-Ramanujan bigraphs.
(4) The principal congruence subgroups of type (I) lattices give bigraphs

which satisfy the Sarnak-Xue density hypothesis.

For the proof of (1) we need Rogawski’s work [Rog90] on U3 (both
the classification of the automorphic spectrum, and various instances of
Langlands functoriality), as well as the resolution of the Ramanujan-
Petersson conjecture for cohomological self-dual representations of GLn by
Shin [Shi11], which itself uses the Fundamental Lemma [Ngô10], and previous
works by Harris-Taylor, Clozel, Kottwitz and ultimately Deligne (see the
survey [Shi20]). For (2), we establish several criteria under which one obtains
Ramanujan graphs, and not only adj-Ramanujan, and we show that some of
the lattices from Section 5 satisfy one of them. For (3), we construct explicit

4By transitivity on a biregular tree we always mean transitivity on one side of the tree.
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automorphic representations of U2×U1 whose endoscopic lifts to U3 appear
in every principal congruence quotient of the lattice Λp

E ; for this we need to
compute ε-factors of Hecke characters, verify depth preservation of the theta
correspondence, and non-vanishing of p-adic periods by orbital integrals over
U3. Finally, for (4) we adjust to the definite case the analysis of endoscopic
character relations carried out by Marshall for indefinite unitary groups in
[Mar14].

Section 8 ties everything together to construct explicit Ramanujan
bigraphs, and some other applications. The results of Sections 6 and 7
are used to show that the congruence subgroups of the lattices constructed
in Section 5 give rise to bigraphs which are adj-Ramanujan and satisfy the
Sarnak-Xue density hypothesis, and that some of them are (fully) Ramanujan
while others are not. The results of Sections 2 and 5 are used, on the other
hand, to give an explicit Cayley or Schreier description of the quotients of the
biregular tree by these subgroups. Finally, the results of Sections 3 and 4 are
used to study the combinatorial properties of these graphs. The structure
of the paper, with the internal dependencies between sections is depicted in
Figure 1.3.

Figure 1.3. A schematic view of section dependency. While
Section 8 makes use of all previous ones, it can also be read
beforehand, relying on the previous results as black boxes.

1.4. Summary of results. In this section we give a quick summary of all
the main results of the paper. Throughout the paperX = (L ⊔R,E) denotes
a connected, undirected, (K+1, k+1)-biregular bipartite graph (namely,
deg |L ≡ K + 1 and deg |R ≡ k + 1), with K > k. Here L and R denote
the left and right vertices, respectively, and E denotes the directed edges in
X (each edge appears with both directions). We denote |L| = n, so that
|R| = K+1

k+1 n and |E| = 2n(K +1). We now briefly describe the main results
of each section of the paper.
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§2 Cayley Bigraphs. Let G be a group, and S1, . . . , SK+1 ⊆ G be disjoint
subsets of size k, such that S =

⊔
i S

i is symmetric (
{
s−1

∣∣ s ∈ S} = S),
1 /∈ S, and if s, t ∈ Si with s ̸= t then s−1 and s−1t belong to the same Sj .

Definition (2.4). The Cayley bigraph CayB
(
G,
{
Si
})

is a (K+1, k+1)-
bigraph defined by L = G, R = G×{1,...,K+1}/∼ where

(g, i) ∼ (h, j) ⇐⇒ either (g, i) = (h, j),
or g−1h ∈ Si and h−1g ∈ Sj ,

and E = {{g, [g, i]} | g ∈ G, i ∈ {1, . . . ,K + 1}}, where [g, i] is the
equivalence class of (g, i) ∈ R.

When G acts on a set X, one can similarly define a Schreier bigraph
SchB

(
X,
{
Si
})

(see Section 2 for the details). These constructions allow us
to describe efficiently quotients of groups which act simply-transitively on
one side of a biregular tree:

Theorem (2.9). Let Λ be a group which acts simply-transitively on the left
side of T = TK+1,k+1, and v0 ∈ LT . If v1, . . . , vK+1 are the neighbors of v0
and Si = {1 ̸= g ∈ Λ | gv0 ∼ vi}, then T ∼= CayB

(
Λ,
{
Si
})

. Furthermore, if
G = N\Λ for some N ⊴ Λ, then the quotient graph X = N\T is isometric
to CayB

(
G,
{
Si
})

(where Si denotes the image of Si in G). If N ≤ Λ is
not normal, X is isomorphic to the Schreier bigraph SchB

(
N\Λ,

{
Si
})

.

Example 1.1 above is obtained from the lattice Λp
E defined in (1.10), with

p = 2. This lattice acts simply-transitively on the left side of T9,3, and X2,q
E

is the quotient of the tree T9,3 by N = Λ2
E (q) =

{
g ∈ Λ2

E

∣∣ g ≡ I (mod q)
}
.

The Ramanujan bigraph described in Example 1.1 is the Schreier bigraph
of PSL3(Fq) acting on P2(Fq), with respect to the same generators (the
corresponding N is Λ2

E [q] :=
{
g ∈ Λ2

E

∣∣∣ g ≡ ( ∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

)
(mod q)

}
).

§3 Spectral Analysis. Let A = AX be the adjacency operator of X, which
acts on functions on V = L ⊔ R by Af(v) =

∑
v∼u f(u). The spectrum of

A is symmetric around zero, and it is easy to see that kerA = ker (A|R) ⊕
ker (A|L). Since A maps L2(R) to L2(L) and |R| > |L|, A|R must have a
nontrivial kernel, but there is no reason for A|L to have one. We call

E = EX
def
= dimker (A|L)

the excessiveness of X, and denote by

pfX = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn−E
the positive eigenvalues of A. We parametrize both the adjacency and non-
backtracking spectrum by the following union of three line segments in C:

ΘK,k =
[
−i log

√
Kk, 0

]
∪ [0, π] ∪

[
π, π + i log

√
K/k

]
.
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With every λ ∈ [0, pf] we associate

ϑ = ϑλ = arccos

(
λ2 −K − k

2
√
Kk

)
∈ ΘK,k,

and observe that λ ∈
[√

K +
√
k,
√
K −

√
k
]

if and only if ϑ ∈ [0, π], so that

X is adj-Ramanujan ⇔ ϑλ2 , . . . , ϑλn−E ∈ [0, π] = ΘK,k ∩ R.

Let B = BX be the non-backtracking operator acting on L2(E) by (1.2).
For λ ∈ [0, pf], we denote

µ±λ =

√
e±iϑλ

√
Kk.

Given an adjacency eigenfunction Af = λf , we construct in (3.7) functions
F±, F̃± ∈ L2(E) which satisfy BF± = µ±F± and BF̃± = −µ±F̃±
(Proposition 3.6).

As the operator B is not normal, these eigenfunctions are not orthogonal,
which makes spectral analysis difficult. The main result of this section is
an orthonormal basis for L2(E), in which B decomposes as a block-diagonal
matrix with blocks of size at most 4× 4, and where each nontrivial block is
itself block-anti-diagonal. This will be used in the combinatorial applications
in Section 4.

Theorem (3.1). Let pf = λ1 > λ2 ≥ . . . ≥ λn−EX be the positive eigenvalues
of AX . Denoting µ±i = µ±λi

, the operator BX is unitarily equivalent to a
block-diagonal matrix composed of:

(1) The block
(

K
k

)
.

(2) (a) For each 2 ≤ j ≤ n− EX with ϑλj
∈ [0, π], the block

(1.7)


0 0 µ+

j
4
√

k
K

k−1

0 0 0 −µ−
j

4
√

k
K

µ+ 4
√

K
k

K−1 0 0

0 −µ−
j

4
√

K
k

0 0

 .

(b) For each 2 ≤ j ≤ n − EX with ϑλj
/∈ [0, π], a block of the form

0 0 µ+
j αj γj

0 0 0 µ−
j βj

µ+
j /αj δj 0 0

0 µ−
j /βj 0 0

, where αj , βj ∈ R>0 and γj , δj ∈ C are all

bounded by K.
(3) EX times the block

(
i

iK

)
.

(4) K−k
k+1 n+ EX times the block

(
ik

i

)
.

(5) χ (X) times the diagonal block
(
1
−1
)
, where χ (X) = |E|

2 − |V | + 1 =
Kk−1
k+1 · n+ 1.
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In particular, this shows that
(1.8)

SpecBX =


{
±
√
Kk
}
∪
{
±µ±2 , . . . ,±µ±n

}
∪
{
±i
√
k,±1

}
EX = 0{

±
√
Kk,±i

√
K
}
∪
{
±µ±2 , . . . ,±µ

±
n−EX

}
∪
{
±i
√
k,±1

}
EX > 0,

which was already shown in [Kem16,BDH21] by a detailed analysis of the
Ihara-Bass-Hashimoto formula. The spectrum of B on the tree is

Spec(BTK+1,k+1
) =

{
z ∈ C

∣∣∣ |z| = 4
√
Kk
}
∪
{
±i
√
k,±1

}
,

and upon verifying that λ ∈ [
√
K +

√
k,
√
K −

√
k] ⇔ |µ±λ | =

4
√
Kk, we

obtain the following Ramanujan criteria:
(1.9)

X is
NB-Ramanujan

⇔ X satisfies the
Riemann Hypothesis

⇔ X is adj-Ramanujan
and EX = 0.

§4 Combinatorics. In this section we explore some combinatorial properties
of Ramanujan bigraphs. The importance of the strong definition of
Ramanujan becomes clear here, as for most of the proofs the adj-Ramanujan
property does not suffice.

Our first result is in the spirit of the Expander Mixing Lemma: this classic
theorem states that a graph with concentrated adjacency spectrum behaves
pseudorandomly, in the sense that the number of edges between any two
sets of vertices S, T is roughly the expected number, in a random graph of
the same edge density. For Ramanujan bigraphs with K ≫ k, the Expander
Mixing Lemma is not very useful, since it only uses the fact that the spectrum
is contained in the rather large interval [−

√
K −

√
k,
√
K +

√
k] (comparing

to pf =
√
(K + 1)(k + 1)), and not the concentration in the two small strips

±[
√
K−
√
k,
√
K+
√
k]. Looking for a pseudorandomness result which makes

use of this, we think of the graph as mapping every vertex of L to K + 1
elements of R, and study the number of clashes arising from two subsets
S, T ⊆ L, namely, pairs of edges which leave S and T respectively, and have
the same endpoint. Denoting by |Cl (S, T )| the number of clashes, we present
a “Clash Counting Lemma”:

Theorem (4.3 for Ramanujan bigraphs). If X is Ramanujan, then for
S, T ⊆ L∣∣∣ |Cl (S, T )| − (Kk+1

n |S| |T |+ (k − 1) |S ∩ T |
)∣∣∣

≤ 2
√
Kk

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
.

We stress that we need here Ramanujan and not only adj-Ramanujan,
even though we study the combinatorics of the adjacency mapping. We
suggest a notion of biexpander, which is a quantitative version of being (fully)
Ramanujan: X is an ε-biexpander if its nontrivial spectrum is contained
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in ±[
√
K − ε,

√
K + ε], and in addition EX = 0. The Clash Counting

Lemma (Theorem 4.3) applies to biexpanders in general, and it is shown
in [Mor24] that the converse holds as well: a bigraph with a pseudorandom
clash counting is a biexpander (see Theorem 4.5 for the quantitative details).

A related topic explored in Section 4.2 is that of sparsification. Regular
expanders are sparsifiers of the complete regular graph, but it turns out that
biexpanders (and in particular Ramanujan bigraphs) are not good sparsifiers
of the complete biregular graph, since the excessiveness E of the latter is
in fact maximal. In proposition 4.7 we show that what biexpanders do
sparsify is incidence graphs in finite projective geometries, which are shown
in Proposition 4.6 to form a family of zero-biexpanders.

Next we study the total-variation mixing time of the simple random walk
on vertices (SRW), and the non-backtracking random walk on directed edges
(NBRW). Both SRW and NBRW are 2-periodic, so we restrict our attention
to the behavior at even times. We denote by N = n(K+1) = |E|

2 the number
of edges going from L to R.

Theorem (Thm. 4.11, Cor. 4.12). A family of (K + 1, k + 1)-regular
Ramanujan bigraphs exhibits:

(1) Cutoff for SRW at time (K+1)(k+1)
Kk−1 log√Kk n, with a window of size

O
(√

log n
)
.

(2) Cutoff for NBRW at time log√KkN with window size bounded by
3 log√Kk logN .

These results are analogous to the ones in [LP16] for regular graphs. Note
that log√KkN is optimal for the NBRW, since two consecutive steps take
an edge to at most Kk edges. We point out again that even for the analysis
of SRW we require Ramanujan, and not only adj-Ramanujan; in [LP16] this
issue does not arise, as for regular graphs the two notions coincide. Our next
result is a bigraph analogue of the main result of [NS23], which shows that
regular Ramanujan graphs with logarithmic girth exhibit NBRW cutoff with
a bounded window size. We make use of the strategy of [NS23], which is
bootstrapping expansion from the time before the girth "kicks in", but our
methods are different, and have the advantage of analyzing NBRW on edges
and not only on vertices.

Theorem (4.14). If F is a family of (K +1, k+1)-regular Ramanujan
bigraphs, and for some m ≥ 2 every X ∈ F satisfies girthX ≥

2
m−1 log

√
KkN , then F exhibits bounded NBRW cutoff. In fact, if tε denotes

the total-variation ε-mixing time of NBRW then all large enough X ∈ F
satisfy

log√KkN − log√Kk

(
1
ε

)
< t1−ε < tε < log√KkN + 2 log√Kk

(
7m2

ε

)
.
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In Section 8 we will show that our explicit Ramanujan Cayley bigraphs
Xp,q

(∗) indeed have logarithmic girth. This is enough to prove bounded cutoff
for the graphs Xp,q

M , Xp,q
C and possibly Xp,q

G , but not for the Eisenstein graphs
Xp,q

E , which are only adj-Ramanujan. To prove that Xp,q
E too exhibits

bounded cutoff, as claimed in Theorem 8.3(6) above, we establish cutoff
results for adj-Ramanujan bigraphs which satisfy a Sarnak-Xue type density
hypothesis:

Theorem (4.15). If F is a family of left-transitive adj-Ramanujan (K+1, k+
1)-bigraphs, which satisfy the density hypothesis EX < N δ with δ = 2

1+logk(K) ,
then F exhibits NBRW-cutoff at time log√KkN , with window size bounded
by

(1)
(

2
1−δ

)
log√Kk logN in general, and

(2) 1
δ log

√
Kk

K
ε2

if all X ∈ F satisfy girthX ≥ 2
m−1 log

√
KkN and ε ≤

m
δ

δ−1
√
K.

The theorem assumes that each X is left-transitive, namely that Aut (X)
acts transitively on its left side. This is always the case for Cayley bigraphs,
and in particular for Xp,q

E . Since logkK = 3 for Xp,q
E , we need a density

of EX < N
1/2
X for the non-Ramanujan eigenvalues. In Section 7 we show

that principal congruence lattices in U3 give rise to bigraphs which satisfy
EX ≪ε N

3/8+ε
X .

We end the section with a short exposition of zeta functions of graphs
and their relation to prime cycle counting, obtaining a version of the Prime
Number Theorem for Ramanujan and adj-Ramanujan bigraphs (recall from
(1.9) that an adj-Ramanujan bigraph is Ramanujan iff EX = 0):

Theorem (4.16). If π(m) is the number of prime cycles of length m in an
adj-Ramanujan (K+1, k+1)-bigraph X with N edges, then∣∣∣∣π(2m)− (Kk)m

m
− EX

(−K)m

2m

∣∣∣∣ ≤ 2N(Kk)m/2.

§5 Simply-transitive Lattices in Unitary Groups. In this section we introduce
the unitary group U3, which plays a central role in our explicit construction
of Ramanujan bigraphs. Subsection 5.1 defines this group in the language
of algebraic group schemes, and describes the Bruhat-Tits tree on which the
p-adic group U3(Qp) acts. The rest of the section is devoted to constructing
several arithmetic lattices which act simply-transitively on the hyperspecial
vertices of this tree, except for a finite number of “ramified” primes p (these
are the places at which the associated arithmetic group is ramified, or where
a congruence condition is imposed to give a simply transitive action). We list
these lattices here, while the full and precise statement is given in Theorem
5.2 using the notion of a strong unitary root datum defined in Section 5.2.
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Theorem (5.2). The following p-arithmetic lattices act simply-transitively
on the hyperspecial vertices of the Bruhat-Tits building of the corresponding
p-adic group PU3(E,Φ)(Qp):

(E ) Eisenstein: p ̸= 3,

(1.10) Λp
E =

{
A ∈ PU3(Q[

√
−3], I)

(
Z
[
1
p

]) ∣∣∣A ≡ ( 1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 3)

}
.

This lattice is new, and unlike the three that follow, gives rise both
to Ramanujan and non-Ramanujan bigraphs.

(G ) Gauss: p ̸= 2,

Λp
G =

{
A ∈ PU3(Q[i], I)

(
Z
[
1
p

]) ∣∣∣A ≡ ( 1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 2 + 2i)

}
.

This lattice was constructed in [EP22].

(M ) Mumford: p ̸= 2, 7, Φ =

(
3 λ λ
λ 3 λ
λ λ 3

)
where λ = −1+

√
−7

2

(1.11) Λp
M =

{
A ∈ PU3(Q[

√
−7],Φ)

(
Z
[
1
p

]) ∣∣∣A ≡ ( ∗ ∗ ∗0 ∗ ∗
0 0 ∗

)
(mod λ)

}
.

This lattice is a variation of Mumford’s lattice [Mum79]; we take
a congruence condition different from Mumford’s – our condition is
chosen in order to exclude endoscopic lifts, thus obtaining Ramanujan
bigraphs.

(C ) CMSZ: p ̸= 3, 5, Φ =

(
10 −2(η+2) η+2

−2(η̄+2) 10 −2(η+2)
η̄+2 −2(η̄+2) 10

)
, where η = 1−

√
−15
2 .

Here Λp
C is a sublattice of PU3(Q[

√
−15],Φ) (Z [1/p]]) defined by a

rather complicated congruence condition – see Theorem 5.2. This
lattice is also a variation on a lattice constructed by Cartwright-
Mantero-Steger-Zappa in [CMSZ93b] (see also [KO06]), using a
different congruence condition.

For primes p which are inert in the quadratic imaginary field, the Bruhat-
Tits building is a

(
p3 + 1, p+ 1

)
-biregular tree, and each of the above lattices

acts simply-transitively on the left (hyperspecial) vertices in the tree. For p
which are split, we have PU3 (Qp) ∼= PGL3 (Qp), and the lattice acts simply-
transitively on all the vertices of the two-dimensional building of PGL3 (Qp).
This gives new examples of arithmetic Ã2-groups in characteristic zero, for
infinitely many p. This expands on the work of Cartwright-Mantero-Steger-
Zappa [CMSZ93b], which classifies arithmetic Ã2-groups in PGL3 (Qp) for
p = 2 and 3 (by Margulis arithmeticity, any Ã2-group in PGL3 (Qp) is
arithmetic, but giving an explicit arithmetic presentation is non trivial).
The Eisenstein and Gauss lattices do not appear in [CMSZ93b], since 2 and
3 are ramified or inert for them.

Our methods and proofs are different from those in [CMSZ93b]. Any
group acting simply-transitively on a contractible simplicial complex has a
nice presentation coming from the complex [Bro84], and [CMSZ93b] look for
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matrix subgroups of PGL3 (Qp) having a presentation coming from the Ã2-
building. In contrast, in Section 5.4 we use the Mass formula of [GHY01],
which is an explicit form of Prasad’s volume formula (which is in itself an
extension of Siegel’s formula), to show that the groups in cases (E ), (G ),
(M ), (C ) above are of class number one with respect to natural choices of
adelic open compact subgroups K, i.e.

G(A) = G(Q) ·K.
This implies that the principal S-arithmetic lattices Γp

(∗) in the corresponding
unitary groups act transitively on the hyperspecial vertices of the building.
To apply the Mass formula, we need a close examination of the parahoric
subgroups, which we do in Section 5.3.

In Section 5.5 we show that the congruence conditions on the lattices
Λp
(∗) given in Theorem 5.2 remove the non-trivial stabilizers of hyperspecial

vertices, without losing the transitivity property. For our Mumford (M )
and CMSZ (C ) lattices, we manage to find congruence conditions which
additionally ensure that no non-Ramanujan eigenvalues appear in the
quotient of the building/tree by congruence subgroups of the lattice (see
Section 7).

The various statements of strong approximation used in this paper are
summarized in Section 5.6. There, we also give the proof of Example 1.1
and include a characterization of hyperspecial maximal compact subgroups.

§6 Local Representation Theory. This section serves as a bridge between the
spectral theory of bigraphs and the representation theory of p-adic unitary
groups.

We begin by classifying the Iwahori-spherical (I.S.) irreducible
representations W of G = U3(E,Φ) (where E is an inert quadratic extension
of a local field of residue order q), in terms of their Satake parameters. The
number z ∈ C× is called a Satake parameter for W if W embeds in the
normalized parabolic induction of a certain character χz of a Borel subgroup
of G. One can assume without loss of generality that Φ =

(
1

1
1

)
, in which

case the upper-triangular matrices form a Borel subgroup, and χz is defined
by χz

((
α ∗ ∗
∗ ∗
∗

))
= zordq α. Every I.S. representation has either one or two

Satake parameters, and we obtain:

Proposition (6.2). The Satake parametrization identifies the I.S. dual of G
with the non-Hausdorff space

C\
{
−q±1, 0, q±2

}
z ∼ 1/z

∪
{
−q±1, q±2

}
,

and the unitary ones are those with Satake parameter in S1 ∪
[
−q,−1

q

]
∪[

1
q2
, q2
]
.
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We denote by Sat (W ) the Satake parameters of W , and say that W is
of A-type if Sat (W ) = −q. If Λ is a cocompact lattice in G which acts
on its Bruhat-Tits tree B without fixed points, then X = XΛ = Λ\B is
a finite (q3 + 1, q + 1)-bigraph, whose spectrum is intimately linked to the
representation L2 (Λ\G) of G. This connection is described in detail in Table
6.2, and we obtain the following:

Proposition (6.3, 6.4). If L2 (Λ\G) =
⊕

iWi ⊕
⊕̂

iUi is the decomposition
of L2 (Λ\G) as a G-rep., where Wi are the I.S. components and the Ui are
the rest, then

Spec (BX) =
⋃

i

{
±q
√
z
∣∣ z ∈ Sat (Wi)

}
,

Spec (AX) = {0}#{i |−q±1∈Sat(Wi)} ∪
⊎

i

{
±
√
q3 +

(
zi +

1
zi

)
q2 + q

}
where the

⊎
union is over all i such that q−2,−q±1 /∈ Sat (Wi), and zi is

any choice of parameter in Sat(Wi). Furthermore, EX equals the number of
Wi of A-type.

Denoting by K the maximal compact subgroup U3(OE ,Φ) of G, we obtain
some representation theoretic criteria for Ramanujanness, which will be
useful in the final Sections:

Theorem (6.5). Let Λ ≤ G be a cocompact lattice, and X = XΛ = Λ\B.

(1) X is adj-Ramanujan if and only if every K-spherical irreducible
representation W ≤ L2 (Λ\G) is one-dimensional, tempered or of A-
type.

(2) The following are equivalent:
(a) X is Ramanujan.
(b) X is NB-Ramanujan.
(c) X satisfies the Riemann Hypothesis.
(d) Every K-spherical irreducible representation W ≤ L2 (Λ\G) is one-

dimensional or tempered.

In Section 6.3 we specialize to the case that Λ is a congruence arithmetic
lattice. In this case, the graph X = Λ\B can also be identified with a
locally symmetric adelic space G(Q)\G(A)/K ′ for an appropriate compact
open subgroup K ′ ≤ G(A). The spectral analysis can then be carried
out in terms of automorphic representations, whose local factors at p are
the representations of G(Qp) encountered earlier. Theorem 6.9 gives global
Ramanujan criteria in these settings, which will be used in Sections 7 and 8.

§7 Automorphic Representation Theory. In Section 7 we study the
automorphic representations of a definite inner form G of U3 and their
invariant vectors under certain compact subgroups K ′ =

∏
vK
′
v ≤ G(A). By

Section 6, this will lead to results about the existence of both Ramanujan
and non-Ramanujan bigraphs.
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An automorphic representation π of G is said to be Ramanujan if πp is
tempered for all p, and it is said to be of A-type if it belongs to a global
A-packet (see Definition 7.12). Let AG(K

′) denote the set of automorphic
representations of G of level K ′. We say that AG(K

′) is Ramanujan (resp.
A-Ramanujan) if for any π ∈ AG(K

′), either π is one-dimensional or π is
Ramanujan (resp. or π is of A-type).

We now outline the main results of this section and then summarize the
methods we use to prove them. First we prove the following statement.

Theorem (7.2). AG(K
′) is A-Ramanujan for any K ′.

Next we show that AG(K
′) is Ramanujan for K ′ satisfying one of the

following two conditions. This result strengthens the Ramanujan-type
Theorems of [EP22, Thm. 1.4 and 1.5], in two manners: the assumptions
are relaxed, and the result is stronger, as it guarantees temperedness also
at the ramified local factors, thus confirming a conjecture suggested in
[EP22, Rmk. 5.8].

Theorem (7.3). AG(K
′) is Ramanujan if at least one of the following holds:

(1) there exists a prime p which ramifies in E, such that K ′p contains an
Iwahori subgroup, or

(2) there exists a compact open K ′′ such that K ′ ≤ K ′′, A(K ′′) is
Ramanujan, and for any prime p for which K ′p ̸= K ′′p , K ′p contains an
Iwahori subgroup.

Specializing to the Eisenstein case (E ), we prove the following result.

Theorem (7.4). Let G = U3(Q[
√
−3], I), K ′p contains an Iwahori subgroup

for every prime p ̸= 3, and

K ′3 = K3(C) :=
{
g ∈ G(Z3) : g ≡

(
1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
mod 3

}
.

Then AG(K
′) is Ramanujan.

Our final positive Ramanujan-type result is conditional on Conjecture 7.8,
which stipulates that for an inert or ramified prime p and compact subgroup
K ′p, if the non-tempered representation in the A-packet does not have K ′p-
invariant vectors, then neither does the supercuspidal representation from
the same A-packet. For full details see Section 7. In Proposition 7.45 we
prove the conjecture holds for inert primes p > 10 and principal congruence
subgroups as well as Iwahori congruence subgroups.

Theorem (7.9). Let G = U3(Q[
√
−3], I) and K ′ ≤ G(A), where K ′3 =

K3(C), K ′q = {g ∈ Kq : det(g)6 ≡ 1 (mod q)} for some prime q ≡ 1
(mod 12), and K ′p = G(Zp) for any p ̸= 3, q. Assume Conjecture 7.8 holds
for G, K ′3 and p = 3. Then AG(K

′) is Ramanujan.
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In the other direction we show the existence of non-Ramanujan
representations in the Eisenstein case (E ). This, joined with Theorem 7.2,
gives the first known construction of an infinite family of adj-Ramanujan
bigraphs which are non-Ramanujan.

Theorem (7.6). Let G = U3(Q[
√
−3], I). Then AG(K

′) is non-Ramanujan
if either

(1) K ′p = G(Zp) for any p ̸= 3 and K ′3 = I3(3) (see §7 for the definition),
or

(2) K ′q = {g ∈ G(Zq) : g ≡ I mod q} for some prime q ≥ 5, K ′3 = K3(C)
and K ′p = G(Zp) for any p ̸= 3, q.

Finally, we prove the Sarnak-Xue Density Hypothesis (SXDH) for definite
unitary 3×3 groups G = U3(E,Φ). Let S be a finite set of places of Q which
contains {∞, 2, 3, 5, 7} and the primes in which G ramifies. FixK ′ℓ ≤ G(Zℓ) a
finite index subgroup for any ℓ ∈ S, where K ′∞ = G(R). For any integer N =∏

i p
ei
i , such that pi ̸∈ S, denote Kpi(p

ei
i ) = {g ∈ Kpi : g ≡ I mod peii },

and define K ′(N) =
∏

v∈SK
′
v

∏
pi ̸=v ̸∈SKv

∏
iKpi(p

ei
i ) ≤ G(A). Let AG,1 be

the set of π ∈ AG with trivial central character, AA
G,1 be the set of π ∈ AG,1

which are A-type, V (N) :=
⊕

π∈AG,1
πK

′(N) and VA(N) :=
⊕

π∈AA
G,1

πK
′(N).

The SXDH for G reads as follows.

Conjecture 1.2 (SXDH). For any ε > 0 there exists Cε > 0, such that for
any N coprime to S,

dimVA(N) ≤ Cε · dimV (N)
1
2
+ε.

Adjusting Marshall’s endoscopic arguments [Mar14] from the
cohomological to the definite settings, we get the following stronger
result:

Theorem (7.11). For any ε > 0 there exists Cε > 0, such that for any N
coprime to S,

dimVA(N) ≤ Cε · dimV (N)
3
8
+ε.

In Section 7.2 we begin our proof of these theorems by outlining how we
can use Rogawski’s work on U3 to transfer the automorphic representations
we wish to study to automorphic representations on the quasi-split form of
U3. Rogawski’s classification of the automorphic representations on the latter
group, along with results towards the Generalized Ramanujan-Petersson
Conjecture (GRPC) by [Shi11] imply that if π is non-tempered at p then
it must be from an “A-packet” (for the full definition of Rogawski’s local
and global A-packets see Definition 7.12). To prove representations of a
certain level are Ramanujan we show they cannot be in any A-packets and
to prove other representations are non-Ramanujan we show the existence
of particular non-tempered K ′p-invariant representations. From the work of
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Rogawski we know these representations occur in the A-packets associated
to certain Hecke characters.

In Section 7.3 we begin a more detailed analysis of the representations
occurring in A-packets by computing their multiplicity in particular cases (a
priori we know it is either zero or one). We use a multiplicity formula of
Rogawski for representations that belong to A-packets (see Theorem 7.13)
that is dependent on the epsilon factor of the character associated to the
A-packet. We build an explicit family of Hecke characters and compute
their epsilon-factors via class field theory, p-adic integrals and formulas from
[Tat79], [Rog92] and [Kud04]. We also keep track of the conductor of these
characters for computing the level of the representation in the corresponding
A-packet in the next subsection.

In Section 7.4 we compute the levels of given automorphic representations
that belong to A-packets via their local factors. For non-tempered
representations, πn, we describe an explicit relationship between the level
of the character that induces the representation that πn is a component of
and the level of πn. We also prove πn has a non-vanishingK ′-invariant vector
if an explicit p-adic period integral is non-vanishing. We then evaluate this
integral for various K ′ to analyze the level of πn in terms of the level of
the associated character. Finally, we use depth preservation of the theta
correspondence (both using known results by [Pan01], [Pan02] and [GR91],
as well as extending these results) to study the level of the supercuspidal
representations that are in A-packets.

In Section 7.5 we combine the results of Sections 7.2, 7.3 and 7.4 to
prove the main (global) theorems of this section. We also prove two new
local results – first that at 3 two particular supercuspidal representations
do not have any non-zero K3(C)-invariant vectors (Prop 7.44), and second,
some special cases of Conjecture 7.8 (Prop 7.45). The first result is proved
by embedding the supercuspidal representation in a global representation
and using our global results. The first case of the conjecture is proved
by combining Rogawski’s trace formula and Ferrari’s generalization of the
fundamental lemma [Fer07], as used in [Mar14] and [GG19], with our analysis
of the relationship between the level of a character and the level of the non-
tempered representation that the character induces. The other case of the
conjecture is proved using the theta correspondence.

In Section 7.6 we modify Marshall’s argument in [Mar14] to the definite
case to prove the Sarnak-Xue Density Hypothesis for U3 associated to a
definite form.

§8 Ramanujan Bigraphs and Applications. This section combines the results
of all previous ones to give explicit constructions of Ramanujan bigraphs,
and several other applications. The main theorem was already stated in
Section 1 for the case of the Eisenstein lattice, so we skip it here. Section
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8.2 proves an analogue theorem for the Mumford and CMSZ lattices. The
main difference is that here our choice of congruence conditions yields the
full Ramanujan property for the Cayley bigraphs and not only the Schreier
ones. The Gauss lattice gives Ramanujan Cayley bigraphs under Conjecture
7.8, and some examples of these are presented in Figure 1.2.

In Section 8.3 we explore another application of our work – new
constructions of Ramanujan complexes as Cayley complexes of finite groups.
When p splits in E, we have PU3(Qp) ∼= PGL3(Qp), whose Bruhat-
Tits building Bp is two-dimensional. Ramanujan complexes, defined in
[Li04,LSV05a], are quotients of such buildings whose spectral theory mimic
that of the building, which is their universal cover. This application was the
focus of [EP22], but here we obtain a new phenomenon: the endoscopic lifts
afforded by the Eisenstein lattice give us the first explicit examples of finite
non-Ramanujan Ã2-complexes.

The vertices of the Bruhat-Tits building of PGLd(Qp) are colored by Z/dZ,
and the i-th Hecke operator Ai acts on them by (Aif)(v) =

∑
f(w) where

the sum is over all neighbors w of v such that col(w) − col(v) = i. This is
a geometric operator and we denote its non-trivial spectrum by Spec0. In
the case of PGL3(Qp), the spectrum of A1 already determines whether a
quotient X = Λ\Bp is Ramanujan, which occurs when

Spec0(A1|X) ⊆ Spec(A1|Bp) =
{
p
(
α+ β + αβ

) ∣∣α, β ∈ C, |α| = |β| = 1
}

(shown in blue in Figure 1.4). Unlike in the bigraph case, PGL3(Qp) admits
a continuum of non-tempered representations which appear as local factors
of endoscopic lifts. The A1-eigenvalues they give rise to form the closed
curve:

Ep =
{
αp3/2 + p

α2 + α
√
p
∣∣∣α ∈ C, |α| = 1

}
.

Together, the Ramanujan spectrum Spec(A1|Bp) and the endoscopic
spectrum Ep form the Automorphic Hamantash depicted in Figure 1.4, along
with the A1-spectrum of several Cayley complexes Xp,q

E arising from the
Eisenstein lattice. It is interesting to remark that in positive characteristic,
the entire Hamantash is obtained as the nontrivial A1-spectrum of the
quotient of the building of PGL3(Fp((t))) by the non-uniform arithmetic
lattice PGL3(Fp[t]) [HK21].
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Figure 1.4. The automorphic Hamantash depicts the
spectrum of the Hecke operator A1 on an Ã2-complex; it is
composed of the endoscopic crust Ep (the red curve), and
the Ramanujan filling, which is the spectrum of A1 on the
building of PGL3 (Qp) (the blue shade). The dots show the
nontrivial A1-spectrum of a few Xp,q

E Cayley complexes, with
the underlying group Gq specified.

Our next application (Section 8.4) is a construction of new golden gate
and super golden gate sets for the compact Lie group PU(3). These notions
were introduced in [Sar15a, PS18], in relation to problems in quantum
computation. A finite set Σ ⊂ PU(n) is called a golden gate set if it exhibits
an almost optimal covering rate as well as an efficient approximation and
navigation algorithms (see [EP22, Sec. 2.2] for the precise definition). If the
almost optimal covering rate and the algorithms hold only up to an action
of a finite subgroup D ≤ PU(n), then we say that Σ is a golden gate set for
PU(n)/D. Finally, a golden gate set whose elements are of finite order is
called a super golden gate set.

Super golden gate sets were constructed in [PS18] for PU(2) and in [EP22]
for PU(3). In both cases the constructions are achieved by finding generating
sets of congruence p-arithmetic subgroups ⟨Σ⟩ = Λ ≤ G(Z[1/p]), where
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G(R) ∼= PU(n), such that Λ acts simply-transitively on the edges of Bruhat-
Tits trees of G(Qp) and also satisfies the Ramanujan property (see Section
8.4). We construct some new super golden gate sets for PU(3), coming from
our p-arithmetic lattices. Here is one such example:

Theorem (8.7). Let G = PU3(Q[ω], I), ω = −1+
√
−3

2 , and denote Σ =
{A, σ, τ}, where

(1.12) A := 1
2

(
−1 0

√
−3

0 2 0√
−3 0 −1

)
, σ :=

(
1
ω

ω2

)
, τ :=

(
1
1

1

)
∈ G(Z[1/2]).

Then ⟨Σ⟩ is a congruence subgroup which acts simply transitive on the edges
of the Bruhat-Tits tree of G(Q2), and Σ is a super golden set for PU(3)/D,
where D = G(Z) ∩ I2 and I2 ≤ G(Z2) is an Iwahori subgroup.

Another application of our results is new instances of the optimal
strong approximation phenomenon (or optimal lifting) for p-arithmetic
groups (see [GK22]). This phenomenon was first proved by Sarnak in
[Sar15a] for the arithmetic group SL2(Z) and its modulo homomorphisms
mod q : SL2(Z) → SL2(Z/qZ), q ∈ N. By the classical strong
approximation property these homomorphisms are surjective. The optimal
strong approximation property for SL2(Z) is the claim that for any ε > 0, if q
is large enough then for all but an ε-fraction of the elements g ∈ SL2(Z/qZ),
there is a lift γ ∈ SL2(Z), γ mod q ≡ g, such that ∥γ∥ ≤ |SL2(Z/qZ)|

1
2
+ε,

where ∥ · ∥ is the Euclidean norm ∥g∥2 =
∑

i,j g
2
ij . This is indeed optimal

since by [Sar15a, (11)], the number of elements γ ∈ SL2(Z) of norm bounded
by T is O(T 2).

Consider the p-arithmetic analogue, where SL2(Z) is replaced by a p-
arithmetic lattice Λ ≤ PSU3(Qp), where p is an inert prime, endowed with
the modulo homomorphisms mod q : Λ → Gq, q a prime, where Gq =
PSL3(Fq) when q split and Gq = PSU3(Fq) when q inert. By the strong
approximation property this map is surjective (see Corollary 5.29). Consider
the level function, ℓ : Λ→ N, ℓ(g) = −2mini,j ordp gij . The optimal strong
approximation property for Λ is the claim that for any ε > 0, if q is large
enough then for all but an ε-fraction of the elements g ∈ Gq, there is a lift
γ ∈ Λ, γ mod q ≡ g, of level bounded by ℓ(γ) ≤ (1 + ε) logp2 |Gq|. This is
indeed optimal since the number of elements γ ∈ Λ of level bounded by r is
O(p2r).

Proposition (8.9). Let Λ = ⟨Sp⟩ ≤ PSU3(Qp) be the p-arithmetic group,
where Sp is as in Theorem 8.3 or 8.4 and p is an inert prime. Then Λ has
the optimal strong approximation property.

Our last application is a new vanishing of first cohomology result for
certain Picard modular surfaces associated to an indefinite unitary group of
type (I), which are the real analogues of the arithmetic quotients of Bruhat-
Tits trees constructed in this paper.
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Let G be an indefinite projective unitary group scheme over Z, i.e. G(R) ∼=
PU(2, 1), whose symmetric space is the complex unit ball B ≤ C2. Then
G(Z) and all of its finite index subgroups are lattices in G(R). Let Λ(q) =
{g ∈ G(Z) : g mod q ≡ I}, and call a lattice Γ ≤ G(Z) a level q congruence
subgroup if Λ(q) ≤ Γ. Denote its corresponding Picard modular surface
(over C) by X(Γ) = Γ\B and denote its first Betti number (also known as
its irregularity) by b1 (X(Γ)) := dimH1 (X(Γ),C).

As mentioned before a unitary group scheme is either of type (I), i.e.
G = PU3(E,Φ) where E is a quadratic imaginary field and Φ an indefinite
Hermitian form, or of type (II), i.e. G = PU(D,σ) where D is a division
algebra and σ an involution of the second type. Say that Γ ≤ G(Z) and
X(Γ) are of type (I) or (II) if G is.

In [Rog90, Thm.15.3.1], Rogawski proved that for Picard modular surfaces
of type (II), their first Betti number vanishes. This vanishing of first Betti
number is the archimedean analogue of the Ramanujan property studied
in this paper. Using our analysis of the automorphic spectrum of unitary
matrix groups, we are able to generalize this result of Rogawski to certain
Picard modular surfaces of type (I).

Theorem (8.10). Let G = PU3(E,Φ) be an indefinite projective unitary
group scheme over Z of type (I), q ∈ N coprime to the discriminant of E
and Γ ≤ G(Z) a level q congruence subgroup. Then b1 (X(Γ)) = 0.

As mentioned above, the vanishing of first cohomology is the real analogue
of the Ramanujan property for the congruence subgroup of p-arithmetic
groups studied in the paper. We end with the following open question:
what is the real analogue of the simple-transitivity property?
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2. Cayley Bigraphs

In this section we introduce a group-theoretic construction of bigraphs,
which we call Cayley bigraphs. This will allow us to give explicit
constructions of infinite families of Ramanujan bigraphs, in a similar fashion
to the regular Ramanujan Cayley graphs in [LPS88].
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Let S be a symmetric subset of a group G (i.e. S−1 = S). Recall that the
Cayley graph Cay(G,S) is an |S|-regular graph with vertices V = G and
edges E = {{g, gs} | g ∈ G, s ∈ S}. It is connected if and only if S generates
G, and loop-free if and only if 1 /∈ S. Note that G acts on this graph by left
multiplication, and the action is simply transitive on the vertices.

Definition 2.1. Let 0 ≤ k ≤ K, and let S⃗ = {S1, . . . , SK+1}, where
S1, . . . , SK+1 are pairwise disjoint subsets of a group G, each of size k. Let
S =

⊔K+1
i=1 Si and define i : S → N by s ∈ Si(s). The pair (G, S⃗) satisfies the

bi-Cayley axioms if

(1) S is symmetric ({s−1|s ∈ S} = S), and 1 /∈ S.
(2) Whenever s, t ∈ Si, either s = t or s−1t ∈ Si(s−1).

Definition 2.2. If (G, S⃗) satisfies the bi-Cayley axioms, define the following
relation ∼ on G× [K+1] (where [n] = {1, . . . , n}):

(2.1) (g1, j1) ∼ (g2, j2) ⇐⇒ either (g1, j1) = (g2, j2),
or g−11 g2 ∈ Sj1 and g−12 g1 ∈ Sj2 .

Denote by [g, j] the equivalence class of (g, j) ∈ G× [K+1], and observe that

[g, j] = {(g, j)} ∪ {(gs, i(s−1)) | s ∈ Sj}.

Lemma 2.3. The relation ∼ is an equivalence relation.

Proof. It is clear that ∼ is reflexive and symmetric. Suppose (g1, j1) ∼
(g2, j2) ∼ (g3, j3); we can assume that the three are distinct, for otherwise
(g1, j1) ∼ (g3, j3) follows. It then follows from (2.1) that s := g−12 g1 ∈
Sj2 and t := g−12 g3 ∈ Sj2 , so by the bi-Cayley axioms g−11 g3 = s−1t ∈
Si(g−1

1 g2) = Sj1 . The same argument shows that g−13 g1 ∈ Sj3 , hence (g1, j1) ∼
(g3, j3). □

Definition 2.4. For (G, S⃗) which satisfies the bi-Cayley axioms, we define
the Cayley bigraph CayB (G, S⃗) = (L ⊔R,E) to be the (K+1, k+1)-bigraph
with vertices and edges

L = G, R = G×[K+1]/∼, E = { {g, [g, i]} | g ∈ G, i ∈ [K+1]} .

We note that G acts on the graph by

(2.2) ∀g ∈ G, h ∈ L, [h, i] ∈ R : g.h = gh, g.[h, i] = [gh, i],

and the action is simply transitive on the left side. Let us illustrate this
definition with a special example.

Example 2.5. Let G be a group and S = {s1, . . . , sK+1} ⊆ G a set of
involutions, i.e. elements of order two (for example, G = Sym(n) and S =
{(1, 2), (2, 3), . . . , (n−1, n)} or all transpositions – see Figure 2.1). Defining
Si = {si} for i ∈ [K+1], the pair (G, S⃗) satisfies the bi-Cayley axioms, and
the Cayley bigraph CayB (G, S⃗) coincides with the barycentric subdivision



RAMANUJAN BIGRAPHS 31

of the Cayley graph Cay(G,S). Namely, upon placing a new vertex in the
middle of each edge of Cay(G,S), the old (resp. new) vertices form the left
(resp. right) vertices of the Cayley bigraph CayB (G, S⃗).

id

( 1 2 )

( 1 2 3 )

( 1 3 )

( 1 3 2 )

( 2 3 )
[ ( 1 3 ) , 3 ]

[ ( 2 3 ) , 3 ]

[ ( 1 2 ) , 3 ]

Figure 2.1. Two Cayley bigraphs arising from involutions in
G = Sym(3), as in Example 2.5. In black and red is the (2, 2)-
bigraph obtained from S = {(1 2) , (2 3)}, with the left (resp.
right) vertices drawn in red (resp. black); the dashed edges
are those of the “original” Cayley graph Cay(G,S). Adding
the blue edges and vertices gives the (3, 2)-bigraph obtained
from S = {(1 2) , (2 3) , (1 3)}, and now the right side consists
of the black and blue vertices together.

The bigraph analogue of a Schreier graph is slightly more involved. Recall
that for a (right) G-set X the Schreier graph Sch(G,X, S) has vertices V =
X and edges E = {{x, xs} |x ∈ X, s ∈ S}. Even when 1 /∈ S, this graph may
have loops as s ̸= 1 may fix some x ∈ X, and multiple edges arise similarly.
Every G-set is a disjoint union of transitive ones, and every transitive G-set
X is isomorphic to H\G for some H ≤ G (unique up to conjugation). The
graph Sch(G,H\G,S) is the same as the quotient of Cay(G,S) by H, and
this can be used to define Schreier bigraphs. Namely, define the Schreier
bigraph SchB (G,H\G, S⃗) to be the quotient of CayB (G, S⃗) = (L ⊔R,E)
by the group H, acting as in (2.2). The technical issue which arises is that
while H acts freely on the left side L and thus also on E, its action on
R may have non-trivial stabilizers. In this case the quotient is a weighted
graph (or orbigraph). The weights ensure that the correspondence between
functions on the quotient graph, and H-invariant functions on the covering
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graph, intertwines with geometric operators (e.g. the adjacency operator).
This leads to the following:

Definition 2.6. For (G, S⃗) satisfying the bi-Cayley axioms and a right G-set
X, the Schreier bigraph SchB(G,X, S⃗) = (L ⊔R,E) is defined by

L = X, R = X×[K+1]/∼, E = {{x, [x, i]} |x ∈ X, i ∈ [K + 1]} ,

where (x1, j1) ∼ (x2, j2) if either (x1, j1) = (x2, j2), or there exists s ∈ Sj1

with x1s = x2 and s−1 ∈ Sj2 . Again ∼ is an equivalence relation, with
equivalence classes

[x, j] = {(x, j)} ∪ {(xs, i(s−1)) | s ∈ Sj}.

The weight of r = [x, j] ∈ R is

wr :=
|r|
k + 1

=
1 + | StabG(x) ∩ Sj ∩ (Sj)−1|

k + 1
,

and the adjacency operator of SchB(G,X, S⃗) is given by

Aℓ,r = wr · |{j | [ℓ, j] = r}| , Ar,ℓ = |{j | [ℓ, j] = r}| ∀ℓ ∈ L, r ∈ R

(the term |{j | [ℓ, j] = r}| counts the possibly multiple edges, and the weight
wr accounts for the stabilizers). Note that A is not symmetric, but it is
self-adjoint with respect to the wr-weighted inner product.

Remark 2.7. In the Cayley case, we could have also labeled the right vertices
by their neighbor-sets in the left side. This would give

(2.3) R =
{{
gs
∣∣ s ∈ Si ∪ {1}

} ∣∣ g ∈ G, i ∈ [K+1]
}
,

and then edges are given by membership, i.e. ℓ ∼ r if and only if ℓ ∈ r for
ℓ ∈ L, r ∈ R (this was used in Example 1.1). In the Schreier case, however,
such a presentation is not always possible since two different right vertices
might have the same set of neighbors.

Remark 2.8. If H ⊴ G and the quotient map ϕ : G → G/H is injective on
{1} ∪

⋃
i S

i, then by construction

SchB (G,H\G, S⃗) ∼= H\CayB (G, S⃗) ∼= CayB
(
H\G, {ϕ(Si)}i

)
.

With some abuse of notation, we shall allow ourselves to refer to this graph
as CayB

(
H\G, {ϕ(Si)}i

)
even when ϕ is not injective; the only caveat is

that one must compute the map i : S → N from Definition 2.1 for the original
S and not for its image under ϕ.

Next, we show that when a group acts on a biregular tree in a nice manner,
the tree can be identified with a Cayley bigraph of the group.

Theorem 2.9. Let Λ be a group acting on the (K+1, k+1)-biregular tree
T = TK+1,k+1 = (LT ⊔RT , ET ), so that the action is simply-transitive on
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LT . Let v0 ∈ LT be a fixed vertex and v1, . . . , vK+1 ∈ RT its neighbors.
Denoting

∀i ∈ [K+1] : Si = {1 ̸= s ∈ Λ | dist(sv0, vi) = 1} ,

the Cayley bigraph CayB(Λ, S⃗) = (L ⊔R,E) is isomorphic to T , via

f(v) =

{
gv0 v = g ∈ L
gvi v = [g, i] ∈ R

.

Combining this theorem with the observations in Remark 2.8 (for G = Λ)
yields a useful corollary:

Corollary 2.10. Let (Λ, S⃗) be as in Theorem 2.9 and let ϕ : Λ → Gϕ be a
surjective homomorphism. Then the quotient of T by kerΛϕ is isomorphic to
SchB(Λ, Gϕ, S⃗), where Λ acts on Gϕ via ϕ. Furthermore, when ϕ is injective
on {1} ∪

⋃
i S

i, this is precisely CayB(Gϕ, {ϕ(Si)}K+1
i=1 ).

The proof of Theorem 2.9 requires the following two Lemmas.

Lemma 2.11. The pair (Λ, S⃗) in Theorem 2.9 satisfies the bi-Cayley axioms.

Proof. Since v0 is the unique common neighbor of vi, vj (i ̸= j), Si and Sj

are disjoint. We note that S :=
⊔K+1

i=1 Si = {g ∈ Λ | dist(gv0, v0) = 2}, from
which follows that S−1 = S and 1 ̸∈ S. Let s ∈ S, i = i(s), j = i(s−1) and
s ̸= t ∈ Si. Note that vi is the unique vertex connecting v0 and sv0 and
similarly vj is the unique vertex connecting v0 and s−1v0. By applying s
we get that svj is the unique vertex connecting sv0 and v0, hence svj = vi.
Then dist(s−1tv0, vj) = dist(tv0, svj) = dist(tv0, vi) = 1, i.e. s−1t ∈ Sj . □

Lemma 2.12. Let (Λ, S⃗) be as in Theorem 2.9. Then for any g1, g2 ∈ Λ
and j1, j2 ∈ [K+1],

g1vj1 = g2vj2 ⇐⇒ (g1, j1) ∼ (g2, j2).

Proof. Assume g1vj1 = g2vj2 . If g1 = g2, then vj1 = vj2 implies j1 = j2 as
well. If g1 ̸= g2, then

dist(g−11 g2v0, vj1) = dist(g2v0, g1vj1) = dist(g2v0, g2vj2) = dist(v0, vj2) = 1

implies g−11 g2 ∈ Sj1 . Arguing similarly gives g−12 g1 ∈ Sj2 , so that (g1, j1) ∼
(g2, j2). Conversely, let (g1, j1) ∼ (g2, j2). If (g1, j1) = (g2, j2), then g1vj1 =

g2vj2 , and otherwise, g−11 g2 ∈ Sj1 and g−12 g1 ∈ Sj2 . Therefore vj1 is the
unique vertex connecting v0 and g−11 g2v0 and similarly vj2 connects v0 and
g−12 g1v0. Applying g−11 g2 to the latter shows that g−11 g2vj2 connects g−11 g2v0
and v0, hence g−11 g2vj2 = vj1 , which proves g1vj1 = g2vj2 . □
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Proof of Theorem 2.9. The map f |L is bijective since Λ acts simply-
transitively on LT , and f |R is well defined and injective by Lemma 2.12.
It is also surjective, since the Λ-orbits of {v1, . . . , vK+1} cover RT . Finally,
each edge {g, [g, i]} ∈ E is sent to an edge in T , namely {gv0, gvi}, and each
edge in T is of this form for some g ∈ Λ and i ∈ [K+1], so that f is a graph
isomorphism. □

2.1. Explicit example. In Section 5 we construct several arithmetic groups
acting simply-transitively on (the left side of) biregular trees. For each
such group Corollary 2.10 gives infinitely many explicit Cayley bigraphs, for
example taking congruence quotients. In Sections 7 and 8 we show that all
of these graphs are adj-Ramanujan, and that some are Ramanujan whereas
some are not. We end this section by describing a special example of Cayley
(resp. Schreier) bigraphs, which arise from one of these groups (the Eisentein
lattice Λp

E with p = 2).

Let E = Q[
√
−3] and ω = −1+

√
−3

2 (a primitive third root of unity), and
denote (as in (1.12))

A := 1
2

(
−1 0

√
−3

0 2 0√
−3 0 −1

)
, σ :=

(
1
ω

ω2

)
, τ :=

(
1
1

1

)
, and(2.4)

S3a+b+1 :=
{
A±a,b = σaτ bA±1τ−bσ−a

}
0 ≤ a, b ≤ 2.(2.5)

Each of S1, . . . , S9 is a symmetric set of size two, so that S = ⊔Si is
symmetric and i : S → N from Definition 2.1 is given by i(j) = j. Let
Λ be the group generated by S in PGL3(E). This group (which is denoted
by Λ2

E in Sections 5-8) is a subgroup of PU3(Z[1/2]), which acts naturally
on a certain (9, 3)-biregular tree T described in Section 5.1. It is shown in
Section 5 that Λ acts simply-transitively on the left vertices of T (Theorem
5.2) and explicit computation using Proposition 8.2 shows that for a certain
left vertex v0 with neighbors v1, . . . , v9, each Si sends v0 to the two other
neighbors of vi. Thus, CayB (Λ, S⃗) coincides with T by Theorem 2.9. A
special feature of this example is that each Si ∪ {I} is in fact a subgroup
of Λ. Thus, in the presentation of CayB suggested in Remark 2.7, each
vertex in the right side of T is represented by a coset of Si ∪ {I} in Λ.
Corollary 2.10 gives us examples of finite Cayley bigraphs: Let q ̸= 2, 3 be

a prime, F =

{
Fq q ≡ 1 (mod 3)

Fq2 q ≡ 2 (mod 3)
and ω a primitive third root of unity in

F×. Let ϕq : PGL3(Z[ω])→ PGL3(F) be the modulo q homomorphism with
ϕq(ω) = ω, let Gq = ϕq(Λ) and Λq = Λ ∩ kerϕq, and let

X2,q
E = CayB (Gq, {ϕq(Si)}9i=1)

∼= Λq\T ,
where the isomorphism is by Corollary 2.10, and Lemma 2.13 below shows
this is an honest Cayley bigraph. Using again the labeling from Remark
2.7, each right vertex in X2,q

E is labeled by a coset of some subgroup
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ϕq(S
i) ∪ {1} ≤ Gq, and we obtain the graphs described in Example 1.1.

Theorem 8.3 shows that Gq are classical groups over finite fields, and that
X2,q

E are adj-Ramanujan, but not Ramanujan. Furthermore, the group Gq

acts transitively on the projective plane over F, or a certain subset of it, as
follows:

Yq :=

{
P2(Fq) q ≡ 1 (mod 3){
v ∈ P2(Fq[ω])

∣∣ v∗ ·v = 0
}

q ≡ 2 (mod 3) ,

and the corresponding Schreier bigraphs Y 2,q
E = SchB(Gq, Yq, {ϕq(Si)}9i=1)

are Ramanujan (Theorem 8.3).

Lemma 2.13. In the notations above, ϕq (with q ̸= 2, 3) is injective on
S ⊔ {I} .

Proof. The diagonal coefficients of any s ∈ S cannot all agree modulo q for
q > 3, hence ϕq(s) ̸= ϕq(I). Similarly, if s, s′ ∈ S and ϕq(s) = ϕq(s

′), then by
examining their diagonal we see that s = σjs′σ−j for some 0 ≤ j ≤ 2. From
the non-zero off-diagonal coordinates we get

√
−3
2 =

√
−3
2 ω2j in F, which

implies j = 0 and s = s′. □

Remark 2.14. For q = 3 one can still define X2,3
E , using ϕ3 : PGL3(Z[ω])→

PGL3(F3[x]/(x2)) with ϕ3(ω) = 1 − x, and show that it is non-Ramanujan.
This might be proved similarly to Theorem 8.3, though in this specific
case it is easier to check it with a computer. Moreover, the subgroup
G3 = ⟨ϕ3(S)⟩ is isomorphic to (Z/3Z)3. To see this, first note that
ϕ3(A

±
∗,∗) ∈ I + xM3(F3) which implies that G3 is Abelian. Second note

that ϕ3(σ) commutes with ϕ3(A) since x(1−x)j ≡ x(1−x)j+2
(
mod 3, x2

)
,

so that G3 is generated by ϕ3(A0,∗). Finally, verify that A3 = I
and that ϕ3(A

±
0,∗) are linearly independent over F3. (In the language

of Section 5, G3 is a subgroup of the projective unitary group of the
non-étale extension F3[x]/(x2) of F3, and the latter can be described by{
A+ xB ∈M3(F3[x]/(x2)) | AtA = I, ABt = BAt

}
/{±I}).

3. Spectral Analysis

Let X = (V = L ⊔R,E) be a connected undirected (K+1, k+1)-biregular
bipartite graph with K > k and |L| = n, so that |R| = K+1

k+1 n. Throughout
this section we denote by E the directed edges of X; each edge appears with
both directions, i.e. |E| = 2n(K + 1). We denote by A = AX the adjacency
operator on L2 (V ). It is easy to see that kerA = ker (A|R)⊕ ker (A|L), and
since A maps L2(R) to L2(L) and |R| > |L|, A|R must have a nontrivial
kernel. There is however no reason for A|L to have one (and generically it
does not - see [BDH21]). We define the excessiveness of X by

E = EX
def
= dimker (A|L) ,
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Figure 2.2. The (Ramanujan) Schreier bigraph Y 5,2 arising
from the Eisenstein lattice Λ5

E acting on the vectors of norm
zero in F3

4.

and observe that (A|R) = (A|L)T implies rank(A|R) = n− E , so that

NX
def
= dimker (A|R) = |R| − n+ E = K−k

k+1 n+ E ,

and in addition that rankA = rankA|L + rankA|R = 2 (n− E). The
spectrum of A is symmetric: if for f ∈ L2(V ) we denote f̃ := f |L−f |R, then
Af = λf implies Af̃ = −λf̃ , so in total A has n − E positive eigenvalues
(counting with multiplicities), which we denote by√

(K + 1)(k + 1) = pf = λ1 > λ2 ≥ . . . ≥ λn−E > 0.

We define the following union of three line segment in C:

ΘK,k =
[
−i log

√
Kk, 0

]
∪ [0, π] ∪

[
π, π + i log

√
K/k

]
,

and with every λ ∈ [0, pf] we associate

ϑ = ϑλ = arccos

(
λ2 −K − k

2
√
Kk

)
.
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We note that λ 7→ ϑλ maps [0, pf] bijectively onto ΘK,k, and takes[√
K +

√
k,
√
K −

√
k
]

onto [0, π]. Thus, writing ϑj = ϑλj
, X is adj-

Ramanujan (see (1.4)) if and only if ϑ2, . . . , ϑn−E ∈ [0, π]. The ϑ-
parametrization will be useful in analyzing walks on the graph in Section
4, and is inspired by a well-known parametrization used for the regular case
(see e.g. [DSV03,NS23]).

We now turn to the non-backtracking B = BX , which acts on L2(E)
by Bf(v → u) =

∑
v ̸=w∼u f(u → w). Its Perron-Frobenius eigenvalue is

pfB =
√
Kk, and its spectrum is also symmetric: decomposing E =

−→
LR⊔

←−
LR,

where
−→
LR =

{
ℓ→r

∣∣ ℓ∈L,r∈R
ℓ∼r

}
and
←−
LR =

{
ℓ←r

∣∣ ℓ∈L,r∈R
ℓ∼r

}
, we define F̃ :=

F |−→
LR
− F |←−

LR
and observe that

(3.1) BF = µF ⇒ BF̃ = −µF̃ .

We associate with every λ ∈ [0, pf] the two complex numbers
(3.2)

µ± = µ±λ =

√
1
2

(
λ2 −K − k ±

√
(λ2 −K − k)2 − 4Kk

)
=

√
e±iϑλ

√
Kk,

where the external square root is chosen so that arg(µ±) ∈ [0, π). We
will show in Proposition 3.6 that if λ ∈ SpecA then ±µ±λ ∈ SpecB, save
for some singular cases in which the corresponding eigenfunction vanishes.
However, the eigenvalues alone are not enough for spectral analysis, since
their corresponding eigenfunctions are not orthogonal, as B is not normal.
The main goal of this section is:

Theorem 3.1. If λ1 > λ2 ≥ . . . ≥ λn−EX > 0 are the positive eigenvalues
of A, then B is unitarily equivalent to a block-diagonal matrix composed of:

(1) The block
(

K
k

)
.

(2) (a) For each 2 ≤ j ≤ n − EX with λj ∈
[√

K −
√
k,
√
K +

√
k
]
, the

block

(3.3)


0 0 µ+

j
4
√

k
K

k−1

0 0 0 −µ−
j

4
√

k
K

µ+ 4
√

K
k

K−1 0 0

0 −µ−
j

4
√

K
k

0 0

 .
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(b) For each 2 ≤ j ≤ n − EX with λj /∈
[√

K −
√
k,
√
K +

√
k
]
, a

block of the form


0 0 µ+

j αj γj

0 0 0 µ−
j βj

µ+
j /αj δj 0 0

0 µ−
j /βj 0 0

, where αj , βj ∈ R>0 and

γj , δj ∈ C are all bounded by K.5

(3) EX times the block
(

i
iK

)
.

(4) NX times the block
(

ik
i

)
.

(5) χ(X) times the diagonal block
(
1
−1
)
, where χ(X) = |E|

2 − |V | + 1 =
Kk−1
k+1 · n+ 1.

Note that since Spec
(
0 α
β 0

)
=

{
±
√
αβ
}

and

Spec

 0 0 αµ+ ∗
0 0 0 βµ−

µ+/α ∗ 0 0

0 µ−/β 0 0

 = {±µ+,±µ−}, in particular we obtain

the following:

Corollary 3.2 ([Kem16,BDH21]). The spectrum of BX is

Spec(BX)

=


{
±
√
Kk,±i

√
k,±1

}
∪
{
±µ±λ

∣∣ 0 < λ ∈ Spec(AX)
}

EX = 0{
±
√
Kk,±i

√
K,±i

√
k,±1

}
∪
{
±µ±λ

∣∣ 0 < λ ∈ Spec(AX)
}
EX > 0.

This was shown in the cited papers by a detailed study of the Ihara-Bass
formula following [Has89]. The approach we take is inspired by [KS00] and
has the advantage of giving the eigenvectors as well, which is important for
the combinatorial applications in Section 4. We further obtain:

Corollary 3.3. (1) The graph X is NB-Ramanujan if and only if it is adj-
Ramanujan and additionally EX = 0.

(2) X is adj-Ramanujan if and only if Spec
(
A2
∣∣
L

)
⊆ {(K + 1)(k + 1)} ∪[

K + k − 2
√
Kk,K + k + 2

√
Kk
]
∪ {0}.

(3) X is NB-Ramanujan if and only if Spec
(
A2
∣∣
L

)
⊆ {(K + 1)(k + 1)} ∪[

K + k − 2
√
Kk,K + k + 2

√
Kk
]
.

(4) The NB-Ramanuajan property and the Riemann hypothesis are
equivalent for bigraphs.

5With some effort one can compute αj , βj , γj , δj explicitly from the proof, but they are
not pleasant and will not be needed for our combinatorial purposes in Section 4. We also
remark that case 2(b) does not occur in arithmetic congruence quotients of U3-buildings
– see Sections 6, 7.
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Proof. (1) This follows from the observation that

λ ∈ [
√
K +

√
k,
√
K −

√
k] ⇔ ϑλ ∈ [0, π]

⇔ |µ+λ |, |µ
−
λ | ≤

4
√
Kk ⇔ |µ+λ |, |µ

−
λ | =

4
√
Kk,

and the fact that |±i
√
k| < 4

√
Kk < |±i

√
K|; (2,3) These are immediate from

(1); (4) NB-Ramanujan implies the R.H. for any finite graph by [AFH15]
(and for bigraphs by [Has89]). For bigraphs the converse also holds since if∣∣µ±λ ∣∣ < 4

√
Kk then

∣∣µ∓λ ∣∣ > 4
√
Kk. □

Remark 3.4. In fact, the Riemann Hypothesis, NB-Ramanujan and
Ramanujan property are all equivalent for bigraphs, but for the proof we
need the theory of Hecke algebras – see Section 6.

We now begin our analysis of the non-backtracking spectrum, noting first
that µ+, µ−,−µ+,−µ− are all the roots of

(3.4) µ4 +
(
K + k − λ2

)
µ2 +Kk = 0.

Since µ± ̸= 0, and µ+ ̸= −µ− by the choice of branch in (3.2), equation (3.4)
has only two solutions precisely when
(3.5)
µ+ = µ− ⇔ ϑ ∈ {0, π} ⇔ λ =

√
K±
√
k ⇔ µ± ∈

{
4
√
Kk, i

4
√
Kk
}

(and Theorem 3.1 shows that B is diagonalizable if and only if this does not
occur in the spectrum). As λ ranges over [0, pf] (and ϑ over ΘK,k), ±µ±
ranges over
(3.6){
±µ±λ

∣∣λ ∈ [0, pf]
}
= ±

[
1,
√
Kk
]
∪
{
z ∈ C

∣∣∣ |z| = 4
√
Kk
}
∪ ±

[
i
√
k, i
√
K
]
,

and the points of special importance are:

λ ϑ µ+ µ−

pf =
√

(K + 1)(k + 1) −i log
√
Kk pfB =

√
Kk 1√

K +
√
k 0 4

√
Kk 4

√
Kk√

K −
√
k π i 4

√
Kk i 4

√
Kk

0 π + i log
√
K/k i

√
k i

√
K

Definition 3.5. Given f : V → R, we define fℓo, fri, fℓi, fro : E → C, by

fℓo(ℓ→r) = f(ℓ) fri(ℓ→r) = f(r) fℓi(ℓ→r) = 0 fro(ℓ→r) = 0

fℓo(ℓ←r) = 0 fri(ℓ←r) = 0 fℓi(ℓ←r) = f(ℓ) fro(ℓ←r) = f(r)

(for neighboring vertices ℓ ∈ L and r ∈ R). We write f⋆⋆ to indicate one of
the four, and denote

Wf = Span {f⋆⋆} .
We note that f̃ℓo = −fℓo, f̃ri = −fri, f̃ℓi = fℓi and f̃ro = fro, hence Wf =
Wf̃ .
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For f : V → R satisfying Af = λf , fix µ± = µ±λ and define F± = F±f and
G± = G±f by

(3.7)
F± := λfℓo −

(
(µ±)2 +K

)
fri − µ±λfℓi +

(
µ± +K/µ±

)
fro

G± :=
(
µ± + k/µ±

)
fℓo − µ±λfri −

(
(µ±)2 + k

)
fℓi + λfro.

Omitting the ± choice, this means that for neighboring ℓ ∈ L and r ∈ R{
F (ℓ→r) = λf(ℓ)−

(
µ2 +K

)
f(r)

F (ℓ←r) = −µλf(ℓ) + (µ+K/µ) f(r)

{
G(ℓ→r) = (µ+ k/µ) f(ℓ)− µλf(r)
G(ℓ←r) = −

(
µ2 + k

)
f(ℓ) + λf(r).

In the general case F± and G± differ by a scalar, but sometimes one of them
vanishes: if λ = 0, then F− = G+ = 0 (since µ− = i

√
K and µ+ = i

√
k),

but we shall see that F+, G− do not.

Proposition 3.6. If Af = λf , then BF± = µ±F±, BG± = µ±G±, BF̃± =

−µ±F̃± and BG̃± = −µ±G̃±.

Proof. For each choice of µ = µ± with corresponding F = F±, we have

BF (ℓ→ r) =
∑

ℓ̸=ℓ′∼r
F
(
ℓ′ ← r

)
=
∑

ℓ̸=ℓ′∼r

(
−µλf(ℓ′) + (µ+K/µ)f(r)

)
= −µλ

(∑
ℓ̸=ℓ′∼r

f(ℓ′)
)
+ k(µ+K/µ)f(r)

= −µλ ((Af) (r)− f(ℓ)) + k(µ+K/µ)f(r)

= −µλ (λf(r)− f(ℓ)) + k(µ+K/µ)f(r)

= µ
[
λf(ℓ)−

(
λ2 − k −Kk/µ2

)
f(r)

]
(∗)
= µ

[
λf(ℓ)−

(
µ2 +K

)
f(r)

]
= µF (ℓ→ r)

where (∗) makes use of (3.4). The other direction is somewhat simpler:

BF (ℓ← r) =
∑

ℓ∼r′ ̸=r
F
(
ℓ→ r′

)
= Kλf(ℓ)− (µ2 +K)

∑
ℓ∼r′ ̸=r

f(r′)

= Kλf(ℓ)− (µ2 +K)(λf(ℓ)− f(r))
= −µ2λf(ℓ) + (µ2 +K)f(r)

= µF (ℓ← r) .

The verification that BG± = µ±G± is similar, and we conclude using (3.1).
□

Lemma 3.7. If f, f ′ : V → R are eigenfunctions of A with non-negative
eigenvalues λ, λ′ then:

(1) λ ⟨f |R, f ′|R⟩ = λ′ ⟨f |L, f ′|L⟩, and if λ ̸= 0 then ∥f |R∥ = ∥f |L∥ = ∥f∥√
2
.
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(2) {fℓo, fri}⊥{f ′ℓi, f ′ro}, and〈
fℓi, f

′
ro

〉
=
〈
fℓo, f

′
ri

〉
= λ⟨f |R, f ′|R⟩ = λ′

〈
f |L, f ′|L

〉〈
fℓi, f

′
ℓi

〉
=
〈
fℓo, f

′
ℓo

〉
= (K + 1)

〈
f |L, f ′|L

〉
(3.8) 〈

fri, f
′
ri

〉
=
〈
fro, f

′
ro

〉
= (k + 1)

〈
f |R, f ′|R

〉
.(3.9)

(3) If λ ̸= 0 then f⊥f ′ ⇒ f⋆⋆⊥f ′⋆⋆.
(4) If λ = 0 and f |L = 0 or f |R = 0 then f⊥f ′ ⇒ f⋆⋆⊥f ′⋆⋆.
(5) If λ /∈ {0, pf} then {f⋆⋆} are linearly independent, so that dimWf = 4.

Proof. (1) Since A is self-adjoint, λ ⟨f |R, f ′|R⟩ = λ ⟨f, f ′|R⟩ = ⟨Af, f ′|R⟩ =
⟨f,A (f ′|R)⟩ = ⟨f, (Af ′) |L⟩ = λ′ ⟨f, f ′|L⟩ = λ′ ⟨f |L, f ′|L⟩. When λ ̸= 0
this shows in particular that f |R and f |L have the same norm, hence the
second assertion follows by Pythagoras.

(2) {fℓo, fri}⊥{f ′ℓi, f ′ro} since they are supported on disjoint sets of edges
(
−→
LR and

←−
LR), and the rest is routine computation, e.g.〈

fℓi, f
′
ro

〉
=
∑
ℓ∼r

fℓi(ℓ←r)f ′ro(ℓ←r)

=
∑
ℓ∼r

f(ℓ)f ′(r) =
∑
r∈R

f ′(r)(Af)(r) = λ
〈
f |R, f ′|R

〉
〈
fℓi, f

′
ℓi

〉
=
∑
ℓ∼r

fℓi(ℓ←r)f ′ℓi(ℓ←r) =
∑
ℓ∼r

f(ℓ)f ′(ℓ) = (K + 1)
〈
f |L, f ′|L

〉
.

(3) If λ ̸= 0 then 0 = ⟨f, f ′⟩ = ⟨f |L, f ′|L⟩+⟨f |R, f ′|R⟩ =
(
λ′

λ + 1
)
⟨f |R, f ′|R⟩

implies f |R⊥f ′|R, hence f |L⊥f ′|L as well, so (2) gives f⋆⋆⊥f ′⋆⋆.
(4) If λ = 0 and f |L = 0 (f |R = 0 is similar) then f⊥f ′ implies f |R⊥f ′|R,

and we continue as in (3).
(5) By (2), the Gram determinant of {f⋆⋆} is
∥f |L∥4 ∥f |R∥4

(
λ2 − (K + 1) (k + 1)

)2, which vanishes if and only
if either f |R = 0 or f |L = 0 (either of which implies λ = 0), or
λ = pf. □

Proposition 3.8. If f is a λ-eigenfunction of A for λ /∈
{
0,
√
K ±

√
k
}
,

then Span {f⋆⋆} = Span
{
F±, F̃±

}
.

Proof. The matrix T =


λ −

(
µ+2

+K
)
−µ+λ µ++ K

µ+

λ −
(
µ−2

+K
)
−µ−λ µ−+ K

µ−

λ −
(
µ+2

+K
)

µ+λ −
(
µ++ K

µ+

)
λ −

(
µ−2

+K
)

µ−λ −
(
µ−+ K

µ−

)

 transforms {f⋆⋆}

to
{
F±, F̃±

}
, so that det(T ) = − 2λ2K

µ+µ− (µ+ − µ−)2 (µ+ + µ−)
2 implies that

Wf = Span
{
F±i , F̃

±
i

}
unless λ = 0 or µ+ = µ−. □
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Eigenfunctions of A only “explain” some of the eigenfunctions of B, and
the rest, which we now describe, are of topological nature (the fact that all
eigenfunctions of B are described by Propositions 3.6 and 3.9 follows from
the proof of Theorem 3.1):

Proposition 3.9. For a closed cycle γ = (ℓ1, r1, ℓ2, r2, . . . , ℓn = ℓ1, rn = r1)
in X, define pγ , nγ : E → C by{

pγ (ℓi → ri) = pγ (ℓi+1 ← ri) = 1

pγ (ℓi ← ri) = pγ (ℓi+1 → ri) = −1,

pγ (e) = 0 for any edge e which does not appear in γ, and nγ = p̃γ. Then:

(1) Bpγ = pγ and Bnγ = −nγ.
(2) pγ⊥nγ′ for any two cycles γ, γ′.
(3) For any f : V → C, pγ and nγ are orthogonal to f⋆⋆.

Proof. (1) We prove that Bpγ |−→LR = pγ |−→LR;
←−
LR is analogous, and Bnγ = −nγ

follows from (3.1):

Bpγ(ℓi → ri) =
∑

ℓi ̸=ℓ′∼ri
pγ
(
ℓ′ ← ri

)
= pγ (ℓi+1 ← ri) = 1 = pγ(ℓi → ri),

and if (ℓ → r) ̸∈ γ then either r ̸= ri for any i, or r = ri and ℓ ̸= ℓi, ℓi+1,
hence

Bpγ(ℓ→ r) =
∑

ℓ̸=ℓ′∼r
pγ
(
ℓ′ ← r

)
=

{
0

1− 1

r ̸= ri

r = ri, ℓ ̸= ℓi, ℓi+1
= 0 = pγ(ℓ→ r).

(2) Clearly if (ℓ→ r) ̸∈ γ ∩ γ′ then

pγ(ℓ→ r) · nγ′(ℓ→ r) = 0 = pγ(ℓ← r) · nγ′(ℓ← r)

and if (ℓ→ r) = (ℓi → ri) ∈ γ ∩ γ′ then

pγ(ℓi → ri) · nγ′(ℓi → ri) + pγ(ℓi → ri) · nγ′(ℓi → ri) = 1 · 1 + 1 · (−1) = 0,

hence ⟨pγ , nγ⟩ =
∑

e∈E pγ(e)nγ(e) = 0.

(3) We treat fℓi, and leave the other cases to the reader:

⟨pγ , fℓi⟩ =
∑
e∈E

pγ(e)fℓi(e) =
∑
i

(pγ(ℓi ← ri)f(ℓi) + pγ(ℓi+1 ← ri)f(ℓi+1))

=
∑
i

(f(ℓi+1)− f(ℓi)) = 0,

⟨nγ , fℓi⟩ = ⟨p̃γ , fℓi⟩ = ⟨pγ , f̃ℓi⟩ = ⟨pγ , fℓi⟩ = 0. □

We can now prove the main Theorem of this section:
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Proof of Theorem 3.1. Let us fix an orthonormal basis for L2(V ):

f1, . . . , fn−E , f̃1, . . . , f̃n−E , g1, . . . , gE , h1, . . . , hN ,

where {f∗} is an orthonormal system with Afj = λjfj (recall λi > 0), {g∗}
is an orthonormal basis for kerA|L and {h∗} for kerA|R. We denote

L2
V (E)

def
= SpanC

{
φ⋆⋆

∣∣φ ∈ L2(V )
}
,

and observe that L2
V (E) = Span {φ⋆⋆ |φ ∈ {f∗, g∗, h∗}} since Wf̃i

= Wfi .
From Lemma 3.7(3,4) we further obtain that there is an orthogonal
decomposition L2

V (E) =
⊕

φ∈{f∗,g∗,h∗}Wφ, and our first goal is to construct
for each Wφ an orthonormal basis in which B|Wφ has a nice form. We denote
F±j = F±fj , G

±
j = G±gj and H±j = F±hj

.

(1) For j = 1, λ1 = pf and f1 is constant on each of R and L, so that
W1 := Wf1 = Span

{
1−→
LR
,1←−

LR

}
. The basis 1−→

LR
,1←−

LR
is orthonormal up

to scaling, and in it B|W1 =
(

K
k

)
. The functions F+

1 and F̃+
1 (which are

scaling of
√
k ·1−→

LR
±
√
K ·1←−

LR
) form a non-orthogonal B|W1-eigenbasis,

whereas F−1 = F̃−1 = 0.
(2) For 2 ≤ j ≤ n − E and f = fj , Wj := Wfj is 4-dimensional by Lemma

3.7(5). We split into two cases:
(2a) λj ∈

[√
K −

√
k,
√
K +

√
k
]
, which is equivalent to |µ| = 4

√
Kk.

It is tempting to start with F±j , F̃
±
j which form a B-eigenbasis for Wj ,

except for the special cases λj =
√
K ±

√
k (in which F+

j = F−j and
B
∣∣
Wj

is non-diagonalizable). It turns out however that it is better to fix
µ = µ+λj

and F = F+
j , and define

B =
{
b1 = F

∣∣−→
LR

, b2 =
←→
F
∣∣−→
LR

, b3 = F
∣∣←−
LR

, b4 =
←→
F
∣∣←−
LR

}
,

where
←→
□ inverts edges, namely,

←→
F (ℓ → r) = F (ℓ← r) and vice-versa

(in particular,
←→
fℓo = fℓi and

←→
fro = fri). It is immediate from Proposition

3.6 that Bb1 = µb3 and Bb3 = µb1; computations of the same spirit as in
its proof show that Bb2 = (K−1)b3+

K
µ b4 and Bb4 = (k−1)b1+

k
µb2, so

that
[
B
∣∣
Wj

]
B

=

(
0 0 µ k−1
0 0 0 k/µ
µ K−1 0 0
0 K/µ 0 0

)
. So far, we did not use the assumption
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|µ| = 4
√
Kk. Using Lemma 3.7 and (3.4) we have:

∥b1∥2 =
∥∥∥F+

j

∣∣−→
LR

∥∥∥2 = ∥∥λfℓo − (µ2 +K)fri
∥∥2

= λ2 ∥fℓo∥2 − 2ℜ
(
λ(µ2 +K) ⟨fℓo, fri⟩

)
+
∣∣µ2 +K

∣∣2 ∥fri∥2
= λ2 · K+1

2 − 2ℜ
(
λ(µ2 +K)λ2

)
+
∣∣µ2 +K

∣∣2 · k+1
2

= 1
2

(
µ− 1

µ

)(
µ+ K

µ

) (
(K + µ2 − 1)k − µ2

)
= 1

2(µ−
1
µ)(µ+ k

µ)(µ+ K
µ )(

Kk
µ − µ),

where the last equality is the first time we have used |µ| = 4
√
Kk.

By its definition we have ∥b4∥ = ∥b1∥, and computing similarly gives
bi⊥bj for i ̸= j, and ∥b2∥2 = ∥b3∥2 =

√
K/k ∥b1∥2. Thus, B′ ={

4
√
Kb1,

4
√
kb2,

4
√
kb3,

4
√
Kb4

}
is an orthonormal basis up to scaling, and[

B
∣∣
Wj

]
B′

is the matrix in (3.3), as µ− = −µ.

(2b) For λj /∈
[√

K −
√
k,
√
K +

√
k
]

the eigenvalues ±µ± are distinct,

and Wj = Span
{
F±j , F̃

±
j

}
. From Proposition 3.6 we see that B ·

(F±j |−→LR) = µ±F±j |←−LR, so that

[
B|Wj

]
B

=


0 0 µ+

j 0

0 0 0 µ−
j

µ+
j 0 0 0

0 µ−
j 0 0

 , for B =

{
b1 = F+

j |−→LR, b2 = F−j |−→LR,
b3 = F+

j |←−LR, b4 = F−j |←−LR

}
.

The basis B is not orthonormal, but {b1, b2}⊥{b3, b4} as they are
supported on disjoint sets of edges. Gram-Schmidt process then gives

a change-of-basis matrix P =

(
x ∗ 0 0
y 0 0
z ∗
w

)
which transforms B to an

orthonormal basis B′, and

(3.10)
[
B|Wj

]
B′ = P

[
B|Wj

]
B
P−1 =


0 0 x

z
µ+
j ∗

0 0 0 y
w
µ−
j

z
x
µ+
j ∗ 0 0

0 w
y
µ−
j 0 0


has the desired form. Finally, since B′ is orthonormal, every entry of[
B|Wj

]
B′ is bounded by

∥∥B|Wj

∥∥
2
≤ ∥B∥2 = K, and in addition

∣∣∣µ±j ∣∣∣ ≥ 1

by (3.6), so that |xz |, |
z
x |, |

y
w |, |

w
y | and the two ∗ in (3.10) are bounded by

K.
(3) Let g = gj ∈ kerA|L. As ∥g|L∥ = ∥g∥ = 1 and µ− = i

√
K, taking

B =
{
b1 = G−j |−→LR = (K−k)√

K
igℓo, b2 = G−j |←−LR = (K − k)gℓi

}
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we have
[
B|Wg

]
B

=
(

i
√
K

i
√
K

)
by Proposition 3.6, and

∥b1∥ = (K − k)
√

1 + 1/K, b1⊥b2, ∥b2∥ = (K − k)
√
K + 1

by Lemma 3.7(2). Thus,
[
B|Wg

]
B′ =

(
i

iK

)
for the orthonormal basis

B′ = {b1/ ∥b1∥ , b2/ ∥b2∥}.
(4) Similarly, for h = hj ∈ kerA|R Proposition 3.6 and µ+ = i

√
k give

[B|Wh
]B =

(
i
√
k

i
√
k

)
where

B =
{
b1 = H+

j |−→LR = (K − k) gri, b2 = H+
j |←−LR = k−K√

k
igro

}
,

and ∥h|R∥ = 1 together with (3.9) imply

∥b1∥ = (K − k)
√
k + 1, b1⊥b2, ∥b2∥ = (K − k)

√
1 + 1/k,

so that [B|Wh
]B′ =

(
ik

i

)
for the normalized basis B′ =

{b1/ ∥b1∥ , b2/ ∥b2∥}.
(5) Combining (1)-(4) we obtain a block-diagonal form for B|L2

V (E), and we
now also see that its dimension is

dimL2
V (E) = 2 + 4 (n− E − 1) + 2E + 2N = 2 (|V | − 1) .

Next, we choose a maximal spanning tree in X, and let Γ be the set of
closed cycles with one edge outside of it, so that |Γ| = |E|

2 − |V | + 1 =
χ (X). Denoting P = Span {pγ | γ ∈ Γ} and N = Span {nγ | γ ∈ Γ}, we
have dimP = dimN = |Γ|. In addition, P , N and L2

V (E) are mutually
orthogonal by Proposition 3.9, so that P ⊕N = L2

V (E)⊥ by dimension
considerations. Proposition 3.9 also shows that B|p = I and B|N = −I,
so that any orthonormal bases for P and N give together an orthonormal
basis for L2

V (E)⊥ in which B|L2
V (E)⊥ = diag

(
I|Γ|,−I|Γ|

)
.

□

We remark that for non-regular graphs sometimes one is interested in
the Markov operator MX = D−1A or the Laplace operator LX = D −
A, where D is the degree operator (Df) (v) = deg (v) f (v). For biregular
graphs however, the spectrum of A determines that of MX and LX . We
finish the section with a nice exercise which shows in particular that the
Laplace spectrum does distinguish between adj-Ramanujan and Ramanujan
bigraphs.

Exercise 3.10. (1) The Laplace spectrum of X is

SpecLX = {0} ∪

{
K+k+2±

√
(K−k)2+4λ2

j

2

∣∣∣∣∣ 2 ≤ j ≤ n− E
}

∪ {k + 1}N ∪ {K + 1}E ∪ {K + k} .
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(2) X is adj-Ramanujan if and only if

SpecLX ⊆ {0} ∪
[
K+k+2−

√
(K−k)2+4(

√
K+
√
k)2

2 ,
K+k+2−

√
(K−k)2+4(

√
K−
√
k)2

2

]
∪ {k + 1} ∪ {K + 1}

∪
[
K+k+2+

√
(K−k)2+4(

√
K−
√
k)2

2 ,
K+k+2+

√
(K−k)2+4(

√
K+
√
k)2

2

]
∪ {K + k} ,

and it is Ramanujan if and only if in addition K + 1 /∈ SpecLX .

4. Combinatorics

We continue with X = (L⊔R,E) being a connected (K+1, k+1)-bigraph
with |L| = n, E = EX = dimker (AX |L), and pf = λ1 > λ2 ≥ . . . ≥ λn−EX
the positive eigenvalues of AX .

4.1. Pseudorandomness and biexpansion. Let E (S, T ) denote the set
of edges connecting two sets of vertices S and T in a graph. The famous
Expander Mixing Lemma is a simple yet powerful tool which bounds the
deviation of |E (S, T )| from its pseudorandom expectation (see [HLW06]).
In our case it takes this form:

Theorem 4.1 (EML). If X = (L ⊔R,E) is a (K+1, k+1)-bigraph with
λ2 ≤ ε, then

(4.1)
∣∣∣|E (S, T )| − k+1

|L| |S| |T |
∣∣∣ ≤ ε√|S| (1− |S||L|) |T | (1− |T ||R|)

for any S ⊆ L and T ⊆ R.

Sketch of Proof. Denoting by 1S the characteristic function of S, expand
|E (S, T )| = ⟨A1S ,1T ⟩ in an eigenbasis for A, and isolate the contributions
of the ±pf-eigenvectors. □

For Ramanujan bigraphs we have ε =
√
K+
√
k, and the EML is useful

when K ≈ k, but becomes disappointing when K ≫ k and
√
K +

√
k

approaches the trivial eigenvalue pf =
√
(K + 1)(k + 1). However, the

EML only takes advantage of the fact that the nontrivial spectrum lies
in [−

√
K−
√
k,
√
K+
√
k], and not of its concentration in two narrower

sub-strips (together with 0). We suggest here a different way to think
of pseudorandomness in bigraphs, of a similar nature, but which takes
into account the difference between Ramanujan and weakly-/adj-Ramanujan
bigraphs. We first define a notion of biexpander, which is a weakened version
of the (full) Ramanujan property:
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Definition 4.2. A (K+1, k+1)-bigraph X is an ε-biexpander if ε <
√
K,

EX = 0 and

Spec (AX) ⊆ {0} ∪ ±
[√

K − ε,
√
K + ε

]
∪
{
±
√

(K + 1)(k + 1)
}
.

Note that by (1.4) and (1.9), X is NB-Ramanujan if and only if it is a√
k-biexpander. Ramanujan bigraphs are in fact optimal biexpanders, in the

sense that there is no infinite family of ε-biexpanding (K+1, k+1)-bigraphs
with ε <

√
k (this follows from the generalized Alon-Boppana theorem

[Gre95,GŻ99]). We remark that [BDH21] shows that random bigraphs are
almost-Ramanujan (in the strong sense), namely, for any ε > 0, a random
bigraph is a

√
k+ε-biexpander with probability approaching one as the graph

size grows to infinity.

Thinking of A as mapping every element of L to K+1 elements of R, we
study the number of clashes arising from two subsets S, T ⊆ L, namely, pairs
of distinct edges e, e′ which leave S and T respectively, and end in the same
vertex:

Cl (S, T ) =

{(
e, e′

)
∈ E2

∣∣∣∣ e ∈ S ×R, e′ ∈ T ×Re ̸= e′, |e ∩ e′ ∩R| = 1

}
.

Theorem 4.3 (Clash Counting Lemma). If X is a (K+1, k+1)-regular
ε-biexpander with |L| = n, then∣∣∣ |Cl (S, T )| − (Kk+k+1

n |S| |T | − |S ∩ T |
)∣∣∣

≤ 3
√
Kε

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
,

and ∣∣∣ |Cl (S, T )| − (Kk+k+1−ε2
n |S| |T |+ (ε2 − 1) |S ∩ T |

)∣∣∣
≤ 2
√
Kε

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
for any sets S, T ⊆ L.

Proof. As each (e, e′) ∈ Cl(S, T ) constitutes a non-backtracking path of
length two from S to T , we have

|Cl (S, T )| =
〈(
A2 − (K + 1)

)
1S ,1T

〉
=
〈(
A2 −K − ε2

)
1S ,1T

〉
+ (ε2 − 1) |S ∩ T | .

We denote P = Span{1L,1R} = Span{f1, f̃1} and U =

Span
{
f2, f̃2 . . . , fn, f̃n

}
, obtaining an orthogonal A-stable decomposition

L2(V ) = P ⊕ kerA ⊕ U . Decomposing accordingly 1S = PP(1S) +
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PkerA(1S) + PU (1S) we observe first that EX = 0 implies PkerA(1S) = 0.
Since PP(1S) =

|S|
n 1L and SpecA|P = ±pfA we have〈(

A2 −K − ε2
)
PP(1S),1T

〉
=
(
Kk + k + 1− ε2

) 〈 |S|
n 1L,1T

〉
= Kk+k+1−ε2

n |S| |T | ,

and since SpecA|U ⊆ [
√
K − ε,

√
K + ε] and ∥PU1S∥ =

√
|S| − ∥PP1S∥2 we

have ∣∣∣|Cl (S, T )| − (Kk+k+1−ε2
n |S| |T |+ (ε2 − 1) |S ∩ T |

)∣∣∣
=
∣∣〈(A2 −K − ε2

)
PU (1S),1T

〉∣∣
≤
∥∥(A2 −K − ε2

) ∣∣
U

∥∥ ∥PU (1S)∥ ∥PU (1T )∥

≤2
√
Kε

√
|S|(1− |S|n )

√
|T |(1− |T |n ).

This is the second bound in the Theorem. To obtain the first one, repeat
the same proof replacing ε2 with zero throughout. Using

∥∥(A2 −K
) ∣∣

U

∥∥ ≤
(2
√
Kε+ ε2) in the last step, we obtain∣∣|Cl (S, T )| − (Kk+k+1

n |S| |T | − |S ∩ T |
)∣∣

≤(2
√
Kε+ ε2)

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
.

≤3
√
Kε

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
. □

Remark 4.4. (1) In the Ramanujan case the Clash Counting Lemma reads∣∣∣ |Cl (S, T )| − (Kk+1
n |S| |T |+ (k − 1) |S ∩ T |

)∣∣∣
≤ 2
√
Kk

√
|S|
(
1− |S|n

)
|T |
(
1− |T |n

)
.(4.2)

For an adj-Ramanujan graph, we encounter the additional term〈(
A2 −K − ε2

)
PkerA(1S),1T

〉
= (K + k) ⟨PkerA(1S),PkerA(1T )⟩ ,

which (without additional knowledge on either 1S or 1T ) would enlarge
the error term 2

√
Kk in (4.2) to K + k. (2) A converse for the Expander

Mixing Lemma was proved in [BL06], showing that satisfying (4.1) is in fact
equivalent to being an ε-expander, up to a logarithmic factor. It is shown in
[Mor24] that the same is true for clash counting and biexpansion:

Theorem 4.5 ([Mor24]). If a (K+1, k+1)-regular bigraph X = (L ⊔R,E)
satisfies ∣∣∣|Cl (S, T )| − (Kk+k+1

|L| |S| |T | − |S ∩ T |
)∣∣∣ ≤ √Kα√|S||T |

for any S, T ⊆ L, then X is a O
(
α
(
1 + log Kk

α

))
-biexpander.
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4.2. Sparsification. Another perspective on expansion is given by the
notion of spectral sparsification [ST11]. Roughly speaking, a graph X is
called a sparsifier of a graph Y with the same set of vertices if αAX − AY

is small in an appropriate sense, where α > 1 is some scaling factor6.
For example, if X = (L ⊔R,E) is a k-regular bigraph on 2n vertices
and Y = (L ⊔R,L×R) is the complete bipartite graph on the same
vertices, then it is easy to see that

∥∥n
kAX −AY

∥∥ ≤ εn if and only if
λ2 (AX) ≤ εk; thus, sparsification of the complete graph is equivalent to
being an expander. However, in the (K+1, k+1)-biregular case a Ramanujan
bigraph X = (L ⊔ R,E) is not a good sparsifier for the complete bipartite
graph Y = (L⊔R,L×R). The reason is the kernel of A on the left side: we
require that AX be injective on L, and assuming K > k the other eigenvalues
are bounded away from zero, but for Y the opposite is true, as the kernel
of A|L is almost maximal: E (Y ) = |L| − 1. This raises the question: what
do Ramanujan bigraphs sparsify? A possible answer is given by line-plane
graphs:

Proposition 4.6. Let k be a prime power, d ≥ 3, and Pd,k = (L ⊔ P, E)

the incidence bigraph of lines (L) and planes (P) in Fd+1
k . Then Pd,k is

a (K+1, k+1)-regular zero-biexpander (ε = 0) with n = |L| = kd+1−1
k−1 and

K = n−k−1
k .

Proof. First, K+1 = n−1
k = kd−1

k−1 is indeed the number of planes containing
a fixed line. By the discussion at the beginning of Section 3, it remains to
show that f : L → R with

∑
ℓ∈L f (ℓ) = 0 satisfies A2f = Kf . Since every

line is contained in K+1 planes, and every pair of different lines is contained
in a unique plane, indeed(
A2f

)
(ℓ) =

∑
ℓ⊂p∈P

(Af) (p) =
∑
ℓ⊂p

∑
ℓ′⊂p

f
(
ℓ′
)
=
∑
ℓ′∈L

∣∣{p ∈ P ∣∣ ℓ, ℓ′ ∈ p}∣∣ f (ℓ′)
= (K + 1)f(ℓ) +

∑
ℓ′ ̸=ℓ

f(ℓ′) = Kf (ℓ) . □

Note that by the miracle of geometry, for line-plane graphs the clash
counting problem is deterministic, as is the edge counting problem between
sets in a complete graph. The next claim shows that for fixed k, the operator
A2
∣∣
L

on a biexpander sparsifies the parallel operator on a line-plane graph
with the same left side. We cannot compare the adjacency operators on the
entire graphs, since they have right sides of different sizes.

Proposition 4.7. Let X = (L ⊔R,E) be a (K+1, k+1)-regular ε-biexpander,
where k is a prime power. If |L| = kd+1−1

k−1 for some d ≥ 3, then identifying

6We focus here on sparsification of the adjacency operator, as it relates to
pseudorandomess. Other works (e.g. [ST11]) address the associated Laplace or Markov
operators, which relate to cut sizes and the behavior of random walk, respectively.
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L with L ⊆Pd,k (in any manner) gives∥∥∥ n
k(K+1)A

2
X

∣∣
L
−A2

Pd,k

∣∣
L

∥∥∥ ≤ k+1
k +

|ε2−1|+2
√
Kε

(K+1)k n

Proof. The operator T = n
k(K+1)A

2
X

∣∣
L
−A2

Pd,k

∣∣
L

acts on constant functions
by n

k(K+1)pf
2
X − pf2Pd,k = k+1

k , and if f is a nonconstant λ-eigenfunction of
A2
∣∣
L
, then T acts on f by nλ

k(K+1) −
n−k−1

k = k+1
k + λ−K−1

k(K+1)n. Since X is an
ε-biexpander we have |

√
λ−
√
K| ≤ ε, and thus

|λ−K − 1| ≤
∣∣λ−K − ε2∣∣+ ∣∣ε2 − 1

∣∣ ≤ 2
√
Kε+

∣∣ε2 − 1
∣∣ . □

4.3. Cutoff phenomena. In this section we study the total variation
mixing time on bigraphs, and show that under various assumptions we obtain
Diaconis’ cutoff phenomenon with varying window size. Except for Corollary
4.12 which addresses the simple random walk (SRW) on vertices, we focus
on the non-backtracking random walk (NBRW) on directed edges E = EX ,
which moves from an edge v → w to a uniformly chosen random edge of the
form w → u with u ̸= v.

We continue with the notations from Section 3. In particular, X =
(L ⊔R,E) is a (K+1, k+1)-biregular graph with |L| = n. Since the NBRW
is 2-periodic (alternating between

−→
LR and

←−
LR), it suffices to observe the

walk at even (or at odd) times. We assume w.l.o.g. that the starting edge

e0 is in
−→
LR, so that the NBRW has distribution p2t

e0 =
(

B2

Kk

)t
1e0 at time 2t,

and (restricted to even times) it has sample space of size N :=
∣∣∣−→LR∣∣∣, and

stationary distribution

u = 1
N 1
−→
LR

= PSpan(1E ,1̃E)(1e0),

where P denotes orthogonal projection. The ε-mixing time of NBRW on X
is

tmix (ε) = tmix (ε,X) = min
{
2t ∈ N

∣∣∣ ∀e0 ∈ −→LR, ∥p2t
e0 − u∥TV < ε

}
,

where ∥·∥TV is the total-variation norm:

(4.3) ∥µ− ν∥TV = max
A⊆
−→
LR

|µ (A)− ν (A)| = 1
2 ∥µ− ν∥1 .

A family of graphs {Xn} is said to exhibit cutoff if tmix(ε,Xn)
tmix(1−ε,Xn)

n→∞−→ 1

for every 0 < ε < 1. The cutoff is said to occur at time t (n), if for
every ε > 0 there exists a window of size w (n, ε) = o (t (n)), such that
|tmix (ε,Xn)− t(n)| ≤ w(n, ε) for n large enough. The average degree of
NBRW is

√
Kk (in the sense that two consecutive steps take an edge to Kk

edges), and if t (n) = log√Kk |Xn| we say that the cutoff is optimal. By the
next claim, a

√
Kk-regular walk cannot mix in less steps regardless of the

graph spectrum:
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Lemma 4.8. For any ε > 0,

tmix (1− ε) ≥ log√KkN − log√Kk(
1
ε ).

Proof. For S = supp
(
B2t

1e

)
we have∥∥p2t

e − u
∥∥
TV
≥
∣∣p2t

e (E\S)− u(E\S)
∣∣ = u(E\S) = 1− |S|

N
≥ 1− (Kk)t

N

so at 2t = log√KkN − log√Kk(
1
ε ) we have

∥∥p2t
e − u

∥∥
TV
≥ 1− ε. □

For the upper bound on the mixing time we use the spectral analysis of
Section 3. Recall that X has positive adjacency eigenvalues pf = λ1 > . . . ≥
λn−E (where E = EX). By Theorem 3.1, for 2 ≤ j ≤ n − E we have (in the
appropriate orthonormal basis)

B2|Wfj
=


0 0 αjµ

+
j γj

0 0 0 βjµ
−
j

µ+
j /αj δj 0 0

0 µ−
j /βj 0 0


2

=


µ+2

j ηj 0 0

0 µ−2

j 0 0

0 0 µ+2

j η′j

0 0 0 µ−2

j


for µ±j = µ±λj

, and some ηj , η′j ∈ C, which satisfy |ηj |, |η′j | ≤
∥∥B2|Wfj

∥∥
2
≤∥∥B2

∥∥
2
= Kk. Denoting Dj =

(
µ+2

j ηj

0 µ−2

j

)
and D′j =

(
µ+2

j η′j

0 µ−2

j

)
, we see

that B2 is unitarily equivalent to a 2× 2-block-diagonal matrix:
(4.4)
B2 ∼ diag(Kk(×2), D2, D

′
2, . . . , Dn−E , D

′
n−E , (−K)×2E , (−k)×2N , 1×2χ),

where χ = χ (X) = |E|
2 − |V | + 1. We introduce a notation for the

corresponding decomposition of F ∈ L2(E):

(4.5) F = F 1 + F 2 + F
′2 + . . .+ Fn−E + F

′n−E + FL + FR + Fχ,

so that
(4.6)
B2tF = (Kk)tF 1 +

[∑n−E
j=2D

t
jF

j +D′tj F
′j
]
+ (−K)tFL + (−k)tFR + Fχ.

We denote by L2
0(E) := {1E , 1̃E}⊥ = {1−→

LR
,1←−

LR
}⊥ the “non-trivial” part of

L2(E), and observe that u = 1
1
e0 . We also observe that for any F supported

on
−→
LR we have F

′j = 0 (for 2 ≤ j ≤ n − E), as the bases B′ for Wfj

in Theorem 3.1 are comprised of two vectors supported on
−→
LR, and two

supported on
←−
LR.

The next Lemma bounds the operator and the Frobenius norms of powers
of Dj , in the (adj-)Ramanujan case.
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Lemma 4.9. Let ϑ ∈ [0, π], µ± =
√
e±iϑ
√
Kk, and D =

(
µ+2 η

0 µ−2

)
with

|η| ≤ Kk. Then for any t ≥ 0

(4.7)
∥∥Dt

∥∥2
2
≤
∥∥Dt

∥∥2
F
= (Kk)t

(
2 + |η|2

Kk

(
sin tϑ
sinϑ

)2) ≤ (Kk)t
(
2 +Kkt2

)
.

Proof. For any ϑ ∈ C we have

Dt =

(
µ+2t η

∑t−1
m=0 µ

+2mµ−2(t−m−1)

0 µ−2t

)
= (Kk)t/2

(
eitϑ e−i(t−1)ϑ η√

Kk

∑t−1
m=0 e

2imϑ

0 e−itϑ

)
= (Kk)t/2

(
eitϑ η√

Kk
sin tϑ
sinϑ

0 e−itϑ

)
,

and for ϑ ∈ R also |e±itϑ| = 1. □

Since X is Ramanujan when E = 0 and ϑj ∈ R for all j, we obtain from
(4.4) and Lemma 4.9:

Corollary 4.10. If X is Ramanujan then

∥∥∥B2t|L2
0(E)

∥∥∥
2
≤ max

j

∥∥∥Dt
j |L2

0(E)

∥∥∥
F
≤
√
(Kk)t (2 +Kkt2) ≤ t

√
2(Kk)t+1, and

(4.8)

∥∥B2t
∥∥2
F
= 2(Kk)2t + 2Nk2t

(4.9)

+ 2χ(X) + (Kk)t−1
n−E∑
j=2

(
4Kk + (|ηj |2 + |η′j |2)

( sin tϑj

sinϑj

)2)
.

Note that if X is only adj-Ramanujan, then we get the much worse∥∥B2t|L2
0(E)

∥∥
2
= Kt, but the Frobenius norm

∥∥B2t
∥∥2
F

is only increased by
2EK2t; this will be used when we replace the Ramanujan assumption by a
density hypothesis.

Theorem 4.11 (Logarithmic NBRW cutoff). Restricted to even times,
NBRW on (K+1, k+1)-regular Ramanujan bigraphs exhibits optimal cutoff
(at time log√KkN) with window size bounded by 3 log√Kk logN (for any
base in the inner log).

Proof. Since B2u = Kku, we have∥∥p2t
e − u

∥∥
TV
≤
√
N
2

∥∥p2t
e − u

∥∥
2

=
√
N
2

∥∥∥∥(B2

Kk

)t
(1e − u)

∥∥∥∥
2

=
√
N
2

∥∥∥∥(B2

Kk

)t
PL2

0(E)(1e)

∥∥∥∥
2

≤
√
N
2

∥∥∥∥(B2

Kk

)t ∣∣
L2
0(E)

∥∥∥∥
2

≤

√
Nt2Kk

2(Kk)t
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by (4.8). For any ε > 0, at 2t = log√KkN + 3 log√Kk logN we obtain

∥∥p2t
e − u

∥∥
TV
≤

√
N (logKkN + 3 logKk logN)2Kk

2N (logN)3
< ε

once N is large enough, and the lower bound on the mixing time follows
from Lemma 4.8. □

Corollary 4.12 (SRW cutoff). Restricted to even times, SRW on (K+1, k+

1)-regular Ramanujan bigraphs exhibits cutoff at time (K+1)(k+1)
Kk−1 log√Kk n

with window of size O
(√

log n
)
.

Interestingly, even though we study SRW, we need full Ramanujan and
not only adj-Ramanujan for the proof to work. The proof itself is the same as
the deduction of SRW-cutoff from NBRW-cutoff on regular graphs in [LP16],
and from geodesic flow on quotients of buildings in [CP22]. Let us give a
informal sketch: Choose a covering map φ : T ↠ X, where T = TK+1,k+1 is
the (K+1, k+1)-regular tree. For a vertex v0 ∈ VX , choose ξ ∈ φ−1(v0). Any
walk (Xt) on X starting at v0 lifts via φ to a unique walk (Xt) on T starting
at ξ. Denoting ρ (t) := distT (ξ,Xt) and Yt = ρ(t)− ρ(t− 2), we observe that
except for the times when Xt−2 = ξ (which occur only finitely many times
with probability one), the variables Yt are i.i.d. with expectancy

E (Yt | Xt−2 ̸= ξ) =
2Kk − 2

(K + 1)(k + 1)
.

It follows that ρ(2t) =
∑t

j=1 Y2j obeys a central limit theorem with
expectancy Kk−1

(K+1)(k+1) ·t, so at time t0 =
(K+1)(k+1)

Kk−1 log√KkN the lifted walk
Xt0 is roughly located at distance log√KkN from ξ. For simplicity we shall
pretend that ρ(t0) = log√KkN , and we can then deduce that Xt0 distributes
evenly on the log√KkN -sphere around ξ in T , by symmetry considerations.
Thus, Xt0 = φ (Xt0) distributes precisely as does NBRW starting from v0 at
time log√KkN , for which we have cutoff by Theorem 4.11.

In [NS23], it is shown that for regular Ramanujan graphs an additional
assumption on the girth of the graphs reduces the cutoff window to a bounded
size. We next show that the same holds for Ramanujan bigraphs. Our proof
is different and gives slightly stronger results, as we analyze the non-normal
operator B acting on edges, whereas [NS23] use Chebycheff polynomials to
relate the spectrum of A = AX to a self-adjoint non-backtracking walk on
vertices. With the necessary changes, our approach can be applied to the
regular case as well.
Definition 4.13. A family of (K+1, k+1)-bigraphs has m-logarithmic girth
(for m ≥ 2) if its members satisfy girth(X) ≥ 2

m−1 log
√
KkNX for N large

enough.

For example, the Ramanujan graphs Xp,q
E constructed from the Eisenstein

lattice in Section 8 have 6-logarithmic girth (Theorem 8.3).
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Theorem 4.14 (Bounded cutoff for logarithmic girth). A family of (K+
1, k+1)-regular Ramanujan bigraphs with m-logarithmic girth exhibits cutoff
at time log√KkN and window size bounded by 2 log√Kk

(
1
ε

)
+ log√Kk 7m

2.7

Proof. Since e ∈
−→
LR, 1

′j
e = 0 for all j, and write 1

j
e =

(
αj

βj

)
in the basis

which corresponds to the matrix representation of Dj . Since we assume the
graph is Ramanujan, we also have 1Le = 0. We take

2t = log√KkN + 2 log√Kk

(
1
ε

)
+ log√Kk 7m

2,

(rounded up to a multiple of m) and let τ = t
m . For large enough N we have

2τ ≤
log√KkN + 2 log√Kk

(
1
ε

)
+ log√Kk 7m

2

m
≤

log√KkN

m− 1
≤ girthX

2
,

which implies that 2τ steps of NBRW take any edge to (Kk)τ different edges.
Thus, (4.6) gives
(4.10)

(Kk)τ =
∥∥B2τ

1e

∥∥2
2
=
∥∥∥(Kk)τ11e + [∑n−E

j=2D
τ
j 1

j
e

]
+ (−k)τ1Re + 1

χ
e

∥∥∥2
2

≥
∑n−E

j=2

∥∥Dτ
j 1

j
e

∥∥2 + k2τ
∥∥1Re ∥∥2 + ∥1χe ∥2 .

Let

(4.11) J =
{
2 ≤ j ≤ n− E :

∣∣∣ ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣ ≤ c |αj |
}
,

where c > 2 is to be determined later. If j /∈ J , then

(Kk)−τ
∥∥Dτ

j 1
j
e

∥∥2 = ∥∥∥∥( eiτϑj
ηj√
Kk

sin τϑj
sinϑj

e−iτϑj

)(
αj

βj

)∥∥∥∥2
=
∣∣∣eiτϑjαj +

ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣2 + |βj |2
≥
∣∣∣|αj | −

∣∣∣ ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣∣∣∣2 + |βj |2
= |αj |2 +

∣∣∣ ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣2 − 2 |αj |
∣∣∣ ηj√

Kk

sin τϑj

sinϑj
βj

∣∣∣+ |βj |2
(as j /∈ J) ≥ |αj |2 +

∣∣∣ ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣2 − 2
c

∣∣∣ ηj√
Kk

sin τϑj

sinϑj
βj

∣∣∣2 + |βj |2
= |αj |2 + |βj |2 + c−2

c

∣∣∣ ηj√
Kk

sin τϑj

sinϑj

∣∣∣2 |βj |2 .(4.12)

7For technical convenience, we limit the allowed times to multiples of m.
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Moving back to time t = τm, we have

(Kk)−t
∑n−E

j=2

∥∥Dt
j1

j
e

∥∥2 =∑n−E
j=2

∥∥∥∥( eitϑj
ηj√
Kk

sin tϑj
sinϑj

e−itϑj

)(
αj

βj

)∥∥∥∥2
=
∑n−E

j=2

∣∣∣eitϑjαj +
ηj√
Kk

sin τmϑj

sinϑj
βj

∣∣∣2 + |βj |2
≤
∑n−E

j=2 2 |αj |2 + 2
∣∣∣ ηj√

Kk

sin τmϑj

sinϑj

∣∣∣2 |βj |2 + |βj |2 .
Using the bound

∣∣ sin τmϑ
sinϑ

∣∣ = ∣∣ sin τmϑ
sin τϑ

∣∣ ∣∣ sin τϑ
sinϑ

∣∣ ≤ m ∣∣ sin τϑ
sinϑ

∣∣ we obtain

(Kk)−t
∑n−E

j=2

∥∥Dt
j1

j
e

∥∥2 ≤∑n−E
j=2 2 |αj |2 + |βj |2 + 2m2

∣∣∣ ηj√
Kk

sin τϑj

sinϑj

∣∣∣2 |βj |2
(4.13)

(using (4.11), (4.12)) ≤
∑
j /∈J

2cm2

(c−2)(Kk)τ

∥∥Dτ
j 1

j
e

∥∥2 +∑
j∈J

2 |αj |2 + |βj |2 + 2m2 (c |αj |)2

≤ 2cm2

(c−2)(Kk)τ

[∑n−E
j=2

∥∥Dτ
j 1

j
e

∥∥2]+ (2c2 + 2)m2∑n−E
j=2

∥∥1je∥∥2
≤ 2cm2

(c−2)(Kk)τ

[∑n−E
j=2

∥∥Dτ
j 1

j
e

∥∥2]+ (2c2 + 2)m2.

Combining everything we obtain∥∥p2t
e − u

∥∥2
2
=

∥∥∥∥(B2

Kk

)t
PL2

0(E)(1e)

∥∥∥∥2
= 1

(Kk)2t
∑n−E

j=2

∥∥Dt
j1

j
e

∥∥2 + 1
K2t

∥∥1Re ∥∥2 + 1
(Kk)2t

∥1χe ∥
2

(using (4.13)) ≤ 2cm2

(c−2)(Kk)t+τ

[∑n−E
j=2

∥∥Dτ
j 1

j
e

∥∥2]+ (2c2+2)m2

(Kk)t + 1
K2t

∥∥1Re ∥∥2 + 1
(Kk)2t

∥1χe ∥
2

≤ 2cm2

(c−2)(Kk)t+τ

[∑n−E
j=2

∥∥Dτ
j 1

j
e

∥∥2 + k2τ
∥∥1Re ∥∥2 + ∥1χe ∥2]+ (2c2+2)m2

(Kk)t

(using (4.10)) ≤ ( 2c
c−2

+2c2+2)m2

(Kk)t .

Taking c = 3 we obtain
∥∥p2t

e − u
∥∥2
2
≤ 26m2

(Kk)t , hence at 2t = log√KkN +

2 log√Kk

(
1
ε

)
+ log√Kk 7m

2 we obtain

∥∥p2t
e − u

∥∥
TV
≤
√
N
2

∥∥p2t
e − u

∥∥
2
≤

√
N · 26m2

4(Kk)t
≤
√

N · 26m2

4Nε−2 · 7m2
≤ ε.

As before, the lower bound follows from Lemma 4.8. □

In the next theorem, we establish cutoff for adj-Ramanujan bigraphs which
satisfy Sarnak’s Density Hypothesis. This is precisely the case for principal
arithmetic quotients of the Bruhat-Tits tree of U3, by Theorem 7.11. In
addition, we shall assume that our bigraphs are left-transitive, namely, that
their automorphism groups act transitively on their left (smaller) side – this
is the case for Cayley bigraphs as defined in Section 2, and in particular, for
the Cayley quotients of the simply-transitive lattices constructed in Section
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5. We remark that one could also remove the left-transitivity assumption,
and instead prove cutoff for Θ(N) many starting vertices, as done in [GK22].
Theorem 4.15 (Cutoff under density hypothesis). Let F be a family of
left-transitive adj-Ramanujan (K+1, k+1)-bigraphs, which satisfy the density
hypothesis EX < N δ

X with δ = 2
1+logk(K) .

8 Then F exhibits cutoff at time
log√KkN and window size bounded by

(1)
(

2
1−δ

)
log√Kk logN in general, and

(2) 1
δ log

√
Kk

K
ε2

if F has m-logarithmic girth, and ε ≤ m
δ

δ−1
√
K.

Proof. Let X ∈ F and Γ = AutX. We restrict our attention to L2(
−→
LR) (so

henceforth B2 stands for B2
∣∣
L2(
−→
LR)

). We denote L2
0(
−→
LR) = 1

⊥, and J the

all-one matrix. As Γ acts by automorphisms and |Γe0| ≥ N
K+1 , we have∥∥p2t

e0 − u
∥∥2
2
=

1

|Γe0|
∑
e∈Γe0

∥∥p2t
e − u

∥∥2
2

≤ K + 1

N

∑
e∈Γe0

∥∥p2t
e − u

∥∥2
2
≤ K + 1

N

∑
e∈
−→
LR

∥∥p2t
e − u

∥∥2
2

=
K + 1

N(Kk)2t

∑
e∈
−→
LR

∥∥B2t
1e − (Kk)tu

∥∥2
2

=
K + 1

N(Kk)2t

∥∥∥B2t − (Kk)t

N J
∥∥∥2
F

Furthermore, B2t − (Kk)t

N J and
(
B2t
) ∣∣

1⊥ have the same non-zero singular
values, hence the same Frobenius norm, so that

∥∥p2t
e0 − u

∥∥2
2
≤ K + 1

N(Kk)2t
∥∥B2t

∣∣
1⊥

∥∥2
F

(4.14)

=
K + 1

N(Kk)2t

Nk2t + EK2t + χ(X) +
n−E∑
j=2

∥∥Dt
j

∥∥2
F


(using (4.7)) ≤ K + 1

N(Kk)2t
[
Nk2t + EK2t + χ(X) + (n− E − 1)(Kk)t

(
2 +Kkt2

)]
≤ K + 1

(Kk)t

[
E
N

(
K

k

)t

+ 2Kkt2

]
(where we have used N + χ(X) + (n − E − 1) = Kn ≤ N). The density

hypothesis give EN < N
1−logk K

1+logk K , and taking t0 = logKkN+
(

2
1−δ

)
logKk logN

8For inert U3 quotients, we have δ = 2
1+logq(q

3)
= 1

2
.
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(with any basis b > 1) we obtain

E
N

(
K

k

)t0

≤ N
1−logk K

1+logk K

(
K

k

)t0

= (logN)2 .

Thus,

∥∥p2t0
e0 − u

∥∥2
2
≤ K + 1

(Kk)t0

(
log2N + 2Kkt20

)
≤

4K2k
(
log2N + t20

)
(Kk)t0

,

which implies cutoff at time 2t0 = log√KkN +
(

2
1−δ

)
log√Kk logN , since

∥∥p2t0
e − u

∥∥
TV
≤
√
N
2

∥∥p2t0
e − u

∥∥
2
=
√
N
2

√
4K2k

(
log2N + t20

)
(Kk)t0

=

√√√√√√K2k

(
log2N +

(
logKkN + 2

1−δ logKk logN
)2)

(logN)
2

1−δ

,

and the latter goes to zero as N → ∞ since 2
1−δ > 2. This concludes (1),

and we now add the assumption that F has m-logarithmic girth. Taking
t = logKkN + 1

δ logKk
K
ε2

and τ = t
m , we have

2τ ≤
log√KkN + 1

δ log
√
Kk

K
ε2

m
≤

log√KkN

m− 1
≤ girthX

2

for large enough N . This means that τ steps of B2 take any edge in
−→
LR to

(Kk)τ distinct edges, hence every column of B2τ (w.r.t. the standard basis
of L2(

−→
LR)) has (Kk)τ ones and zeros elsewhere, so that

∥∥B2τ
∥∥2
F
= N(Kk)τ .

From the spectral analysis of B2 (restricted to
−→
LR), we have

N(Kk)τ =
∥∥B2τ

∥∥2
F
= (Kk)2τ + EK2τ +Nk2τ + χ(X) +

∑n−E

j=2

∥∥Dτ
j

∥∥2
F
.

We turn to Lemma 4.9 to observe that for each D = Dj

∥∥Dt
∥∥2
F
= (Kk)t

(
2 + |η|2

Kk

(
sin tϑ
sinϑ

)2)
≤ (Kk)tm2

(
2 + |η|2

Kk

(
sin τϑ
sinϑ

)2)
= (Kk)t−τm2 ∥Dτ∥2F .
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Thus, returning to (4.14) we obtain∥∥p2t
e0 − u

∥∥2
2
≤ K + 1

N(Kk)2t

[
EK2t +Nk2t + χ(X) +

∑n−E

j=2

∥∥Dt
j

∥∥2
F

]
≤ (K + 1)

N(Kk)2t

[
EK2t +Nk2t + χ(X) + (Kk)t−τm2

∑n−E

j=2

∥∥Dτ
j

∥∥2
F

]
=

(K + 1)

N(Kk)2t
(
EK2t +Nk2t + χ(X)

〉
+(Kk)t−τm2

(
N(Kk)τ − (Kk)2τ − EK2τ −Nk2τ − χ(X)

))
=

(K + 1)

N(Kk)2t
(
E
(
K2t −m2Kt+τkt−τ

)
+N

(
k2t −m2Kt−τkt+τ

)
+χ(X)

(
1−m2(Kk)t−τ

)
+m2N(Kk)t −m2(Kk)t+τ

)
≤ (K + 1)

(Kk)t

[
E
N

(
K

k

)t

+m2

]
.

For t = logKkN + 1
δ logKk

K
ε2

we have EN
(
K
k

)t
<
(
K
ε2

) 1−δ
δ (by E < N δ), and

thus

∥∥p2t
e − u

∥∥
TV
≤
√
N
2

∥∥p2t
e − u

∥∥
2
<
√
N
2

√√√√(K + 1)
(
(K/ε2)

1−δ
δ +m2

)
(Kk)t

.

The assumption ε ≤ m
δ

δ−1
√
K gives

(
K/ε2

) 1−δ
δ ≥ m2, so that

∥∥p2t
e − u

∥∥
TV
≤
√
N
2

√
2(K + 1) (K/ε2)

1−δ
δ

(Kk)t
=

√√√√(K + 1) (K/ε2)
1−δ
δ

2 (K/ε2)1/δ
< ε.

□

4.4. Geodesic prime number theorem. We now delve a bit into the
prehistory of Ramanujan graphs. For a lattice Γ ≤ SL2 (R), Selberg
introduced a zeta function ζΓ (u) which counts primitive geodesic cycles
in the Riemann surface H/Γ, and proved some properties analogous to
Riemann’s zeta function [Sel56]. The analogue of the Riemann hypothesis
in these settings is Selberg’s famous 1/4-conjecture. Selberg’s trace formula
expresses ζΓ (u) in terms of the algebraic structure of Γ, which prompted
Ihara to suggest a p-adic analogue for lattices Γ in SL2 (Qp) [Iha66]. It was
pointed out by Serre that Ihara’s zeta has a parallel geometric interpretation
– it counts non-backtracking cycles in a finite graph, which in modern
language is the quotient of the Bruhat-Tits tree of SL2 (Qp) by Γ [Ser80].
This means the Ihara zeta function can be defined for any graph, and Sunada
observed that the Riemann Hypothesis for a regular graph is equivalent to
being a Ramanujan graph [Sun86]. Hashimoto [Has89] has introduced the
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non-backtracking perspective, which uses B rather than A, and makes the
story much simpler. For more details we refer the reader to [Ter11].

Let us denote by Nm = Nm(X) the number of cyclically-non-backtracking
(CNB) cycles in a graph X. A CNB cycle is called primitive if it is not a
proper power of a shorter one, and two CNB cycles which differ by their
starting point are considered equivalent. A prime in X is an equivalence
class of primitive CNB cycles, and Ihara’s zeta function is the function
ζX (u) =

∏
[γ]

1
1−ulength γ , where the product is over all primes in X. We

have Nm = tr(Bm) by the definition of B, and every CNB cycle can be
uniquely expressed as a power of a primitive one; it is a standard exercise
in generating functions (see e.g. [KS00]) to see that these two observations
yield

ζX (u) = exp

( ∞∑
m=1

Nm

m
um

)
=

∏
µ∈SpecB

1

1− µu
=

1

det (I − uB)
.

For a (K+1, k+1)-bigraph, using the change of variable u =
√
Kk
−s

(where
s ∈ C) we note that ζX has poles at s ∈

{
log√Kk µ

∣∣∣µ ∈ SpecB
}

. In
particular, as was observed in [Has89], ζX has no poles with real part in(
1
2 , 1
)

(which is the right analogue of the Riemann Hypothesis in this case),
if and only if X is NB-Ramanujan. As in the number theoretic setting, the
zeta function can be related to prime counting:

Theorem 4.16 (PNT for bigraphs). If π(m) is the number of primes of
length m in an adj-Ramanujan (K+1, k+1)-bigraph X with N edges, then∣∣∣∣π(2m)− (Kk)m

m
− EX

(−K)m

2m

∣∣∣∣ ≤ 2N(Kk)m/2.

Proof. As every CNB-cycle is a power of a unique primitive one we have
N2m =

∑
d|2m dπ(d), so that Möbius inversion gives

(4.15)
∣∣∣∣π(2m)− N2m

2m

∣∣∣∣ = 1

2m

∣∣∣∣∑2m̸=d|2m
µ
(
2m
d

)
Nd

∣∣∣∣ ≤ N√Kkm,
where µ is the Möbius function and the r.h.s. is a crude bound for the number
of cycles of length at mostm. By the definition of B we haveN2m = tr(B2m),
and the spectral analysis of B (Theorem 3.1) yields

(4.16) N2m =
∑

µ∈Spec(B)
µ2m = 2(Kk)m + EX(−K)m +

∑
µ∈SpecB

|µ|≤ 4√
Kk

µ2m.

Combining (4.15) and (4.16) yields the theorem:∣∣∣∣π(2m)− (Kk)m

m
− EX

(−K)m

2m

∣∣∣∣
≤N
√
Kk

m
+ 1

2m

∑
µ∈SpecB

|µ|≤ 4√
Kk

|µ|2m ≤ 2N(Kk)m/2. □
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We remark that the non-Ramanujan graphs which we construct in
Theorem 8.3 have K = q3, k = q for some prime q. As they are still adj-
Ramanujan, their zeta function satisfy the R.H. with the exception of EX
additional poles at

s =
3

4
± π

4 ln q
i.

Going back to prime counting, it is interesting to observe that for adj-
Ramanujan graphs which are not Ramanujan, the deviation of the number of
primes from the “Riemann hypothesis” prediction ( (Kk)m

m ) fluctuates between
over and under-counting, according to 2m (mod 4).

5. Simply-transitive Lattices in Unitary Groups

In this section we begin our arithmetic construction of explicit Ramanujan
bigraphs. In 5.1 we define unitary groups schemes, and describe the Bruhat-
Tits tree of p-adic unitary groups. In 5.2 we construct arithmetic lattices
and state our main Theorem 5.2, which claims that these arithmetic lattices
act simply-transitively on the left hand side of the Bruhat-Tits trees. In 5.3,
5.4 and 5.5 we prove Theorem 5.2. Finally in 5.6 we collect some auxiliary
results which will be needed in later Sections (e.g. strong approximation).

5.1. Unitary groups in three variables. Let E/F be a separable
quadratic extension of global fields, and g 7→ g∗ the associated involution
on GL3(E), i.e. (g∗)i,j = τ(gj,i) for ⟨τ⟩ = Gal(E/F ). Classical unitary
groups (which give rise to lattices of type (I) on page 12) arise from a choice
of an Hermitian form Φ ∈ GL3(E) (i.e. Φ∗ = Φ). For OF the ring of integers
of F , the unitary group scheme over OF associated with E,Φ is defined by

(5.1) U3 (E,Φ) (R) = {g ∈ GL3 (OE ⊗OF
R) | g∗Φg = Φ}

for any OF -algebra R (note that one can always assume by scaling that Φ
has coefficients in OE). For example, for E = Q[

√
−3], F = Q and Φ = I,

we obtain for any commutative ring R:

U3

(
Q
[√
−3
]
, I
)
(R) =

{
g ∈ GL3

(
R
[
1+
√
−3

2

]) ∣∣∣ g∗g = I
}
.

The quotient of U3(E,Φ) by its center is called the projective unitary group
scheme, and denoted by PU3(E,Φ).

For any place v of F , and either G = U3(E,Φ) or G = PU3(E,Φ), we
denote by Gv = G(Fv) the group of Fv-rational points of G. When v is a
finite place which does not split in E, Ev = OE⊗Fv is a quadratic extension
of the local field Fv, and Gv acts on a Bruhat-Tits tree. Let us give now
a brief description of this tree, for the case that Ev/Fv is unramified (the
ramified case is slightly different - see e.g. [EP22, §3]).

Let ϖ be a uniformizer in Fv (and in Ev) and q = |OFv/ϖ| the size of the
residue field of Fv (so that |OEv/ϖ| = q2). Let B̃ be the two-dimensional
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Bruhat-Tits building of G̃ = PGL3 (Ev), whose vertices correspond to cosets
G̃/K̃, where K̃ = PGL3 (OEv) (see e.g. [Bro89, §V(8)]). If v0 ∈ B̃ is the
vertex with stabilizer K̃, there is a simplicial involution #: B̃ → B̃ defined
on vertices by (gv0)

# = Φ−1 (g∗)−1 v0 (for all g ∈ G̃). By [Tit79, §2.6.1],
the Bruhat-Tits tree B of Gv is a

(
q3 + 1, q + 1

)
-regular tree, which can be

identified with the fixed-section of the involution #: the B-vertices of degree
q3 + 1 are the B̃-vertices fixed by #, those of degree q + 1 are midpoints of
B̃-edges flipped by #, and the B-edges are medians of B̃-triangles reflected
by #. The hyperspecial vertices Bhs ⊆ B0 are precisely those which were
vertices in B̃, namely those of degree q3 + 1.

By Bruhat-Tits theory (see [Tit79, §2]), Gv acts simplicially on B and
transitively on its maximal faces (the undirected edges). Since B is a
biregular tree it follows that Gv acts transitively on the hyperspecial vertices
Bhs ⊆ B0, as well as on the non-hyperspecial ones. For any x ∈ B, there
is an associated subgroup Px ≤ Gv, called a parahoric subgroup, which
is precisely the stabilizer of x in Gv by the work of [HR08] (see Lemma
5.7). If x ∈ B1, then Px is called an Iwahori subgroup, which is a minimal
parahoric. For x ∈ B0, Px is a maximal parahoric, and if x ∈ Bhs, then Px

is called a hyperspecial maximal parahoric. Since v#0 = Φ−1v0, whenever
Φ ∈ K̃, v0 itself is a hyperspecial vertex in B.9 As its Gv-stabilizer is
G(OFv) = Gv ∩ K̃, and since Gv acts transitively on Bhs, we obtain an
identification Bhs ∼= G(Fv)/G(OFv).

5.2. Simply transitive lattices. The main goal of this section is to
construct four definite unitary group schemes over Z and prove that they
give rise to p-arithmetic congruence subgroups which act simply-transitively
on the hyperspecial vertices of the Bruhat-Tits building of the corresponding
p-adic group (Theorem 5.2).
Definition 5.1. A unitary datum (over Q) is a pair (E,Φ), of an imaginary
quadratic field E/Q, and a definite hermitian matrix Φ ∈ GL3(E).10 Let
G = U3(E,Φ) be the unitary group scheme over Z associated to (E,Φ). An
arithmetic datum is a pair (R,K), where R is a finite set of primes such
that for each p ̸∈ R, the subgroup Kp := G(Zp) ≤ Gp is maximal parahoric
(and hyperspecial for almost all p), and a finite set of maximal parahoric
subgroups for the remaining primes K = {Kp ≤ G(Qp)}p∈R. For any prime
p, define the principal p-arithmetic group associated to G/Q and the family
of parahoric subgroups {Kℓ ≤ Gℓ}ℓ,

(5.2) Γp = G(Q)
⋂∏

ℓ ̸=p

Kℓ ≤ Gp.

9This is in fact the case in all the examples which we shall consider, with the exception
of the CMSZ lattice (Theorem 5.2(C )) over p = 2, which requires extra caution.
10This extends to any totally real global field F replacing Q, where E is now a CM
extension of F , and Φ is definite at every real place of F .



62 SHAI EVRA, BROOKE FEIGON, KATHRIN MAURISCHAT, ORI PARZANCHEVSKI

A congruence datum is a pair (M,H), of an ideal M ⊴ OE , whose norm is
a power of a single non-split prime m ̸∈ R, and a subgroup H of the finite
group G[M ] := G(Zm) (mod M) ≤ GL3(OE/M). Note that the modulo M
map is a well defined homomorphism from Km = G(Zm) to G[M ]. Denote
the level (M,H) congruence subgroup of Km to be Km(H) = {g ∈ Km : g
mod M ∈ H}. For any prime p ̸= m, since Γp ≤ Km, the modulo M map
induces an homomorphism from Γp to G[M ]. Define the associated level
(M,H) congruence p-arithmetic subgroup to be

(5.3) Λ̃p = G(Q)
⋂ ∏

ℓ ̸=p,m

Kℓ ·Km(H) = {g ∈ Γp : g mod M ∈ H}.

A strong unitary datum is a sextuple (E,Φ, R,K,M,H), where (E,Φ) is
a unitary datum (over Q), (R,K) is an arithmetic datum and (M,H) is a
congruence datum.

Note that for the arithmetic datum (R,K) with R = ∅ and K = ∅, then
Γp = G(Q)

⋂∏
ℓ̸=pG(Zl) = G(Z[1/p]). Also note that for the congruence

datum (M,H) with M = m a rational prime and H = {I} the trivial
subgroup, then Km(H) is the principal congruence subgroup of level m,
which we shall also denote by Km(m).

The main purpose of this section is to prove the following Theorem.

Theorem 5.2. For each of following strong unitary datum, (E ), (G ), (M ),
and (C ), and each prime p ̸= m, the associated congruence p-arithmetic
subgroup modulo its center Λp = Λ̃p/Z(Λ̃p), where Z(Λ̃p) = {I} for (E ),
(G ), and (C ), and Z(Λ̃p) = {±I} for (M ), acts simply-transitively on the
hyperspecial vertices on the Bruhat-Tits building of G(Qp).

(E ) E = Q[ω], ω = −1+
√
−3

2 , Φ =

1 0 0
0 1 0
0 0 1

, R = ∅, K = ∅, M = (3),

m = 3 and

(5.4) H =


1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 ≤ G[3].
Call Λp

E the Eisenstein lattice.

(G ) E = Q[i], i =
√
−1, Φ =

1 0 0
0 1 0
0 0 1

, R = ∅, K = ∅, M = (2 + 2i),

m = 2 and

(5.5) H =


1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 ≤ G[2 + 2i].

Call Λp
G the Gauss lattice.
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(M ) E = Q[λ], λ = −1+
√
−7

2 , Φ =

3 λ̄ λ̄
λ 3 λ̄
λ λ 3

, R = ∅, K = ∅, M = (2),

m = 2 and

(5.6) H =


∗ ∗ ∗∗ ∗

∗

 ≤ GL3(F2) ∼= G[2].

Call Λp
M the Mumford lattice.

(C ) E = Q[η], η = 1−
√
−15
2 , Φ =

 10 −2(η + 2) η + 2
−2(η̄ + 2) 10 −2(η + 2)
η̄ + 2 −2(η̄ + 2) 10

,

R = {2}, K = {K2} where K2 is defined in Definition 5.3, M =
(3, 1 + η), m = 3 and

(5.7) H =

〈 1 1 0
−1 1 0
0 0 1

 ,

(
±I2 0

1

)
,

(
I2 b

1

)
| b ∈ F2

3

〉
≤ G[M ].

Call Λp
C the CMSZ lattice.

We note that it is not obvious why the H’s from equations (5.4) and (5.5)
are in fact subgroups. For case (G ) this was proved in [EP22, Proposition
34], while for case (E ) we shall prove it below in Lemma 5.23. We also note
that in equation (5.6), the isomorphism G[2] ∼= GL3(F2) is obtained from
G[2] ≤ GL3(OE/(2)) ∼= GL3(OE/(λ)) × GL3(OE/(λ̄)), OE/(λ) ∼= F2, and
projecting to the first component.

In this paper we shall mostly be interested in the above theorem when the
prime p is inert in E, in which case the Bruhat-Tits building is a (p3+1, p+1)-
biregular tree. This happens when p ≡ 3 mod 4 for (G ), p ≡ 2 mod 3
for (E ), p ≡ 3, 5, 6 mod 7 for (M ) and p ≡ 7, 11, 13, 14 mod 15 for (C ).
However we note that the above Theorem holds also for split primes, in
which case it yields new Ã2-groups in the sense of [CMSZ93a, CMSZ93b],
i.e. discrete groups which act simply-transitively on the vertices of the 2-
dimensional building of PGL3(Qp), for infinitely many primes (and not just
for the small primes p = 2, 3, as was extensively investigated in [CMSZ93b]).
This will be used in Section 8.3 to give new examples of Ramanujan and
non-Ramanujan Cayley Ã2-complexes.

Our proof of the above Theorem differs from those of [CMSZ93b] and
[Mum79] and proceeds as follows: First we prove the class number one
property for the unitary groups associated to our unitary and arithmetic
data, and use it to deduce the transitivity of the action of the p-arithmetic
groups, for almost all p. Secondly we use our congruence condition to remove
non-trivial elements stabilizing hyperspecial vertices, while still maintaining
the transitivity property. The first step differs from the proofs of [CMSZ93b]
and [Mum79] and this is what enables us to prove our result for primes other
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than p = 2, 3. The construction of the lattices (M ) and (C ) is strongly
motivated by, and draws intuition from, the works of [Mum79] and [KO06].
However, we stress that our congruence conditions are different from the
ones appearing in the above mentioned works. More specifically, in [Mum79]
the congruence condition M was over the prime m = 7, while ours is over
m = 2, and in [KO06] the congruence condition was M = (3), while ours
is over M = (3, 1 + η). The reason to find new congruence conditions
which guarantee a simply transitive action has to do with the Ramanujan
conjecture, as will become apparent in Section 7.

This section and the proof of Theorem 5.2 is organized as follows: In
subsection 5.3, we construct maximal parahoric subgroups at each prime and
for each of the four unitary group schemes from Theorem 5.2 (Proposition
5.6). In subsection 5.4, we give a criterion for the transitivity of the action
of the p-arithmetic groups, for almost all p, in terms of the unitary and the
arithmetic datum (Proposition 5.13). In subsection 5.5, we give a criterion
for the simply transitive action of certain congruence subgroups, assuming
the transitivity of the action, and depending on the congruence datum
(Proposition 5.19), and we also prove that the conditions in the previous
two steps holds for each of the four strong unitary datum in Theorem 5.2
(Proposition 5.22).

5.3. Parahorics.

Definition 5.3. Let (E,Φ) be a unitary datum of type (E ), (G ), (M ) or
(C ) as in Theorem 5.2, let G = U(E,Φ), and let p be a prime. Except for
the special cases (C ,(p =)2) and (G , 2), define the following subgroup of Gp,

Kp = G(Zp) = {g ∈ GL3(OEp) : g∗Φg = Φ},

and for the case (C , 2), define the following subgroup of G(Q2),

K2
∼= {(g1, g2) ∈ GL3(Z2)×GL3(Q2) : gt2 = ϕg−11 ϕ−1}

using the splitting E2
∼= Q2 × Q2, OE2

∼= Z2 × Z2 and Φ ∼= (ϕ, ϕt) ∈
M3(Zp)×M3(Zp).

Remark 5.4. We shall not deal with the case (G , 2) in which a wildly ramified
extension arises. For a complete proof of case (G ) of Theorem 5.2 see [EP22].

Remark 5.5. The unique case under consideration in which Kp ̸= G(Zp) is
(C , 2). In this case, note that K2 contains G(Z2) as a proper subgroup of
finite index

(5.8) G(Z2) ∼= {(g1, g2) ∈ GL3(Z2)×GL3(Z2) : g2 = (ϕt)−1(gt1)
−1ϕt}.

Proposition 5.6. The subgroups Kp ≤ Gp = G(Qp) defined in Definition
5.3 are maximal parahorics. Moreover, except for the special cases (M , 7),
(C , 3), (M , 5), (C , 2) and (G , 2), they are hyperspecial.
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The proof of Proposition 5.6 follows from the following Lemmas: Lemma
5.7 gives a characterization of maximal parahoric subgroups in terms of
stabilizer of vertices in the Bruhat-Tits building. Lemma 5.8 constructs
hyperspecial maximal parahoric subgroups in all cases (E ), (G ), (M ), (C ),
and for all primes p, except for the following the special cases in which p
divides the determinant detΦ: (M , 7), (C , 3), (C , 5), (C , 2) and (G , 2).
Lemma 5.9 constructs maximal parahoric subgroups in the special cases
(M , 7), (C , 3), (C , 5). Lemma 5.10 deals with the special case (C , 2).

Lemma 5.7. Let (E,Φ) be a unitary datum, G = U3(E,Φ), p a prime and
Gp = G(Qp). Then Kp ≤ Gp is maximal parahoric if and only if it is the
stabilizer of a vertex in the Bruhat-Tits building of Gp.

Proof. The proof follows from the main result of [HR08], together
with the fact that kernel of the Kottwitz homomorphism, κG :

Gp → X∗(Ẑ(G)Gal(Q̄p/Qp)), is the entire group Gp, since the group
Ẑ(G)Gal(Q̄p/Qp) ∼= U(1) is compact, hence X∗(Ẑ(G)Gal(Q̄p/Qp)) is
trivial. □

A maximal parahoric subgroup is called hyperspecial if it stabilizes a
hyperspecial vertex in the Bruhat-Tits building. If p splits then any vertex
is hyperspecial, if p ramifies then no vertex is hyperspecial, and if p is inert
then every vertex of degree p3 + 1 is hyperspecial.

Lemma 5.8. Let (E,Φ) be a unitary datum and G = U3(E,Φ). For any
prime p ∤ discΦ, the group

Kp = G(Zp) = {g ∈ GL3(OEp) : g∗Φg = Φ}
is a maximal parahoric subgroup of Gp = G(Qp). Moreover, if p ∤ disc(E),
then Kp is hyperspecial.

Proof. Let G̃ = ResE/QG be the Weil restriction of scalars of G from E to
Q and let Gal(E/Q) = {1, σ} be the Galois group. Since E ⊗Q E = E ⊕ E,
we obtain that G̃(Q) = G(E) = {g = (g1, g2) ∈ GL3(E) × GL3(E) : g2 =
Φ−1(g∗1)

−1Φ}. By projecting to the first component we get an isomorphism
ι : G̃(Q) → GL3(E), ι(g) = g1. The Galois group Gal(E/Q) acts on G̃ by
σ((g1, g2)) = (g2, g1), and G is the Gal(E/Q)-fixed points of G̃. Under the
ι isomorphism, Gal(E/Q) acts on GL3(E) through the following involution
θ(g) = Φ−1(g∗)−1Φ. Note that G is equal the θ-fixed points of GL3(E), i.e.
G = GL3(E)θ = {g ∈ GL3(E) : θ(g) = g}.

Let Bp = B(Gp) be the Bruhat-Tits building of Gp = G(Qp) and B̃p =

B(G̃p) the Bruhat-Tits building of G̃p = G̃(Qp) ∼= GL3(Ep). By Section 2.6.1
of Tits’ survey article [Tit79] (excluding the case (E, p) = (Q[i], 2), which is
wildly ramified), Bp is the Gal(E/Q)-fixed points of B̃p, where Gal(E/Q) acts
on B̃p through its action on G̃p. The Bruhat-Tits building B̃p = B(GL3(Ep))
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is a well understood object, for instance K̃p = GL3(OEp) is the stabilizer of
a hyperspecial vertex v0.

Since p ∤ detΦ and Φ ∈ M3(OE), we have Φ3 ∈ GL3(OEp) and therefore
θ(K̃p) = Φ−1K̃pΦ = K̃p. Since θ(K̃p) is the stabilizer in GL3(Ep) of θ(v0),

we get that θ(v0) = v0, i.e. v0 ∈ B̃Gal(E/Q)
p . Hence v0 belongs to Bp, and

Kp = Gp ∩ K̃p, which is the stabilizer of v0 in Gp, is a maximal parahoric
subgroup of Gp, and it is hyperspecial if Ep/Qp is an unramified extension,
which is when p ∤ disc(E). □

Lemma 5.9. In each of the following cases the group

Kp = G(Zp) = {g ∈ GL3(OEp) : g∗Φg = Φ},
is a maximal parahoric subgroup of Gp = G(Qp).

(M , 7) E = Q[λ = −1+
√
−7

2 ], Φ =

 3 λ̄ λ̄
λ 3 λ̄
λ λ 3

, and p = 7.

(C , 3) E = Q[η = 1−
√
−15
2 ], Φ =

 10 −2(η + 2) η + 2
−2(η̄ + 2) 10 −2(η + 2)
η̄ + 2 −2(η̄ + 2) 10


and p = 3.

(C , 5) E = Q[η = 1−
√
−15
2 ], Φ =

 10 −2(η + 2) η + 2
−2(η̄ + 2) 10 −2(η + 2)
η̄ + 2 −2(η̄ + 2) 10


and p = 5.

Proof. We continue with the notation in the proof of Lemma 5.8. Recall
that Gal(E/Q) acts on the Bruhat-Tits building B(GL3(Ep)) through the
involution θ, which acts on GL3(Ep) by θ(g) = Φ−1(g∗)−1Φ, and it acts on
the building by sending the vertex v0 to the vertex θ(v0) whose stabilizer is
θ(GL3(OEp)) = Φ−1GL3(OEp)Φ. Namely, since v0 = [O3

Ep
] ∈ B(GL3(Ep)),

then θ(v0) = Φ−1.v0 = [Φ−1O3
Ep

].

Note that Kp = Gp ∩ GL3(OEp) is the stabilizer in Gp of v0 = [O3
Ep

] ∈
B(GL3(Ep)). If θ(v0) is adjacent to v0, then the edge {v0, θ(v0)} is
Gal(E/Q)-fixed, hence it is a vertex in B(Gp). Therefore Kp = Gp ∩
GL3(OEp) = Gp ∩ θ(GL3(OEp)) is a maximal parahoric subgroup of Gp.
Hence it suffice to prove that θ(v0) is adjacent to v0.

Let Φ = k1 · a · k2, where k1, k2 ∈ GL3(OEp), a = diag(ϖe1 , ϖe2 , ϖe3),
ϖ ∈ OEp a uniformizer, e1 ≥ e2 ≥ e3, be a Cartan decomposition of Φ. Since
GL3(OEp) is the stabilizer of v0, the distance between θ(v0) = Φ−1.v0 and
v0, is the same as the distance between a.v0 and v0. So it suffices to prove
that a.v0 and v0 are of distance 1, which means that |ei − ej | ≤ 1 for any
i, j = 1, 2, 3. Hence we check that in each of the three cases (M , 7), (C , 3)
and (C , 5), the Cartan decomposition of Φ satisfies the above condition.
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(M , 7) The Cartan decomposition of Φ satisfies the above condition,

Φ = k1

ϖ ϖ
1

 k2,

where ϖ =
√
−7 is a uniformizer in OE7 and

k1 = (B−1)∗ ∈ GL3(OE7), k2 =

 1
−1

−1

 ·B−1 ∈ GL3(OE7),

B =

1 − λ̄
3 − λ̄

3
1

1

1
1 1
β β−1

α−1 γ
1

 1
1

1

 ∈ GL3(OE7),

α ∈ Z×7 satisfies α2 = −3, β = 1+α
2 ∈ Z×7 , and γ = −α−ϖ

2 ∈ O×7 .
(C , 3) The Cartan decomposition of Φ satisfies the above condition,

Φ = k1

ϖ ϖ
1

 k2,

where ϖ =
√
−15 is a uniformizer in OE3 and

k1 = (B−1)∗ ∈ GL3(OE3), k2 =

 1
−1

1

 ·B−1,
B =

1 η+2
5 −η+2

10
1

1

1

β β̃
1 1

√10 1
(α+ ϖ̄)−1

 1
1

1

 ∈ GL3(OE3),

α ∈ Z×3 satisfies α2 = −5 and α ≡ 1 mod 3, β = 1+α
2 ∈ Z×3 , and

β̃ = 1−α
2 ∈ pZ

×
3 .

(C , 5) The Cartan decomposition of Φ satisfies the above condition,

Φ = k1

ϖ2

ϖ
ϖ

 k2,

where ϖ =
√
−15 is a uniformizer in OE5 and

k1 = (B∗)−1 ∈ GL3(OE5), k2 =

−2
9

1
1

 ·B−1 ∈ GL3(OE5),

B =

η + 2 1
2 + α 2−α

η+2

1

β−1 1
1


1 1

ϖ (η + 2− η(2− α))
1 10−2(η+2)(2+α)

ϖβ̄

1


 1

1
1

 ∈ GL3(OE5),

α ∈ Z×5 satisfies α2 = −6 and α ≡ 2 mod 5, and β = 12(η+2)
ϖ̄ ∈ Z×5 .
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□

We are left to deal with the last remaining case (C , 2). Note that p = 2

splits in the quadratic field E = Q[η = 1−
√
−15
2 ] of case (C ). The following

Lemma deals with this case, and more generally, it constructs a maximal
parahoric subgroup for any unitary datum (E,Φ) and any prime p that
splits in E.

Lemma 5.10. Let (E,Φ) be a unitary datum, G = U3(E,Φ) and let p be
prime that splits in E. Consider the splitting Ep

∼= Qp×Qp, OEp
∼= Zp×Zp

and let Φ ∼= (ϕ, ϕt) ∈M3(Zp)×M3(Zp). Under this splitting

G(Qp) ∼= {(g1, g2) ∈ GL3(Qp)×GL3(Qp) | gt2 = ϕg−11 ϕ−1},
and the following is a hyperspecial maximal parahoric subgroup of G(Qp),

Kp
∼= {(g, (ϕg−11 ϕ−1)t) ∈ GL3(Zp)× (ϕt)−1GL3(Zp)ϕ

t}.

Proof. For a split prime p, the isomorphism Ep
∼= Qp × Qp is defined by

two conjugate idempotents ν and ν∗ (i.e. ν2 = ν, 1 = ν + ν∗ and νν∗ = 0)
together with ν 7→ (1, 0) resp. ν∗ 7→ (0, 1). This induces the following
decompositions GL3(Ep) ∼= GL3(Qp) × GL3(Qp), where g = g1ν + g2ν

∗ 7→
(g1, g2), and Φ ∼= (ϕ, ϕT ), where Φ = ϕν+ϕT ν∗. An element g = g1ν+g2ν

∗ ∈
G(Ep) belongs to G(Qp) if and only if (g1, g2) ∈ GL3(Qp)×GL3(Qp) satisfies
gt2 = ϕg−11 ϕ−1. This induces the following isomorphism G(Qp) ∼= GL3(Qp),
g = g1ν + g2ν

∗ 7→ g1. The subgroup GL3(Zp) is a hyperspecial maximal
parahoric subgroup of GL3(Qp). By the above isomorphism between G(Qp)
and GL3(Qp), the preimage of GL3(Zp) in G(Qp), which is precisely Kp, is
a hyperspecial maximal parahoric subgroup. □

Proof of Proposition 5.6. Follows from Lemmas 5.8, 5.9 and 5.10. □

5.4. Transitive actions. Let (E,Φ) be a unitary datum of one of the four
types in Theorem 5.2 and G = U3(E,Φ).

Definition 5.11. For any prime p, let Kp be the maximal parahoric
subgroup of Gp = G(Qp) in Definition 5.3. Define the following maximal
open compact adelic subgroup of G(A)

(5.9) K = G(R)
∏
p

Kp ≤ G(A).

Define the group of globally integral elements of G,

(5.10) Γ = G(Q)
⋂
K = G(Q)

⋂∏
p

Kp.

For any prime p, define the principal p-arithmetic subgroup of G,

(5.11) Γp = G(Q)
⋂
Kp = G(Q)

⋂∏
ℓ ̸=p

Kℓ.
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Remark 5.12. Note that for all cases except (C , 2), Kp = G(Zp), and in
case (C , 2), G(Zp) is of finite index in Kp. Hence in all cases except (C ),
K = G(RẐ), Γ = G(Z) and Γp = G(Z[1/p]), for any p. In case (C ), G(Z) is
of finite index in Γ and G(Z[1/p]) is of finite index in Γp, for any p.

Proposition 5.13. Let (E,Φ) be a unitary datum, G = U3(E,Φ) and
RE = {p prime : p | disc(E)}. Assume that the discriminant of Φ is
a product of primes from RE. Let L(s, χE) be the (continuation of the)
Dirichlet L-function of χE, the Dirichlet character associated to E/Q by
class field theory. For any prime p, let Kp ≤ G(Qp) be the maximal parahoric
subgroup in Definition 5.3. If

(5.12) |Γ|−1 = 2−2−|RE |12−1L(0, χE)L(−2, χE),

then for any unramified prime p, the principal p-arithmetic subgroup of G,
Γp = G(Q)

⋂∏
ℓ̸=pKℓ, acts transitively on the hyperspecial vertices of the

Bruhat-Tits building of G(Qp).

The proof of the above transitivity criterion comprise of the following
steps: First, we introduce the mass invariant of G and K (Definition 5.14).
Second, we give a mass formula relating the mass of G to the subgroup of
globally integral elements of G and its twists (Lemma 5.15). Third, we show
that the assumption in Proposition 5.13 implies that the class number of
the group is one (Lemma 5.16). Finally, we show that class number one
property implies that the p-arithmetic subgroup of G acts transitively on
the corresponding Bruhat-Tits buildings (Lemma 5.17).

Definition 5.14. Define the mass of G/Q w.r.t. the maximal open compact
adelic subgroup K, to be

(5.13) Mass(G,K) :=
µ(G(Q)\G(A))

µ(K)
=

∑
g∈G(Q)\G(A)/K

|G(Q) ∩ g−1Kg|−1.

where µ is a Haar measure on the adelic group G(A). The class number of
G is

(5.14) #Class(G,K) = |G(Q)\G(A)/K|.

Lemma 5.15. In the notation of Proposition 5.13,

(5.15) Mass(G,K) = 2−2−|RE | · 12−1 · L(0, χE) · L(−2, χE).

Proof. This formula follows directly from Proposition 2.13 of [GHY01], which
gives

(5.16) Mass(G,K) = 2−ℓ·d · L(M) · τ(G) ·
∏
v∈S

λv,

where in our case, d = [Q : Q] = 1 (the dimension of the number field
Q), ℓ = rankQ̄(G) = 3 (the absolute rank of G), τ(G) = 2 (the Tamagawa
number of G/Q̄), L(M) =

∏ℓ
i=1 L(1 − i, χi

E) = 12−1 · L(0, χE) · L(−2, χE)
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(the special value of the Artin-Tate motive associated to G), S = RE (the
ramified primes of G) and λp = 1/2 for p ∈ RE (the lambda factors at the
ramified places). The last fact follows from the local calculation in Section
3 of [GHY01] and since for any p ∈ RE , Kp has maximal reductive quotient
modulo p which is isomorphic to O1 × Sp2. □

Lemma 5.16. In the notation of proposition 5.13, if

(5.17) |Γ|−1 = 2−2−|RE |12−1L(0, χE)L(−2, χE),

then G is of class number one, i.e.

(5.18) G(A) = G(Q) ·K.

Proof. By Lemma 5.15, we get that
(5.19)

0 = Mass(G,K)− |G(Q) ∩K|−1 =
∑

1̸=g∈G(Q)\G(A)/K

|G(Q) ∩ g−1Kg|−1.

Since all the finite groups G(Q) ∩ g−1Kg are of size ≥ 1, we get that
G(Q)\G(A)/K = {1}. □

Lemma 5.17. In the notation of Proposition 5.13, if G(A) = G(Q) · K,
then for any unramified prime p, the principal p-arithmetic subgroup of G,
Γp = G(Q) ∩

⋂
ℓ̸=pKℓ, acts transitively on the hyperspecial vertices of the

Bruhat-Tits building of G(Qp).

Proof. Since Gp = G(Qp) acts transitively on the hyperspecial vertices of its
Bruhat-Tits building and G(Zp) is the stabilizer of a hyperspecial vertex, we
get that Γp will act transitively if we can prove that

(5.20) Gp = Γp ·Kp.

Let g ∈ Gp, and let G̃ ∈ G(A) be such that G̃p = g and G̃v = 1 if v ̸= p.
By the class number one property, there exists q ∈ G(Q), considered as
q̃ = (q, q, q, . . .) ∈ G(A), and k̃ = (k∞, k2, k3, . . .) ∈ K, such that G̃ = q̃ · k̃.
For any ℓ ̸= p, we get 1 = G̃ℓ = q̃ℓ · k̃ℓ = q · kℓ, hence q = k−1ℓ ∈ Kℓ.
Therefore, q ∈ G(Q)∩

⋂
ℓ̸=pKℓ = Γp. Finally, from g = G̃p = q̃p · k̃p = q · kp,

and the fact that kp ∈ Γp, we obtain the claim. □

Proof of Proposition 5.13. Follows from Lemmas 5.15, 5.16 and 5.17. □

5.5. Simply transitive actions.

Definition 5.18. Fix a group G and a subgroup S. A subgroup H of G is
called transversal to S if

(5.21) G = H · S := {h · s : h ∈ H, s ∈ S} and H ∩ S = {1}.
A subgroup H of G is called central transversal to S if

(5.22) G = H · S := {h · s : h ∈ H, s ∈ S} and H ∩ S ⊂ Z(G),
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where Z(G) is the center of G.

Proposition 5.19. Let M be an ideal of OE above a prime m ∈ Z (assume
m ̸= 2 in case (C)) and denote,

(5.23) G[M ] = G(Zm) mod M ≤ GL3(OE/M).

Let H ≤ G[M ] be transversal to Γ mod M ≤ G[M ], and assume that the
kernel of Γ modulo M is trivial (resp. equal to the center Z(Γ)). Define for
any unramified prime p ∤ m, the level H congruence p-arithmetic subgroup
and its quotient modulo the center

(5.24) Λ̃p = {g ∈ Γp : (g mod m) ∈ H}, Λp = Λ̃p/Z(Λ̃p).

If Γp acts transitively on the hyperspecial vertices of the Bruhat-Tits building
associated to G(Qp), then Λp acts simply-transitively on the hyperspecial
vertices of the Bruhat-Tits building.

We note in passing that Γ contains the center of Γp and therefore that the
center of Γ and of Γp coincides. This follows from the fact that Γ = Γ ∩Kp

is a stabilizer of a vertex in Γp and that the center of Γp is the point-wise
stabilizer of the entire building. A similar argument shows that Γ ∩ Λ̃p

contains the centers of Λ̃p and that the center of Γ ∩ Λ̃p and of Λ̃p coincide.

Lemma 5.20. In the notation of Proposition 5.19, assume that the kernel
of Γ modulo M is trivial (resp. equals the center Z(Γ)). If H ≤ G[M ] is
transversal to Γ mod M ≤ G[M ], then for any prime p ∤ m, Λ̃p ≤ Γp is
(resp. central) transversal to Γ.

Proof. If γ ∈ Γ ∩ Λ̃p, then modulo M , γ̄ ∈ Γ ∩H = 1, and since the kernel
of Γ modulo M is trivial (resp. equal the center Z(Γ)), we get that γ = 1

(resp. γ ∈ Z(Γ ∩ Λ̃p) = Z(Λ̃p)). Let γ ∈ Γp, and consider it modulo M ,
γ̄ ∈ G[M ]. Since G[M ] = H · Γ, there exist γ0 ∈ Γ, such that γ̄γ−10 ∈ H.
Hence γγ−10 ∈ Λ̃p, and therefore γ = γγ−10 · γ0 ∈ Λ̃p · Γ. □

Lemma 5.21. In the notation of Proposition 5.19, if Λ̃p ≤ Γp is central
transversal to Γ, then Λp = Λ̃p/Z(Λ̃p) acts simply-transitively on the
hyperspecial vertices of the Bruhat-Tits building.

Proof. Note that Γ = Γp ∩Kp is the stabilizer in Γp of a hyperspecial vertex
v0. Since Γp acts transitively, for any other hyperspecial vertex v, there exists
γ ∈ Γp such that γ.v0 = v. Write γ = γ1γ0, where γ1 ∈ Λp and γ0 ∈ Γ. Then
γ1.v0 = γγ−10 .v0 = γ.v0 = v, hence Λp acts transitively. By Γ ∩ Λ̃p = {I}
(resp. central), we get that Λ̃p acts simply modulo its center. □

Proof of Proposition 5.19. Follows from Lemmas 5.20 and 5.21. □

The next Proposition shows that the four cases of Theorem 5.2 satisfies
the conditions of Propositions 5.13 and 5.19.
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Proposition 5.22. In the notation of Theorem 5.2, each of the four strong
unitary datum, (E ), (G ), (M ) and (C ), satisfies the following two properties:

(i) |Γ|−1 = 2−2−|RE |12−1L(0, χE)L(−2, χE).
(ii) Γ embeds (resp. its kernel is the center for (M )) in G[M ], and H ≤

G[M ] is transversal to Γ.

Before proceeding with the proof of the above proposition, we first need to
show that case (E ) is well defined, in the sense that H is indeed a subgroup
(case (G ) is well defined by Proposition 3.4 in [EP]).

Lemma 5.23. Let G = U3(Q[
√
−3], I) and H =


1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 ⊂ G[3].

Then H is a normal subgroup of G[3]. Moreover, G[3] = Ω⋉H, where Ω is
the subgroup of monomials of matrices with coefficients in ⟨ζ⟩, ζ = 1+

√
−3

2 a
sixth root of unity.

Proof. First observe that G[3] = {g ∈ GL3(F3[z]/(z
2)) : g∗g = I}, where

(g∗)i,j = gj,i and a+ bz = a − bz. Writing g = a + bz, a, b ∈ M3(F3), then
g ∈ G[3] if and only if ata = I and bt = atbat. Let N = ker (modz) ≤ G[3]
and note that N = {I + bz : bt = b} is an abelian normal subgroup. Let
g = a + bz ∈ H. Since ai,i = 1 for any i, combined with the fact that a
sum of two non-zero squares in F3 is non-zero, we get that a = I. Therefore
H = {g = I + bz : bt = b, bi,i = 0 ∀i}, which is a subgroup of G[3]. Next
note that Ω∩H = {1} and that ωHω−1 ⊂ H for any ω ∈ Ω (both claims are
easy to verify when ω is either a permutation matrix or a diagonal matrix).
Finally note that for any g ∈ G[3], in any column of g there exists an element
from (F3[z]/(z

2))∗ = {±1+ bz : b ∈ F3}, hence there exists ω ∈ Ω such that
h = ω−1g satisfies hi,i = 1 for any i, i.e. h ∈ H. Therefore G[3] = Ω · H
as sets, which implies that H is normal and the fact that G[3] = Ω⋉H, as
claimed. □

Lemma 5.24. For each of the four strong unitary datum, (E ), (G ), (M )
and (C ), we have

(E ) Γ ∼= S3 ⋉ C3
6 and 2−2−|RE |12−1L(0, χE)L(−2, χE) =

1
3!·63 .

(G ) Γ ∼= S3 ⋉ C3
4 and 2−2−|RE |12−1L(0, χE)L(−2, χE) =

1
3!·43 .

(M ) Γ ∼= C2 × C3 ⋉ C7 and 2−2−|RE |12−1L(0, χE)L(−2, χE) =
1

2·3·7 .
(C ) Γ ∼= C2 × C3 and 2−2−|RE |12−1L(0, χE)L(−2, χE) =

1
2·3 .

In particular property (i) of Proposition 5.22 holds for (E ), (G ), (M ) and
(C ).

Proof. Evaluating the expression 2−2−|RE |12−1L(0, χE)L(−2, χE) is a simple
and direct calculation of the special values of the Dirichlet L-functions.
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Therefore what we are left to do is to compute the global integer group
Γ for each of the four cases (E ), (G ), (M ) and (C ).

Cases (E ) and (G ) follows from the fact for Φ = I, the identity matrix, the
group Γ is generated by permutation matrices and diagonal matrices with
entries roots of unity in OE , i.e. Γ ∼= S3 ⋉ (O∗E)3.

For cases (M ) and (C ), where Φ ̸= I, becauseG(R) is compact, there exist
bounds for the absolute values of the coordinates of a matrix g ∈ G(R), ∥g∥ =
maxi,j |gi,j |, which in particular hold for any g ∈ Γ =

⋂
pKp. Explicitly, one

obtains such bounds by giving base change matrices B ∈ GL3(R) such that

B∗ΦB = I.

Then, G(R) = U3(E,Φ)(R) = B · U(E, I)(R) · B−1. Note that ∥g∥ ≤ 1 for
any g ∈ U(E, I)(R). Therefore the absolute values of the coordinates of any
g ∈ G(R) = U(E,Φ)(R), are bounded by

m(Φ) := max
j
{
∑
k

|bjk|} ·max
k
{
∑
j

|cjk|},

where B = (bjk)jk and B−1 = (cjk)jk. This information is fed to a computer
to compute elements of Γ.

In case (M ), we particularly find

B =


1√
3
− λ̄√

21

λ̄(λ̄−3)
7

0
√

3
7

2−3λ̄
7

0 0 1

 , and B−1 =


√
3 λ̄√

3
λ̄√
3

0
√

7
3

3λ̄−2√
21

0 0 1

 ,

from which we obtain m(Φ) ≈ 7.46. For an element a + bλ ∈ O (a, b ∈ R)
the norm is given by N(a+bλ) = a2−ab+2b2. Looking at this as a parabola
in a, its minimum is in a = b

2 , so N(a+ bλ) ≥ 7
4b

2. Similarly, the minimum
with respect to the variable b is in b = a

4 , so N(a + bλ) ≥ 7
8a

2. In turn, in
order for a+bλ to occur as a component of g ∈ U3(Φ,R), it is necessary that
a2 ≤ 8

7m(Φ)2 and b2 ≤ 4
7m(Φ)2. In particular, for integer components must

have range a ∈ {−7, 5, . . . , 7} and b ∈ {−5,−3, . . . , 5}. These yields finitely
many coordinates to test for the entries of g ∈ Γ. Fed to a computer, we
find that the group Γ is a group with 42 elements

Γ ∼= C2 × G̃,

where C2 is generated by −I, and the group G̃ of order 21 has a unique
7-Sylow group Syl7 which is generated by g =

(
λ 1 0
−λ̄ 0 1
1 0 0

)
. The element h =(

λ̄ 0 −1
−1 1 −1
−1 0 λ

)
in Γ generates a 3-Sylow group Syl3, which acts by h−1xh 7→ x2

on Syl7. Altogether, this describes the group Γ completely

Γ ∼= C2 ×
(
Syl3 ⋉ Syl7

)
.



74 SHAI EVRA, BROOKE FEIGON, KATHRIN MAURISCHAT, ORI PARZANCHEVSKI

In case (C ), we proceed analogy. A matrix satisfying the above is

B =


1√
10

η+2

5
√
6

η−2
6
√
5

1√
10

η+7

5
√
6

η

2
√
5

1√
10

η+7

5
√
6

η+2

2
√
5

 and B−1 =


2(η+7)√

10

−3(η+2)√
10

η+2√
10

−
√
6 2(η+4)√

6

−2(η+1)√
6

0 −
√
5

√
5

 ,

which gives the bound m(Φ) ≈ 15.3. Notice here that because K2 is larger
than G(Z2), we have to allow factors 1

2 in some of the entries of

Γ =
⋂
p

Kp =

g ∈ U(E,Φ)(Q)
⋂OE

1
2OE

1
2OE

OE
1
2OE

1
2OE

OE
1
2OE

1
2OE

 | det g = ±1

 .

Here we obtain

Γ =

〈2 −2 1
3 −2 + η

2 1− η
2

3 −1 + η
2 −η

2

〉 =

〈
±

1 −(1 + η
2 )

η
2

3 −(3 + η) 1 + η
3 −(4 + η) 2 + η

〉 ∼= C6.

Observe that G(Z) = {±I}. □

Lemma 5.25. In the notation of Theorem 5.2, for each of the four strong
unitary datum, (E ), (G ), (M ) and (C ), property 2 of Proposition 5.22 holds,
i.e. Γ embeds (resp. its kernel is the center for (M )) in G[M ] and H ≤ G[M ]
is transversal to Γ.

Proof. Case (E ): Note that G[3] = {g ∈ GL3(R) | g∗ · g = 13}, where
R = OE/3OE

∼= F3(t)/(t
2), identifying ζ6 (the sixth root of unity in OE)

with −(1 + t) and complex conjugation is given by t̄ = −t. By Lemma 5.24,
Γ is the group of monomial matrices whose non-zero coefficients belongs to
⟨ζ6⟩. Because ζj6 ≡ 1 mod 3 holds if and only if j ∈ 6Z, and because in
each non-trivial permutation matrix at least one of the diagonal elements is
zero, we see that the residue class homomorphism mod 3 is injective on Γ,
as well as H ∩Γ = {I}. What is more, for each element of G[3] it is possible
to rearrange the columns such that every diagonal entry is a unit. This is
done by multiplying with an appropriate permutation matrix from the right.
Then, by multiplying with a diagonal matrix from the right (the diagonal
entries belonging to the units R× ∼=< ζ6 >), we obtain a matrix with all
diagonal elements equal to one. This shows G[3] = H · Γ.

Case (G ): This was already proved in [EP22].

Case (M ): Since M = (2) splits in OE = Z[λ = −1+
√
−7

2 ], we choose zeros
µ, µ̄ ∈ Z2 ofX2+X+2 get the idempotents e1 = −

√
−7
7 (λ−µ̄) and

√
−7
7 (λ−µ)

in E2
∼= Q2[X]/(X2+X+1), where λ is identified with the equivalence class

of X. The splitting of E2 is explicitly given by the Q2-algebra isomorphism
Ψ : E2 → Q2 ⊕ Q2, e1 7→ (1, 0), e2 7→ (0, 1), in particular Ψ(1) = (1, 1) and
Ψ(λ) = (µ, µ̄). Imposing on E2 the valuation v such that v(λ) = 1, there is
a unique choice of valuation v1 on the first component of Q2 ⊕ Q2 which is
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compatible with v, that is v1(µ) = v1 (pr1(Ψ(λ))) = 1.
The isomorphism G2

∼= PGL3(Q2) is induced by Ψ, as Ψ(G2) ={
(g1, g2) : g1 ∈ GL3(Q2) and gt2 = ϕg−11 ϕ−1

}
, where Ψ(Φ) = (ϕ, ϕt),

followed by projection onto the first component. Because ϕ ∈ GL3(Z2),
we obtain K2

∼= GL3(Z2), and any (mod λ)-condition on G(Z2) translates
to a (mod 2)-condition on GL3(Z2). In particular G[2] ∼= GL3(F2), and the
congruence condition (1.11) may be replaced by (5.6).
By Lemma 5.24, Γ ∼= C2×C3⋉C7, where C2

∼= ⟨±I⟩ = Z(Γ) is the center of

Γ, C3
∼=

〈
h =

 λ̄ 0 −1
−1 1 −1
−1 0 λ

〉 and C7
∼=

〈
g =

 λ 1 0
−λ̄ 0 1
1 0 0

〉. Then the

kernel of Γ under the mod 2 map is precisely the center group Z(Γ) = {±I}.
Finally the subgroup H is a 2-Sylow subgroup in G[2] ∼= GL3(F2) whose
index is 21, hence by size consideration, H is transversal to Γ mod 2 ≤ G[2].

Case (C ): The following lemma completes the proof of Proposition 5.22
in case (C ). □

Lemma 5.26. In the notation of Theorem 5.2 case (C ), we have: (a) The
group G[M ] is equal to

G[M ] =

〈(
A b
±1

)
| A ∈ GL2(F3), b ∈ F2

3

〉
.

(b) The kernel of Γ modulo M is trivial and the image of Γ modulo M is
equal to

Γ mod M =

〈
±

1 1 1
0 1 0
0 0 1

〉 =: N ≤ G[M ].

(c) Define the following subgroups

V =

{(
I2 b

1

)
| b ∈ F2

3

}
, Syl2 =

〈 1 1 0
−1 1 0
0 0 1

 ,

(
±I2 0

1

)〉
.

Then H = ⟨Syl2, V ⟩ is transversal to N .

Proof. (a) follows from the fact that Φ mod M =

0 0 0
0 0 0
0 0 1

 =: Φ̄, and by

unfolding the unitarity condition w.r.t. Φ̄. (b) follows from the fact that the

generator τ =

1 −(1 + η
2 )

η
2

3 −(3 + η) 1 + η
3 −(4 + η) 2 + η

 of Γ obtained in the proof of Lemma

5.24 is equal modulo M to the corresponding generator of N

τ mod M ≡

1 1 1
0 1 0
0 0 1

 ∈ N.
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(c) by (a), G[M ] ∼= {±I}×(V ⋊GL2(F3)), and the group Syl2 is isomorphic

to a 2-Sylow-group of GL2(F3), which together with
(
1 1
0 1

)
generates

GL2(F3). □

Proof of Proposition 5.22. Follows from Lemmas 5.24 and 5.25. □

We are finally in a position to prove our main result in this section.

Proof of Theorem 5.2. Follows from combining Propositions 5.6, 5.13, 5.19
and 5.22. □

We end this subsection with the following consequence of Theorem 5.2,
which we shall use in Section 7.

Corollary 5.27. For any one of the four cases of Theorem 5.2, define the
open compact adelic subgroup K ′ =

∏
vK
′
v ≤ G(A), where K ′v = Kv for all

v ̸= m, and K ′m = Km(H). Then G(A) = G(Q) ·K ′.

Proof. By Lemma 5.16 and claim (1) of Proposition 5.22 we get that G(A) =
G(Q) ·K, where K =

∏
vKv, and by claim (2) of Proposition 5.22 we get

that G(Q) ·K = G(Q) ·K ′, which completes the proof. □

5.6. Strong approximation. We end this section with some consequences
of the strong approximation property, and a few auxiliary results which were
used earlier in Section 2, and which will be used in later sections.

Let (E,Φ) be a unitary datum and G = U3(E,Φ) the unitary group
scheme. Let K ′ = G(R) ·

∏
ℓK
′
ℓ ≤ G(A) be an open compact subgroup, and

let Ram(K ′) be the finite set of primes ℓ such that either Kℓ = G(Zℓ) is not
hyperspecial or K ′ℓ ̸= Kℓ. Let p ̸∈ Ram(K ′) be a prime, let K ′p = G(R) ·∏

ℓ̸=pK
′
ℓ and let Λ̃p = G(Q)∩K ′p. Let Gs = SU3(E,Φ) = {g ∈ G : det(g) =

1} be the special unitary group scheme, let Gs
ℓ = Gs(Qℓ), Ks

ℓ = Kℓ ∩ Gs
ℓ

and K ′sℓ = K ′ℓ ∩ Gs
ℓ for any prime ℓ, and let K ′s,p = Gs(R) ·

∏
ℓ ̸=pK

′s
ℓ and

Λ̃s,p = Gs(Q) ∩K ′s,p.

A prime q is called good (w.r.t. K ′) if q /∈ Ram(K ′). By Hensel’s Lemma,
if q is good then Ks

q = Gs(Zq) projects onto Gs(Fq) via the modulo q map.
Note that Gs(Fq) ∼= SL3(Fq) if q splits in E, and Gs(Fq) ∼= SU3(Fq) if q is
inert.

Proposition 5.28. For any good prime p

Gs(A) = Gs(Q) ·Gs
∞ ·Gs

p ·K ′s,p,

and for any good prime q ̸= p,

Λ̃s,p (mod q) = Gs(Fq).
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Proof. By the strong approximation theorem (see e.g. [PR94]) applied to
the special unitary group Gs, which is a simply-connected almost-simple
algebraic group, for the set {∞, p}, for which G∞ · Gp is non-compact, we
get that Gs(Q) · Gs

∞ · Gs
p is dense in Gs(A). The first claim follows from

this by multiplying this dense set with the open subgroup Ks
p · K ′s,p. The

second claim follows from multiplying this dense set with the open subgroup
Ks

p · K ′s,p(q), where K ′s,p(q) = Gs
∞ ·

∏
ℓ ̸=p,qK

′s
ℓ · Ks

q (q) and Ks
q (q) is the

kernel of the modulo q map on Ks
q , getting that Ks

q is in the image of this
product, and concluding by the above consequence of Hensel’s Lemma. □

Corollary 5.29. Let p ̸= q be good primes. Let S be a generating set of Λ̃p,
Sq = S mod q ⊂ G(Fq) and D = ⟨det s : s ∈ Sq⟩ ≤ detG(Fq). Then

Λ̃p (mod q) = {g ∈ G(Fq) : det(g) ∈ D}.
Moreover, if p is an inert prime, then

Λ̃p (mod q) = Gs(Fq).

Proof. By Proposition 5.28, the image of Λ̃p modulo q, which is a subgroup
of G(Fq), contains Gs(Fq) = {g ∈ G(Fq) : det g = 1} as a subgroup.
Hence, the image of Λ̃p modulo q, is completely determined by the values
of the determinant of the elements of Λ̃p, and the first claim follows since S
generates Λ̃p.

For an inert prime p, we note that Λ̃p acts type-preserving on the Bruhat-
Tits biregular tree. Since Gs

pKp ≤ Gp is the subgroup of type preserving
elements in Gp, and since Λ̃p ∩Kp = {I}, we get that Λ̃p ⊂ Gs

p. combining
this with the first claim, we get the second claim. □

Denote the projective unitary group scheme by Ḡ = PU3(E,Φ) =
U3(E,Φ)/Z, where Z = {cI : c ∈ U1(E)} is the center of G.11 As before
we denote Ḡv = Ḡ(Qv) for any place v, K̄ℓ = Ḡ(Zℓ) for any prime ℓ, for
any K ′ℓ ≤ Kℓ denote by K̄ ′ℓ ≤ K̄ℓ, and let K̄ ′p = Ḡ∞ ·

∏
ℓ ̸=p K̄

′
ℓ. We now

give a variant of the strong approximation property (Proposition 5.28) for
the projective unitary group scheme Ḡ.

Proposition 5.30. Let Ḡ = PU3(E,Φ) and denote Ḡ0 := Ḡ(Q) · Ḡ∞ · Ḡp ·
K̄ ′p ⊂ Ḡ(A). Then Ḡ0 is a finite index normal subgroup of Ḡ(A), and there
exists c1 = 1, . . . , ch ∈ Ḡ(A), h = [Ḡ(A) : Ḡ0], such that

Ḡ(A) =
h⊔

i=1

ciḠ
0 =

h⊔
i=1

Ḡ(Q)ciḠpK̄
′p.

Moreover, denote the Q-algebraic abelian group C = det Ḡ, then

h ≤ 3Ram(K′) · [C(A) : C(Q) · C(RẐ)] <∞.
11We note that in Sections 6 and 8, we denote PU3(E,Φ) by G.
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Proof. Let G0 := G(Q) ·G∞ ·Gp ·K ′p ⊂ G(A). Then by Proposition 5.28,

Gs(A) = Gs(Q) ·Gs
∞ ·Gs

p ·K ′s,p ⊂ G(Q) ·G∞ ·Gp ·K ′p = G0 ⊂ G(A).

Since Gs is the derived subgroup of G we get that G0 is a normal subgroup
of G(A). Therefore Ḡ0, which is the image of G0 in Ḡ(A), is normal in
Ḡ(A). Denote C0 = det Ḡ0 ≤ C(A) and C ′ = det K̄ ′, and note that
h = [Ḡ(A) : Ḡ0] = [C(A) : C0] and therefore h ≤ [C(A) : C(Q) · C ′] ≤
[C(A) : C(Q)C(RẐ)] · [C(RẐ) : C ′]. Note that C(A)/C(Q)C(RẐ) is the
class group of C, hence it is finite. Also note that C(Qv) ∼= U1(Qv)/U1(Qv)

3,
which is of size ≤ 3. Hence [C(RẐ) : C ′] =

∏
ℓ∈Ram(K′)[C(Qℓ) : det K̄ℓ] ≤∏

ℓ∈Ram(K′) |C(Qℓ)| = 3Ram(K′), which completes the proof. □

We end this section with the following Lemma, which we shall use in
Section 7. Let G = U3(E,Φ) and G∗ = U3(E, J), where E is a quadratic
imaginary field and Φ ∈ GL3(E) is a non-degenerate Hermitian matrix and
J = (δi,3−j)i,j ∈ GL3(E). By [Lan35] (or [Jac62]) the groups G(Qp) and
G∗(Qp) are isomorphic for any prime p, and we shall identify them using the
following Lemma in such a way that G(Zp) is sent to G∗(Zp), for any odd
prime p ∤ discΦ.

Lemma 5.31. (a) The groups G(Zp) and G∗(Zp) are isomorphic if and
only if G(Zp) is a hyperspecial maximal compact subgroup of G(Qp).
If so, there is a matrix A ∈ GL3(Ep) such that an isomorphism is
given by g 7→ A−1gA. In this case, because changing Φ by some factor
doesn’t change the unitary group, we may assume Φ ∈ GL3(Op).

(b) Assume Φ ∈ M3(Op), and p−1Φ /∈ M3(Op). Then G(Zp) is
hyperspecial if and only if p ∤ det(Φ).

(c) Let p be either an odd prime or a split prime in E. If G(Zp) is
hyperspecial, then the matrix A can be chosen such that it belongs to
GL3(Op) canonically, and such that A∗ΦA = J .

Remark 5.32. In the remaining cases of either a ramified prime p, or p = 2
inert and G(Zp) hyperspecial, we will give explicit matrices A ∈ GL3(Op)
with A∗ΦA = J when needed.

Proof. (a) There is a matrix B ∈ GL3(Ep) inducing the isomorphism
G(Qp) → G∗(Qp), g 7→ B−1gB. The compact subgroup B−1G(Zp)B of
G∗(Qp) is conjugate to G∗(Zp) if and only if it is hyperspecial, i.e. the
stabilizer of the lattice chain given by the multiples of the standard lattice
L0 = O3

p. So there is C ∈ GL3(Ep) such that (BC)−1G(Zp)BC = G∗(Zp).
Then A = BC is as claimed. In this case, it holds ΦL0 = µL0 for some
µ ∈ Q∗p, so µ−1Φ ∈ StabGL3(Ep)(L0) = GL3(Op).

(b) If (p,det(Φ)) = 1, then Φ ∈ GL3(Op) stabilizes L0, i.e. L0 is selfdual
with respect to the Hermitian form given by Φ. So G(Zp) = StabU3(Φ,Qp)(L0)
is hyperspecial. In turn, if G(Zp) is hyperspecial, then by (a), ΦL0 = µL0
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for some µ ∈ Qp. Because Φ ∈M3(Op), we have vp(µ) ≥ 0. Because µ−1Φ ∈
GL3(Op), by assumption we obtain vp(µ) = 0. So actually Φ ∈ GL3(Op).

(c) We may assume Φ ∈ GL3(Op). In case p splits in E, i.e. Ep ≃ Qp⊕Qp,
let Φ = (ϕ, ϕT ) be the corresponding decomposition with ϕ ∈ GL3(Zp).
Then (g1, g2) ∈ G(Zp) if and only if g1 ∈ GL3(Zp) and gT2 = ϕg−11 ϕ−1.
Choosing A = (ϕ−1J,13) ∈ GL3(Op), we obtain A∗ΦA = (J, J) as well as
A−1G(Zp)A = G∗(Zp).

In case p is non-split in E, the manipulations in [Lan35] can be chosen
such that they correspond to base changes of O3

p, so there is D ∈ GL3(Op)
such that D∗ΦD = diag(a, b, c) is a diagonal matrix. Because the norm
O×p → Z×p is surjective for p inert in E, we may assume a = b = c = 1 with
respect to the basis e1, e2, e3. Choosing µ, ν ∈ O×p such that µµ̄ = −1 and
νν̄ = 1

2 , we obtain that with respect to the basis ν(e1+µe3), µe2, ν(e1−µe3)
of O3

p, the Hermitian form becomes J . This amounts to changing D further
by the base change matrix to obtain A. □

6. Local Representation Theory

In this Section we develop the representation theoretic machinery needed
to analyze arithmetic quotients of the Bruhat-Tits tree of unramified p-adic
unitary groups. In Section 6.1 we describe the irreducible, Iwahori-spherical
representations of these groups. In Section 6.2 we relate the representation
theory to the spectral theory of bigraphs developed in Section 3, and use
this to give a local criterion for quotients of the Bruhat-Tits tree to be (adj-
)Ramanujan. In Section 6.3 we lift this criterion to a global criterion on
adelic representations, which will be used in Sections 7 and 8.

6.1. Representations of PU3 over local fields. Let E/F and Φ be as
in Section 5.1, and let v be a finite place of F which is inert in E. In
this section we focus on the group G = PU3(E,Φ)(Fv), and since all non-
degenerate Hermitian forms on E3

v give rise to isomorphic unitary groups
[Lan35, Jac62]), we let ourselves assume that Φ = J =

(
1

−1
1

)
, which

makes computations considerably simpler. We shall use the action of G on
its Bruhat-Tits tree B to classify the irreducible unitary Iwahori-spherical
(I.S.) representations of G. This classification is not new (it appears in
[BC11], and related results appear also in [Bor76,Moy86,Has89,Lus89]), but
we give an elementary analysis which in addition highlights the connection
to the spectral theory of bigraphs developed in Section 3. We remark that
the representations of G = PU3 are the representations of U3 with trivial
central character, and they suffice for our purposes as the center of U3 acts
trivially on B.
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Denote F = Fv, E = Ev, κF = OF/ϖ, κE = OE/ϖ (for a uniformizer
ϖ ∈ F), and let q = |κF| (so that |κE| = q2).12 Recall that B was
described in Section 5.1 as the fixed-section of the involution # of the Bruhat-
Tits building B̃ of PGL3(E). Since J ∈ GL3(OE), the B̃-vertex v0 is a
hyperspecial vertex in B with stabilizer K = G∩ PGL3(OE). The midpoint
of the B̃-edge

(
1
1
ϖ

)
v0−

(
1
ϖ

ϖ

)
v0 is a non-hyperspecial B-vertex, which

we denote by v1. We denote by K ′ the stabilizer of v1 in G, and

I = K ∩K ′ = G ∩

(
O×

E OE OE

ϖOE O×
E OE

ϖOE ϖOE O×
E

)
is the G-stabilizer of the B-edge e0, which connects v0 and v1; I is an Iwahori
subgroup of G (see [EP22, Lem. 5.4-5.6]13). As E/F is unramified, there
exists ε ∈ O×E with TrE/F (ε) = 0. The upper-triangular matrices in G form
a Borel group, which can be parameterized by

P :=

pα,x,y := α−1

αα αx xx/2 + yε
α x

1

∣∣∣∣∣∣α ∈ E×, x ∈ E, y ∈ F

 .

The Borel group P acts transitively on hyperspecial vertices, and the 2-
sphere around v0 in B is composed of q4+q vertices, which are the translations
of v0 by

(6.1) Sp := {pϖ,x,y |x ∈ κE, y ∈ OF/ϖ2} ∪
{
p1,0,y/ϖ

∣∣ y ∈ κ×F } ∪ {p1/ϖ,0,0

}
.

The representations which concern us arise from characters (one-
dimensional representations) of P . For z ∈ C×, denote by χz : P → C×
the unramified character χz (pα,x,y) = zordϖ α. The modular character of
P is ∆P (pα,x,y) = q4 ordϖ α, and we denote χ̃z = χz · ∆−1/2P , namely
χ̃z (pα,x,y) =

(
z/q2

)ordϖ α. We denote the normalized parabolic induction
of χz by
(6.2)
Vz := n-indG

Pχz = {f ∈ C∞ (G,C) | ∀p ∈ P, g ∈ G : f (pg) = χ̃z (p) f (g)} ,
on which G acts by (gf)(x) = f(xg). If W is an irreducible representation
of G which embeds in Vz, then z is called a Satake parameter for W .

Let HI = Cc (I\G/I) be the Iwahori-Hecke algebra of G, namely,
compactly supported doubly-I-invariant functions on G, w.r.t. convolution.
For any I.S. representation V of G, its space of Iwahori-fixed vectors V I is
an HI -module via φv =

∫
G φ(g)gv dg, and we have the following:

Theorem 6.1. [Bor76,Cas80,BC13] Let V,W be representations of G.

12In fact, the results of this section apply to local fields F,E of positive characteristic as
well.
13contrary to popular belief, the stabilizer of a chamber in a Bruhat-Tits building is not
always Iwahori - see [Yu09, Lecture 2].
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(1) If V is irreducible then it is I.S. if and only if it embeds in Vz for some
z ∈ C×.

(2) If V is generated by V I then V is irreducible if and only if V I is.
(3) If V,W are generated by V I , W I then V ∼=G W if and only if V I ∼=HI

W I .
(4) If V is irreducible and I.S. then it is unitary if and only if V I is (where
HI is a ∗-algebra by φ∗ (g) = φ (g−1)).

In particular, every I.S. irreducible representation has Satake
parameter(s), and we denote by Sat(W ) the set of Satake parameters of
W . We now show the following:

Proposition 6.2. The Satake parametrization identifies the I.S. dual of G
with the non-Hausdorff space

C\
{
−q±1, 0, q±2

}
z ∼ 1/z

∪
{
−q±1, q±2

}
,

and the unitary irreducible representations are those with Satake parameter
in S1 ∪

[
−q,−1

q

]
∪
[

1
q2
, q2
]
.

Proof. The Weyl element w =
(

1
1

1

)
∈ G reflects e0 around v0, taking v1 to

the midpoint of diag(ϖ, 1, 1)v0−diag(ϖ,ϖ, 1)v0. Similarly, s =
(

1/ϖ
1

ϖ

)
∈

G reflects e0 around v1, taking v0 to p 1
ϖ
,0,0v0. The algebra HI is generated

by τ = 1IwI and σ = 1IsI . Observing the action of G on edges we have

IwI =
⊔

x∈κE
y∈κF

p1,x,ywI, IsI = p 1
ϖ
,0,0wI ⊔

⊔
y∈κ×

F
p1,0, y

ϖ
I,

and it follows that for any representation V of G, HI acts on V I by

(6.3) τv =
∑

x∈κE
y∈κF

p1,x,ywv, σv = p 1
ϖ
,0,0wv +

∑
y∈κ×

F
p1,0, y

ϖ
v

(here we have fixed Haar measures satisfying µG (I) = µP (P ∩ I) = 1). For
V = Vz, the Iwasawa decomposition G = PK = PI ⊔ PwI implies that
f ∈ V I

z is determined by f(1), f(w); upon verifying that the functions f1, fw
given by

f1 (pb) = χ̃z (p) , f1 (pwb) = 0,

fw (pb) = 0, fw (pwb) = χ̃z (p) /q
3/2,

(p ∈ P, b ∈ I)

are well defined, one obtains that {f1, fw} forms a basis for V I
z (and we

shall later see it is orthonormal when |z| = 1). Denoting fK := f1 + q3/2fw
we have that wfK = fK ; thus, K = I ⊔ IwI implies that fK spans V K

z .
Similarly K ′ = I ⊔IsI, and fK′

= f1+
z√
qfw is s-fixed so that it spans V K′

z .
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Fixing the basis {f1, fw}, the structure map ρ = ρz : HI → End
(
V I
z

)
can

be directly computed from (6.2) and (6.3), yielding

(6.4) ρz (τ) =

(
0 q3/2

q3/2 q3 − 1

)
, ρz (σ) =

(
q − 1

√
q
z

z
√
q 0

)
.

The eigenvectors of ρz (τ) are fK=
(

1
q3/2

)
,
(

1
−q−3/2

)
and of ρz (σ) are

fK
′
=
(

1
z/
√
q

)
,
(

1
−z√q

)
, so V I

z (and thus Vz) is reducible if and only if z ∈{
q±2,−q±1

}
. Denoting by Wz the unique irreducible I.S. subrepresentation

of Vz, we obtain the four representations Wq±2 ,W−q±1 , which are described
in Table 6.1; these are the trivial and Steinberg representations, and two
other representations which we call A and B.14

name z (Satake) basis for W I
z ρz (τ) ρz (σ) ρz (στ) K-spher K ′-spher

Trivial q2 fK = fK
′
= f1 + q3/2fw q3 q q4 ! !

Steinberg 1
q2

f1 − q3/2fw −1 −1 1 % %

A-type −q fK = f1 + q3/2fw q3 −1 −q3 ! %

B-type −1
q fK

′
= f1 − q−3/2fw −1 q −q % !

Table 6.1. The irreducible representations Wz of PU3 with
dimW I

z = 1.

We move to the irreducible Vz, i.e. z ̸∈
{
q±2,−q±1

}
, for which Wz = Vz

and dimV I
z = 2. The eigenvalues of

ρz (στ) =

(
q2

z

√
q
(
q3−1
z + q2 − q

)
0 q2z

)
are zq2, q2/z, so the only possible isomorphism between two such
representations is Vz ∼= V1/z. They are indeed isomorphic:

(6.5) Q =

((
q2z + qz + q + z

)
(q − 1)z q3/2

(
1− z2

)
q3/2

(
1− z2

) (
q2 + qz + q + 1

)
(q − 1)

)
gives Qρz (τ)Q−1 = ρ1/z (τ) and Qρz (σ)Q−1 = ρ1/z (σ).

Next comes the matter of unitarity. We have τ∗ = 1(IwI)−1 = τ , and
likewise σ∗ = σ. Assume first that V ∼= Vz for some z /∈

{
q±2,−q±1

}
. Since

τσ + στ is self-adjoint, if V is unitary then

ρz (τσ + στ) =

(
q2
(
z + 1

z

) √
q(q3+zq2−qz−1)

z√
q
(
q3z + q2 − q − z

)
q2
(
z + 1

z

) )
14In [BC11] these four are called sph, St, nt and ds respectively. We chose the name “A”
as these are the components of Rogawski’s A-packets (see Section 7), and “B” accordingly.
In [Bor76, §5.8(ii)] A and B appear as (1,−1) and (−1, 1) (under l = 1).
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is self-adjoint, and in particular has real trace, so that z ∈ S1 ∪ R×. If
z ∈ S1, then χz is unitary, hence so is Vz with the inner product ⟨f, f ′⟩ =∫
P\G f (x) f

′ (x)dx; these Vz are called the (unitary) principal series. For
V I
z with z ∈ R×\

{
q±2,−q±1

}
to be unitary, we need a Hermitian matrix

H ∈ GL2 (C) such that ρ = ρz is a ∗-homomorphism with respect to X∗ :=
H−1X

t
H, namely:(

0 q3/2

q3/2 q−1

)
= ρ (τ) = ρ (τ∗) = ρ (τ)∗ = H−1

(
0 q3/2

q3/2 q−1

)
H(

q−1 √q/z
z
√
q 0

)
= ρ (σ) = ρ (σ∗) = ρ (σ)∗ = H−1

(
q−1 z

√
q√

q/z 0

)
H.

The unique solution (up to scaling) is H = Q from (6.5), which is invertible
as

(6.6) detQ = −q3
(
z − q2

) (
z − 1

q2

)
(z + q)

(
z + 1

q

)
.

This means that V I
z admits a Hermitian structure for all z ∈

R×\
{
q±2,−q±1

}
; it is unitary if in addition H is definite, which by

(6.6) happens if and only if z ∈
(
−q,−1

q

)
∪
(

1
q2
, q2
)
; these Vz form the

complementary series. Finally, for z ∈
{
q±2,−q±1

}
, the one-dimensional

representation W I
z is unitary since ρz (σ) , ρz (τ) ∈ R (and σ∗ = σ, τ∗ =

τ). □

We shall also need the notion of temperedness: An irreducible
representation W is called tempered if it weakly contained in L2 (G), which
is equivalent to its matrix coefficients being in L2+ε (G) for every ε > 0
[CHH88]. A criterion of Casselman for temperedness is that all Satake
parameters of W satisfy |z| ≤ 1 (see [BC11, Def. 3.3], where χ denotes
the Satake parameter), and Table 6.2 indicates which Wz satisfy this.

6.2. Spectral theory revisited. If Λ is a cocompact lattice in G which acts
on B without fixed points, then X = XΛ = Λ\B is a finite (q3 + 1, q + 1)-
bigraph, and our next goal is to relate the analysis of A = AX and B = BX

in Section 3 to the representation theory of G.

Proposition 6.3. If L2 (Λ\G) =
⊕

iWi ⊕
⊕̂

iUi is the decomposition of
L2 (Λ\G) as a G-rep., where Wi are the Iwahori spherical components and
the Ui are the rest, then

(6.7) Spec (BX) =
⋃

i

{
±q
√
z
∣∣ z ∈ Sat (Wi)

}
.

Proof. We note that G acts on EB (the directed edges in B) with two orbits,
EB = Ge0 ⊔Ge′0 where e0 = v0 � v1 and e′0 = v0 � v1. Both e0 and e′0 have
stabilizer I, so that EB ∼= G/I ⊔ G/I as G-sets, and thus EX = Λ\EB ∼=
Λ\G/I ⊔ Λ\G/I. We obtain an identification

(6.8) L2 (EX) ∼= L2 (Λ\G)I ⊕ L2 (Λ\G)I ,
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where (f, f ′) on the r.h.s. corresponds to
{Λge0 7→f(Λg)
Λge′0 7→f ′(Λg)

}
on the l.h.s. The

r.h.s. is naturally a M2(HI)-module, and the crux of the matter is that
the operator B = BX on L2 (EX) corresponds under (6.8) to an element
of M2(HI) – specifically, to ( 0 σ

τ 0 ). From the decomposition L2 (Λ\G) =⊕
iWi ⊕

⊕̂
iUi we obtain an orthogonal decomposition of M2 (HI)-modules

(6.9) L2 (EX) ∼= L2 (Λ\G)I ⊕ L2 (Λ\G)I =
⊕

i
W I

i ⊕W I
i

(note there are finitely many Wi since |EX | <∞). Each summand W I
i ⊕W I

i

corresponds via (6.9) to a two- or four-dimensional subspace of L2 (EX)
which is invariant under B, and furthermore, the isomorphism type of Wi

already determines the spectrum of B = ( 0 σ
τ 0 ) on this subspace. We obtain:

Spec
(
ρW I

z ⊕W I
z
( 0 σ
τ 0 )

)
= Spec

(
0 ρW I

z
(σ)

ρW I
z
(τ) 0

)

=


Spec

 0 0 q−1 √q/z
0 0 z

√
q 0

0 q3/2 0 0

q3/2 q3−1 0 0

 dimW I
z = 2

±
√
ρz(στ) dimW I

z = 1


=
{
±q
√
z
∣∣ z ∈ Sat (Wz)

}
,

using (6.4) for dimW I
z = 2 (i.e. z /∈

{
q±2,−q±1

}
), and Table 6.1 otherwise.

In total, from L2 (Λ\G) =
⊕

iWi ⊕
⊕̂

iUi we obtain (6.7). □

The block decomposition of L2 (EX) in (6.9) agrees with that appearing
in Theorem 3.1, and Table 6.2 gives the precise connection between the two
presentations. We note that the Satake parameter is slightly stronger than
the parameter ϑ used in Section 3, as the latter does not distinguish between
Wz and W1/z.

Proposition 6.4. With L2 (Λ\G) =
⊕

iWi ⊕
⊕̂

iUi as in Proposition 6.3,

(6.10) Spec (AX) = {0}#{i |−q±1∈Sat(Wi)} ∪
⋃
i

{
±
√
q3 +

(
zi +

1
zi

)
q2 + q

}
where the union is over i such that q−2,−q±1 /∈ Sat (Wi), and zi is any
choice of Satake parameter in Sat(Wi). Moreover,

(6.11)
EX = dimHomG

(
W−q, L

2 (Λ\G)
)
= # {i | −q ∈ Sat (Wi)} ,

NX = dimHomG

(
W−1/q, L

2 (Λ\G)
)
= # {i | −1/q ∈ Sat (Wi)} .

Proof. The analysis of A = AX is a bit trickier than that of B. We now
have VB = Gv0⊔Gv1, which gives L2 (VX) ∼= L2 (Λ\G)K ⊕L2 (Λ\G)K

′
. The

latter is a module over the subalgebra

A =

{(
α β
γ δ

)
∈M2(HI)

∣∣∣∣ α ∈ Cc (K\G/K) , β ∈ Cc (K\G/K ′)
γ ∈ Cc (K ′\G/K) , δ ∈ Cc (K ′\G/K ′)

}



RAMANUJAN BIGRAPHS 85

Type z (Satake) temp ϑ λ=±
√

q3+

(
z+

1
z

)
q2+q µ = ±q

√
z # Thm. 3.1

triv. q2 % −i log q2 ±pf=±
√

(q3+1)(q+1) ±q2 1 (1)
Stein. 1

q2
✓ none ±1 χ(X) (5)

prin. z±1 ∈ S1 ✓ [0, π] ±[q3/2−
√
q,q3/2+

√
q] qS1

n−1−EX

(2)(a)

comp. z±1 ∈
(

1
q2

,q2
)
\{1} % (−i log q2,0) ±(q3/2 +√q, pf) ±((1,q2)\{q}) (2)(b)

z±1 ∈
(
−q,− 1

q

)
\{−1} % (π,π+i log q) ±(0, q3/2 −√q) ±((i

√
q,iq3/2)\{iq})

A-type −q %
π+i log q

0 (kerA
∣∣
L
) ±iq3/2 EX (3)

B-type −1
q ✓ 0 (kerA

∣∣
R
) ±i√q NX (4)

Table 6.2. The unitary Iwahori-spherical irreducible
representations of unramified U3, their Satake parameter(s)
z, temperedness, the corresponding ϑ parameter from Section
3, adjacency eigenvalues λ and non-backtracking eigenvalues
µ, the number of representations of this type in L2 (Λ\G) for
X = Λ\B with n vertices, and the corresponding section in
Theorem 3.1.

of M2(HI), and the operator AX acting on L2 (VX) coincides with

the element

(
0

1
µ(K′)1KK′

1
µ(K)1K′K 0

)
∈ A. We obtain an AX -stable

decomposition L2 (VX) ∼=
⊕

i

(
WK

i ⊕ WK′
i

)
, and the summands have

dimension one for z = −q±1, zero for z = q−2 and two otherwise (see Table
6.1). We recall that fK := f1 + q3/2fw and fK

′
= f1 + z√

qfw span WK
i

and WK′
i respectively, and observe that µ(K) = µ(I)[K : I] = q3 + 1 and

similarly µ(K ′) = q + 1. We have

KK ′ = (I ⊔ IwI) (I ⊔ IsI) = I ⊔ IwI ⊔ IsI ⊔ IwsI,

which implies 1KK′ = 1 + τ + σ + τσ and 1K′K = 1
∗
KK′ = 1 + τ + σ + στ .

Using (6.4) we can now compute that µ(K ′)−11KK′fK
′
= (qz + 1)fK and

µ(K)−11K′Kf
K = q(1 + q/z)fK

′ . Altogether, we have obtained

Spec

(
ρWK

z ⊕WK′
z

(
0

1
µ(K′)1KK′

1
µ(K)1K′K 0

))

=

{
Spec

(
0 qz+1

q(1+q/z) 0

)
z /∈ {q−2,−q±1}

Spec ((0)) z ∈ {−q±1}

=

{
±
√
q3 +

(
z + 1

z

)
q2 + q z /∈ {q−2,−q±1}

0 z ∈ {−q±1}
,

from which (6.10) follows. Moreover, z = −q and z = −1/q give
eigenfunctions in WK

z and WK′
z respectively, so in the notations of Section

3, W−q contributes to kerA|L and W−1/q to kerA|R, yielding (6.11). □
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Theorem 6.5. Let Λ ≤ G be a cocompact lattice, and X = XΛ = Λ\B.

(1) X is adj-Ramanujan if and only if every K-spherical irreducible
representation W ≤ L2 (Λ\G) is one-dimensional, tempered or of A-
type.

(2) The following are equivalent:
(a) X is Ramanujan.
(b) X is NB-Ramanuajan.
(c) X satisfies the Riemann Hypothesis.
(d) Every K-spherical irreducible representation W ≤ L2 (Λ\G) is one-

dimensional or tempered.

Proof. 1. By (1.4) XΛ is adj-Ramanujan if and only if every λ ∈ Spec (A)
satisfies either (i) λ = ±pf, (ii) λ = 0 or (iii)

∣∣λ2 − q3 − q∣∣ ≤ 2q2. From
Table 6.2 we see that (i) corresponds to a one-dimensional irreducible
representation, (ii) to the A and B types (where the latter is tempered),
and (iii) to the (tempered) principal series.

2. (a)⇒ (b) is immediate and (b)⇔ (c) was shown in Corollary 3.3.
(b) ⇒ (d): Any K-spherical representation is also I.S., and by (1.5) every
µ ∈ Spec (BX) satisfies |µ| ∈

{
1,
√
q, q, q2

}
, so by Table 6.2 any I.S. W ≤

L2 (Λ\G) is one-dimensional (trivial) or tempered.
(d)⇒ (a): If every K-spherical W ≤ L2 (Λ\G) is tempered then so is every
I.S. W ≤ L2 (Λ\G), since by Table 6.1 the remaining ones are only the
Steinberg and B-type representations, which are tempered. Since B = Gv0⊔
Gv1⊔Ge0⊔Ge1, any geometric operator T on (all or some) cells of B can be
identified with an operator in an appropriate subalgebra ofM4 (HI) acting on
a subspace of

⊕
iW

K
i ⊕WK′

i ⊕W I
i ⊕W I

i (see [LLP20, proof of Prop. 4.1] for
more details). IfW is one-dimensional then the corresponding eigenfunctions
of T |X are invariant under G′ = PSU3(Qp), so the corresponding eigenvalues
are trivial. If W is tempered, then it is weakly contained in L2 (G) [CHH88],
so its T -eigenfunctions are approximate eigenfunctions in L2 (B), and thus
Spec0 (T |W ) ⊆ Spec(T |L2(B)). □

Remark 6.6. In Corollary 3.3 we have shown (b)⇔ (c) for all bigraphs, and
not only quotients of Tp3+1,p+1 by lattices in PU3(Qp). Let us indicate how
to show that (a) ⇔ (b) for all bigraphs. The structure and representation
theory of the Hecke-algebra HI both follow from the structure of the Bruhat-
Tits tree and HI ’s action on it. Taking G = Aut(TK+1,k+1) and I ≤ G
to be an edge stabilizer, one obtains completely analogous results for the
structure and representation theory of the algebra HI = Cc (I\G/I) in this
case. Every finite (K+1, k+1)-bigraph X is a quotient of T by a co-compact
lattice Λ inG, and one can again verify that the non-backtracking eigenvalues
(unlike adjacency eigenvalues) already distinguish between tempered and
non-tempered representations. Thus, X is NB-Ramanujan if and only if
every irreducible HI -subrepresentation of L2(Λ\G)I is trivial or tempered.
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As any geometric operator can be represented by (a sub-matrix algebra
over) the Iwahori-Hecke algebra (see [LLP20, Prop. 4.1]), this shows that
in the case of bigraphs, NB-Ramanujan already implies Ramanujan for all
geometric operators.

6.3. Ramanujan global criterion. Let E/Q be a quadratic imaginary
field, Φ ∈ GL3 (E) a definite Hermitian form, and G = PU (E,Φ) the
associated projective unitary group scheme over Z. Denote K∞ = G (R) =
G∞, Kp = G (Zp) ≤ G (Qp) = Gp for any prime p, and G (A) = Π′vGv, the
adelic group. This is a locally compact group, with K =

∏
vKv = G(RẐ) a

maximal compact open subgroup, and G (Q) embeds diagonally as a discrete
cocompact lattice in G(A). Let K ′ =

∏
vK
′
v be a finite index subgroup of

K, i.e. K ′∞ = K∞ and K ′ℓ = Kℓ for almost all primes ℓ. Let p be an E-
inert prime such that K ′p = Kp, and denote K ′p =

∏
ℓ̸=pK

′
ℓ. Define the

p-arithmetic congruence subgroup corresponding to K ′ to be

Λp
K′ := G (Q)

⋂
K ′p ≤ G (Q)

⋂
Kp = G (Z[1/p]) .

By the strong approximation property (Proposition 5.30), there exist c1 =
1, . . . , ch ∈ G(A), such that

G (A) =
⊔h

i=1
G (Q) ciGpK

′p.

For any 1 ≤ i ≤ h, denote Λp
K′,i = G (Q)

⋂
ciK

′pc−1i , and note that Λp
K′,1 =

Λp
K′ . By a Theorem of Borel–Harish-Chandra [PR94, Thm. 5.7(2)], Λp

K′,i is
a cocompact lattice in Gp. Denote the finite quotient of the Bruhat-Tits tree
Bp by the congruence subgroup Λp

K′ by

Xp
K′ := Λp

K′\Bp.

An automorphic representation of G (A) is an irreducible
subrepresentation of the right regular G (A)-representation
L2 (G (Q) \G (A)). Denote by AG the set of irreducible automorphic
representations of G. By [Fla79], any π ∈ AG is a restricted tensor product
π = ⊗vπv, where πv is an irreducible admissible representation of Gv for
each v, and πKℓ

ℓ ̸= {0} for almost all prime ℓ. For K ′ ≤ K of finite index,
define the set of automorphic representations of level K ′ by

AG

(
K ′
)
=
{
π ∈ AG

∣∣∣πK′ ̸= {0}
}
.

We remark that the automorphic representations of PU (E,Φ) are in
natural bijection with the automorphic representations of U (E,Φ) with a
trivial central character, which will be denoted by AU(E,Φ),1 in Section 7.6.



88 SHAI EVRA, BROOKE FEIGON, KATHRIN MAURISCHAT, ORI PARZANCHEVSKI

Proposition 6.7. The following is an isomorphism of Gp-representations
(by right translations)

L2 (G (Q) \G (A))K
′p ∼=

h⊕
i=1

L2
(
Λp
K′,i\Gp

)
.

Proof. By Proposition 5.30 and by projecting to the p-factor, we get the
following Gp-equivariant bijection

G (Q) \G (A) /K ′p =
h⊔

i=1

G (Q) \G (Q) ciGpK
′p/K ′p ∼=

h⊔
i=1

Λp
K′,i\Gp,

which gives rise to an isomorphism of Gp-representations

L2 (G (Q) \G (A))K
′p ∼=

h⊕
i

L2
(
G (Q) \G (Q) ciGpK

′p/K ′p
)

∼=
h⊕

i=1

L2
(
Λp
K′,i\Gp

)
. □

Definition 6.8. Say that AG (K ′) is Ramanujan (resp. A-Ramanujan) at p
if for any π ∈ AG (K ′), either πp is one-dimensional or πp is tempered (resp.
or πp is tempered or of A-type).

The following Theorem gives an automorphic representation theoretic
criterion for Xp

K′ being Ramanujan.

Theorem 6.9. (i) If AG (K ′) is Ramanujan (resp. A-Ramanujan) at p then
Xp

K′ is Ramanujan (resp. adj-Ramanujan).

(ii) Let K ′′ ⊴ K ′ ≤ K such that G (A) = G (Q)·K ′. If Xp
K′′ is Ramanujan

(resp. adj-Ramanujan) then AG (K ′′) is Ramanujan (resp. A-Ramanujan) at
p.

Proof. (i) If AG (K ′) is Ramanujan (resp. A-Ramanujan) at p then
any irreducible Gp-representation of L2 (G (Q) \G (A))K

′p
is either one-

dimensional or tempered (resp. or A-type). By Proposition 6.7, L2
(
Λp
K′\Gp

)
is a sub-Gp-representation of L2 (G (Q) \G (A))K

′p
, hence its irreducible

representations are either tempered or one-dimensional (resp. or A-type),
so by Theorem 6.5, Xp

K′ is Ramanujan (resp. adj-Ramanujan).

(ii) If Xp
K′′ is Ramanujan (resp. adj-Ramanujan) then by Theorem

6.5, L2
(
Λp
K′′\Gp

)
is comprised of either tempered or one-dimensional

(resp. or A-type) irreducible representations. By Proposition 6.7,
L2 (G (Q) \G (A))K

′′p ∼=
⊕h

i=1 L
2
(
Λp
K′′,i\Gp

)
. Since G (A) = G (Q) ·K ′, we

may choose c2, . . . , ch from K ′, and since K ′′ ⊴ K ′, we get that ciK ′′pc−1i =

K ′′p for any i. Therefore L2 (G (Q) \G (A))K
′′p ∼= L2

(
Λp
K′′\Gp

)⊕h, hence its
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irreducible Gp-representations are either tempered or one-dimensional (resp.
or A-type), which completes the proof. □

In fact, in the settings of Theorem 6.9(ii), we have shown something a bit
stronger. For an irreducible Kp-spherical representation ρ of Gp, recall that
ρ ≤ VSat(ρ).

Proposition 6.10. Under the assumptions of Theorem 6.9(ii),

Spec

(
A2|L

X
p
K′

)
=

{
Spec

(
A2
∣∣
V K
Sat(πp)

) ∣∣∣∣π ∈ AG

(
K ′
)}

,

and counting eigenvalues with multiplicities, we have:

Spec

(
A2|L

X
p
K′

)×h
=

{
Spec

(
A2
∣∣
V K
Sat(πp)

)×dimπK′ ∣∣∣∣π ∈ AG

(
K ′
)}

,

where 1 ≤ h <∞ is as in Proposition 5.30. In particular,

(6.12) E
(
Xp

K′
)
=

1

h

∑
π∈AG(K′)
Sat(πp)=−p

dimπK
′
.

7. Automorphic Representation Theory

In this section we prove both positive and negative results about families
of automorphic representations satisfying and violating the Ramanujan
property.

This section is organized as follows: In Section 7.1 we state the main
automorphic results we will be proving. In Section 7.2 we recall the main
results of Rogawski from [Rog90] and [Rog92] that we need. In Section 7.3
we carry out explicit calculations of class field theory. In Section 7.4 we
compute levels of relevant automorphic representations. In Section 7.5 we
put everything together to prove the main theorems. In Section 7.6 we prove
the Sarnak-Xue Density Hypothesis for unitary group associated to a definite
form in three variables.

Throughout this section we use the following notations. Let G = U3(E,Φ)
denote the definite unitary group scheme over Z associated to E a quadratic
imaginary field and Φ ∈ GL3(E) a definite Hermitian matrix, and G∗ =
U3(E, J) denote its quasi-split inner form. For any place v of Q, denote
Gv = G(Qv), G∗v = G∗(Qv), K∞ = G∞ = U(3), Kp = G(Zp) and K∗p =
G∗(Zp) for any prime p. Fix an isomorphism Gp

∼= G∗p for any prime p, and if
p ∤ 2disc(Φ), choose it such that Kp is mapped to K∗p (see Lemma 5.31). Let
G(A) =

∏′
v Gv be the adelic group and let K =

∏
vKv = G(RẐ) ≤ G(A).

Denote by K ′ =
∏

vK
′
v a finite index subgroup of K and denote its finite

set of ramified places by Ram(K ′) = {p prime : K ′p ̸= Kp}.



90 SHAI EVRA, BROOKE FEIGON, KATHRIN MAURISCHAT, ORI PARZANCHEVSKI

Let AG be the set of automorphic representations of G. For any π ∈ AG,
π = ⊗vπv, where πv is the v-local factor of π for any place v. For anyK ′ ≤ K,
let AG(K

′) = {π ∈ AG : πK
′ ̸= 0} be the set of level K ′ automorphic

representations of G.

Definition 7.1. We say that π ∈ AG is Ramanujan if πp is tempered for all
p.

We say that AG(K
′) is Ramanujan if for any π ∈ AG(K

′), either π is
one-dimensional, or π is Ramanujan.

We say that AG(K
′) is A-Ramanujan if for any π ∈ AG(K

′), either: (i)
π is one-dimensional, (ii) π is Ramanujan, or (iii) π belongs to a global
A-packet (see Definition 7.12).

Note that in the terminology of the previous section, if AG(K
′) is

Ramanujan (resp. A-Ramanujan) then it is Ramanujan (resp. A-Ramanujan)
at p, for all p.

7.1. Statement of the main results. In this subsection we record the
main results of this section which we then prove in Section 7.5, with the
exception of our first main result which we prove in Section 7.2.

Theorem 7.2. AG(K
′) is A-Ramanujan for any K ′.

Theorem 7.2 follows from Rogawski’s classification of automorphic
representations of unitary groups in three variables, combined with the
generalized Ramanujan-Petersson Theorem (see Section 7.2 for more details).

Our second main result gives some criteria for proving that AG(K
′) is

Ramanujan for certain K ′ ≤ K.

Theorem 7.3. AG(K
′) is Ramanujan if either:

(1) there exists a prime p which ramifies in E, such that K ′p contains an
Iwahori subgroup, or

(2) there exists K ′′ ≤ K, such that K ′ ≤ K ′′, A(K ′′) is Ramanujan, and for
any prime p for which K ′p ̸= K ′′p , K ′p contains an Iwahori subgroup.

Claim (1) of Theorem 7.3 is a slight strengthening of Theorem 1.4 of
[EP22]. It follows from Theorem 7.2 above combined with Proposition 5.7
of [EP22]. Note that if p ∤ disc(Φ), and p /∈ Ram(K ′), then K ′p contains an
Iwahori subgroup. Claim (2) of Theorem 7.3 requires a more careful analysis
of Rogawski’s A-packets.

Next we specialize to the Eisenstein case E = Q[
√
−3] and Φ = I. We

recall that by Lemma 5.23 of Section 5, the following is a normal subgroup
of K3:

(7.1) K3(C) :=
{
g ∈ K3 : g ≡

(
1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
mod 3

}
.
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The following corollary of Theorem 7.3 gives positive Ramanujan results
in the Eisenstein case.

Corollary 7.4. Let G = U3(Q[
√
−3], I). Then AG(K

′) is Ramanujan if
either:

(1) K ′3 contains an Iwahori subgroup, in particular if K ′3 = K3, or
(2) K ′3 = K3(C) and for any prime 3 ̸= p ∈ Ram(K ′), K ′p contains an

Iwahori subgroup.

Proof. (1) follows from Theorem 7.3(1) and the fact that 3 ramifies at
Q[
√
−3].

(2) follows from Theorem 7.3(2) and the following fact: If K ′ =
∏

vK
′
v,

K ′3 = K3(C) and K ′v = Kv for any v ̸= 3, then AG(K
′) = {1}, and in

particular is Ramanujan. Indeed by Corollary 5.27, G(A) = G(Q) · K ′.
Therefore for any π ∈ AG(K

′) there is a K ′-invariant vector 0 ̸= f ∈ πK′ ≤
L2(G(Q)\G(A))K′ . By the assumption on K ′, f is the constant function,
hence 1 ≤ π, and since π is irreducible, we get that π = 1. □

Remark 7.5. We also prove a local result at 3 showing certain A-packet
supercuspidal representations have no K3(C)-invariant vectors. For the
complete statement see Proposition 7.44.

The following theorem and the subsequent corollary of it provide
counterexamples of non-Ramanujan levels in the Eisenstein case. For any
prime q, denote Kq(q) = {g ∈ Kq : g ≡ I mod q} and see the paragraph
after Proposition 7.39 for the definition of the subgroups I3(3) ≤ K3(3).

Theorem 7.6. Let G = U3(Q[
√
−3], I). Then AG(K

′) is non-Ramanujan
if either:

(1) Ram(K ′) = {3} and K ′3 = I3(3), or
(2) Ram(K ′) = {3, q}, q ≥ 5, K ′3 = K3(C) and K ′q = Kq(q).

Corollary 7.7. Let G = U3(Q[
√
−3], I) and K ′ ≤ G(A) such that K ′3 ⊆

K3(C) and K ′q ⊆ Kq(q) for some prime q > 5. Then AG(K
′) is non-

Ramanujan.

Proof. The corollary follows directly from Theorem 7.6 combined with the
following simple fact: if K ′′ ≤ K ′ ≤ K and AG(K

′′) is Ramanujan then
AG(K

′) is Ramanujan (since AG(K
′) ⊂ AG(K

′′)). □

The conjecture below is needed to state the next theorem, which gives
another positive result towards Ramanujan in the Eisenstein case. For the
notation used in the conjecture see Definition 7.12.
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Conjecture 7.8. For any character ρp of U1(Qp)
2 and finite index subgroup

K ′p of Kp,

if πn(ρp)K
′
p = 0 then π

K′
p

p = 0 for all πp ∈ Π′(ρp).

While we only use the conjecture for p ramified in E, we state it for all p.
The conjecture holds trivially for split primes p since Π′(ρp) = {πn(ρp)}. In
Proposition 7.45 we prove the conjecture holds for inert primes and principal
congruence subgroups as well as Iwahori principal congruence subgroups.

Theorem 7.9. Let G = U3(Q[
√
−3], I) and K ′ ≤ G(A), where Ram(K ′) =

{3, q}, q ≡ 1 (mod 12), K ′3 = K3(C) and K ′q = {g ∈ Kq : det(g) mod q ∈
⟨ζ⟩}. Assume Conjecture 7.8 holds for G and p = 3. Then AG(K

′) is
Ramanujan.

Our final main result is a proof of the Sarnak-Xue Density Hypothesis
(SXDH) for definite unitary 3 × 3 matrix groups G = U3(E,Φ). For the
classical SXDH see [SX91] and for its variant for algebraic groups defined
over number fields which are compact at the infinite places see [EGGG23].

Let S be a finite set of places of Q which contains {∞, 2, 3, 5, 7} and
the primes in which G ramifies. Fix K ′ℓ ≤ Kℓ a finite index subgroup
for any ℓ ∈ S, where K ′∞ = K∞. For any integer N =

∏
i p

ei
i , such

that pi ̸∈ S, denote Kpi(p
ei
i ) = {g ∈ Kpi : g ≡ I mod peii }, and

define K ′(N) =
∏

v∈SK
′
v

∏
pi ̸=v ̸∈SKv

∏
iKpi(p

ei
i ) ≤ G(A). Let AG,1 be

the subset of π ∈ AG with trivial central character and let AR
G,1 (resp.

AA
G,1, resp. AF

G,1) be the subset of π ∈ AG,1 which are Ramanujan
(resp. A-type, resp. one-dimensional). Denote V (N) :=

⊕
π∈AG,1

πK
′(N)

and VX(N) :=
⊕

π∈AX
G,1

πK
′(N) for X = R,A or F . By Theorem 7.2,

V (N) = VR(N)⊕ VA(N)⊕ VF (N).

Conjecture 7.10 (SXDH). For any ε > 0 there exists Cε > 0, such that for
any N coprime to S,

dimVA(N) ≤ Cε · dimV (N)
1
2
+ε.

Adjusting Marshall’s endoscopic arguments [Mar14] from the
cohomological to the definite settings, we get the following result which is a
stronger version of the (SXDH).

Theorem 7.11. For any ε > 0 there exists Cε > 0, such that for any N
coprime to S,

dimVA(N) ≤ Cε · dimV (N)
3
8
+ε.
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7.2. Automorphic representation of unitary groups in three
variables. The purpose of this subsection is to characterize the automorphic
representations of unitary groups in three variables, which are non-
Ramanujan. We outline a proof and consequences of Theorem 7.2
which states that the non-Ramanujan infinite-dimensional automorphic
representations of definite unitary groups are precisely the ones appearing in
Rogawski’s A-packets [Rog90].

Recall that G = U3(E,Φ), G∗ = U3(E, J) the quasi-split inner form and
that Gp

∼= G∗p, for any prime p, while G∞ ̸∼= G∗∞. Let P ∗ ≤ G∗ be the
Borel subgroup of upper triangular matrices, M∗ ≤ P ∗ the maximal torus
of diagonal matrices, and denote P ∗v = P ∗(Qv) and M∗v = M∗(Qv) for any
place v.

Let | · | = | · |E : E×\A×E → C× be the adelic norm considered as an
automorphic character of GL1/E. Let ω = ωE/Q : Q×\A× → C× be the
automorphic character of GL1/Q, associated by class field theory to the field
extension E/Q. Fix µ : E×\A×E → C× an automorphic character of GL1/E,
which extends ω, i.e. µ|A× = ω. See Definition 7.20 below for an explicit
construction of such a µ.

Definition 7.12. For any ρ = (ρ1, ρ
′), where ρ1, ρ′ : U1(Q)\U1(A) → C×

are automorphic characters of U1(E)/Q, define:

(1) Let ϕ = ϕ(ρ) be the automorphic character of GL1/E associated to ρ
(and µ) defined by

ϕ : E×\A×E → C×, ϕ(α) = µ(α)ρ1(α/ᾱ).

Let ε(s, ϕ) be the epsilon factor of ϕ, and denote the root number of ϕ
by ε(1/2, ϕ) = ±1.

(2) Let η = η(ρ) be the automorphic character of M∗/Q associated to ρ
(and µ) defined by

η : M∗(Q)\M∗(A)→ C×, η

α 0 0
0 β 0
0 0 ᾱ−1

 = |α|1/2ϕ(α)ρ′((α/ᾱ)β).

For any place v of Q, let δv be the modular character of P ∗v , and ind(ηv) =
Ind(δ1/2v ηp) be the unitary parabolic induction of ηv from P ∗v to G∗v,
defined by

indG∗
v

P ∗
v
(ηv) = ind(ηv)

(7.2)

=

{
f : G∗v → C :

(i) ∃K ≤f.i. K
∗
v , ∀k ∈ K, ∀g ∈ G∗v, f(gk) = f(g)

(ii) ∀p ∈ P ∗v , ∀g ∈ G∗v, f(pg) = δv(p)
1/2ηv(p)f(g)

}
.

(3) For a non-split prime v = p (resp. v = ∞), there is a certain
supercuspidal (resp. discrete series) representation of G∗v, denoted
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by πs(ρv), which is characterized via endoscopic character relations
and depends only on ρv. For all finite primes v, there is a non-
tempered representation πn(ρv) that is the unique irreducible quotient,
or Langlands quotient, of ind(ηv). Define the local A-packet of G∗v
associated to ρv, to be

Π(ρv) =

{
{πn(ρv)} v split
{πn(ρv), πs(ρv)} otherwise.

Define the global A-packet of G∗ associated to ρ, to be

Π(ρ) = {π = ⊗vπv ∈ Π(ρv) | for almost all places v, πv = πn(ρv)}.
(4) Recall Gp

∼= G∗p for any finite place v = p, and G∞ = U(3) is compact
for the infinite place v = ∞. For v = ∞, there is a finite-dimensional
irreducible representation ofG∞, denoted by π′s(ρv), which depends only
on ρv. For any place v, define the local A-packet of Gv associated to ρ,
to be

Π′(ρv) =

{
Π(ρv) v = p ̸=∞
{π′s(ρv)} v =∞.

Define the global A-packet of G/Q associated to ρ, to be

Π′(ρ) =
{
π = ⊗vπv ∈ ⊗vΠ

′(ρv) | for almost all places v, πv = πn(ρv)
}

An automorphic representation π ofG is said to belong to some A-packet,
and more explicitly, that π belong to the A-packet of ρ, if π ∈ Π′(ρ), i.e.
πv ∈ Π′(ρv) for any place v.

We now state some useful facts about A-packets which were proven by
Rogawski in [Rog90] and [Rog92]. Similar results were also proven by Flicker
(see [Fli06]).

Theorem 7.13. [Rog92] Let ρ, ϕ = ϕ(ρ) and ε(1/2, ϕ) be as in Definition
7.12. For π ∈ Π(ρ), let n(π) = #{v | πv = πs(ρv)}, and m(π) =
dimHom

(
π, L2

disc(G
∗(Q)\G∗(A))

)
, i.e. m(π) ̸= 0 if and only if π is a

discrete automorphic representation of G∗. Then

m(π) =
1

2

(
1 + ε(1/2, ϕ)(−1)n(π)

)
.

For π ∈ Π′(ρ), let n′(π) = #{v ̸= ∞ | πv = πs(ρv)}, and m(π) =
dimHom

(
π, L2(G(Q)\G(A))

)
, i.e. m(π) ̸= 0 if and only if π is an

automorphic representation of G. Then

m(π) =
1

2

(
1 + ε(1/2, ϕ)(−1)1+n′(π)

)
.

Proposition 7.14. [Rog90, § 14] Let ρ = (ρ1, ρ
′) be as in Definition 7.12

and assume µ∞(z) = ( z
|z|)
−1. Then π′s(ρ∞) is the trivial representation of

G∞ ∼= U(3) if and only if either:

(1) ρ1,∞(αᾱ) = (αᾱ)
2 and ρ′∞(β) = β−1, or
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(2) ρ1,∞(αᾱ) = (αᾱ)
−1 and ρ′∞(β) = β.

where |z| =
√
zz̄ and for s ∈ 1

2Z, ( zz̄ )
s :=

(
z
|z|

)2s
.

We now prove Theorem 7.2 which characterizes automorphic
representations of G = U3(E,Φ), for Φ definite, as either one-dimensional,
or Ramanujan, or of A-type (i.e. sits in global A-packets). A slightly weaker
result follows from Section 5 of [EP22], where the Ramanujan property
holds only for the unramified places. It was pointed out to us by S.W.
Shin that using Rogawski’s explicit description of base change, one can
prove the Ramanujan property at all places. In particular, this confirms the
expectation stated in Remark 5.8 of [EP22].

Proof of Theorem 7.2. Let π ∈ AG, which is not one-dimensional or of
A-type. By Section 14 of [Rog90] (transfer of inner forms of U3), there
exists a unique π∗ ∈ AG∗ , such that πp ∼= π∗p for any finite place p and
π∗∞ is cohomological. By Section 13 of [Rog90] (endoscopic classification
of U3), see also Theorem 5.2 of [EP22], we get that π∗ is either a stable
cuspidal representation of G∗ or an endoscopic transfer of a stable cuspidal
representation from U2 × U1 or U1 × U1 × U1. Let π̃ be the global
base change of π∗, which is a cohomological and (conjugate) self-dual
automorphic representation of GL3/E, that is either cuspidal (when π∗ is
stable) or belongs to the automorphic parabolic induction from cuspidals on
GL2×GL1 or GL1×GL1×GL1. By the Generalized Ramanujan-Petersson
Conjecture (GRPC) due to [Shi11] (which relies on Deligne’s proof of the
Weil conjectures [Del74], Ngo’s proof of the fundamental Lemma [Ngô10],
as well as previous techniques developed by Eichler, Shimura, Langlands,
Kottowitz, Clozel, Harris-Taylor and other experts), any cohomological,
self-dual, cuspidal representation of GLn/E is Ramanujan. Combining the
(GRPC) with the fact that parabolic induction preserves temperedness, we
get that π̃ is Ramanujan. By the paragraph before Theorem 13.3.3 of
[Rog90], we get that by definition, π̃p is the local base change of π∗p, for
any p. If π∗p was not tempered, then by Sections 11.4 and 13.2 of [Rog90], we
get that π∗p and π̃p are the Langlands quotients of parabolic induction from
the Borel subgroups of characters χ and χ ◦ N , where N is the norm map
from the subgroup of diagonal matrices of GL3 to G∗ defined in Section 3.10
of [Rog90]. Since π∗p is non-tempered the character χ is non-unitary, hence
χ◦N is also non-unitary, and therefore π̃p is non-tempered, in contradiction
to the above. Hence πp = π∗p is tempered for any finite place p. □

As a consequence of Theorem 7.2, together with the classification result
of the Iwahori-spherical unitary representations of Gp, for an inert prime p
(Table 6.2), we get that the A-type representations are precisely the Iwahori-
spherical members of the Rogawski’s A-packets.

Corollary 7.15. Let π ∈ AG. Then the following are equivalent:
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(1) π belongs to a global A-packet.
(2) For all primes p, πp belongs to a local A-packet.
(3) For all primes p, if πp is Iwahori-spherical then πp = πn(ρp) for some

unramified character ρp.
(4) For all inert primes p, if πp is Iwahori-spherical then Sat(πp) = −p.
(5) For some inert prime p, πp is Iwahori-spherical and Sat(πp) = −p.

Proof. By the definition of a A-packets, (1) implies (2). Since the only
Iwahori-spherical member in a local A-packet can be πn(ρp) (see Lemma
7.33 below), (2) implies (3). For an unramified character ρp, πn(ρp) is
the Langlands quotient of an unramified principal series representation
indGp

Pp
(ηp), and since

ηp
(
diag(p, 1, p−1)

)
= |p|1/2E µ (p) ρ1(p/p)ρ

′ (p/p) = p−1ω(p) = −p−1,

the Satake parameter of any subquotient of indGp

Pp
(ηp) is either −p or its

inverse −1/p. However, since the Langlands quotient πn(ρ) is non-tempered
(see [Rog90, §12.2]), −1/p is ruled out (see Table 6.2) and we get that (3)
implies (4). Clearly, (4) implies (5) since πp is Iwahori-spherical for almost
all p. Finally, since Sat(πp) = −p implies that πp is neither tempered nor
one-dimensional, by Theorem 7.2, (5) implies (1). □

7.3. Class field theory. Throughout this subsection E = Q[
√
−3] is

the Eisenstein field. Our goal in this section is to construct a specific
automorphic character µ of GL1/E, whose restriction to an automorphic
character of GL1/Q gives the quadratic character ωE/Q coming from class
field theory, and to calculate its epsilon factor.

For any place v of Q, denote Ev = E ⊗Q Qv the étale quadratic extension
of Qv. Note that E∞ = C, and for a prime p, Ep is a field if and only if p
does not split in E, otherwise Ep

∼= Qp ×Qp.

Lemma 7.16. The class field character ω = ωE/Q : Q×\A× → C×, ω =
⊗vωv, is uniquely defined as follows:

(1) ω∞ |R×
>0
≡ 1 and w∞(−1) = −1,

(2) ω3 |3Z(1+3Z3)≡ 1 and ω3(−1) = −1,
(3) ωp |Q×

p
≡ 1 for any prime p ≡ 1 mod 3, and

(4) ωp |Z×
p
≡ 1 and ωp(p) = −1, for any prime p ≡ 2 mod 3.

Proof. Denote by ωv = ωEv/Qv
the local class field character. Then as a

character of the ideles of Q, we get that w = ⊗vwv. By definition

ωv(x) =

{
1 x ∈ NmEv/Qv

(Ev×)
−1 x ∈ Q×v \Nm(E×v ).

By direct calculation we get that
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(1) NmE∞/Q∞(E×∞) = R×>0,
(2) NmE3/Q3

(E×3 ) = 3Z(1 + 3Z),
(3) NmEp/Qp

(E×p ) = Q×p for any prime p ≡ 1 mod 3, and
(4) NmEp/Qp

(E×p ) = p2ZZ×p for any prime p ≡ 2 mod 3.

The claim now follows. □

Let ζ = 1+
√
−3

2 ∈ E. Then O = Z[ζ] is the ring of integers of E and
O× = ⟨ζ⟩ is its group of units. Also E is embedded in C by sending ζ to
e

2πi
6 ∈ C.

For any finite place w of E, denote by Ew the completion of E w.r.t. w,
νw : E×w ↠ Z the normalized discrete valuation, Ow = {x ∈ Ew : νw(x) ≥
0} the ring of integers of Ew, O×w = {x ∈ Ew : νw(x) = 0} the group of
units of Ow, and ϖw ∈ Ow, νw(ϖw) = 1, a uniformizer of Ew.

Definition 7.17. Let w be a finite place of E and let χ be a character of
E×w . Call χ unramified if χ |O∗

w
≡ 1, in which case define c(χ) = 0. If χ is

not unramified then define its conductor to be

c(χ) = min{c ∈ N : χ | (1 +ϖc
wOw) ≡ 1}.

The places of E, denoted by w, are as follows: The unique infinity place
w =∞, for which E∞ = C. The unique ramified place w =

√
−3, for which

E√−3 is a ramified quadratic field extension of Q3 and E3 = E√−3. The
inert places w = p, one for each (positive) prime p ≡ 2 mod 3, for which
Ep is an unramified quadratic field extension of Qp. The split places w = p,
two for each (positive) prime p ≡ 1 mod 3, for which Ep is isomorphic to
Qp and Ep = Ep × Ep̄ where p = p · p̄.

Note that for any finite place w, we have E×w = O×w · ϖZ
w, and that for

any n ∈ N, and any set of representatives X ⊂ O×w for the coset space
O×w/(1+ϖn

wOw), we haveO×w = X ·(1+ϖn
wOw). We shall need a slightly finer

information regarding the place
√
−3, which we summarize in the following

Lemma.

Lemma 7.18. (i) For w =
√
−3, the group of order six, ⟨ζ⟩, is a set of

representatives for O×w/(1 + 3Ow). Therefore we have the decomposition
O×√−3 = (1 + 3O√−3) · ⟨ζ⟩.
(ii) For any finite place w ̸=

√
−3, there exists a uniformizer ϖw ∈ O for

Ew which belongs to (1 + 3O).

Proof. (i) follows from the fact that O×√−3/(1 + 3O√−3) is of order six, ζ is
also of order six and ζ ̸∈ 1 + 3O√−3. (ii) is a consequence of (i), since by
picking any uniformizer ϖ′w ∈ O of Ew, by (i) there exists a unique a ∈ Z/6Z
such that ϖ′w ≡ ζa mod 3, and then simply take ϖw = ϖ′w · ζ−a. □
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From now on, for any finite place w ̸=
√
−3, let ϖw ∈ O be a uniformizer

of Ew as in Lemma 7.18, i.e. ϖw ≡ 1 mod 3, and for w =
√
−3 we take

w√−3 =
√
−3. Let us be more explicit. If w = p is an inert prime, then

p ≡ 2 mod 3, and we can take ϖw = −p since −p ≡ 1 mod 3. If w = p,
where p · p̄ = p is a split prime, then p ≡ 1 mod 3, and we can take ϖw = p
such that p ≡ 1 mod 3.

Lemma 7.19. Let U1(Zq, q) = ker (U1(Zq)→ U1(Fq)), for any prime q.
Then

U1(Qp) =


U1(Z3, 3) · ⟨ζ⟩, p = 3

U1(Zp, p) · ⟨βp−1⟩, β element of order p2 − 1 in U1(Zp), p inert
Q×p = pZU1(Zp, p) · F×p p split.

Proof. For p not split in E, by Hilbert Theorem 90, U1(Qp) = {α/ᾱ : α ∈
E×w }. Thus by E×w = O×w ·ϖZ

w and observing that
ϖ√

−3

ϖ√
−3

= −1 = ζ3 and for
w = p inert, ϖw

ϖw
= 1 we see that

U1(Qp) =

{
U1(Zp) p inert or p = 3

Q×p p ≡ 1 mod 3.

For p = 3, we finish by noting that O×√−3 = (1 + 3O√−3) · ⟨ζ⟩ and ζ ∈
U1(Z3).

For p ≡ 2 mod 3 we observe that O×w/(1 + pOw) ∼= F×
p2

= ⟨β⟩ and α =

βd ∈ F×
p2

has norm 1 if and only if βd(p+1) = 1 which is if and only if
(p− 1) | d. Hence U1(Fp) = ⟨βp−1⟩ ∼= Z/(p+ 1)Z. □

Definition 7.20. Define µ : A×E → C×, µ = ⊗wµw as follows:
First define the local character at the infinite place w =∞, to be

µ∞ | R×>0 ≡ 1, µ∞(eθi) = e−θi for 0 ≤ θ ≤ 2π.

Second, define the local character at the ramified place w =
√
−3, to be

µ√−3 | (1 + 3O√−3) ≡ 1, µ√−3(ζ) = e
2πi
6 ,

µ√−3(ϖ
√
−3) = µ∞(ϖ√−3)

−1 = e
2πi
4 .

Finally, define the local character at any unramified place w ̸=
√
−3, to be

µw |O×
w
≡ 1, µw(ϖw) = µ∞(ϖw)

−1 =

{
−1 w = p an inert prime
p√
p w = p, p · p̄ = p a split prime.

Proposition 7.21. Let µ be as in Definition 7.20. Then:

(1) µ is an automorphic character of GL1/E, i.e. µ |E×≡ 1.
(2) µ extends the quadratic class field character associated to E/Q, i.e.

µ |A×≡ ωE/Q.
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Proof. (1) Because E has class number one, we can work with unique prime
factorization. So it is enough to show µ(ζ) = 1 and µ(ϖu) = 1 for each finite
place u of E. By Definition 7.20 we get,

µ(ζ) =
∏
w

µw(ζ) = µ∞(ζ) · µ√−3(ζ) = e−
2πi
6 · e

2πi
6 = 1,

µ(ϖu) =
∏
w

µw(ϖu) = µ∞(ϖu) · µu(ϖu) = µ∞(ϖu) · µ∞(ϖu)
−1 = 1.

(2) Let µ′ = µ | A× be the restriction of µ to the ideles of Q, i.e. µ′ = ⊗vµ
′
v,

µ′∞ = µ∞ | R×, µ′3 = µ√−3 |Z×
3
, µ′p = µp | Z×p for any inert prime p, and

µ′p(x) = µp(x) · µp̄(x) for any x ∈ Z×p and any split prime p = p · p̄. By
Definition 7.20 at the infinite place we get

µ′∞ | R>0 ≡ 1, µ′∞(−1) = −1,

at the ramified prime we get

µ′3 | (1 + 3Z3) ≡ 1, µ′3(−1) = −1,

µ′3(3) = µ√−3(−
√
−32) = (−1)µ∞(

√
−3)−2 = (−1)(−1) = 1.

at an inert prime, i.e. p ≡ 2 mod 3, we get

µ′p | Z×p ≡ 1, µ′p(p) = µp(p) = µp(−p) = µ∞(−p)−1 = −1,

and at a split prime, i.e. p ≡ 1 mod 3, and let p = p · p̄ where p, p̄ ≡ 1
mod 3, we get

µ′p | Z×p ≡ 1,

µ′p(p) = µp(p)µp̄(p) = µp(p)µp̄(p̄) = µ∞(p)−1µ∞(p̄)−1 = µ∞(p)−1 = 1.

By Lemma 7.16 this proves that µ′ = ωE/Q. □

Fix from now on the automorphic character of GL1/E which extends ωE/Q
to be µ from Proposition 7.21. Fix the additive character ψ : Q\A → C×,
ψ = ⊗vψv, defined by ψ∞(x) = e2πix for any x ∈ R and ψp | Zp ≡ 1 for every
prime p. Fix the additive character ψ′ : E\AE → C×, ψ′ = ⊗wψ

′
w, defined

by ψ′w = ψ ◦ TrEw/Qv
, where v is the unique place below w. For any place

w of E, and any local character χw : E×w → C, denote by ϵ(1/2, χw, ψ
′
w) be

the epsilon number of χw w.r.t. ψ′w, evaluated at 1/2.

Next we calculate the conductors and epsilon factors of a slightly more
general family ρ. Recall the notation of Definition 7.12, where ρ = (ρ1, ρ

′) is
an automorphic character of U2

1 (Q), and ϕ = ϕ(ρ) = µρ1,E , where ρ1,E(x) =
ρ1(x/x̄) is an automorphic character of GL1/E, i.e. ρ1,E is the base change
of ρ1 from U1 to GL1/E. Note that µ is fixed, and that ϕ depends only on
ρ1 (and not on ρ′).
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Definition 7.22. For ρ1 be as above and v a place of Q, denote b(ρ1,v) ∈
Z/6Z, defined by ρ1,v(ζ) = ζb(ρ1,v). Note that b(ρ1,v) = 0 whenever ρ1,v is
unramified, i.e. b(ρ1,v) ̸= 0 for at most finitely many places v. Moreover,
since ρ1 is automorphic, 1 = ρ1(ζ) =

∏
v ρ1,v(ζ) =

∏
v ζ

b(ρ1,v), hence∑
v b(ρ1,v) = 0.

The following Lemmas 7.23, 7.25, 7.26, 7.27 and 7.28, describe the
conductor and epsilon factor of ϕ at each local place, for certain ρ.

Lemma 7.23. For any ρ such that π′s(ρ∞) (see Definition 7.12) is the trivial
representation of G∞ = U(3). Then

ϵ(1/2, ϕ∞, ψ
′
∞) = −i.

Proof. By Proposition 7.14 we get that either ρ1,∞(z) = z2 or ρ1,∞(z) = z−1.
Hence ϕ∞(z) = z3(zz̄)−3/2 or ϕ∞(z) = z̄3(zz̄)−3/2. By [Kud04, Proposition
3.8(iv)], we get ϵ(1/2, ϕ∞, ψ′∞) = i3 = −i. □

We recall some facts of local epsilon factors used in [Rog92, p. 404] and
[Tat79].

Proposition 7.24 (Tate). Let χ be an idele character of E×, let ψ′ be as
above, and let w be a place of E.

(i) [Tat79, (3.6.3) p. 17] The local epsilon factor is

(7.3) ϵ(1/2, χw, ψ
′
w) = χ(dw) ·

∫
O×

w
χ−1w (y)ψ′w(

y
dw

) dy

|
∫
O×

w
χ−1w (y)ψ′w(

y
dw

) dy|
,

for an arbitrary dw of valuation c(χw) + n(ψ′w), where n(ψ′w) is the largest
integer n such that ψ′w(p−nw ) = 1.

(ii) [Tat79, (3.2.6.3) p.14] If χ′ is an unramified character of E×w , then

(7.4) ϵw(1/2, χwχ
′, ψ′w) = χ′(πc(χw)) · ϵw(1/2, χw, ψ

′
w).

(iii) [Tat79, (3.6.8) p.17] Since χ−1 is the contragradient of χ,

(7.5) ϵw(1/2, χw, ψ
′
w) · ϵw(1/2, χ−1w , ψ′w) = χw(−1).

Lemma 7.25. Let w ̸=
√
−3 be a finite place of E. Then for any ρ,

c(ϕw) = c(ρ1,E,w) and ϵ(1/2, ϕw, ψ
′
w) = µw(ϖ

c(ρ1,E,w)
w )ϵ(1/2, ρ1,E,w, ψ

′
w).

In particular, if ρ1,w is unramified, then

c(ϕw) = 0 and ϵ(1/2, ϕw, ψ
′
w) = 1.

Proof. Recall that ϕw = µwρ1,E,w, and that µw is unramified for w ̸=
√
−3.

The claim on the conductor follows immediately. The claim on the epsilon
factor follows from claim (ii) in Proposition 7.24. □



RAMANUJAN BIGRAPHS 101

Lemma 7.26. Let p be an odd prime which is inert in E. Then for any ρ,

ϵ(1/2, ϕp, ψ
′
p) = (−1)b(ρ1,p)+c(ρ1,E,p).

Proof. By Proposition 4.1 of [Rog92], ϵ(1/2, ϕp, ψ′p) = ϕp(
√
−3)(−1)c(ϕp).

By Lemma 7.25, c(ϕw) = c(ρ1,E,w). Finally ϕp(
√
−3) = ρ1,E,p(

√
−3) =

ρ1,p(−1) = (−1)b(ρ1,p). □

Lemma 7.27. Let p = ww̄ be a prime which is split in E. Then for any ρ,

ϵ(1/2, ϕp, ψp) := ϵ(1/2, ϕw, ψ
′
w) · ϵ(1/2, ϕw̄, ψ′w̄) = (−1)b(ρ1,p).

Proof. Identifying Ep = Ew ⊕ Ew̄ with Qp ⊕ Qp, for any x ∈ Qp we have
ρ1,E,w(x) = ρ1,p((x, x

−1)) as well as ρ1,E,w̄(x) = ρ1,p((x
−1, x)), i.e. ρ1,E,w̄ =

ρ1,E,w. In particular, we have

ρ1,E,w(−1) = ρ1,E,w̄(−1) = ρ1,p((−1,−1)) = (−1)b(ρ1,p).

By Lemma 7.25,

ϵw(1/2, ϕw, ψ
′
w) = µw(ϖ

c(ρ1,E,w)
w )ϵw(1/2, ρ1,E,w, ψ

′
w),

as well as

ϵ1/2,w̄(ϕw̄, ψ
′
w̄) = µw̄(ϖ

c(ρ1,E,w̄)
w̄ )ϵw̄(1/2, ρ1,E,w̄, ψ

′
w̄).

Here we may interpret the epsilon factors at the places w and w̄ of E as
epsilon factors at p of Qp. Then, by (7.5),

ϵv(1/2, ϕ, ψ
′) := ϵw(1/2, ϕw, ψ

′
w) · ϵ1/2,w̄(ϕw̄, ψ′w̄)

= µw(π
c(ρ1,E,w)
w )µw̄(π

c(ρ1,E,w)
w̄ ) · ϵp(1/2, ρ1,E,w, ψp) · ϵp(1/2, ρ−11,E,w, ψp)

= µw(π
c(ρ1,E,w)
w )µw̄(π

c(ρ1,E,w)
w̄ )ρ1,E,w(−1).

By Definition 7.20, we obtain µw(πw)µw̄(πw̄) = p√
p

p̄√
p = 1, so

ϵv(1/2, ϕ, ψ
′) = ρ1,E,w(−1) = (−1)b(ρ1,p). □

Lemma 7.28. Let ρ be such that c(ρ1,E,
√
−3) ≤ 2. Then

c(ϕ√−3) =

{
1 b(ρ1,3) ≡ 1 mod 3

2 otherwise

and

ϵ(1/2, ϕ√−3, ψ
′√
−3) =

{
i b(ρ1,3) ≡ 1, 2, 3, 4 mod 6

−i b(ρ1,3) ≡ 0, 5 mod 6
.

Proof. Since c(µ√−3) = 2 and c(ρ1,E,
√
−3) ≤ 2 we get that c(ϕ√−3) ≤ 2.

Now
ϕ√−3(ζ) = µ√−3(ζ)ρ1,E,

√
−3(ζ) = ζ · ρ1,3(ζ2) = ζ1+2b3 .
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Using the decompositions, O×√−3 = (O√−3)2 · ⟨ζ⟩ and (O√−3)1 = (O√−3)2 ·
⟨ζ2⟩, we get that c(ϕ√−3) ̸= 0 for any b(ρ1,3), and c(ϕ√−3) = 1 if and only
if 3 | 1 + 2b(ρ1,3), which proves the claim on the conductor.

We use (7.3). Here, n(ψ′√−3) = 1, and we have ψ3(±1
3) = ζ∓2. We further

know ϕ√−3(ζ) = ζ1+2b(ρ1,3), and ϕ√−3(
√
−3) = i · (−1)b(ρ1,3).

First assume c(ϕ√−3) = 1, which is equivalent to b(ρ1,3) ≡ 0 mod 3.
Putting V1 = vol(1 +

√
−3O√−3), the integral in (7.3) is given by∫

O×√
−3

χ−1√−3(y)ψ
′√
−3(

y
√
−32

) dy

=V1 ·
(
ϕ−1√−3(1)ψ

′√
−3(−

1

3
) + ϕ−1√−3(−1)ψ

′√
−3(

1

3
)

)
=V1(ψ3(−

2

3
)− ψ3(

2

3
)) = V1 · (ζ4 − ζ2) = V1 · (−

√
−3).

Accordingly,

ϵ(1/2, ϕ√−3, ψ
′√
−3) = ϕ√−3(

√
−32) · V1 · (−

√
−3)

|V1 · (−
√
−3)|

=
(
i · (−1)b(ρ1,3)

)2
· (−i) = i.

Now assume c(ϕ√−3) = 2. Then, writing V2 = vol(1 + 3O√−3), the integral
in (7.3) is given by∫

O×√
−3

χ−1√−3(y)ψ
′√
−3(

y
√
−33

) dy

=V2 ·
5∑

j=0

ϕ−1√−3(ζ
j)ψ′√−3(

ζj
√
−33

)

=V2 ·
(
1 + ζ1−2b(ρ1,3) + ζ2b(ρ1,3) − 1 + ζ−2b(ρ1,3) + ζ−1+2b(ρ1,3)

)
=V2 ·

{
3 b ≡ 0 mod 3
−3 b ≡ 2 mod 3

.

So we obtain

ϵ(1/2, ϕ√−3, ψ
′√
−3) = ϕ√−3(

√
−33) ·

{
1 b(ρ1,3) ≡ 0 mod 3
−1 b(ρ1,3) ≡ 2 mod 3

}
= i · (−1)1+3b(ρ1,3) ·

{
1 b(ρ1,3) ≡ 0 mod 3
−1 b(ρ1,3) ≡ 2 mod 3,

which implies the claim of the lemma. □

The next Lemma is a special case of calculating the conductors and epsilon
factors of ϕ = ϕ(ρ), ρ = (ρ1, ρ

′) as in Definition 7.12, where ρ1 is trivial.
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Lemma 7.29. Let µ be as in Proposition 7.21. Then for any place w,

c(µw) =

{
2 w =

√
−3

0 w ̸=
√
−3,∞

and

ϵ(1/2, µw, ψ
′
w) =


i w =∞
−i w =

√
−3

1 w ̸=
√
−3, ∞.

Proof. The claim about the conductor follows from Definition 7.20. Note
that the epsilon factor is trivial at places where all the data (µ and
ψ′) is unramified, which are w ̸= ∞,

√
−3. For w = ∞, note that

µ∞(z) = ( zz̄ )
−1/2 = z̄(zz̄)−1/2, and by [Kud04, Proposition 3.8(iv)], we get

ϵ(1/2, µ∞, ψ
′
∞) = i. □

Proposition 7.30. Let ρ be such that: (1) π′s(ρ∞) is the trivial
representation of G∞ = U(3), (2) c(ρ1,E,w) = 0 for any w ̸=

√
−3, and

(3) c(ρ1,E,
√
−3) ≤ 2. Then

c(ϕw) =

{
1 w =

√
−3

0 otherwise
and ϵ(1/2, ϕw, ψ

′
w) =


i w =

√
−3

−i w =∞
1 otherwise

.

In particular,
ϵ(1/2, ϕ) =

∏
w

ϵ(1/2, ϕw, ψ
′
w) = 1.

Proof. By the definition of the conductor we get that it is sub-multiplicative,
c(ϕw) = c(µwρ1,E,w) ≤ max{c(µw), c(ρ1,E,w)}. Therefore, by Lemma 7.29
and the assumption on ρ, c(ϕw) = 0 for any w ̸=

√
−3 and c(ϕ√−3) ≤ 2.

By Lemma 7.25, ϵ(1/2, ϕw, ψ′w) = 1 for any w ̸=
√
−3,∞, by Lemma

7.23, ϵ(1/2, ϕ∞, ψ′∞) = −i, and by Lemma 7.28, ϵ(1/2, ϕ√−3, ψ
′√
−3) = i

if c(ϕ√−3) = 1. Therefore we are left to prove c(ϕ√−3) = 1, or equivalently,
since c(ϕ√−3) ≤ 2 and (O√−3)1 = (O√−3)2 · ⟨ζ2⟩, it suffices to prove
ϕ√−3(ζ

2) = 1. Because ϕ is automorphic and unramified at w ̸=
√
−3,

we have 1 =
∏

w ϕw(ζ
2) = ϕ√−3(ζ

2)ϕ∞(ζ2), i.e. ϕ√−3(ζ
2) = ϕ∞(ζ2)−1.

Using the fact that π′s(ρ∞) is the trivial representation of G∞ = U(3), by
Proposition 7.14, we have ρ1,∞(α) = α2 or α−1. In either case we get that
ϕ∞(ζ2) = ζ−2ρ1,∞(ζ4) = ζ±6 = 1, which proves the claim. □

Proposition 7.31. Fix a prime p > 5. Let ρ be such that: (1) π′s(ρ∞)
is the trivial representation of G∞ = U(3), (2) c(ρ1,E,w) = 0 for any w ̸=
p,
√
−3, (3) c(ρ1,E,

√
−3) ≤ 2, and (4) c(ρ1,E,p) = 1. For any place v of Q,

let bv = b(ρ1,v) ∈ Z/6Z be as in Definition 7.22. Then

∀v ̸=∞, 3, p : bv = 0, b∞ = −1 or 2 and b∞ + b3 + bp = 0.
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The local conductors and epsilon factors of ϕ = µρ1,E are given by

c(ϕw) =


1 w =

√
−3, 3 | b3 − 1

2 w =
√
−3, 3 ∤ b3 − 1

1 w = p

0 otherwise

and

ϵ(1/2, ϕw, ψ
′
w) =



−i w =∞
i w =

√
−3, b3 ≡ 1, 2, 3, 4 mod 6

−i w =
√
−3, b3 ≡ 0, 5 mod 6

(−1)bp+1 w = p ≡ 2 mod 3

(−1)bp w = p ≡ 1 mod 3

1 otherwise.

In particular, since b3 = −b∞ − bp, we get that for p ≡ 2 mod 3

ϵ(1/2, ϕ) =
∏
w

ϵ(1/2, ϕw, ψ
′
w)

=

{
1 (b∞, bp) = (−1, 2), (−1, 3), (−1, 5), (2, 1), (2, 3) or (2, 4)

−1 (b∞, bp) = (−1, 0), (−1, 1), (−1, 4), (2, 0), (2, 2) or (2, 5)

and for p ≡ 1 mod 3,

ϵ(1/2, ϕ) =

{
1 (b∞, bp) = (−1, 0), (−1, 1), (−1, 4), (2, 0), (2, 2) or (2, 5)

−1 (b∞, bp) = (−1, 2), (−1, 3), (−1, 5), (2, 1), (2, 3) or (2, 4).

Proof. The claim about the bv follows from the fact that ρ1 is automorphic
and unramified at v ̸= ∞, 3, p, together with Proposition 7.14. The claim
about the conductors follows from the assumption on ρ, combined with
Lemma 7.28. The claim about the epsilon factors follows from Lemmas
7.23, 7.25, 7.26, 7.27, and 7.28. As a consequence, we get that the global
epsilon factor of ϕ is

ϵ(1/2, ϕ) =
∏
w

ϵ(1/2, ϕw, ψ
′
w)

=


(−1)bp b3 ≡ 1, 2, 3, 4 mod 6, p ≡ 1 mod 3 or

b3 ≡ 0, 5 mod 6, p ≡ 2 mod 3

(−1)bp+1 b3 ≡ 0, 5 mod 6, p ≡ 1 mod 3 or
b3 ≡ 1, 2, 3, 4 mod 6, p ≡ 2 mod 3.

Note that b3 + bp + b∞ = 0 and b∞ = 2 or − 1, hence for any (b∞, bp) ∈
{2,−1}×Z/6Z there exists a unique triplet (b∞, b3, bp) satisfying the above
conditions, and a direct calculation shows the final claim. □
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Lemma 7.32. Let U1(Zq, q) = ker (U1(Zq)→ U1(Fq)), for any prime q.
Then

∀g ∈ U1(A), ∃!r ∈ U1(Q), ∃!k ∈ U1(R)U1(Z3, 3)
∏
p ̸=3

U1(Zp) : g = r·k.

Hence, for any prime q ̸= 3, there is a bijection between the following two
sets

{characters of U1(Fq)} ←→

{
characters of U1(Q)\U1(A) trivial on
U1(R)U1(Z3, 3)U1(Zq, q)

∏
p ̸=3,q U1(Zp)

}
,

χ′ 7→ χ : χ(r · k) = χ′(kq mod q), r ∈ U1(Q),

k = (kv)v ∈ U1(R)U1(Z3, 3)
∏
p̸=3

U1(Zp).

Proof. Since E = Q[
√
−3] has class number one, by arguing similarly to

Proposition 3.6 in [EP22] (see Equation 3.7), we get that U1(A) = U1(Q) ·(
U1(R)

∏
p U1(Zp)

)
. Also note that U1(Q)∩

(
U1(R)

∏
p U1(Zp)

)
= U1(Z) =

⟨ζ⟩, where ζ = 1+
√
−3

2 . Note that U1(F3) ∼= U1(Z) and therefore we have
the unique decomposition U1(Z3) ∼= U1(Z3, 3)×U1(Z). This proves the first
claim. The second claim follows from the first. □

7.4. Level of local representations. The purpose of this subsection is to
describe the levels of local factors of automorphic representations of unitary
groups in three variables, which belongs to A-packets.

Lemma 7.33. If p does not split in E, then for any ρp,

πs(ρp)
I∗
p = 0.

Proof. On the one hand, since π = πs(ρp) is supercuspidal it does not embed
into any parabolic induction from P ∗p to G∗p of a character of M∗p . On the
other hand, any irreducible representation with a non-zero Iwahori-fixed
vector embeds in a parabolic induction from P ∗p to G∗p of a character M∗p
which is trivial on K∗p ∩M∗p , by [Cas80] when p is unramified in E, and by
claim 1 in the proof of Proposition 5.3 in [EP22] when p is ramified in E.
Combined together we get the claim. □

Lemma 7.34. Let K ′ ≤ K∗p be a finite index subgroup. Then for any ρp,

ind(ηp)
K′ ̸= 0 ⇐⇒ ∃g ∈ K∗p : η

gK′g−1∩P ∗
p

p ̸= 0.

In particular, if K ′ is a normal subgroup of K∗p , then

ind(ηp)
K′ ̸= 0 ⇐⇒ η

K′∩P ∗
p

p ̸= 0.
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Proof. For any group H, subgroup S ≤ H, element h ∈ H and character χ :
S → C×, denote hS = hSh−1 and hχ : hS → C×, hχ(x) = χ(h−1xh). Then
by Frobenius reciprocity, Mackey intertwining theorem and the Iwasawa
decomposition, we get

ind(η)K
′ ∼= HomK′(C,Res

G∗
p

K′ Ind
G∗

p

P ∗
p
(δ1/2ηp))

∼= HomK′(C,
⊕

g∈K′\G∗
p/P

∗
p

IndK′
K′∩gP ∗

p
Res

gP ∗
p

K′∩gP ∗
p
(g(δ1/2ηp)))

∼=
⊕

g∈K′\K∗
p

HomK′∩gP ∗
p
(C,Res

gP ∗
p

K′∩gP ∗
p
(g(δ1/2ηp)))

∼=
⊕

g∈K′\K∗
p

g(δ1/2ηp)
K′∩gP ∗

p ∼=
⊕

g∈K′\K∗
p

(δ1/2ηp)
gK′∩P ∗

p .

Since δ and ηp factor through P ∗p ↠M∗p , we get the first claim. The second
claim follows from the first and the fact that hK ′ = K ′ for any h ∈ K∗p . □

Proposition 7.35. (i) If p is unramified in E, then

πn(ρp)
K∗

p ̸= 0 ⇐⇒ η
K∗

p∩P ∗
p

p ̸= 0.

(ii) If p is ramified in E, then

πn(ρp)
K∗

p = 0.

Proof. (i) By Lemma 7.34 η
K∗

p∩P ∗
p

p ̸= 0 if and only if ind(ηp)K
∗
p ̸= 0. By

[Rog90, Section 12.2], ind(ηp) is reducible with two components, π2(ρp) and
πn(ρp), where π2(ρp) is square integrable and πn(ρp) is non-tempered. The
Satake parameter associated to the unique irreducible spherical component of
ind(ηp)K

∗
p ̸= 0 is diag(p1/2, 1, p−1/2). Since they are not all roots of unity, this

component is non-tempered, hence it must be πn(ρp), namely ind(ηp)K
∗
p ̸= 0

if and only if πn(ρp)K
∗
p ̸= 0.

(ii) Since p is ramified, the class field character ωp = ωEp/Qp
is ramified, i.e.

there exists x ∈ Z∗p such that ωp(x) ̸= 1, and therefore ηp(diag(x, 1, 1/x)) =

µp(x) = ωp(x) ̸= 1. Hence η
K∗

p∩P ∗
p

p = 0, which implies ind(ηp)K
∗
p = 0, which

in turn implies πn(ρp)K
∗
p = 0. □

Lemma 7.36. Let K ′ ≤ K∗p be a finite index subgroup and let ρp be such

that η
K′∩P ∗

p
p ̸= 0. Define

f : G∗p → C, f(g) =

{
(δ1/2ηp)(b) g = bk ∈ P ∗p ·K ′

0 g ̸∈ P ∗p ·K ′.

Then f is a well defined, non-zero, K ′-invariant vector in ind(ηp).
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Proof. The function f is well defined, since if b1k1 = b2k2, for some b1, b2 ∈
P ∗p and k1, k2 ∈ K ′, then b−11 b2 = k1k

−1
2 ∈ P ∗p ∩K ′, and because δ and ηp

are trivial on P ∗p ∩K ′, we get

f(b1k1) = (δ1/2ηp)(b1) = (δ1/2ηp)(b2) = f(b2k2).

The function f is obviously K ′-invariant from the right and non-zero since
f(1) = 1. The K ′-invariance of f also proves condition (i) in Equation 7.2.
The function f belongs to ind(ηp), since if g ̸∈ P ∗p ·K ′, then bg ̸∈ P ∗p ·K ′ for
any b ∈ P ∗p , hence f(bg) = 0 = (δ1/2ηp)(b)f(g), and if g = b′k′ ∈ P ∗p · K ′,
then

f(bg) = f(bb′k′) = (δ1/2ηp)(bb
′) = (δ1/2ηp)(b)(δ

1/2ηp)(b
′) = (δ1/2ηp)(b)f(g).

□

Lemma 7.37. Let w =
(

1
−1

1

)
∈ K∗p , let K ′ ≤ K∗p and let 0 ̸= f ∈

ind(ηp)
K′ . Then∫

N∗
p

f(w−1nw)dn ̸= 0 ⇒ πn(ρp)
K′ ̸= 0.

Proof. Denote P̄ ∗p = w−1P ∗pw the subgroup of lower triangular matrices and
N̄∗p = w−1N∗pw the subgroup of unipotent lower triangular matrices. Note
M∗p = w−1M∗pw, and define w.ηp := ηp(w

−1mw) for any m ∈ M∗p . Let

ind(ηp) = ind
G∗

p

P ∗
p
(ηp) and Ind

G∗
p

P̄ ∗
p
(w.ηp) be the unitary parabolic induction

from P ∗p and P̄ ∗p , respectively. Define the intertwining operator

JP̄ ∗
p |P ∗

p
: ind

G∗
p

P ∗
p
(ηp)→ Ind

G∗
p

P̄ ∗
p
(w.ηp), JP̄ ∗

p |P ∗
p
f(g) =

∫
N̄∗

p

f(ng)dn.

By [Kon03, Corollary 3.2] the unique irreducible quotient of ind
G∗

p

P ∗
p
(ηp),

i.e. the Langlands quotient πnp (ρp), is isomorphic to the image of the
intertwining operator JP̄ ∗

p |P ∗
p
. Since JP̄ ∗

p |P ∗
p

is an intertwining operator
and f is K ′-invariant, JP̄ ∗

p |P ∗
p
f ∈ πnp (ρp) is K ′-invariant. Observe that

JP̄ ∗
p |P ∗

p
f(1) =

∫
N̄∗

p
f(n)dn, therefore if

∫
N̄∗

p
f(n)dn ̸= 0 then JP̄ ∗

p |P ∗
p
f is non-

zero K ′-invariant vector of πnp (ρp), which proves the claim. □

Lemma 7.38. Let K ′ be one of the following subgroups of K∗p :

• K ′ = K∗p(p
m) = {g ∈ K∗p : g ≡ I mod pm} for some m ≥ 1, or

• K ′ = {g ∈ K∗p : det g ≡ ⟨ζa⟩ mod p}, for some a ∈ Z/6Z.

Then
w−1N∗pw ∩ P ∗p ·K ′ = w−1N∗pw ∩K ′.
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In particular, if ηK
′∩P ∗

p ̸= 0 and 0 ̸= f ∈ ind(ηp)
K′ is as in Lemma 7.36,

then ∫
N∗

p

f(w−1nw)dn = [N∗p ∩K∗p : N∗p ∩K ′]−1.

Proof. Let K ′ be one of the above subgroups. Let n̄ = w−1n(x, y)w ∈
w−1N∗pw, and assume n̄ ∈ P ∗pK ′, namely there exists

b =

α ∗ ∗
β ∗

ᾱ−1

 ∈ P ∗p ,
such that bn̄ ∈ K ′. Since the last row of bn̄ is (ᾱ−1y, ᾱ−1x̄, ᾱ−1), byK ′ ⊂ K∗p ,
we obtain that α ∈ O×p and that x, y ∈ Op, i.e. n̄ ∈ K∗p . In case K ′ = K∗p(m)

we even get the stronger conditions α ∈ 1 + pmO×p and x, y ∈ pmOp, which
proves the first claim. In the second case, the same holds true because
det n̄ = 1.

The second claim follows from the fact that supp(f) = P ∗p ·K ′ and f |K ′ ≡
1, hence∫

N∗
p∩K∗

p

f(w−1nw)dn =

∫
N∗

p∩K′
f(w−1nw)dn

=

∫
N∗

p∩K′
dn = [N∗p ∩K∗p : N∗p ∩K ′]−1. □

Combining the above lemmas we get the following criterion for the
existence of a non-zero invariant vector in the Langlands quotient πn(ρp) of
ind(ηp), in terms of the level of the character ηp = η(ρp), for levels which are
principal congruence subgroups of K∗p , or satisfy a determinant congruence
condition.

Proposition 7.39. For each of the subgroups K ′ of Lemma 7.38, and for
any character ρp,

πn(ρp)
K′ ̸= 0 ⇐⇒ η

K′∩P ∗
p

p ̸= 0.

Proof. (⇒) If πn(ρp)K
′ ̸= 0, then ind(ηp)K

′ ̸= 0, and by Lemma 7.34,

η
K′∩P ∗

p
p ̸= 0.
(⇐) If η

K′∩P ∗
p

p ̸= 0, then by Lemmas 7.38 and 7.37, πn(ρp)K
′ ̸= 0. □

Let K∗p = GL3(Op) ∩G∗p, K∗∗p = aGL3(Op)a
−1 ∩G∗p and I∗p = K∗p ∩K∗∗p ,

where Op is the ring of integers of Ep, ϖp a uniformizer of Ep and a =
diag(ϖp, 1, 1), i.e. K∗p and K∗∗p are two non-conjugate maximal parahoric
subgroups and I∗p is an Iwahori subgroup of G∗p. Let GL3(Op, ϖ

e
p) be the

kernel of the modulo ϖe
p map, and let I∗p(pe) = GL3(Op, p

e)∩G∗p, K∗∗p (pe) =

aGL3(Op, p
e)a−1 ∩ G∗p and I∗p(p

e) = K∗p(p
e) ∩ K∗∗p (pe). Let Ip, Kp(p

e)
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and Ip(p
e) be the images of I∗p, K∗p(pe), and I∗p(p

e), respectively, under the
isomorphism from G∗p to Gp which sends K∗p to Kp. Define the Moy-Prasad
depth of a representation π of Gp to be

d(π) = inf{r ≥ 0 : ∀e > r, πIp(pe) ̸= 0}

Let µ be an extension of ω = ωE/Q, the class field character associated to
E/Qp.

Proposition 7.40. For any character ρ = (ρ1, ρ
′) of U1(Qp)

2, we have
d(πn(ρ)) = d(πs(ρ)). Furthermore, if d(ρ) ≥ d(ω) then d(π) = d(ρ) for any
π ∈ Π(ρ).

For p > 5 the claim follows directly from Oi’s depth preservation result
between L-packets and L-parameters in the local Langlands correspondence
[Oi23], combined with the observation that the L-parameters of πn(ρ) and
πs(ρ) differ by how they act on the Deligne SL2 factor, hence in particular
are of the same depth ([BC09, A.10]). However, we are interested in the case
p = 3, so we provide a different proof using the theta correspondence.

Proof. By [GR91, Lemma 5.1.2], Π(ρ) is equal to the set of local Weil
representations or local theta lifts, {ω(ψ, γ, χ) : ψ}, where (γ, χ) are
determined uniquely from ρ, by the relations γ = µρ1,Eρ

′
E and χ = γ1ρ′,

where γ1 is the restriction of γ to U1(Qp), and where ψ runs over the
additive characters of Qp modulo NE/Qp

(E×). The theta correspondence
is the one defined in [GR91, Section 3] according to their choice of splitting.
By [Pan02, Main Corollary, p. 533], the theta correspondence, according to
the splitting defined in [Pan01], is depth preserving. Two splittings differ by a
character ([Gan23, Section 2.5]). Combining the results of Gelbart-Rogawski,
Pan and Gan we get that all the members in a given A-packet are of the
same depth, i.e. d(πn(ρ)) = d(πs(ρ)). Finally, we note that πn(ρ) is the
Langlands quotient of the parabolic induction ind(η). By [MP94, Theorem
5.2], the Moy-Prasad depth is preserved under parabolic induction, hence
d(πn(ρ)) = d(η). If d(ρ) ≥ d(ω), we have d(η) = d(ρ), and hence d(π) = d(ρ)
for any π ∈ Π(ρ). □

For the remainder of this section E = Q[
√
−3], Φ = I and G =

U3(Q[
√
−3], I). Let

√
−2 ∈ O3 be such that

√
−2 ≡ 1 mod 3, and define

A :=
1

2

 2
√
−2 +

√
−3 1 +

√
−3 −1

(1 +
√
−2) + (1−

√
−2)
√
−3 2 (1−

√
−2) + (1 +

√
−2)
√
−3

−1 1 +
√
−3 −2

√
−2 +

√
−3


∈ GL3(Z3[

√
−3]).

Then AA∗ = J , and therefore conjugation by A gives the following
isomorphismsG∗3 = A·G3·A−1, K∗3 = A·K3·A−1 andK∗3 (3) = A·K3(3)·A−1.
Let K3(C) be as in (7.1), and let K∗3 (C) = A ·K3(C) ·A−1.
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Lemma 7.41. In the above notations,

K∗3 (C)∩P ∗3 =

g ∈ K∗3 ∩ P ∗3 | ∃a ∈ 2Z/6Z : g ≡ ζa ·

1 ζ−a − 1
1

1

 mod 3

 .

Proof. First note that

A ≡

ζ2 ζ 1
1 1

√
−3

1 ζ ζ

 mod 3

and

A−1 = A∗J ≡

 1 −1 ζ4

ζ5 −1 ζ5

ζ5
√
−3 1

 mod 3.

Next we prove both containments in the claim.

(⊃) - Note that any element in the set on the right hand side of the claim,
can be written as a product g = ba · g′, for some a ∈ {0, 2, 4}, where

ba = ζa ·

1 ζ−a − 1
1

1


and

g′ ∈ K∗3 (3) ∩ P ∗3 = {h ∈ K∗3 ∩ P ∗3 : h ≡ I mod 3}.
Since g′ ∈ K∗3 (3)∩P ∗3 is clearly contained in K∗3 (C)∩P ∗3 , it suffices to show
that ba ∈ K∗3 (C) ∩ P ∗3 , which follows from the following direct computation

A−1b∗aA ≡ ζa
ζ2 − 1 + ζ4 + ζ−a − 1 ∗ ∗

∗ 1− 1 + ζ−a ∗
∗ ∗ ζ5 − 3 + ζ + ζ−a − 1


≡

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 mod 3.

(⊂) - Let g ∈ K∗3 (C) ∩ P ∗3 , and note that since g ∈ K∗3 ∩ P ∗3 , g =α αx αy
β βx̄

ᾱ−1

 for some α, β ∈ O×√−3, y + ȳ = xx̄, and since g ∈ K∗3 (C),

g = Ag′A−1 for some g′ ∈ K3(C). Hence α + β + ᾱ−1 = Trace(g) =

Trace(g′) ≡ Trace(

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

) ≡ 0 mod 3. As O×√−3 = (1+3O√−3)·ζZ/6Z,

there is an a ∈ Z/6Z such that α ≡ ζa mod 3. Then ᾱ−1 ≡ α mod 3
and combined with the trace condition we see that β ≡ α mod 3. Hence
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g ≡ ζa
1 x y

1 x̄
1

 mod 3, for some a ∈ Z/6Z, and some x, y ∈ Z[
√
−3]/3,

xx̄ = y + ȳ. A direct calculation shows1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 ≡ A−1gA
≡ζa

1 + y + x− x̄ ∗ ∗
∗ 1 + y + ζ5x− ζx̄ ∗
∗ ∗ 1 + y + ζ5

√
−3x+ ζ

√
−3x̄

 mod 3.

Since the diagonal elements are congruent mod 3 we have x− x̄ ≡ ζ5x−ζx̄ ≡
ζ5
√
−3x+ζ

√
−3x̄ mod 3 which holds if and only if x ≡ ζ4x̄ mod 3. Now we

use that y ≡ ζ−a−1−x+ x̄ mod 3 hence y+ ȳ ≡ 1+ζa+ζ−a mod 3. Since
y + ȳ = xx̄, we get that a ∈ {0, 2, 4} and thus xx̄ ≡ 0 mod 3, which, along
with the previous condition that x ≡ ζ4x̄ mod 3, implies x ≡ 0 mod 3 and
completes the proof. □

Proposition 7.42. For any character ρ3,

πn(ρ3)
K∗

3 (3,C) ̸= 0 ⇐⇒ η
K∗

3 (C)∩P ∗
3

3 ̸= 0.

Proof. (⇒) If πn(ρ3)K
∗
3 (C) ̸= 0, then ind(η3)K

∗
3 (C) ̸= 0, and by Lemma 7.34

and 5.23, ηK
∗
3 (C)∩P ∗

3
3 ̸= 0.

(⇐) By Lemma 7.37, we have to show that for the function f of Lemma
7.36, the following integral is non-zero

F :=

∫
N̄∗

3

f(n)dn =

∫
N̄∗

3∩K∗
3

f(n)dn+

∫
N̄∗

3 \K∗
3

f(n)dn =: F1 + F2.

Because K∗3 (3) ⊂ K∗3 (3, C) ⊂ K∗3 (
√
−3) and because, by Lemma 7.38, (N̄∗3 \

K∗3 )∩K∗3 (
√
−3m) = ∅ for all m, we know F2 = 0. For the integral F1 we fix

notation:

n̄(x, y) =

1
x 1
y x̄ 1

 ∈ N̄∗3 ,
n(x, y) =

1 x y
1 x̄

1

 ∈ N∗3 , whenever xx̄ = y + ȳ.

The condition xx̄ = y + ȳ implies that y has the form y = xx̄
2 + y2

√
−3,

where y2 ∈ Q3. This yields an obvious isomorphism N̄∗3
∼= E3 × Q3

∼= Q3
3,

under which the choice of Haar measure on N̄∗3 coincides with that on Q3
3

giving Z3
3 measure one.

By Lemma 7.41 we see that N∗3 ∩K∗3 (C) is the kernel of the modulo 3 map
on N∗3 ∩K∗3 . Since N̄∗3 = wN∗3w and w ∈ K∗3 , we get also that N̄∗3 ∩K∗3 (C)
is the kernel of the modulo 3 map on N̄∗3 ∩K∗3 .
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The set Σ = {n̄(x1 + x2
√
−3, x

2
1+3x2

2
2 + y2

√
−3) : x1, x2, y2 ∈ {−1, 0, 1}}

is a transversal set of N̄∗3 ∩ K∗3/N̄∗3 ∩ K∗3 (C). Breaking N̄∗3 ∩ K∗3 into⊔
g∈Σ g

(
N̄∗3 ∩K∗3 (C)

)
, and using the fact that f is K∗3 (C)-invariant, we get

F1 =
1

27

3∑
x1,x2,y2=−1,0,1

f(n̄(x1 + x2
√
−3, x

2
1 + 3x22

2
+ y2
√
−3)).

By Lemma 7.36, we know f(n̄(x, y)) ̸= 0 if and only if there is b ∈ P ∗3 ∩K∗3
such that bn̄(x, y) ∈ K∗3 (3, C). (And in this case, f(n̄(x, y)) = ξ(b−1)), where

ξ = δ
1
2
3 η3.) Equivalently, if and only if A−1 · b · n̄(x, y) ·A ∈ K3(C), i.e.

(7.6) A−1 · b · n̄(x, y) ·A ≡

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 mod 3.

We evaluate this mod-3-condition for n̄(x, y) ∈ Σ above. Putting b =α αv αw
β βv̄

1/ᾱ

 ∈ P ∗3 ∩K∗3 we obtain the following:

Case 1: Let x ≡ 1 mod
√
−3, i.e x ≡ 1+x2

√
−3, y ≡ −1+y2

√
−3 mod 3.

Then there is no such matrix b in case x2 ̸= y2. But in case x2 = y2, such b
is given, for example, by

α ≡ −1, β ≡ 1 + (y2 − 1)
√
−3, v ≡ 0, w ≡ 1 +

√
−3 mod 3,

where we obtain f(n̄(x, y)) = ξ−1(diag(−1, 1 + (y2 − 1)
√
−3,−1)).

Case 2: Let x ≡ 2 mod
√
−3, i.e x ≡ −1 + x2

√
−3, y ≡ −1 + y2

√
−3

mod 3.
Here, there is no such matrix b if x2 + y2 ̸= 1. But in case x2 + y2 = 1, such
b is given, for example, by

α ≡ −1, β ≡ 1 + y2t, v ≡ 0, w ≡ 1 mod 3,

where we obtain f(n̄(x, y)) = ξ−1(diag(−1, 1 + y2
√
−3,−1)).

Case 3: Let x ≡ 3 mod
√
−3, i.e x ≡ −x2

√
−3, y ≡ y2

√
−3 mod 3. Then

b being defined by α = β = 1, v = x and w = −y is a solution. We obtain
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f(n̄(x, y)) = ξ−1(diag(1, 1, 1)) = 1. Now we sum up the integral:

F1 =
1

27

∑
x1,x2,y2∈F3

f(x1, x2, y2)

= 1
27

(
9 +

∑
y2∈{−1,0,1}

(
ξ−1(diag(−1, 1 + (y2 − 1)

√
−3,−1))

+ξ−1(diag(−1, 1 + y2
√
−3,−1))

))
= 1

27

(
9 +2 ·

(
ξ−1(diag(−1, 1,−1))

+ξ(diag(−1, ζ2,−1)) + 2ξ(diag(−1, ζ4,−1))
))

= 1
27

(
9 +2 · ξ−1(diag(−1,−1,−1) · (ξ−1(diag(1,−1, 1)

+ξ(diag(1, ζ, 1)) + ξ(diag(1, ζ−1, 1))
)
,

in particular, F1 is non-zero. In case ξ(diag(1, ζ, 1)) = ϕ′3(ζ) = ζ±1, we
obtain F1 =

1
3 . □

The following is a Corollary of Proposition 7.40.

Corollary 7.43. If E = Q[
√
−3] and p = 3, then

πs(ρ3)
I∗
3(3) ̸= 0 ⇐⇒ η

K∗
3 (3)∩P ∗

3
3 ̸= 0.

Proof. We note that ηK
∗
3 (3)∩P ∗

3
3 ̸= 0 if and only if ρ3 = (ρ1,3, ρ

′
3) is trivial on

U1(Z3, 3)
2 and this is if and only if γ1+3O3

3 ̸= 0 and χ
U1(Z3,3)
3 ̸= 0. Now we

apply Proposition 7.40. □

7.5. Proofs of main results. In this subsection we prove the main results
stated in Section 7.1.

Proof of Theorem 7.3. (2) Assume in contradiction that π ∈ A(K ′) is non-
Ramanujan. Since A(K ′′) is Ramanujan, π ̸∈ A(K ′′), hence there exists
p ∈ Ram(K ′) \ Ram(K ′′), such that π

K′′
p

p = 0. Since I∗p ⊂ K ′p ⊂ K ′′p ⊂ K∗p ,

where I∗p is an Iwahori subgroup, we get that π
K∗

p
p = 0 and π

I∗
p

p ̸= 0. By
Theorem 7.2, π belongs to an A-packet, i.e. there exists an automorphic
character ρ of U1(Q)2, such that πv ∈ Π′(ρv) for any place v. Therefore, πp
is equal to either πn(ρp) or πs(ρp), for some ρp. However, by Lemma 7.33,
πs(ρp)

I∗
p = 0. Thus we must have πp = πn(ρp). Since π

I∗
p

p ̸= 0, by Theorem
7.3(1), p must be unramified in E. Then by Proposition 7.35 η

K∗
p∩P ∗

p
p = 0

but this is impossible because by [Cas80], π
I∗
p

p ̸= 0 implies η
K∗

p∩P ∗
p

p ̸= 0. □
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Proof of Theorem 7.6. (1) Define the automorphic character ρ = (µ1, µ
−1
1 )

of U1(Q)2, where µ1 = µ|U1(Q) is the restriction from GL1(E) to U1(Q) of µ
from Definition 7.20. Then ρ satisfies the following: (i) ρ∞(x) = (x−1, x) for
any x ∈ U1(R), (ii) η

K∗
p∩P ∗

p
p ̸= 0 for any p ̸= 3, and (iii) ηK

∗
3 (3)∩P ∗

3
3 ̸= 0. Define

the adelic representation π = π′s(ρ∞) ⊗ πs(ρ3) ⊗
⊗

p ̸=3 π
n(ρp) ∈ Π′(ρ). By

Proposition 7.30, ϵ(1/2, ϕ) = 1, where ϕ = ϕ(ρ) = µ2µ̄−1, and by Theorem
7.13, we get that π is automorphic. By Theorem 7.2, we get that π is non-
Ramanujan. By Proposition 7.14 and property (i), π′s(ρ∞) is the trivial
representation of G∞, hence πK∞

∞ ̸= 0 for K∞ = G∞. By Proposition
7.35 and property (ii), πn(ρp)K

∗
p ̸= 0, for any p ̸= 3. By Corollary 7.43

and property (iii), πs(ρ3)I
∗
3(3) ̸= 0. Combining all of the above, we get that

π ∈ A(K ′), hence A(K ′) is non-Ramanujan for K ′ = K∞⊗I3(3)⊗
⊗

p̸=3Kp.

(2) Let q ≥ 5 be a prime and let aq ∈ U1(Fq) be a generator of the

cyclic group of order nq = |U1(Fq)| chosen such that ζmod q = a
nq
6
q . Let

χ′ : U1(Fq) → C× by χ′(aq) =
(
e2πi/nq

)bq , where bq = 6 if q ≡ 2 mod 3
and bq = 3 if q ≡ 1 mod 3, and let χ be the automorphic character of
U1(Q) associated to χ′ by Lemma 7.32. Hence χq(ζ) =

(
e2πi/6

)bq and χq

is nontrivial. Define the automorphic character ρ = (χµ1, µ
−1
1 ) of U1(Q)2,

where µ1 = µ|U1(A) is the restriction from GL1(AE) to U1(A) of µ from
Definition 7.20. Then ρ and the associated automorphic character η = η(ρ)
of M×/Q satisfies the following: (i) ρ∞(x) = (x−1, x) for any x ∈ U1(R), (ii)
η
K∗

p∩P ∗
p

p ̸= 0 for any p ̸= 3, q, (iii) ηK
∗
3 (C)∩P ∗

3
3 ̸= 0, and (iv) η

K∗
q (q)∩P ∗

q
q ̸= 0.

Define the adelic representation π = π′s(ρ∞) ⊗
⊗

p π
n(ρp) ∈ Π′(ρ). By

Proposition 7.31, ϵ(1/2, ϕ) = −1, where ϕ = ϕ(ρ) = µ2µ̄−1χχ̄−1, we get
that from Theorem 7.13, π is automorphic. By Theorem 7.2, we get that
π is non-Ramanujan. By Proposition 7.14 and property (i), π′s(ρ∞) is the
trivial representation of G∞, hence πK∞

∞ ̸= 0 for K∞ = G∞. By Proposition
7.35 and property (ii), πn(ρp)K

∗
p ̸= 0, for any p ̸= 3, q. By Proposition 7.42

and property (iii), πn(ρ3)K
∗
3 (C) ̸= 0. By Proposition 7.39 and property (iv),

πn(ρq)
K∗

q (q) ̸= 0. Combining all of the above, we get that π ∈ A(K ′), hence
A(K ′) is non-Ramanujan for K ′ = K∞ ·K3(C) ·Kq(q) ·

∏
p ̸=3,qKp. □

In the Proposition below we show by global means that two local
supercuspidal representations do not have non-zero K3(C)-invariant vectors.
This is precisely the missing piece we need to complete the proof of Theorem
7.9.

Proposition 7.44. Let ρ3 = (ρ1,3, ρ
′
3) where either

(1) b(ρ1,3) = 4, ρ′3(ζ) = ζ, and ρ1,3, ρ′3|1+3O3 ≡ 1, or
(2) b(ρ1,3) = 1, ρ′3(ζ) = ζ−1, and ρ1,3, ρ′3|1+3O3 ≡ 1.

Then πs(ρ3)
K3(C) = 0.
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Proof. First we note that by Lemma 7.19 U1(Q3) ∼= U1(Z3, 3)×⟨ζ⟩, thus if a
local character on U1(Z3) is trivial on U1(Z3, 3) then it is uniquely determined
by where it sends ζ. Hence characters that satisfy the properties described in
(1) and (2) are uniquely defined on U1(Q3). We now construct automorphic
characters ρ = (ρ1, ρ

′) of U1(Q)2 that at the prime 3 are equal to the ρ3 in
the statement of the corollary.

For case (1) let ρ = (µ−11 × µ
−1
1 , µ1). Then

(1) ρ1,∞(x) = x2, ρ′∞(x) = x−1

(2) ρ1,3(ζ) = ζ4, ρ′3(ζ) = ζ, ρ1,3|1+3O3 ≡ 1, ρ′3|1+3O3 ≡ 1 so this is indeed the
ρ3 in (1) above.

(3) ρ
K∗

p∩P ∗
p

p ̸= 0 for any p ̸= 3

For case (2) let ρ = (µ1, µ
−1
1 ). Then

(1) ρ1,∞(x) = (x)−1, ρ′∞(x) = x,
(2) ρ1,3(ζ) = ζ, ρ′3(ζ) = ζ−1, ρ1,3|1+3O3 ≡ 1, ρ′3|1+3O3 ≡ 1 so this is indeed

the ρ3 in (2) above,
(3) ρ

K∗
p∩P ∗

p
p ̸= 0 for any p ̸= 3

In both cases ρ is automorphic, by Proposition 7.14 π′s(ρ∞) is the
trivial representation, and by Proposition 7.30, ϵ(1/2, ϕ) = 1. Denote
π = π′s(ρ∞)⊗

⊗
v ̸=∞,3 π

n(ρv)⊗ πs(ρ3). By Theorem 7.13, m(π) = 1, i.e. π
is automorphic. Let K ′ = ⊗v ̸=3Kv ⊗ K3(C). Then by Corollary 7.4, Part
(2), πK′

= 0 but by Proposition 7.35 πKv
v ̸= 0 for v ∤ 3, hence we must have

πs(ρ3)
K3(C) = 0. □

Proof of Theorem 7.9. Throughout this proof let bv = b(ρ1,v) ∈ Z/6Z be as
in Definition 7.22. Assume in contradiction that there exists π = ⊗vπv ∈
A(K ′) that is non-Ramanujan. Then by definition of A(K ′), πK

′
v

v ̸= 0 for
each v and by Theorem 7.2 there exists an automorphic character ρ of U1(Q)2

such that πv ∈ Π′(ρv), i.e., for each place v, πv = πn(ρv) or πs(ρv).

For v split in E, Π′(ρv) = {πn(ρv)}. For v not split in E, by Lemma 7.33
πs(ρv)

I∗
v = 0 and hence πs(ρv)K

∗
v = 0. Thus for v ̸= 3,∞ we must have

πv(ρv) = πn(ρv). By Proposition 7.35 for v ̸= 3, πn(ρv)K
∗
v ̸= 0 if and only if

η
K∗

v∩P ∗
v

v ̸= 0 so for v ̸= 3, q,∞, ρv must be unramified.

At ∞, π∞ = π′s(ρ∞) and by Proposition 7.14 at ∞ we must have either

(1) ρ1,∞(αᾱ) = (αᾱ)
2, i.e., b∞ = 2, and ρ′∞(β) = β−1, or

(2) ρ1,∞(αᾱ) = (αᾱ)
−1, i.e., b∞ = 5, and ρ′∞(β) = β.

We have shown we must have

π = π′s(ρ∞)⊗
⊗

v ̸=∞,3

πn(ρv)⊗ π3.
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By Proposition 7.39, πn(ρq)K
′
q ̸= 0 if and only if η

K′
q∩P ∗

q
q ̸= 0. Since q is

split in E, U1(Qq) ∼= Q×q and Z×q /(1+ qZq) ∼= F×q . We fix a choice of β ∈ Z×q
such that its image in F×q is a generator there and β(q−1)/6 ≡ ζ mod q.
Recall our restriction that q ≡ 1 mod 12, hence we can let ξ = β(q−1)/12 ∈
E×q . Then ξ2 = ζ and diag(ξ, ξ−2, ξ) ∈ K ′q. We note that ηq(ξ, ξ−2, ξ) =

ρ1,q(ξ
2)ρ′q(1) = ρ1,q(ζ) = ζbq . We also note that diag(1, ζ, 1) ∈ K ′q and

ηq(1, ζ, 1) = ρ′q(ζ). Hence πn(ρq)K
′
q ̸= 0⇒ bq = 0 and ρ′q(ζ) = 1.

By Theorem 7.13, m(π) = 1 if and only if either ϵ(1/2, ϕ) = −1 and π3 =
πn(ρ3) or ϵ(1/2, ϕ) = 1 and π3 = πs(ρ3). By Conjecture 7.8 if πK3(C)∗

3 ̸= 0

then πn(ρ3)K3(C)∗ ̸= 0 and by Proposition 7.42, ηK3(C)∗∩P ∗
3

3 ̸= 0. By Lemma
7.41, ηK

∗
3 (C)∩P ∗

3
3 ̸= 0 if and only if ρ3 = (ρ1,3, ρ

′
3) is trivial on U1(Z3, 3)

2 and
η3(diag(ζ

a, ζa, ζa)) = 1 for a = 0, 2, 4. For a even, η3(diag(ζa, ζa, ζa)) =

µ3(ζ
a)ρ1,3(ζ

2a)ρ′3(ζ
3a) = ζa(1+2b3) and this equals 1 for even values of a if

and only if b3 = 1 or 4. Hence πK3(C)∗

3 ̸= 0 implies ρ3 = (ρ1,3, ρ
′
3) is trivial

on U1(Z3, 3)
2 and b3 = 1 or 4. By Propositions 7.30 and 7.31 we now have

m(π) = 1 if and only if π3 = πs(ρ3) and (b3, bq, b∞) ∈ {(1, 0,−1), (4, 0, 2)}.
If (b3, bq, b∞) = (1, 0,−1), then we must have that ρ′∞(β) = β and since we

must have πs(ρ3)K3(C) ̸= 0 then by Proposition 7.44 ρ′3(ζ) ̸= ζ−1. For ρ′ to be
automorphic we need ρ′(ζ) = 1 and ρ′(ζ) = ρ′∞(ζ)ρ′3(ζ)ρ

′
q(ζ) = ζρ′3(ζ)ρ

′
q(ζ)

so we must have ρ′q(ζ) ̸= 1 but then π
K′

q
q = 0.

If (b3, bq, b∞) = (4, 0, 2), then we must have that ρ′∞(β) = β−1 and by
Proposition 7.44 ρ′3(ζ) ̸= ζ. For ρ′ to be automorphic we need ρ′(ζ) = 1 and
ρ′(ζ) = ρ′∞(ζ)ρ′3(ζ)ρ

′
q(ζ) = ζ−1ρ′3(ζ)ρ

′
q(ζ) so we must have ρ′q(ζ) ̸= 1 but

then π
K′

q
q = 0. Hence we can conclude that πK′

= 0 so π ̸∈ A(K ′). □

In the proposition below we prove the following special cases of Conjecture
7.8.

Proposition 7.45. Let G = U3 and p be a prime which is inert in E. Let
ρp = (ρ1,p, ρ

′
p) be a character of U1(Qp)

2, and let K ′p equal either one of the
two cases below

(1) K ′p = Kp(p
m) = G(Zp, p

m) where m ∈ N and p > 10, or
(2) K ′p = Ip(p

e).

Then
πn(ρp)

K′
p = 0 ⇒ πs(ρp)

K′
p = 0.

Proof. (1) Let Gp = G(Qp) and

Hp =


a 0 b
0 β 0
c 0 d

 ∈ Gp :

(
a b
c d

)
∈ U2(Qp), β ∈ U1(Qp)

 .
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Identify the character ρp on U1(Qp)
2 with the character on Hp via

ρp

a 0 b
0 β 0
c 0 d

 = ρ1,p(ad− bc)ρ′p((ad− bc)β). We shall use the notations of

[Mar14], to denote by C∞c (Gp, ω) the space of compactly supported functions
f on Gp satisfying f(zg) = ω(z)f(g) for any g ∈ Gp and z ∈ Z(Gp), and
similarly for C∞c (Hp, ωµ

−1). For an admissible representation πp of Gp and
f ∈ C∞c (Gp, ω), denote the trace class operator πp(f) =

∫
Gp
f(g)πp(g)dg,

where dg is the Haar measure which gives Kp measure 1. Note that

trace(πp(1K′
p
)) = vol(K ′p) dim(π

K′
p

p ), and in particular

(7.7) trace(πp(1K′
p
)) = 0 ⇔ π

K′
p

p = 0.

Say that f ∈ C∞c (Gp, ω) and fH ∈ C∞c (Hp, ωµ
−1) form a transfer pair

if the unstable orbital integrals of f match the stable orbital integrals of
fH . For more details see [Rog90, (4.9.1)]. Then by [Fer07, Thm. 3.2.3]
(see also [Mar14, Prop. 2] and [GG19, Lem. 7.1.2]), f = 1K∗

p (p
m) and fH =

p−4m1KH
p (pm) are a transfer pair where KH

p (pm) = U2(Zp, p
m)×U1(Zp, p

m).
Hence by [Rog90, Cor. 12.7.4] (see also [Mar14, (5)]),

(7.8) trace(πn(ρp)(1Kp(pm)))+trace(πs(ρp)(1Kp(pm))) = ρp(p
−4m1KH

p (pm)).

By Proposition 7.39, if πn(ρp)K
∗
p (p

m) = 0 then η
K∗

p (p
m)∩P ∗

p
p = 0. Since µp

is unramified and |α|p = 1, this is equivalent to ρ
KH

p (pm)
p = 0 and therefore

ρp(p
−4m 1KH

p (pm)) = 0. Combined with equations (7.7) and (7.8) we get that
trace(πs(ρp)(1K∗

p (p
m)) = 0, i.e. πs(ρp)K

∗
p (p

m) = 0 as claimed.

(2) If πn(ρp)Ip(pe) = 0 then d(πn(ρp)) ≥ t so by Proposition 7.40,
d(πs(ρp)) ≥ t and hence by definition πs(ρp)Ip(pe) = 0. □

7.6. Sarnak-Xue Density Hypothesis. Let H = U2 × U1 be the unique
proper elliptic endoscopic group of G∗, the quasi-split inner form of G. Let
AF

H,µ be the set of 1-dimensional automorphic representations of H with
central character µ. For each ρ ∈ AF

H,µ, let Π(ρ) be its corresponding
Rogawski A-packet of G. Denote

VA(N) :=
⊕

ρ∈AF
H,µ

⊕
π∈Π(ρ)∩AG,1

πK(N) ≤
⊕

π∈AG,1

πK(N) = V (N).

We shall use the following asymptotic notations: Let f and g be two
positive real valued functions in the variable N . Denote f(N) ≲ g(N) if for
any ε > 0 there exists Cε > 0 such that f(N) ≤ Cε · g(N)1+ε for any N , and
denote f(N) ≍ g(N) if f(N) ≲ g(N) and g(N) ≲ f(N).

Therefore the Sarnak-Xue Density Hypothesis claims that

dimVA(N) ≲ dimV (N)1/2,
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and Theorem 7.11 claims that

dimVA(N) ≲ dimV (N)3/8.

Note that dimV (N) = vol(K(N)) ≍ NdimG/Z = N8.

Proof of Theorem 7.11. For any v, fix a Haar measure on Gv = G(Qv) which
gives Kv measure 1, and consider their product as a Haar measure on G(A)
which gives K(1) measure 1. Then for any representation π of G(A) with
trivial central character,

trace(π(1K(N))) = vol(K(N)) · dim(πK(N)) ≍ N−8 dim(πK(N)),

and similarly for any representation σ of H(A) with central character µ,

trace(σ(1KH(N))) = vol(KH(N)) · dim(σK(N)) ≍ N−4 dim(πK
H(N)).

Therefore

dimVA(N) =
∑

ρ∈AF
H,µ

∑
π∈Π(ρ)∩AG,1

dim(πK(N))

= N8
∑

ρ∈AF
H,µ

∑
π∈Π(ρ)∩AG,1

∏
v

trace(πv(1Kv(N))).

Note that trace(πv(1Kv)) ≤ 1 for any v ̸∈ S, and maxv∈S trace(πv(1Kv)) ≲ 1.
Then

dimVA(N) ≲ N8 ·
∑

ρ∈AF
H,µ

∑
π∈Π(ρ)

∏
ℓ|N

trace(πℓ(1Kℓ(N)))

= N8
∑

ρ∈AF
H,µ

∏
ℓ|N

(
∑

πℓ∈Π(ρℓ)

trace(πℓ(1Kℓ(N))).

By the endoscopic character relation [Fer07, Thm. 3.2.3], [Mar14, Prop. 2],
[GG19, Lem. 7.1.2], for any ℓ | N ,∑

πℓ∈Π(ρℓ)

trace(πℓ(1Kℓ(N)) = ℓ−2 ordℓ(N) trace(ρℓ(1KH
ℓ (N))).

Therefore

dimVA(N) ≲ N6
∑

ρ∈AF
H,µ

trace(ρ(1KH(N))) ≍ N2
∑

ρ∈AF
H,µ

dim(ρK
H(N)).

Note that AF
H,µ is the set of Hecke characters of H with central character µ,

hence ∑
ρ∈AF

H,µ

dim(ρK
H(N)) = |{ρ ∈ AF

H,µ : ρK
H(N) ̸= 0}| ≍ N.

Combined we get dimVA(N) ≲ N3 ≍ dimV (N)3/8, as claimed. □
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8. Ramanujan Bigraphs and Applications

Let E be an imaginary quadratic extension of Q, p a prime inert in E, and
Φ ∈ GL3(E) a definite Hermitian form, such that p ∤ discΦ, or equivalently,
Φ ∈ GL3(OEp). We denote by g# = Φ−1g∗Φ the corresponding Hermitian
involution. In this section we return to denote by G the projective unitary
group scheme G = PU3(E,Φ). We denote Gp = G(Qp), Kp = G(Zp), Bp the
(p3+1, p+1)-biregular Bruhat-Tits tree of Gp and Bhsp the set of hyperspecial
vertices. We identify Bhsp with Gp/Kp, with Kp stabilizing the vertex v0.

For g ∈ U3(E,Φ)(Qp), define the level of g to be

ℓ(g) = −2min
i,j

ordp gij = 2min
{
t
∣∣ pt · g ∈M3(OEp)

}
.

In particular, if g ∈ U3(E,Φ)(Z[1/p]), then ℓ(g) is the minimal ℓ such
that pℓ/2g ∈ M3(OE). Since Z(Gp) = {αI |α ∈ UE

1 (Qp)} and UE
1 (Qp) =

UE
1 (Zp) ≤ O×Ep

(due to the fact that p is inert), we have ℓ(zg) = ℓ(g) for any
z ∈ Z(Gp), hence the level is well defined on Gp = PU3 (Qp). Finally the
level relates to the graph distance in Bp by

(8.1) ∀h ∈ Gp, distBp(hv0, gv0) = distBp(v0, h
−1gv0) = ℓ(h−1g).

This is proved in [EP22, Prop. 3.3] for E = Q[
√
−1] and Φ = I, but up to

replacing g∗ by g#, the proof follows verbatim to the general case.

Remark 8.1. It is sometimes convenient to work with the larger group scheme
of unitary similitudes, which is defined, using the notations of Section 5.1,
by

GU3 (E,Φ) (R) =
{
g ∈ GL3 (OE ⊗OF

R)
∣∣ g∗Φg = λgΦ for some λg ∈ R×

}
.

For example, the matrices described in (8.2) below live naturally in the group
GU3(E,Φ)(Z[1/p]). The distance equation (8.1) remains true upon defining
the level of a similitude matrix g ∈ GU3(E,Φ)(Qp) by ℓ(g) = ordp(λg) −
2mini,j ordp gij . We remark that any similitude matrix can be scaled to be
unitary, so that the projective similitude group coincides with the projective
unitary group; indeed, in any odd dimension d, for g ∈ GUd(E,Φ)(R) we

have λ
(d−1)/2
g

det g g ∈ Ud(E,Φ)(R), so that g 7→ λ
(d−1)/2
g

det g g induces an isomorphism
PGUd(E,Φ) ∼= PUd(E,Φ).

It follows from (8.1) that if Λ ≤ G(Z[1/p]) acts simply-transitively on Bhsp
then S = {s ∈ Λ | ℓ(s) = 2} takes v0 once to each closest hyperspecial vertex.
Note that ps ∈M3 (OE) for any s ∈ S. To reconstruct the tree as a Cayley
bigraph we need to determine when do s, s′ ∈ S take v0 to neighbors of a
common non-hyperspecial vertex.

Proposition 8.2. If s, s′ ∈ G(Z[1/p]) with ℓ(s), ℓ(s′) = 2, then

dist(sv0, s
′v0) ≤ 2 ⇔ p | p2s#s′.
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Proof. Note first that p2s#s′ is in M3(OE). Now, by (8.1) and the fact that
s−1 = s# for Φ-unitary matrices, we have

dist
(
sv0, s

′v0
)
= dist

(
v0, s

−1s′v0
)
= dist

(
v0, s

#s′v0

)
= ℓ

(
s#s′

)
= −2min

i,j
ordp

(
s#s′

)
ij
= 4− 2min

i,j
ordp

(
p2s#s′

)
ij

so that dist (sv0, s
′v0) ≤ 2 if and only if p | p2s#s′. □

8.1. Eisenstein case. We now prove the main theorem for the Eisenstein
case (E ), and the differences in the other three cases (G ,M ,C ) will be
explained in the next subsection.

Theorem 8.3. Let p, q be primes with p ≡ 2 (mod 3), q /∈ {3, p}, and
ω = −1+

√
−3

2 . Let

(8.2) Sp :=

{
g ∈M3 (Z [ω])

∣∣∣∣∣ g∗g = p2I, g is not scalar,

g ≡
(

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 3)

}
,

and let Sp =
⊔

i S
i
p be the partition induced by the equivalence relation

g ∼ h if and only if p | g∗h.
Denote

Gq :=

{
PSL3 (Fq) q ≡ 1 (mod 3)

PSU3 (Fq) q ≡ 2 (mod 3) ,
and Si

p,q := Si
p (mod q)

(⋆)

⊆ Gq

where (⋆) implies mapping ω to a root of x2+x+1 in Fq or in Fq2 according
to q (mod 3). The Cayley bigraphs

Xp,q
E = CayB

(
Gq,

{
Si
p,q

}
i

)
(see Definition 2.4) satisfy:

(1) Xp,q
E is an adj-Ramanujan (p3+1, p+1)-regular bigraph, with left side of

size∣∣∣LXp,q
E

∣∣∣ = |Gq| =

{
|PSL3(q)| = 1

3

(
q8 − q6 − q5 + q3

)
q ≡ 1 (mod 3)

|PSU3(q)| = 1
3

(
q8 − q6 + q5 − q3

)
q ≡ 2 (mod 3) .

(2) Xp,q
E is non-Ramanujan: ±ip3/2 is in SpecBXp,q

E
, while ρ

(
BTp3+1,p+1

)
=

p.
(3) Xp,q

E satisfies Sarnak-Xue density. In fact, Spec0(BXp,q
E

) ⊆
SpecBTp3+1,p+1 ∪

{
±ip3/2

}
, and for any ε > 0 there is Cε > 0 (not

depending on p and q) such that the multiplicity of ±ip3/2 in SpecBXp,q
E

is bounded by Cε

∣∣Xp,q
E

∣∣3/8+ε.15

15In fact, for Sarnak-Xue Cε |Xp,q
E |1/2+ε would have been enough.
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(4) The group Gq acts on the set

Yq :=

{
P2(Fq) q ≡ 1 (mod 3){
v ∈ P2(Fq[ω])

∣∣ v∗ ·v = 0
}

q ≡ 2 (mod 3) ,

and the Schreier bigraphs Y p,q
E = SchB

(
Y q,

{
Si
p,q

}
i

)
are (fully)

Ramanujan.
(5) The girth of Xp,q

E if larger than 2 logp q (in the language of Section 4,
Xp,q

E has 6-logarithmic girth).
(6) The family

{
Xp,q

E

}
q

satisfies bounded cutoff: for any 0 < ε < p3/2

6 , the
total-variation mixing time t⋆ of non-backtracking random walk on the
edges of Xp,q

E satisfies

log√KkN − log√Kk

(
1
ε

)
< t1−ε < tε < log√KkN + 4 log√Kk

(
1
ε

)
+ 3,

where N = NXp,q
E

is the number of edges in Xp,q
E .

(7) (Diameter) For ε < min
(
1, p

3/2

6

)
and ℓ ≥ log√KkN +4 log√Kk

(
1
ε

)
+3,

for any e ∈ EXp,q
E

we have∣∣∣∣{e′ ∈ EXp,q
E

∣∣∣∣ there is a non-backtracking path
of length ℓ from e to e′

}∣∣∣∣ ≥ (1− ε)N.

Furthermore, for any two directed edges e1, e2 in Xp,q
E there is a non-

backtracking path from e1 to e2 of length at most 2 log√KkN + 10.

We remark that the case of p = 2 has some special additional features -
see Section 2.1 for an explicit description of S2 (called there S) and its action
on the Bruhat-Tits tree of G2.

Proof. (1) For p which is inert in E = Q
(√
−3
)
, let Λp

E be the lattice
defined in Theorem 5.2. Let Λp

E (q) = Λp
E ∩ Kq (q), where Kq(q) =

ker (G (Zq)→ G (Fq)), which is a congruence subgroup in PSU3 (Qp).
By Corollary 5.29

Λp
E (q)\Λ

p
E
∼=

{
PSU3 (Fq) q ≡ 2 (mod 3)

PSL3 (Fq) q ≡ 1 (mod 3)
= Gq.

In Theorem 5.2 we show that Λp
E acts simply-transitively on the left

side of the (p3 + 1, p + 1)-biregular tree Bp. We note that s 7→ p−1s
maps Sp bijectively to the elements of level 2 in Λp

E , and that by
Proposition 8.2, for each 1 ≤ i ≤ p3 + 1 the vertices

{
sv0
∣∣ s ∈ Si

p

}
share a common neighbor which we call vi. Therefore, by Theorem 2.9
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we have CayB
(
Λp

E ,
{
Si
p

}
i

)
∼= Bp, and furthermore, that

Xp,q
E = CayB

(
Gq,

{
Si
p,q

}
i

)
∼= CayB

(
Λp

E (q) \Λp
E ,
{
Si
p,q

}
i

)
= Λp

E (q) \CayB
(
Λp

E ,
{
Si
p

}
i

)
∼= Λp

E (q) \Bp.

Let K ′(q) = G(RẐ3,q)K3(C)Kq(q) where K3(C) ={
g ∈ G (Z3)

∣∣∣ g ≡ ( 1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 3)

}
(as in (7.1)), and note that

Λp
E (q) = K ′p (q) ∩ G (Q) and Xp,q

E = Xp
K′(q). By Theorem 7.2 we get

that AG (K ′ (q)) is A-Ramanujan, and by Theorem 6.9(i) it follows that
Xp,q

E is adj-Ramanujan.
(2) We prove this separately for q ≤ 5 and q ≥ 5. Let q = 2, and

K ′ = G(RẐ3,q)K3(C), which satisfiesG(Q)K ′ = G(A) by Corollary 5.27.
IfXp,q

E was Ramanujan, then by Theorem 6.9(ii) withK ′′ = K ′ (2) ⊴ K ′,
AG (K ′ (2)) was Ramanujan at p, so that every automorphic π of level
K ′ (2) was tempered or one-dimensional at p. By Corollary 7.15, this
implies that π is not in a global A-packet, hence by Theorem 7.2, π
is one-dimensional or tempered at all unramified places, namely when
ℓ ̸= 2, 3. In particular, we obtain that every π ∈ AG (K ′ (2)) is tempered
or one-dimensional at 5, and thus X5,2

E is Ramanujan by Theorem
6.9(i). However, this is false by an explicit computation of X5,2

E , whose
non-backtracking spectrum is shown in Figure 1.1. Thus Xp,2

E is non-
Ramanujan for any p ̸= 2, 3. For q = 5, the same proof holds using the
explicit computation of X2,5

E (Figure 1.1) as well as by the general case
below.

For any q ≥ 5, Theorem 7.6(2) shows that AG (K ′ (q)) is non-
Ramanujan, and Theorem 6.9(ii) with K ′′ = K ′(q) shows that Xp,q

E
is non-Ramanujan for any p ̸= 3, q. More precisely, there exists
π ∈ AG (K ′ (q)) which sits in a global A-packet, hence by Corollary
7.15, πp = πn(ρp) has Satake parameter −p for any p ̸= 3, q, so
by Proposition 6.3 it contributes the eigenvalues ±ip3/2 to the non-
backtracking spectrum.

(3) By Equation (6.12) and Corollary 7.15 we get

E
(
Xp

K′(q)

)
≤

∑
π∈AG(K′(q))
Sat(πp)=−p

dimπK
′(q) =

∑
π∈AA

G(K′(q))

dimπK
′(q) = dimVA (q) ,

where AA
G (K ′ (q)) is identified with AA

UE,Φ
3 ,1

(K ′ (q)) the set of A-type,

level K ′ (q), automorphic representations of U (E,Φ), with trivial central
character. By Theorem 7.11, for any ε > 0 there exists Cε, such that

dimVA (q) ≤ Cε dimV (q)3/8+ε .
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The claim now follows from the fact that

dimV (q) =
∣∣G (Q) \G (A) /K ′ (q)

∣∣ = ∣∣G (Q) \G (Q)K ′/K ′ (q)
∣∣

=
∣∣Λp

E (q) \Gp/Kp

∣∣ = ∣∣∣LXp,q
E

∣∣∣ ≤ ∣∣Xp,q
E

∣∣
(4) The group Gq acts transitively on Yq; fix v0 ∈ Yq and take Hq =

StabGq (v0), so that Y q ∼= Hq\Gq as a Gq-set. Let Kq [q] =

{k ∈ Kq | k (mod q) ∈ Hq}, andK ′[q] = G(Ẑ3,qR)K3 (C)Kq [q]. Observe
that

Λp
E [q] := K ′p [q] ∩G (Q) =

{
g ∈ Λp

E

∣∣ g (mod q) ∈ Hq

}
,

so that Y q ∼= Λp
E [q] \Λp

E as Λp
E -sets, and all together

Y p,q
E = SchB

(
Y q,

{
Si
p,q

}
i

)
∼= SchB

(
Hq\Gq,

{
Si
p,q

}
i

)
∼= SchB

(
Λp

E [q] \Λp
E ,
{
Si
p,q

}
i

)
= Λp

E [q] \CayB
(
Λp

E ,
{
Si
p

}
i

)
∼= Λp

E [q] \Bp.

By Theorem 6.9(i), Y p,q
E is Ramanujan if AG (K ′ [q]) is Ramanujan, and

the latter follows from the fact that Hq contains a Borel subgroup of Gq,
so that Kq [q] contains an Iwahori subgroup of Kq, and we can apply
Corollary 7.4 to AG (K ′ [q]).

(5) If γ = girth(Xp,q
E ) then there exists a non-backtracking path of length

γ in Bp which descends to a closed cycle modulo Λp
E (q). As Λp

E acts
transitively on Bhsp , we can assume this path starts at v0, so that it ends
in gv0 for g satisfying both g ∈ Λp

E (q) and g∗g = pγI. This implies that
pγ =

∑3
j=1NQ[ω]/Q(a1j) with a12, a23 ∈ qZ[ω], and a11 ∈ 1 + 3qZ[ω]. If

a11 = 1 then either a12 ̸= 0 or a13 ̸= 0, so we must have pγ ≥ q2 + 1,
and if a11 ̸= 1 then pγ ≥ 9q2 − 6q + 1, which is the smallest norm in
1 + (3qZ[ω]\{0}), belonging to −3q + 1. Thus we have

γ > logp q
2 = 2 log√Kk q

2 = 2
4 log

√
Kk q

8 > 2
5 log

√
KkN

for q large enough, since N =
(
p3 + 1

)
|Gq|, and |Gq| < q8.

(6) The graphs Xp,q
E are left-transitive (being Cayley bigraphs), and by

(1,3,5) they are adj-Ramanujan, have 6-logarithmic girth, and for ε > 0

satisfy E
(
Xp,q

E

)
≤ Cε

∣∣∣LXp,q
E

∣∣∣3/8+ϵ
< N δ where δ = 2

1+logp(p
3)

= 1
2 and N

is large enough. Theorem 4.15(2) yields that for ε ≤ m
δ

δ−1
√
K = p3/2

6
we have

tε − log√KkN <
1

δ
log√Kk

K

ε2
= 2 logp2

p3

ε2
= 4 log√Kk

(
1

ε

)
+ 3,

and the lower bound on t1−ε holds for any (K+1, k+1)-bigraph by
Theorem 4.11.
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(7) Let Ze =
{
e′ ∈ EXp,q

E

∣∣∣ there is a non-backtracking path
of length ℓ from e to e′

}
. Recall the notation

of Subsection 4.3 and assume w.l.o.g. that e ∈
−→
LR. Since supp

(
pℓ
e

)
⊆ Ze

we have by (6) and the definition of ∥·∥TV that

1− |Ze|
N

X
p,q
E

= u
(−→
LR\Ze

)
=
∣∣∣pℓ

e

(−→
LR\Ze

)
− u

(−→
LR\Ze

)∣∣∣ ≤ ∥∥∥pℓ
e − u

∥∥∥
TV

< ε,

so that |Ze| ≥ (1 − ε)N . In particular, at ℓ = log√KkNXp,q
E

+ 5 we
have

∥∥pℓ
e − u

∥∥
TV

< 1
2 , which implies that Ze1 must intersect with{←−e ∣∣ e ∈ Z←−e2} (where ←−e indicates the opposite directed edge), from

which it follows that there is a non-backtracking path of length 2ℓ from
e1 to e2.

□

8.2. Gauss, Mumford and CMSZ cases. In this subsection we address
the graphs arising from the Mumford and CMSZ lattices, which give fully
Ramanujan graphs. The Gauss lattice which was studied in [EP22] gives
adj-Ramanujan bigraphs as in the case of the Eisenstein lattice, and if
Conjecture 7.8 holds for E = Q[i], i =

√
−1, p = 2 and K ′2 = K2 (C) ={

g ∈ G (Z2)
∣∣∣ g ≡ ( 1 ∗ ∗

∗ 1 ∗
∗ ∗ 1

)
(mod 2 + 2i)

}
, then they are fully Ramanujan.

Theorem 8.4. Let p, q, E,Φ be either as in the Mumford case or the CMSZ
case:

Mumford (M ) CMSZ (C )
OE Z[λ], λ = −1+

√
−7

2 Z[η],η = 1−
√
−15
2

p p ≡ 3, 5, 6 (mod 7) p ≡ 7, 11, 13, 14 (mod 15)
q q /∈ {2, 7, p} q /∈ {3, 5, p}

Φ

3 λ λ

λ 3 λ
λ λ 3

  10 −2(η + 2) η + 2
−2(η̄ + 2) 10 −2(η + 2)
η̄ + 2 −2(η̄ + 2) 10


Let

Sp :=

{
g ∈M3 (OE)

∣∣∣∣∣ g∗Φg = p2Φ, g is not scalar,
g (mod M) ∈ H

}
,

where M = λ and H is the group of upper-triangular matrices in the
Mumford case, and M = (3, 1 + η) and H is as in (5.7) in the CMSZ case.
Let Sp =

⊔
i S

i
p be the partition induced g ∼ h if and only if p | g#h. Let

Gq be PSL3(Fq) when q splits in E and PSU3 (Fq) otherwise, and let Si
p,q

denote the image of Si
p in Gq. Then the Cayley bigraph

Xp,q = CayB
(
Gq,

{
Si
p,q

}
i

)
is a (fully) Ramanujan (p3+1, p+1)-regular bigraph with 10-logarithmic girth,
and hence satisfies the Bounded cutoff and Diameter properties from Theorem
8.3.
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Proof. Let Λp be the lattice spanned by Sp (which is either Λp
M or Λp

C ).
As in the proof of Theorem 8.3 claim 1, we have a natural identification
Xp,q ∼= Λp (q) \Bp. To show it is fully Ramanujan we use again Theorem
6.9(i) applied toK ′ (q) = G(RẐ2,q)I2Kq (q) where I2 is the standard Iwahori
in G (Z2) in the Mumford case, and K ′ (q) = G(RẐ3,q)K3 (H)Kq (q) where
K3 (H) ≤ G (Z3) corresponds to (5.7) in the CMSZ case. In both cases,
there is a prime r ramified in E (7 for Mumford and 5 for CMSZ) such that
G (Zr) ⊆ K ′ (q), so that by Theorem 7.3, AG (K ′ (q)) is Ramanujan. The
bound on the girth follows from the fact that g∗Φg = pγΦ, g ≡ I (mod q)
and Φ ̸≡ 0 (mod q) implies 1 ≡ pγ (mod q), which gives q < pγ , hence
γ > logp q = 2 log√Kk q = 2

8 log
√
Kk q

8 > 2
9 log

√
KkNXp,q

M
. As Xp,q are

Ramanujan with logarithmic girth, we can now infer bouned cutoff directly
from Theorem 4.14, and the diameter consequence follows exactly as for the
Eisentein case. □

Remark 8.5. Even if Conjecture 7.8 does not hold for the Gauss case,
that is, for E = Q[i], p = 2 and K ′2 = K2(C), the Cayley bigraphs
Xp,q

G = CayB
(
Gq,

{
Si
p,q

}
i

)
are still adj-Ramanujan, satisfy the SXDH, 10-

logarithmic girth, Bounded cutoff and the Diameter properties from Theorem
8.3.

8.3. Ramanujan and non-Ramanujan complexes. The results of this
paper also give new explicit constructions of Ramanujan complexes, as was
done in [EP22] using the Gauss lattice. A new feature is that we also get the
first explicit non-Ramanujan Ã2-complexes, from the principal congruence
subgroups of the Eisenstein lattice. We briefly recall the relevant background,
and refer to [LSV05a,Lub14,EP22] for more details.

When the prime p splits over Q[ω], ω = −1+
√
−3

2 , namely when p ≡
1 (mod 3), the group Gp = G (Qp) is isomorphic to PGL3 (Qp), whose
Bruhat-Tits building Bp = B (Gp) is two dimensional (see [Bro89, §V(8)] for
a detailed description). For a prime q ̸= p the quotient Xp,q

E := Λp
E (q) \Bp

can be described as a Cayley complex of a finite group Gq (either PU3 (Fq),
PSU3 (Fq), PGL3 (Fq) or PSL3 (Fq)), with respect to the generating set

Sp =

{
g ∈M3 (Z [ω])

∣∣∣∣∣ gg∗ = pI, g is not scalar,

g ≡
(

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
(mod 3)

}

(compare with (8.2), where p is inert) reduced modulo q. The vertices of
Bp correspond to cosets Gp/Kp, where Kp = PGL3 (Zp), and they have a
(Z/3)-coloring defined by col (gKp) = ordp det g ∈ Z/3. For i = 1, 2 the Hecke
operator Ai acts on the vertices of Bp by

(Aif) (v) =
∑

w∼v
colw=col v+i

f (w) .
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It is easy to see that A2 = A∗1, and it turns out that A1, A2 commute (see
e.g. [LSV05b]), so A1 contains the spectral information of both. As A1 is
geometric, in a Ramanujan quotient complexX of Bp the nontrivial spectrum
of A1 on X must be contained in the L2-spectrum of A1 on Bp, which is

Spec
(
A1

∣∣
Bp

)
=
{
p
(
α+ β + αβ

) ∣∣α, β ∈ C, |α| = |β| = 1
}
.

It was shown in [KLW10] that the other direction holds as well – if
Spec0

(
A1

∣∣
X

)
⊆ Spec

(
A1|Bp

)
then X is Ramanujan with respect to all

geometric operators16. Unlike the case of rank-one PU3 (Qp), here there is
a continuum of representations of PU3 (Qp) ∼= PGL3 (Qp) which can appear
as the local factor at p of an endoscopic lift from U2 × U1. In general,
A1 acts on the unique K-fixed vector in a principal series representation of
PGL3 (Qp) with Satake parameters (z1, z2, z3) by the scalar p (z1 + z2 + z3).
Denoting by Wz⃗ the irreducible subrepresentation which contains this vector,
the representations which appear as local factor in A-packets are precisely
V(z
√
p,z/
√
p,z−2) for z ∈ C of norm 1 (see e.g. [KLW10]). The “endoscopic

spectrum” of A1 is thus the closed curve

Ep :=

{
SpecA1

∣∣
V K

(z
√
p,z/

√
p,z−2)

∣∣∣∣ z ∈ S1

}
=
{
zp3/2 + p

z2
+ z
√
p
∣∣∣ z ∈ S1

}
.

Figure 1.4 shows the nontrivial A1-spectrum of some of the Eisenstein
Cayley-complexes Xp,q

E , with the underlying group Gq indicated, and with
the corresponding spectrum of A1 on the building Bp and on the endoscopic
curve Ep.

8.4. Golden gates. The lattices constructed in this paper can be also used
to give new constructions of Golden Gates, which are optimal topological
generators for unitary groups [Sar15a, PS18, EP22]. This was explored in
details for the Gauss lattice Λp

G in [EP22], so we only briefly explain this
application here. Let Λp

∗ be one of our lattices, and Γp
∗ = PU3(E,Φ) (Z[1/p])

as in Section 5. We can observe the elements

Sp =
{
1 ̸= g ∈ Λp

∗
∣∣ g∗Φg = p′Φ

}
, p′ =

{
p p splits
p2 p inert

as matrices in PU3(E,Φ)(R), which is isomorphic to the standard projective
unitary group PU(3), since Φ is definite. Any lattice Λp

∗ ≤ ∆ ≤ Γp
∗ is of

the form G (Q) ∩ K for some K = Kp × G(Zp) ≤ G(Ẑ), and we say that
∆ satisfies the Ramanujan property if every automorphic representation of
G/Q of level K is either one-dimensional or tempered. When ∆ satisfies the
Ramanujan property, words in Sp cover PU(3) in an almost optimal rate up
to an element in the finite group ∆∩G (Z) [EP22, Sec. 4]. In addition, there

16The underlying reason is that every infinite-dimensional irreducible unitary
representation of PGL3(Qp) which is Iwahori-spherical but not spherical happens to be
tempered. This does not hold for PGL4 and above [Kan16]!
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is an algorithmic way to approximate elements in PU(3) by elements in ∆,
and the word problem in ∆ w.r.t. Sp (up to ∆∩G(Z)) is efficiently solvable:
the Cayley graph (resp. bigraph) of (Λp

∗, Sp) is precisely the 1-skeleton of
the building Bp, and each two vertices in the building are contained in a
common apartment, where a shortest path can be quickly found. In the field
of quantum computation, an element in PU(3) represents a gate acting on
a single qutrit, and the properties we have described imply that any gate
can be approximated efficiently using the fundamental gates Sp as building
blocks. When Sp has both the almost optimal covering and an efficient
solution to the word problem of ∆, up to D := ∆ ∩G(Z), we say that Sp is
a golden gate set of PU(3)/D.

Proposition 8.6. If ∗ ∈ {M ,C }, then Sp is a golden gate set of PU(3),
and if ∗ ∈ {E ,G }, then Sp is a golden gate set of PU(3)/G(Z) (where G(Z)
is computed in Lemma 5.24).

Proof. The efficient solution to the word problem follows from the fact that
Λp
∗ acts simply-transitively on Bhs, as described above. The almost optimal

covering property follows from the Ramanujan property of Λp
∗, when ∗ ∈

{M ,C }, and Γp
∗, when ∗ ∈ {G ,E }, which follows from [EP22, Thm. 1.4].

17 □

Considerations of error correction have prompted the search for Golden
Gates which are elements of PU(3) of finite order, and these were termed
Super-Golden-Gates in [PS18]. Such gate sets for PU(2) were constructed
there by finding lattices which act simply-transitively on the edges of Bruhat-
Tits trees of PGL2(Q2). Several examples of super golden gates for PU(3)
arise from our lattices:

Theorem 8.7. Let σ, τ, A ∈ Γ2
E be as in (1.12), denote Σ := {σ, τ, A},

C := ⟨σ, τ⟩, ∆2
E := ⟨Σ⟩ ≤ Γ2

E and let S2 ⊂ Γ2
E as in Theorem 8.3. Then

∆2
E = C ⋉ Λ2

E
∼= (Z/3)2 ∗ Z/3, S2 = {cA±1c−1 : c ∈ C} and ∆2

E acts simply-
transitively on the edges of the Bruhat-Tits tree of G(Q2). Furthermore, Σ
is a super golden gate for PU(3)/D, where D = G(Z) ∩ I2 for I2 ≤ G(Z2)
an Iwahori subgroup and G(Z) ∼= S3 ⋉ C2

6 by Lemma 5.24.

We note that if ∆2
E had the Ramanujan property, then Σ was a super-

golden gate set for PU(3).18

Proof. It is easy to check that σ, τ, A are all of order 3, that C ∼= (Z/3)2, that
A ∈ Λ2

E , that C normalizes Λ2
E and that ℓ(cγc−1) = ℓ(γ) for any γ ∈ Λ2

E
and c ∈ C. This implies {cA±1c−1 : c ∈ C} = S2 and ∆2

E = C ⋉ Λ2
E ,

17Conjecturally Λp
G should also posses the Ramanujan property, see [EP22].

18Alternatively, one can proceed as in Section 4 and replace the Ramanujan property by
a density hypothesis to obtain optimal covering for PU(3) itself.
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so in particular ∆2
E is a congruence subgroup. The group C acts simply-

transitively on the neighbors of v0, whereas A rotates the three edges leaving
a neighbor of v0, and since Λ2

E acts transitively on hyperspecial vertices in
B2, we get that ∆2

E acts simply-transitively on all the edges, and by Bass-
Serre theory we get ∆2

E
∼= (Z/3)2 ∗ Z/3. To show that Σ is a super golden gate

for PU(3)/D note that

L2(PU(3)/D) ∼= L2(Γ2
E \(G(R)×G(Q2)))

I2 ∼= L2(G(Q)\G(A))G(Ẑ2)I2 ,

and the elements of Σ act on this space by elements in the Iwahori algebra
of G(Q2). The Ramanujan property holds by Theorem 7.3(1) which implies
the almost optimal covering property. Navigation is achieved by the simply-
transitive action on the edges. Hence Σ is a super golden gate for PU(3)/D.

□

We give two more examples of super golden gates (the arguments are
similar to previous construction and are left as an exercise for the reader):

• Consider the Eisenstein case G = PU3(Q[ω], I) at the ramified prime
p = 3. Then Γ3

E = G(Z[1/3]) acts transitively on the edges of the
Bruhat-Tits building B3 of the ramified group G(Q3), which is a 4-
regular tree, but it has no subgroup which acts simply-transitively
on the edges of B3. Consider the elements σ =

(
1

1
−1

)
, τ1 =( ω −ω −ω

−ω ω ω
−ω ω 1

)
, τ2 =

(−ω ω 1
ω −ω −1
1 −1 −1

)
in Γ3

E = G(Z[1/3]), and denote Σ =

{σ, τ1, τ2}, C = ⟨τ1, τ2⟩ and ∆ = ⟨Σ⟩. The element σ is of order 4
and rotates the four edges containing a vertex v0, the group C acts
transitively on the edges containing a neighbor of v0, and C ∼= Q8, the
quaternion group. It follows that ∆ acts transitively (but not freely)
on the edges of B3, and Σ is a super-golden gate set for PU(3)/D,
where D = ∆ ∩ I3 for I3 ≤ G(Z3) an Iwahori subgroup.
• Consider the Mumford case G = PU3(Q[λ],Φ) at the split prime
p = 2. In [Mum79] it is shown that Γ2

M = G(Z[1/2]) acts simply-
transitively on the pointed triangles of the Bruhat-Tits building B2
of G(Q2) ∼= PGL3(Q2). Consider the elements σ =

(
1 λ
−1

1 −1

)
and

ς =

(
λ
λ

λ

)
in Γ2

M , and denote Σ := {σ, ς}. Both σ and ς are of

order 3, and their action on the building B2 is such that σ fixes an
edge e0 and rotates the three triangles which contain e0, whereas ς
rotates one of these triangles around itself. This implies that ⟨Σ⟩ acts
transitively on the pointed triangles in B2, so by Mumford’s result
we have ⟨Σ⟩ = Γ2

M . We get that Σ is a super-golden-gates set of
PU(3): The argument is similar to the above proof where

L2(PU(3)) ∼= L2(Γ2
M \(G(R)×G(Q2)))

I2 ∼= L2(G(Q)\G(A))G(Ẑ2)I2 ,
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and the Ramanujan property holds by [EP22, Thm. 1.4] since K7 ⊆
G(Ẑ2)I2.

8.5. Optimal strong approximation. We note that the diameter
property of Theorems 8.3 and 8.4 can be formulated as an optimal strong
approximation property, or optimal lifting property, for our p-arithmetic
lattices Λ ≤ G(Z[1/p]) ≤ PSU3(Qp), which act simply transitive on Bhsp .
Let us first recall the optimal strong approximation property, which was
first discovered in [Sar15b] for the arithmetic group SL2(Z), in our context
of p-arithmetic groups (see also [GK23]).

The p-arithmetic group Λ is equipped for any unramified prime q ̸= p with
a natural homomorphism, Λ→ Gq, g 7→ g (mod q), where Gq = PSL3(Fq)
when q splits and Gq = PSU3(Fq) when q is inert. By strong approximation
(Corollary 5.29), these modulo maps are onto, i.e. Λ (mod q) = Gq.

Recall the level function, ℓ : Λ → N, ℓ(g) = −2mini,j ordp gij , and for
r ∈ 2N, denote by B(r) ⊂ Λ the ball of radius r according to this metric.
Since Λ acts simply transitively on the hyperspecial vertices of a (p3+1, p+1)-
regular tree Bp and since ℓ(g) = distBp(v0, gv0), then |B(r)| = p2r + p2r−3.
In particular, by a simple union bound we get that if B(r) (mod q) = Gq,
or even |B(r) (mod q) | = (1 − ϵ)|Gq| for a fixed ϵ > 0, then r is of size at
least logp2 |Gq|.

In recent years a strengthening of the strong approximation property
for the arithmetic group Λ, called super strong approximation (which
applies also for non arithmetic groups), states that the Cayley graphs
{Cay (Gq, S (mod q))}q form a family of expanders, for any fixed generating
set S ⊂ Λ. Take S = {s ∈ Λ | ℓ (s) = 2} and note that the diameter
of the Cayley graph Cay (Gq, S (mod q)) is the minimal ℓ, such that
B (2ℓ) (mod q) = Gq. Since expander graphs have logarithmic diameter,
we get that B

(
C · logp2 |Gq|

)
(mod q) = Gq, where C is a constant which

depends only on the expansion parameter of these graphs.

Following [Sar15b, GGN14], we now define the notions of optimal
covering and almost covering exponents and the property of optimal strong
approximation, in the form suited for our p-arithmetic groups.

Definition 8.8. Define the covering exponent of Λ to be

κ (Λ) = lim inf
q→∞

{
κ : B

(
κ · logp2 |Gq|

)
(mod q) = Gq

}
.

Define the almost covering exponent of Λ to be

κµ(Λ) = lim inf
ε→0

lim inf
q→∞

{
κ : |B

(
κ · logp2 |Gq|

)
(mod q) | = (1− ε) |Gq|

}
.

Say that Λ has the optimal strong approximation property if κµ (Λ) = 1.
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Note that by the above simple union bound and the super strong
approximation property we get that

1 ≤ κµ (Λ) ≤ κ (Λ) ≤ C.
We note that for q large enough it is easy to show that κ (Λ) ≤ 2 · κµ (Λ).
Hence if Λ has the optimal strong approximation property then 1 ≤ κ (Λ) ≤
2. It natural to hope that κ (Λ) = 1, however this is too strong of a property
to expect for, as was shown in [Sar15b] in the case of SL2 (Z). Here we shall
focus on almost covering exponent exclusively, and we leave it as an open
question to determine or give lower and upper bounds on κ (Λ).

We now show how the diameter property of Theorems 8.3 and 8.4 implies
the optimal strong approximation property.

Proposition 8.9. Let Λ ≤ PSU3(Qp) be one of the p-arithmetic lattices
constructed in Theorems 8.3 or 8.4, where p is an inert prime. Then for any
small enough ε > 0, if r = logp2 |Gq|+4 logp2

(
1
ε

)
+3, then |B(r) (mod q) | ≥

(1− ϵ)|Gq|. In particular, Λ has the optimal strong approximation property.

Proof. The diameter property of Theorems 8.3 and 8.4 states that for
(1− ϵ)N of the N directed edges of the Cayley bigraph Xp,q =
CayB(Gq,

{
Si
p,q

}
i
), there is a non backtracking path of length at most r

from the fundamental directed edge. This in particular implies that for
(1− ε) |Gq| of the |Gq| left vertices of Xp,q, there is a path of length at
most r from the identity vertex. Since B (r) (mod q) is precisely the set of
elements in Gq which have a path of length at most r from the identity, we
get the claim. □

8.6. Picard modular surfaces. Recall that the arithmetic bigraphs
considered in this paper are of the following form Xp(q) = Λp(q)\Bp, where
Bp is the Bruhat-Tits tree of the p-adic group G(Qp) = PU3(Qp) and
Λp(q) = {g ∈ Λ : g ≡ I mod q} is the level q congruence subgroup of
a p-arithmetic subgroup Λ ≤ G(Z[1/p]), for some projective unitary group
scheme G over Z, w.r.t. to a matrix algebra and a definite Hermitian form
(called type (I) in the introduction). These graphs are p-adic analogues of
Picard modular surfaces, which are 2-dimensional complex orbifolds (and
for q large actually manifolds) of the form X(q) = Λ(q)\B, where B is
the open unit ball in C2 which is the symmetric space of the Lie group
G(R) = PU(2, 1) and Λ(q) = {g ∈ Λ : g ≡ I mod q} is the level
q congruence subgroup of an arithmetic subgroup Λ ≤ G(Z), for some
projective unitary group scheme G over Z, w.r.t. to a matrix algebra and an
indefinite Hermitian form.

It is interesting to ask whether the results we proved in this paper translate
in any meaningful way from the p-adic world to the real world, namely, what
can we say about the Picard modular surfaces. We note that two of our
main results in the p-adic world were:
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(ST): Constructing p-arithmetic groups Λp which act simply-transitively
on the hyperspecial vertices of the Bruhat-Tits building Bp, for any
unramified prime p.

(R): Proving the Ramanujan property for the bigraphs Xp(q) = Λp(q)\Bp,
for Λp as above, any inert prime p and q running over all integers
coprime to a single ramified prime.

On the one hand, property (ST) shows that the origin vertex forms a
fundamental domain for the action of Λp on Bhsp , in particular showing that
Vol(Λp\Bp) = 1, which in turn enables us to give a Cayley bigraph structure
on the finite bigraphs Xp(q) = Λp(q)\Bp. We expect that the analogue of
property (ST) in the setting of the Picard modular surfaces would be that
the action of Λ on B has a simple fundamental domain, and in particular
Vol(Λ\B) is small. See for instance [Sto11], where it is shown that for Λ =
PU2,1(Z[ω]), the principal arithmetic subgroup in the Eisenstein case w.r.t.
to the indefinite Hermitian from Φ = diag (1, 1− 1), the Picard modular
surface X(1) = Λ\B has minimal volume among all possible non-compact
quotients of B.

On the other hand, following Rogawski, a possible analogue of property
(R) for the Picard modular surfaces is the vanishing of their 1-dimensional
cohomology. In [Rog90, Thm.15.3.1], Rogawski proved such vanishing for
Picard modular surfaces of type (II), i.e. G = PU(D,σ) where D is a
division algebra and σ an involution of the second type. The p-adic analogue
of this result is that the finite quotients Xp(q) = Λp(q)\Bp are Ramanujan
for unitary groups of type (II), i.e. G = PU(D,σ) as before and σ a definite
involution (see [Bal00, BC11, BFG+15]). Below we prove such a result for
Picard modular surfaces of type (I), using our previous analysis of Rogawski’s
work in Section 7.

Theorem 8.10. Let G = PU3(E,Φ) be a projective unitary group scheme
over Z of type (I), where E is a quadratic imaginary field and Φ an indefinite
Hermitian form. Let Λ = G(Z), the principal arithmetic subgroup of G,
Λ(q) the principal congruence subgroup of level q, call Γ ≤ G(Z) a level q
congruence subgroup if it contains Λ(q) and denote its corresponding Picard
modular surface by X(Γ) = Γ\B. Then for any q coprime to the discriminant
of E and any level q congruence subgroup Γ,

H1 (X(Γ),C) = 0.

Proof. By Matsushima’s formula we have the following decomposition

H1 (X(Γ),C) ∼=
⊕
π

H1 (g,K∞;π∞)⊗ πKf (Γ)
f ,

where π = π∞πf runs over all discrete automorphic representations of G,
g is the Lie algebra of G∞ = G(R) = PU(2, 1), K∞ = P (U(2)× U(1)) is
a maximal compact subgroup of G∞, H1 (g,K∞;π∞) is the 1-dimensional
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(g,K∞)-cohomology of π∞, Kf (Γ) ≤ Kf = G(Ẑ) an adelic congruence
subgroup such that Γ = G(Q) ∩ Kf (Γ) and π

Kf (Γ)
f the space of Kf (Γ)-

fixed vectors. By [Rog90, Prop. 15.2.1, Sec. 14.4, Thm. 13.3.6(c)], π and
all of its local factors sit in A-packets. Let p be a ramified prime, and by
assumption p ∤ q, hence Kp = G(Zp) is the p-factor of Kf (Γ) =

∏
ℓKℓ(Γ).

By Theorem 6.9(i), σKp = 0 for any member σ in an A-packet at a ramified
prime, in particular πKp(Γ)

p = 0, hence πKf (Γ)
f = 0, and therefore⊕

π

H1 (g,K∞;π∞)⊗ πKf (Γ)
f = 0. □

It is interesting to note that we get from the above Theorem a property
that is in a certain sense opposite to the famous virtual Betti conjecture, in
the special case of arithmetic non-uniform lattices of PU(2, 1). Recall that
the virtual Betti conjecture asks whether for any lattice Γ of PU(2, 1) there
is a cover of X(Γ) = Γ\B with non-trivial first cohomology. By the above
theorem, for a non-uniform arithmetic lattice Γ of PU(2, 1), we can find an
infinite tower of lattices Γi commensurable to Γ with trivial first cohomology.
This is done by changing Kf (Γ) =

∏
ℓKℓ(Γ), such that Kp(Γ) is replaced

withKp for some prime p which ramifies at E, and then one is free to consider
smaller subgroups of Kℓ(Γ) at any other place. If Kp(Γ) = Kp for some
ramified prime to begin with, then the resulting lattices Γi will actually be
subgroups of Γ, in which case we get that the virtual Betti conjecture cannot
hold for such covers X(Γi) of X(Γ).
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