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Abstract

For any d ≥ 2 and prime power q, we construct k elements in Gℓ = PSLd(qℓ), such that the
associated sequence of Cayley graphs exhibits optimal bounded cutoff. Namely, for any ε > 0 there
exists C, independent of ℓ, such that the random walk on Gℓ is ε-close to the uniform distribution,
in total-variation distance, at time logk|Gℓ| + C.

This is achieved by two separate results of a different nature: (a) proving that Ramanujan
digraphs with certain properties (almost-normality and logarithmic collision-radius) exhibit opti-
mal bounded cutoff, and (b) constructing elements in Gℓ whose associated Cayley digraphs are
Ramanujan digraphs with these properties. For (a), we develop a new method to bound the norms
of walk operators in directed graphs, which should be of independent interest. For (b), we realize
Gℓ as a congruence quotient of a specially chosen arithmetic semigroup in a division algebra over
Fq(t). The crucial point for us is that in the action of the algebra on its associated Bruhat-Tits
building, the generators of the semigroup act by geodesic flow on an appropriate set of edges.

1 Introduction

The study of group expansion concerns the following problem: given a generating set S for a finite
group G, how quickly do words in S cover all, or most of G? Sets of generators which “expand”
rapidly are especially interesting, as well as useful for many applications in mathematics and computer
science [Lub12]. There are many variants to the question of expansion – for example, asking what is
the expansion rate of a group with respect to its worst, random, average, and best-case generators.
Expansion in finite simple groups in particular has attracted the attention of many mathematicians,
and we refer the reader to the recent survey [BL22] and the monograph [Tao15] for the history and
open problems in the field.

One measure of group expansion is given by mixing time, namely, the speed at which a random walk
on the Cayley graph of the group convergence to the uniform distribution, in some chosen metric. For
L2 metric, the mixing rate is dictated by the spectrum of the adjacency operator of the graph, and a
k-regular graph whose spectrum is bounded by 2

√
k − 1 (save for the trivial eigenvalue k) was named

Ramanujan graph in [LPS88]. By the Alon-Boppana theorem, the bound 2
√

k − 1 is asymptotically
optimal, and in [LPS88] Lubotzky, Phillips and Sarnak (LPS) show that for any prime p ≡ 1 (mod 4)
and infinitely many q, the groups PSL2(q) have an explicit set of k = p + 1 generators which yield a
Ramanujan graph. This gives optimal expansion in L2 metric, but for the more informative L1, also
known as total-variation distance, the story is more complicated. Only in [LP16] it was shown that
Ramanujan graphs indeed have optimal L1 expansion, and furthermore, that they exhibit Diaconis’
cutoff phenomenon: the L1-distance to uniform distribution drops abruptly from almost maximal to
almost zero, over a short period of time. The recent work [NS23] shows that for some Ramanujan
graphs, such as the LPS graphs, this period of time is even independent of the size of the graph (which
is called bounded cutoff ).

Subsequent works [Chi92, Mor94, DSV03] have generalized the LPS construction to give k Ramanu-
jan generators for other values of k, but always for the groups PSL2(q) (and PGL2(q)). A high-
dimensional analogue of the LPS construction was established in [LSV05b, Sar07], yielding generators
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for PSLd(q) such that the resulting Cayley graph is the one-dimensional skeleton of a Ramanujan
complex. However, the expansion in these complexes deteriorates as d grows – they still exhibit cutoff,
but not at the optimal time [CP22].

There is no reason to suspect that PSLd(q) has Ramanujan generators, let alone that there exists an
explicit description of such generators, valid for infinitely many q. Nevertheless, in this paper we give
an optimal expansion result for families of the form PSLd(qℓ), with d and q fixed and ℓ varying. For
this, we make use of an undirected analogue of Ramanujan graphs:

Definition 1.1 ([PS18, LLP20]). A k-regular digraph (directed graph) D is a Ramanujan digraph if
every eigenvalue λ ∈ C of its adjacency operator satisfies either |λ| = k, or |λ| ≤

√
k.

Note that the spectral bound
√

k is better than that of Ramanujan graphs: this reflects the fact that
a free semigroup expands faster than a free group, as there are no cancellations, or “backtracks”. In
accordance, in some sense it is harder to find Ramanujan digraph generators for a group. In [PS18,
§5] we study this problem, and find explicit generators that give PSL2(q) a Ramanujan-digraph
structure. Unlike the LPS construction, we manage to do this only for a finite number of possible
degrees k (specifically, k ∈ {2, 3, 4, 5, 7, 11, 23, 59} – each case corresponds to a Platonic symmetry
group of size k + 1, lying in the unit group of some quaternion order). In this paper we present a
different construction, using the notion of geodesic flow on buildings introduced in [LLP20]. This is
a branching process which can be thought of as a p-adic analogue of the geodesic flow on the unit
bundle of a Riemannian manifold. Remarkably, this gives us both infinitely many values of k, and in
addition applies to PGLd for any d ≥ 2.

Let us fix d ≥ 2 and a prime power q, and let ℓ ∈ N vary, excluding the special case qℓ = 2. For each
such ℓ we construct in Section 2 an explicit set Sℓ of size qd−1 in PGLd(qℓ). Denoting Gℓ = ⟨Sℓ⟩, each
Gℓ is an intermediate subgroup

PSLd(qℓ) ⊴ Gℓ ⊴ PGLd(qℓ),

and we denote by Dℓ = Dd,q,ℓ the Cayley digraph Cay (Gℓ, Sℓ), which has vertices Gℓ and edges
{g → sg | g ∈ Gℓ, s ∈ Sℓ}.

Theorem 1.2. The digraph Dd,q,ℓ is a connected k = qd−1-regular Ramanujan digraph, whose period-
icity pℓ divides

[
Gℓ : PSLd(qℓ)

]
. In fact, its spectrum satisfies

Spec (Dd,q,ℓ) ⊆ ⟨e2πi/pℓ⟩ k ∪
{

z

∣∣∣∣ |z| =
√

k or |z| = k
d−2

2d−2

}
.

It is easily deduced from this that Sr
ℓ = {s1 · . . . · sd | s1, . . . , sd ∈ Sℓ} is a generating set of size d(d−1)

for PSLd(qℓ), whose Cayley graph Cay
(
PSLd(qℓ), Sd

ℓ

)
is a connected aperiodic Ramanujan digraph.

Some examples of Dd,q,ℓ and their adjacency spectrum are shown in Figure 1.1.

Allowing for directed graphs has a price: the spectral analysis becomes trickier, as the adjacency
operator A is not self-adjoint, and is not even normal in the cases which we are interested in. In
these settings, the Ramanujan property alone tells us little: as A is not normal, its operator norm is
controlled by its singular values, rather than its eigenvalues, and it turns out that Ramanujan digraphs
can have abysmal singular values [Par20, §3.5]. We gain some control of the situation by the notion
of almost-normality: A matrix is r-normal if it is unitarily equivalent to a block-diagonal matrix with
blocks of size at most r × r. A digraph is called r-normal if its adjacency matrix is r-normal, and
a family of matrices (or digraphs) is said to be almost-normal if its members are r-normal for some
fixed r < ∞. A main ingredient in [LP16, LLP20] is the spectral analysis on almost-normal digraphs,
which leads to cutoff with logarithmic window (see definition below). The digraph Dd,q,ℓ which we
construct in theorem 1.2 are d-normal, so the results from [LLP20] shows that our generators indeed
have optimal cutoff with a logarithmic window. However, in this paper we develop a new approach
(Section 3), which ultimately leads to bounded cutoff.
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Figure 1.1: The spectrum of some qd−1-regular Cayley digraphs Dd,q,ℓ, and the underlying group
Gℓ ≤ PGLd(qℓ).

A sequence of digraphs {Dn} is said to exhibit cutoff at time t = t(n) with window w = w (n, ε) if for
any ε > 0, the total-variation mixing time t⋆(Dn) satisfies

t (n) − w (n, ε) < t1−ε (Dn) < tε (Dn) < t (n) + w (n, ε)

for n large enough. If Dn are k-regular, we say that the cutoff is optimal if t (n) = logk |Dn|, and that
the window is logarithmic if w (n) = O (log |Dn|), and bounded if w (n) = O (1). In [LLP20, §3] it is
shown that almost-normal Ramanujan digraphs satisfy optimal cutoff, with logarithmic cutoff window.
Combining this with Theorem 1.2 would already give us optimal logarithmic cutoff for PGLd(qℓ), but
our goal is to obtain bounded cutoff. We introduce two definitions:

Definition 1.3. The collision radius of a digraph D is

crad (D) = min
{

ℓ

∣∣∣∣ ∃ vertices v, w ∈ D with two different
directed paths of length ℓ from v to w

}
,

and D is called collision-free if crad (D) = ∞, i.e. for any v, w ∈ D there is at most one directed path
from v to w.
A branching operator T on a simplicial complex B is called geometric if it commutes with Aut(B),
in which case for any quotient X of B it defines a branching operator on X, denoted by T

∣∣
X

.
We observe that if T is collision-free (where we identify T with the corresponding digraph DT =
{v → w | v, w ∈ B, w ∈ T (v)}), then the collision-radius of the T

∣∣
X

is at least the injectivity radius of
X as a quotient of B. We shall make use of the geodesic flow F , which is a collision-free branching
operator on certain edges in the Bruhat-Tits building B (associated with the group PGLd(Fq((y)))).
Our digraphs Dℓ will be obtained from the action of F on certain quotients of B. Finally, arithmetic
considerations show that these quotients have logarithmic injectivity radius [LM07]. In section 3 we
prove the following:

Theorem 1.4. If D is an aperiodic, r-normal, k-regular, transitive Ramanujan digraph on n vertices
with crad(D) > r−1

m−1 logk n (where m ≥ 2), then

logk n − logk
1
ε < t1−ε (D) < tε (D) < logk n + logk

r2m2r

4ε2 .
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It seems that transitivity is actually not necessary, but it holds for Cayley digraphs, and makes the
proof much simpler. To apply this theorem to our Dℓ we need to establish r-normality. This comes
from the representation theory of PGLd(Fq((y))), which shows that for any geometric operator T on
B the digraph DT↷X is r-normal for some r which depends only on B [LLP20, Thm. 3]. Specifically,
for the geodesic flow operator on B we have r = d (see Section 2). From the arguments in [LM07] we
obtain crad (Dd,q,ℓ) ≥ logk n−1

d+1 , which implies we can take m = d2 + 1. Combining everything together,
we arrive at bounded cutoff for Cayley digraphs:

Theorem 1.5. If Dℓ = Cay (Gℓ, Sℓ) is aperiodic (in particular, when Dℓ = PSLd

(
qℓ
)
), then

logk n − logk
1
ε < t1−ε (Dℓ) < tε (Dℓ) < logk n + logk

d2 (d2 + 1
)2d

4ε2 .

When Dℓ is p-periodic, Dℓ =
⊔p

i=1 Vi, the walk is of course not mixing, but the same result holds if
one starts from a randomly chosen block Vi, or if one restrict his attention to convergence to uVi at
times which are multiples of p. Returning to the original question of group covering, we have two easy
consequences of total-variation cutoff:

Corollary 1.6. If Dℓ = Cay (Gℓ, Sℓ) is aperiodic, then almost every element in Gℓ is obtained by a
word of length logk |Gℓ| + C in Sℓ, and every element is obtained by a word of length 2 logk |Gℓ| + C.

Let us explain a little where Theorem 1.4 comes from. It is inspired by the main result in [NS23],
which shows bounded cutoff for non-backtracking walk on Ramanujan graphs of logarithmic girth.
The main idea there is to “bootstrap” expansion from early time to later one: at time t = girth(X)

2 , the
non-backtracking walk is optimally expanding, as no edge is encountered twice. This shows that an
appropriately chosen operator norm of Bt is small(†). To show optimal cutoff one needs to study Bt′ ,
where t′ ≈ logk n ≈ mt, so the challenge is to relate the norm of Bt to that of Btm. Both norms can
be computed by applying a combinations of Chebyshev polynomials to the eigenvalues of the graph
[NS23, Lem. 4.3], and the relation between the norms of Bt and of Btm is obtained in [NS23] from
a careful analysis involving trigonometry and recursion relations of Chebyshev polynomials (see also
[ABLS07] for earlier usage of this idea).

In our digraphs D, we have optimal expansion at time t being the injectivity radius of our complexes,
since the geodesic flow operator F is collision-free on the building. Again, this means that F t

∣∣
D has

“small” norm, and we need to bound that of F tm
∣∣
D. In Section 4, we relate the eigenvalues of F t

to those of the “colored adjacency operators” on the complex, by means of multivariate polynomials
satisfying a recursive relation (4.1). The problem is that the (multivariate) trigonometry which arises is
the analysis of the norms quickly becomes intractable. We therefore develop in Section 3 a completely
new approach, which relates the norms of several different powers of a matrix, and which we expect
to be of use in other situations not involving graphs or buildings:

Proposition (3.3). If A ∈ Mr (C) has eigenvalues bounded by 1, then ∥Am∥ ≤ mr ∑r−1
t=0

∥∥At
∥∥ for

m ≥ 1 and any matrix norm ∥·∥.

This proposition allows us gives a bound for Am in terms of several the first r − 1 powers A, . . . , Ar−1.
Once we move from graphs to higher dimensions (i.e. r ≥ 3), we need more than A itself, and our
bootstrapping uses several points in time for which we already know that the expansion is optimal.
Even though eventually we make no use of our high-dimensional Chebyshev polynomials in the analysis
of cutoff, we have left them in this paper as we think they merit a study for their own sake.
Acknowledgement. This research was supported by ISF grant 2990/21.

(†)In [NS23] the norm is a weighted average of the squares of the eigenvalues. For transitive graphs the weights are all
equal and one obtains the Frobenius norm.
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2 Geodesic flow generators

For a nonarchimedean local field F , the Bruhat-Tits building Bd,F associated with the group G =
PGLd(F ) is a contractible, (d − 1)-dimensional, simplicial flag complex. Its vertices may be identified
with G/K for the maximal compact subgroup K = PGLd(OF ), and if π is a uniformizer in F , two
vertices gK, g′K in Bd,F are neighbors if g′ ∈ KgsK for some non-scalar s = diag (1, . . . , 1, π, . . . , π).
The directed edges in Bd,F are colored by col(gK → g′K) = ordπ(det(g−1g′)), which is a well defined
element in (Z/dZ)\{0}, and the action of G preserves edge colors. Ramanujan complexes were defined
in [Li04, LSV05a] as quotients of Bd,F for which the spectrum of the “colored adjacency operators”

(Aif) (gK) =
∑

col(gK→g′K)=i

f
(
g′K

)
is contained in the L2-spectrum of the corresponding operator on the building, save for the Perron-
Frobenius eigenvalues.

In this section we construct a π-arithmetic group ∆ in a division algebra D of degree d over Fq(y),
with a special set of generators S. For the y-adic completion F = Fq((y)), the completion Dy =
D ⊗Fq(y) F splits, so that D×

y /Z(D×
y ) ∼= PGLd(F ), and the group ∆ acts simply-transitively on the

set of (directed) edges of color one in Bd,F . Furthermore, the set S takes a certain edge e0 to all the
edges which are connected to it by geodesic flow, as defined in [LLP20, §5], which in particular implies
by the non-collision property that the semigroup generated by S is free.

Let E/F be a cyclic Galois extension of degree d with Gal (E/F ) = ⟨σ⟩, and a ∈ F ×. The cyclic
algebra (E, σ, a) is defined by

(E, σ, a) = E {x}
⟨xd = a, εx = xσ (ε) | ε ∈ E⟩

, (2.1)

where E {x} are polynomials in a variable x which does not commute with the scalars E. This is
always an F -CSA (central simple F -algebra) of dimension d2; conversely, every F -CSA of dimension
d2 which contains a cyclic field extension of degree d of F is of this form (for example, Hamilton’s
quaternions are (C, z 7→ z, −1)). If F is a global field and a ∈ OF , then an integral model for (E, σ, a)
is given by the OF -algebra

(OE , σ, a) = OE {x}
⟨xd = a, εx = xσ (ε) | ε ∈ OE⟩

,

namely (E, σ, a) = (OE , σ, a) ⊗OF
F . We denote by G̃ the group scheme of (OE , σ, a)-units, namely

G̃ (R) = ((OE , σ, a) ⊗OF
R)×

for any OF -algebra R, and define G def= G̃/U, where U (R) = R×. For the cases that will concern us
we have

G (R) = ((OE ,σ,a)⊗OF
R)×

/R×,

but we warn the reader that for general R the scheme-theoretic quotient can be larger. Next, for d ≥ 2
and a prime-power q, we take F = Fq (y) and E = Fqd (y), so that Gal (E/F ) = ⟨ϕ⟩ where ϕ fixes y
and acts on Fqd by α 7→ αq. We observe the cyclic algebra

D =
(
Fqd (y) , ϕ, 1 + y

)
,

and the associated Fq [y]-group scheme G (R) =
((

F
qd [y],ϕ,1+y

)
⊗R
)×

/R×. Let V denote the valuations of
F ; these are νπ for every irreducible polynomial π ∈ Fq [y], and the valuation at infinity, ν1/y (f/g) =
deg g − deg f (for f, g ∈ Fq [y]). We denote by Dπ = D ⊗F Fπ the completion of D at νπ (including
π = 1/y), and similarly Gπ = G (Fπ) = D×

π/F ×
π . It is a standard exercise to check that Dπ splits for

any π, except for D1/y and D1+y which are division algebras. In particular we have Dy
∼= Md (Fq ((y)))

and Gy
∼= PGLd (Fq ((y))), whose Bruhat-Tits building was described above.

5



The S-arithmetic group Γ = G
(
Fq

[
y, 1

y , 1
1+y

])
embeds discretely in Gy × G1/y × G1/(1+y), and since

D1/y and D1/(1+y) are division algebras G1/y × G1/(1+y) is compact, so that Γ is already discrete in
Gy. Our goal is to find subgroups of Γ which act nicely on the building Bd,F of Gy

∼= PGLd (Fq ((y))).
An example for such a subgroup is the lattice Γcs constructed by Cartwright and Steger in [CS98]:

Γcs =
〈{

α−1
(
1 − 1

x

)
α
∣∣∣α ∈ F×

qd/F×
q

}〉
,

where x is the indeterminate from (2.1), and F×
qd/F×

q indicates any set of coset representatives – since
Fq ⊆ Z (D), the elements of F×

q are trivial in Gy. This lattice acts simply-transitively on the vertices of
the building [CS98], and was used in [LSV05b] to give explicit constructions of Ramanujan complexes.
If we denote G = Gy

∼= PGLd (Fq ((y))) and K = G(Fq [[y]]) ∼= PGLd (Fq [[y]]), the vertices of B
correspond to the cosets G/K, and Γcs acting simply-transitively on the vertices means that it is a
transversal for G/K.

For our purposes, we take a bigger lattice:

∆ def=
〈{(

1 − 1
x

)
, α
∣∣∣α ∈ F×

qd/F×
q

}〉
.

The lattice ∆ acts simply-transitively on the set of directed edges of color 1 in Bn,F . This is equivalent
to stating that after identifying G with PGLd (Fq ((y))), ∆ is a transversal for the cosets G/P , where
P is the parahoric group

P =

g ∈ K

∣∣∣∣∣∣ g ≡

 ∗ ∗ ··· ∗
0 ∗ ··· ∗
...

... . . . ...
0 ∗ ··· ∗

 (mod y)

 ,

which is the stabilizer of the edge e0 = K → diag (y, 1 . . . , 1) K in Bn,F . We are interested in a special
set of qd−1 elements in ∆:

S =
{

s ∈ ∆
∣∣∣ • e0→ • se0→ • is a geodesic path of color 1

}
.

The elements S generate a free semigroup (but not a free group). Denoting by B1
1 the edges of color

one in Bn,F , the digraph D = Cay (∆, S) is isomorphic to the digraph whose vertices are B1
1, and

whose edges correspond to the geodesic flow. Furthermore, as ∆ acts simply transitively on B1
1, we

obtain that in the isomorphism

L2 (VD) = L2
(
B1

1

)
∼= L2 (∆) ∼= L2 (G/P ) ∼= L2 (G)P ,

the element 1P SP in the Parahori-Hecke algebra H G
P acting on the r.h.s. coincides with the adjacency

operator in D acting on the l.h.s.. For a finite index subgroup Λ ⊴ ∆, we observe the quotient digraph
DΛ = Λ\D, which coincides with Cay (Λ\∆, S). Note that if some s ∈ S is in Λ, or two s, s′ ∈ Λ are
equivalent modulo Λ, then DΛ will have loops or multiple edges, which we allow. We obtain natural
identifications:

L2 (VDΛ) = L2
(
Λ\B1

1

)
∼= L2 (Λ\∆) ∼= L2 (Λ\G/P ) ∼= L2 (Λ\G)P ,

where compactness of P is used to preserve L2-condition in the last step, and again the action of
1P SP ∈ H G

P on L2 (Λ\G)P coincides with the adjacency operator ADΛ acting on L2 (VDΛ). As
Λ\G is compact, we can decompose L2 (Λ\G) =

⊕̂
iVi as a Hilbert sum of orthogonal irreducible

representations of G. This induces a decomposition of H G
P -modules L2 (VDΛ) ∼=

⊕
i V P

i (V P
i = 0 for

almost all i in the sum as |VDΛ | < ∞), and in particular, we obtain an orthogonal block-diagonal
decomposition for 1P SP = ADΛ . In addition, the P -fixed part of a P -spherical representation of G
is of dimension at most d [LLP20, Prop. 5.3], so that DΛ is d-normal. Our goal is to show that for
specific Λ it is a Ramanujan digraph, and that choosing Λ correctly gives Gℓ from the introduction.
These follow from:
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(1) Except for the special case qℓ = 2, there exists an irreducible π ∈ Fq [y] of degree ℓ which is
coprime to y and to y+1. Taking quotient by π give Fq

[
y, 1

y , 1
1+y

]
→ Fqℓ , and thus Γ → GF

qℓ
. We

denote Λℓ = ker
(
∆ → GF

qℓ

)
and Gℓ = im

(
∆ → GF

qℓ

)
. By strong approximation, Gℓ

∼= Λℓ\∆
contains G1

F
qℓ

(the elements of reduced norm 1), and by Wedderburn’s little theorem DF
qℓ

splits,

so that G1
F

qℓ

∼= PSLd

(
qℓ
)

and GF
qℓ

∼= PGLd

(
qℓ
)
. Finally, the generating set Sℓ for Gℓ is the

image of S under ∆ → GF
qℓ

∼= PGLd

(
qℓ
)
.

(2) By the Ramanujan conjecture in positive characteristic [Laf02], the Jacquet-Langlands corre-
spondence [BR17], and the classification of cuspidal automorphic representations of D (AF )
[MW89], every P -spherical representation which appears in L2 (Λ\∆) is either one-dimensional
or tempered.

From the fact that geodesic flow is collision-free, it follows that its eigenvalues are of size |k| on one-
dimensional representations [LLP20, Prop. 4.3], and of size at most

√
k on tempered representations

[LLP20, Prop. 4.1 and 2.3]. This is enough for our purposes, but we can also study the P -spherical
representations directly, and show that their size must equal either

√
k = q(d−1)/2 or q(d−2)/2, as stated

in Theorem 1.2.

3 Bounded Cutoff

In this section we prove Theorem 1.4, which shows that almost-normal transitive Ramanujan digraphs
with logarithmic collision radius have bounded cutoff. The proof follows from bounding the Frobenius
norm of powers of almost-normal Ramanujan digraphs:

Theorem 3.1. Let D be an r-normal k-regular p-periodic Ramanujan digraph on n vertices, with
adjacency matrix A. If ℓ < crad(D)

r−1 , then
∥∥∥Aℓm

∥∥∥2

F
< pk2ℓm + r2m2rnkℓm for any m.

The next two propositions prepare the ground for the proof, though each of them seems interesting in
its own rights.

Proposition 3.2. If A is a r × r matrix over an integral domain, then for any j ≥ 1

Ar−1+j =
r−1∑
t=0

(−1)t s(j,1×t) (z1, . . . , zr) Ar−1−t (3.1)

where sλ is the Schur polynomial of the partition λ, and z1, . . . , zr are the eigenvalues of A with
algebraic multiplicities.

Proof. We proceed by induction on j. Since s(1×t) is the t-th elementary symmetric polynomial et, for
j = 1 eq. (3.1) becomes

Ar =
r−1∑
t=0

(−1)t et+1 (z1, . . . , zr) Ar−1−t,

which is just the Cayley-Hamilton theorem. The product sλej is given by Pieri’s 1893 formula [Pie93]:
sλej =

∑
µ sµ where the sum is over all µ whose Young table is obtained from that of λ by adding j

boxes, each in a different row. In particular, we find that

s(j)et+1 = s(j+1,1×t) + s(j,1×(t+1)). (3.2)
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Writing et, sλ as a shorthand for et (z1, . . . , zr) , sλ (z1, . . . , zr), we assume (3.1) for j and prove it for
j + 1:

r−1∑
t=0

(−1)t s(j+1,1×t)A
r−1−t =

r−1∑
t=0

(−1)t
(
s(j)et+1 − s(j,1×(t+1))

)
Ar−1−t

= s(j)

r−1∑
t=0

(−1)t et+1Ar−1−t + A
r∑

t=1
(−1)t s(j,1×t)A

r−1−t

(3.1)= s(j)A
r + A

(
Ar−1+j − s(j)A

r−1 + (−1)r s(j,1×r)A
−1
)

= Ar+j + (−1)r s(j,1×r),

and we are done since sλ (x1, . . . , xr) vanishes when the length of λ is greater than r.

Proposition 3.3. If A ∈ Mr (C) has eigenvalues bounded by 1, then ∥Am∥ ≤ mr ∑r−1
t=0

∥∥At
∥∥ for m ≥ 1

and any matrix norm ∥·∥.

Proof. For m < r this is immediate, so we assume m ≥ r and apply Proposition 3.2 with j = m−r+1:

∥Am∥ =
∥∥∥Ar−1+j

∥∥∥ ≤
∑r−1

t=0

∣∣∣s(j,1×t) (z1, . . . , zr)
∣∣∣ ∥∥∥Ar−1−t

∥∥∥ .

The coefficients of Schur polynomials are the Kostka numbers, and since they are non-negative,∣∣∣s(j,1×t)(z1, . . . , zr)
∣∣∣ ≤ s(j,1×t)(1×r) for any z1, . . . , zr in the complex unit disc. As sλ(1×r) is the

number of semistandard Young tableaux of shape λ with entries in {1..r}, it is well studied (see e.g.
[Sta99, (7.106)]), but for our simple partition λ we can compute it directly using s(t) = et and (3.2),
obtaining

s(j,1×t)(1×r) = 1
j + t

(
j + r − 1

j − 1, t, r − 1 − t, 1

)
≤ (j + r − 1)r = mr

(here
( n

m1,...,mk

)
is the k-multinomial coefficient), so that ∥Am∥ ≤ mr ∑r−1

t=0
∥∥At

∥∥.
We can now prove Theorems 1.4 and 3.1:

Proof of Theorem 3.1. As D is r-normal, A is unitarily equivalent to a block-diagonal matrix
diag (B0, . . . , BN ) with each Bj of size at most r × r. We assume B0, . . . , Bp−1 are the “trivial”
blocks, namely, those corresponding to constant or periodic eigenfunctions; they are of size 1 × 1 and
satisfy

∥∥∥Bℓ
j

∥∥∥
F

= kℓ for any ℓ ≥ 0. For j ≥ p, B = Bj is a block of size s × s for some s ≤ r, and as D

is Ramanujan, the eigenvalues of Bℓ

kℓ/2 lie in the unit disc, being nontrivial eigenvalues of A√
k

raised to
the ℓ-th power. Applying Proposition 3.3 to Bℓ

kℓ/2 we get∥∥∥∥∥ Bℓm

kℓm/2

∥∥∥∥∥
2

F

≤ m2s

(
s−1∑
t=0

∥∥∥∥∥ Bℓt

kℓt/2

∥∥∥∥∥
F

)2

≤ sm2s
s−1∑
t=0

∥∥∥∥∥ Bℓt

kℓt/2

∥∥∥∥∥
2

F

≤ rm2r
r−1∑
t=0

∥∥∥∥∥ Bℓt

kℓt/2

∥∥∥∥∥
2

F

for any m ≥ 1. Thus,

∥∥∥Aℓm
∥∥∥2

F
= pk2ℓm +

N∑
j=p

∥∥∥Bℓm
j

∥∥∥2

F
≤ pk2ℓm + rm2r

N∑
j=p

r−1∑
t=0

kℓ(m−t)
∥∥∥Bℓt

j

∥∥∥2

F

= pk2ℓm + rm2r
r−1∑
t=0

kℓ(m−t)
(∥∥∥Aℓt

∥∥∥2

F
− pk2ℓt

)
= ⋆.

For 0 ≤ t ≤ r − 1 we have ℓt < crad (D), which means that the operator Aℓt takes each vertex to kℓt

different ones. ComputingAℓt w.r.t. the standard basis of L2(VD) we obtain that
∥∥∥Aℓt

∥∥∥2

F
= nkℓt, hence

⋆ = pk2ℓm + rm2r∑r−1
t=0 kℓ(m−t)

(
nkℓt − pk2ℓt

)
< pk2ℓm + r2m2rnkℓm.
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This leads us to bounded cutoff:

Proof of Theorem 1.4. At time t ≤ m
m−1 logk n we have t

m < crad(D)
r−1 , hence∥∥∥At

∣∣
L2

0

∥∥∥2

F
=
∥∥∥A t

m
m
∣∣
L2

0

∥∥∥2

F
≤ r2m2rnkt

by the previous Theorem with ℓ = t
m . Denoting by J the all-one matrix, by Pt

v0 =
(

A
k

)t
1v0 the

distribution of the walk at time t (starting from a vertex v0), and by u the uniform distribution 1
n1,

we have ∥∥∥Pt
v0 − u

∥∥∥2

2
= 1

k2t

∥∥∥∥∥At1v0 − kt

n
1
∥∥∥∥∥

2

2
= 1

nk2t

∑
v∈VD

∥∥∥∥∥At1v − kt

n
1
∥∥∥∥∥

2

2

= 1
nk2t

∥∥∥∥∥At − kt

n
J
∥∥∥∥∥

2

F

= 1
nk2t

∥∥∥At
∣∣
1⊥

∥∥∥2

F
≤ r2m2r

kt

(the passage to At
∣∣
1⊥ is since the nonzero singular values of At − kt

n J and of At
∣∣
1⊥ are the same).

Thus, ∥∥∥Pt
e0 − u

∥∥∥
T V

≤
√

n

2

∥∥∥Pt
v0 − u

∥∥∥
2

≤ rmr

2

√
n

kt
,

so at
t = logk n + logk

r2m2r

4ε2

(rounded up to a multiple of m, and for n large enough to have t ≤ m
m−1 logk n), we get

∥∥Pt
v0 − u

∥∥
T V

≤
ε. The lower bound for t1−ε holds for all k-regular graphs: denoting S = supp

(
At1v0

)
once has

|S| ≤ kt, so that for t ≤ logk n − logk(1
ε )∥∥∥Pt

v0 − u
∥∥∥

T V
≥
∣∣∣Pt

v0(V \S) − u(V \S)
∣∣∣ = u(V \S) ≥ n − kt

n
≥ 1 − ε.

4 Multivariate Chebyshev and flow on buildings

In [NS23], bounded cutoff for the non-backtracking walk on the vertices of a Ramanujan graph is
proved. The authors study the operator (Ktf) (v) =

∑
w f (w), where the sum is over all vertices w

connected to v by a non-backtracking path of length t. The operator Kt is self-adjoint, so the spectral
analysis depends only on its eigenvalues (and eigenfunctions, in the non-transitive case). Furthermore,
Kt can be expressed as a polynomial in the adjacency operator A, using Chebyshev polynomials of
the first and second kind [NS23, Lem. 4.3]. A fundamental ingredient in the analysis are the recursion
relations satisfied by these polynomials, and in this section we explore the possibility to generalize
this picture to higher dimensions.

We begin with the two-dimensional case. Let F be a non-archimedean field with residue field Fq, and
let B = B3,F be the Bruhat-Tits building associated with G = PGL3(F ). Let A1, A2 be the “colored
adjacency operators” on the vertices on B (see [LSV05a, Li04]). These operators generate the Hecke
algebra H G

K , which is the algebra of all finitely-supported operators on the vertices of B who commute
with the action of G. This includes in particular the operator (Fℓf) (v) =

∑
w f (w) which sums over

all w connected to v by a geodesic flow of length ℓ (as defined in [LLP20, 5]), so we should be able to
express Fℓ as a polynomial in A1, A2. We define the polynomials:

T0 (x, y) = x

T1 (x, y) = x2 − (q + 1) y

T2 (x, y) = x3 − (2q + 1) xy + q
(
q2 + q + 1

)
∀j ≥ 3 : Tj (x, y) = xTj−1 (x, y) − qyTj−2 (x, y) + q3Tj−3 (x, y) .
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One can verify that the operator Tj(A1, A2) sums over all vertices connected to v by geodesic flows of
length ℓ and color 1. This is not a self-adjoint operator, since the opposite direction of a path of color
1 is a path of color 2 (however, Tj(A1, A2) is a normal operator, as H is a commutative *-algebra).
The operator Fℓ, which is self-adjoint, can be expressed as

Fℓ = Tj(A1, A2) + Tj(A1, A2)∗ = Tj(A1, A2) + Tj(A2, A1).

The connection between geodesic flow at time t and previous times is therefore

Tj + T ∗
j

∣∣∣∣
x=A1,y=A2

= A1
(
Tj−1 − qT ∗

j−2

)
+ A2

(
T ∗

j−1 − qTj−2
)

+ q3
(
Tj−3 + T ∗

j−3

)
.

We do not see how to connect Tj + T ∗
j directly with Tj−1 + T ∗

j−1 and Tj−2 + T ∗
j−2, in the same manner

that Chebyshev polynomial connect NBRW at time t with earlier times. As the operator Tj(A1, A2)
(which only goes along edges of color 1) is already normal, perhaps this is the right analogue for
the NBRW in higher dimension. Moving to higher dimensions, one can construct similar recursion
relations using the Hecke operators A1, . . . , Ad−1 for PGLd. Sadly, even though the geodesic walk on
edges in higher dimension still depends only on the triangle structure, the recursion formula become
more involved: for geodesic edge flow on PGLd (see [LLP20, §5.1]), we obtain (for j ≥ d)

Tj (x1, . . . , xd−1) =
[

d−1∑
m=1

(−1)m+1 q(m
2 )xmTj−m

]
+ (−1)d+1 q(d

2)Tj−d. (4.1)

The methods developed in this paper serve us to avoid having to analyze these “higher Chebyshev”
relations, but it seems to us that they merit further study in their own right.
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