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Abstract

The containment game is a full information game for two players, initialised with a set of occupied

vertices in an infinite connected graph G. On the t-th turn, the first player, called Spreader, extends the

occupied set to g(t) adjacent vertices, and then the second player, called Container, removes q unoccupied

vertices from the graph. If the spreading process continues perpetually – Spreader wins, and otherwise –

Container wins. For g =∞ this game reduces to a solitaire game for Container, known as the Firefighter

Problem. On Z2, for q = 1/k and g ≡ 1 it is equivalent to Conway’s angel problem.

We introduce the game and study it on the strongly connected two dimensional integer lattice Z⊠Z.

Writing q(G, g) for the set of q values for which Container wins against a given g(t), we study the minimal

asymptotics of g(t) for which q(G, g) = q(G,∞), i.e. for which defeating Spreader is as hard as winning

the firefighter problem solitaire. We show, by providing explicit winning strategies, a sub-linear upper

bound g(t) = O(t6/7) and a lower bound of g(t) = Ω(t1/2).

Keywords— Conway’s angel problem, Firefighter problem, combinatorial games, pursuit-evasion games.

1 Introduction

The (G, q)-firefighter problem is a single real parameter solitaire combinatorial game played on a graph G. In this

game, introduced by Hartnell [24], given a finite starting set of burning vertices B0 ⊂ V , at every turn t ∈ {1, 2, . . . },
the firefighter player chooses an arbitrary collection of at most ⌊tq⌋−⌊(t−1)q⌋ non-burning vertices and deletes them

from the graph. Then, neighbours of burning vertices in the remainder graph become burning. If no new burning

vertices are generated, we say that the fire is contained. The firefighter player wins (G, q) if they are able to contain

any any finite initial burning set. We denote

qG := {q : (G, q) is firefighter win for every finite B0}.

Since winning is monotone in q this set always forms an infinite open or closed ray.

The problem has been extensively studied on the integer lattice with nearest neighbour adjacency, either with

respect to L∞ or to L1, graphs which are denoted by Z ⊠ Z and Z□Z, respectively. Following the work of Fogarty

[19], Hod and the first author [16] showed that qZ⊠Z = (3,∞) while qZ□Z = (3/2,∞).

On these graphs, the firefighter problem is strongly related to the celebrated Conway’s Angel problem, a two-

player game played between an angel of speed k and a devil (first appearing in [6, Section 19]). In this game, an

angel is located at the origin of the graph G = Z⊠Z. In every turn the angel player may reposition the angel to any

unblocked vertex at distance k or less from its current location. The devil player then deletes any single vertex from
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the graph, except for the one occupied by the angel. The devil player wins if the angel is eventually unable to move;

otherwise – the angel wins. Both the Z⊠ Z and the Z□Z variants have been considered [10,33].

The firefighter problem could be interpreted as a “non-deterministic angel” variant of the angel problem where

the devil player gets to play q turns on average between subsequent angel player’s turns. In this analogy the firefighter

player take the role of a devil player which is oblivious to the location of the angel and must nevertheless contain it

with absolute certainty.

This gives rise to the following informal question, which motivates our study:

How much non-determinism is required for the angel to be as hard to contain as the fire?

To pose this formally, we introduce the following generalisation of both games, which we call the containment game,

played between two players which we call Spreader and Container. This is also a generalisation of the k-firefighter

game suggested by Devlin and Hartke [14] and studied on finite graphs by Bonato, Messinger and Pra lat [9].

Given a spreading function g : N → N we define the (G = (V,E), q, g) containment game as the following two

player combinatorial game. Given a finite initial set B0 of occupied vertices, at every turn Container deletes a

collection of at most ⌊tq⌋ − ⌊(t − 1)q⌋ non-occupied vertices from the graph. Then Spreader selects g(t) vertices at

distance at most one from Bt−1 in the remainder graph and occupies them by adding them to Bt−1 to form Bt. If

after some point in time no new vertices are occupied – Container wins, and otherwise – Spreader wins. We denote

the set of deleted vertices up to time t by Ft and the induced graph on V \ Ft by Gt. Given g we define

q(G, g) := {q : (G, q, g) is Container win for every finite B0},

observing that this is, again, an infinite open or closed ray, and that q(G, g′) ⊂ q(G, g) for all g′ > g. We write

(G, q,∞) for the containment game without any restriction on the number of vertices selected by Spreader each turn.

It is not difficult to observe that in this case the optimal Spreader strategy is to always extend Bt to all of its available

neighbours, and the game played by Container is non other than the firefighter problem solitaire. On the other hand,

for g ≡ 1 and q = 1
k

, the game reduces to Conway’s angel problem of speed k.

Our question of interest could be now phrased as:

“Which is the minimal g(t) asymptotics for which q(G, g) = q(G,∞)?”

For brevity and conciseness we show our results only for G = Z⊠ Z, although analogs for G = Z□Z seem to follow

from the same arguments. We also study the game on the following simpler graph G = Z2
↑↗, which is the sub-graph of

Z⊠ Z restricted to {(x, y) : 0 ≤ x ≤ y} equipped with the edge set
{(

(x, y), (x + i, y + 1)
)

: 0 ≤ x ≤ y, i ∈ {0, 1}
}

.

This graph captures the essence of our methods and serves as a stepping stone for the study of Z⊠ Z.

Our main result is that a sub-linear g can achieve q(Z⊠ Z, g) = q(Z⊠ Z,∞).

Theorem 1. Let G ∈ {Z2
↑↗,Z⊠ Z}. For all sufficiently large C > 0 we have q(G,Ct6/7) = q(G,∞).

Remark 1. Obtaining concrete sub-linear bounds in Theorem 1 involves certain complications throughout the proof.

On first reading we therefore recommend the reader to consider a linear analog, asserting that for G ∈ {Z2
↑↗,Z⊠ Z}

and all α > 0 we have q(G,αt) = q(G,∞). Remarks regarding the components of the proof that are unnecessary for

this case are scattered throughout the paper.

Remark 2. Theorem 1 is obtained via an explicit Spreader strategy. In this strategy vertices occupied at turn t are

always adjacent to vertices occupied at turn t− 1. Hence, our result is valid also for a variant of the game, which we

call the Container-Avoider game, where the occupied vertices move and split, rather then accumulate.

We complement this theorem with the following lower-bound.

Theorem 2. Let G ∈ {Z2
↑↗,Z⊠ Z}. For all c < 1

6
we have q(G, ct1/2) ⊊ q(G,∞).

Accumulating firefighters. Note that rather than asking the number of deleted vertices up to time t to be

at most qt as per [16], we pose the stronger restriction that the number of vertices deleted at turn t is at most

⌊tq⌋ − ⌊(t − 1)q⌋. In the firefighter problem, where the fire is deterministic, the two models are equivalent. In

the containment game, however, a Spreader with a sub-linear spread function cannot win against an accumulating

Container of any strength q even on Z2
↑↗ (using a proof similar to that of Theorem 2).
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1.1 Related work

The firefighter problem. Ever since it’s introduction in 1995 [24], Hartnell’s firefighter problem has been the

subject of study in diverse contexts. The case of infinite G studied here has been studied for the triangular grid

Z2
△, where Dean et al. [13] improved upon a result of Gavenčiak, Kratochv́ıl, and Pra lat [22], showing that a single

firefighter per turn plus one additional firefighter at some turn are sufficient to contain a single fire source. It has

been conjectured that this bound is tight and qZ2
△

= (1,∞), but currently no rigorous proof is available. Indeed,

understanding the problem on the triangular and hexagonal lattices remain important open problems in this topic.

The problem on a slab G = Z ⊠ Z ⊠ [k] has been studied by Deutsch, Hod and the first author, who showed

qG = (3k,∞). On Zd, rough bounds were obtained by Develin and Hartke [14]. The problem has also been studied

on Cayley graphs. Dyer, Martinez-Pedroza and Thorne [15] showed that the critical growth rate is roughly invariant

under quasi-isometrics. The same authors have also obtained bounds on the critical growth for the number of

firefighters required to contain any finite starting fire on Cayley graphs of polynomial growth in [13]. This was late

improved by Amir, Baldasso, and Kozma [4], to obtain bounds that are tight up to a constant. The problem has

also been studied for Cayley graphs of exponentially growing groups [30] and on groups of intermediate growth [5].

Other questions relating the game to group theory have been studied [3, 32].

The problem has been widely considered also on finite graphs where one wishes either to reduce the number of

burning vertices when the process terminates, or to minimise the time it takes to contain the fire. This has been

studied mainly from an algorithmic point of view, showing that the problems are NP-hard [17, 27, 31], but could be

approximated up to a constant factor in polynomial time [2, 11,23,25,26]. These results are surveyed in [18].

Conway’s Angel problem. The origin of Conway’s Angel problem is somewhat obscure. Variants are mentioned

by Martin Gardner as early as ’74 [21], where credits are given to D. Silverman and R. Epstein. In its current

transformation, the problem first appeared in the classical monograph by Berlkamp, Conway and Guy [6, Section

19]. Conway [12] later showed that an angel of speed 1 loses. Several years after, Kutz [29] showed that an angel of

speed 2− ϵ loses for every ϵ > 0. In the meantime, the problem of showing that an angel of high enough speed wins

acquired some notoriety, until finally in ’07 four independent papers by Bowditch [10], Gács [20], Kloster [28] and

Máthé [33] established this fact and solved the original problem. The last two of these show that, in fact, speed 2 is

sufficient.

Precursors of current work. The idea of studying a restricted fire model arose in the context of the original

firefighter problem on finite graphs. After being suggested by Devlin and Hartke [14], the constant g and finite G

case of the containment game suggested here was studied by Bonato, Messinger and Pra lat [9]. There the quantity

of interest was the expected percentage of surviving vertices under optimal play, when the initial occupied set is a

single uniformly chosen vertex, and q = 1.

Other pursuit games on graphs. Many other variants of pursuit games on graphs have been studied, both

for applicative reasons and as a method for understanding graph connectivity. We provide references to several

prominent examples which are somewhat related to the games studied here. The Burning Number of a Graph [8] is

a solitaire initialised with an empty burning set, where at every time-step, neighbours of burning vertices are added

to the burning set along with a single additional vertex chosen by the player. The goal here is to reduce the number

of rounds required to burn all vertices in the graph. Cops and Robbers is another two-player pursuit game, where

Container is moving a set of blocked vertices (cops) along the graph’s edges trying to catch a finite number of Avoider

(robbers) vertices (c.f. Remark 2). See [7] for a monograph on this game. Finally, Invisible Rabbits [1] is an oblivious

variant of the cops and robbers game, where the cops’ movements are not restricted by the edges of the graph, but

the Container player is oblivious to the location of the robbers, and must nevertheless catch them.

1.2 Open problems

We pose several open problems concerning the containment game and its variants.

Firstly, we would be most interested in the following problem.

Problem 1. Close the gap between Theorem 1 and Theorem 2.
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We conjecture that the lower bound in Theorem 2 is tight, so that q(G, t1/2+ϵ) = q(G,∞) for all ϵ > 0.

In addition, the proof of Theorem 2 merely establish the fact that 1 ∈ q(Z2
↑↗,∞)\q(Z2

↑↗, Ct1/2) and 3 ∈ q(Z⊠ Z,∞)\
q(Z⊠ Z, Ct1/2). This leaves us with the following.

Problem 2. Is inf q(G, t1/2−ϵ) < inf q(G,∞) for G ∈ {Z2
↑↗,Z⊠ Z} and every ϵ > 0?

Constant expansion. Here we have analysed the parameter range for which the containment game on a graph G

satisfies q(G, g) = q(G,∞). It would be interesting to consider the more general question of recovering the dependence

of q(G, g) on g. The case of constant expansion, i.e. g ≡ k, is of particular interest, both for its tighter relations with

Conway’s angel problem and for its elegance, pitting a constant power Spreader against a constant power Container.

It can be shown, by means similar to the proof of Theorem 2, that Container wins the game (Z⊠ Z, k, 3 − c
k

) for

some c independent of k. As this bound tends to 3 as k tends to infinity, the following question stands.

Problem 3. What is lim infk→∞ q(Z⊠ Z, k)? is it strictly less than 3?

High dimensions. By [4] we know that the critical number of firefighters needed to contain the fire in the

strongly connected Zd is Θ(td−2), and recovering the exact constant seems within reach (using techniques from [16]).

One can ask what is the critical spreading function that would be equivalent to unrestricted spreading in this case

and is it asymptotically smaller, namely:

Problem 4. Is there g(t) = o(td−1) which is equivalent to unrestricted spreading in the strongly connected Zd graph?

In general, we suspect that for all groups of sub-exponential growth, some g(t) which grows asymptotically slower

than the isoperimetric profile should be able to imitate unrestricted fire spreading.

Probabilistic variant. It should also be mentioned that the setting of probabilistic spread where the fire

spreads to a neighbour with constant probability at every turn, appears not to have been studied so far. The realistic

application of this setting, along with natural limiting shape questions and relations to classical models in particle

systems, make this a rather appealing variant to study.

1.3 Proof highlights

The main novel ingredients in our theorems are already well expressed in the case of Z2
↑↗. Much like the fire in the

lower bound of [19] for the firefighter problem, the occupied vertices in our Spreader strategy in Z2
↑↗ are always placed

on a single row Z× {t}, progressing northwards at every time-step. The essential difference is that here most of this

row is populated by a sparse array of occupied vertices, at distance h apart. Each vertex (x, t) among these is viewed

as representing the fire in the horizontal segment (h⌊x/h⌋, t + h) + {(0, 0), . . . , (0, h − 1)}, to which we refer as the

simulated fire.

Interestingly, it is possible to show that as long as Container refrains from deleting at time t vertices in the band

Z× [t, t + h− 1], the evolution potential inequalities of [16] concerning the fire could still be made valid with respect

to this simulated fire. Hence, the core difficulty is to handle situations in which Container plays at close proximity

to the the occupied vertices. Such moves have the potential of eliminating a large number of simulated fire vertices

by blocking the simulating occupied vertex directly by deleting only a handful of vertices. We call these events

disruptions and compensate for them by taking advantage of the fact that that it is highly inefficient for Container to

create cavities in the front (observe e.g. that isolated vertices spread to many more neighbours than densely packed

ones). To do so we alert many vertices surrounding each disruption. Alerted vertices start spreading to all of their

neighbours in Z × {t + 1} and keep doing so for H turns. We are able to show that over that time period, the

disruption will be compensated for completely, so that when the disrupted region returns to simulative mode, the

evolution potential inequalities of [16] hold. As Container can only create a fixed amount of disruptions per turn,

Spreader can win while still keeping the occupied set sparse enough.

The exact execution of this program involves several additional subtleties, such as maintaining a bulk of alerted

vertices near the ends of the occupied set.

In order to exploit this technique to the fullest we must increase h, the sparsity of the simulating vertices, as a

function of t. To do so we double the sparsity every once in a while, a procedure which creates additional technical

complications, but no essential difficulties.
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1.4 Notations

We use the convention N := {0, 1, 2, . . . }. For any x ∈ R we denote x+ := max{x, 0}. ∆gt denotes the backwards

difference of g, defined by ∆gt := gt − gt−1 or ∆gt := gt \ gt−1. dG(v, u) denotes the graph distance between u and v

in G.

Throughout, we naturally extend functions from elements to sets by following the convention that if g has

numerical output, we set g(A) =
∑

x∈A g(x), while if it produces sets, we set g(A) =
⋃

x∈A g(x).

Finally, we follow the standard convention that max ∅ = −∞ and min ∅ = +∞.

1.5 Outline of the paper

Section 2 is dedicated to the proof of Theorem 1 on Z2
↑↗, including the definition of Spreader’s strategy and its analysis.

In Section 3 we introduce the game on the directed half-plane graph Z2
↖↑↗ and generalise the results of Section 2 to

this setting. In Section 4 we compose a winning strategy on the entire Z⊠ Z graph from the strategy of Section 3,

completing the proof of Theorem 1. Section 5, which is independent of the other sections, is dedicated to the proof

of Theorem 2. The paper is accompanied by a notation table, provided as an appendix.

2 The Eighth Plane

This section is dedicated to proving Theorem 1 for G = Z2
↑↗. We begin by describing a winning Spreader strategy on

the graph, then reduce the theorem to several key propositions.

Recalling that the set of (Spreader) occupied vertices at time t is denoted by Bt, the Spreader strategy will always

satisfy Bt ⊂ Z× {t}. We therefore refer to the row Z× {t} as the front at time t.

Outline of this section. In Section 2.1 we present the winning Spreader strategy, postponing the precise

definition of several key functions to later sections and settling for a description of their required properties. We also

state an upper bound on the number of new vertices which the spreader strategy occupies each turn. In Section 2.2

we introduce the key functions used for the analysis of the process and reduce Theorem 1 to several propositions.

The final details of the strategy needed to establish its existence are provided in Section 2.3. Once these are given,

Section 2.4 is dedicated to prove the propositions stated in Section 2.1. Most of the details of the analysis are given

in Section 2.5, leaving out two key notions: the potential function and the debt. Sections 2.6 to 2.9 are dedicated to

develop these notions and establish the remaining propositions. Finally, in Section 2.10 we prove a technical lemma

stated in Section 2.5. The section is accompanied by Figure 1, illustrating different aspects of Spreader’s strategy.

2.1 The winning Spreader strategy

Knowing that the firefighter player of strength q = 1 loses the firefighter problem game on Z2
↑↗ (by [19]), the Spreader

strategy strives to imitate the fire evolution using a smaller occupied set, so that each occupied vertex represents a

fire segment of size h(t) in Z×{t+ h(t)}, where h : N→ N is a monotonically non-decreasing function. To introduce

the strategy formally we require several definitions.

Segments. We partition Z into intervals of size ht of the form {0, . . . , ht− 1}+htZ. The set of segments at time

t is denoted by St. Given an interval I ⊂ Z we denote St(I) := {S ∈ St : S ∩ I ̸= ∅}.
Segments naturally inherit the order of Z, so that S1, S2 ∈ St satisfy S1 < S2 if for all s1 ∈ S1, s2 ∈ S2 we have

s1 < s2. We denote contiguous closed (similarly, open and half-open) intervals of segments by [S1, S2] := {S ∈ St :

S1 ≤ S ≤ S2}, when S1, S2 ∈ St. Given x ∈ Z, denote by St(x) the unique segment in St containing x, and extend

this to Z2 by setting St((x, y)) := St(x).

Doubling segments. For the construction and analysis of the sub-linear Spreader strategy used to establish

Theorem 1, we will allow the size of the segments h to depend on t. To make the analysis simpler, we double the

value of h once in a while, rather than change it gradually, so that h : N→ N satisfies ht/ht−1 ∈ {1, 2}. Given such h

we denote Ni = Ni(h) := {t ∈ N : ht/ht−1 = i} for i = 1, 2, such that {0} ∪ N1 ∪ N2 = N. We refer to N2 as doubling

times.
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Over the course of time smaller dyadic segments in Ss joint to form the segments in St for t > s. Thinking of these

bigger segments as descendants of their smaller counterparts, given S ∈ St we write As(S) := {S′ ∈ Ss : S′ ⊂ S}.
For functions f ′ on St defined below (ϕt(S), dt(S), ft(S), Ft(S) etc.), for s < t we define, f ′

s(S) :=
∑

S′∈As(S) f
′
t(S

′),

if f ′ yields numerical value, and f ′
s(S) := ∪S′∈As(S)f

′
t(S

′) if it produces sets.

Remark 3. As per Remark 1, the reader is advised, at first reading, to only consider the case where h is constant,

so that At(S) = {S} for all t and St is independent of t. In this case doubling never occurs, so that N1 = N \ {0} and
N2 = ∅. This removes complications from many of the proofs and definitions, while retaining their essence.

2.1.1 The strategy

For the remainder of Section 2, fix a constant q > 0 and an h : N → N as above, and set Ht := 4q2h2
t . Throughout

we make the following assumption concerning doubling times of h.

If t ∈ N2, then for all s ∈ [t− 2Ht, t + 2Ht] we have s /∈ N2. (1)

This will be satisfied by our final choice of h in the proof of Theorem 1.

Our strategy divides St into two categories. The first category is simulative segments, indicated by χt(S) = 0,

in which a single occupied vertex simulates the fire on a segment of Z × {t + ht}. The second category is spreading

segments, indicated by χt(S) = 1, the occupied vertices of which spread to all of their neighbours. The occupied

vertex in a simulative segment S is called the pivot, and is denoted by pt(S). For completeness, for spreading segments

we set pt(S) =∞. For S ∈ St, the evolution of Bt is hence as follows.

Bt(S) := (S × {t}) ∩

{(pt(S), t)} if χt(S) = 0,

{(Bt−1 + {(0, 1), (1, 1)}) \ Ft} if χt(S) = 1,
(2)

where exact definitions of the evolution of pt(S) and χt(S) are delayed to Section 2.3. Finally, denote bt(S) := |Bt(S)|,
and, with the purpose of simplifying inductive definitions, we extend the definition of Bt and bt also to S ∈ St−1 by

Bt−1(S) :=
⋃

S′∈At−1(S) Bt−1(S′).

Throughout the section we treat our strategy as fixed, and all subsequent propositions assume that the game is

played according to it.

2.1.2 Paths

Next we define several notions concerning upward paths emanating from occupied vertices. A (t, ℓ)-path is an ℓ-tuple

((x1, t), ..., (xℓ, t + ℓ − 1)) ⊂ Gt satisfying (x1, t) ∈ Bt and xi+1 − xi ∈ {0, 1} for every i = 1, . . . , ℓ − 1. With

applications in Sections 3 and 4 in mind, we also define the analogous notion of a two-sided (t, ℓ)-path, where we allow

xi+1−xi ∈ {−1, 0, 1}. To make the distinction clearer we sometimes refer to a (t, ℓ)-path as one-sided (t, ℓ)-path. We

say that such paths emanate from the column x1.

Observation 2.1. Let P and Q be i-sided (t, ℓ)-paths, where i ∈ {1, 2}, emanating from columns x and y respectively.

If |x− y| ≥ i · ℓ then P and Q are disjoint.

Avoiding dead-ends. We denote by Bℓ
t ⊂ Bt the set of vertices from which a (t, ℓ)-path starts. Observe

that, for any ℓ > 0, restricting Spreader’s spread at time t to the vertices of Bℓ
t does not alter its winning or losing

against Container. We shall therefore describe a somewhat inefficient strategy which does not obey the constraint of

occupying at most g(t) vertices, and later bound |B3Ht
t | by g(t), so that by “avoiding dead-ends”, namely restricting

Spreader’s spread to this set, this constraint is met. To this end we need the following proposition (established in

Section 2.4).

Proposition 2.2.
∣∣{x ∈ B3Ht

t : χt(St(x)) = 1}
∣∣ = O(h6

t )

From this we draw an upper bound on
∣∣B3Ht

t

∣∣.
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Proposition 2.3.
∣∣B3Ht

t

∣∣ ≤ O(h6
t ) + t

ht
.

Proof. Partition the vertices of B3Ht
t according to χt.∣∣∣B3Ht

t

∣∣∣ =
∣∣∣{x ∈ B3Ht

t : χt(St(x)) = 1
}∣∣∣+

∣∣∣{x ∈ B3Ht
t : χt(St(x)) = 0

}∣∣∣ .
The first term is of size O(h6

t ) by Proposition 2.2. Since a simulative segment has at most one occupied vertex, and

Bt ⊂ [0, t], the second term is bounded by t+1
ht

. Together, these yield the required bound.

2.2 Strategy analysis and proof of Theorem 1

For the analysis of our strategy we require two auxiliary functions, Ft and Φt. Here we provide brief introduction to

these, and reduce Theorem 1 to several propositions concerning their behaviour. We postpone the full definitions of

these functions to Section 2.5.

Given a segment S ∈ St, we associate deleted vertices with S at different times. We shall define an increasing

sequence of sets Ft(S) ⊂ Ft, which represent the set of deleted vertices associated with S up to time t, writing

ft(S) := |Ft(S)|. It will be useful to define the game with an arbitrary initial set of deleted vertices, denoted by F0.

The fact that we shall never count deleted vertices towards more than one segment S ∈ St yields the following

claim (established in Section 2.5 after (11)).

Claim 2.4. ft(St)− |F0| ≤ qt for every t ∈ N.

We define an additional function Φt(S), initialized as Φ0(S) = b0(S) + f0 which we refer to as the potential of S,

representing a modified count of simulated burning vertices plus the number of deleted vertices in the segment. We

show that this quantity grows globally by 1 whenever the occupied set is non-empty, serving to imitate the analysis

of [16]. This is captured by the following proposition (established in Section 2.9).

Proposition 2.5. Let s ≤ t. If bs−1(Ss−1) > 0 then ∆Φs(St) ≥ 1.

We define Φt(S), so that it must be equal to ft whenever the occupied set dies out. This is captured in the

following proposition (established in Section 2.8).

Proposition 2.6. Let t ∈ N. If Φt(St)− ft(St) > 0 then bt(St) > 0.

With all of these at hand, we are ready to prove Theorem 1.

Proof of Theorem 1 for Z2
↑↗. Fogarty [19] established the fact that qZ2

↑↗
= (1,∞). Thus, to prove the theorem, it

remains to show that 1 /∈ q(Z2
↑↗, Ct6/7) for some sufficiently large C, and some initial fire B0, that is, that there exists

a Spreader strategy which is winning against q = 1, and satisfies |Bt| ≤ Ct6/7. Since we can alter our strategy to

avoid dead-ends (see discussion before Proposition 2.2), it would suffice to show that in our strategy, |B3Ht
t | ≤ Ct6/7.

Firstly, set ht := 2⌊log2(Ct1/7)⌋ for a sufficiently large C so that h satisfies (1). Note that that ht/ht−1 ∈ {1, 2} for

all t. By Proposition 2.3 we then obtain the required bound

|B3Ht
t | ≤ O(h6

t ) +
t

ht
= O(t6/7).

Secondly, let us show that the strategy B = (Bt)t∈N is winning against q = 1 for B0 = {(0, 0)}. To so do we prove

by induction that bt > 0 for every t ∈ N and against any Container strategy {Ft}t∈N. For t = 0 this is clear. Next,

assume that this holds up to time t− 1. By Proposition 2.5 we have ∆Φs(St) ≥ 1 for every 1 ≤ s ≤ t. Summing this

up over s ≤ t we obtain Φt(St) ≥ Φ0(St) + t, so that

Φt(St)− ft(St) ≥ Φ0(St) + t +−ft(St) ≥ 1 + t− ft(St).

Since q = 1 we know that ft(St) ≤ t by Claim 2.4 and the fact that F0 = ∅. Hence Φt(St) − ft(St) ≥ 1. By

Proposition 2.6 this implies that bt(St) > 0, as required.

Remark 4. By setting h ≡ ⌈ 1
α
⌉, this proof establishes a linear analog of Theorem 1 for Z2

↑↗, as per Remark 1.
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I

II

III

IV

V

VI

Figure 1: Illustration of different phenomena of the main Spreader strategy. The illustrated phenomena are
presented in different phases, marked by horizontal dashed lines, while the partition into segments is marked
by vertical lines. In Phase I, all segments, being close to the boundary, are spreading. In Phase II, the
inner segments become simulative, and their occupied vertices consolidate to single pivots. In Phase III, the
pivots move in response to deleted vertices, those possessing an unblocked path move along it, while those
who do not cease playing. All deleted vertices of this phase were removed at least h vertices away from the
front, hence simulative segments in their vicinity remain simulative. In Phase IV, two disruptions occur,
one after another. This causes the segments in their vicinity to become spreading for a while, until they
consolidate once again at the end of the step. Note that the later disruption completely blocks a segment
at a time in which it is transitional. In Phase V, the right boundary is blocked by non-disruptive deleted
vertices. This causes the segments at the boundary to become spreading, such that at the end of the step
there is still a bulk of occupied vertices at the boundary. Phase VI opens with a doubling. In the boundary
this causes some segments to become spreading, while the inner simulative segments have half of their pivots
extinguished.

2.3 Details of the Spreader strategy: evolution of χ(S) and p(S)

In this section we describe the conditions under which a segment S transitions between simulative and spreading

behaviour and the location of the pivot of S in simulative time-steps. This description is accompanied by Figure 1

which can be of use throughout in order to get a more intuitive grasp of the strategy’s mechanics.

Counting disjoint (t, ℓ)-paths. We start by developing bounds on the number of deletions needed to block

Spreader in a certain region given the current state of the board. This we do by counting disjoint (t, ℓ)-paths, as

every deleted vertex can eliminate at most one such path.

Given R ⊂ Z, denote the size of the largest collection of pairwise disjoint (t, ℓ)-paths emanating from R by b̂ ℓ
t (R).

We make two straightforward observations. The first concerns two monotonicity properties of b̂ ℓ
t .

Observation 2.7. Let t, ℓ, ℓ′ ∈ N, and R,R′ ⊂ Z. The following hold.

(a) If R ⊆ R′ then b̂ ℓ
t (R) ≤ b̂ ℓ

t (R′) ≤ b̂ ℓ
t (R) + |R′ \R|.

(b) If ℓ ≤ ℓ′ then b̂ ℓ
t (R) ≥ b̂ ℓ′

t (R).
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The second is concerned with monotonicity with respect to time in regions consisting of spreading segments. It

is obtained straightforwardly from (2) together with the fact that at most q vertices are deleted each turn.

Observation 2.8. Let t, t′, ℓ ∈ N, and R ⊂ Z, and assume that χτ (S′) = 1 for all t′ ≤ τ ≤ t and all S′ ∈ Sτ (R).

Then b̂
ℓ−(t−t′)
t (R) ≥ b̂ ℓ

t′(R)− q(t− t′).

2.3.1 Evolution of χt(S)

A disruption is the event that a vertex was deleted at vertical distance of less than ht from the front. The set of

segments disrupted at time t is denote by

Ωt :=
{
S ∈ St : (Ft \ Ft−1) ∩ (S × [t, t + ht − 1]) ̸= ∅

}
.

Alert interval. The alert interval It(S) of a segment S, acts as the interval in which, following a disruption at

S, segments will start spreading for a prescribed period of time.

Given a segment S ∈ St, s ≤ t, and ℓ > 0, we first define the alert interval of S at time s and height ℓ as the

minimal interval around S such that there are ℓ many (t, ℓ)-paths to the left of S, and 2ℓ many (t, 2ℓ)-paths to its

right. Namely,

Iℓs(S) :=
[
max{x ∈ hsZ : b̂ ℓ

s ([x,minS)) ≥ ℓ}, min{x ∈ hsZ : b̂ 2ℓ
s ((maxS, x)) ≥ 2ℓ}

]
. (3)

Observe that Iℓs(S) is not always bounded. Using this we define the alert interval of S at time t as It(S) := IH̃t
t (S)

for H̃t defined below.

Consolidation timer. We inductively define an additional auxiliary function, the consolidation-timer of a

segment S, which we denote by τt(S). This function measures the number of time-steps remaining until a spreading

segment returns to simulative status, unless further disruptions ensue. The evolution of χt(S) for S ∈ St, is thus

defined via

χt(S) := 1{τt(S) > 0}. (4)

We extend χ(S) to times s < t by setting χs(S) := max{χs(S′) : S′ ∈ As(S)}.
Evolution of τt(S). We define τt(S) so that whenever a segment S ∈ St lies in the proximity of a segment

disrupted at time t ∈ N its consolidation timer is reset to H̃t, if it lies near the edge of the occupied set it is reset to

h̃t, while at other times, it ticks away to zero. Formally,

τt−1(S) := max{τt−1(S′) : S′ ∈ At−1(S)},

τt(S) :=


H̃t if exists S′ ∈ Ωt s.t. S ⊂ It(S

′),

h̃t otherwise, if |It(S)| =∞,

(τt−1(S)− 1)+ otherwise.

(5)

For S ∈ S0 we set τ0(S) = 1.

The use of H̃t and h̃t is needed to handle doubling times. We define

H̃t :=

Ht if ht = ht+Ht ,

Ht + ht otherwise.
h̃t :=

ht if ht = ht+ht ,

2ht otherwise.
(6)

Hence, for constant h we have H̃t ≡ Ht and h̃t ≡ ht.

H̃t and h̃t are designed to satisfy the following claim.

Claim 2.9. Let t ∈ N2 and S ∈ St. Then τt−1(S) = 0 or τt−1(S) > ht−1.

Proof. Assume that τt−1(S) > 0, and define t0 as the last time before t such that τt(S) was defined by one of the first

two cases of (5), so that τt0(S) ∈ {h̃t0 , H̃t0}. We proceed under the assumption that τt0(S) = H̃t0 , as the other case
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follows similarly. In this case t − t0 ≤ H̃t0 . By (1), and the fact that t ∈ N2, we conclude that in fact t − t0 ≤ Ht0 .

Therefore, by (6), we have H̃t0 = Ht0 + ht0 . All in all,

τt−1(S) ≥ τt0(S)− (t− 1− t0) ≥ H̃t0 − (Ht0 − 1) = ht0 + 1 > ht0 = ht−1.

For future use, we establish the following proposition concerning simulative segments.

Proposition 2.10. Let t ∈ N and S ∈ St such that χt(S) = 0. For all t ≤ t′ < t + H̃t we have

bt′((−∞, S]) ≥ H̃t − q(t′ − t) and bt′([S,∞)) ≥ 2H̃t − q(t′ − t).

Proof. We first observe that b̂ H̃t
t ((−∞, S)) ≥ H̃t and b̂ 2H̃t

t ((S,∞)) ≥ 2H̃t. by the second case of (5). Next, we

extend the definition of χt to S ∈ Ss and times s < t by setting χt(S) := χt(S
′), where S′ is the unique segment in

St containing S.

Let t′ ∈ [t, t+ H̃t). We prove only that bt′((−∞, S]) ≥ H̃t− q(t′− t), as the bound of bt′([S,∞)) follows similarly.

Denote ℓt′ := H̃t− q(t′− t) and xt′ := inf{x ∈ Z : b̂
H̃t−(t′−t)

t′ ((−∞, x)) ≥ ℓt′}. Let S′ ∈ St((−∞, xt′)). Observe that

by the definition of χ, we have χt′(S
′) = 1. Since b̂ H̃t

t ((−∞, S)) ≥ H̃t, we have St(xt) ≤ S. We wish to establish the

fact that St(xt′+1) ≤ St(xt′). Assume to the contrary that St(xt′+1) > St(xt′) so that χt′+1(S′) = 1. Thus, applying

Observation 2.8 with t← t′ + 1, ℓ← H̃t − (t′ − t) and I ← (−∞, S(xt′)], we obtain

b̂
H̃t−(t′+1−t)

t′+1 (−∞, S(xt′)] ≥ b̂
H̃t−(t′−t)

t′ (−∞, S(xt′)]− q ≥ ℓt′ − q = ℓt′+1,

in contradiction with the definition of xt′+1. Hence St(xt′+1) ≤ St(xt′), so that St(xt′) ≤ S.

To obtain the proposition, note that

bt′((−∞, S]) = b̂ 1
t′((−∞, S]) ≥ b̂

H̃t−(t′−t)

t′ ((−∞, S]) ≥ b̂
H̃t−(t′−t)

t′ ((−∞, S(xt′)]) ≥ ℓt′ ,

where the first inequality is by the definition of b̂ , the second is by Observation 2.7(b), the third is by S(xt′) ≤ S

and Observation 2.7(a), and the last by the definition of xt′ .

2.3.2 Evolution of pt(S)

Recall that each simulative segment in St is equipped with a pivot pt(S), the only occupied vertex in the segment

which represents the fire in the entire segment. During spreading periods (i.e. when χt(S) = 1), the pivot plays no

role and we set pt(S) :=∞ (as is the initial state of all segments).

We call the transition of a segment from a spreading state to a simulative state (i.e. when χt−1(S) = 1 and

χt(S) = 0, and the consolidation timer reaches 0) consolidation, inspired by the fact that several occupied vertices

‘consolidate’ to a single pivot. When a consolidation occurs we set the pivot to be the leftmost occupied vertex with

an unblocked vertical path, namely

pt(S) := min{x ∈ S : (x, t− 1) ∈ Bt−1, C
ht
t (x) ∩ Ft = ∅}, (7)

where Cℓ
t (x) := {(x, t), (x, t + 1), . . . , (x, t + ℓ− 1)}.

Between two simulative states of the segment (i.e. when χt−1(S) = 0 and χt(S) = 0), the pivot moves to a

neighbour with a (t, ℓ)-path in S × Z, preferring to go as leftwards as possible. To define this formally, given a

segment S, we first denote by B̄ℓ,S
t the set of columns of the second vertex in (t − 1, ℓ + 1)-paths contained in S,

analogously to the definition of Bℓ
t (see after Observation 2.1). Then, set

pt(S) := min
⋃

S′∈Pt−1(S′)

{(
pt−1(S′) + {0, 1}

)
∩ B̄ht,S

′

t

}
, (8)

which can be ∞ if the minimum is taken over an empty set, in which case by (2), the segment contains no occupied

vertices at time t.
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2.4 Sparsity of the strategy: proof of Proposition 2.2

This section consists of the proof of Proposition 2.2. We start by introducing a definition pertaining to the evolution

of the process which lead to the occupation of a given vertex. Given y ∈ Bt+ℓ, denote βℓ
t (y) ∈ Bt for the leftmost

starting vertex of a (t, ℓ)-path ending in y. Observe that

dG(βℓ
t (y), y) = ℓ. (9)

Let t ∈ N, denote Σ := {y ∈ B3Ht
t : χt(St(y)) = 1} and observe that by (4) for every y ∈ Σ we have τt(St(y)) > 0.

In view of (5), write

Σ1 :=
{
y ∈ B3Ht

t : ∃t′ ∈ [t−Ht, t], S
′ ∈ Ωt′ s.t. St′(y) ⊂ It′(S

′)
}
,

Σ2 :=
{
y ∈ B3Ht

t : ∃t′ ∈ [t− ht, t] s.t. |It′(St′(y))| =∞
}
,

so that Σ ⊂ Σ1 ∪ Σ2.

We first find an upper bound for |Σ1|. Let y ∈ Σ1, t′ ∈ [t−Ht, t] and S′ ∈ Ωt′ so that we have St′(y) ∈ St′(It′(S
′)).

Denote ℓ := t − t′, and observe that βℓ
t′(y) ∈ B3Ht

t′ , since y ∈ B3Ht
t and there exists a (t′, ℓ)-path from βℓ

t′(y) to y.

From (9) we obtain St′(β
ℓ
t′(y)) ⊂ It′(S

′) + {−Ht, ..., 0}, as ℓ ≤ Ht. Denote

Dt′ := B3Ht
t′ ∩

 ⋃
S′∈Ωt′

(
It′(S

′) + {−Ht, ..., 0}
)
× {t′}

 .

Observe that there are at most q(Ht + 1) disruptions in the time interval [t−Ht, t], and for every S′ ∈ Ωt′ at a given

time t′, we have
∣∣B3Ht

t′ ∩ (It′(S
′) + {−Ht, ..., 0})

∣∣ ≤ 3H̃t′ + Ht. By (9), every y′ ∈ A1 satisfies βℓ
t′(y

′) ∈ Dt′ , and

|{y′ ∈ A1 : βℓ
t′(y

′) = x}| ≤ Ht + 1, for every x ∈ Dt′ . Thus,

|Σ1| ≤ (Ht + 1) ·

∣∣∣∣∣∣
t⋃

t′=t−Ht

Dt′

∣∣∣∣∣∣ ≤ (Ht + 1) ·
t−1∑

t′=t−ht

|Dt′ | ≤ q(Ht + 1) · (Ht + 1) · (3H̃t + Ht) = O(H3
t ) = O(h6

t ),

where we used the fact that H̃t ≤ Ht + ht = O(Ht).

Next, we bound |Σ2|. Given t′ ∈ [t− ht, t], write

Et′ := B3Ht
t′ ∩

( ({
y′ ∈ Z : |It′(St′(y

′))| =∞
}

+ {−ht, . . . , 0}
)
× {t′}

)
.

Observe that every y′ ∈ Σ2 satisfies βt−t′

t′ (y′) ∈ Et′ for some t′ ∈ [t− ht, t], and |{y′ ∈ Σ2 : βt−t′

t′ (y′) = x}| ≤ ht + 1

for every such t′ and x ∈ Et′ . Thus,

|Σ2| ≤ (ht + 1) ·

∣∣∣∣∣∣
t⋃

t′=t−ht

Et′

∣∣∣∣∣∣ ≤ (ht + 1) ·
t∑

t′=t−ht

|Et′ |.

We turn to bound |Et′ | for each value of t′ individually. Recalling (3), and using the fact that ht′ ≤ ht, we get

Et′ =
{

(x, t′) ∈ B3Ht
t′ : b̂

H̃t′
t′ ((−∞, x)) ≤ H̃t′ + ht

}
∪
{

(x, t′) ∈ B3Ht
t′ : b̂

H̃t′
t′ ((x,∞)) ≤ 2H̃t′ + 2ht

}
.

By Observation 2.1, each (t′, 3Ht′)-path emanating from a vertex in Et′ can intersect with at most H̃t′ −1 other such

paths. Thus, b̂
H̃t′
t′ (Ot′) ≥

|Et′ |
H̃t′

, so that

|Et′ | ≤ H̃t′ · b̂
H̃t′
t′ (Et′) ≤ H̃t′ · (H̃t′ + ht + 2H̃t′ + 2ht) = E(H2

t ).

Therefore,
|Σ2| ≤ (ht + 1) ·

t−1∑
t′=t−ht

|Et′ | = O(h2
t ·H2

t ) = O(h6
t ).
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2.5 Counting blocked vertices and simulated fire: evolution of Ft(S) and ϕt(S)

In this section we formally define the function Ft(S) mentioned in Section 2.2 and a new function ϕt(S) representing

the size of the simulated fire in S at time t. Firstly, we define a central auxiliary function, ℓt(S), which we call the

look-ahead of a segment.

Look-ahead. Let us begin with a rough description of the look-ahead’s role. Roughly speaking, ℓt(S) represents

the vertical distance between the front and the simulated fire in the segment S. The box S × [t, t + ℓt(S)] serves as

the region where we count deleted vertices towards Ft(S) and in a simulative segment, ℓt(S) = ht.

Once a segment’s evolution changes to non-simulative status, it takes time for the front to catch up with the

simulated fire. Therefore the look-ahead distance is reduced gradually, one unit at a time, rather than abruptly. The

look-ahead ℓt(S) of a segment S ∈ St is defined to be ht for simulative segments. We thus formally define, for times

t ∈ N and S ∈ St,

ℓt−1(S) := max{ℓt−1(S′) : S′ ∈ Pt−1(S)},

ℓt(S) :=

ht if χt(S) = 0,

(ℓt−1(S)− 1)+ if χt(S) = 1,
(10)

Lt(S) := [t, t + ℓt(S)].

The look-ahead is initialised as ℓ0 ≡ 0 for all segments. We refer to Lt(S) as the look-ahead region of S. We generalise

the definitions to S ∈ St and s < t by setting

ℓs(S) := max
S′∈As(S′)

ℓs(S).

Spreading segments: simple & transitional. We call a segment S satisfying ℓt(S) = 0 simple, and a segment

satisfying 0 < ℓt(S) < ht transitional. See Figure 2 for a depiction of one Spreader step in a single segment in each

of the simulative, transitional, and simple states.

Deleted vertices. For each segment S ∈ S0 set F0(S) = ∅. We inductively define Ft(S) for times t ∈ N
and segments S ∈ St−1 ∪ St as follows. In a non-simple segment we add to F (S) any new deleted vertex inside its

look-ahead region, and in a simple segment we add only the deleted vertices directly blocking the spread of Spreader.

Namely,

Ft−1(S) :=
⋃

S′∈Pt−1(S)

Ft−1(S′),

∆Ft(S) := (Ft \ Ft−1) ∩

S × Lt(S) if ℓt(S) > 0

(S × Lt(S)) ∩
(
Bt−1 + {(0, 1), (1, 1)}

)
if ℓt(S) = 0.

(11)

Also, denote ft(S) := |Ft(S)|.
Observe that Claim 2.4 follows directly from the facts that Ft(S) ⊂ Ft for any S ∈ St, and that {Ft(S)}S∈St are

pair-wise disjoint, since Ft(S) ⊂ S × Z.

In non-disruptive segments, Ft exhausts all the deleted vertices that are ever going to be counted in S × Lt(S).

Formally,

Observation 2.11. If S ∈ St \ Ωt then ∆Ft(S) is disjoint from S × Lt−1(S).

Proof. As S ∈ St \ Ωt, and ℓt−1(S) ≤ h, the set ∆Ft is disjoint from S × Lt−1(S). In addition, by (11), we have

Ft ⊃ Ft−1 ∩
(
S × Lt−1(S)

)
, from which the observation easily follows.

We also establish the following observation concerning simple segments.

Observation 2.12. Let t ∈ N, S ∈ St. If ℓt−1(S) = 0 then Ft−1(S) is disjoint from S × Lt(S).
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Proof. Note that Ft−1(S) ⊂ S × (−∞, t − 1 + ℓt−1(S)) = S × (−∞, t − 1). As minLt(S) = {t}, the observation

follows.

Range and simulated fire. Define the range of a segment S ∈ St, denoted rt(S), to be the number of elements

in S × {t + ℓt} which are the endpoints of a (t, ℓt(S))-path emanating from Bt(S). We generalise the definition for

time t− 1 by setting rt−1(S) :=
∑

S′∈Pt−1(S) rt−1(S′).

Next, for any t ∈ N and S ∈ St we define ϕt(S), representing the simulated fire in S. In a simulative segment

S, it is reduced by its value by 1 for every newly counted removed vertex and is otherwise fixed, while in spreading

segments it measures the size of the range of the S. Formally, we define ϕt(S) inductively by

ϕt−1(S) :=
∑

S′∈Pt−1(S)

ϕt−1(S′),

ϕt(S) :=

(ϕt−1(S)−∆ft(S))+ if χt(S) = 0,

rt(S) if χt(S) = 1.
(12)

Observe that this fully defines ϕ, as χt(S) = 1 for all S ∈ S0.

Note that ϕt(S) ≤ ht for all t and that in case that ℓt(S) = 0 we have

ϕt(S) = bt(S). (13)

We conclude this section with the following lemma.

Lemma 2.13. For all S ∈ St we have ϕt(S) ≤ rt(S).

Since the proof is somewhat technical, we postpone it to Section 2.10.
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Figure 2: In each sub-figure, a segment and its look-ahead region are depicted in two consecutive
times t − 1 and t. The segment is simulative in (2a), transitional in (2b), and simple in (2c).
The look-ahead distances are marked by a vertical lines, and S × Lt−1(S) by a filling pattern.

2.6 First notion of a potential

Following [16], for any segment S ∈ St we define its pre-potential by Φ′
t(S) := ϕt(S) + ft(S). This function played

a key role in previous works on the firefighter problem, and its evolution was the main instrument in establishing

victory for the fire. In particular, on each finite segment it was non-decreasing. In our setting, this is indeed the case

for simple segments, as the following variation on [19, Theorem 1] indicates.
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Proposition 2.14. Let t ∈ N and S ∈ St be such that ℓt−1(S) = ℓt(S) = 0 then

(a) ∆Φ′
t(S) ≥ 0,

(b) If there exists x ∈ Bt−1 such that x + (1, 0) /∈ Bt−1(S), then ∆Φ′
t(S) ≥ 1.

Proof. Let a be an indicator to the fact that the condition of Item (b) holds. By (2), any neighbour in S of a

Bt−1 is either occupied or deleted at time t. There are always at least bt−1(S) such neighbours which are vertically

above a vertex in Bt−1, and in case that a = 1, at least one additional such neighbour exists. By Observation 2.12

we know that every such blocked vertex is counted towards ∆Ft(S). We thus have bt−1(S) ≤ bt(S) + ∆ft(S). As

ϕt′(S) = bt′(S) for t′ ∈ {t− 1, t} by (13), we conclude that

∆Φ′
t(S) = ∆ϕt(S) + ∆ft(S) = ∆bt(S) + ∆ft(S) ≥ a,

as required.

The same property holds for transitional or simulative segments as long as no disruption occurs, as stated in the

following proposition.

Proposition 2.15. Let t ∈ N and S ∈ St \ Ωt. Then

(a) ∆Φ′
t(S) ≥ 0.

(b) if χt(S) = 1 then ∆rt(S) + ∆ft(S) ≥ 0.

Proof. We first observe that Item (b) implies Item (a). We consider two cases according to the value of χt(S). In

case that χt(S) = 0, we have, by (12), the definition of ϕ,

∆Φ′
t(S) = ∆ϕt(S) + ∆ft(S) = ϕt(S)− (ϕt−1(S)−∆ft(S)) ≥ ϕt(S)−

(
ϕt−1(S)−∆ft(S)

)
+

= 0.

Otherwise, when χt(S) = 1, we have ϕt(S) = rt(S), while, by Lemma 2.13, ϕt−1(S) ≤ rt−1(S). By Item (a) we

conclude again that

∆Φ′
t(S) = ∆ϕt(S) + ∆ft(S) ≥ ∆rt(S) + ∆ft(S) ≥ 0.

Next, we prove Item (b). Every vertex counted towards rt−1(S) is the endpoint of a path emanating from a vertex

in Bt−1(S). We denote the collection of these by P. Given a path (p1, . . . , pℓ′) ∈ P denote ℓ′ = ℓt−1(St−1(p1)), its

segment’s look-ahead at time t− 1 and define a new path p′1, . . . , p
′
ℓt(S) where

p′i =

pi+1 if i < ℓ′,

pℓ′ otherwise.

Denote the collection of all such paths by P′, and the collection of those contained in Gt by P′′. Since χt(S) = 1, we

have, by (2),

Bt(S) = (S × {t}) ∩ (Bt−1 + {(0, 1), (1, 1)}) \ Ft.

Hence rt(S) ≥ |P′′|.
Observe that, as S /∈ Ωt, for every such path, ∆Ft(S) is disjoint from p′1, . . . , p

′
ℓ′−1, by Observation 2.11. As from

p′ℓ′−1 and on, each such path consists of a distinct column, we deduce that every element of ∆Ft(S) can take part in

at most a single path in P′.

Putting all of this together with the fact that |P| = |P′|, we conclude that

rt(S) ≥ |P′′| ≥ |P′| − |∆Ft(S)| ≥ |P| − |∆Ft(S)| = rt−1(S)−∆ft(S);

the proposition follows.

Disruptions, however, may cause a drastic reduction in ϕt(S), with only a small increase to ft(S), resulting in a

reduction in Φ′
t(S). Subsequent sections will introduce the debt dt(S) to handle these in an amortised fashion.

14



2.7 Debt

Here we define dt(S), the debt, used to keep track of reductions in Φ′ and see that these are compensated for. Hence

we set d0 ≡ 0, and let ∆dt increase at every time-step by
(
−∆Φ′

t(S)
)
+

. To reduce the debt, we identify Λt(S), the

nearest segment to the left of S with positive ∆Φ′
t(S). The increase in Φ′

t of λt(S) will compensate for the decrease

in Φ′
t of S. For use in Section 3, it will be convenient not to allow this compensation to come from the leftmost

occupied segment. Formally,

λt(S) := max{Q ∈ St : Q ≤ S,∆Φ′
t(Q) > 0, ∃Q′ < Q : bt(Q

′) > 0}. (14)

This definition allows λt(S) to take the value −∞ in case that the maximum is taken over an empty set.

We now define dt formally via

dt−1(S) :=
∑

S′∈Pt−1(S)

dt′(S),

d̃t(S) := dt−1(S) +
(
−∆Φ′

t(S)
)
+
,

dt(S) :=


(
d̃t(S)−∆Φ′

t(λt(S))
)
+

if λt(S) > −∞, d̃t(Q) = 0 for every λt(S) ≤ Q < S, and d̃t(S) > 0,

d̃t(S) otherwise.

(15)

Observe that dt(S) ≥ 0 for all t. Let us make formal the fact that the increase of the debt is governed by

(−∆Φ′
t(S))+, by making the following straightforward observation.

Observation 2.16. For all t ∈ N and S ∈ St we have ∆dt(S) ≤ (−∆Φ′
t(S))+.

Next, we provide the following criteria for identifying segments in which the debt does not increase.

Corollary 2.17. Let t ∈ N and S ∈ St. A sufficient condition for ∆dt(S) ≤ 0 is any of the following:

(a) ∆Φ′
t(S) ≥ 0,

(b) S is simple in times {t− 1, t}, i.e., ℓt−1(S) = ℓt(S) = 0.

(c) S /∈ Ωt .

Proof. (a) follows immediately from Observation 2.16. Items (b) and (c) follow by combining (a) with Proposi-

tions 2.14 and 2.15 respectively.

Finally, we show that the total simulated fire together with the debt cannot exceed the width of a segment.

Proposition 2.18. Let t ∈ N and S ∈ St. Then ϕt(S) + dt(S) ≤ ht.

Proof. We start by proving the following property for any t ∈ N and S ∈ St.

dt(S) > 0 =⇒ ∆dt(S) + ∆ϕt(S) ≤ 0. (16)

In case that ∆Φ′
t(S) ≤ 0, (16) is immediate from Observation 2.16 and the fact that ∆ϕt(S) ≤ ∆Φ′

t(S). We thus

consider the case ∆Φ′
t(S) > 0 in which λt(S) = S, by (14). Let us verify that in this case dt(S) = d̃t(S)−∆Φ′

t(λt(S))

via (15) and using the fact that dt(S) > 0 by our assumption.

As λt(S) = S, the fact that λt(S) ̸= −∞ is straightforward and the condition that d̃t(Q) = 0 for every λt(S) ≤
Q < S holds vacuously. Finally, observe that

d̃t(S) = dt−1(S) + (−∆Φ′
t(S))+ = dt−1(S) = dt(S)−∆dt(S) > −∆dt(S) ≥ 0,

where the last inequality is by Corollary 2.17(a). Therefore,

∆dt(S) = d̃t(S)−∆Φ′
t(λt(S))− dt−1 = −∆Φ′

t(S) ≤ −∆ϕt(S);
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from which (16) follows.

To prove the proposition, we use induction on t. If dt(S) = 0, which holds also at time t = 0, the proposition

holds, as ϕt(S) ≤ ht by (12). Otherwise, assume that it holds up to time t− 1. By using this and applying (16) we

conclude that

dt(S) + ϕt(S) = dt−1(S) + ϕt−1(S) + ∆dt(S) + ∆ϕt(S) ≤
∑

S′∈At−1(S)

(ϕt−1(S′) + dt−1(S′)) ≤
∑

S′∈At−1(S)

ht−1 = ht.

Using dt, we now define Φt(S) by

Φt(S) := Φ′
t(S) + dt(S).

2.8 Bounding the debt

The purpose of this section is to show that dt(S), the debt of a given section, once generated, is bound to diminish

and eventually nullify. In particular we will establish Proposition 2.6, showing that bt(St) = 0 implies ϕt(St) = 0 and

dt(St) = 0.

The main idea here is that after a debt is created, the front must contain cavities in the occupied set, which

are separated by occupied vertices. Each indebted segment S is contained in such a cavity, while to the left of this

cavity lies the segment λt(S). Proposition 2.14(b) tells us that the evolution of the occupied set in λt(S) results in

an increase of Φ′
t – one which is not expected in a fully occupied front. This additional increase in Φ′

t compensates

for the debt of S and eventually eliminates it. From this we may deduce that a Container strategy which generates

debt, and hence cavities is, in a way, inefficient.

To establish Proposition 2.6 we require the following proposition (established in Section 2.8.1 below), which is

the main proposition of this section, stating that an indebted segment will pay its debt within a constant time-frame.

Proposition 2.19. For all t > 0 and S ∈ St we have max{s ≤ t : ds−1(S) = 0} ≥ t− qh2
t − ht.

From this we draw the following useful proposition which states that a segment that on one of its sides there are

only a few occupied vertices is simple and free of debt.

Proposition 2.20. Let t ∈ N and S ∈ St such that min
(
bt([S,∞)), bt((−∞, S])

)
≤ 2ht. Then ℓt′(S) = 0 and

dt′(S) = 0 for t′ = t and t′ = t− 1.

Proof. Let t′ ∈ [t−1−qh2
t−ht, t]. Under the assumptions of the proposition we obtain, by Proposition 2.10, χt′(S) = 1.

This implies that ℓt′(S) = 0, by (10). From this we deduce, by using Corollary 2.17(b) that dt(S) ≤ dt′(S). This

yields the desired statement by Proposition 2.19.

Using this we easily establish Proposition 2.6.

Proof of Proposition 2.6. Assume that bt(St) = 0 and let S ∈ St. By Lemma 2.13 we have ϕt(S) = 0. In addition,

bt([S,∞)) = 0 ≤ 2ht, and hence, by Proposition 2.20, dt(S) = 0. Putting these together we obtain that ϕt(St) +

dt(St) = 0, as required.

2.8.1 Upper bound on the duration of the debt

For the proof of Proposition 2.19 we require the following claim, which guarantees a reduction of the debt in a simple

interval containing an occupied vertex to the left of an indebted segment.

Claim 2.21. Let t ∈ N, S0, S1, S2 ∈ St satisfying S0 < S1 < S2, bt−1(S0), bt−1(S1) > 0, and dt−1(S2) > 0. Moreover,

assume that ℓt−1(Q) = ℓt(Q) = 0 for all Q ∈ St([S1, S2]). Then, ∆dt(St([S1, S2])) ≤ −1.

Proof. Write I := St([S1, S2]). We have ∆dt(Q) ≤ 0 for every Q ∈ I, as ℓt−1(Q) = ℓt(Q) = 0. To prove the

proposition, it would thus be enough to show that ∆dt(S) < 0 for a particular segment S ∈ I.

Let S := min{Q ∈ I : S1 < Q, dt−1(Q) > 0}, and observe that since S2 belongs to the set of which minimum is

taken, S is a valid segment. In addition, ∆Φ′
t(S) ≥ 0 by Proposition 2.14 (a), so that d̃t(S) = dt−1(S) > 0. With (14)

and (15) in mind, to complete the proposition we must show two things:
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• that λt(S) is a valid segment, i.e. that {Q ∈ St : Q ≤ S ∧∆Φ′
t(Q) > 0} is nonempty,

• that d̃t
(
St([λt(S), S))

)
= 0.

We start with the first item. Observe that bt(S) = ϕt(S) ≤ ht − dt(S) < ht = |S|, by Proposition 2.18 and the

fact ℓt(S) = 0. Hence Bt(S) ⊊ S. As Bt−1(S1) is non-empty, we conclude that there exists a segment S1 ≤ Q′ ≤ S

and some x ∈ Bt−1 such that x + (1, 0) ∈ Q′ \ Bt−1(Q′). By Proposition 2.14(b) this implies that ∆Φ′
t(Q

′) ≥ 1, so

that together with the existence of S0, we deduce that λt(S) is a valid segment in I.

To see the second item, using ℓt−1(Q) = ℓt(Q) = 0 together with Proposition 2.14(a), we obtain that for all

Q ∈ St([λt(S), S)) we have d̃t(Q) = dt−1(Q). The item then follows by the definition of S.

We are finally ready to establish Proposition 2.19, bounding the duration of the debt. In fact, we shall prove the

following stronger proposition.

Proposition 2.22. Let t ≥ 0 and S ∈ St.

(a) max{s ≤ t : ds−1(S) = 0} ≥ t− qh2
t − ht.

(b) If χt(S) = 0 then dt
(
St

(
It(S) ∩ (−∞, S + ht]

))
= 0.

Proof. We prove the proposition inductively on t. The base case easily follows, as dt(S) = 0 for all S ∈ S0.

Assume that the proposition holds for all t′ ≤ t − 1. We first prove the contra-positive of (b). Let S ∈ St,

denote IS := It(S) ∩ (−∞, S + ht] and assume that there exists some Q ∈ St(IS) such that dt(Q) > 0. Denote

tQ := max{s ≤ t : ds−1(Q) = 0}. By applying (a) for time t− 1, we obtain

tQ ≥ max{s ≤ t− 1 : ds−1(Q) = 0} ≥ t− 1− qh2
t−1 − ht−1 > t− 2Ht, (17)

from which we deduce, by (1), that ht ≤ 2htQ . By Corollary 2.17(c) we have Q ∈ ΩtQ . Denoting J⃗ := ItQ(Q)∩[Q,∞),

we thus obtain, by (5), that χt′(S
′) = 1 for all S′ ∈ StQ(J) and t′ ∈ [tQ, t]. Thus, it suffices to show that S ⊂ J⃗ .

When IQ is infinite this is straightforward; otherwise, by (3), we have b̂
2H̃tQ
tQ

(J) ≥ 2H̃tQ . Hence

b̂ H̃t
t (J⃗) ≥ b̂

2H̃tQ
−(t−tQ)

t (J⃗) ≥ b̂
2H̃tQ
tQ

(J⃗)− q · (t− tQ) ≥ 2H̃tQ − q · (t− tQ) > H̃t + 2ht,

where the first inequality is by Observation 2.7(b), the second is by Observation 2.8, the third is using the fact that

J is finite, and the fourth is obtained by plugging in (17) and ht ≤ 2htQ . On the other hand, as Q ∈ St(IS), we have

b̂ H̃t
t ([maxQ,minS)) ≤ H̃t. Therefore,

b̂ H̃t
t (J⃗ ∩ (−∞, S]) ≤ b̂ H̃t

t ([Q,S]) ≤ b̂ H̃t
t ([maxQ,minS)) + 2ht ≤ H̃t + 2ht.

from which we conclude that J⃗ ∩ (−∞, S] ⊊ J⃗ , so that indeed S ⊂ J⃗ .

Next, towards proving (a), denote tS := max{s ≤ t : ds−1(S) = 0} and t0 := max{s ≤ tS : χs(S) = 0}. Observe

that, as before, S ∈ ΩtS . Hence, S is simple at times t0 + ht0 + 1, . . . , tS + H̃tS , where, by Corollary 2.17(b), it can

gain no new debt. In particular,

t0 < tS ≤ t0 + ht0 . (18)

Also, as in (17) (with tS in the role of tQ), we obtain, using (18), that

t− t0 ≤ t− tS + ht0 ≤ qh2
t−1 + ht−1 + 1 + ht0 < 2Ht. (19)

Using (1), this implies that ht ≤ 2ht0 .

Next, writing S′ = min St0(It0(S)), namely the leftmost segment in It0(S), we define

⃗J :=
(
It0(S) ∩ (−∞, S]

)
\ S′.

Let S0 := minPt0(S). Observe that, since ht ≤ 2ht0 , we have ⃗J ⊆ It0(S0)∩ (−∞, S0 + ht0 ]. As χt0(S) = 0, we have,

by definition, χt0(S0) = 0, so that, from (b) we obtain dt0( ⃗J) = 0. From this we obtain that dt0+ht0
( ⃗J) ≤ qh2

t , by
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observing that at most qht segments could be disrupted at times [t0 + 1, . . . , t0 + ht0 ], each disrupted segment has at

most ht debt (by Proposition 2.18), and debt can only be created via a disruption (by Corollary 2.17(c)).

Let t0 + ht0 ≤ t′ ≤ t. By the definition of ⃗J and the fact that ht ≤ 2ht0 , note that all segments in S′
t( ⃗J) are

contained in It0(S), and are thus simple at times t0 + ht0 , . . . , t. We therefore obtain,

bt′( ⃗J \ {S}) ≥ bt′( ⃗J)− ht0 ≥ H̃t0 − ht0 − q · (t′ − t0) > ht,

where the first inequality is by containment, the second is by Observation 2.8, and the third is obtained by plugging

in (19). Hence there are at least two segments containing occupied vertices in ⃗J . Hence, by Claim 2.21, we conclude

that ∆dt′( ⃗J) ≤ −1 for any t0 + ht0 ≤ t′ ≤ t. Since dt( ⃗J) ≥ 0 and dt0+ht0
( ⃗J) ≤ qh2

t , we obtain, using (18), the

required bound:

t− tS ≤ t− t0 ≤ qh2
t + ht0 ≤ qh2

t + ht.

2.9 Potential growth: proof of Proposition 2.5

This section consists of the proof of Proposition 2.5, showing that the potential grows by 1 whenever there exist

occupied vertices on the front, which will rely upon Proposition 2.20. Recalling that Φs(S) =
∑

S′∈As(S) Φs(S′), it

suffices to prove the proposition only for the case s = t.

Fix t ∈ N and denote

S̄ := {S ∈ St : ∆Φt(S) < 0} and S→
t := max{S ∈ St : ((S − 1)× {t− 1}) ∩Bt−1 ̸= ∅}.

Let S ∈ S̄ and observe that by (15), we must have λt(S) ̸= −∞ and d̃t(Q) = 0 for every λ(S) ≤ Q < S, and

d̃t(S) > 0, as otherwise we would have

∆Φt(S) = ∆Φ′
t(S) + ∆dt(S) = ∆Φ′

t(S) + (−∆Φ′
t(S))+ ≥ 0.

In particular, this implies that

∆Φt(S) = ∆Φ′
t(S) + ∆dt(S) = ∆Φ′

t(S) + (−∆Φ′
t(S))+ −∆Φ′

t(λt(S)) = (∆Φ′
t(S))+ −∆Φ′

t(λt(S)).

This implies that λt(S) ̸= S, as otherwise we would immediately get ∆Φt(S) ≥ 0. Hence, by (15), we have

d̃t(λt(S)) = 0. Using this we obtain,

∆Φt(S) + ∆Φt(λt(S)) = (∆Φ′
t(S))+ −∆Φ′

t(λt(S)) + ∆Φ′
t(λt(S)) + ∆dt(λt(S)) = (∆Φ′

t(S))+ + ∆dt(λt(S)) ≥ 0.

Next, we show that the map Q 7→ λt(Q) is one-to-one in S̄. Since λt(Q) ≤ Q for all Q ∈ S̄, it would suffice to

show that for all segments Q ∈ St([λt(S), S)) we have Q /∈ S̄, i.e. that ∆Φt(Q) ≥ 0. Given such Q ∈ St([λt(S), S)),

using the fact that d̃t(Q) = 0, we obtain dt−1(Q) = 0 so that ∆dt(Q) ≥ 0, and ∆Φ′
t(Q) ≥ 0, and hence, indeed,

∆Φt(Q) ≥ 0.

By the fact that all segments to the right of S→
t are non-occupied and are thus free of debt by Proposition 2.20,

we observe that S→
t ̸= λt(S) for any S ∈ St. Since for every Q ∈ S̄ we have found a distinct counterpart λt(Q) such

that ∆Φt(S) + ∆Φt(λt(S)) ≥ 0, we deduce that ∆Φt(St \ {S→
t }) ≥ 0. To complete the proof, it would suffice to show

that ∆Φt(S
→
t ) ≥ 1. To see that this, observe that, by Proposition 2.20, dt−1(S→

t ) = 0 so that ∆Φt(S
→
t ) ≥ ∆Φ′

t(S
→
t )

and use Proposition 2.14(b).

2.10 Controlling the range: proof of Lemma 2.13

This section is dedicated to the proof of Lemma 2.13, stating that ϕt(S) ≤ rt(S). In Part 2.10.1 we prove several

auxiliary claims, while in Part 2.10.2 we use these to establish the lemma itself.
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2.10.1 Auxiliary claims

Claim 2.23. Let t ∈ N and S ∈ St, such that χt(S) = 1. Then ℓt(S) < τt(S).

Proof. Let t0 := max{t′ ≤ t : χt′−1(S) = 0}, so that τt0−1(S) = 0 and τt0(S) > 0. By (5) we have τt0(S) ≥ h̃t0 ≥ ht0 .

Hence by (10), ℓt0(S) = (ℓt0−1(S)− 1)+ = ht0−1− 1 < τt0(S). At any later time t0 < t′ ≤ t we have either ℓt′(S) = 0

so that, by (4), ℓt′(S) < τt′(S), or ∆τt′(S) = ∆ℓt′(S) = −1. The claim follows.

Claim 2.24. Let t ∈ N and S ∈ St such that χt−1(S) = 1 and χt(S) = 0. Then ℓt−1(S) = 0 and t ∈ N1.

Proof. The fact that χt−1(S) = 1 and χt(S) = 0 implies that τt−1(S) = 1. By Claim 2.23 this implies that

ℓt−1(S) = 0, and by Claim 2.9 – that t ∈ N1.

Claim 2.25. Let t ∈ N and S ∈ St such that χt(S) = 0. Then ϕt(S) ≤ ht − |Ft ∩ (S × Lt(S))|.

Proof. We prove by using induction on t. If χt−1(S) = 1, then by Claim 2.24 we know that ℓt−1(S) = 0 and t ∈ N1.

Hence, by Observation 2.12 we know that ∆ft(S) = |Ft ∩ (S × Lt(S))|, so that,

ϕt(S) = ϕt−1(S)−∆ft(S) ≤ ht−1 −∆ft(S) = ht − |Ft ∩ (S × Lt(S))|.

Otherwise, if χt−1(S) = 0, we have ∆ft(S) = |Ft∩ (S×{t+ℓt(S)})|. By the induction hypothesis, we thus obtain

ϕt(S) = ϕt−1(S)−∆ft(S) ≤ ht−1(S)− |Ft−1 ∩ (S × Lt−1(S))| − |Ft ∩ (S × {t + ℓt(S)})|

≤ ht − |Ft ∩ (S × Lt(S))|.

2.10.2 Proof of Lemma 2.13

We introduce the following notations used only for the proof of the lemma. Given S ∈ St such that ϕt(S) > 0 and

pt(S) ̸=∞, we write

wt(S) :=
∣∣[ pt(S),maxS ]

∣∣ and f̃t(S) :=
∣∣Ft ∩ ([pt(S),maxS]× Lt(S))

∣∣.
Next, we prove the following connection between wt(S), rt(S), and f̃t(S) for a simulative segment S containing an

occupied vertex.

Claim 2.26. Let t ∈ N and S ∈ St such that pt(S) ̸=∞. Then

wt(S) ≤ rt(S) + f̃t(S).

Proof. Let S be as in the claim. By the definitions of pt(S) and rt(S) we have χt(S) = 0 and rt(S) > 0. As χt(S) = 0,

we know that Bt(S) = {pt(S)}, and as rt(S) > 0, there must exist a (t, ht)-path in Gt which we denote by

P = ((pt(S), t) = (p1, t), (p2, t + 1), . . . , (pht , t + ht − 1)).

We construct a family of wt(S) many paths in Z2
↑↗, each of length ht, as follows (see the accompanying Figure 3).

Define a vector (a1, . . . , aht−1) ∈ {0, 1}ht−1 via aj := pj+1 − pj , and (ht − 1)-tuples a1, . . . , awt(S) by

ak
j :=

aj if j < γk,

1− ak if j ≥ γk,
where γk := min{m : Pm is not connected in Z2

↑↗ to (p1 + k − 1, t + ht − 1)}.

Consider the paths ((pt(S), t), (pt(S) + ak
1 , t + 1), . . . , (pt(S) + ak

ht−1, t + ht − 1)) for k = 1, . . . , wt(S). As these

paths intersect on P ⊂ Gt, we conclude that every deleted vertex in S × [hts ] can block at most one of these paths,

so that each path must be either in Gt, in which case its endpoint is counted towards rt(S), or contain a distinct

deleted vertex counted towards f̃t(S). We conclude that wt(S) ≤ f̃t(S) + rt(S), as required.
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We extend the definitions of w and f̃ for S ∈ St and time t− 1 by

wt−1(S) :=
∑

S′∈Pt−1(S)

wt−1(S′) and f̃t−1(S) :=
∑

S′∈Pt−1(S)

f̃t−1(S).

We now turn to prove the lemma.

Proof of Lemma 2.13. Let S ∈ St. Observe that the lemma is straightforward when χt(S) = 1 (as in that case

ϕt(S) = rt(S) by (12)), and when ϕt(S) = 0 (as rt(S) ≥ 0 by definition). Hence we assume χt(S) = 0 and ϕt(S) > 0.

To establish the lemma, we inductively prove the following:

(a) pt(S) ̸=∞ and rt(S) > 0,

(b) ϕt(S) ≤ wt(S)− f̃t(S).

This would conclude the proof, as (a) and (b), together with Claim 2.26 imply that ϕt(S) ≤ rt(S).

We study two cases according to the value of χt−1(S), the first of which is proved directly and serves also as the

basis of the induction.

Case 1 – consolidation: χt−1(S) = 1. By Corollary 2.24 we know that t ∈ N1 and ℓt−1(S) = 0, so that

ϕt−1(S) = bt−1(S) by (12). Again by (12) and the fact that ϕt(S) > 0, this implies that ∆ft(S) < bt−1(S), while by

Observation 2.12, we have ∆ft(S) = |Ft ∩ (S × Lt(S))|.
Recall that pt(S) := min{x ∈ S : (x, t − 1) ∈ Bt−1, C

ht
t (x) ∩ Ft = ∅} where Cht

t (x) is the vertical path

{(x, t), (x, t + 1), . . . , (x, t + ht − 1)} (see (8)). Hence pt ̸=∞, as ∆ft(S) < bt−1(S). This implies (a).

To prove (b), writing ϕt(S) = ϕt−1(S)−∆ft(S), we must show that

ϕt−1(S) = bt−1(S) ≤ wt(S) + ∆ft(S)− f̃t(S) = wt(S) +
∣∣Ft ∩

(
[minS, pt(S))× Lt(S)

)∣∣ .
To see this, observe that bt−1([pt(S),maxS]) ≤ |[pt(S),maxS]| = wt(S), while Cht

t (x) ∩ Ft ̸= ∅ for all (x, t − 1) ∈
Bt−1([minS, pt(S)), by (7). Hence

bt−1([minS, pt(S)) ≤
∣∣Ft ∩

(
[minS, pt(S))× Lt(S)

)∣∣ .
Since, bt−1(S) = bt−1([minS, pt(S)) + bt−1([pt(S),maxS]), (b) follows.

Case 2 – simulated step: We begin by establishing (a). By the definition of rt−1(S) there are this many

points s ∈ S × {t − 1 + ℓt−1} which are the end points of a (t − 1, ℓt−1(S))-paths emanating from Bt−1(S); denote

their columns by R. By the induction hypothesis we have |R| ≥ rt−1(S) ≥ ϕt−1(S). For every s ∈ R, consider

the column segment (s, t− 1 + ℓt−1), (s, t + ℓt−1), . . . , (s, t + ℓt), and observe that these are disjoint from each other

and from Ft−1(S). Any vertex in ∆Ft(S) can intersect with at most one such column segment, so that at least

�

(a)

�

(b)

Figure 3: Two possible cases for the location of pt(S) within S, and the corresponding paths. In each
sub-figure, the central path P is indicated by an unbroken line, while the other paths in are indicated by
dashed lines.
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ϕt−1(S)−∆ft(S) = ϕt(S) > 0 of these column segments appear in Gt. Since χt(S) = 0, no vertices in S × Lt−1(S)

can be deleted at time t. We conclude that there is at least one path in Gt emanating from Bt−1(S) and terminating

in S × {t + ℓt}. By (8) we thus obtain that pt(S) ̸=∞ and rt(S) > 0, proving (a).

To prove (b), let us first consider the case t ∈ N1. As χt(S) = 0, we have in this case,

∆ft(S) = |Ft ∩ (S × {t + ht})|. We thus obtain

f̃t(S) ≤ f̃t−1(S) + ∆ft(S)−∆pt(S), (20)

using the fact that ∆pt(S) = 1 only if Ft−1 ∩ C
ht−1
t−1 (pt−1(S)) ̸= ∅, in which case at least one such vertex is counted

towards f̃t−1(S) but not towards f̃t(S). We obtain

ϕt(S) = ϕt−1(S)−∆ft(S) ≤ wt−1(S)− f̃t−1(S)−∆ft(S) ≤ wt−1(S) + ∆pt − ft(S) ≤ wt(S)− f̃t(S),

Where the equality follows from (12), the next inequality – from the induction hypothesis, the following one –

from (20) and the last one – from the fact that ∆wt(S) = −∆pt(S). Observe that this concludes the proof of the

lemma for the linear Spreader strategy (as per Remark 1).

Next, we consider the case of t ∈ N2. Observe that in this case we have ∆ft(S) = |Ft∩(S×{t+ht−1, . . . , t+ht})|.
Denote {S1, S2} := Pt−1(S), where S1 < S2. We consider two sub-cases according to value of pt(S). Firstly, consider

the case pt(S) ∈ pt−1(S1) + {0, 1}. In this case,

f̃t(S)− f̃t−1(S1) ≤ |Ft−1 ∩ (S2 × Lt−1(S2))|+ ∆ft(S)− (pt(S)− pt−1(S1)), (21)

using once again the fact that pt(S)−pt−1(S1) = 1 only if Ft−1∩C
ht−1
t−1 (pt−1(S1)) ̸= ∅, and the fact that all firefighters

above S2 are counted towards f̃t(S). Applying the induction hypothesis to S1 and Claim 2.25 to S2, we obtain

ϕt(S) = ϕt−1(S1) + ϕt−1(S2)−∆ft(S)

≤ wt−1(S1)− f̃t−1(S1) + ht−1 − |Ft−1 ∩ (S2 × Lt−1(S2))| −∆ft(S)

≤ wt−1(S1)− f̃t(S1) + ht−1 − (pt(S)− pt−1(S1)),

where the last inequality follows from (21). Observing that wt(S) = wt−1(S1) + ht−1 − (pt(S) − pt−1(S1)) then

concludes the proof of (b).

Finally, consider the case pt(S) ∈ pt−1(S2) + {0, 1}. By repeating the argument of the proof of part (a) in the

contra-positive, we obtain that, since pt(S) /∈ S1, we necessarily have rt−1(S1) ≤ ∆ft(S1), so that, by the induction

hypothesis,

ϕt−1(S1) ≤ ∆ft(S1). (22)

In addition,

f̃t(S)− f̃t−1(S2) ≤ ∆ft(S2) + wt(S)− wt−1(S2), (23)

using the fact that wt(S)− wt−1(S2) = −1 only if Ft−1 ∩ C
ht−1
t−1 (pt−1(S2)) ̸= ∅.

We conclude that

ϕt(S) = ϕt−1(S1) + ϕt−1(S2)−∆ft(S)

≤ ∆ft(S1) + ϕt−1(S2)−∆ft(S)

≤ wt−1(S2) + ∆ft(S1)− f̃t−1(S2)−∆ft(S)

= wt−1(S2)− f̃t−1(S2)−∆ft(S2)

≤ wt(S)− f̃t(S),

where the first equality is from (12), the next inequality follows from (22), the one that follows – from part (b) applied

to S2 at time t− 1, the second equality is straightforward and the final inequality is an application of (23).
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3 The Directed Half Plane

This section is dedicated to the study of the containment game on the directed half plane Z2
↖↑↗ = (V,E), the sub-graph

of Z⊠ Z given by

V = {(x, y) ∈ Z2 : y ≥ 0}, E = {((x, y), (x + i, y + 1)) : |x| ≤ y, i ∈ {−1, 0, 1}}.

Section 3.1 depicts the game strategy on this graph. In Section 3.2 we provide three key propositions concerning this

strategy which will play a prominent role in the proof of Theorem 1 in Section 4 below. Sections 3.3, 3.4 and 3.5 are

dedicated to the proofs of these proposition.

3.1 The directed half plane strategy

Here we present the Spreader strategy on Z2
↖↑↗ and declare several of its key properties, later established in subsequent

sections. This is not an independent section, as it strongly relies on Section 2 for definitions and results. In particular,

our strategy maintains the convention that at time t all of the occupied vertices are on the row Z× {t}. This allows

us to keep using the one-dimensional notations St and pt. For our application we must analyze the game also with

arbitrary starting conditions, given by F0, F0 ⊂ F0, and B0 ⊂ Z× {0}.
Min and Max notation. Throughout the section it will also be useful to denote the leftmost and rightmost

vertices in a set D by minD and maxD, where formally minimum and maximum are taken with respect to the

lexicographical order.

The Z2
↖↑↗ strategy. We begin by describing a preliminary Z2

↖↑↗-strategy of Spreader, subject to starting conditions

F0, F0, B0. We will later amend this strategy to avoid dead-ends in Section 3.4. This preliminary strategy is rather

similar to the one used in Z2
↑↗ (see (2)), modified to account for the expansion of the occupied set also northwestwards.

Somewhat surprisingly, it suffices for our purposes to allow only the single leftmost occupied vertex to expand also

to the northwest, while all other vertices expand only to the north and the northeast, as before. Indeed, for every

S ∈ St, we set

Bt(S) := (S × {t}) ∩

{(pt(S), t)} if χt(S) = 0,{(
(Bt−1 + {(0, 1), (1, 1)}) ∪ {minBt−1 + (−1, 1)}

)
\ Ft

}
if χt(S) = 1,

where the evolution of pt and χt remains unchanged from Section 2.3.

3.2 The directed half plane analysis

Much of the analysis conducted in Section 2 remains valid after slight modifications. We begin by modifying the

definition of Ft, originally defined in (11), to account for westwards expansion. We define

∆Ft(S) := (Ft \ Ft−1) ∩

S × Lt(S) if ℓt(S) > 0

(S × Lt(S)) ∩
(
Bt−1 + {(−1, 1), (0, 1), (1, 1)}

)
if ℓt(S) = 0,

(24)

while maintaining the definitions of ϕt, Φt, ℓt, Lt, bt, and λt(S).

Next, we verify that Proposition 2.2 remains valid on Z2
↖↑↗. We maintain the notation of A1, A2, and Et from

the original proof given in Section 2.4. That proof is still valid, except we we must consider an additional case

where βℓ
t (y) is no longer defined for some y and ℓ. This is possible if at some time t′ ∈ [t, t + ℓ], the ancestor of

y was a northwestwards expansion of a vertex. Nevertheless, if y ∈ A1, then by applying the contra-positive of

Proposition 2.10 we have βHt
t (y) ∈ B3Ht

t while if y ∈ A2, the statement that y′ ∈ A2 satisfies βt−t′

t′ (y′) ∈ Et′ for some

t′ ∈ [t− ht, t] remains valid.

Propositions 2.5, 2.6, 2.18, 2.19 and 2.20 and the propositions and observations on which they rely remain valid

for the directed half plane with their original proofs. This is due to the fact that they only difference between the
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process on Z2
↖↑↗ and on Z2

↑↗, is that on every turn there is potentially a single additional spreading vertex occupied or

deleted in Z2
↖↑↗ (the northwestern neighbour of the minBt).

Proposition 2.5, however, is too weak for our needs and we require the following analogue, established in Section 3.3

below.

Proposition 3.1. Let t ∈ N. If bt−1(St−1) > 0 then ∆Φt(St) ≥ 2.

Avoiding dead-ends. Denote B for the Z2
↖↑↗ Spreader strategy described above, used against Container of

strength q, and subject to the starting conditions B0,F0, F0 for some h : N → N. In Section 2.1.2 we showed that

on Z2
↑↗ we can reduced the number of vertices in |Bt| in the final strategy by actually spreading only to vertices

in |B3Ht
t |. The analogue in Z2

↖↑↗ is more involved, as we must spread also into vertices that have the potential of

becoming minBs for some s ∈ [t, t + 3Ht]. This is captured by the following analogue of Proposition 2.3 which is

proved in Section 3.4.

Proposition 3.2. There exists a Spreader strategy B′ = (B′
t)t∈N satisfying the following for every t ∈ N.

(a) |B′
t| ≤ O(h6

t ) + 2t
ht

+ |B0|.

(b) B′
t ̸= ∅ ⇐⇒ Bt ̸= ∅.

The play area. In Section 4 we shall play in parallel several copies of the containment game on Z2
↖↑↗. Towards

analysing these we require a new notion of the play area of a game G at time t, which we denote by

A
G
t :=

t⋃
t′=0

Bt′ ∪ Ft′ .

Namely, the occupied set together with all deleted vertices counted by Spreader up to time t. Here we often omit

the superscript G as only a single game is considered, so that the full notation will be used only in Section 4. For

the analysis of the play area, we introduce the following notion. Letting D ⊂ Z2, we define the infinite trapezoid

generated by D, denoted by T(D), to be the convex hull in Z2 of D + {k(1, 1), k(−1, 1) : k ∈ N}. The following

proposition, established in Section 3.5, bounds AG
t .

Proposition 3.3. The following hold for every t.

(a) If Bt = ∅ then At ⊂ Z× (−∞, t],

(b) For every t′ > t we have At′ \At ⊆ T(Bt),

(c) Denote B′ =
(⋃t−1

τ=0 Bτ

)
and write xmin and xmax for the first coordinates of minB′ and maxB′ respectively.

We have At ⊆ [xmin − 1, xmax + 1]× Z.

3.3 Potential growth – proof of Proposition 3.1

In this section we prove Proposition 3.1, relying upon Proposition 2.5.

Proof of Proposition 3.1. Let t ∈ N. Denote Smin = St(minBt) and observe that by Proposition 2.20 we have

ℓt(Smin), ℓt−1(Smin), dt(Smin), dt−1(Smin) = 0.

Denoting x := minBt−1 + (−1, 1), we have, by definition, x ∈ Bt(Smin) ∪ Ft(Smin) \ Bt−1. Hence, by a variation on

Proposition 2.14(b) expanding leftwards instead of rightwards, and using (24), we obtain ∆Φ′
t(Smin) ≥ 1 which thus

implies ∆Φt(Smin) ≥ 1.

In addition, by (14) the definition of λt, we know that Smin is not λt(S) for any S, so that, by Proposition 2.5,

∆Φt(St \ {Smin}) ≥ 1. Therefore, ∆Φt(St) = ∆Φt(St \ {Smin}) + ∆Φt(Smin) ≥ 2, as required.
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3.4 Avoiding dead-ends – proof of Proposition 3.2

This section is dedicated to the proof of Proposition 3.2. When constructing the modified strategy B′, we aim to

ensure that B′
t always contains minBt, the leftmost occupied vertex, by including any vertex that could take this

role within a bounded number of turns. We proceed to define this formally.

Recall the definition of βℓ
t (y), the leftmost starting vertex of a (t, ℓ)-path ending in a given y ∈ Bt+ℓ, defined in

Section 2.4. Define Dℓ
t to be the set of vertices x ∈ Bt for which there exists a q-Container strategy under which

x = βℓ
t (minBt+ℓ) when the strategy B is played against it.

Define B′ = (B′
t)t∈N inductively as follows.

B′
0 = B0,

B′
t = B3Ht

t ∪

(
(B′

t−1 + {(−1, 1), (0, 1), (1, 1)}) ∩
3Ht⋃
ℓ=0

Dℓ
t

)
. (25)

Proof of Proposition 3.2. Let t ∈ N. Firstly we show that minBt ∈ B′
t which implies B′

t ̸= ∅ ⇐⇒ Bt ̸= ∅
(recalling that D3Ht

t ⊆ Bt). This we show using induction. Since B′
0 = B0, we clearly have minB0 ∈ B′

0.

Assume this holds up to time t− 1, and let y := minBt. Let x := β3Ht
t−3Ht

(y) and denote by

P = (x = pt−3Ht , . . . , pt = y)

the associated minimal two-sided (t−3Ht, 3Ht)-path of occupied vertices associated with x. Note that pt−i = βi
t−i(y),

so that the vertices of P satisfy pi ∈ Dt−i
i . To show that y ∈ B′

t it would therefore suffice to show the existence of i

such that pi ∈ B′
i, as this would follow for every subsequent vertex, by (25). If there exists some i ∈ [t− 3Ht + 1, t]

such that pi = pi−1− 1, this follows directly from the induction hypothesis, as in this case only the leftmost occupied

vertex can expand to the left and we have pi−1 = minBi−1. Otherwise, P is a one-sided (t− 3Ht, 3Ht)-path, so that

pt−3Ht = x ∈ B3Ht
t−3Ht

⊆ B
3Ht−3Ht
t−3Ht

⊆ B′
t−3Ht

,

by (25) and the monotonicity of H.

Next we show that B′ is a valid strategy, i.e., that B′
t ⊂ (B′

t−1 + {(−1, 1), (0, 1), (1, 1)}) \ Ft. Let y ∈ B′
t. Since

B′
t ⊂ Bt, we clearly have y /∈ Ft. Hence we must show only that y ∈ B′

t−1 + {(−1, 1), (0, 1), (1, 1)}. By (25), the

only non-trivial case is when y ∈ B3Ht
t . In this case, as B is a valid strategy, there must exist x ∈ Bt−1 such that

y ∈ x + {(−1, 1), (0, 1), (1, 1)}. If y ∈ x + {(0, 1), (1, 1)} then x ∈ B
3Ht−1
t−1 so that indeed x ∈ B′

t−1. Otherwise, if

y = x + (−1, 1), then x = minBt−1 ∈ B′
t−1.

Finally, we prove the bound on |B′
t|. Let ℓ ∈ [0, 3Ht]. Given any x ∈ Dℓ

t we denote the minimal two-sided

(t, ℓ)-path starting from x by Px, and its endpoint by yx. Such a path must exist, since there exists a Container

strategy under which x = βℓ
t (minBt+ℓ). Next, denote the points of Dℓ

t by {x1, . . . , xN}, sorted from left to right.

Since xN ∈ Dℓ
t , Container must have a strategy which blocks Pxi , for every i ∈ 1, . . . , N − 1 such that yxi < yN

(lexicographically). As dG(yxi , xi) ≤ ℓ for all i, we must have yxi < yN for every i < N − 2ℓ. In addition,

by Observation 2.1, at most 2ℓ − 1 distinct two-sided (t, ℓ)-paths can intersect at a point. Thus, observing that

Pxi ∩ Ft+ℓ = Pxi ∩ (Ft+ℓ \ Ft), we have

|{i : Pxi ∩ Ft+ℓ ̸= ∅}| ≤ 2ℓ · qℓ = 2ℓ2q.

We deduce that N − 2ℓ ≤ 2ℓ2q, so that |Dt
ℓ| = N ≤ 2ℓ2q + 2ℓ = O(ℓ2). Therefore,∣∣∣∣∣

3Ht⋃
ℓ=0

Dℓ
t

∣∣∣∣∣ ≤ (3Ht + 2Ht)(2H
2
t q + 1) = O(H3

t ) = O(h6
t ).

To bound |Bt ∩R3Ht
t |, note that at time t = 0 we clearly have |B3Ht

0 | ≤ |B0|. To prove the case t ≥ 1, we follow
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the footsteps of the proof of Proposition 2.3. Recall that∣∣∣B3Ht
t

∣∣∣ =
∣∣∣{x ∈ B3Ht

t : χt(St(x)) = 1}
∣∣∣+
∣∣∣{x ∈ B3Ht

t : χt(St(x)) = 0}
∣∣∣ .

Proposition 2.2 yields an O(h6
t ) bound on the first term. Since a simulative segment contains at most one occupied

vertex, and Bt is contained in the discrete interval whose end points are minB0 − (0, t) and maxB0 + (0, t), the

second term is bounded by 2t+|B0|
ht

. The proposition follows.

3.5 Bounding the play area – proof of Proposition 3.3

Let t ∈ N. To prove (a), assume that Bt = ∅. We claim that ℓt′(S) = 0 for every t′ ∈ [t − ht, t] ∩ N and S ∈ St.

Indeed, as bt = 0, this is a direct consequence of Proposition 2.10. By definition, Fs(S) ⊂ S × (−∞, s+ ℓs(S)]. Since

ℓs(S) ≤ hs for all s, item (a) follows.

To prove (b), note that for every n ∈ N for which Bt+n ̸= ∅, the interval connecting minBt + (−n, n) and

maxBt+(n, n) must contain Bt+n. Next, let n ≥ 1, S ∈ St+n and v ∈ ∆Ft+n(S). Clearly v ∈ S×{t+n, ..., t+n+ht+n}.
Hence if S is neither the leftmost occupied segment nor the rightmost, we obtain v ∈ T(Bt). Otherwise, S must be

simple (by Proposition 2.20), so that v ∈ Bt+n−1 + {(−1, 1), (0, 1), (1, 1)}) by (11), and hence v ∈ T(Bt).

To prove (c), denote xs
min, x

s
max for the first coordinate of minBs and maxBs, respectively. Note that a deleted

vertex counted towards F at time s outside the rectangle [xs−1
min , x

s−1
max] × Z must have been counted by either the

leftmost occupied segment or the rightmost, which are always simple (again, by Proposition 2.20). Thus, by (11), it

is of distance at most 1 from the rectangle. As this holds for any s ≤ t, item (c) follows.

4 The Plane

4.1 Winning in the plane

In this section we construct a winning Spreader strategy in Z⊠ Z from the Z2
↖↑↗ strategy described in Section 3.1.

Given the Z2
↖↑↗ results, the proof of Theorem 1 will closely follow the firefighter analogue of [16, Theorem 1], showing

that at least three fronts contain occupied vertices at all times.

4.1.1 The strategy

The strategy of Spreader in the plane consists of two components. The first is a simultaneous implementation of a

rotated and translated directed half plane strategy in up to four disjoint play areas, each corresponding to an occupied

front. The second component is the re-ignition of an extinguished front by an adjacent occupied front. We proceed

to write this formally.

Writing I := {0, 1, 2, 3}, we denote the four cardinal directions {θi}i∈I by

θ0 := (0, 1), θ1 := (1, 0), θ2 := (0,−1), θ3 := (−1, 0),

in a clockwise fashion. Superscripts in I are always taken modulo 4; in particular we write |i− j| = 1 if i and j are

consecutive modulo 4. We also denote the four secondary directions {θi,i+1}i∈I by

θ0,1 := (1, 1), θ1,2 := (1,−1), θ2,3 := (−1,−1), θ3,0 := (−1, 1).

The infinite line of distance d from the origin, perpendicular to the i-th direction, is denoted by

Li(d) := dθi + Zθi+1.

We also introduce a notion of directed occupation radius (denoted by ρit) and front line (denoted by Li
t), keeping
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track of the distance of the front from the origin in every cardinal direction. These are defined as follows.

ρit := min

{
r : Li(r) ∩

t−1⋃
t′=0

Bt′ = ∅

}
, (26)

Li
t := Li(ρit).

Throughout the section, we denote by Gi
t the half-plane game played in direction i at time t employed by the

plane strategy. We write Bi
t := Bt(S

Gi
t

t ) and use a similar convention for ϕ, d,∆f and b to denote the corresponding

sets and quantities used for the analysis of the game Gi
t. Observing that on a termination time-step t, Bi

t = ∅ and all

of the remaining quantities are 0, by Proposition 2.6, we set these as default values for all times s in which no game

is played on the i-th front. Once a front game is initialised, it plays until Bi
t = ∅ at which step it terminates. We use

the equality Gi
t = Gi

s to indicate that the game played at time t didn’t terminate before time s. For each front i ∈ I,

the fact that Gi
t is active (rather than terminated) is indicated by ai

t := 1{Bi
t ̸= ∅}. We also set Bt :=

⋃
i∈I B

i
t.

The Z⊠ Z game starts in turn 1, where the half plane games are initialised with BGi

1 := {θi, θi,i+1} \ F1 (See

Figure 4a). In every turn t > 1, the strategy plays as follows.

1. If ai
t−1 = 1, a step is played in the i-th front game, according to the Z2

↖↑↗ strategy on the corresponding shifted

and rotated piece of Z⊠ Z.

2. If ai
t−1 = 0 then,

• in case that Bt−1 ∩ Li
t−1 = ∅, nothing happens in this front,

• otherwise, when Bt−1 ∩Li
t−1 ̸= ∅, a new Z2

↖↑↗ game G is initialised, rotated towards direction i and shifted

by ρit, with starting conditions B0 := O \ Ft, F0 := Ft and F0 := O ∩ Ft, where

O := Li
t ∩
(

(Bi+1
t−1 + {θi, θi−1,i}) ∪ (Bi−1

t−1 + {θi, θi,i+1})
)
. (27)

Namely, a terminated game can be re-initialised when the front Li
t−1 a vertex occupied by Spreader as part of the

game played on an adjacent front. In this case ∆ρit = 1, and the initial play area consists of all of the neighbours of

this occupied vertex on Li
t−1 + θi which are not in the play area of the adjacent front’s game (see Figure 4b). Note

that this new game may terminate immediately upon creation, but at a given front, a game cannot be initialised on

the same turn that another game terminates.

4.1.2 Analysis of the strategy

We start by making the following claim, concerning rotated infinite trapezoids. Given a set S ⊂ Z2 we denote the

infinite trapezoid of S rotated to direction i by Ti(S). This is given by the convex hull of S+{kθi,i+1, kθi,i−1 : k ∈ N}.
We omit the subscript i when it is clear from context.

Claim 4.1. Let a1 < a2 < a3, b1 < b2, and define C := [a1, a2]×{b2}, D := {a3}× [b1, b2]. Then T0(C)∩T1(D) = ∅.

Proof. Observe that for all (x, y) ∈ T0(C) we have y−x ≥ b2−a2 while for all (x, y) ∈ T0(D) we have y−x ≤ b2−a3.

The analysis of the plane strategy is based on two key propositions. The first states that the play areas of all Z2
↖↑↗

games employed by Spreader are disjoint.

Proposition 4.2. Let t0, t1 ∈ N, i0, i1 ∈ I. If Gi0
t0
̸= G

i1
t1

then A
G
i0
t0

t0
∩A

G
i1
t1

t1
= ∅.

Proof. Without loss of generality assume that i0 = 0 and t0 ≤ t1. Firstly, we consider the case i1 = 0, under which

t0 ̸= t1. Let t0 < s ≤ t1 be the turn in which the game G0
t1 was initialised, so that B0

s−1 = ∅. As G0
t0 must have

terminated before turn s, we obtain, by Proposition 3.3(a), that A0
t0 ⊆ (−∞, ρ0s−1]. In contrast, A0

t1 ⊂ T(B0
s) by

Proposition 3.3(b), and T(B0
s) ⊂ Z× [ρ0s,∞) = [ρ0s−1 + 1,∞). Thus, the two play areas are disjoint.

We are left with the case i0 ̸= i1. Clearly, areas of non-adjacent fronts cannot intersect, so we assume that i1 = 1.

The case i1 = −1 follows by similar arguments. Observe that at turn 1, when the four starting games are initialised,
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their initial occupied sets generate disjoint trapezoids, and hence they have disjoint play areas. Next, let s ≤ t1 be

the turn in which G1
t1 was initialised, so that B1

s−1 = 0 and Bs−1∩L1
s−1 ̸= ∅. Recall that, by (27), B1

s = O \Fs, where

O := L1
s ∩
((
B

2
s−1 + {θ1, θ0,1}

)
∪
(
B

0
s−1 + {θ1, θ1,2}

))
.

By Proposition 3.3(b) we have T(B1
t1) ⊂ T(B1

s) ⊂ T(O). To complete the proof it would thus suffice to show that

A0
t0 ∩ T(O) = ∅.

Indeed, by Proposition 3.3(c) and (26) we have A0
s−1 ⊂ [−ρ3s−1, ρ

1
s−1]×Z. This latter set is disjoint from T(O), as

O ⊂ {ρ1s} ×Z = {ρ1s−1 + 1} ×Z. Hence, if t0 ≤ s− 1, then A0
t0 ⊂ A0

s−1 and we are done. Otherwise, if t0 > s− 1, we

have A0
t0 \A

0
s−1 ⊂ T(B0

s−1), by Proposition 3.3(b). However, T(B0
s−1) is disjoint from T(O) as these satisfy Claim 4.1.

The proposition follows.

The second proposition states that when the front advances in direction i, the potential in that direction grows

by 2.

Proposition 4.3. ∆Φi
t ≥ 2∆ρit.

Proof. If ∆ρit = 0, then, by (26), we have Bi
t−1 = ∅. By Proposition 2.6, this implies that ϕi

t−1(Si
t) = 0 and

dit−1(Si
t) = 0. Thus, indeed, ∆Φt(S

i
t) ≥ 0.

We therefore assume ∆ρit = 1. If ai
t−1 = 1 then Gi

t is active and takes a step according to its Z2
↖↑↗ strategy, in which

case, the proposition follows directly from Proposition 3.1. Otherwise, if ai
t−1 = 0, we must have Bt−1 ∩ Li

t−1 ̸= ∅.
According to the strategy, a new game starts on the trapezoid generated by

O = Li
t ∩
(

(Bi+1
t−1 + {θi, θi−1,i}) ∪ (Bi−1

t−1 + {θi, θi,i+1})
)
,

where Bi
t ∪ F i

t = O. Observe that, in this case |O| ∈ {2, 4}. Since ai
t−1 = 0, we have dit−1 = ϕi

t−1 = 0, and, in

addition ∆f i
t = |F i

t |, by Proposition 4.2. Since all segments in Si
t are initialised to be simple, and ai

t−1 = 0, we have

∆ϕi
t = bit. Putting all of these together, we have ∆Φi

t ≥ bit + ∆f i
t = |O| ≥ 2.

4.2 Proof of Theorem 1 on Z⊠ Z
In this section we conclude the proof of Theorem 1 by applying Propositions 4.2 and 4.3 to imitate the proof

of [16, Theorem 1]. The key observation, which follows directly from (26), is that Bi
t is always contained in the

axis-aligned interval

L
i
t := ρit · θi + [−ρi−1

t , ρi+1
t ] · θi+1.

Throughout the proof, putting several superscripts in a function serves to represent summation over them, e.g.

ρ13t := ρ1t +ρ3t . Omitting a superscript serves to represent summation over all possible superscripts, e.g. ρt :=
∑

i∈I ρ
i
t.

We start by proving several auxiliary claims.

Claim 4.4. ϕi
t + dit ≤ |Li

t|.

Proof. Let S ∈ St(G
i
t) such that Di(S)∩Li

t ̸= ∅, where Di(S) is defined as the set S ×{t}, rotated to direction θi. If

Di(S) ⊂ Li
t, then, by Proposition 2.18, we have ϕi

t(S) + dit(S) ≤ ht = |S| = Di(S). Otherwise, by Proposition 2.20

and (13), ϕi
t(S) = bit(S) ≤ |Di(S) ∩ Li

t|, and dit(S) = 0. The claim follows.

By Proposition 4.3 we have ∆Φi
t ≥ 2∆ρit for every t ∈ N. Summing this over times 1, . . . , t we obtain

ϕi
t + dit ≥ ϕi

0 − f i
t + 2ρit − 2ρi0. (28)

Recalling the definition of Li
t, observe that |Li

t| = 1 + ρi−1
t + ρi+1

t and that ρt is the semi-perimeter of the

rectangle bounding the occupied set. We prove two claims under the assumption ρt − ρ0 > ft, which will be

established inductively in the course of the proof.

Claim 4.5. If ρt − ρ0 ≥ ft then ϕt + dt ≥ ρt + ρ0.
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Proof. Summing (28) over all i ∈ I, and observing that ϕ0 = 2ρ0, yields

ϕt + dt ≥ ϕ0 − ft + 2ρt − 2ρ0 ≥ ϕ0 + ρt − ρ0 = ρt + ρ0.

Claim 4.6. If ρt − ρ0 ≥ ft then bi,i+2
t > 0 for every i ∈ I.

Proof. Without loss of generality we assume that i = 0. Note that ρ02t + ρ13t = ρt. We thus consider two cases.

Case 1. ρ13t ≥ 1
2
ρt. By Claim 4.4 we have

ϕ13
t + d13t ≤ |L1

t |+ |L3
t | = 2ρ02t + 2 = 2ρt − 2ρ13t + 2 ≤ ρt + 2.

By Claim 4.5, we obtain

ϕ02
t + d02t = ϕt + dt − ϕ13

t − d13t ≥ ρt + ρ0 − ρt − 2 > 0,

from which we conclude, by Proposition 2.6, that b02t > 0.

Case 2. ρ02t ≥ 1
2
ρt. We have

ϕ02
t + d02t ≥ ϕ02

0 − f02
t + 2ρ02t − 2ρ020 ≥ ϕ02

0 − ft + ρt − 2ρ020 ≥ ϕ02
0 + ρ0 − 2ρ020 > 0,

where the first inequality is obtained by applying (28) for i = 0, 2, the second – by plugging in f02
t ≤ ft and ρ02t ≥ 1

2
ρt,

the third – by the assumption that ρt− ρ0 ≥ ft, and the fourth is straightforward from the definitions. As before, by

applying Proposition 2.6 we conclude that b02t > 0.

To control the size of the occupied set, we apply our method for avoiding dead-ends to the plane. We define B′,

the modified strategy in the plane, as the strategy that follows the modified strategy of Proposition 3.2 in every game

Gi
t separately.

Recalling our notation q(G, g) for the range of values q such that (G, q, g) is won by Container, we now establish

the following proposition, from which Theorem 1 will be easily obtained.

Proposition 4.7. 3 /∈ q(Z⊠ Z, O(h6
t ) + 8t

ht
).

Proof. Let t ∈ N, i ∈ I. By Proposition 3.2(a), following the modified strategy in Gi
t which started at some t0 ∈ N,

we are guaranteed to have

|Bi
t| ≤ O(h6

t−t0) +
2(t− t0)

ht−t0

+ |Bi
t0 | ≤ O(h6

t ) +
2t

ht
+ |Bi

t0 |,

where Bi
t0 is the initial occupied set of Gi

t. Using the fact that |Bi
t0 | ≤ 4, and that at most four games are played in

parallel at every time-step, we conclude that indeed |B′
t| ≤ O(h6

t ) + 8t
ht

.

By Proposition 3.2(b), B′
t ̸= ∅ ⇐⇒ Bt ̸= ∅, and hence to complete the proof it suffices to show that Bt ̸= ∅. To

this end, we show by induction on t that we have ∆ρt ≥ 3, so that the occupied set is never contained. In turn t = 1

exactly three deleted vertices are needed to block a front, hence at most one can be blocked, so that indeed ∆ρ1 ≥ 3.

Next, assume that this is true for all t′ ≤ t so that ρt − ρ0 =
∑t

τ=1 ∆ρτ ≥ 3t. By Proposition 4.2, we never count

deleted vertices more than once towards ft, so that ft ≤ |Ft| ≤ 3t, and hence ρt − ρ0 ≥ ft.

Next, let i ∈ I. By Claim 4.4, we have

ϕi,i+1 + di,i+1 ≤ |Li
t|+ |Li+1

t | = ρi−1
t + ρi+1

t + ρit + ρi+2
t + 2 = ρt + 2.

However, by Claim 4.5 we know that ϕt + dt ≥ ρt + ρ0, from which we deduce that ϕi+2,i+3 + di+2,i+3 > 0. By

Proposition 2.6 this implies that bi+2,i+3
t > 0. On the other hand, by Claim 4.6 we have bi,i+2

t > 0. As i ∈ I was

arbitrary, we conclude that no pair of fronts, whether adjacent or opposite can be blocked at time t. All in all, at

least three fronts must contain occupied vertices, so that ∆ρt+1 ≥ 3, as required.

Proof of Theorem 1 for Z⊠ Z. Setting ht = C1t
1
7 for sufficiently large C1 so that h satisfies (1), we conclude from

Proposition 4.7 that 3 /∈ q(Z⊠ Z, C2t
6/7) for all sufficiently large C2. From monotonicty over the strength of Con-
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tainer, this implies that q(Z⊠ Z, C2t
6/7) ⊂ (3,∞). On the other hand, by [16] we have q(Z⊠ Z,∞) = (3,∞). Thus,

by monotonicity over the spreading function, we get q(Z⊠ Z, C2t
6/7) ⊃ (3,∞). The theorem follows.

Remark 5. By setting h ≡ ⌈ 1
8α
⌉, this proof establishes a linear analog of Theorem 1 for Z⊠ Z, as per Remark 1.
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�

�
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(b)

Figure 4: (4a) illustrates the initial game in the plane. The four fronts are outlined by rectangles, and the
four disjoint infinite trapezoids are outlined by dashed lines. The infinite trapezoid of front 0 is highlighted
by a filling pattern. In (4b) front 0 is re-ignited by front 1. The initial occupied set of the re-initialised game
at front 0 is depicted in gray, and the infinite trapezoid is highlighted by a filling pattern.

5 Upper bounds

This section is dedicated to the proof of Theorem 2. We first reduce the Z⊠ Z case of the theorem to that of Z2
↑↗,

and then prove the latter.

5.1 A reduction to the eighth plane

Here we reduce the Z⊠ Z case of Theorem 2 to the following proposition, which is a slightly stronger version of the

Z2
↑↗ case.

Proposition 5.1. Container wins the game (Z2
↑↗, c
√
t, 1), for any c < 1

6
, by deleting the vertices of a single row,

whose position depends only on the initial occupied set.

Proof of Theorem 2. The winning Container strategy in (Z⊠ Z, g, 3) is obtained by handling each front separately,

containing the occupied set in an axis-parallel rectangle. This description is accompanied by Figure 5.

Let r0 > 0 such that the initial occupied set is contained in [−r0, r0] × [−r0, r0]. r1, r2, r3 and r4 are suitably

chosen large constants, implicitly defined in the course of the proof.

Step 1. At times [0, r1 − 1] Container deletes the horizontal segment [−r1, r1] × {r1}, restricting the occupied

set to {(x, y) : y < r1}. Here r1 is selected so that this could be achieved for an initial set of radius r0.

Step 2. At times [r1, 2r1+r2−1] Container uses 1 deletion per turn to eliminate the eastern edge of the rectangle,

deleting the vertical segment {r2} × [−r2, r1], by applying the Z2
↑↗ Container strategy of Proposition 5.1, rotated 90◦

clockwise, against an initial occupied set contained in a ball of radius r0 + r1. Denote the constant height at which

this strategy contains the occupied set by r2.

Meanwhile, the remaining 2 deletions per turn are used as follows. One maintains the northern edge of the

deleted rectangle westwards, making sure that the occupied set is restricted to {(x, y) : y < r1}. The other deletion

firstly maintains the same northern edge eastwards until it hits the line x = r2, and then prolongs the eastern edge
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(a) Step 1 (b) Step 2 (c) Step 2.5

(d) Step 3 (e) Step 3.5 (f) Step 4

Figure 5: A depiction of the winning Container strategy against Spreader with a single initial occupied
vertex in Z⊠ Z, as described in Section 5.1. The current occupied set is depicted by gray circles, while the
history of the occupied set’s movement – by lighter gray squares. In (5b) and (5c) the vertices deleted to
maintain an existing front are marked by thick X’s, and those deleted by the implementation of the eighth
plane strategy are marked by thin X’s. In (5d), (5e), and (5f), the same distinction is made via black and
gray rectangles. In (5b) and (5d) dashed lines and black-outlined rectangles depict the regions on the front
reachable by Spreader prior to the time-step in which Container completely blocks the front.

southwards, deleting the vertical segment {r2}× [−2r1− r2,−r2]. At time 2r1 + r2 the occupied set is thus restricted

to {(x, y) : y < r1, x < r2}.
Step 3. At times [2r1+r2, 3r1+r2+r3], Container uses a single deletion per turn to create the western edge of the

rectangle, deleting the vertical segment {−r3}× [−r3, r1], by applying the Z2
↑↗ strategy, rotated 90◦ counter-clockwise,

against an initial occupied set of radius bounded by r0 + 2r1 + r2. Denote the constant height at which this strategy

contains the occupied set by r3. Meanwhile, one additional deletion per turn maintains the eastern front southwards,

while the other firstly maintains the northern front westwards until it reaches the line x = −r3, and then prolongs

the western front southwards, deleting the vertical segment {−r3} × [−3r1 − r2 − r3,−r3]. At time 3r1 + r2 + r3 the

occupied set is thus restricted to {(x, y) : y < r1, −r3 < x < r2}.
Step 4. Finally, Container uses two deletions per turn to maintain the eastern and western fronts southwards,

restricting the occupied set to {(x, y) : y < r1, −r3 < x < r2}. The last deletion is used to delete the horizontal

segment [−r3, r2] × {−r4} for some large enough r4. At the end of the step, the occupied set is restricted to the

rectangle {(x, y) : −r4 < y < r1, −r3 < x < r2} and Container wins.

The remainder of the section is dedicated to proving Proposition 5.1.
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5.2 Container win in the eighth plane – proof of Proposition 5.1

This section is dedicated to the proof of Proposition 5.1. The proof is accompanied by Figure 6.

Figure 6: Illustration of the Container strategy in the eighth plane at time H − (h+ r0) for h = 2. Circles
mark the occupied vertices and × mark deleted vertices; the set D ⊂ LH is shaded. The contribution of
various elements of BH−(h+r0) to D is marked by dotted lines and black rectangles in LH . Note that there
are five vacant vertices in LH (i.e. |LH \Ft| = 5), while there are only two such vertices within D, these will
be occupied by Container before time H − r0. The occupation of LH will follow in the remaining r0 turns.

Throughout this section, let c < 1
6

as per Proposition 5.1, and let r0 > 0 be such that the initial occupied set is

contained in [0, r0]× [0, r0]. Hence, throughout the game, for all t > 0

Bt ⊂ Z× [0, t + r0]. (29)

Let h,H ∈ N be a pair of constants to be specified later. We shall delete the horizontal segment LH := [0, H]×{H},
Restricting the occupied set to the lower triangle bounded by it. Our strategy follow three steps.

Phase 1 - Leaving out a regular sieve. Under the restriction that H is divisible by h + r0 denote by

X :=

{(
i · H

h + r0
, H

)
: 0 ≤ i ≤ h + r0 − 1

}
,

a set of vertices on LH regularly spaced at H
h+r0

intervals. During the first phase of our strategy, spanning across

times [0, H − (h + r0)− 1], Container deletes the vertices of LH \X in an arbitrary order.

Phase 2 - Deleting the most imminent bottleneck through which spreader may cross LH .

During the second phase of our strategy, spanning across times [H−(h+r0), H−2r0−1], Container deletes, at an

arbitrary order, those remaining vertices of the sieve, which are of distance less than h+ r0 from an occupied vertex,

along with arbitrary additional vertices of X which were not yet deleted, as much as the deletion power allows. We

denote these nearby vertices by D := {u ∈ LH : d(u,BH−(h+r0)) ≤ h + r0}. To see that D could be deleted on time,

we require the following lemma, whose proof is postponed to section 5.2.1 below.

Lemma 5.2. D is contained in 2c
√
H horizontal segments of total length at most 3(h + r0) · c

√
H.

Since every two vertices in X are at distance at least H
h+r0

from each other, for every d ∈ N, a horizontal segment

of length d can intersect at most
⌈

d
H/(h+r0)

⌉
≤ d · h+r0

H
+ 1 vertices in X. Hence,

|D ∩X| ≤ 2c
√
H + (3(h + r0) + 2)c

√
H · h + r0

H
= c
√
H

(
2 + 2

h + r0
H

+
3(h + r0)2

H

)
.

To verify that this is indeed less or equal to h− r0, observe that, writing h̄ := h+r0√
H

, which will be chosen to satisfy

h̄ ≤
√
H, it would suffice to show that

3c
√
H(1 + h̄2) ≤ h̄

√
H − 2r0.

Isolating c, it would suffice to show that we may chose H and h̄ that satisfy that

c ≤ h̄

3(1 + h̄2)
− r0

2
√
H(1 + h̄2)

. (30)
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Indeed, using our assumption c < maxd≥0

{
h̄

3(1+h̄2)

}
= 1

6
and the fact that we may pick arbitrarily large H, a choice

of such h̄,H satisfying all previous requirements is indeed possible.

Phase 3 - Deleting the remaining vertices of LH . Finally, during the third phase of our strategy, spanning

across times [H − 2r0, H], we delete the remaining vertices of LH in an arbitrary order, taking advantage of the fact

that, as these are not in D, they are too far to be occupied by Spreader in this time-frame. By time H, Container

will have deleted all H + 1 vertices of LH .

5.2.1 Bounding D – proof of Lemma 5.2

This section consists of the proof of Lemma 5.2. Denote by z ⇝ x the transitive closure of the relation

(∃s ≤ H − (h + r0) : z ∈ Bs−1, x ∈ ∆Bs, d(z, x) = 1).

Write B̃ := BH−h−r0 \BH−2h−3r0−1 and let x ∈ B̃. Denote a(x) := min{z ∈ BH−2h−3r0−1 : z ⇝ x}, where minimum

is taken with respect to lexicographical order, and write

A := {a ∈ BH−2h−3r0−1 : ∃x ∈ B̃ s.t. a = a(x)} and Σ(a) := {x ∈ B̃ : a(x) = a}.

Given B′ ⊂ Bt for some t ∈ N, define D(B′) := {u ∈ LH : d(u,B′) ≤ h + r0}. Observe that D(BH−2h−3r0−1) = ∅
and D = D(BH−(h+r0)) = D(B̃), since d(BH−2h−3r0−1, LH) > h + r0. Because B̃ is the disjoint union of Σ(a) for

a ∈ A, in order to establish the lemma, it would suffice to show that

|D(Σ(a))| ≤ 2|Σ(a)|, (31)

for every a ∈ A. Indeed, using (31) and recalling that |∆Bt| = c
√
t, we can deduce that

|D| ≤ 2|B̃| = 2

H−h−r0∑
k=H−2h−3r0

|∆Bk| ≤ 2(h + 2r0 + 1)|∆BH−(h+r0)| ≤ 3(h + r0)c
√
H.

Moreover, by observing that for every u ∈ B̃ the set D({u}) is either empty, or a horizontal segment of length

2(h + r0) + 1, the lemma would follow.

To prove (31), let a ∈ A and denote by v0 = (x0, y0) and v1 = (x1, y1), the leftmost and rightmost elements of

Σ(a) whose distance from LH is at most h+ r0, respectively. Let P0 and P1 be the associated paths from a to v0 and

to v1 respectively. Observing that

|D(Σ(a))| ≤
∣∣[x0 − (h + r0), x1 + (h + r0)]× {H}

∣∣ ≤ x1 − x0 + 2(h + r0) + 1,

and that P0, P1 ⊂ Σ(a), it would suffice to show that

2|P0 ∪ P1| ≥ x1 − x0 + 2(h + r0) + 1. (32)

To see this, assume, without loss of generality, that |P0| ≤ |P1|. Observe that since d(v0, LH) ≤ h + r0 and

d(a, LH) ≥ d(BH−2h−3r0−1, LH) ≥ 2(h + r0) + 1 (by (29)), we have |P0| > h + r0. Next, observe that

x1 − x0 ≤ 2d(v1, P0 ∩ P1) ≤ 2|P1 \ P0|,

where the first inequality uses |P0| ≤ |P1| and the triangle inequality, and the second inequality uses discrete continuity

of P1. Putting all of these together, (32) follows.
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6 Table of Notations

Notation Description

Section 1

Z⊠ Z Plane. Z2 with strong connectivity.

Z2
↑↗ Eighth plane. Upper half of the positive quadrant of Z⊠ Z.

g(t) Spreading function. Function controlling the size of the occupied set.

q(G, g) q(G, g) := {q : (G, q, g) is Container win for every finite B0}.
Ft Set of deleted vertices up to time t.

Gt Induced graph after the deletion of the vertices of Ft.

Bt Occupied set at time t.

Section 2

St Segments. St := {{0, . . . , ht − 1}+ htk : k ∈ Z}.
Ni Ni := {t ∈ N : ht/ht−1 = i}.
ht and Ht ht is the size of the segments at time t. Ht := 4q2h2

t .

As(S) As(S) := {S′ ∈ Ss : S′ ⊂ S}.
Bt(S) and bt(S) Bt(S) is the set of occupied vertices in S × {t}. bt(S) := |Bt(S)|. See (2).

(t, ℓ)-path An upwards path in Gt of length ℓ, starting in Bt.

Bℓ
t Set of vertices from which a (t, ℓ)-path starts.

b̂ ℓ
t (R) Size of largest collection of disjoint (t, ℓ)-paths starting in R.

Ωt Disrupted Segments. Ωt :=
{
S ∈ St : (Ft \ Ft−1) ∩ (S × [t, t + ht − 1]) ̸= ∅

}
.

Iℓs(S) and It(S) Iℓs(S) is the minimal interval around S with many disjoint (s, ℓ)-paths. It(S) := IH̃t
t (S). See (3).

χt(S) Indicator for the spreading status of S at time t. χt(S) := 1{τt(S) > 0}. See (4) .

H̃t and h̃t Functions similar to Ht and ht, taking doubling times into consideration. See (6)

τt(S) Consolidation timer. Number of turns until S becomes simulative. See (5).

pt(S) Pivot. The single occupied vertex in a simulative segment S. See (7) and (8).

βℓ
t (y) Leftmost starting vertex of a (t, ℓ)-path ending in y ∈ Bt+ℓ.

ℓt(S) Look ahead. Vertical distance between the front and the simulated fire in S. See (10).

Lt(S) Look ahead region. Lt(S) := [t, t + ℓt(S)]. See (10).

Ft(S) and ft(S) Ft(S) is the set of deleted vertices associated with S up to time t. ft(S) := |Ft(S)|. See (11).

rt(S) Range. Number of endpoints of (t, ℓt(S))-paths contained in S × Lt(S).

ϕt(S) The size of the simulated fire in S at time t. See (12).

Φ′
t(S) Pre-potential. Φ′

t(S) := ϕt(S) + ft(S).

λt(S) Nearest segment left of S with a positive change in Φ′
t. See (14)

dt(S) Debt. The debt S holds towards the desired evolution of ϕ at time t. See (15).

Φt(S) Potential. Φt(S) := ϕt(S) + ft(S) + dt(S).

Section 3

Z2
↖↑↗ Directed half plane. Upper half plane with edges directed upwards and diagonally.

AG
t Game area.

⋃t
t′=0 Bt′ ∪ Ft′ .

T(D) Infinite Trapezoid. Convex hull in Z2 of D + {k(1, 1), k(−1, 1) : k ∈ N}.
Section 4

θi and θi,i+1 Cardinal and secondary directions in Z2.

Li
t and Li(d) Front line. Li

t := Li(ρit), where Li(d) := dθi + Zθi+1. See (26).

ρit Occupation radius. ρit := min
{
r : Li(r) ∩

⋃t−1
t′=0 Bt′ = ∅

}
See (26).

Gi
t Half-plane game played in direction i at time t employed by the plane strategy.

Section 5

LH LH := [0, H]× {H}.
D D := {u ∈ LH : d(u,BH−(h+r0)) ≤ h + r0}.
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