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Gaussian stationary processes (GSP)

For T ∈ {R,Z}, a random function f : T 7→ R is a GSP if it is

Gaussian: (f (x1), ...f (xN)) ∼ NRN (0,Σx1,...,xN ),

Stationary (shift-invariant): (f (x1 + s), ...f (xN + s))
d∼ (f (x1), ...f (xN)),

for all N ∈ N, x1, ...,xN ,s ∈ T .
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Motivation:

Background noise for radio / cellular transmissions

Ocean waves

Vibrations of bridge strings / membranes

Brain transmissions

internet / car traffic

...
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Gaussian stationary processes (GSP)

For T ∈ {R,Z}, a random function f : T 7→ R is a GSP if it is

Gaussian: (f (x1), ...f (xN)) ∼ NRN (0,Σx1,...,xN ),

Stationary (shift-invariant): (f (x1 + s), ...f (xN + s))
d∼ (f (x1), ...f (xN)),

for all N ∈ N, x1, ...,xN ,s ∈ T .

Covariance function

r(s, t) = E(f (s)f (t)) = r(s − t) t,s ∈ T .

Spectral measure

By Bochner’s theorem there exists a finite, non-negative, symmetric measure ρ
over T ∗ (Z∗ ≃ [−π,π] and R

∗ ≃ R) s.t.

r(t) = ρ̂(t) =

∫

T ∗

e
−iλt

dρ(λ).

Assumption:
∫

|λ|δdρ(λ) < ∞ for some δ > 0.
(“finite polynomial moment” ⇒ r is Hölder contin.)



Toy-Example Ia - Gaussian wave

ζj i.i.d. N (0,1)

f (x) = ζ0 sin(x) + ζ1 cos(x)

r(x) = cos(x)

ρ = 1
2 (δ1 + δ−1)
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Toy-Example Ib - Almost periodic wave

f (x) =ζ0 sin(x) + ζ1 cos(x)

+ ζ2 sin(
√

2x) + ζ3 cos(
√

2x)

r(x) =cos(x) + cos(
√

2x)

ρ = 1
2

(
δ1 + δ−1 + δ√

2 + δ−
√

2

)
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Example II - i.i.d. sequence

f (n) = ζn

r(n) = δn,0

dρ(λ) =
1

2π
1I[−π,π](λ)dλ
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Example IIb - Sinc kernel

f (n) =
∑

n∈N

ζn sinc(x − n)

r(n) =
sin(πx)

πx
= sinc(x)

dρ(λ) =
1

2π
1I[−π,π](λ)dλ
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Example III - Gaussian Covariance (Fock-Bargmann)

f (x) =
∑

n∈N

ζn
xn

√
n!

e
− x2

2

r(x) = e
− x2

2

dρ(λ) =
√

πe
− λ

2

2 dλ
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Example IV - Exponential Covariance (Ornstein-Uhlenbeck)

r(x) = e
−|x|

dρ(λ) =
2

λ2 + 1
dλ
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Persistence Probability

Persistence

The persistence probability of a stochastic process f over a level ℓ ∈ R in the
time interval (0,N] is:

Pf (N) := P

(
f (x) > ℓ, ∀x ∈ (0,N]

)
.

Picture of persistence
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Persistence (above the mean)

The persistence probability of a centered stochastic process f in the time
interval (0,N] is:
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f (x) > 0, ∀x ∈ (0,N]

)
.

Picture of persistence
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Picture of persistence
Question: For a GSP f , what is the behavior of Pf (N) as N → ∞?

Guess: “typically” P(t) ≍ e−θt .



Persistence Probability

Persistence (above the mean)

The persistence probability of a centered stochastic process f in the time
interval (0,N] is:

Pf (N) := P

(
f (x) > 0, ∀x ∈ (0,N]

)
.

Picture of persistence
Question: For a GSP f , what is the behavior of Pf (N) as N → ∞?

Guess: “typically” P(t) ≍ e−θt .

Toy Examples

(Xn)n∈Z i.i.d. PX (N) = 2−N

Yn = Xn+1 − Xn PY (N) = 1
(N+1)!

≍ e
−N logN

Zn ≡ Z0 PZ (N) = P(Z0 > 0) =
1

2
.



History and Motivation

Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then P(N) ≤

{
e−CN if α > 1

e−CN/ log N if α = 1

e−CNα

if 0 < α < 1

examples for P(t) > e−C
√

N log N ≫ e−CN (r(x) ≍ x−1/2).



History and Motivation

Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then P(N) ≤

{
e−CN if α > 1

e−CN/ log N if α = 1

e−CNα

if 0 < α < 1

examples for P(t) > e−C
√

N log N ≫ e−CN (r(x) ≍ x−1/2).

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov).



History and Motivation

Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then P(N) ≤

{
e−CN if α > 1

e−CN/ log N if α = 1

e−CNα

if 0 < α < 1

examples for P(t) > e−C
√

N log N ≫ e−CN (r(x) ≍ x−1/2).

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov).
Applicable mainly when r is non-negative or summable.
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Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then P(N) ≤

{
e−CN if α > 1

e−CN/ log N if α = 1

e−CNα

if 0 < α < 1

examples for P(t) > e−C
√

N log N ≫ e−CN (r(x) ≍ x−1/2).

Physics (1990–2010)

GSPs used in models for electrons in matter, diffusion, spin systems

Majumdar et al.: Heuristics explaining why Pf (N) ≍ e−θN “generically”.



History and Motivation

Probability and Anlysis(2000+)

Hole probability for point processes
GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)
for sinc-kernel: e−cN < P(N) < 2−N (Antezana-Buckley-Marzo-Olsen, ‘12)



History and Motivation

Probability and Anlysis(2000+)

Hole probability for point processes
GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)
for sinc-kernel: e−cN < P(N) < 2−N (Antezana-Buckley-Marzo-Olsen, ‘12)

Non-negative correlations -Dembo & Mukherjee (2013, 2015)
– motivated by random polynomials and diffusion processes.

Lower bounds for GSP on Z - Krishna & Krishnapur (2016)
– motivated by nodal lines of spherical harmonics.



First Spectral Result

Theorem 1 (Feldheim & F., 2013)

Suppose that on some interval [−a,a] we have dρ = w(λ)dλ with
0 < m ≤ w(x) ≤ M. Then

e
−c1N ≤ Pf (N) ≤ e

−c2N .
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First Spectral Result

Theorem 1 (Feldheim & F., 2013)

Suppose that on some interval [−a,a] we have dρ = w(λ)dλ with
0 < m ≤ w(x) ≤ M. Then

e
−c1N ≤ Pf (N) ≤ e

−c2N .

Given in terms of ρ (not r).

Roughly,
∫

T
r(x)dx converges and is positive.

Main tool: “spectral decomposition”

Toy Examples

(Xn)n∈Z i.i.d. ⇒ PX (N) = 2−N
w = 1I[−π,π]

Yn = Xn+1 − Xn ⇒ PY (N) ≍ e
−N log N

w = 2(1 − cosλ)1I[−π,π]

Zn ≡ Z0 ⇒ PZ (N) =
1

2
ρ = δ0



Main tool: spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,



Main tool: spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Proof:

cov((f1 + f2)(0),(f1 + f2)(x))

= cov(f1(0), f1(x)) + cov(f2(0), f2(x))

= ρ̂1(x) + ρ̂2(x) = ρ̂1 + ρ2(x) = cov(f (0), f (x)).



Main tool: spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Application:

ρ = m1I[−π

k
,
π

k
] + µ ⇒ f = S ⊕ g

where rS(x) = c sinc( x
k ), and g is some GSP.
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Main tool: spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Application:

ρ = m1I[−π

k
,
π

k
] + µ ⇒ f = S ⊕ g

where rS(x) = c sinc( x
k

), and g is some GSP.

Observation.

(S(nk))n∈Z are i.i.d.

Proof: E[S(nk)S(mk)] = rS((m − n)k) = 0.
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Lemma 1 - average of a GSP.
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n=1 g(n) ∼ NR(0,σ2

N), where σ2
N ≤ C0

N
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Proof of Theorem 1: upper bound

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.

Let us use this observation to obtain an upper bound on Pf (N).

Pf (N) ≤ P

(
S ⊕ g > 0 on (0,N]

∣∣∣ 1

N

N∑

n=1

g(n) < 1

)
+P

(
1

N

N∑

n=1

g(n) ≥ 1

)

Lemma 1 - average of a GSP.

1
N

∑N
n=1 g(n) ∼ NR(0,σ2

N), where σ2
N ≤ C0

N
.

Here we use the upper bound M.

Lemma 1 ⇒ P( 1
N

∑N

n=1 g(n) ≥ 1) ≤ e−c1N .
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Proof of Theorem 1: upper bound

We may therefore assume 1
N

∑N
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for some ℓ ∈ {1, . . . ,k}, we have
k

N

⌊N/k⌋∑

n=0
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Lemma 2 - persistence of distorted i.i.d.

Let X1, . . . ,XN be i.i.d N (0,1), and b1, . . . ,bN ∈ R such that 1
N

∑N

j=1 bj < 1.
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Proof of Theorem 1: upper bound

We may therefore assume 1
N

∑N

n=1 g(n) < 1. Thus

for some ℓ ∈ {1, . . . ,k}, we have
k

N

⌊N/k⌋∑

n=0

g(ℓ + nk) < 1.

Lemma 2 - persistence of distorted i.i.d.

Let X1, . . . ,XN be i.i.d N (0,1), and b1, . . . ,bN ∈ R such that 1
N

∑N

j=1 bj < 1.
Then

P
(
Xj + bj > 0, 1 ≤ j ≤ N

)
≤ P(X1 < 1)N .

Proof:
logP(Xj ≥ −bj , 1 ≤ j ≤ N) = log

N∏

j=1

Φ(bj)

=

N∑

j=1

log Φ(bj) ≤ N logΦ
(

1

N

∑
bj

)
≤ N log Φ(1).
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Proof of Theorem 1: lower bound

Strategy: build an event A ⊂ {f > 0 on (0,N]}. Rather than explicitly, use the
spectral decomposition + small ball. Recall:

f = S ⊕ g , where S is the (scaled) sinc-kernel process.

P(S ⊕ g > 0 on (0,N])

≥ P(S > 1 on (0,N])︸ ︷︷ ︸
≥e−cN , ABMO

P
(
|g | ≤ 1

2 on (0,N]
)

︸ ︷︷ ︸
small ball prob.

A corroloary to works by Talagrand, Shao-Wang (1994):

Lemma 3 - small ball.

Let g be a GSP whose spectral measure ρ has some finite δ-moment (i.e.,∫
|λ|δdρ(δ) < ∞). Let ε > 0. Then P(|g | < ε on (0,N]) ≥ e−cN .



Motivation revisited: very recent progress

Non-negative correlations -Dembo & Mukherjee (2013, 2015):

motivated by random polynomials and diffusion processes

If r(x) ≥ 0, then ∃ limN→∞
− log P(N)

N
∈ [0,∞) (application of Slepian).

In particular, if r(x) ≥ 0 then P(N) ≥ e−αN for some α > 0.
In case r(x) ≥ 0, improve Newell-Rosenblatt bounds and give matching
lower bounds.

Lower bounds for GSP on Z - Krishna & Krishnapur (2016):

motivated by nodal lines of spherical harmonics.

on Z, if ρAC 6= 0 then P(N) ≥ e−CN2
.

on Z, if ρ has density w(λ) which on [−a,a] obeys c1λk ≤ w(λ) ≤ c2λk for
some k ≥ 1, then P(N) ≥ e−CN log N .
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on Z, if ρAC 6= 0 then P(N) ≥ e−CN2
.

on Z, if ρ has density w(λ) which on [−a,a] obeys c1λk ≤ w(λ) ≤ c2λk for
some k ≥ 1, then P(N) ≥ e−CN log N .

Question: How does persistence behave when the spectrum explodes or
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Non-negative correlations -Dembo & Mukherjee (2013, 2015):

motivated by random polynomials and diffusion processes

If r(x) ≥ 0, then ∃ limN→∞
− log P(N)

N
∈ [0,∞) (application of Slepian).

In particular, if r(x) ≥ 0 then P(N) ≥ e−αN for some α > 0.
In case r(x) ≥ 0, improve Newell-Rosenblatt bounds and give matching
lower bounds.

Lower bounds for GSP on Z - Krishna & Krishnapur (2016):

motivated by nodal lines of spherical harmonics.

on Z, if ρAC 6= 0 then P(N) ≥ e−CN2
.

on Z, if ρ has density w(λ) which on [−a,a] obeys c1λk ≤ w(λ) ≤ c2λk for
some k ≥ 1, then P(N) ≥ e−CN log N .

Question: How does persistence behave when the spectrum explodes or
vanishes near 0?

Conjecture 1: explods ⇒ P(N) ≫ e−αN , vanishes ⇒ P(N) ≪ e−αN .

Conjecture 2: P(N) ≤ e−CN2

when ρ vanishes on an interval around 0
(“spectral gap”).



New spectral results
(a well-behaved case)

Persistence is largely determined by the spectral behavior near 0.

Theorem 2 (Feldheim, F., Nitzan, 2017)
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Suppose that in [−a,a] the spectral measure has density w(λ) which satisfies
c1λγ ≤ w(λ) ≤ c2λγ for some γ > −1. Then:
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≍ −N, γ = 0
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Moreover, if w(λ) vanishes on an interval containing 0, then Pf (N) ≤ e−CN2

.

Further improvements:

w(λ) ≤ c2λγ ⇒ upper bounds, w(λ) ≥ c1λγ ⇒ lower bounds

formulate using ρ([0,λ]) for λ ≪ 1, provided that ρAC 6= 0

analysis of constants (e.g. γ > 0 ⇒ log Pf (N) ≤ −caγN log N)

Missing: lower bound over R when γ > 0!



New spectral results
the interplay with the tail

Persistence is largely determined by the spectral behavior near 0...

Theorem 2’ (Feldheim, F., Nitzan, 2017)
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... and near ∞.

Theorem 3 (Feldheim, F., Nitzan, 2017)
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on [1,∞) it has density w(λ) such that w(λ) ≥ λ−100, then
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New spectral results
the interplay with the tail

Persistence is largely determined by the spectral behavior near 0...

Theorem 2’ (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0, then

Pf (N) ≤ e
−CN2

.

... and near ∞.

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let T = R. If the spectral measure vanishes on an interval containing 0, and
on [1,∞) it has density w(λ) such that w(λ) ≥ λ−100, then

Pf (N) ≤ e
−eCN

.

heavy tail ⇒ f is “rough” ⇒ tiny persistence.

light tail ⇒ f is smooth ⇒ matching lower bounds as over Z [in progress]



Ideas from the proof.
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Spectral decomposition

ρ = ρ1 + ρ2 ⇒ f = f1 ⊕ f2.

Process integration

If
∫

1
λ2 dρ(λ) < ∞, then there exists a GSP h such that h′ d

= f .

Borell-TIS inequality

P(sup[0,N] |h| > ℓ) ≤ e
− ℓ

2

2varh(0) for a GSP h.

Anderson’s lemma

P(supn |Xn ⊕ Yn| ≤ ℓ) ≤ P(supn |Xn| ≤ ℓ) for Xn,Yn Gaussian centred.

An analytic lemma (degree p)

If h : T → R is such that h(p) > 0 on [0,N], then there exists a set R ⊆ [0,N] of

measure |R| ≥ N
2 such that supR |h(p)| ≤ ( 2p

N
)p sup[0,N] |h|.
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ℓ =
√

N log N ⇒ both sides are e−CN log N .



Further directions

other levels

other dimensions

the mysterious discontinuities in log Pf (N)

singular measures

existence of limiting exponent (e.g. limN→∞
log Pf (N)

N
)

non-stationary processes



Thanks!

Thank you.
“Persistence can grind an iron beam down into a needle.”

– – Chinese Proverb.


