Persistence of Gaussian Stationary Processes

Ohad Feldheim (Stanford)

Joint work with

Naomi Feldheim (Stanford) Shahaf Nitzan (GeorgiaTech)

> UBC, Vancouver January, 2017

> > ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For $T \in \{\mathbb{R}, \mathbb{Z}\}$, a random function $f : T \mapsto \mathbb{R}$ is a GSP if it is

• Gaussian: $(f(x_1),...f(x_N)) \sim \mathcal{N}_{\mathbb{R}^N}(0,\Sigma_{x_1,...,x_N})$,

• Stationary (shift-invariant): $(f(x_1+s),...f(x_N+s)) \stackrel{d}{\sim} (f(x_1),...f(x_N))$, for all $N \in \mathbb{N}$, $x_1,...,x_N, s \in T$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

For $T \in \{\mathbb{R}, \mathbb{Z}\}$, a random function $f : T \mapsto \mathbb{R}$ is a GSP if it is

• <u>Gaussian</u>: $(f(x_1), ..., f(x_N)) \sim \mathcal{N}_{\mathbb{R}^N}(0, \Sigma_{x_1, ..., x_N})$,

• Stationary (shift-invariant): $(f(x_1+s),...f(x_N+s)) \stackrel{d}{\sim} (f(x_1),...f(x_N))$, for all $N \in \mathbb{N}$, $x_1,...,x_N, s \in T$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation:

- Background noise for radio / cellular transmissions
- Ocean waves
- Vibrations of bridge strings / membranes
- Brain transmissions
- internet / car traffic
- ...

For $T \in \{\mathbb{R}, \mathbb{Z}\}$, a random function $f : T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $(f(x_1),...f(x_N)) \sim \mathcal{N}_{\mathbb{R}^N}(0,\Sigma_{x_1,...,x_N})$,
- Stationary (shift-invariant): $(f(x_1+s),...f(x_N+s)) \stackrel{d}{\sim} (f(x_1),...f(x_N)),$

for all $N \in \mathbb{N}$, $x_1, ..., x_N, s \in T$.

Covariance function

$$r(s,t) = \mathbb{E}(f(s)f(t)) = r(s-t)$$
 $t,s \in T$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $T \in \{\mathbb{R}, \mathbb{Z}\}$, a random function $f : T \mapsto \mathbb{R}$ is a GSP if it is

- <u>Gaussian</u>: $(f(x_1), ..., f(x_N)) \sim \mathcal{N}_{\mathbb{R}^N}(0, \Sigma_{x_1, ..., x_N})$,
- Stationary (shift-invariant): $(f(x_1+s),...f(x_N+s)) \stackrel{d}{\sim} (f(x_1),...f(x_N))$, for all $N \in \mathbb{N}$, $x_1,...,x_N, s \in T$.

Covariance function

$$r(s,t) = \mathbb{E}(f(s)f(t)) = r(s-t)$$
 $t,s \in T$.

Spectral measure

By Bochner's theorem there exists a finite, non-negative, symmetric measure ρ over T^* ($\mathbb{Z}^* \simeq [-\pi,\pi]$ and $\mathbb{R}^* \simeq \mathbb{R}$) s.t.

$$r(t) = \widehat{\rho}(t) = \int_{T^*} e^{-i\lambda t} d\rho(\lambda).$$

A D M A

For $T \in \{\mathbb{R}, \mathbb{Z}\}$, a random function $f : T \mapsto \mathbb{R}$ is a GSP if it is

- <u>Gaussian:</u> $(f(x_1),...f(x_N)) \sim \mathcal{N}_{\mathbb{R}^N}(0,\Sigma_{x_1,...,x_N}),$
- Stationary (shift-invariant): $(f(x_1+s),...f(x_N+s)) \stackrel{d}{\sim} (f(x_1),...f(x_N))$, for all $N \in \mathbb{N}$, $x_1,...,x_N, s \in T$.

Covariance function

$$r(s,t) = \mathbb{E}(f(s)f(t)) = r(s-t)$$
 $t,s \in T$.

Spectral measure

By Bochner's theorem there exists a finite, non-negative, symmetric measure ρ over T^* ($\mathbb{Z}^* \simeq [-\pi, \pi]$ and $\mathbb{R}^* \simeq \mathbb{R}$) s.t.

$$r(t) = \widehat{\rho}(t) = \int_{T^*} e^{-i\lambda t} d\rho(\lambda).$$

A D A D A D A D A D A D A D A D A

Assumption: $\int |\lambda|^{\delta} d\rho(\lambda) < \infty$ for some $\delta > 0$. ("finite polynomial moment" $\Rightarrow r$ is Hölder contin.)

Toy-Example Ia - Gaussian wave

$$\zeta_j \text{ i.i.d. } \mathcal{N}(0,1)$$

$$f(x) = \zeta_0 \sin(x) + \zeta_1 \cos(x)$$

$$r(x) = \cos(x)$$

$$\rho = \frac{1}{2} (\delta_1 + \delta_{-1})$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

$$f(x) = \zeta_0 \sin(x) + \zeta_1 \cos(x) + \zeta_2 \sin(\sqrt{2}x) + \zeta_3 \cos(\sqrt{2}x) r(x) = \cos(x) + \cos(\sqrt{2}x) \rho = \frac{1}{2} \left(\delta_1 + \delta_{-1} + \delta_{\sqrt{2}} + \delta_{-\sqrt{2}} \right)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Example II - i.i.d. sequence

f(n) = c

$$r(n) = \zeta_n$$
$$r(n) = \delta_{n,0}$$
$$d\rho(\lambda) = \frac{1}{2\pi} \mathbf{1}_{[-\pi,\pi]}(\lambda) d\lambda$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Example IIb - Sinc kernel

$$f(n) = \sum_{n \in \mathbb{N}} \zeta_n \operatorname{sinc}(x - n)$$
$$r(n) = \frac{\sin(\pi x)}{\pi x} = \operatorname{sinc}(x)$$
$$d\rho(\lambda) = \frac{1}{2\pi} \mathbf{1}_{[-\pi,\pi]}(\lambda) d\lambda$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example III - Gaussian Covariance (Fock-Bargmann)

$$f(x) = \sum_{n \in \mathbb{N}} \zeta_n \frac{x^n}{\sqrt{n!}} e^{-\frac{x^2}{2}}$$
$$r(x) = e^{-\frac{x^2}{2}}$$
$$d\rho(\lambda) = \sqrt{\pi} e^{-\frac{\lambda^2}{2}} d\lambda$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

Example IV - Exponential Covariance (Ornstein-Uhlenbeck)

$$r(x) = e^{-|x|}$$
$$d\rho(\lambda) = \frac{2}{\lambda^2 + 1} d\lambda$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

Persistence Probability

Persistence

The **persistence probability** of a stochastic process f over a level $\ell \in \mathbb{R}$ in the time interval (0, N] is:

$$P_f(N) := \mathbb{P}\Big(f(x) > \ell, \forall x \in (0, N]\Big).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Picture of persistence

Persistence (above the mean)

The **persistence probability** of a **centered** stochastic process f in the time interval (0, N] is:

$$P_f(N) := \mathbb{P}\Big(f(x) > 0, \forall x \in (0, N]\Big).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Picture of persistence

Persistence (above the mean)

The **persistence probability** of a **centered** stochastic process f in the time interval (0, N] is:

$$P_f(N) := \mathbb{P}\Big(f(x) > 0, \forall x \in (0, N]\Big).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Picture of persistence

Question: For a GSP *f*, what is the behavior of $P_f(N)$ as $N \to \infty$?

Guess: "typically" $P(t) \asymp e^{-\theta t}$.

Persistence (above the mean)

The **persistence probability** of a **centered** stochastic process f in the time interval (0, N] is:

$$P_f(N) := \mathbb{P}\Big(f(x) > 0, \forall x \in (0, N]\Big).$$

Picture of persistence Question: For a GSP f, what is the behavior of $P_f(N)$ as $N \to \infty$?

Guess: "typically" $P(t) \asymp e^{-\theta t}$.

Toy Examples

$(X_n)_{n\in\mathbb{Z}}$ i.i.d.	$P_X(N) = 2^{-N}$
$Y_n = X_{n+1} - X_n$	$P_Y(N) = \frac{1}{(N+1)!} \asymp e^{-N \log N}$
$Z_n \equiv Z_0$	$P_Z(N) = \mathbb{P}(Z_0 > 0) = \frac{1}{2}.$

Engineering and Applied Mathematics (1940–1970)

- 1944 Rice "Mathematical Analysis of Random Noise".
 - Mean number of level-crossings (Rice formula)
 - Behavior of P(t) for $t \ll 1$ (short range).
- 1962 Slepian "One-sided barrier problem".
 - Slepian's Inequality: $r_1(x) \ge r_2(x) \Rightarrow P_1(N) \ge P_2(N)$.
 - specific cases
- 1962 Newell & Rosenblatt

• If
$$r(x) \to 0$$
 as $x \to \infty$, then $P(N) = o(N^{-\alpha})$ for any $\alpha > 0$.
• If $|r(x)| < ax^{-\alpha}$ then $P(N) \le \begin{cases} e^{-CN} & \text{if } \alpha > 1 \\ e^{-CN/\log N} & \text{if } \alpha = 1 \\ e^{-CN^{\alpha}} & \text{if } 0 < \alpha < 1 \end{cases}$
• examples for $P(t) > e^{-C\sqrt{N}\log N} \gg e^{-CN}$ $(r(x) \asymp x^{-1/2})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Engineering and Applied Mathematics (1940–1970)

- 1944 Rice "Mathematical Analysis of Random Noise".
 - Mean number of level-crossings (Rice formula)
 - Behavior of P(t) for $t \ll 1$ (short range).
- 1962 Slepian "One-sided barrier problem".
 - Slepian's Inequality: $r_1(x) \ge r_2(x) \Rightarrow P_1(N) \ge P_2(N)$.
 - specific cases
- 1962 Newell & Rosenblatt

• If
$$r(x) \to 0$$
 as $x \to \infty$, then $P(N) = o(N^{-\alpha})$ for any $\alpha > 0$.
• If $|r(x)| < ax^{-\alpha}$ then $P(N) \le \begin{cases} e^{-CN} & \text{if } \alpha > 1\\ e^{-CN/\log N} & \text{if } \alpha = 1\\ e^{-CN^{\alpha}} & \text{if } 0 < \alpha < 1 \end{cases}$
• examples for $P(t) > e^{-C\sqrt{N}\log N} \gg e^{-CN}$ $(r(x) \asymp x^{-1/2})$.

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Engineering and Applied Mathematics (1940–1970)

• 1944 Rice - "Mathematical Analysis of Random Noise".

- Mean number of level-crossings (Rice formula)
- Behavior of P(t) for $t \ll 1$ (short range).
- 1962 Slepian "One-sided barrier problem".
 - Slepian's Inequality: $r_1(x) \ge r_2(x) \Rightarrow P_1(N) \ge P_2(N)$.
 - specific cases
- 1962 Newell & Rosenblatt

• If
$$r(x) \to 0$$
 as $x \to \infty$, then $P(N) = o(N^{-\alpha})$ for any $\alpha > 0$.
• If $|r(x)| < ax^{-\alpha}$ then $P(N) \le \begin{cases} e^{-CN} & \text{if } \alpha > 1\\ e^{-CN/\log N} & \text{if } \alpha = 1\\ e^{-CN^{\alpha}} & \text{if } 0 < \alpha < 1 \end{cases}$
• examples for $P(t) > e^{-C\sqrt{N}\log N} \gg e^{-CN}$ $(r(x) \asymp x^{-1/2})$.

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov). Applicable mainly when r is non-negative or summable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

History and Motivation

Engineering and Applied Mathematics (1940–1970)

- 1944 Rice "Mathematical Analysis of Random Noise".
 - Mean number of level-crossings (Rice formula)
 - Behavior of P(t) for $t \ll 1$ (short range).
- 1962 Slepian "One-sided barrier problem".
 - Slepian's Inequality: $r_1(x) \ge r_2(x) \Rightarrow P_1(N) \ge P_2(N)$.
 - specific cases
- 1962 Newell & Rosenblatt

• If
$$r(x) \to 0$$
 as $x \to \infty$, then $P(N) = o(N^{-\alpha})$ for any $\alpha > 0$.
• If $|r(x)| < ax^{-\alpha}$ then $P(N) \le \begin{cases} e^{-CN} & \text{if } \alpha > 1\\ e^{-CN/\log N} & \text{if } \alpha = 1\\ e^{-CN^{\alpha}} & \text{if } 0 < \alpha < 1 \end{cases}$
• examples for $P(t) > e^{-C\sqrt{N}\log N} \gg e^{-CN}$ $(r(x) \asymp x^{-1/2})$.

Physics (1990–2010)

- GSPs used in models for electrons in matter, diffusion, spin systems
- Majumdar et al.: Heuristics explaining why $P_f(N) \simeq e^{-\theta N}$ "generically".

A D A D A D A D A D A D A D A D A

Probability and Anlysis(2000+)

- Hole probability for point processes
 - GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.) for sinc-kernel: $e^{-cN} < P(N) < 2^{-N}$ (Antezana-Buckley-Marzo-Olsen, '12)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Probability and Anlysis(2000+)

- Hole probability for point processes
 - GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)
 - for sinc-kernel: $e^{-cN} < P(N) < 2^{-N}$ (Antezana-Buckley-Marzo-Olsen, '12)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Non-negative correlations -Dembo & Mukherjee (2013, 2015)
 - motivated by random polynomials and diffusion processes.
- Lower bounds for GSP on Z Krishna & Krishnapur (2016)
 − motivated by nodal lines of spherical harmonics.

Theorem 1 (Feldheim & F., 2013)

Suppose that on some interval [-a,a] we have $d\rho = w(\lambda)d\lambda$ with $0 < m \le w(x) \le M$. Then

$$e^{-c_1N} \le P_f(N) \le e^{-c_2N}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Theorem 1 (Feldheim & F., 2013)

Suppose that on some interval [-a,a] we have $d\rho = w(\lambda)d\lambda$ with $0 < m \le w(x) \le M$. Then

$$e^{-c_1N} \leq P_f(N) \leq e^{-c_2N}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Given in terms of ρ (not r).
- Roughly, $\int_T r(x) dx$ converges and is positive.
- Main tool: "spectral decomposition"

Theorem 1 (Feldheim & F., 2013)

Suppose that on some interval [-a,a] we have $d\rho = w(\lambda)d\lambda$ with $0 < m \le w(x) \le M$. Then

$$e^{-c_1N} \le P_f(N) \le e^{-c_2N}$$

- Given in terms of ρ (not r).
- Roughly, $\int_{\mathcal{T}} r(x) dx$ converges and is positive.
- Main tool: "spectral decomposition"

Toy Examples

$$(X_n)_{n \in \mathbb{Z}} \text{ i.i.d.} \Rightarrow P_X(N) = 2^{-N} \qquad \qquad w = \mathbf{1}_{[-\pi,\pi]}$$
$$Y_n = X_{n+1} - X_n \Rightarrow P_Y(N) \asymp e^{-N \log N} \qquad \qquad w = 2(1 - \cos \lambda) \mathbf{1}_{[-\pi,\pi]}$$
$$Z_n \equiv Z_0 \Rightarrow P_Z(N) = \frac{1}{2} \qquad \qquad \rho = \delta_0$$

$$\rho = \rho_1 + \rho_2 \Rightarrow f \stackrel{d}{=} f_1 \oplus f_2,$$

$$\rho = \rho_1 + \rho_2 \Rightarrow f \stackrel{d}{=} f_1 \oplus f_2,$$

Proof:

$$\begin{aligned} & \operatorname{cov}((f_1 + f_2)(0), (f_1 + f_2)(x)) \\ &= \operatorname{cov}(f_1(0), f_1(x)) + \operatorname{cov}(f_2(0), f_2(x)) \\ &= \widehat{\rho_1}(x) + \widehat{\rho_2}(x) = \widehat{\rho_1 + \rho_2}(x) = \operatorname{cov}(f(0), f(x)). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\rho = \rho_1 + \rho_2 \Rightarrow f \stackrel{d}{=} f_1 \oplus f_2,$$

Application:

$$\rho = m\mathbf{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right] + \mu \Rightarrow f = S \oplus g$$

where $r_S(x) = c \operatorname{sinc}(\frac{x}{k})$, and g is some GSP.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

$$\rho = \rho_1 + \rho_2 \Rightarrow f \stackrel{d}{=} f_1 \oplus f_2,$$

Application:

$$\rho = m\mathbf{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right] + \mu \Rightarrow f = S \oplus g$$

where $r_S(x) = c \operatorname{sinc}(\frac{x}{k})$, and g is some GSP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • •

$$\rho = \rho_1 + \rho_2 \Rightarrow f \stackrel{d}{=} f_1 \oplus f_2,$$

Application:

$$\rho = m\mathbf{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right] + \mu \Rightarrow f = S \oplus g$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where $r_S(x) = c \operatorname{sinc}(\frac{x}{k})$, and g is some GSP.

Observation.

 $(S(nk))_{n\in\mathbb{Z}}$ are i.i.d.

Proof: $\mathbb{E}[S(nk)S(mk)] = r_S((m-n)k) = 0.$

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

Let us use this observation to obtain an upper bound on $P_f(N)$.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0, N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < 1 \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge 1\right)$$

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

Let us use this observation to obtain an upper bound on $P_f(N)$.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0, N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < 1 \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge 1\right)$$

Lemma 1 - average of a GSP.

$$\frac{1}{N}\sum_{n=1}^{N}g(n)\sim \mathcal{N}_{\mathbb{R}}(0,\sigma_{N}^{2})$$
, where $\sigma_{N}^{2}\leq \frac{C_{0}}{N}$.

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

Let us use this observation to obtain an upper bound on $P_f(N)$.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0,N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < 1 \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge 1\right)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Lemma 1 - average of a GSP.

$$\frac{1}{N}\sum_{n=1}^{N}g(n)\sim \mathcal{N}_{\mathbb{R}}(0,\sigma_{N}^{2})$$
, where $\sigma_{N}^{2}\leq \frac{C_{0}}{N}$.

• Here we use the upper bound M.

• Lemma
$$1 \Rightarrow \mathbb{P}(\frac{1}{N}\sum_{n=1}^{N}g(n) \ge 1) \le e^{-c_1N}$$

We may therefore assume $\frac{1}{N}\sum_{n=1}^{N}g(n) < 1$.

Proof of Theorem 1: upper bound

We may therefore assume $\frac{1}{N}\sum_{n=1}^{N}g(n)<1.$ Thus

for some
$$\ell \in \{1, \ldots, k\}$$
, we have $\frac{k}{N} \sum_{n=0}^{\lfloor N/k \rfloor} g(\ell + nk) < 1.$
Proof of Theorem 1: upper bound

We may therefore assume $\frac{1}{N}\sum_{n=1}^{N}g(n) < 1$. Thus

for some
$$\ell \in \{1, \ldots, k\}$$
, we have $\frac{k}{N} \sum_{n=0}^{\lfloor N/k \rfloor} g(\ell + nk) < 1.$

Lemma 2 - persistence of distorted i.i.d.

Let X_1, \ldots, X_N be i.i.d $\mathcal{N}(0, 1)$, and $b_1, \ldots, b_N \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^N b_j < 1$. Then $\mathbb{P}\left(X_j + b_j > 0, \ 1 \le j \le N\right) \le \mathbb{P}(X_1 < 1)^N$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We may therefore assume $\frac{1}{N}\sum_{n=1}^{N}g(n) < 1$. Thus

for some
$$\ell \in \{1, \ldots, k\}$$
, we have $\frac{k}{N} \sum_{n=0}^{\lfloor N/k \rfloor} g(\ell + nk) < 1.$

Lemma 2 - persistence of distorted i.i.d.

Let X_1, \ldots, X_N be i.i.d $\mathcal{N}(0, 1)$, and $b_1, \ldots, b_N \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^N b_j < 1$. Then $\mathbb{P}(X_j + b_j > 0, 1 \le j \le N) \le \mathbb{P}(X_1 < 1)^N$.

Proof:

$$\log \mathbb{P}(X_j \geq -b_j, 1 \leq j \leq N) = \log \prod_{j=1}^N \Phi(b_j)$$

$$=\sum_{j=1}^{N}\log\Phi(b_j)\leq N\log\Phi\left(\frac{1}{N}\sum b_j\right)\leq N\log\Phi(1).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Strategy: build an event $A \subset \{f > 0 \text{ on } (0, N]\}$.

Strategy: build an event $A \subset \{f > 0 \text{ on } (0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

 $f = S \oplus g$, where S is the (scaled) sinc-kernel process.

Proof of Theorem 1: lower bound

Strategy: build an event $A \subset \{f > 0 \text{ on } (0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:

 $f = S \oplus g$, where S is the (scaled) sinc-kernel process.

$$\begin{split} & \mathbb{P}(S \oplus g > 0 \text{ on } (0, N]) \\ & \geq \mathbb{P}(S > 1 \text{ on } (0, N]) \ \mathbb{P}\left(|g| \leq \frac{1}{2} \text{ on } (0, N]\right) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Strategy: build an event $A \subset \{f > 0 \text{ on } (0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:

 $f = S \oplus g$, where S is the (scaled) sinc-kernel process.

$$\mathbb{P}(S \oplus g > 0 \text{ on } (0, N])$$

$$\geq \underbrace{\mathbb{P}(S > 1 \text{ on } (0, N])}_{\geq e^{-cN}, \text{ ABMO}} \underbrace{\mathbb{P}\left(|g| \leq \frac{1}{2} \text{ on } (0, N]\right)}_{\text{small ball prob.}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Strategy: build an event $A \subset \{f > 0 \text{ on } (0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:

 $f = S \oplus g$, where S is the (scaled) sinc-kernel process.

$$\mathbb{P}(S \oplus g > 0 \text{ on } (0, N])$$

$$\geq \underbrace{\mathbb{P}(S > 1 \text{ on } (0, N])}_{\geq e^{-cN}, \text{ ABMO}} \underbrace{\mathbb{P}\left(|g| \leq \frac{1}{2} \text{ on } (0, N]\right)}_{\text{small ball prob.}}$$

A corroloary to works by Talagrand, Shao-Wang (1994):

Lemma 3 - small ball.

Let g be a GSP whose spectral measure ρ has some finite δ -moment (i.e., $\int |\lambda|^{\delta} d\rho(\delta) < \infty$). Let $\varepsilon > 0$. Then $\mathbb{P}(|g| < \varepsilon$ on $(0, N]) \ge e^{-cN}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation revisited: very recent progress

• Non-negative correlations -Dembo & Mukherjee (2013, 2015):

- motivated by random polynomials and diffusion processes
- If $r(x) \ge 0$, then $\exists \lim_{N\to\infty} \frac{-\log P(N)}{N} \in [0,\infty)$ (application of Slepian). In particular, if r(x) > 0 then $P(N) > e^{-\alpha N}$ for some $\alpha > 0$.
- In case r(x) ≥ 0, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} Krishna & Krishnapur (2016):
 - motivated by nodal lines of spherical harmonics.
 - on \mathbb{Z} , if $\rho_{AC} \neq 0$ then $P(N) \geq e^{-CN^2}$.
 - on Z, if ρ has density w(λ) which on [-a, a] obeys c₁λ^k ≤ w(λ) ≤ c₂λ^k for some k ≥ 1, then P(N) ≥ e^{-CN log N}.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Motivation revisited: very recent progress

• Non-negative correlations -Dembo & Mukherjee (2013, 2015):

- motivated by random polynomials and diffusion processes
- If $r(x) \ge 0$, then $\exists \lim_{N\to\infty} \frac{-\log P(N)}{N} \in [0,\infty)$ (application of Slepian). In particular, if r(x) > 0 then $P(N) > e^{-\alpha N}$ for some $\alpha > 0$.
- In case r(x) ≥ 0, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} Krishna & Krishnapur (2016):
 - motivated by nodal lines of spherical harmonics.
 - on \mathbb{Z} , if $\rho_{AC} \neq 0$ then $P(N) \geq e^{-CN^2}$.
 - on Z, if ρ has density w(λ) which on [-a, a] obeys c₁λ^k ≤ w(λ) ≤ c₂λ^k for some k ≥ 1, then P(N) ≥ e^{-CN log N}.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Question: How does persistence behave when the spectrum explodes or vanishes near 0?

Motivation revisited: very recent progress

• Non-negative correlations -Dembo & Mukherjee (2013, 2015):

- motivated by random polynomials and diffusion processes
- If $r(x) \ge 0$, then $\exists \lim_{N\to\infty} \frac{-\log P(N)}{N} \in [0,\infty)$ (application of Slepian). In particular, if r(x) > 0 then $P(N) > e^{-\alpha N}$ for some $\alpha > 0$.
- In case r(x) ≥ 0, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} Krishna & Krishnapur (2016):
 - motivated by nodal lines of spherical harmonics.
 - on \mathbb{Z} , if $\rho_{AC} \neq 0$ then $P(N) \geq e^{-CN^2}$.
 - on Z, if ρ has density w(λ) which on [-a, a] obeys c₁λ^k ≤ w(λ) ≤ c₂λ^k for some k ≥ 1, then P(N) ≥ e^{-CN log N}.

Question: How does persistence behave when the spectrum explodes or vanishes near 0?

Conjecture 1: explods $\Rightarrow P(N) \gg e^{-\alpha N}$, vanishes $\Rightarrow P(N) \ll e^{-\alpha N}$. **Conjecture 2:** $P(N) \le e^{-CN^2}$ when ρ vanishes on an interval around 0 ("spectral gap").

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [-a, a] the spectral measure has density $w(\lambda)$ which satisfies $c_1\lambda^{\gamma} \leq w(\lambda) \leq c_2\lambda^{\gamma}$ for some $\gamma > -1$. Then:

$$\log P_f(N) \begin{cases} \asymp -N^{1+\gamma} \log N, & \gamma < 0 \\ \asymp -N, & \gamma = 0 \\ \lesssim -\gamma N \log N, & \gamma > 0. \end{cases}$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0, then $P_f(N) \le e^{-CN^2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [-a, a] the spectral measure has density $w(\lambda)$ which satisfies $c_1\lambda^{\gamma} \leq w(\lambda) \leq c_2\lambda^{\gamma}$ for some $\gamma > -1$. Then:

$$\log P_f(N) \begin{cases} \asymp -N^{1+\gamma} \log N, & \gamma < 0 \quad (\text{exploding spec. at } 0) \\ \asymp -N, & \gamma = 0 \\ \lesssim -N \log N, & \gamma > 0 \quad (\text{vanishing spec. at } 0). \end{cases}$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0, then $P_f(N) \le e^{-CN^2}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [-a, a] the spectral measure has density $w(\lambda)$ which satisfies $c_1\lambda^{\gamma} \leq w(\lambda) \leq c_2\lambda^{\gamma}$ for some $\gamma > -1$. Then:

$$\log P_f(N) \begin{cases} \asymp -N^{1+\gamma} \log N, & \gamma < 0 \quad (\text{exploding spec. at } 0) \\ \asymp -N, & \gamma = 0 \\ \lesssim -N \log N, & \gamma > 0 \quad (\text{vanishing spec. at } 0). \end{cases}$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0, then $P_f(N) \le e^{-CN^2}$

Corollaries:

- establish both conjectures (and more)
- remove the condition $r(t) \ge 0$ from Dembo-Mukherjee
- ullet with Krishna-Krishnapure: matching upper and lower bounds over ${\mathbb Z}$
- achieve the first example of $P(N) \ll e^{-CN \log N}$

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [-a, a] the spectral measure has density $w(\lambda)$ which satisfies $c_1\lambda^{\gamma} \leq w(\lambda) \leq c_2\lambda^{\gamma}$ for some $\gamma > -1$. Then:

$$\log P_f(N) \begin{cases} \asymp -N^{1+\gamma} \log N, & \gamma < 0 \quad (\text{exploding spec. at } 0) \\ \asymp -N, & \gamma = 0 \\ \lesssim -N \log N, & \gamma > 0 \quad (\text{vanishing spec. at } 0). \end{cases}$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0, then $P_f(N) \le e^{-CN^2}$.

A D A D A D A D A D A D A D A D A

Further improvements:

- $w(\lambda) \leq c_2 \lambda^\gamma \Rightarrow$ upper bounds, $w(\lambda) \geq c_1 \lambda^\gamma \Rightarrow$ lower bounds
- formulate using $\rho([0, \lambda])$ for $\lambda \ll 1$, provided that $\rho_{AC} \neq 0$
- analysis of constants (e.g. $\gamma > 0 \Rightarrow \log P_f(N) \le -ca\gamma N \log N$)

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [-a, a] the spectral measure has density $w(\lambda)$ which satisfies $c_1 \lambda^{\gamma} \leq w(\lambda) \leq c_2 \lambda^{\gamma}$ for some $\gamma > -1$. Then:

$$\log P_f(N) \begin{cases} \asymp -N^{1+\gamma} \log N, & \gamma < 0 \quad (\text{exploding spec. at } 0) \\ \asymp -N, & \gamma = 0 \\ \lesssim -N \log N, & \gamma > 0 \quad (\text{vanishing spec. at } 0). \end{cases}$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0, then $P_f(N) \le e^{-CN^2}$

Further improvements:

- $w(\lambda) \leq c_2 \lambda^{\gamma} \Rightarrow$ upper bounds, $w(\lambda) \geq c_1 \lambda^{\gamma} \Rightarrow$ lower bounds
- formulate using $\rho([0,\lambda])$ for $\lambda \ll 1$, provided that $\rho_{AC} \neq 0$
- analysis of constants (e.g. $\gamma > 0 \Rightarrow \log P_f(N) \le -ca\gamma N \log N$)

Missing: lower bound over \mathbb{R} when $\gamma > 0!$

Theorem 2' (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0, then

$$P_f(N) \leq e^{-CN^2}$$

... and near ∞ .

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let $T = \mathbb{R}$. If the spectral measure vanishes on an interval containing 0, and on $[1,\infty)$ it has density $w(\lambda)$ such that $w(\lambda) \ge \lambda^{-100}$, then

$$P_f(N) \leq e^{-e^{CN}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 2' (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0, then

$$P_f(N) \leq e^{-CN^2}$$

... and near ∞ .

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let $T = \mathbb{R}$. If the spectral measure vanishes on an interval containing 0, and on $[1,\infty)$ it has density $w(\lambda)$ such that $w(\lambda) \ge \lambda^{-100}$, then

$$P_f(N) \leq e^{-e^{CN}}$$

- heavy tail \Rightarrow *f* is "rough" \Rightarrow tiny persistence.
- light tail \Rightarrow f is smooth \Rightarrow matching lower bounds as over \mathbb{Z} [in progress]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ideas from the proof.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $f = S \oplus g$, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

Let
$$\ell = \ell(N, \rho) > 0$$
.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0,N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < \ell \right. \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge \ell \right)$$

$$f = S \oplus g$$
, where $(S(nk))_{n \in \mathbb{Z}}$ are i.i.d.

Let
$$\ell = \ell(N, \rho) > 0$$
.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0, N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < \ell \right. \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge \ell \right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Lemma 1' - average of a GSP.

$$\begin{aligned} & \operatorname{var}\left(\frac{1}{N}\sum_{n=1}^{N}g(n)\right) \lesssim \sigma_{N}^{2} := \rho([0,\frac{1}{N}]). \text{ Therefore,} \\ & \mathbb{P}(\frac{1}{N}\sum_{n=1}^{N}g(n) \geq \ell) \leq \mathbb{P}(\sigma_{N}Z > \ell). \end{aligned}$$

$$f=S\oplus g$$
, where $(S(nk))_{n\in\mathbb{Z}}$ are i.i.d.

Let $\ell = \ell(N, \rho) > 0$.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0,N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < \ell \right. \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge \ell \right)$$

Lemma 1' - average of a GSP.

$$\begin{aligned} & \operatorname{var}\left(\frac{1}{N}\sum_{n=1}^{N}g(n)\right) \lesssim \sigma_{N}^{2} := \rho([0,\frac{1}{N}]). \text{ Therefore,} \\ & \mathbb{P}(\frac{1}{N}\sum_{n=1}^{N}g(n) \geq \ell) \leq \mathbb{P}(\sigma_{N}Z > \ell). \end{aligned}$$

Lemma 2' - persistence of distorted i.i.d.

Let X_1, \ldots, X_N be i.i.d $\mathcal{N}(0, 1)$, and $b_1, \ldots, b_N \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^N b_j < \ell$. Then $\mathbb{P}(X_j + b_j > 0, 1 \le j \le N) \le \mathbb{P}(X_1 < \ell)^N$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

$$f=S\oplus g$$
, where $(S(nk))_{n\in\mathbb{Z}}$ are i.i.d.

Let $\ell = \ell(N, \rho) > 0$.

$$P_f(N) \leq \mathbb{P}\left(S \oplus g > 0 \text{ on } (0,N] \left| \frac{1}{N} \sum_{n=1}^N g(n) < \ell \right. \right) + \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^N g(n) \ge \ell \right)$$

Lemma 1' - average of a GSP.

$$\begin{aligned} & \operatorname{var}\left(\frac{1}{N}\sum_{n=1}^{N}g(n)\right) \lesssim \sigma_{N}^{2} := \rho([0,\frac{1}{N}]). \text{ Therefore,} \\ & \mathbb{P}(\frac{1}{N}\sum_{n=1}^{N}g(n) \geq \ell) \leq \mathbb{P}(\sigma_{N}Z > \ell). \end{aligned}$$

Lemma 2' - persistence of distorted i.i.d.

Let X_1, \ldots, X_N be i.i.d $\mathcal{N}(0, 1)$, and $b_1, \ldots, b_N \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^N b_j < \ell$. Then $\mathbb{P} \left(X_j + b_j > 0, \ 1 \le j \le N \right) \le \mathbb{P} (X_1 < \ell)^N$.

Balancing equation:

$$\mathbb{P}(Z < \ell)^N \asymp \mathbb{P}(\sigma_N Z > \ell).$$

DQ (~

$$f = A \oplus h$$
, where A is SGP with $\rho_A = \rho |_{[-\frac{1}{N}, \frac{1}{N}]}$.

For any $\ell > 0$,

$$\mathbb{P}(f>0 ext{ on } (0,N]) \geq \mathbb{P}(A>\ell ext{ on } (0,N]) \cdot \mathbb{P}\left(|h| \leq rac{\ell}{2} ext{ on } (0,N]
ight).$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

$$f = A \oplus h$$
, where A is SGP with $\rho_A = \rho|_{[-\frac{1}{N}, \frac{1}{N}]}$.

For any $\ell > 0$,

$$\mathbb{P}(f > 0 ext{ on } (0, N]) \geq \mathbb{P}(A > \ell ext{ on } (0, N]) \cdot \mathbb{P}\left(|h| \leq rac{\ell}{2} ext{ on } (0, N]
ight).$$

Lemma 3' - large ball.

There exists q > 0 such that for large enough ℓ :

 $\mathbb{P}(|h| < \ell \text{ on } (0, N]) \ge \mathbb{P}(|h(0)| < q\ell)^N.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つへで

$$f = A \oplus h$$
, where A is SGP with $\rho_A = \rho |_{[-\frac{1}{N}, \frac{1}{N}]}$.

For any $\ell > 0$,

$$\mathbb{P}(f > 0 ext{ on } (0, N]) \geq \mathbb{P}(A > \ell ext{ on } (0, N]) \cdot \mathbb{P}\left(|h| \leq rac{\ell}{2} ext{ on } (0, N]
ight).$$

Lemma 3' - large ball.

There exists q > 0 such that for large enough ℓ :

 $\mathbb{P}(|h| < \ell \text{ on } (0, N]) \geq \mathbb{P}(|h(0)| < q\ell)^N.$

Lemma 4' - "atom-like" behavior

 $\mathbb{P}(A > \ell \text{ on } (0, N]) \geq \frac{1}{2} \mathbb{P}(\sigma_N Z > 2\ell)$

for every $\ell > 0$, where $Z \sim \mathcal{N}(0,1)$ and $\sigma_N^2 = \rho([-1/N, 1/N])$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○

$$f = A \oplus h$$
, where A is SGP with $\rho_A = \rho |_{[-\frac{1}{N}, \frac{1}{N}]}$.

For any $\ell > 0$,

$$\mathbb{P}(f > 0 ext{ on } (0, N]) \geq \mathbb{P}(A > \ell ext{ on } (0, N]) \cdot \mathbb{P}\left(|h| \leq rac{\ell}{2} ext{ on } (0, N]
ight)$$

Lemma 3' - large ball.

There exists q > 0 such that for large enough ℓ :

 $\mathbb{P}(|h| < \ell \text{ on } (0, N]) \geq \mathbb{P}(|h(0)| < q\ell)^N.$

Lemma 4' - "atom-like" behavior

 $\mathbb{P}(A > \ell \text{ on } (0, N]) \geq \frac{1}{2} \mathbb{P}(\sigma_N Z > 2\ell)$

for every $\ell > 0$, where $Z \sim \mathcal{N}(0,1)$ and $\sigma_N^2 = \rho([-1/N, 1/N])$.

Balancing equation:

$$\mathbb{P}(Z < \ell)^N \asymp \mathbb{P}(\sigma_N Z > 2\ell).$$

Spectral decomposition

 $\rho = \rho_1 + \rho_2 \Rightarrow f = f_1 \oplus f_2.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Spectral decomposition

$$\rho = \rho_1 + \rho_2 \Rightarrow f = f_1 \oplus f_2.$$

Process integration

If $\int \frac{1}{\lambda^2} d\rho(\lambda) < \infty$, then there exists a GSP *h* such that $h' \stackrel{d}{=} f$.

Spectral decomposition

$$\rho = \rho_1 + \rho_2 \Rightarrow f = f_1 \oplus f_2.$$

Process integration

If
$$\int \frac{1}{\lambda^2} d\rho(\lambda) < \infty$$
, then there exists a GSP *h* such that $h' \stackrel{d}{=} f$.

Borell-TIS inequality

$$\mathbb{P}(\sup_{[0,N]} |h| > \ell) \le e^{-\frac{\ell^2}{2 \operatorname{var} h(0)}}$$
 for a GSP h .

Anderson's lemma

 $\mathbb{P}(\sup_{n} |X_n \oplus Y_n| \le \ell) \le \mathbb{P}(\sup_{n} |X_n| \le \ell) \text{ for } X_n, Y_n \text{ Gaussian centred}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vanishing spectrum: upper bound Main tools

Spectral decomposition

 $\rho = \rho_1 + \rho_2 \Rightarrow f = f_1 \oplus f_2.$

Process integration

If
$$\int \frac{1}{\lambda^2} d\rho(\lambda) < \infty$$
, then there exists a GSP *h* such that $h' \stackrel{d}{=} f$.

Borell-TIS inequality

$$\mathbb{P}(\sup_{[0,N]} |h| > \ell) \le e^{-\frac{\ell^2}{2 \text{var}h(0)}} \text{ for a GSP } h.$$

Anderson's lemma

 $\mathbb{P}(\sup_{n} |X_{n} \oplus Y_{n}| \leq \ell) \leq \mathbb{P}(\sup_{n} |X_{n}| \leq \ell) \text{ for } X_{n}, Y_{n} \text{ Gaussian centred}.$

An analytic lemma

If $h: T \to \mathbb{R}$ is such that h' > 0 on [0, N], then there exists a set $R \subseteq [0, N]$ of measure $|R| \ge \frac{N}{2}$ such that $\sup_{R} |h'| \le \frac{2}{N} \sup_{[0, N]} |h|$.

Vanishing spectrum: upper bound Main tools

Spectral decomposition

 $\rho = \rho_1 + \rho_2 \Rightarrow f = f_1 \oplus f_2.$

Process integration

If
$$\int \frac{1}{\lambda^2} d\rho(\lambda) < \infty$$
, then there exists a GSP *h* such that $h' \stackrel{d}{=} f$.

Borell-TIS inequality

$$\mathbb{P}(\sup_{[0,N]} |h| > \ell) \le e^{-\frac{\ell^2}{2 \text{var} h(0)}} \text{ for a GSP } h.$$

Anderson's lemma

 $\mathbb{P}(\sup_{n} |X_n \oplus Y_n| \le \ell) \le \mathbb{P}(\sup_{n} |X_n| \le \ell) \text{ for } X_n, Y_n \text{ Gaussian centred}.$

An analytic lemma (degree p)

If $h: T \to \mathbb{R}$ is such that $h^{(p)} > 0$ on [0, N], then there exists a set $R \subseteq [0, N]$ of measure $|R| \ge \frac{N}{2}$ such that $\sup_{R} |h^{(p)}| \le (\frac{2p}{N})^{p} \sup_{[0,N]} |h|$.

Vanishing spectrum: upper bound Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

Vanishing spectrum: upper bound Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By process integration, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G) + \mathbb{P}(G^c).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Vanishing spectrum: upper bound Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G) + \mathbb{P}(G^{c}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.
Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G) + \mathbb{P}(G^{c}).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R.

A D A D A D A D A D A D A D A

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f > 0) \leq \mathbb{P}(\{f > 0\} \cap G) + \mathbb{P}(G^c).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by **the analytic lemma** there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

</

By the **spectral decomposition**, $f(kn) = Z_n \oplus g_n$ where Z_n are i.i.d.

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By process integration, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G) + \mathbb{P}(G^c).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R. By the spectral decomposition, $f(kn) = Z_n \oplus g_n$ where Z_n are i.i.d. By Anderson's lemma.

$$\mathbb{P}\left(\sup_{n}|Z_{n}\oplus g_{n}|\leq \frac{2\ell}{N}\right)\leq \mathbb{P}\left(|Z_{1}|\leq \frac{2\ell}{N}\right)^{\alpha N}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

</

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G) + \mathbb{P}(G^c).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R. By the spectral decomposition, $f(kn) = Z_n \oplus g_n$ where Z_n are i.i.d. By Anderson's lemma.

$$\mathbb{P}\left(\sup_{n}|Z_{n}\oplus g_{n}|\leq \frac{2\ell}{N}\right)\leq \mathbb{P}\left(|Z_{1}|\leq \frac{2\ell}{N}\right)^{\alpha N}$$

Balancing equation

$$\mathbb{P}(aZ > \ell) \asymp \mathbb{P}(|Z| \le \frac{\ell}{N})^{\alpha N}$$

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f > 0) \leq \mathbb{P}(\{f > 0\} \cap G) + \mathbb{P}(G^c).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R. By the spectral decomposition, $f(kn) = Z_n \oplus g_n$ where Z_n are i.i.d. By Anderson's lemma.

$$\mathbb{P}\left(\sup_{n}|Z_{n}\oplus g_{n}|\leq \frac{2\ell}{N}\right)\leq \mathbb{P}\left(|Z_{1}|\leq \frac{2\ell}{N}\right)^{\alpha N}$$

Balancing equation

$$e^{-\ell^2/2a} \approx \mathbb{P}(aZ > \ell) \asymp \mathbb{P}(|Z| \le \frac{\ell}{N})^{\alpha N} \approx \left(\frac{\ell}{N}\right)^{\alpha N}$$

Suppose for simplicity that $w(\lambda) \leq \lambda^2$ for $|\lambda| \leq a$.

By **process integration**, there exists a GSP *h* so that $h' \stackrel{d}{=} f$. Define $G = {\sup_{[0,N]} |h| < \ell}$.

 $\mathbb{P}(f > 0) \leq \mathbb{P}(\{f > 0\} \cap G) + \mathbb{P}(G^c).$

By Borell-TIS, $\mathbb{P}(G^c) \leq \mathbb{P}(aZ > \ell) = e^{-\ell^2/2a}$.

If $\{f > 0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq [0, N]$ $(|R| \ge \frac{N}{2})$ such that $|f| < \frac{2\ell}{N}$ on R. By the spectral decomposition, $f(kn) = Z_n \oplus g_n$ where Z_n are i.i.d. By Anderson's lemma,

$$\mathbb{P}\left(\sup_{n}|Z_{n}\oplus g_{n}|\leq \frac{2\ell}{N}\right)\leq \mathbb{P}\left(|Z_{1}|\leq \frac{2\ell}{N}\right)^{\alpha N}$$

Balancing equation

$$e^{-\ell^2/2a} \approx \mathbb{P}(aZ > \ell) \asymp \mathbb{P}(|Z| \le \frac{\ell}{N})^{\alpha N} \approx \left(\frac{\ell}{N}\right)^{\alpha N}$$

 $\ell = \sqrt{N \log N} \Rightarrow$ both sides are $e^{-CN \log N}$.

- other levels
- other dimensions
- the mysterious discontinuities in $\log P_f(N)$
- singular measures
- existence of limiting exponent (e.g. $\lim_{N\to\infty} \frac{\log P_f(N)}{N}$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

non-stationary processes

Thanks!

Thank you.

"Persistence can grind an iron beam down into a needle." -- Chinese Proverb.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @