Persistence of Gaussian Stationary Processes

Ohad Feldheim (Stanford)
Joint work with
Naomi Feldheim (Stanford)
Shahaf Nitzan (GeorgiaTech)

UBC, Vancouver
January, 2017

Gaussian stationary processes (GSP)

For $T \in\{\mathbb{R}, \mathbb{Z}\}$, a random function $f: T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right) \sim \mathcal{N}_{\mathbb{R}^{N}}\left(0, \Sigma_{x_{1}, \ldots, x_{N}}\right)$,
- Stationary (shift-invariant): $\left(f\left(x_{1}+s\right), \ldots f\left(x_{N}+s\right)\right) \stackrel{d}{\sim}\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)$, for all $N \in \mathbb{N}, x_{1}, \ldots, x_{N}, s \in T$.

For $T \in\{\mathbb{R}, \mathbb{Z}\}$, a random function $f: T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right) \sim \mathcal{N}_{\mathbb{R}^{N}}\left(0, \Sigma_{x_{1}, \ldots, x_{N}}\right)$,
- Stationary (shift-invariant): $\left(f\left(x_{1}+s\right), \ldots f\left(x_{N}+s\right)\right) \stackrel{d}{\sim}\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)$, for all $N \in \mathbb{N}, x_{1}, \ldots, x_{N}, s \in T$.

Motivation:

- Background noise for radio / cellular transmissions
- Ocean waves
- Vibrations of bridge strings / membranes
- Brain transmissions
- internet / car traffic
- ...

Gaussian stationary processes (GSP)

For $T \in\{\mathbb{R}, \mathbb{Z}\}$, a random function $f: T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right) \sim \mathcal{N}_{\mathbb{R}^{N}}\left(0, \Sigma_{x_{1}, \ldots, x_{N}}\right)$,
- Stationary (shift-invariant): $\left(f\left(x_{1}+s\right), \ldots f\left(x_{N}+s\right)\right) \stackrel{d}{\sim}\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)$, for all $N \in \mathbb{N}, x_{1}, \ldots, x_{N}, s \in T$.

Covariance function

$$
r(s, t)=\mathbb{E}(f(s) f(t))=r(s-t) \quad t, s \in T
$$

Gaussian stationary processes (GSP)

For $T \in\{\mathbb{R}, \mathbb{Z}\}$, a random function $f: T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right) \sim \mathcal{N}_{\mathbb{R}^{N}}\left(0, \Sigma_{x_{1}, \ldots, x_{N}}\right)$,
- Stationary (shift-invariant): $\left(f\left(x_{1}+s\right), \ldots f\left(x_{N}+s\right)\right) \stackrel{d}{\sim}\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)$, for all $N \in \mathbb{N}, x_{1}, \ldots, x_{N}, s \in T$.

Covariance function

$$
r(s, t)=\mathbb{E}(f(s) f(t))=r(s-t) \quad t, s \in T .
$$

Spectral measure

By Bochner's theorem there exists a finite, non-negative, symmetric measure ρ over $T^{*}\left(\mathbb{Z}^{*} \simeq[-\pi, \pi]\right.$ and $\left.\mathbb{R}^{*} \simeq \mathbb{R}\right)$ s.t.

$$
r(t)=\widehat{\rho}(t)=\int_{T^{*}} e^{-i \lambda t} d \rho(\lambda) .
$$

Gaussian stationary processes (GSP)

For $T \in\{\mathbb{R}, \mathbb{Z}\}$, a random function $f: T \mapsto \mathbb{R}$ is a GSP if it is

- Gaussian: $\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right) \sim \mathcal{N}_{\mathbb{R}^{N}}\left(0, \Sigma_{x_{1}, \ldots, x_{N}}\right)$,
- Stationary (shift-invariant): $\left(f\left(x_{1}+s\right), \ldots f\left(x_{N}+s\right)\right) \stackrel{d}{\sim}\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)$, for all $N \in \mathbb{N}, x_{1}, \ldots, x_{N}, s \in T$.

Covariance function

$$
r(s, t)=\mathbb{E}(f(s) f(t))=r(s-t) \quad t, s \in T
$$

Spectral measure

By Bochner's theorem there exists a finite, non-negative, symmetric measure ρ over $T^{*}\left(\mathbb{Z}^{*} \simeq[-\pi, \pi]\right.$ and $\left.\mathbb{R}^{*} \simeq \mathbb{R}\right)$ s.t.

$$
r(t)=\widehat{\rho}(t)=\int_{T^{*}} e^{-i \lambda t} d \rho(\lambda)
$$

Assumption: $\int|\lambda|^{\delta} d \rho(\lambda)<\infty$ for some $\delta>0$.
("finite polynomial moment" $\Rightarrow r$ is Hölder contin.)
ζ_{j} i.i.d. $\mathcal{N}(0,1)$

$$
\begin{aligned}
f(x) & =\zeta_{0} \sin (x)+\zeta_{1} \cos (x) \\
r(x) & =\cos (x) \\
\rho & =\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(x)= & \zeta_{0} \sin (x)+\zeta_{1} \cos (x) \\
& +\zeta_{2} \sin (\sqrt{2} x)+\zeta_{3} \cos (\sqrt{2} x) \\
r(x)= & \cos (x)+\cos (\sqrt{2} x) \\
\rho= & \frac{1}{2}\left(\delta_{1}+\delta_{-1}+\delta_{\sqrt{2}}+\delta_{-\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(n) & =\zeta_{n} \\
r(n) & =\delta_{n, 0} \\
d \rho(\lambda) & =\frac{1}{2 \pi} \mathbb{1}_{[-\pi, \pi]}(\lambda) d \lambda
\end{aligned}
$$

$$
\begin{aligned}
f(n) & =\sum_{n \in \mathbb{N}} \zeta_{n} \operatorname{sinc}(x-n) \\
r(n) & =\frac{\sin (\pi x)}{\pi x}=\operatorname{sinc}(x) \\
d \rho(\lambda) & =\frac{1}{2 \pi} \mathbf{1}_{[-\pi, \pi]}(\lambda) d \lambda
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\sum_{n \in \mathbb{N}} \zeta_{n} \frac{x^{n}}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} \\
r(x) & =e^{-\frac{x^{2}}{2}} \\
d \rho(\lambda) & =\sqrt{\pi} e^{-\frac{\lambda^{2}}{2}} d \lambda
\end{aligned}
$$

$$
\begin{aligned}
r(x) & =e^{-|x|} \\
d \rho(\lambda) & =\frac{2}{\lambda^{2}+1} d \lambda
\end{aligned}
$$

Persistence Probability

Persistence

The persistence probability of a stochastic process f over a level $\ell \in \mathbb{R}$ in the time interval $(0, N]$ is:

$$
P_{f}(N):=\mathbb{P}(f(x)>\ell, \forall x \in(0, N])
$$

Picture of persistence

Persistence Probability

Persistence (above the mean)
The persistence probability of a centered stochastic process f in the time interval $(0, N]$ is:

$$
P_{f}(N):=\mathbb{P}(f(x)>0, \forall x \in(0, N])
$$

Picture of persistence

Persistence (above the mean)

The persistence probability of a centered stochastic process f in the time interval $(0, N]$ is:

$$
P_{f}(N):=\mathbb{P}(f(x)>0, \forall x \in(0, N])
$$

Picture of persistence Question: For a GSP f, what is the behavior of $P_{f}(N)$ as $N \rightarrow \infty$? Guess: "typically" $P(t) \asymp e^{-\theta t}$.

Persistence (above the mean)

The persistence probability of a centered stochastic process f in the time interval $(0, N]$ is:

$$
P_{f}(N):=\mathbb{P}(f(x)>0, \forall x \in(0, N])
$$

Picture of persistence Question: For a GSP f, what is the behavior of $P_{f}(N)$ as $N \rightarrow \infty$? Guess: "typically" $P(t) \asymp e^{-\theta t}$.

Toy Examples

$$
\begin{array}{lr}
\left(X_{n}\right)_{n \in \mathbb{Z}} \text { i.i.d. } & P_{X}(N)=2^{-N} \\
Y_{n}=X_{n+1}-X_{n} & P_{Y}(N)=\frac{1}{(N+1)!} \asymp e^{-N \log N} \\
Z_{n} \equiv Z_{0} & P_{Z}(N)=\mathbb{P}\left(Z_{0}>0\right)=\frac{1}{2}
\end{array}
$$

Engineering and Applied Mathematics (1940-1970)

- 1944 Rice - "Mathematical Analysis of Random Noise".
- Mean number of level-crossings (Rice formula)
- Behavior of $P(t)$ for $t \ll 1$ (short range).
- 1962 Slepian - "One-sided barrier problem".
- Slepian's Inequality: $r_{1}(x) \geq r_{2}(x) \Rightarrow P_{1}(N) \geq P_{2}(N)$.
- specific cases
- 1962 Newell \& Rosenblatt
- If $r(x) \rightarrow 0$ as $x \rightarrow \infty$, then $P(N)=o\left(N^{-\alpha}\right)$ for any $\alpha>0$.
- If $|r(x)|<a x^{-\alpha}$ then $P(N) \leq \begin{cases}e^{-C N} & \text { if } \alpha>1 \\ e^{-C N / \log N} & \text { if } \alpha=1 \\ e^{-C N^{\alpha}} & \text { if } 0<\alpha<1\end{cases}$
- examples for $P(t)>e^{-C \sqrt{N} \log N} \gg e^{-C N}\left(r(x) \asymp x^{-1 / 2}\right)$.

Engineering and Applied Mathematics (1940-1970)

- 1944 Rice - "Mathematical Analysis of Random Noise".
- Mean number of level-crossings (Rice formula)
- Behavior of $P(t)$ for $t \ll 1$ (short range).
- 1962 Slepian - "One-sided barrier problem".
- Slepian's Inequality: $r_{1}(x) \geq r_{2}(x) \Rightarrow P_{1}(N) \geq P_{2}(N)$.
- specific cases
- 1962 Newell \& Rosenblatt
- If $r(x) \rightarrow 0$ as $x \rightarrow \infty$, then $P(N)=o\left(N^{-\alpha}\right)$ for any $\alpha>0$.
- If $|r(x)|<a x^{-\alpha}$ then $P(N) \leq \begin{cases}e^{-C N} & \text { if } \alpha>1 \\ e^{-C N / \log N} & \text { if } \alpha=1 \\ e^{-C N^{\alpha}} & \text { if } 0<\alpha<1\end{cases}$
- examples for $P(t)>e^{-C \sqrt{N} \log N} \gg e^{-C N}\left(r(x) \asymp x^{-1 / 2}\right)$.

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov).

Engineering and Applied Mathematics (1940-1970)

- 1944 Rice - "Mathematical Analysis of Random Noise".
- Mean number of level-crossings (Rice formula)
- Behavior of $P(t)$ for $t \ll 1$ (short range).
- 1962 Slepian - "One-sided barrier problem".
- Slepian's Inequality: $r_{1}(x) \geq r_{2}(x) \Rightarrow P_{1}(N) \geq P_{2}(N)$.
- specific cases
- 1962 Newell \& Rosenblatt
- If $r(x) \rightarrow 0$ as $x \rightarrow \infty$, then $P(N)=o\left(N^{-\alpha}\right)$ for any $\alpha>0$.
- If $|r(x)|<a x^{-\alpha}$ then $P(N) \leq \begin{cases}e^{-C N} & \text { if } \alpha>1 \\ e^{-C N / \log N} & \text { if } \alpha=1 \\ e^{-C N^{\alpha}} & \text { if } 0<\alpha<1\end{cases}$
- examples for $P(t)>e^{-C \sqrt{N} \log N} \gg e^{-C N}\left(r(x) \asymp x^{-1 / 2}\right)$.

There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov). Applicable mainly when r is non-negative or summable.

Engineering and Applied Mathematics (1940-1970)

- 1944 Rice - "Mathematical Analysis of Random Noise".
- Mean number of level-crossings (Rice formula)
- Behavior of $P(t)$ for $t \ll 1$ (short range).
- 1962 Slepian - "One-sided barrier problem".
- Slepian's Inequality: $r_{1}(x) \geq r_{2}(x) \Rightarrow P_{1}(N) \geq P_{2}(N)$.
- specific cases
- 1962 Newell \& Rosenblatt
- If $r(x) \rightarrow 0$ as $x \rightarrow \infty$, then $P(N)=o\left(N^{-\alpha}\right)$ for any $\alpha>0$.
- If $|r(x)|<a x^{-\alpha}$ then $P(N) \leq \begin{cases}e^{-C N} & \text { if } \alpha>1 \\ e^{-C N / \log N} & \text { if } \alpha=1 \\ e^{-C N^{\alpha}} & \text { if } 0<\alpha<1\end{cases}$
- examples for $P(t)>e^{-C \sqrt{N} \log N} \gg e^{-C N}\left(r(x) \asymp x^{-1 / 2}\right)$.

Physics (1990-2010)

- GSPs used in models for electrons in matter, diffusion, spin systems
- Majumdar et al.: Heuristics explaining why $P_{f}(N) \asymp e^{-\theta N}$ "generically".

Probability and Anlysis(2000+)

- Hole probability for point processes
- GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)
- for sinc-kernel: $e^{-c N}<P(N)<2^{-N}$ (Antezana-Buckley-Marzo-Olsen, '12)

Probability and Anlysis(2000+)

- Hole probability for point processes
- GAFs in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)
- for sinc-kernel: $e^{-c N}<P(N)<2^{-N}$ (Antezana-Buckley-Marzo-Olsen, '12)
- Non-negative correlations -Dembo \& Mukherjee $(2013,2015)$ - motivated by random polynomials and diffusion processes.
- Lower bounds for GSP on \mathbb{Z} - Krishna \& Krishnapur (2016)
- motivated by nodal lines of spherical harmonics.

Theorem 1 (Feldheim \& F., 2013)

Suppose that on some interval $[-a, a]$ we have $d \rho=w(\lambda) d \lambda$ with $0<m \leq w(x) \leq M$. Then

$$
e^{-c_{1} N} \leq P_{f}(N) \leq e^{-c_{2} N} .
$$

Theorem 1 (Feldheim \& F., 2013)

Suppose that on some interval $[-a, a]$ we have $d \rho=w(\lambda) d \lambda$ with $0<m \leq w(x) \leq M$. Then

$$
e^{-c_{1} N} \leq P_{f}(N) \leq e^{-c_{2} N} .
$$

- Given in terms of ρ (not r).
- Roughly, $\int_{T} r(x) d x$ converges and is positive.
- Main tool: "spectral decomposition"

Theorem 1 (Feldheim \& F., 2013)

Suppose that on some interval $[-a, a]$ we have $d \rho=w(\lambda) d \lambda$ with $0<m \leq w(x) \leq M$. Then

$$
e^{-c_{1} N} \leq P_{f}(N) \leq e^{-c_{2} N}
$$

- Given in terms of ρ (not r).
- Roughly, $\int_{T} r(x) d x$ converges and is positive.
- Main tool: "spectral decomposition"

Toy Examples

$$
\begin{array}{lr}
\left(X_{n}\right)_{n \in \mathbb{Z}} \text { i.i.d. } \Rightarrow P_{X}(N)=2^{-N} & w=\mathbb{1}_{[-\pi, \pi]} \\
Y_{n}=X_{n+1}-X_{n} \Rightarrow P_{Y}(N) \asymp e^{-N \log N} & w=2(1-\cos \lambda) \mathbb{1}_{[-\pi, \pi]} \\
Z_{n} \equiv Z_{0} \Rightarrow P_{Z}(N)=\frac{1}{2} & \rho=\delta_{0}
\end{array}
$$

Key Observation

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f \stackrel{d}{=} f_{1} \oplus f_{2},
$$

Key Observation

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f \stackrel{d}{=} f_{1} \oplus f_{2}
$$

Proof:

$$
\begin{aligned}
& \operatorname{cov}\left(\left(f_{1}+f_{2}\right)(0),\left(f_{1}+f_{2}\right)(x)\right) \\
& =\operatorname{cov}\left(f_{1}(0), f_{1}(x)\right)+\operatorname{cov}\left(f_{2}(0), f_{2}(x)\right) \\
& =\widehat{\rho_{1}}(x)+\widehat{\rho_{2}}(x)=\widehat{\rho_{1}+\rho_{2}}(x)=\operatorname{cov}(f(0), f(x)) .
\end{aligned}
$$

Key Observation

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f \stackrel{d}{=} f_{1} \oplus f_{2}
$$

Application:

$$
\rho=m \mathbb{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right]+\mu \Rightarrow f=S \oplus g
$$

where $r_{S}(x)=c \operatorname{sinc}\left(\frac{x}{k}\right)$, and g is some GSP.

Key Observation

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f \stackrel{d}{=} f_{1} \oplus f_{2}
$$

Application:

$$
\rho=m \mathbb{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right]+\mu \Rightarrow f=S \oplus g
$$

where $r_{S}(x)=c \operatorname{sinc}\left(\frac{x}{k}\right)$, and g is some GSP.

Key Observation

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f \stackrel{d}{=} f_{1} \oplus f_{2}
$$

Application:

$$
\rho=m \mathbb{1}\left[-\frac{\pi}{k}, \frac{\pi}{k}\right]+\mu \Rightarrow f=S \oplus g
$$

where $r_{S}(x)=c \operatorname{sinc}\left(\frac{x}{k}\right)$, and g is some GSP.
Observation.
$(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Proof: $\mathbb{E}[S(n k) S(m k)]=r_{S}((m-n) k)=0$.
$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let us use this observation to obtain an upper bound on $P_{f}(N)$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<1\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq 1\right)
$$

$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let us use this observation to obtain an upper bound on $P_{f}(N)$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<1\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq 1\right)
$$

Lemma 1 - average of a GSP.

$\frac{1}{N} \sum_{n=1}^{N} g(n) \sim \mathcal{N}_{\mathbb{R}}\left(0, \sigma_{N}^{2}\right)$, where $\sigma_{N}^{2} \leq \frac{C_{0}}{N}$.
$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let us use this observation to obtain an upper bound on $P_{f}(N)$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<1\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq 1\right)
$$

Lemma 1 - average of a GSP.

$\frac{1}{N} \sum_{n=1}^{N} g(n) \sim \mathcal{N}_{\mathbb{R}}\left(0, \sigma_{N}^{2}\right)$, where $\sigma_{N}^{2} \leq \frac{C_{0}}{N}$.

- Here we use the upper bound M.
- Lemma $1 \Rightarrow \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq 1\right) \leq e^{-c_{1} N}$.

Proof of Theorem 1: upper bound

We may therefore assume $\frac{1}{N} \sum_{n=1}^{N} g(n)<1$.

We may therefore assume $\frac{1}{N} \sum_{n=1}^{N} g(n)<1$. Thus

$$
\text { for some } \ell \in\{1, \ldots, k\} \text {, we have } \frac{k}{N} \sum_{n=0}^{\lfloor N / k\rfloor} g(\ell+n k)<1 \text {. }
$$

We may therefore assume $\frac{1}{N} \sum_{n=1}^{N} g(n)<1$. Thus

$$
\text { for some } \ell \in\{1, \ldots, k\} \text {, we have } \frac{k}{N} \sum_{n=0}^{\lfloor N / k\rfloor} g(\ell+n k)<1 \text {. }
$$

Lemma 2 - persistence of distorted i.i.d.

Let X_{1}, \ldots, X_{N} be i.i.d $\mathcal{N}(0,1)$, and $b_{1}, \ldots, b_{N} \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^{N} b_{j}<1$.
Then

$$
\mathbb{P}\left(X_{j}+b_{j}>0,1 \leq j \leq N\right) \leq \mathbb{P}\left(X_{1}<1\right)^{N}
$$

We may therefore assume $\frac{1}{N} \sum_{n=1}^{N} g(n)<1$. Thus

$$
\text { for some } \ell \in\{1, \ldots, k\} \text {, we have } \frac{k}{N} \sum_{n=0}^{\lfloor N / k\rfloor} g(\ell+n k)<1 \text {. }
$$

Lemma 2 - persistence of distorted i.i.d.

Let X_{1}, \ldots, X_{N} be i.i.d $\mathcal{N}(0,1)$, and $b_{1}, \ldots, b_{N} \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^{N} b_{j}<1$.
Then

$$
\mathbb{P}\left(X_{j}+b_{j}>0,1 \leq j \leq N\right) \leq \mathbb{P}\left(X_{1}<1\right)^{N}
$$

Proof:

$$
\begin{aligned}
& \log \mathbb{P}\left(X_{j} \geq-b_{j}, 1 \leq j \leq N\right)=\log \prod_{j=1}^{N} \Phi\left(b_{j}\right) \\
& =\sum_{j=1}^{N} \log \Phi\left(b_{j}\right) \leq N \log \Phi\left(\frac{1}{N} \sum b_{j}\right) \leq N \log \Phi(1)
\end{aligned}
$$

Strategy: build an event $A \subset\{f>0$ on $(0, N]\}$.

Strategy: build an event $A \subset\{f>0$ on $(0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:
$f=S \oplus g$, where S is the (scaled) sinc-kernel process.

Strategy: build an event $A \subset\{f>0$ on $(0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:
$f=S \oplus g$, where S is the (scaled) sinc-kernel process.

$$
\begin{aligned}
& \mathbb{P}(S \oplus g>0 \text { on }(0, N]) \\
& \geq \mathbb{P}(S>1 \text { on }(0, N]) \mathbb{P}\left(|g| \leq \frac{1}{2} \text { on }(0, N]\right)
\end{aligned}
$$

Strategy: build an event $A \subset\{f>0$ on $(0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:
$f=S \oplus g$, where S is the (scaled) sinc-kernel process.

$$
\begin{aligned}
& \mathbb{P}(S \oplus g>0 \text { on }(0, N]) \\
& \geq \underbrace{\mathbb{P}(S>1 \text { on }(0, N])}_{\geq e^{-c N}, \text { ABMO }} \underbrace{\mathbb{P}\left(|g| \leq \frac{1}{2} \text { on }(0, N]\right)}_{\text {small ball prob. }}
\end{aligned}
$$

Strategy: build an event $A \subset\{f>0$ on ($0, N]\}$. Rather than explicitly, use the spectral decomposition + small ball. Recall:
$f=S \oplus g$, where S is the (scaled) sinc-kernel process.

$$
\begin{aligned}
& \mathbb{P}(S \oplus g>0 \text { on }(0, N]) \\
& \geq \underbrace{\mathbb{P}(S>1 \text { on }(0, N])}_{\geq e^{-c N}, \text { ABMO }} \underbrace{\mathbb{P}\left(|g| \leq \frac{1}{2} \text { on }(0, N]\right)}_{\text {small ball prob. }}
\end{aligned}
$$

A corroloary to works by Talagrand, Shao-Wang (1994):

Lemma 3 - small ball.

Let g be a GSP whose spectral measure ρ has some finite δ-moment (i.e., $\left.\int|\lambda|^{\delta} d \rho(\delta)<\infty\right)$. Let $\varepsilon>0$. Then $\mathbb{P}(|g|<\varepsilon$ on $(0, N]) \geq e^{-c N}$.

- Non-negative correlations -Dembo \& Mukherjee (2013, 2015):
- motivated by random polynomials and diffusion processes
- If $r(x) \geq 0$, then $\exists \lim _{N \rightarrow \infty} \frac{-\log P(N)}{N} \in[0, \infty)$ (application of Slepian). In particular, if $r(x) \geq 0$ then $P(N) \geq e^{-\alpha N}$ for some $\alpha>0$.
- In case $r(x) \geq 0$, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} - Krishna \& Krishnapur (2016):
- motivated by nodal lines of spherical harmonics.
- on \mathbb{Z}, if $\rho_{A C} \neq 0$ then $P(N) \geq e^{-C N^{2}}$.
- on \mathbb{Z}, if ρ has density $w(\lambda)$ which on $[-a, a]$ obeys $c_{1} \lambda^{k} \leq w(\lambda) \leq c_{2} \lambda^{k}$ for some $k \geq 1$, then $P(N) \geq e^{-C N \log N}$.
- Non-negative correlations -Dembo \& Mukherjee (2013, 2015):
- motivated by random polynomials and diffusion processes
- If $r(x) \geq 0$, then $\exists \lim _{N \rightarrow \infty} \frac{-\log P(N)}{N} \in[0, \infty)$ (application of Slepian). In particular, if $r(x) \geq 0$ then $P(N) \geq e^{-\alpha N}$ for some $\alpha>0$.
- In case $r(x) \geq 0$, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} - Krishna \& Krishnapur (2016):
- motivated by nodal lines of spherical harmonics.
- on \mathbb{Z}, if $\rho_{A C} \neq 0$ then $P(N) \geq e^{-C N^{2}}$.
- on \mathbb{Z}, if ρ has density $w(\lambda)$ which on $[-a, a]$ obeys $c_{1} \lambda^{k} \leq w(\lambda) \leq c_{2} \lambda^{k}$ for some $k \geq 1$, then $P(N) \geq e^{-C N \log N}$.
Question: How does persistence behave when the spectrum explodes or vanishes near 0?
- Non-negative correlations -Dembo \& Mukherjee (2013, 2015):
- motivated by random polynomials and diffusion processes
- If $r(x) \geq 0$, then $\exists \lim _{N \rightarrow \infty} \frac{-\log P(N)}{N} \in[0, \infty)$ (application of Slepian). In particular, if $r(x) \geq 0$ then $P(N) \geq e^{-\alpha N}$ for some $\alpha>0$.
- In case $r(x) \geq 0$, improve Newell-Rosenblatt bounds and give matching lower bounds.
- Lower bounds for GSP on \mathbb{Z} - Krishna \& Krishnapur (2016):
- motivated by nodal lines of spherical harmonics.
- on \mathbb{Z}, if $\rho_{A C} \neq 0$ then $P(N) \geq e^{-C N^{2}}$.
- on \mathbb{Z}, if ρ has density $w(\lambda)$ which on $[-a, a]$ obeys $c_{1} \lambda^{k} \leq w(\lambda) \leq c_{2} \lambda^{k}$ for some $k \geq 1$, then $P(N) \geq e^{-C N \log N}$.
Question: How does persistence behave when the spectrum explodes or vanishes near 0?

Conjecture 1: explods $\Rightarrow P(N) \gg e^{-\alpha N}$, vanishes $\Rightarrow P(N) \ll e^{-\alpha N}$.
Conjecture 2: $P(N) \leq e^{-C N^{2}}$ when ρ vanishes on an interval around 0 ("spectral gap").

Persistence is largely determined by the spectral behavior near 0 .

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in $[-a, a]$ the spectral measure has density $w(\lambda)$ which satisfies $c_{1} \lambda^{\gamma} \leq w(\lambda) \leq c_{2} \lambda^{\gamma}$ for some $\gamma>-1$. Then:

$$
\log P_{f}(N) \begin{cases}\asymp-N^{1+\gamma} \log N, & \gamma<0 \\ \asymp-N, & \gamma=0 \\ \lesssim-\gamma N \log N, & \gamma>0\end{cases}
$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0 , then $P_{f}(N) \leq e^{-C N^{2}}$.

Persistence is largely determined by the spectral behavior near 0 .

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in $[-a, a]$ the spectral measure has density $w(\lambda)$ which satisfies $c_{1} \lambda^{\gamma} \leq w(\lambda) \leq c_{2} \lambda^{\gamma}$ for some $\gamma>-1$. Then:

$$
\log P_{f}(N)\left\{\begin{array}{ll}
\asymp-N^{1+\gamma} \log N, & \gamma<0 \quad \text { (exploding spec. at } 0 \text {) } \\
\asymp-N, & \gamma=0 \\
\lesssim-N \log N, & \gamma>0
\end{array} \quad \text { (vanishing spec. at } 0\right. \text {). }
$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0 , then $P_{f}(N) \leq e^{-C N^{2}}$.

Persistence is largely determined by the spectral behavior near 0 .

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in $[-a, a]$ the spectral measure has density $w(\lambda)$ which satisfies $c_{1} \lambda^{\gamma} \leq w(\lambda) \leq c_{2} \lambda^{\gamma}$ for some $\gamma>-1$. Then:

$$
\log P_{f}(N)\left\{\begin{array}{lll}
\asymp-N^{1+\gamma} \log N, & \gamma<0 & \text { (exploding spec. at } 0) \\
\asymp-N, & \gamma=0 & \\
\lesssim-N \log N, & \gamma>0 & \text { (vanishing spec. at } 0 \text {). }
\end{array}\right.
$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0 , then $P_{f}(N) \leq e^{-C N^{2}}$.

Corollaries:

- establish both conjectures (and more)
- remove the condition $r(t) \geq 0$ from Dembo-Mukherjee
- with Krishna-Krishnapure: matching upper and lower bounds over \mathbb{Z}
- achieve the first example of $P(N) \ll e^{-C N \log N}$

Persistence is largely determined by the spectral behavior near 0 .

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in $[-a, a]$ the spectral measure has density $w(\lambda)$ which satisfies $c_{1} \lambda^{\gamma} \leq w(\lambda) \leq c_{2} \lambda^{\gamma}$ for some $\gamma>-1$. Then:

$$
\log P_{f}(N)\left\{\begin{array}{ll}
\asymp-N^{1+\gamma} \log N, & \gamma<0 \\
\asymp-N, & \gamma=0 \\
\lesssim-N \log N, & \gamma>0
\end{array} \quad \text { (exploding spec. at } 0\right)
$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0 , then $P_{f}(N) \leq e^{-C N^{2}}$.

Further improvements:

- $w(\lambda) \leq c_{2} \lambda^{\gamma} \Rightarrow$ upper bounds, $w(\lambda) \geq c_{1} \lambda^{\gamma} \Rightarrow$ lower bounds
- formulate using $\rho([0, \lambda])$ for $\lambda \ll 1$, provided that $\rho_{A C} \neq 0$
- analysis of constants (e.g. $\gamma>0 \Rightarrow \log P_{f}(N) \leq-\operatorname{ca\gamma } N \log N$)

Persistence is largely determined by the spectral behavior near 0 .

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in $[-a, a]$ the spectral measure has density $w(\lambda)$ which satisfies $c_{1} \lambda^{\gamma} \leq w(\lambda) \leq c_{2} \lambda^{\gamma}$ for some $\gamma>-1$. Then:

$$
\log P_{f}(N)\left\{\begin{array}{lll}
\asymp-N^{1+\gamma} \log N, & \gamma<0 & (\text { exploding spec. at } 0) \\
\asymp-N, & \gamma=0 & \\
\lesssim-N \log N, & \gamma>0 & \text { (vanishing spec. at } 0) .
\end{array}\right.
$$

Moreover, if $w(\lambda)$ vanishes on an interval containing 0 , then $P_{f}(N) \leq e^{-C N^{2}}$.

Further improvements:

- $w(\lambda) \leq c_{2} \lambda^{\gamma} \Rightarrow$ upper bounds, $w(\lambda) \geq c_{1} \lambda^{\gamma} \Rightarrow$ lower bounds
- formulate using $\rho([0, \lambda])$ for $\lambda \ll 1$, provided that $\rho_{A C} \neq 0$
- analysis of constants (e.g. $\gamma>0 \Rightarrow \log P_{f}(N) \leq-\operatorname{ca\gamma } N \log N$)

Missing: lower bound over \mathbb{R} when $\gamma>0$!

Persistence is largely determined by the spectral behavior near $0 \ldots$

Theorem 2' (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0 , then

$$
P_{f}(N) \leq e^{-C N^{2}}
$$

\ldots and near ∞.

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let $T=\mathbb{R}$. If the spectral measure vanishes on an interval containing 0 , and on $[1, \infty)$ it has density $w(\lambda)$ such that $w(\lambda) \geq \lambda^{-100}$, then

$$
P_{f}(N) \leq e^{-e^{C N}}
$$

Persistence is largely determined by the spectral behavior near $0 \ldots$

Theorem 2' (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0 , then

$$
P_{f}(N) \leq e^{-C N^{2}}
$$

\ldots and near ∞.

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let $T=\mathbb{R}$. If the spectral measure vanishes on an interval containing 0 , and on $[1, \infty)$ it has density $w(\lambda)$ such that $w(\lambda) \geq \lambda^{-100}$, then

$$
P_{f}(N) \leq e^{-e^{C N}}
$$

- heavy tail $\Rightarrow f$ is "rough" \Rightarrow tiny persistence.
- light tail $\Rightarrow f$ is smooth \Rightarrow matching lower bounds as over \mathbb{Z} [in progress]

Ideas from the proof.

Exploding spectrum: upper bound

$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let $\ell=\ell(N, \rho)>0$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<\ell\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right)
$$

$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let $\ell=\ell(N, \rho)>0$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<\ell\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right)
$$

Lemma 1' - average of a GSP.

$\operatorname{var}\left(\frac{1}{N} \sum_{n=1}^{N} g(n)\right) \lesssim \sigma_{N}^{2}:=\rho\left(\left[0, \frac{1}{N}\right]\right)$. Therefore,
$\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right) \leq \mathbb{P}\left(\sigma_{N} Z>\ell\right)$.
$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let $\ell=\ell(N, \rho)>0$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<\ell\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right)
$$

Lemma 1' - average of a GSP.

$\operatorname{var}\left(\frac{1}{N} \sum_{n=1}^{N} g(n)\right) \lesssim \sigma_{N}^{2}:=\rho\left(\left[0, \frac{1}{N}\right]\right)$. Therefore,
$\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right) \leq \mathbb{P}\left(\sigma_{N} Z>\ell\right)$.
Lemma 2' - persistence of distorted i.i.d.
Let X_{1}, \ldots, X_{N} be i.i.d $\mathcal{N}(0,1)$, and $b_{1}, \ldots, b_{N} \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^{N} b_{j}<\ell$. Then

$$
\mathbb{P}\left(X_{j}+b_{j}>0,1 \leq j \leq N\right) \leq \mathbb{P}\left(X_{1}<\ell\right)^{N} .
$$

$f=S \oplus g$, where $(S(n k))_{n \in \mathbb{Z}}$ are i.i.d.
Let $\ell=\ell(N, \rho)>0$.

$$
P_{f}(N) \leq \mathbb{P}\left(S \oplus g>0 \text { on }(0, N] \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} g(n)<\ell\right.\right)+\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right)
$$

Lemma 1' - average of a GSP.

$\operatorname{var}\left(\frac{1}{N} \sum_{n=1}^{N} g(n)\right) \lesssim \sigma_{N}^{2}:=\rho\left(\left[0, \frac{1}{N}\right]\right)$. Therefore,
$\mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} g(n) \geq \ell\right) \leq \mathbb{P}\left(\sigma_{N} Z>\ell\right)$.
Lemma 2' - persistence of distorted i.i.d.
Let X_{1}, \ldots, X_{N} be i.i.d $\mathcal{N}(0,1)$, and $b_{1}, \ldots, b_{N} \in \mathbb{R}$ such that $\frac{1}{N} \sum_{j=1}^{N} b_{j}<\ell$. Then

$$
\mathbb{P}\left(X_{j}+b_{j}>0,1 \leq j \leq N\right) \leq \mathbb{P}\left(X_{1}<\ell\right)^{N}
$$

Balancing equation:

$$
\mathbb{P}(Z<\ell)^{N} \asymp \mathbb{P}\left(\sigma_{N} Z>\ell\right)
$$

Exploding spectrum: lower bound

$$
f=A \oplus h \text {, where } A \text { is SGP with } \rho_{A}=\left.\rho\right|_{\left[-\frac{1}{N}, \frac{1}{N}\right]} .
$$

For any $\ell>0$,

$$
\mathbb{P}(f>0 \text { on }(0, N]) \geq \mathbb{P}(A>\ell \text { on }(0, N]) \cdot \mathbb{P}\left(|h| \leq \frac{\ell}{2} \text { on }(0, N]\right) .
$$

Exploding spectrum: lower bound

$$
f=A \oplus h, \text { where } A \text { is SGP with } \rho_{A}=\left.\rho\right|_{\left[-\frac{1}{N}, \frac{1}{N}\right]}
$$

For any $\ell>0$,

$$
\mathbb{P}(f>0 \text { on }(0, N]) \geq \mathbb{P}(A>\ell \text { on }(0, N]) \cdot \mathbb{P}\left(|h| \leq \frac{\ell}{2} \text { on }(0, N]\right) .
$$

Lemma 3' - large ball.
There exists $q>0$ such that for large enough ℓ :

$$
\mathbb{P}(|h|<\ell \text { on }(0, N]) \geq \mathbb{P}(|h(0)|<q \ell)^{N} .
$$

$f=A \oplus h$, where A is SGP with $\rho_{A}=\left.\rho\right|_{\left[-\frac{1}{N}, \frac{1}{N}\right]}$.
For any $\ell>0$,

$$
\mathbb{P}(f>0 \text { on }(0, N]) \geq \mathbb{P}(A>\ell \text { on }(0, N]) \cdot \mathbb{P}\left(|h| \leq \frac{\ell}{2} \text { on }(0, N]\right) .
$$

Lemma 3' - large ball.
There exists $q>0$ such that for large enough ℓ :

$$
\mathbb{P}(|h|<\ell \text { on }(0, N]) \geq \mathbb{P}(|h(0)|<q \ell)^{N} .
$$

Lemma 4' - "atom-like" behavior

$$
\mathbb{P}(A>\ell \text { on }(0, N]) \geq \frac{1}{2} \mathbb{P}\left(\sigma_{N} Z>2 \ell\right)
$$

for every $\ell>0$, where $Z \sim \mathcal{N}(0,1)$ and $\sigma_{N}^{2}=\rho([-1 / N, 1 / N])$.
$f=A \oplus h$, where A is SGP with $\rho_{A}=\left.\rho\right|_{\left[-\frac{1}{N}, \frac{1}{N}\right]}$.
For any $\ell>0$,

$$
\mathbb{P}(f>0 \text { on }(0, N]) \geq \mathbb{P}(A>\ell \text { on }(0, N]) \cdot \mathbb{P}\left(|h| \leq \frac{\ell}{2} \text { on }(0, N]\right) .
$$

Lemma 3' - large ball.

There exists $q>0$ such that for large enough ℓ :

$$
\mathbb{P}(|h|<\ell \text { on }(0, N]) \geq \mathbb{P}(|h(0)|<q \ell)^{N} .
$$

Lemma 4' - "atom-like" behavior

$$
\mathbb{P}(A>\ell \text { on }(0, N]) \geq \frac{1}{2} \mathbb{P}\left(\sigma_{N} Z>2 \ell\right)
$$

for every $\ell>0$, where $Z \sim \mathcal{N}(0,1)$ and $\sigma_{N}^{2}=\rho([-1 / N, 1 / N])$.

Balancing equation:

$$
\mathbb{P}(Z<\ell)^{N} \asymp \mathbb{P}\left(\sigma_{N} Z>2 \ell\right)
$$

Vanishing spectrum: upper bound

Vanishing spectrum: upper bound Main tools

Spectral decomposition

$$
\rho=\rho_{1}+\rho_{2} \Rightarrow f=f_{1} \oplus f_{2}
$$

Vanishing spectrum: upper bound

 Main tools
Spectral decomposition

$\rho=\rho_{1}+\rho_{2} \Rightarrow f=f_{1} \oplus f_{2}$.

Process integration

If $\int \frac{1}{\lambda^{2}} d \rho(\lambda)<\infty$, then there exists a GSP h such that $h^{\prime} \stackrel{d}{=} f$.

Vanishing spectrum: upper bound

Spectral decomposition

$\rho=\rho_{1}+\rho_{2} \Rightarrow f=f_{1} \oplus f_{2}$.

Process integration

If $\int \frac{1}{\lambda^{2}} d \rho(\lambda)<\infty$, then there exists a GSP h such that $h^{\prime} \stackrel{d}{=} f$.

Borell-TIS inequality

$$
\mathbb{P}\left(\sup _{[0, N]}|h|>\ell\right) \leq e^{-\frac{\ell^{2}}{2 \operatorname{vart}(0)}} \text { for a GSP } h \text {. }
$$

Anderson's lemma

$\mathbb{P}\left(\sup _{n}\left|X_{n} \oplus Y_{n}\right| \leq \ell\right) \leq \mathbb{P}\left(\sup _{n}\left|X_{n}\right| \leq \ell\right)$ for X_{n}, Y_{n} Gaussian centred.

Vanishing spectrum: upper bound Main tools

Spectral decomposition

$\rho=\rho_{1}+\rho_{2} \Rightarrow f=f_{1} \oplus f_{2}$.

Process integration

If $\int \frac{1}{\lambda^{2}} d \rho(\lambda)<\infty$, then there exists a GSP h such that $h^{\prime} \stackrel{d}{=} f$.

Borell-TIS inequality

$$
\mathbb{P}\left(\sup _{[0, N]}|h|>\ell\right) \leq e^{-\frac{\ell^{2}}{2 \operatorname{var} h(0)}} \text { for a GSP } h \text {. }
$$

Anderson's lemma

$\mathbb{P}\left(\sup _{n}\left|X_{n} \oplus Y_{n}\right| \leq \ell\right) \leq \mathbb{P}\left(\sup _{n}\left|X_{n}\right| \leq \ell\right)$ for X_{n}, Y_{n} Gaussian centred.

An analytic lemma

If $h: T \rightarrow \mathbb{R}$ is such that $h^{\prime}>0$ on $[0, N]$, then there exists a set $R \subseteq[0, N]$ of measure $|R| \geq \frac{N}{2}$ such that $\sup _{R}\left|h^{\prime}\right| \leq \frac{2}{N} \sup _{[0, N]}|h|$.

Vanishing spectrum: upper bound Main tools

Spectral decomposition

$\rho=\rho_{1}+\rho_{2} \Rightarrow f=f_{1} \oplus f_{2}$.

Process integration

If $\int \frac{1}{\lambda^{2}} d \rho(\lambda)<\infty$, then there exists a GSP h such that $h^{\prime} \stackrel{d}{=} f$.

Borell-TIS inequality

$\mathbb{P}\left(\sup _{[0, N]}|h|>\ell\right) \leq e^{-\frac{\ell^{2}}{2 \operatorname{varh}(0)}}$ for a GSP h.

Anderson's lemma

$\mathbb{P}\left(\sup _{n}\left|X_{n} \oplus Y_{n}\right| \leq \ell\right) \leq \mathbb{P}\left(\sup _{n}\left|X_{n}\right| \leq \ell\right)$ for X_{n}, Y_{n} Gaussian centred.

An analytic lemma (degree p)
If $h: T \rightarrow \mathbb{R}$ is such that $h^{(p)}>0$ on $[0, N]$, then there exists a set $R \subseteq[0, N]$ of measure $|R| \geq \frac{N}{2}$ such that $\sup _{R}\left|h^{(p)}\right| \leq\left(\frac{2 p}{N}\right)^{p} \sup _{[0, N]}|h|$.

Vanishing spectrum: upper bound

 SketchSuppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.

Vanishing spectrum: upper bound

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$. Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right) .
$$

Vanishing spectrum: upper bound

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$. Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right) .
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.

Vanishing spectrum: upper bound
 Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$. Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right)
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.

Vanishing spectrum: upper bound

Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$.
Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right)
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.
By the spectral decomposition, $f(k n)=Z_{n} \oplus g_{n}$ where Z_{n} are i.i.d.

Vanishing spectrum: upper bound

Sketch

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$.
Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right)
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.
By the spectral decomposition, $f(k n)=Z_{n} \oplus g_{n}$ where Z_{n} are i.i.d.
By Anderson's lemma,

$$
\mathbb{P}\left(\sup _{n}\left|Z_{n} \oplus g_{n}\right| \leq \frac{2 \ell}{N}\right) \leq \mathbb{P}\left(\left|Z_{1}\right| \leq \frac{2 \ell}{N}\right)^{\alpha N}
$$

Vanishing spectrum: upper bound

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$.
Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right) .
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.
By the spectral decomposition, $f(k n)=Z_{n} \oplus g_{n}$ where Z_{n} are i.i.d.
By Anderson's lemma,

$$
\mathbb{P}\left(\sup _{n}\left|Z_{n} \oplus g_{n}\right| \leq \frac{2 \ell}{N}\right) \leq \mathbb{P}\left(\left|Z_{1}\right| \leq \frac{2 \ell}{N}\right)^{\alpha N} .
$$

Balancing equation

$$
\mathbb{P}(a Z>\ell) \asymp \mathbb{P}\left(|Z| \leq \frac{\ell}{N}\right)^{\alpha N}
$$

Vanishing spectrum: upper bound

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$.
Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right) .
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.
By the spectral decomposition, $f(k n)=Z_{n} \oplus g_{n}$ where Z_{n} are i.i.d.
By Anderson's lemma,

$$
\mathbb{P}\left(\sup _{n}\left|Z_{n} \oplus g_{n}\right| \leq \frac{2 \ell}{N}\right) \leq \mathbb{P}\left(\left|Z_{1}\right| \leq \frac{2 \ell}{N}\right)^{\alpha N} .
$$

Balancing equation

$$
e^{-\ell^{2} / 2 a} \approx \mathbb{P}(a Z>\ell) \asymp \mathbb{P}\left(|Z| \leq \frac{\ell}{N}\right)^{\alpha N} \approx\left(\frac{\ell}{N}\right)^{\alpha N}
$$

Vanishing spectrum: upper bound

Suppose for simplicity that $w(\lambda) \leq \lambda^{2}$ for $|\lambda| \leq a$.
By process integration, there exists a GSP h so that $h^{\prime} \stackrel{d}{=} f$.
Define $G=\left\{\sup _{[0, N]}|h|<\ell\right\}$.

$$
\mathbb{P}(f>0) \leq \mathbb{P}(\{f>0\} \cap G)+\mathbb{P}\left(G^{c}\right) .
$$

By Borell-TIS, $\mathbb{P}\left(G^{c}\right) \leq \mathbb{P}(a Z>\ell)=e^{-\ell^{2} / 2 a}$.
If $\{f>0\} \cap G$ occoured, by the analytic lemma there is a large set $R \subseteq[0, N]$ $\left(|R| \geq \frac{N}{2}\right)$ such that $|f|<\frac{2 \ell}{N}$ on R.
By the spectral decomposition, $f(k n)=Z_{n} \oplus g_{n}$ where Z_{n} are i.i.d.
By Anderson's lemma,

$$
\mathbb{P}\left(\sup _{n}\left|Z_{n} \oplus g_{n}\right| \leq \frac{2 \ell}{N}\right) \leq \mathbb{P}\left(\left|Z_{1}\right| \leq \frac{2 \ell}{N}\right)^{\alpha N}
$$

Balancing equation

$$
e^{-\ell^{2} / 2 a} \approx \mathbb{P}(a Z>\ell) \asymp \mathbb{P}\left(|Z| \leq \frac{\ell}{N}\right)^{\alpha N} \approx\left(\frac{\ell}{N}\right)^{\alpha N}
$$

$\ell=\sqrt{N \log N} \Rightarrow$ both sides are $e^{-C N \log N}$.

- other levels
- other dimensions
- the mysterious discontinuities in $\log P_{f}(N)$
- singular measures
- existence of limiting exponent (e.g. $\lim _{N \rightarrow \infty} \frac{\log P_{f}(N)}{N}$)
- non-stationary processes

Thanks!

"Persistence can grind an iron beam down into a needle." - - Chinese Proverb.

