One more proof of the Erdős-Turán inequality, and an error estimate in Wigner's law.

Ohad N. Feldheim ${ }^{1}$, Sasha Sodin ${ }^{1,2}$

January 12, 2009

Erdős and Turán [3] have proved the following inequality, which is a quantitative form of Weyl's equidistribution criterion.

Proposition 1 (Erdős - Turán). Let ν be a probability measure on the unit circle $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$. Then, for any $n_{0} \geq 1$ and any arc $A \subset \mathbb{T}$,

$$
\begin{equation*}
\left|\nu(A)-\frac{\operatorname{mes} A}{2 \pi}\right| \leq K_{\text {可 }}\left\{\frac{1}{n_{0}}+\sum_{n=1}^{n_{0}} \frac{|\widehat{\nu}(n)|}{n}\right\}, \tag{1}
\end{equation*}
$$

where

$$
\widehat{\nu}(n)=\int_{\mathbb{T}} \exp (-i n \theta) d \nu(\theta),
$$

and $K_{1}>0$ is a universal constant.
A number of proofs have appeared since then, an especially elegant one given by Ganelius [5]. In most of the proofs, the indicator of A is approximated by its convolution with an appropriate (Fejér-type) kernel. We shall present another proof, based on the arguments developed by Chebyshev, Markov, and Stieltjes to prove the Central Limit Theorem (see Akhiezer [1, Ch. 3]). In this approach, the indicator of A is approximated from above and from below by certain interpolation polynomials. The argument does not use the group structure on \mathbb{T}, and thus works in a more general setting.

[^0]In Section 1, we formulate a slightly different proposition and show that it implies Proposition [1. In Section 2 we reproduce the part of the arguments of Chebyshev, Markov, and Stieltes that we need for the sequel. For the convenience of the reader, we try to keep the exposition self-contained. In Section 3 we apply the construction of Section 2 to prove the Erdős-Turán inequality. In Section 4 we formulate another inequality that can be proved using the same construction. As an application to random matrices, we use an inequality from [4] and deduce a form of Wigner's law with a reasonable error estimate.

1 Introduction

Let the measure σ_{1} on \mathbb{R} be defined by

$$
d \sigma_{1}(x)=\frac{1}{\pi}\left(1-x^{2}\right)_{+}^{-1 / 2} d x
$$

Let $T_{n}(\cos \theta)=\cos n \theta$ be the Chebyshev polynomials of the first kind; these are orthogonal with respect to σ_{1}. We shall prove the Erdős - Turán inequality in the following form:

Proposition 2. Let μ be a probability measure on $\mathbb{R} 11$. Then, for any $n_{0} \geq 1$ and any $x_{0} \in \mathbb{R}$,

$$
\begin{equation*}
\left|\mu\left[x_{0},+\infty\right)-\sigma_{1}\left[x_{0},+\infty\right)\right| \leq K_{\mathbb{Z}}\left\{\frac{1}{n_{0}}+\sum_{n=1}^{n_{0}} \frac{1}{n}\left|\int_{\mathbb{R}} T_{n}(x) d \mu(x)\right|\right\} \tag{2}
\end{equation*}
$$

Proposition 圆 implies Proposition 1. Let ν be a measure on \mathbb{T}, and let $A \subset \mathbb{T}$ be an arc. Rotate \mathbb{T} (together with ν and A) moving the center of A to 0 ; this does not change the right-hand side of (1).

Denote $\nu_{1}(B)=\nu(B)+\nu(-B) ; \nu_{1}$ is a measure on $[0, \pi]$. The change of variables $x=\cos \theta$ pushes it forward to μ_{1} on $[-1,1]$. Now apply Proposition 2 to μ_{1}, observing that

$$
\int_{-1}^{1} T_{n}(x) d \mu_{1}(x)=\Re \widehat{\nu}(n) .
$$

[^1]
2 The Chebyshev-Markov-Stieltjes construction

Let σ be a probability measure on \mathbb{R} (with finite moments); let S_{0}, S_{1}, \cdots be the orthogonal polynomials with respect to σ. For a probability measure μ on \mathbb{R}, denote

$$
\varepsilon_{n}=\varepsilon_{n}(\mu)=\int_{\mathbb{R}} S_{n}(x) d \mu(x), \quad n=1,2,3, \cdots
$$

We shall estimate the distance between μ and σ in terms of the numbers ε_{n}.
Let $x_{1}<x_{2}<\cdots<x_{n_{0}}$ be the zeros of $S_{n_{0}}$. Construct the polynomials P, Q of degree $\leq 2 n_{0}-2$, so that

$$
\begin{aligned}
& P\left(x_{k}\right)=\left\{\begin{array}{ll}
0, & 1 \leq k<k_{0} \\
1, & k_{0} \leq k \leq n_{0}
\end{array} ; \quad P^{\prime}\left(x_{k}\right)=0 \quad \text { for } k \neq k_{0} ;\right. \\
& Q\left(x_{k}\right)=\left\{\begin{array}{ll}
0, & 1 \leq k \leq k_{0} \\
1, & k_{0}<k \leq n_{0}
\end{array} ; \quad Q^{\prime}\left(x_{k}\right)=0 \quad \text { for } k \neq k_{0} .\right.
\end{aligned}
$$

Lemma 3 (Chebyshev-Markov-Stieltjes).

$$
P \geq \mathbf{1}_{\left[x_{k_{0}},+\infty\right)} \geq \mathbf{1}_{\left(x_{k_{0}},+\infty\right)} \geq Q
$$

Proof. Let us prove for example the first inequality. The derivative P^{\prime} of P vanishes at $x_{k}, k \neq k_{0}$, and also at intermediate points $x_{k}<y_{k}<x_{k+1}$, $k \neq k_{0}, n_{0}$. The degree of P^{\prime} is at most $2 n_{0}-3$, hence it has no more zeroes. Now, $P\left(x_{k_{0}}\right)>P\left(x_{k_{0}-1}\right)$; hence P is increasing on $\left(x_{k_{0}-1}, y_{k_{0}+1}\right)$. Therefore P^{\prime} is decreasing on $\left(y_{k_{0}+1}, x_{k_{0}+2}\right)$, increasing on $\left(x_{k_{0}+2}, y_{k_{0}+3}\right)$, et cet. Thus $P(x) \geq 1$ for $x \geq x_{k_{0}}$. Similarly, $P(x) \geq 0$ for $x<x_{k_{0}}$.

Let $P=\sum_{n=0}^{n_{0}} p_{n} S_{n}, Q=\sum_{n=0}^{n_{0}} q_{n} S_{n}$. Then

$$
\begin{aligned}
\mu\left[x_{k_{0}},+\infty\right) & \leq \int_{\mathbb{R}} P(x) d \mu(x)=p_{0}+\sum_{n=1}^{2 n_{0}-2} \varepsilon_{n} p_{n} \\
& =q_{0}+\left(p_{0}-q_{0}\right)+\sum_{n=1}^{2 n_{0}-2} \varepsilon_{n} p_{n} \\
& \leq \sigma\left(x_{k_{0}},+\infty\right)+\left(p_{0}-q_{0}\right)+\sum_{n=1}^{2 n_{0}-2}\left|\varepsilon_{n}\right|\left|p_{n}\right|
\end{aligned}
$$

Similarly,

$$
\mu\left(x_{k_{0}},+\infty\right) \geq \sigma\left[x_{k_{0}},+\infty\right)-\left(p_{0}-q_{0}\right)-\sum_{n=1}^{2 n_{0}-2}\left|\varepsilon_{n}\right|\left|q_{n}\right|
$$

Therefore

$$
\begin{equation*}
\left|\mu\left[x_{k_{0}},+\infty\right)-\sigma\left[x_{k_{0}},+\infty\right)\right| \leq\left(p_{0}-q_{0}\right)+\sum_{n=1}^{2 n_{0}-2}\left|\varepsilon_{n}\right| \max \left(\left|p_{n}\right|,\left|q_{n}\right|\right) \tag{3}
\end{equation*}
$$

Thus we need to estimate $p_{0}-q_{0},\left|p_{n}\right|,\left|q_{n}\right|$. This can be done using the following observation (which we have also used in [8].) Let R be the Lagrange interpolation polynomial of degree $n_{0}-1$, defined by

$$
R\left(x_{k}\right)=\delta_{k k_{0}}, \quad k=1,2, \cdots, n_{0} .
$$

Equivalently,

$$
\begin{equation*}
R(x)=\frac{S_{n_{0}}(x)}{S_{n_{0}}^{\prime}\left(x_{k_{0}}\right)\left(x-x_{k_{0}}\right)} \tag{4}
\end{equation*}
$$

Lemma 4. $P-Q=R^{2}$.
Proof. The polynomial $P-Q$ has multiple zeroes at $x_{k}, k \neq k_{0}$. Therefore $R^{2} \mid(P-Q)$. Also, $\operatorname{deg} R^{2}=2 n_{0}-2 \geq \operatorname{deg}(P-Q)$, and

$$
R^{2}\left(x_{k_{0}}\right)=1=P\left(x_{k_{0}}\right)-Q\left(x_{k_{0}}\right) .
$$

Thus

$$
\begin{equation*}
p_{0}-q_{0}=\int_{\mathbb{R}} R^{2}(x) d \sigma(x) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
&\left|p_{n}\right|=\left|\int_{\mathbb{R}} P(x) S_{n}(x) d \sigma(x)\right| \\
& \leq\left|\int_{x_{k_{0}}}^{\infty} S_{n}(x) d \sigma(x)\right|+\left|\int_{\mathbb{R}}\left(P(x)-\mathbf{1}_{\left[x_{k_{0}},+\infty\right)}(x)\right) S_{n}(x) d \sigma(x)\right| \\
& \leq\left|\int_{x_{k_{0}}}^{\infty} S_{n}(x) d \sigma(x)\right|+\int_{\mathbb{R}} R^{2}(x)\left|S_{n}(x)\right| d \sigma(x) \tag{6}
\end{align*}
$$

Similarly,

$$
\left|q_{n}\right| \leq\left|\int_{x_{k_{0}}}^{\infty} S_{n}(x) d \sigma(x)\right|+\int_{\mathbb{R}} R^{2}(x)\left|S_{n}(x)\right| d \sigma(x)
$$

3 Proof of Proposition 2

We apply the framework of Section 2 to $\sigma=\sigma_{1}, S_{n}=T_{n}$. Let $x_{k_{0}}=\cos \theta_{0}$, $0 \leq \theta_{0} \leq \pi / 2$. Then

$$
T_{n_{0}}^{\prime}\left(\cos \theta_{0}\right) \cdot-\sin \theta_{0}=-n_{0} \sin n \theta_{0}
$$

and hence

$$
\left|T_{n_{0}}^{\prime}\left(x_{0}\right)\right|=\frac{n_{0}}{\left|\sin \theta_{0}\right|}=\frac{n_{0}}{\sqrt{1-x_{k_{0}}^{2}}}
$$

Thus, according to (5),

$$
\begin{aligned}
p_{0}-q_{0} & =\int_{\mathbb{R}} \frac{T_{n_{0}}(x)^{2}}{T_{n_{0}}^{\prime}\left(x_{0}\right)^{2}\left(x-x_{0}\right)^{2}} d \sigma_{1}(x) \\
& =\frac{\sin ^{2} \theta_{0}}{4 \pi n_{0}^{2}} \int_{0}^{\pi} \frac{\cos ^{2} n_{0} \theta}{\sin ^{2} \frac{\theta+\theta_{0}}{2} \sin ^{2} \frac{\theta-\theta_{0}}{2}} d \theta .
\end{aligned}
$$

Now,

$$
\begin{gathered}
\int_{0}^{\theta_{0} / 2} \leq \int_{0}^{\theta_{0} / 2} C_{1} d \theta / \theta_{0}^{4} \leq C_{1} / \theta_{0}^{3} \leq C_{2} n_{0} / \theta_{0}^{2} \\
\int_{\theta_{0} / 2}^{\theta_{0}-\pi /\left(3 n_{0}\right)} \leq C_{3} \int_{\theta_{0} / 2}^{\theta_{0}-\pi /\left(3 n_{0}\right)} \frac{d \theta}{\theta_{0}^{2}\left(\theta-\theta_{0}\right)^{2}} \leq \frac{C_{4} n_{0}}{\theta_{0}^{2}}
\end{gathered}
$$

and similarly

$$
\int_{\theta_{0}+\pi /\left(3 n_{0}\right)}^{\pi} \leq C_{5} n_{0} / \theta_{0}^{2}
$$

Finally,

$$
\left|T_{n_{0}}^{\prime}(\cos \theta)\right|=n_{0} \frac{\left|\sin n_{0} \theta\right|}{\sin \theta} \geq n_{0} /\left(C_{6} \theta_{0}\right) \geq\left|T_{n_{0}}^{\prime}\left(\cos \theta_{0}\right)\right| / C_{7}
$$

for $\left|\theta-\theta_{0}\right| \leq \pi /\left(3 n_{0}\right)$, hence

$$
\int_{\theta_{0}-\pi /\left(3 n_{0}\right)}^{\theta_{0}+\pi /\left(3 n_{0}\right)} \frac{T_{n_{0}}(\cos \theta)^{2} d \theta}{T_{n_{0}}^{\prime}\left(\cos \theta_{0}\right)^{2}\left(\cos \theta-\cos \theta_{0}\right)^{2}} \leq C_{8} / n_{0}
$$

Therefore

$$
\begin{equation*}
p_{0}-q_{0} \leq C / n_{0} . \tag{7}
\end{equation*}
$$

Next,

$$
\begin{align*}
\int_{x_{k_{0}}}^{\infty} T_{n}(x) d \sigma_{1}(x) & =\int_{0}^{\theta_{0}} \cos n \theta \frac{d \theta}{\pi}=\frac{\sin n \theta_{0}}{n \pi} \tag{8}\\
\int_{\mathbb{R}} R^{2}(x)\left|T_{n}(x)\right| d \sigma_{1}(x) & =\int_{0}^{\pi} \frac{\cos ^{2} n_{0} \theta}{\frac{n_{0}^{2}}{\sin ^{2} \theta_{0}}\left(\cos \theta-\cos \theta_{0}\right)^{2}}|\cos n \theta| \frac{d \theta}{\pi} \\
& \leq \frac{C_{1} \theta_{0}^{2}}{n_{0}^{2}} \int_{0}^{\pi} \frac{\cos ^{2} n_{0} \theta|\cos n \theta| d \theta}{\sin ^{2} \frac{\theta+\theta_{0}}{2} \sin ^{2} \frac{\theta-\theta_{0}}{2}}
\end{align*}
$$

Now,

$$
\begin{gathered}
\int_{0}^{\theta_{0} / 2} \leq C_{2} / \theta_{0}^{3} \leq C_{3} n_{0} / \theta_{0}^{2} \\
\int_{\theta_{0} / 2}^{\theta_{0}-\pi /\left(3 n_{0}\right)} \leq C_{4} \int_{\theta_{0} / 2}^{\theta_{0}-\pi /\left(3 n_{0}\right)} \frac{d \theta}{\theta_{0}^{2}\left(\theta-\theta_{0}\right)^{2}} \leq C_{5} n_{0} / \theta_{0}^{2}
\end{gathered}
$$

and similarly

$$
\begin{gathered}
\int_{\theta_{0}+\pi /\left(3 n_{0}\right)}^{\pi} \leq C_{6} n_{0} / \theta_{0}^{2} \\
\int_{\theta_{0}-\pi /\left(3 n_{0}\right)}^{\theta_{0}+\pi /\left(3 n_{0}\right)} \leq\left(C_{7} / n_{0}\right)\left(n_{0}^{2} / \theta_{0}^{2}\right)=C_{7} n_{0} / \theta_{0}^{2}
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\int_{\mathbb{R}} R^{2}(x)\left|T_{n}(x)\right| d \sigma_{1}(x) \leq C_{8} / n_{0} \tag{9}
\end{equation*}
$$

Combining (6), (8) and (9), we deduce:

$$
\begin{equation*}
\left|p_{n}\right| \leq C / n . \tag{10}
\end{equation*}
$$

Similarly, $\left|q_{n}\right| \leq C / n$.
Proof of Proposition 园. Substitute (7) and (10) into (3), taking

$$
m_{0}=\left\lceil n_{0} / 2\right\rceil+1
$$

instead of n_{0}. We deduce that (2) holds when $x_{0}=x_{k_{0}}$ is a non-negative zero of $T_{m_{0}}$. By symmetry, a similar inequality holds for negative zeroes. For a general $x_{0} \in \mathbb{R}$, apply the inequality to the two zeroes of $T_{m_{0}}$ that are adjacent to x_{0} (one of them may formally be $\pm \infty$.)

4 Another inequality, and an application to Wigner's law

Let the measure σ_{2} on \mathbb{R} be defined by

$$
d \sigma_{2}(x)=\frac{2}{\pi}\left(1-x^{2}\right)_{+}^{1 / 2} d x
$$

Let $U_{n}(\cos \theta)=\cos n \theta$ be the Chebyshev polynomials of the second kind; these are orthogonal with respect to σ_{2}.

Proposition 5. Let μ be a probability measure on \mathbb{R}. Then, for any $n_{0} \geq 1$ and any $x_{0} \in \mathbb{R}$,

$$
\begin{align*}
\mid \mu\left[x_{0},+\infty\right) & -\sigma_{2}\left[x_{0},+\infty\right) \mid \\
\leq & K_{\text {禾 }}\left\{\frac{\rho\left(x_{0} ; n_{0}\right)}{n_{0}}+\rho\left(x_{0} ; n_{0}\right)^{1 / 2} \sum_{n=1}^{n_{0}} n^{-1}\left|\int_{\mathbb{R}} U_{n}(x) d \mu(x)\right|\right\}, \tag{11}
\end{align*}
$$

where $\rho\left(x ; n_{0}\right)=\max \left(1-|x|, n_{0}^{-2}\right)$.
Observe that $\rho \leq 1$. Similar inequalities with 1 instead of ρ have been proved by Grabner [7] and Voit [9]. On the other hand, the dependence on x in (11) is sharp, in the following sense: for any x_{0}, there exists a probability measure μ on \mathbb{R} such that $\int_{\mathbb{R}} U_{n}(x) d \mu(x)=0$ for $1 \leq n \leq n_{0}$, and

$$
\left|\mu\left[x_{0},+\infty\right)-\sigma_{2}\left[x_{0},+\infty\right)\right| \geq C^{-1} \rho\left(x_{0} ; n_{0}\right) / n_{0}
$$

where $C>0$ is independent of n_{0}; cf. Akhiezer [1, Ch. 3].
The proof of Proposition 5 is parallel to that of Proposition 2, we apply the inequalities of Section 2 to the measure σ_{2} and the polynomials U_{n}.

Grabner [7] and Voit [9] have applied their inequalities to estimate the cap discrepancy of a measure on the sphere. We present an application to random matrices.
Let A be an $N \times N$ Hermitian random matrix, such that

1. $\left\{A_{u v} \mid 1 \leq u \leq v \leq N\right\}$ are independent,
2. $\mathbb{E}\left|A_{u v}\right|^{2 k} \leq(C k)^{k}, k=1,2, \cdots$;
3. the distribution of every $A_{u v}$ is symmetric, and $\mathbb{E}\left|A_{u v}\right|^{2}=1$ for $u \neq v$.

Let $\mu_{A}=N^{-1} \sum_{k=1}^{N} \delta_{\lambda_{k}(A) /(2 \sqrt{N})}$ be the empirical measure of the eigenvalues of A (which is a random measure). By [4, Theorem 1.5.3],

$$
0 \leq \mathbb{E} \int_{\mathbb{R}} U_{n}(x) d \mu_{A}(x) \leq C n / N, \quad 1 \leq n \leq N^{1 / 3}
$$

Applying Proposition 5, we deduce the following form of Wigner's law:
Proposition 6. Under the assumptions 1.-3.,

$$
\begin{align*}
\left|\mathbb{E} \#\left\{k \mid \lambda_{k}>2 \sqrt{N} x_{0}\right\}-N \sigma_{2}\left(x_{0},+\infty\right)\right| & \\
\leq & C \max \left(N^{2 / 3}\left(1-\left|x_{0}\right|\right), 1\right) \tag{12}
\end{align*}
$$

for any $x_{0} \in \mathbb{R}$.
Better bounds are available for $x \in(-1+\varepsilon, 1-\varepsilon)$ (cf. Götze and Tikhomirov [6], Erdős, Schlein, and Yau [2]). On the other hand, for x very close to ± 1, the right-hand side in our bound is of order $O(1)$, which is in some sense optimal.
Remark 7. A similar method allows to bound the variance of the number of eigenvalues on a half-line:

$$
\mathbb{V} \#\left\{k \mid \lambda_{k}>2 \sqrt{N} x_{0}\right\} \leq C \max \left(N^{2 / 3}\left(1-\left|x_{0}\right|\right), 1\right)^{5 / 2}
$$

therefore one can also bound the probability that $\#\left\{k \mid \lambda_{k}>2 \sqrt{N} x_{0}\right\}$ deviates from $N \sigma_{2}\left(x_{0},+\infty\right)$.

References

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York 1965 x+253 pp.
[2] L. Erdős, B. Schlein, H.-T. Yau, with an appendix by J. Bourgain, Local semicircle law and complete delocalization for Wigner random matrices, preprint: arXiv:0803.0542
[3] P. Erdős, P.Turán, On a problem in the theory of uniform distribution, I-II, Nederl. Akad. Wetensch., Proc. 51 (1948), 1146-1154, 1262-1269.
[4] O. N. Feldheim, S. Sodin, A universality result for the smallest eigenvalues of certain sample covariance matrices, preprint: arXiv:0812.1961.
[5] T. Ganelius, Some applications of a lemma on Fourier series, Acad. Serbe Sci. Publ. Inst. Math. 11 1957 9-18.
[6] F. Götze, A. Tikhomirov, Rate of convergence to the semi-circular law, Probab. Theory Related Fields 127 (2003), no. 2, 228-276.
[7] P. Grabner, Erdős-Turán type discrepancy bounds, Monatsh. Math. 111 (1991), no. 2, 127-135.
[8] S. Sodin, Random matrices, nonbacktracking walks, and orthogonal polynomials, J. Math. Phys. 48 (2007), no. 12.
[9] M. Voit, Berry-Esseen-type inequalities for ultraspherical expansions, Publ. Math. Debrecen 54 (1999), no. 1-2, 103-129.

[^0]: ${ }^{1}$ [ohadf; sodinale]@post.tau.ac.il; address: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
 ${ }^{2}$ Supported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and by the ISF.

[^1]: ${ }^{1}$ We do not assume that supp $\mu \subset[-1,1]$

