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One more proof of the Erdős–Turán inequality,

and an error estimate in Wigner’s law.

Ohad N. Feldheim1, Sasha Sodin1,2

January 12, 2009

Erdős and Turán [3] have proved the following inequality, which is a
quantitative form of Weyl’s equidistribution criterion.

Proposition 1 (Erdős – Turán). Let ν be a probability measure on the unit

circle T = R�2πZ. Then, for any n0 ≥ 1 and any arc A ⊂ T,

∣∣∣∣ν(A) − mes A

2π

∣∣∣∣ ≤ K1

{
1

n0
+

n0∑

n=1

|ν̂(n)|
n

}

, (1)

where

ν̂(n) =

∫

T

exp(−inθ)dν(θ) ,

and K1 > 0 is a universal constant.

A number of proofs have appeared since then, an especially elegant one
given by Ganelius [5]. In most of the proofs, the indicator of A is approxi-
mated by its convolution with an appropriate (Fejér-type) kernel. We shall
present another proof, based on the arguments developed by Chebyshev,
Markov, and Stieltjes to prove the Central Limit Theorem (see Akhiezer [1,
Ch. 3]). In this approach, the indicator of A is approximated from above
and from below by certain interpolation polynomials. The argument does
not use the group structure on T, and thus works in a more general setting.
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2Supported in part by the Adams Fellowship Program of the Israel Academy of Sciences
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In Section 1, we formulate a slightly different proposition and show that it
implies Proposition 1. In Section 2 we reproduce the part of the arguments
of Chebyshev, Markov, and Stieltes that we need for the sequel. For the
convenience of the reader, we try to keep the exposition self-contained. In
Section 3 we apply the construction of Section 2 to prove the Erdős–Turán
inequality. In Section 4 we formulate another inequality that can be proved
using the same construction. As an application to random matrices, we use
an inequality from [4] and deduce a form of Wigner’s law with a reasonable
error estimate.

1 Introduction

Let the measure σ1 on R be defined by

dσ1(x) =
1

π
(1 − x2)

−1/2
+ dx .

Let Tn(cos θ) = cos nθ be the Chebyshev polynomials of the first kind; these
are orthogonal with respect to σ1. We shall prove the Erdős – Turán inequal-
ity in the following form:

Proposition 2. Let µ be a probability measure on R 1. Then, for any n0 ≥ 1
and any x0 ∈ R,

∣∣µ[x0, +∞) − σ1[x0, +∞)
∣∣ ≤ K2

{
1

n0
+

n0∑

n=1

1

n

∣∣∣∣
∫

R

Tn(x)dµ(x)

∣∣∣∣

}

. (2)

Proposition 2 implies Proposition 1. Let ν be a measure on T, and let A ⊂ T

be an arc. Rotate T (together with ν and A) moving the center of A to 0;
this does not change the right-hand side of (1).

Denote ν1(B) = ν(B) + ν(−B); ν1 is a measure on [0, π]. The change of
variables x = cos θ pushes it forward to µ1 on [−1, 1]. Now apply Proposi-
tion 2 to µ1, observing that

∫ 1

−1

Tn(x)dµ1(x) = ℜ ν̂(n) .

1We do not assume that suppµ ⊂ [−1, 1]
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2 The Chebyshev–Markov–Stieltjes construc-

tion

Let σ be a probability measure on R (with finite moments); let S0, S1, · · · be
the orthogonal polynomials with respect to σ. For a probability measure µ
on R, denote

εn = εn(µ) =

∫

R

Sn(x)dµ(x) , n = 1, 2, 3, · · · .

We shall estimate the distance between µ and σ in terms of the numbers εn.
Let x1 < x2 < · · · < xn0

be the zeros of Sn0
. Construct the polynomials

P, Q of degree ≤ 2n0 − 2, so that

P (xk) =

{
0, 1 ≤ k < k0

1, k0 ≤ k ≤ n0

; P ′(xk) = 0 for k 6= k0;

Q(xk) =

{
0, 1 ≤ k ≤ k0

1, k0 < k ≤ n0

; Q′(xk) = 0 for k 6= k0 .

Lemma 3 (Chebyshev–Markov–Stieltjes).

P ≥ 1[
xk0

,+∞
) ≥ 1(

xk0
,+∞

) ≥ Q .

Proof. Let us prove for example the first inequality. The derivative P ′ of
P vanishes at xk, k 6= k0, and also at intermediate points xk < yk < xk+1,
k 6= k0, n0. The degree of P ′ is at most 2n0 − 3, hence it has no more zeroes.
Now, P (xk0

) > P (xk0−1); hence P is increasing on (xk0−1, yk0+1). Therefore
P ′ is decreasing on (yk0+1, xk0+2), increasing on (xk0+2, yk0+3), et cet. Thus
P (x) ≥ 1 for x ≥ xk0

. Similarly, P (x) ≥ 0 for x < xk0
.

Let P =
∑n0

n=0 pnSn, Q =
∑n0

n=0 qnSn. Then

µ[xk0
, +∞) ≤

∫

R

P (x)dµ(x) = p0 +

2n0−2∑

n=1

εnpn

= q0 + (p0 − q0) +

2n0−2∑

n=1

εnpn

≤ σ(xk0
, +∞) + (p0 − q0) +

2n0−2∑

n=1

|εn||pn| .
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Similarly,

µ(xk0
, +∞) ≥ σ[xk0

, +∞) − (p0 − q0) −
2n0−2∑

n=1

|εn||qn| .

Therefore

∣∣µ[xk0
, +∞) − σ[xk0

, +∞)
∣∣ ≤ (p0 − q0) +

2n0−2∑

n=1

|εn|max(|pn|, |qn|) . (3)

Thus we need to estimate p0 − q0, |pn|, |qn|. This can be done using the
following observation (which we have also used in [8].) Let R be the Lagrange
interpolation polynomial of degree n0 − 1, defined by

R(xk) = δkk0
, k = 1, 2, · · · , n0 .

Equivalently,

R(x) =
Sn0

(x)

S ′
n0

(xk0
)(x − xk0

)
. (4)

Lemma 4. P − Q = R2.

Proof. The polynomial P − Q has multiple zeroes at xk, k 6= k0. Therefore
R2 | (P − Q). Also, deg R2 = 2n0 − 2 ≥ deg(P − Q), and

R2(xk0
) = 1 = P (xk0

) − Q(xk0
) .

Thus

p0 − q0 =

∫

R

R2(x)dσ(x) (5)

and

|pn| =

∣∣∣∣
∫

R

P (x)Sn(x)dσ(x)

∣∣∣∣

≤
∣∣∣∣∣

∫ ∞

xk0

Sn(x)dσ(x)

∣∣∣∣∣ +

∣∣∣∣
∫

R

(P (x) − 1[xk0
,+∞)(x))Sn(x)dσ(x)

∣∣∣∣

≤
∣∣∣∣∣

∫ ∞

xk0

Sn(x)dσ(x)

∣∣∣∣∣ +

∫

R

R2(x)|Sn(x)|dσ(x) . (6)
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Similarly,

|qn| ≤ |
∫ ∞

xk0

Sn(x)dσ(x)| +
∫

R

R2(x)|Sn(x)|dσ(x) .

3 Proof of Proposition 2

We apply the framework of Section 2 to σ = σ1, Sn = Tn. Let xk0
= cos θ0,

0 ≤ θ0 ≤ π/2. Then

T ′
n0

(cos θ0) · − sin θ0 = −n0 sin nθ0 ,

and hence
|T ′

n0
(x0)| =

n0

| sin θ0|
=

n0√
1 − x2

k0

.

Thus, according to (5),

p0 − q0 =

∫

R

Tn0
(x)2

T ′
n0

(x0)2(x − x0)2
dσ1(x)

=
sin2 θ0

4πn2
0

∫ π

0

cos2 n0θ

sin2 θ+θ0

2
sin2 θ−θ0

2

dθ .

Now, ∫ θ0/2

0

≤
∫ θ0/2

0

C1dθ/θ4
0 ≤ C1/θ

3
0 ≤ C2n0/θ

2
0 ,

∫ θ0−π/(3n0)

θ0/2

≤ C3

∫ θ0−π/(3n0)

θ0/2

dθ

θ2
0(θ − θ0)2

≤ C4n0

θ2
0

,

and similarly ∫ π

θ0+π/(3n0)

≤ C5n0/θ
2
0 .

Finally,

|T ′
n0

(cos θ)| = n0
| sinn0θ|

sin θ
≥ n0/(C6θ0) ≥ |T ′

n0
(cos θ0)|/C7

for |θ − θ0| ≤ π/(3n0), hence

∫ θ0+π/(3n0)

θ0−π/(3n0)

Tn0
(cos θ)2dθ

T ′
n0

(cos θ0)2(cos θ − cos θ0)2
≤ C8/n0 .
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Therefore
p0 − q0 ≤ C/n0 . (7)

Next, ∫ ∞

xk0

Tn(x)dσ1(x) =

∫ θ0

0

cos nθ
dθ

π
=

sin nθ0

nπ
; (8)

∫

R

R2(x)|Tn(x)|dσ1(x) =

∫ π

0

cos2 n0θ
n2

0

sin2 θ0

(cos θ − cos θ0)2
| cos nθ|dθ

π

≤ C1θ
2
0

n2
0

∫ π

0

cos2 n0θ | cos nθ| dθ

sin2 θ+θ0

2
sin2 θ−θ0

2

.

Now, ∫ θ0/2

0

≤ C2/θ
3
0 ≤ C3n0/θ

2
0 ;

∫ θ0−π/(3n0)

θ0/2

≤ C4

∫ θ0−π/(3n0)

θ0/2

dθ

θ2
0(θ − θ0)2

≤ C5n0/θ
2
0 ,

and similarly ∫ π

θ0+π/(3n0)

≤ C6n0/θ
2
0 ;

∫ θ0+π/(3n0)

θ0−π/(3n0)

≤ (C7/n0)(n
2
0/θ

2
0) = C7n0/θ

2
0 .

Therefore ∫

R

R2(x)|Tn(x)|dσ1(x) ≤ C8/n0 . (9)

Combining (6), (8) and (9), we deduce:

|pn| ≤ C/n . (10)

Similarly, |qn| ≤ C/n.

Proof of Proposition 2. Substitute (7) and (10) into (3), taking

m0 = ⌈n0/2⌉ + 1

instead of n0. We deduce that (2) holds when x0 = xk0
is a non-negative

zero of Tm0
. By symmetry, a similar inequality holds for negative zeroes.

For a general x0 ∈ R, apply the inequality to the two zeroes of Tm0
that are

adjacent to x0 (one of them may formally be ±∞.)
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4 Another inequality, and an application to

Wigner’s law

Let the measure σ2 on R be defined by

dσ2(x) =
2

π
(1 − x2)

1/2
+ dx .

Let Un(cos θ) = cos nθ be the Chebyshev polynomials of the second kind;
these are orthogonal with respect to σ2.

Proposition 5. Let µ be a probability measure on R. Then, for any n0 ≥ 1
and any x0 ∈ R,

∣∣µ[x0, +∞) − σ2[x0, +∞)
∣∣

≤ K5

{
ρ(x0; n0)

n0
+ ρ(x0; n0)

1/2

n0∑

n=1

n−1

∣∣∣∣

∫

R

Un(x)dµ(x)

∣∣∣∣

}
, (11)

where ρ(x; n0) = max(1 − |x|, n−2
0 ).

Observe that ρ ≤ 1. Similar inequalities with 1 instead of ρ have been
proved by Grabner [7] and Voit [9]. On the other hand, the dependence on x
in (11) is sharp, in the following sense: for any x0, there exists a probability
measure µ on R such that

∫
R

Un(x)dµ(x) = 0 for 1 ≤ n ≤ n0, and

∣∣µ[x0, +∞) − σ2[x0, +∞)
∣∣ ≥ C−1ρ(x0; n0)/n0 ,

where C > 0 is independent of n0; cf. Akhiezer [1, Ch. 3].
The proof of Proposition 5 is parallel to that of Proposition 2: we apply

the inequalities of Section 2 to the measure σ2 and the polynomials Un.
Grabner [7] and Voit [9] have applied their inequalities to estimate the

cap discrepancy of a measure on the sphere. We present an application to
random matrices.

Let A be an N × N Hermitian random matrix, such that

1. {Auv | 1 ≤ u ≤ v ≤ N} are independent,

2. E|Auv|2k ≤ (Ck)k, k = 1, 2, · · · ;

3. the distribution of every Auv is symmetric, and E|Auv|2 = 1 for u 6= v.
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Let µA = N−1
∑N

k=1 δλk(A)/(2
√

N) be the empirical measure of the eigenvalues
of A (which is a random measure). By [4, Theorem 1.5.3],

0 ≤ E

∫

R

Un(x)dµA(x) ≤ Cn/N , 1 ≤ n ≤ N1/3 .

Applying Proposition 5, we deduce the following form of Wigner’s law:

Proposition 6. Under the assumptions 1.-3.,

∣∣∣E #
{
k

∣∣λk > 2
√

Nx0

}
− Nσ2(x0, +∞)

∣∣∣

≤ C max
(
N2/3(1 − |x0|), 1

)
(12)

for any x0 ∈ R.

Better bounds are available for x ∈ (−1 + ε, 1 − ε) (cf. Götze and
Tikhomirov [6], Erdős, Schlein, and Yau [2]). On the other hand, for x
very close to ±1, the right-hand side in our bound is of order O(1), which is
in some sense optimal.

Remark 7. A similar method allows to bound the variance of the number of
eigenvalues on a half-line:

V#
{
k

∣∣ λk > 2
√

Nx0

}
≤ C max

(
N2/3(1 − |x0|), 1

)5/2
;

therefore one can also bound the probability that #
{
k

∣∣ λk > 2
√

Nx0

}
de-

viates from Nσ2(x0, +∞).
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[7] P. Grabner, Erdős-Turán type discrepancy bounds, Monatsh. Math. 111
(1991), no. 2, 127–135.

[8] S. Sodin, Random matrices, nonbacktracking walks, and orthogonal poly-

nomials, J. Math. Phys. 48 (2007), no. 12.

[9] M. Voit, Berry-Esseen-type inequalities for ultraspherical expansions,
Publ. Math. Debrecen 54 (1999), no. 1-2, 103–129.

9


	Introduction
	The Chebyshev--Markov--Stieltjes construction
	Proof of Proposition ??
	Another inequality, and an application to Wigner's law

