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Abstract

We show that any pair X,Y of independent non-compactly supported random variables on
[0,∞) satisfies lim infm→∞ P(min(X,Y ) > m |X + Y > 2m) = 0. We conjecture multi-variate
and weighted generalizations of this result, and prove them under the additional assumption
that the random variables are identically distributed.

1 Introduction

By the simple inequality min(X,Y ) ≤ X+Y
2 ≤ max(X,Y ), it is evident that for any pair of non-

negative independent random variables X,Y , for all m ≥ 0 we have

P
(

min(X,Y ) > m
)
≤ P

(
X + Y

2
> m

)
≤ P

(
max(X,Y ) > m

)
.

Consider the asymptotic behavior of these inequalities when m → ∞. It is not hard to costruct
examples for which P

(
X+Y

2 > m
)
� P

(
max(X,Y ) > m

)
(here Am � Bm indicates that for all

m > 0 we have c < Am/Bm < C for some 0 < c < C <∞). For example if X and Y are identicaly
distributed with P

(
X > m

)
= 1/ log(m+ e) then

P
(

max(X,Y ) > m
)
≤ 2 P

(
X > m

)
≤ 10 P

(
X > 2m

)
≤ 10 P

(
X + Y

2
> m

)
.

It is therefore natural to ask whether it is ever the case that P
(

min(X,Y ) > m
)
� P

(
X+Y

2 > m
)
.

Our main result, confirming a conjecture of Alon [1], is that this is never possible.

Theorem 1. Let X,Y be independent random variables on R+, which are not compactly supported.
Then:

lim sup
m→∞

P
(
X+Y

2 > m
)

P(X > m)P(Y > m)
=∞. (1)

In other words, any indpendent, unbounded, non-negative random variables X,Y satisfy:

lim inf
m→∞

P
(

min(X,Y ) > m
∣∣∣ X + Y

2
> m

)
= 0.
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We remark that the lim sup in the theorem is necessary: there may be an unbounded set of
numbers m such that the ratio P(X + Y > 2m)/P(min(X,Y ) > m) gets arbitrarily close to 1.
However, as will become evident from the proof, when the tail distribution is either log convex or
log concave the limit is guaranteed to exist.

Theorem 1 is limited to two variables and to unweighted averages. It is natural to ask if a
similar statement could hold for an arbitrarily weighted average of several variables. In Section 1.1
we conjecture such a generalization, and prove it for the case when the variables are identically
distributed. Our results could also be viewed as anti-concentration statements for product measures,
a point of view which calls for additional, perhaps more bold conjectures. This is further discussed
in Section 1.2 where we also relate our work to the 123 comparison inequality of Alon and Yuster
[2] and its generalzations.

One appliaction which motivated Alon to propose the problem is concerned with a growth
model for evolving social groups introduced in [3]. In Section 1.3 we describe this model and the
implications of Theorem 1 to its long term behaviour.

Finally in Section 1.4 we provide an overview of our methods along with an outline for the rest
of the paper.

1.1 High dimensions and weighted averages

The following is a natural generalization of Theorem 1.

Theorem 2. Let X1, . . . , Xn be i.i.d. random variables with a non-compactly supported distribution
on R+. For any (λ1, . . . , λn) ∈ (0, 1)n with

∑
j λj = 1 we have

P
(∑n

j=1 λjXj > m
)

P (X1 > m)n
≥ αn(m) where lim sup

m→∞
αn(m) =∞ (2)

It remains open to show that Theorem 2 is true when X1, . . . , Xn are merely independent (not
necessarily identically distributed). While we believe this to be true, our proofs do not extend to
this case. Indeed, to prove Theorem 1 in the non-i.i.d. case we employ a symmetry that exists only
in the case of two equal weights. This generalization would, however, follow from the following,
which is our main conjecture.

Conjecture 1. Let X,Y be independent random variables on R+ which are not compactly sup-
ported, and let λ ∈ (0, 1). Then:

lim sup
m→∞

P(λX + (1− λ)Y > m)

P(X > m)P(Y > m)
=∞.

In fact, Conjecture 1 would yield a much more general result concerning product measures and
arbitrary norms, stated as follows.

Conjecture 2. Let n ∈ N, and ‖ · ‖K be any norm in Rn. Let X1, . . . , Xn be independent, non-
compactly supported random variables on R+. Then for any vector (a1, . . . , an) ∈ (0,∞)n we have:

lim sup
m→∞

P(‖(X1, . . . , Xn)‖K > m‖(a1, . . . , an)‖K)∏n
j=1 P(Xj > maj)

=∞.
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1.2 Distribution-free comparison inequalities and anti-concentration

It is instructive to view our results in light of distribution-free comparison inequalities which were
obtained for other events. A classical example is “the 123 theorem” by Alon and Yuster [2], which
states that for any i.i.d. random variables X,Y we have

P (|X − Y | ≤ 2) < 3P(|X − Y | ≤ 1).

The authors extended this result to compare the events {|X − Y | ≤ b} and {|X − Y | ≤ a} for any
a, b > 0, with a universal optimal constant. To see the connection with our result more clearly, we
rewrite Theorem 1 as follows:

Theorem 1*. For any independent random variables X,Y with non-compactly supported distrub-
tion µ, there is no number c such that for all m > 0,

P
(
X + Y

2
> m

)
< cP(min(X,Y ) > m)

Thus, there is no comparison inequality between the tail-distribution function of the average
1
2(X + Y ) and that of the minimum min(X,Y ), even for a single fixed distribution (let alone with
a universal constant).

It is interesting to note that the Alon-Yuster inequality was generalized and applied in other
settings. A work by Dong, Li and Li [4] gives a universal compirason inequality for sums and
differences of i.i.d. random variables taking values in a seperable Banach space. These inequalities
were further generalized by Li and Madiman [6], who also explored the connections with extremal
combinatorial problems. It is also worth mentioning an earlier work by Schulze and Weizsächer [7],
which established one of those inequalities for R-valued random variables, and applied it to derive
the rate of decay of the crossing level probability of an arbitrary random walk with independent
increments.

As pointed out in [6], general concentration phenomena may stem out of distribution-free in-
equalities. In our case, Theorem 1 may be viewed as an “anti-concentration” result for product
measures. Roughly speaking, it states that any product measure on R2

+ cannot be too concen-
trated around the diagonal {(x, x) : x > 0}. In light of this discussion, it is natural to wonder if
our anti-concentration bound has counterparts in other spaces.

1.3 An application to evolving social groups

In a recent study by Alon et al. [3], the following family of models for exclusive social groups
(referred to here as clubs) was introduced. Let r ∈ (0, 1) and let µ be an arbitrary distribution
on [0,∞) representing opinions in a population (say, political inclination between left and right).
In the r-quantile admission process with veto power, the club starts with a single “extreme left”
founding member with opinion 0. At every step two independent candidates, whose opinions are
µ-distributed, apply for admission. Each member then votes for the candidate whose opinion is
closer to his (breaking ties to the left). If at least an r-fraction of the current club members prefer
the left-most candidate then he is admitted, and otherwise none of the candidates are admitted.

In [3] the authors consider this model for µ which is uniform on [0, 1]. They show that, somewhat
surprisingly, the model exhibits a phase transition at r = 1/2. In particular, when r < 1/2 the
distribution of opinions converges almost surely to some fixed continuous distribution. At the same
time, for r > 1/2 as the club grows, only candidates closer and closer to 1 are accepted and the
club becomes “extreme-right”.
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It is natural to ask: “How does this behavior depend on µ, the distribution of the applicants’
opinions? Does it matter if this distribution is compactly supported? Could it ever be that the
r-quantile of the empirical distribution will drift towards infinity?”

The problem is intimately related to the one discussed here, since the probability that the next
admitted member’s opinion will be further to the right than the current r-quantile is exactly

P
(

min(X,Y ) > qt |
X + Y

2
≥ qt

)
,

where qt is the r-quantile after t candidates were admitted, and X and Y are independent µ
distributed random variables.

This observation, together with Theorem 1 are used in [5], which is in final stages of preparation,
to show that for all µ the empirical r-quantile is bounded. This in turn, is used together with results
on drifting random walks, to obtain that the r-quantile converges, and hence that the empirical
distribution of the club converges to a (possibly random) limit distribution.

1.4 Main ideas and outline

The protagonist of the proof of Theorem 1 is the log-tail function: g(m) = − logP(X ≥ m), which
may be any non-decreasing function on [0,∞), such that g(0) = 0 and g(∞) = ∞. The proof is
founded on the case in which X and Y are identically distributed and g is convex. In this case we
assume towards a contradiction that the ratio in (1) is bounded. We then show (in Lemma 2.6) that
this implies a difference equation on g−1 which forces it to increas to infinity on a finite interval,
in contradiction with the assumption that X is not compactly supported.

Next, towards obtaining the general theorem, we consider the case of X and Y which are
identically distributed but g is not necessarily convex. We compare between the given measure
and its “nearest” log-concave measure. This comparison classifies all g-s into three types: nearly
convex, nearly concave, and oscillating. More precisely, for general g, we define h to be the convex
minorant of g (i.e., the maximal non-decreasing convex function which is pointwise less-equal to
g). Our goal then is to draw properties from the relation between h and g, in order to choose the
points m at which we claim the ratio in (1) to be big. Specifically, we divide the proof into three
cases:

• (“nearly convex”) supR+
(g − h) < ∞: g is in bounded distance from a convex function and

the proof for convex g may be applied.

• (“nearly concave”) limx→∞(g − h)(x) = ∞: Roughly speaking, in this case g has a concave,

sublinear behavior, which enables us to show that even P(X>2m)
P(X>m)2

is asymptotically unbounded.

• (“oscillating”) lim supx→∞(g − h)(x) = ∞ and lim infx→∞(g − h)(x) < ∞: here, we use the
oscillations between g and its convex minorant in order to find points for which the ratio
in (1) is large.

The proof of Theorem 1 in the non-i.i.d. case is based on a symmetrization argument, which
reduces it to an i.i.d. case. A similar scheme is used for Theorem 2, with appropriate generalizations
to high dimensions and arbitrary weights.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1 for i.i.d.
random variables, while in Section 3 we extend it to any independent random variables. Theorem 2
concerning weighted averages of several i.i.d. variables is proved in Section 4.
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2 Proof of Theorem 1: i.i.d. case

This section is dedicated to the proof of Theorem 2 under the additional assumption that X,Y
are identically distributed. In Section 2.1 we provide some preliminary tools. In Section 2.2 we
handle the nearly convex case, in Section 2.3 – the nearly concave case and in Section 2.4 – the
remaining oscillating case. Since these cases are exhaustive, the theorem follows. The statements
of this section will be used in Section 3 to prove the theorem in full generality.

2.1 Preliminaries

Basic notation. Throughout Section 2, we fix a non-compactly supported measure µ on R+, and
let X and Y be two independent random variables with law µ. Define

F (x) := µ((x,∞)) and g(x) := − logF (x).

Notice that F : R+ → (0, 1] is right-continuous and non-increasing (with F (0) = 1 and F (∞) = 0)
and that g : [0,∞)→ [0,∞) is right-continuous and non-decreasing (with g(0) = 0 and g(∞) =∞).

Lebesgue-Stieltjes measure. Since g is non-decreasing, it defines a Borel measure | · |g
(called the g-Lebesgue-Stieltjes measure or just the g-measure). This measure is determined by its
operation on intervals, that is: |[α, β]|g = g(β)−g(α−) for any 0 ≤ α ≤ β. It is possible to compute
|L|g for any measurable set L via the following formula.

|L|g =

∫
L
g′ =

∫
L

(− logF )′ = −
∫
L
F−1dF =

∫
L
egdµ. (3)

The set of m-symmetric d-concavity points. For a function f : R+ → R and parameters
m, d ≥ 0, define Lfm,d, the set of m-symmetric d-concavity points of f , as

Lfm,d =
{
` ∈ [0, 2m] : f(`) + f(2m− `) ≤ 2

(
f(m) + d

)}
.

Observe that Lfm,d is symmetric around m.

We can now reduce Theorem 1 to the following statement on |Lgm,d|g. This will be our main
tool for showing Theorem 1 when g is either nearly convex or oscillating.

Lemma 2.1. If there exists d ≥ 0 such that lim supm→∞ |L
g
m,d|g =∞, then X and Y satisfy (1).

Proof. To see this, let m, d ≥ 0 and observe that,

P(X + Y > 2m) =

∫ ∞
0

P (Y > 2m− x)dµ(x) =

∫ ∞
0

F (2m− x)dµ(x)

≥
∫
Lgm,d

F (2m− x)dµ(x) =

∫
Lgm,d

e−g(2m−x)dµ(x)

≥ e−2g(m)−2d

∫
Lgm,d

eg(x)dµ(x) = e−2g(m)−2d|Lgm,d|g

= e−2d |Lgm,d|g P(X > m)2.
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Next we state two useful observations. The first is a relation between concavity points of two
functions of bounded difference.

Observation 2.2. Let δ > 0 and let f1, f2 : R+ → R be such that 0 ≤ f1 − f2 ≤ δ. Then for all
m, d ≥ 0 we have Lf2m,d ⊆ L

f1
m,d+δ.

The second regards the structure of concavity points of a convex function.

Observation 2.3. If f is convex then for any m, d > 0 then Lfm,d = [m− t,m+ t] for some t ≥ 0.

Proof. To see this, Since f is convex, it is continuous and

f

(
x+ y

2

)
+ f

(
2m− x+ y

2

)
≤ f(x) + f(y)

2
+
f(2m− x) + f(2m− y)

2
,

so that x, y ∈ Lfm,d ⇒
x+y

2 ∈ Lfm,d. Hence Lfm,d is a symmetric convex closed set. Observing that

Lfm,d is contained [0, 2m] the statement follows.

Convex Minorant. The convex minorant of g, which we denote by h, is the maximal non-
decreasing convex function such that h(x) ≤ g(x) for all x ≥ 0. Formally,

h(x) := sup{h̃(x) : h̃ : R+ → R+ is convex and non-decreasing, and h̃(t) ≤ g(t) for all t ≥ 0}.

As convexity and non-decreasing monotonicity are preserved by taking point-wise supremum, the
function h is itself convex and non-decreasing. Notice that h : R+ → R+ obeys h(0) = 0, and is
either strictly increasing or constantly equal to 0. Another useful property is that h is an affine
function (i.e., a polynomial of degree at most 1) on any interval where h < g. We end with the
proof of this fact.

Lemma 2.4. Let I ⊂ R+ be a closed interval. If infI(g − h) > 0, then h is affine on I.

Proof. Denote I = [x0, x1] and let `(x) be the affine function satisfying `(x0) = h(x0) and `(x1) =
h(x1). Since h is convex, we have either h = ` or h < ` on (x0, x1). Assume towards obtaining a
contradiction that the latter holds. Define `0 = `+ infI(g − `). By definition infI(g − `0) = 0, and
in particular g ≥ `0 on I. By maximality of h, we get that `0 ≤ h (else, max(h, `0) would replace
h as the convex minorant of g). This yields:

inf
I

(g − h) ≤ inf
I

(g − `0) = 0,

which contradicts our assumption.

2.2 Nearly convex case

This section is dedicated to the case of g being within bounded distance from a convex function,
i.e., the “nearly convex case”. Fix h to be the convex minorant of g. The main proposition of this
section is the following.

Proposition 2.5. If supx∈R+
(g(x)− h(x)) <∞, then ∃d ≥ 0 : lim supm→∞ |L

g
m,d|g =∞..

Through Lemma 2.1, this proposition proves Theorem 1 for the nearly convex case.
Using Observation 2.2 we reduce Proposition 2.5 to the following lemma.
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Lemma 2.6. Let d > 0 and let f : R+ → R+ be an increasing convex function with f(0) = 0.
Then:

lim sup
m→∞

|Lfm,d|f =∞.

Reduction of Proposition 2.5 to Lemma 2.6. Let δ = supx∈R+
(g(x) − h(x)). We shall show that

lim supm→∞ |L
g
m,1+δ|g = ∞. By Observation 2.2 we have Lgm,1+δ ⊇ Lhm,1. By Observation 2.3,

Lhm,1 = [m− t,m+ t] for some t > 0. Thus,

|Lgm,1+δ|g ≥ |L
h
m,1|g = g(m+ t)− g(m− t) ≥ h(m+ t)− h(m− t)− δ = |Lhm,1|h − δ.

As h is convex, Lemma 2.6 implies that lim supm→∞ |Lhm,1|h = ∞, which together with the last
inequality concludes the reduction.

It remains to prove Lemma 2.6.

Proof of Lemma 2.6. Assume towards obtaining a contradiction that there exists c ∈ R such that
|Lfm,d|f < c for all m > 0. Observe that as f is convex it must be continuous, and since it is

increasing it must have a well defined inverse function f−1 : R+ → R+. For now, fix m > 0
and let s = s(m) > 0 be such that f(m + s) = f(m) + c. Using Observation 2.3, we may write

Lfm,d = [m − t,m + t] for some t = t(m) > 0. By our assumption we thus have m + s /∈ Lfm,d, or
equivalently, f(m) + c+ f(m− s) > 2(f(m) + d). Hence,

f(m− s) > f(m)− c+ 2d.

Writing y = f(m) we get, using the monotonicity of f , that

m− s > f−1(y − c+ 2d).

Recalling that f(m+ s) = y + c, we obtain that 2m > f−1(y − c+ 2d) + f−1(y + c), and hence

f−1(y + c)− f−1(y) < f−1(y)− f−1(y − c+ 2d), for any y > 0. (4)

Observe that, since f−1 is concave, we have:

f−1(y)− f−1(y − c+ 2d) <
c− 2d

c

(
f−1(y)− f−1(y − c)

)
.

Using this in (4), and denoting q = c−2d
c ∈ (0, 1) for short, we obtain that f−1(y + c) − f−1(y) <

q
(
f−1(y)− f−1(y − c)

)
. Applying this iteratively, we get that for any k ∈ N:

f−1(kc)− f−1((k − 1)c) < qk−1f−1(c),

so that f−1(Nc) =
∑N

k=1(f−1(kc)− f−1((k− 1)c)) < f−1(c)
1−q for any N ∈ N. We conclude that f−1

is bounded, and hence that f is compactly supported, in contradiction with our assumption.

2.3 Nearly concave case

This section is dedicated to prove Theorem 1 in the nearly-concave case, i.e., the case when
limx→∞(g(x)− h(x)) =∞. This is done through the following proposition.

Proposition 2.7. If limx→∞(g(x)− h(x)) =∞, then X and Y satisfy (1).
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Proof. Denoting f(x) = g(x) − h(x), our assumption is that limx→∞ f(x) = ∞. By Lemma 2.4,
this implies that h is affine on some infinite ray [m0,∞), and hence,

2g(m)− g(2m) = 2f(m)− f(2m), ∀m > m0.

Observe that:

P(X + Y > 2m)

P(X > m)2
≥ P(X > 2m)

P(X > m)2
= e2g(m)−g(2m) = e2f(m)−f(2m),

for m > m0. Therefore, in order to prove (1) it is enough to show that

lim sup
m→∞

(2f(m)− f(2m)) =∞. (5)

Assume to the contrary that (5) does not hold. Then there exists some c > 0 such that for all large
enough m:

f(2m) ≥ 2f(m)− c. (6)

Since limx→∞ f(x) = ∞, there exists a > m0 such that f > 2c on [a,∞). Let x > 2a. There
exists a unique k ∈ N such that x0 = x

2k
∈ [a, 2a). By repeatedly using (6), we get that

f(x) = f(2kx0) ≥ 2kf(x0)− (2k − 1)c ≥ 2kc ≥ x

a
c.

This implies

f(x) ≥ max(0,
c

a
(x− 2a)), ∀x > 0,

which in turn yields g(x) ≥ h(x) + max(0, ca(x − 2a)), in contradiction with the fact that h is the
largest convex function which is less-equal to g. Thus (5) holds, and we are done.

Notice that, in the course of proving Proposition 2.7, we showed the following

Corollary 2.8. If limx→∞(g(x)− h(x)) =∞, then lim supm→∞ (2g(m)− g(2m)) =∞.

This will be of use in the non-i.i.d. case.

2.4 Oscillating case

In this section we consider the case in which the distance between g and its convex minorant h
oscillates. The main statement of this section is the following.

Proposition 2.9. If

lim inf
x→∞

(g(x)− h(x)) <∞ and lim sup
x→∞

(g(x)− h(x)) =∞,

Then ∃d ≥ 0 : lim supm→∞ |L
g
m,d|g =∞.

This case holds, for instance, for the function g(x) = d
√
xe2, adjusted at points of discontinuity

to be right-continuous. Through Lemma 2.1, the proposition would imply that Theorem 1 holds
in the oscillating case.
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Proof of Proposition 2.9. We shall show, in fact, that lim supm→∞ |L
g
m,d|g = ∞ for any d > 0 (it

holds even for d = 0, but for simplicity we do not extend the proof to this case).
Let d, η > 0, we must show that there exists m for which |Lgm,d|g ≥ η. As before, write

f = g − h. Since g is right-continuous and non-decreasing, it is also upper-semicontinuous, i.e.,
lim supx→x0, x 6=x0 g(x) ≤ g(x0). Since h is continuous, we get that f is upper-semicontinuous as
well. By the second premise of the proposition, there exists m1 > 0 such that g(m1)−h(m1) > 2η.
Define

b = inf{x > m1 : f(x) ≤ η}, and m = arg max
[0,b]

f.

Note that b is well-defined due to the first premise of the proposition (provided η is large enough),
and m is well-defined due to the upper-semicontinuity of f . Next, define

a = sup{0 ≤ x < m : g(x) < g(m)− η}.

In particular, for any ε > 0 we have |[a− ε,m]|g = g(m)− g(a− ε) ≥ η. It remains to show that

∃ε > 0 : [a− ε,m] ⊆ Lgm,d, (7)

as this would imply that |Lgm,d|g ≥ |[a− ε,m]|g ≥ η, and complete the proof.
First, we observe that f > η on (a, b). Therefore, Lemma 2.4 implies that h is affine on [a, b].

Next, we claim that
∀x ∈ [a,m] : 2m− x ∈ [m, b). (8)

Since x ≤ m, we have 2m − x ≥ m. Using the affinity of h, we may rewrite the claimed upper
bound: 2m− x ≤ b ⇐⇒ m− x ≤ b−m ⇐⇒ h(m)− h(x) ≤ h(b)− h(m). The latter holds true
by the following argument:

h(m)− h(x) ≤ g(m)− g(x) by maximality of f(m)

≤ g(m)− g(a) a ≤ x
≤ η definition of a

< g(m)− h(m)− η f(m) ≥ f(m1) > 2η

≤ g(b)− h(m)− η m ≤ b
≤ h(b)− h(m). definition of b

Now that (8) is established, we may use the affinity of h in (a, b) to get that h(m) − h(x) =
h(2m− x)− h(m), for any x ∈ [a,m]. Using continuity, we choose ε > 0 small enough so that

∀x ∈ [a− ε,m] : 2m− x ∈ [m, b), and h(m)− h(x) ≥ h(2m− x)− h(m)− 2d.

These two facts, combined with the definition of m, yield that for any x ∈ [a− ε,m],

g(m)− g(x) ≥ h(m)− h(x) ≥ h(2m− x)− h(m)− 2d ≥ g(2m− x)− g(m)− 2d.

Rearranging this inequality yields g(x) + g(2m − x) ≤ 2g(m) + 2d for any x ∈ [a − ε,m], which
proves our goal (7).
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3 Proof of Theorem 1: non i.i.d. case

In this section we prove Theorem 1 by reducing it to the i.i.d. case which was tackled in the
previous section.

Let X, Y be independent random variables on R+, and denote

g0(x) := − logP(X ≥ x), g1(x) := − logP(Y ≥ x), g(x) :=
1

2
(g0(x) + g1(x)).

Define the functions

p0
m(x) =

g0(x) + g1(2m− x)

2
, p1

m(x) =
g1(x) + g0(2m− x)

2
,

and the sets

L0
m,d =

{
` ∈ [0, 2m] : p0

m(`) ≤ g(m) + d
}
,

L1
m,d =

{
` ∈ [0, 2m] : p1

m(`) ≤ g(m) + d
}
.

The following lemma is a generalization of Lemma 2.1 for the non-i.i.d. case.

Lemma 3.1. If ∃j ∈ {0, 1}, d ≥ 0 : lim supm→∞
∣∣Ljm,d∣∣gj =∞, then X and Y satisfy (1).

Proof. Similar to the proof of Lemma 2.1, we observe that:

P(X + Y > 2m) =

∫ ∞
0

e−g1(2m−x)dµ0(x) ≥ e−g0(m)−g1(m)−2d

∫
L0
m,d

eg0(x)dµ0(x).

By (3), we conclude that

P(X + Y > 2m) ≥ e−2dP(X > m)P(Y > m) · |L0
m,d|g0 .

The same holds after interchanging the roles of X and Y , and so the lemma follows.

Proof of Theorem 1. Let h be the convex minorant of g = (g0 + g1)/2. We first deal with the case
limx→∞(g(x)− h(x)) =∞. Notice that:

P(X + Y > 2m)

P(X > m)P(Y > m)
≥
√

P(X > 2m)P(Y > 2m)

P(X > m)P(Y > m)
= e−

1
2

(g0(2m)+g1(2m))+g0(m)+g1(m) = e2g(m)−g(2m).

This is unbounded in our case by Corollary 2.8, and therefore (1) holds. In the remaining cases,
we know by Propositions 2.5 and 2.9 that

∃d > 0 : lim sup
m→∞

∣∣Lgm,d∣∣g =∞.

Since |A|g = 1
2 (|A|g0 + |A|g1), we can assume without loss of generality that

lim sup
m→∞

∣∣Lgm,d∣∣g0 =∞. (9)

Define:
β := sup

{
g(m)− p1

m(x) : m > 0, x ∈ Lgm,d
}

10



First suppose that β < ∞. In this case, for every m > 0 and every x ∈ Lgm,d we have

g(m)− p1
m(x) ≤ β. In the same time, by definition of Lgm,d, we also have

p0
m(x) + p1

m(x) = g(x) + g(2m− x) ≤ 2(g(m) + d).

These two things together yield:

p0
m(x) ≤ 2g(m) + 2d− p1

m(x) ≤ g(m) + 2d+ β.

By definition, this means that Lgm,d ⊆ L0
m,2d+β. By (9) this yields lim supm→∞ |L0

m,2d+β|g0 = ∞,
thus by Lemma 3.1 we are done.

We are left with the case of β =∞. Fix a large number η > 0. Since β =∞, there exists m > 0
and x ∈ Lgm,d such that

p1
m(m)− p1

m(x) = g(m)− p1
m(x) > η. (10)

Assume first that x < m. Define

s = inf{y > x : p1
m(y)− p1

m(x) > η}.

Notice that s is well-defined and x < s ≤ m. We shall show that:

(I) |[x, s]|g1 ≥ 2η.

(II) [x, s] ⊆ L1
m,0.

These two items will imply that |L1
m,0|g1 ≥ 2η, thus by Lemma 3.1 our proof would be complete.

For item (I), notice that by right-continuity of p1
m we have

η ≤ p1
m(s)− p1

m(x) =
1

2
(g1(s)− g1(x)) +

1

2
(g0(2m− s)− g0(2m− x)) ≤ 1

2
(g1(s)− g1(x)),

which means that |[x, s]|g1 ≥ 2η. For item (II), observe that for any y ∈ [x, s] we have (using the
definition of s and (10)):

p1
m(y) ≤ p1

m(x) + η ≤ p1
m(m).

Note that to get this inequality at y = s we used also right-continuity of p1
m(·). Thus, by definition,

y ∈ L1
m,0 as required.

The case x > m follows similarly. We write x̃ = 2m − x and observe that x̃ < m. Hence (10)
becomes p0

m(m)− p0
m(x̃) > η, so one may replace x by x̃ and p1 by p0 in the previous argument to

obtain |L0
m,0|g0 > 2η and end similarly by Lemma 3.1.

4 Proof of Theorem 2: high dimensions and weighted averages

4.1 Preliminaries

Notation. As before, we write g(x) := − logµ((x,∞)), and let h be the convex minorant of
g. We also fix n ∈ N, and let X1, . . . , Xn be i.i.d. random variables, each distributed with law
µ. We denote by g×n the measure in Rn which is the product of n copies of the one-dimensional
measure defined by g. For a Borel set A ⊆ Rn, we write |A|g×n for the measure of A under this

11



product. Finally, we write Λn = {(λ1, . . . , λn) ∈ (0,∞)n :
∑

j λj = 1} and fix λ̄ ∈ Λn. For

x̄ = (x1, . . . , xn−1) ∈ Rn−1
+ and m ∈ R+, write

φλ̄(x̄,m) =
1

λn

m− n−1∑
j=1

λjxj

 .

The set of m-symmetric d-concavity points. We will use the following generalization of
Lfm,d. For f : R+ → R and m, d ≥ 0, we define the set

Lf
m,d,λ̄

=

(x1, . . . , xn−1) ∈ Rn−1
+

∣∣∣∣ x′ > 0 and
n−1∑
j=1

f(xj) + f(x′) ≤ nf(m) + nd

 ,

where x′ = φλ̄(x,m).
We end the preliminaries by generalizing Lemma 2.1 to the high-dimensional setting.

Lemma 4.1. If ∃d ≥ 0 : lim supm→∞

∣∣∣Lg
m,d,λ̄

∣∣∣
g×(n−1)

=∞, then X1, . . . , Xn satisfy (2).

Proof. Writing L = Lg
m,d,λ̄

for short, we have:

P

 n∑
j=1

λjXj > m

 =

∫∫
Rn−1
+

P
(
Xn > φλ(x,m)

)
dµ(x1) . . . dµ(xn−1) definition of φλ(x,m)

≥
∫∫

L
e−g(φλ(x,m))dµ(x1) . . . dµ(xn−1) F = e−g, restrict to L

≥ e−d−ng(m)

∫∫
L
eg(x1)+···+g(xn−1)dµ(x1) . . . dµ(xn−1). definition of L

Observing that P
(
X1 > m

)n
= e−ng(m), we conclude that

P(
∑

j λjXj > m)

P(X1 > m)n
≥ e−d

∫∫
L
eg(x1)+···+g(xn−1)dµ(x1) . . . dµ(xn−1) = e−d |L|g×(n−1) .

The last equality follows from the definition of product measure, and the fact that in one-
dimension

∫
A e

gdµ = |A|g (see (3)). The lemma follows.

4.2 Nearly convex case

As in the proof of Theorem 1, we first treat the case where g is closely approximated by its convex
minorant. Our goal is to prove the following generalization of Proposition 2.5, which together with
Lemma 4.1 implies Theorem 2 in the nearly convex case.

Proposition 4.2. If supR+
(g − h) <∞, then ∃d ≥ 0 : lim supm→∞

∣∣∣Lg
m,d,λ̄

∣∣∣
g×(n−1)

=∞.

We begin with a few simple observations, omitting the proofs when these are straightforward.
First, we generalize Observations 2.2 and 2.3.

Observation 4.3. Let δ > 0 and let f1, f2 : R+ → R be such that 0 ≤ f1 − f2 ≤ δ. Then for all
m, d ≥ 0 we have: Lf1

m,d+δ,λ̄
⊇ Lf2

m,d,λ̄
.
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Observation 4.4. If f is convex, then for any m, d ≥ 0 the set Lf
m,d,λ̄

is convex.

Next we observe a simple inclusion in the case n = 2.

Observation 4.5. Let f : R+ → R be non-decreasing. Then for all α ∈ (1
2 , 1) and m, d ≥ 0 we

have
Lf
m,d,( 1

2
, 1
2

)
∩ [m, 2m] ⊆ Lfm,d,(α,1−α).

The next observation relates concavity points of any dimension n to certain concavity points of

dimension 2. Denote for short (λ∗n−1, λ
∗
n) =

(
λn−1

λn−1+λn
, λn
λn−1+λn

)
.

Observation 4.6. Let f : R+ → R+ be non-decreasing. Then for any m, d, x ≥ 0 we have

(m, . . . ,m, x) ∈ Lfm,d,(λ1,...,λn) ⇐⇒ x ∈ Lfm,d,(λ∗n−1,λ
∗
n).

Proof. Straightforward from the fact that

φλ̄((m, . . . ,m, x),m) = φ(λ∗n−1,λ
∗
n)(x,m).

Our last observation concerns with changing one coordinate of a concavity point.

Observation 4.7. Let m, d, c ≥ 0, k ∈ {1, . . . , n}, f : R+ → R+ non-decreasing and a point

(p1, . . . , pn−1) ∈ Lf
m,d,λ̄

. Then we have (p1, . . . , pk−1, qk, pk+1, . . . , pn−1) ∈ Lf
m,d+ c

n
,λ̄

for all qk > pk

such that f(qk)− f(pk) ≤ c.

Proof. Denote x̄ = (p1, . . . , pn−1), ȳ = (p1, . . . , pk−1, qk, pk+1, . . . , pn−1) and write x′ = φλ(x̄,m)
and y′ = φλ(ȳ,m). Then∑

j 6=k
f(pj) + f(qk) + f(y′)

=
∑
j<n

f(pj) + f(x′) + (f(qk)− f(pk)) + (f(y′)− f(x′))

≤ n(f(m) + d) + c+ 0,

where for the last inequality we used the definitions of Lf
m,d,λ̄

, our assumption f(qk) − f(pk) ≤ c,

and monotonicity of f applied to the fact that y′ ≤ x′ (the latter holds since x̄ and ȳ differ only by
one coordinate in which ȳ is bigger). We conclude that ȳ ∈ Lg

m,d+ c
n
,λ̄

, as required.

We are now in position to show Proposition 4.2.

Proof of Proposition 4.2. First, order λ̄ so that λ1 ≥ · · · ≥ λn−1 ≥ λn. Fix d > 0 and denote
δ := supR+

(g − h). By Observation 4.3, we have

Lhm,d+2δ,λ̄ ⊆ L
g

m,d+3δ,λ̄
. (11)

We shall show that the left-hand-side set is large. By Observation 4.6 applied to h, we have

{m}n−2 × Lhm,d,(λ∗n−1,λ
∗
n) ⊆ L

h
m,d,λ̄.
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Let s > m be such that h(s)−h(m) = 2δ (such s exists since h is continuous and limx→∞ h(x) =∞).
Applying Observation 4.7 iteratively on each of the first n−2 coordinates of the left-hand-side yields

[m, s]n−2 × Lhm,d,(λ∗n−1,λ
∗
n) ⊆ L

h
m,d+n−2

n
·2δ,λ̄ ⊆ L

h
m,d+2δ,λ̄.

By Observation 4.5 this implies

[m, s]n−2 ×
(
Lh
m,d,( 1

2
, 1
2

)
∩ [m, 2m]

)
⊆ Lhm,d+2δ,λ̄. (12)

Recall that by Observation 2.3 we have Lh
m,d,( 1

2
, 1
2

)
= [m− tm,m+ tm] for some tm ≥ 0, and by

Lemma 2.6 combined with convexity of h, we have

lim sup
m→∞

(h(m+ tm)− h(m)) =∞. (13)

Taking | · |g×(n−1) on the inclusion in (12) yields∣∣Lhm,d+2δ,λ̄

∣∣
g×(n−1) ≥ |[m, s]|n−2

g ·
∣∣[m,m+ tm]|g

≥
(
|[m, s]|h − δ

)n−2 ·
(
|[m,m+ tm]|h − δ

)
≥ δn−2 ·

(
h(m+ tm)− h(m)− δ

)
.

Combining this with (11) and (13), we conclude that lim supm→∞ |L
g

m,d+3δ,λ̄
|g×(n−1) = ∞, uni-

formly in λ̄ ∈ Λn (and, in fact, uniformly in ∪n≥2Λn).

4.3 Nearly concave case

In this case we can prove Theorem 2 directly. This is a simple generalization of Proposition 2.7.

Proposition 4.8. If limx→∞(g(x)− h(x)) =∞, then X1, . . . , Xn satisfy (2).

Proof. Without loss of generality, assume λ1 = max(λ1, . . . , λn). Observe that:

P(
∑

j λjXj > m)

P(X > m)n
≥ P(λ1X1 > m)

P(X > m)n
≥ F (m/λ1)

F (m)n
= eng(m)−g(m/λ1)

≥ eng(m)−g(nm).

Therefore, in order to prove Theorem 2 it is enough to show that

lim sup
m→∞

(ng(m)− g(nm)) =∞. (14)

This is achieved by the same proof of Corollary 2.8, simply by replacing all the appearances of the
number 2 by n. The uniformity in λ̄ ∈ Λn as stated in Theorem 2 is clear.

4.4 Oscillating case

We are left with the case of unbounded oscillating distance from the convex minorant. The following
proposition (which generalizes Proposition 2.9), together with Lemma 4.1, would imply Theorem 2
in this case.
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Proposition 4.9. If

lim inf
x→∞

(g(x)− h(x)) <∞ and lim sup
x→∞

(g(x)− h(x)) =∞,

then g satisfies ∃d ≥ 0 : lim supm→∞

∣∣∣Lg
m,d,λ̄

∣∣∣
g×(n−1)

=∞.

The following observation will be useful in the proof.

Observation 4.10. Let I be an interval on which h is affine, and let m = arg maxI(g − h). If
x1, . . . , xn ∈ I are such that

∑n
j=1 λjxj = m and 1

n

∑n
j=1 xj ≤ m, then (x1, . . . , xn−1) ∈ Lg

m,0,λ̄
.

Proof. By the premise,
∑

j≤n(xj −m) ≤ 0. Since m,x1, . . . , xn ∈ I and h is affine on I, we get∑
j≤n(h(xj) − h(m)) ≤ 0. By maximality of m, we have g(xj) − g(m) ≤ h(xj) − h(m) for all

j ≤ n. This imples
∑

j≤n(g(xj) − g(m)) ≤ 0, and since xn = φλ̄((x1, . . . , xn−1),m) this implies
(x1, . . . , xn−1) ∈ Lg

m,0,λ̄
.

We now present the proof of Proposition 4.9.

Proof of Proposition 4.9. Assume, without loss of generality, that λn = max{λj : 1 ≤ j ≤ n}.
Write f = g − h, and fix a large η > 0. By the second premise, there is m1 > 0 such that
g(m1)− h(m1) > nη. Define

b = inf{x > m1 : f(x) ≤ η}, and m = arg max
[0,b]

f.

Note that b is well-defined due to the first premise (provided η is large enough), and m is well-
defined due to upper-semicontinuity of f . Our goal is to show that |

∣∣Lg
m,0,λ̄

∣∣
g×(n−1) | ≥ η for all

λ̄ ∈ Λn. Notice that, since the point m depends on n but not on λ̄ ∈ Λn, this will establish also
the uniformity stated in Theorem 2.

Define ∆ > 0 through the relation

h(m+ ∆)− h(m) = η.

We will now show that
m+ (n− 1)∆ ≤ b. (15)

Since g − h > η on (a, b), by Lemma 2.4 there is an affine function `(x) such that `(x) = h(x) for
x ∈ (a, b). We have:

`(b) = h(b) ≥ g(b)− η definition of b

≥ g(m)− η m ≤ b
> `(m) + (n− 1)η (g − `)(m) = f(m) > nη

= `(m+ (n− 1)∆). definitions of ∆, `

Since ` is non-decreasing, this proves (15). As a consequence, we conclude that

x̄ ∈ [m−∆,m]n−1 =⇒ φλ̄(x̄,m) ∈ [m, b]. (16)

Also notice that

x̄ ∈ [m−∆,m]n−1,
∑

1≤j≤n
λjxj = m =⇒ 1

n

∑
1≤j≤n

xj ≤ m. (17)
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To conclude the proof, consider two cases. In the first case, f > η on (m − ∆,m). Then, by
Lemma 2.4, h is affine on I := [m−∆, b]. This, together with (16) and (17), fulfill the conditions of
Observation 4.10 and we conclude that [m−∆,m]n−1 ⊆ Lg

m,0,λ̄
. On the other hand, by maximilaty

of f(m) we have g(m)− g(m−∆) ≥ h(m)− h(m−∆) = h(m+ ∆)− h(m) = η. Therefore,∣∣Lg
m,0,λ̄

∣∣
g×(n−1) ≥ |[m−∆,m]|n−1

g ≥ ηn−1 ≥ η,

as required.
Otherwise, let d > 0 be arbitrary. Define x0 := sup{x ∈ (m − ∆,m) : f(x) ≤ η} (x0 is well-

defined as the supermum over a non-empty bounded set). Notice that f > η on (x0, b), thus by
Lemma 2.4 there is an affine function ` such that h = ` on (x0, b). By continuity of ` and h, and
by the definition of x0, we may choose a ∈ R+ so that:

m−∆ < a < x0, (18)

f(a) ≤ η, (19)

∀x ∈ [a,m] : h(m)− h(x) ≥ `(m)− `(x)− d

n− 1
. (20)

Let x̄ = (x1, . . . , xn−1) ∈ [a,m]n−1, and write xn = φλ̄(x̄,m). We have:

n−1∑
j=1

(g(m)− g(xj)) ≥
n−1∑
j=1

(h(m)− h(xj)) maximality of f(m)

≥
n−1∑
j=1

(`(m)− `(xj))− d by (20)

≥ `(xn)− `(m)− d by (17) and (18)

= h(xn)− h(m)− d xn ∈ [m, b] by (16) and (18), and h = ` on [m, b]

≥ g(xn)− g(m)− d, maximality of f(m)

so [a,m]n−1 ⊆ Lg
m,d,λ̄

. Also,

g(a) ≤ h(a) + η ≤ h(m) + η ≤ g(m)− (n− 1)η ≤ g(m)− η,

so that |[a,m]|g ≥ η. We conclude that |Lg
m,d,λ̄

|g×(n−1) ≥ |[a,m]|n−1
g ≥ ηn−1 ≥ η, as required. The

proposition follows.
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