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Real Gaussian Stationary Processes (GSP)

Let T ∈ {Z,R}. A GSP is a random function f : T → R s.t.

It has Gaussian marginals:
∀n ∈ N, x1, . . . , xn ∈ T : (f (x1), . . . , f (xn)) ∼ NRn(0,Σ)

It is Stationary:
∀n ∈ N, x1, . . . , xn ∈ T and ∀t ∈ T :(
f (x1 + t), . . . , f (xn + t)

) d∼
(
f (x1), . . . , f (xn)

)

If T = Z we call it a GSS (Gaussian Stationary Sequence).
If T = R we call it a GSF (Gaussian Stationary Function). We
assume GSFs are a.s. continuous.
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Covariance kernel

For a GSP f : T → R the covariance kernel r : T → R is defined
by:

r(x) = E [f (0)f (x)] = E [f (t)f (x + t)] .
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determines the process f .

positive-definite:
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1≤i ,j≤n cicj r(xi − xj) ≥ 0.
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Covariance kernel

For a GSP f : T → R the covariance kernel r : T → R is defined
by:

r(x) = E [f (0)f (x)] = E [f (t)f (x + t)] .

determines the process f .

positive-definite:
∑

1≤i ,j≤n cicj r(xi − xj) ≥ 0.

symmetric: r(−x) = r(x).
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Covariance kernel

For a GSP f : T → R the covariance kernel r : T → R is defined
by:

r(x) = E [f (0)f (x)] = E [f (t)f (x + t)] .

determines the process f .

positive-definite:
∑

1≤i ,j≤n cicj r(xi − xj) ≥ 0.

symmetric: r(−x) = r(x).

continuous.
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Spectral measure

Bochner’s Theorem

Write Z∗ = [−π, π], R∗ = R. Then

r(x) = ρ̂(x) =

∫

T∗

e−ixλdρ(λ),

where ρ is a finite, symmetric, non-negative measure on T ∗.

We call ρ the spectral measure of f .
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Spectral measure

Bochner’s Theorem

Write Z∗ = [−π, π], R∗ = R. Then

r(x) = ρ̂(x) =

∫

T∗

e−ixλdρ(λ),

where ρ is a finite, symmetric, non-negative measure on T ∗.

We call ρ the spectral measure of f .
We assume:

∃δ > 0 :

∫
|λ|δdρ(δ) <∞.
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Toy-Example Ia - Gaussian wave

ζj i.i.d. N (0, 1)
f (x) = ζ0 sin(x) + ζ1 cos(x)
r(x) = cos(x)
ρ = 1

2 (δ1 + δ−1)
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Toy-Example Ib - Almost periodic wave

f (x) =ζ0 sin(x) + ζ1 cos(x)

+ ζ2 sin(
√
2x) + ζ3 cos(

√
2x)

r(x) = cos(x) + cos(
√
2x)

ρ = 1
2

(
δ1 + δ−1 + δ√2 + δ−

√
2

)
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Example II - i.i.d. sequence

f (n) = ζn
r(n) = δn,0
dρ(λ) = 1

2π1I[−π,π](λ)dλ
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Example IIb - Sinc Kernel

f (x) =
∑

n∈N ζn sinc(x − n)

r(x) = sin(πx)
πx = sinc(x)

dρ(λ) = 1
2π1I[−π,π](λ)dλ
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Example III - Gaussian Covariance

f (x) =
∑

n∈N
ζn

xn√
n!
e−

x2

2

r(x) = e−
x2

2

dρ(λ) =
√
πe−

λ
2

2 dλ
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Example IV - Exponential Covariance

r(x) = e−|x |

dρ(λ) = 2
λ2+1

dλ
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General Construction

ρ - a finite, symmetric, non-negative measure on T ∗

{ψn}n - ONB of L2
ρ(T

∗)
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General Construction

ρ - a finite, symmetric, non-negative measure on T ∗

{ψn}n - ONB of L2
ρ(T

∗)

⇓

ϕn(x) :=

∫

T∗

e−ixλψn(λ)dρ(λ)
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General Construction

ρ - a finite, symmetric, non-negative measure on T ∗

{ψn}n - ONB of L2
ρ(T

∗)

⇓

ϕn(x) :=

∫

T∗

e−ixλψn(λ)dρ(λ)

⇓

f (t)
d
=
∑

n

ζnϕn(t), where ζn are i.i.d. N (0, 1).
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General Construction

ρ - a finite, symmetric, non-negative measure on T ∗

{ψn}n - ONB of L2
ρ(T

∗)

⇓

ϕn(x) :=

∫

T∗

e−ixλψn(λ)dρ(λ)

⇓

f (t)
d
=
∑

n

ζnϕn(t), where ζn are i.i.d. N (0, 1).

make sure that ϕn are R-valued.
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Persistence Probability

Definition

Let f be a GSP on T . The persistence probability of f up to
time t ∈ T is

Pf (t) := P

(
f (x) > 0, ∀x ∈ (0, t]

)
.

a.k.a. gap or hole probability (referring to gap between zeroes or
sign-changes).
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Persistence Probability

Definition

Let f be a GSP on T . The persistence probability of f up to
time t ∈ T is

Pf (t) := P

(
f (x) > 0, ∀x ∈ (0, t]

)
.

a.k.a. gap or hole probability (referring to gap between zeroes or
sign-changes).
Question: What is the behavior of P(t) as t → ∞?

Guess: “typically” P(t) ≍ e−θt .
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Persistence Probability

Definition

Let f be a GSP on T . The persistence probability of f up to
time t ∈ T is

Pf (t) := P

(
f (x) > 0, ∀x ∈ (0, t]

)
.

a.k.a. gap or hole probability (referring to gap between zeroes or
sign-changes).
Question: What is the behavior of P(t) as t → ∞?

Guess: “typically” P(t) ≍ e−θt .

(Xn)n∈Z i.i.d. ⇒ PX (N) = 2−N

Yn = Xn+1 − Xn ⇒ PY (N) = 1
(N+1)! ≍ e−N logN

Zn ≡ Z0 ⇒ PZ (N) = P(Z0 > 0) = 1
2
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40’s - 60’s

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).
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Engineering and Applied Mathematics
40’s - 60’s

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality:
r1(x) ≥ r2(x) ≥ 0 ⇒ P1(t) ≥ P2(t).
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Engineering and Applied Mathematics
40’s - 60’s

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality:
r1(x) ≥ r2(x) ≥ 0 ⇒ P1(t) ≥ P2(t).

1962 Longuet-Higgins

generalized short-range results to gaps between nearly
consecutive zeroes.
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Engineering and Applied Mathematics
40’s - 60’s

1962 Newell & Rosenblatt

If r(x) → 0 as x → ∞, then P(t) = o(t−α) for any α > 0.

If |r(x)| < ax−α then P(t) ≤





e−Ct if α > 1

e−Ct/ log t if α = 1

e−Ctα if 0 < α < 1

examples for P(t) > e−C
√
t log t ≫ e−Ct (r(x) ≍ x−1/2).
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Engineering and Applied Mathematics
40’s - 60’s

1962 Newell & Rosenblatt

If r(x) → 0 as x → ∞, then P(t) = o(t−α) for any α > 0.

If |r(x)| < ax−α then P(t) ≤





e−Ct if α > 1

e−Ct/ log t if α = 1

e−Ctα if 0 < α < 1

examples for P(t) > e−C
√
t log t ≫ e−Ct (r(x) ≍ x−1/2).

There are parallel independent results in the Soviet industry and
Academia (e.g., by Piterbarg, Kolmogorov)
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New motivation from physics:

electrons in matter (point process simulated by zeroes)
non-equilibrium systems (Ising, Potts, diffusion with random
initial conditions)
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Physics
90’s - 00’s

New motivation from physics:

electrons in matter (point process simulated by zeroes)
non-equilibrium systems (Ising, Potts, diffusion with random
initial conditions)

1998-2004 Bray, Ehrhardt, Majumdar (and others).

“independent interval approximation”
“correlator expansion method”: a series expansion for the
persistence exponent
numerical simulations
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00’s-

2005-14 Hole probability for Gaussian analytic functions
- in the plane (Sodin-Tsirelson 2005, Nishry 2010)
- in the hyperbolic disc (Buckley, Nishry, Peled, Sodin - 2014)
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Probability and Analysis
00’s-

2005-14 Hole probability for Gaussian analytic functions
- in the plane (Sodin-Tsirelson 2005, Nishry 2010)
- in the hyperbolic disc (Buckley, Nishry, Peled, Sodin - 2014)

2013 Dembo & Mukherjee:

no zeroes for random polynomials ↔ persistence of GSP

If r(x) ≥ 0, then exists limt→∞
− log P(t)

t
∈ [0,∞) (uses

Slepian).
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Probability and Analysis
Bounds for the sinc kernel

Theorem (Antezana, Buckley, Marzo, Olsen 2012)

For the sinc-kernel process (r(t) = sinc(t)), there is a constant
c > 0 such that

e−cN ≤ Pf (N) ≤ 1

2N
,

for all large enough N.
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Probability and Analysis
Bounds for the sinc kernel

Theorem (Antezana, Buckley, Marzo, Olsen 2012)

For the sinc-kernel process (r(t) = sinc(t)), there is a constant
c > 0 such that

e−cN ≤ Pf (N) ≤ 1

2N
,

for all large enough N.

Upper bound: notice (f (n))n∈Z are i.i.d., so

P(f > 0, on (0,N] ∩ R) ≤ P(f > 0, on (0,N] ∩ Z) =
1

2N
.

Lower bound: an explicit construction + computation.
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .

Given in terms of ρ (not r).
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .

Given in terms of ρ (not r).

roughly,
∫
T
r(x)dx converges and is positive.
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .

Given in terms of ρ (not r).

roughly,
∫
T
r(x)dx converges and is positive.

M is needed only for the upper bound.
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .

Given in terms of ρ (not r).

roughly,
∫
T
r(x)dx converges and is positive.

M is needed only for the upper bound.

Main tool: “spectral decomposition”
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Main Result

Theorem (F. & Feldheim, 2013)

Let f be a GSP (on Z or R) with spectral measure ρ. Suppose
that ∃a,m,M > 0 such that ρ has density in [−a, a], denoted by
ρ′(x), and

∀x ∈ (−a, a) : m ≤ ρ′(x) ≤ M.

Then ∃c1, c2 > 0 s.t. for all large enough N:

e−c1N ≤ Pf (N) ≤ e−c2N .

(Xn)n∈Z i.i.d. ⇒ PX (N) = 2−N ρ′ = 1I[−π,π]

Yn = Xn+1 − Xn ⇒ PY (N) ≍ e−N logN ρ′ = 2(1 − cosλ)1I[−π,π]

Zn ≡ Z0 ⇒ PZ (N) =
1

2
ρ = δ0
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Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,
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Spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Proof:

cov((f1 + f2)(0), (f1 + f2)(x))

= cov(f1(0), f1(x)) + cov(f2(0), f2(x))

= ρ̂1(x) + ρ̂2(x) = ρ̂1 + ρ2(x) = cov(f (0), f (x)).
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Spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Application:

ρ = m1I[−π
k
,
π

k
] + µ⇒ f = S ⊕ g

where rS (x) = c sinc( x
k
), and g is some GSP.
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Spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Application:

ρ = m1I[−π
k
,
π

k
] + µ⇒ f = S ⊕ g

where rS (x) = c sinc( x
k
), and g is some GSP.
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Spectral decomposition

Key Observation

ρ = ρ1 + ρ2 ⇒ f
d
= f1 ⊕ f2,

Application:

ρ = m1I[−π
k
,
π

k
] + µ⇒ f = S ⊕ g

where rS (x) = c sinc( x
k
), and g is some GSP.

Observation.

(S(nk))n∈Z are i.i.d.

Proof: E[S(nk)S(mk)] = rS((m − n)k) = 0.
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f = S ⊕ g , where (S(nk))n∈Z are i.i.d.



Introduction
Persistence Probability
Ideas from the Proofs

Spectral decomposition
Upper bound
Lower bound

Upper Bound

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.

Let us use this observation to obtain an upper bound on Pf (N).

Pf (N) ≤ P

(
S ⊕ g > 0 on (0,N]

∣∣∣ 1
N

N∑

n=1

g(n) < 1

)

+ P

(
1

N

N∑

n=1

g(n) ≥ 1

)
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Upper Bound

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.

Let us use this observation to obtain an upper bound on Pf (N).

Pf (N) ≤ P

(
S ⊕ g > 0 on (0,N]

∣∣∣ 1
N

N∑

n=1

g(n) < 1

)

+ P

(
1

N

N∑

n=1

g(n) ≥ 1

)

Lemma 1.

1
N

∑N
n=1 g(n) ∼ NR(0, σ

2
N), where σ

2
N ≤ C0

N
.

Here we use the upper bound M.
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f = S ⊕ g , where (S(nk))n∈Z are i.i.d.

Let us use this observation to obtain an upper bound on Pf (N).

Pf (N) ≤ P

(
S ⊕ g > 0 on (0,N]

∣∣∣ 1
N

N∑

n=1

g(n) < 1

)

+ P

(
1

N

N∑

n=1

g(n) ≥ 1

)

Lemma 1.

1
N

∑N
n=1 g(n) ∼ NR(0, σ

2
N), where σ

2
N ≤ C0

N
.

Here we use the upper bound M.

Lemma 1 ⇒ P( 1
N

∑N
n=1 g(n) ≥ 1) ≤ e−c1N .
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We may therefore assume 1
N

∑N
n=1 g(n) < 1.
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We may therefore assume 1
N

∑N
n=1 g(n) < 1. Thus

for some ℓ ∈ {1, . . . , k}, we have
k

N

⌊N/k⌋∑

n=0

g(ℓ+ nk) < 1.
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Upper Bound

We may therefore assume 1
N

∑N
n=1 g(n) < 1. Thus

for some ℓ ∈ {1, . . . , k}, we have
k

N

⌊N/k⌋∑

n=0

g(ℓ+ nk) < 1.

Lemma 2.

Let X1, . . . ,XN be i.i.d N (0, 1), and b1, . . . , bN ∈ R such that
1
N

∑N
j=1 bj < 1. Then ∃C > 0 so that

P (Xj + bj > 0, 1 ≤ j ≤ N) ≤ e−CN .
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We may therefore assume 1
N

∑N
n=1 g(n) < 1. Thus

for some ℓ ∈ {1, . . . , k}, we have
k

N

⌊N/k⌋∑

n=0

g(ℓ+ nk) < 1.

Lemma 2.

Let X1, . . . ,XN be i.i.d N (0, 1), and b1, . . . , bN ∈ R such that
1
N

∑N
j=1 bj < 1. Then ∃C > 0 so that

P (Xj + bj > 0, 1 ≤ j ≤ N) ≤ e−CN .

Proof:
logP(Xj ≥ −bj , 1 ≤ j ≤ N) = log

N∏

j=1

Φ(bj)

=

N∑

j=1

log Φ(bj) ≤ N log Φ

(
1

N

∑
bj

)
≤ N log Φ(1).
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Reduction to functions: (f (j))j∈Z ❀ ρ ∈ M([−π, π]) ⊂ M(R),
so may “extend” to (f (t))t∈R with the same ρ. Now,

P(f > 0 on (0,N] ∩ R) ≤ P(f > 0 on (0,N] ∩ Z).
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Reduction to functions: (f (j))j∈Z ❀ ρ ∈ M([−π, π]) ⊂ M(R),
so may “extend” to (f (t))t∈R with the same ρ. Now,

P(f > 0 on (0,N] ∩ R) ≤ P(f > 0 on (0,N] ∩ Z).

First try: build an explicit event A ⊂ {f > 0 on (0,N]}.
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Reduction to functions: (f (j))j∈Z ❀ ρ ∈ M([−π, π]) ⊂ M(R),
so may “extend” to (f (t))t∈R with the same ρ. Now,

P(f > 0 on (0,N] ∩ R) ≤ P(f > 0 on (0,N] ∩ Z).

First try: build an explicit event A ⊂ {f > 0 on (0,N]}.
Second try: use known bounds. Recall:

f = S ⊕ g , where S is the (scaled) sinc-kernel process.
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Lower bound

Reduction to functions: (f (j))j∈Z ❀ ρ ∈ M([−π, π]) ⊂ M(R),
so may “extend” to (f (t))t∈R with the same ρ. Now,

P(f > 0 on (0,N] ∩ R) ≤ P(f > 0 on (0,N] ∩ Z).

First try: build an explicit event A ⊂ {f > 0 on (0,N]}.
Second try: use known bounds. Recall:

f = S ⊕ g , where S is the (scaled) sinc-kernel process.

P(S ⊕ g > 0 on (0,N])

≥ P(S > 1 on (0,N]) P(|g | ≤ 1

2
on (0,N])
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Lower bound

Reduction to functions: (f (j))j∈Z ❀ ρ ∈ M([−π, π]) ⊂ M(R),
so may “extend” to (f (t))t∈R with the same ρ. Now,

P(f > 0 on (0,N] ∩ R) ≤ P(f > 0 on (0,N] ∩ Z).

First try: build an explicit event A ⊂ {f > 0 on (0,N]}.
Second try: use known bounds. Recall:

f = S ⊕ g , where S is the (scaled) sinc-kernel process.

P(S ⊕ g > 0 on (0,N])

≥ P(S > 1 on (0,N])︸ ︷︷ ︸
ABMO

P(|g | ≤ 1

2
on (0,N])

︸ ︷︷ ︸
small ball prob.
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Lower bound on small ball probability:
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Lower bound on small ball probability:

Talagrand, Shao-Wang (1994), Ledoux (1996)

Suppose (X (t))t∈I is a centered Gaussian process on an interval I ,
and

E|X (s)− X (t)|2 ≤ C |t − s|γ

for all s, t ∈ I and some 0 < γ ≤ 2, C > 0. Then

P(sup
t∈I

|X (t)| ≤ ε) ≥ exp

(
−K |I |
ε2/γ

)
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Lower bound on small ball probability:

Talagrand, Shao-Wang (1994), Ledoux (1996)

Suppose (X (t))t∈I is a centered Gaussian process on an interval I ,
and

E|X (s)− X (t)|2 ≤ C |t − s|γ

for all s, t ∈ I and some 0 < γ ≤ 2, C > 0. Then

P(sup
t∈I

|X (t)| ≤ ε) ≥ exp

(
−K |I |
ε2/γ

)

For stationary processes, the moment condition is enough.

∃δ > 0 :

∫
|λ|δdρ(δ) <∞.
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pointwise: P(N) ≍ e−cN logN?

on an interval: P(N) ≍ e−cN2

?
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spectral measure vanishes at 0

pointwise: P(N) ≍ e−cN logN?

on an interval: P(N) ≍ e−cN2

?

spectral measure blows-up at 0: P(N) ≫ e−cN?

Prove existence of the limit

lim
N→∞

− logP(N)

N
.

(recall known for r(t) ≥ 0: Dembo and Mukherjee).
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Further Research

spectral measure vanishes at 0

pointwise: P(N) ≍ e−cN logN?

on an interval: P(N) ≍ e−cN2

?

spectral measure blows-up at 0: P(N) ≫ e−cN?

Prove existence of the limit

lim
N→∞

− logP(N)

N
.

(recall known for r(t) ≥ 0: Dembo and Mukherjee).

compute it.
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Thank you.
“Persistence can grind an iron beam down into a needle.”

– – Chinese Proverb.


	Introduction
	Definitions
	Examples
	General Construction

	Persistence Probability
	Definition
	Prehistory
	History
	Main Result

	Ideas from the Proofs
	Spectral decomposition
	Upper bound
	Lower bound


