Three Edge Lengths Suffice For Drawing Outerplanar Graphs

Noga Alon Ohad N. Feldheim

Tel-Aviv University

IMU, 2012

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2

Preliminaries

Results Approaching the Problem Remarks and Open Problems Embedding in the Plane Drawings Degenerate Drawings

Mapping Graphs to the Plane

Let
$$G = (V_G, E_G), \qquad \pi : V_G \to \mathbb{C},$$

Embedding in the Plane Drawings Degenerate Drawings

Mapping Graphs to the Plane

$$\begin{array}{ll} \text{Let} \ G = (V_G, E_G), & \pi : V_G \to \mathbb{C}, & e = (v_0, v_1). \end{array} \\ \text{We set:} & \pi(e) := (\pi(v_0), \pi(v_1)) \end{array}$$

Embedding in the Plane Drawings Degenerate Drawings

Mapping Graphs to the Plane

Let
$$G = (V_G, E_G), \quad \pi : V_G \to \mathbb{C}, \quad e = (v_0, v_1).$$

We set: $\pi(e) := (\pi(v_0), \pi(v_1)) \quad \text{len}_{\pi}(e) := |\pi(v_0) - \pi(v_1)|$

Embedding in the Plane Drawings Degenerate Drawings

Mapping Graphs to the Plane

Let
$$G = (V_G, E_G), \quad \pi : V_G \to \mathbb{C}, \quad e = (v_0, v_1).$$

We set: $\pi(e) := (\pi(v_0), \pi(v_1)) \quad \text{len}_{\pi}(e) := |\pi(v_0) - \pi(v_1)|$
 $\text{lens}(\pi) := |\{\text{len}_{\pi}(e) : e \in E_G\}|$

Preliminaries Results Approaching the Problem

Remarks and Open Problems

Embedding in the Plane Drawings Degenerate Drawings

Drawings

Let $G = (V_G, E_G), \quad \pi : V_G \to \mathbb{C},$

Drawing: $\forall v, v' \in V_G$, $\forall e \in E_G$: $\pi(v) \neq \pi(v')$, $\pi(v) \notin \pi(e)$

(ロ) (同) (E) (E) (E)

Embedding in the Plane Drawings **Degenerate Drawings**

Vo

 V_3

イロト イヨト イヨト イヨト

3

Drawings

Let
$$G = (V_G, E_G), \qquad \pi : V_G \to \mathbb{C},$$

Drawing: $\forall v, v' \in V_G$, $\forall e \in E_G$: $\pi(v) \neq \pi(v'), \pi(v) \notin \pi(e)$

Distance Number

 $dn(G) := min\{lens(\pi) : \pi \text{ is a drawing of } G\}$

Preliminaries Results

Approaching the Problem

Remarks and Open Problems

Embedding in the Plane Drawings Degenerate Drawings

Degenerate Drawings

Let $G = (V_G, E_G), \qquad \pi : V_G \to \mathbb{C},$

Deg. Drawing: $\forall v, v' \in V_G$: $\pi(v) \neq \pi(v')$

(ロ) (同) (E) (E) (E)

Embedding in the Plane Drawings Degenerate Drawings

Degenerate Drawings

Let $G = (V_G, E_G), \qquad \pi : V_G \to \mathbb{C},$

Deg. Drawing: $\forall v, v' \in V_G$: $\pi(v) \neq \pi(v')$

Degenerate Distance Number

 $ddn(G) := min\{lens(\pi) : \pi \text{ is a deg. drawing of } G\}$

Graph G

イロン イ部 とくほど くほとう ほ

Preliminaries

Results Approaching the Problem Remarks and Open Problems Embedding in the Plane Drawings Degenerate Drawings

Properties of the Distance Number

Properties of dn and ddn

Let $G \subset H$.

- $dn(G) \leq dn(H)$
- $ddn(G) \leq ddn(H)$
- $ddn(G) \le dn(G)$

イロト イポト イヨト イヨト

Previous Results Our Results

Distance Number - Previous Results

What bounds can we get on dn, ddn? Are they ever different?

イロト イポト イヨト イヨト

Previous Results Our Results

Distance Number - Previous Results

What bounds can we get on dn, ddn? Are they ever different?

Results on K_n

Guth-Katz('11)/Erdős('46): $\frac{c_1 n}{\log n} \leq \operatorname{ddn}(K_n) \leq \frac{c_2 n}{\sqrt{\log n}}$

・ロン ・回と ・ヨン・

Previous Results Our Results

Distance Number - Previous Results

What bounds can we get on dn, ddn? Are they ever different?

Results on K_n

 $\begin{array}{l} \mathsf{Guth-Katz('11)/Erdős('46):} \quad \frac{c_1 n}{\log n} \leq \mathsf{ddn}(K_n) \leq \frac{c_2 n}{\sqrt{\log n}} \\ \mathsf{Szemerédi('95)/Erdős('51):} \quad \frac{n-1}{3} \leq \mathsf{dn}(K_n) \leq \frac{n}{2} \end{array}$

・ロン ・回と ・ヨン ・ヨン

Previous Results Our Results

Distance Number - Previous Results

What bounds can we get on dn, ddn? Are they ever different?

Results on K_n

$$\begin{array}{l} \mathsf{Guth-Katz('11)/Erdős('46):} \quad \frac{c_1n}{\log n} \leq \mathsf{ddn}(K_n) \leq \frac{c_2n}{\sqrt{\log n}} \\ \mathsf{Szemerédi('95)/Erdős('51):} \quad \frac{n-1}{3} \leq \mathsf{dn}(K_n) \leq \frac{n}{2} \end{array}$$

Results on graphs with bdd. degree Δ , *n* vertices

Carmi, Dujmović, Morin, Wood('08): For $\Delta \ge 5$: ddn is not uniformly bdd. For $\Delta \ge 7$: exist G_n with ddn $(G) = \Omega(n^c)$ for $c(\Delta) < C < 1$. dn $(G) = O(\Delta^4 \log n)$ if G_n 's treewidth is uniformly bdd.

イロン イヨン イヨン

Previous Results Our Results

Distance Number - Planar Graphs

Planar Graph: Has a drawing without crossings.

イロト イポト イヨト イヨト

Previous Results Our Results

Distance Number - Planar Graphs

Planar Graph: Has a drawing without crossings. \exists planar G_n with ddn $(G) = \Omega(\sqrt{n})$.

<ロト <回ト < 回ト < 回

Previous Results Our Results

Distance Number - Planar Graphs

Planar Graph: Has a drawing without crossings. \exists planar G_n with $ddn(G) = \Omega(\sqrt{n})$.

Carmi, Dujmovic, Morin, Wood('08): Do **outerplanar** graphs have uniformly bounded (degenerate) distance number?

Previous Results Our Results

Outerplanar Graphs

Outerplanar Graph: \exists drawing, without crossings, s.t. unbounded face contains all vertices.

・ 同・ ・ ヨ・

Previous Results Our Results

Outerplanar Graphs

Outerplanar Graph: \exists drawing, without crossings, s.t.

unbounded face contains all vertices.

Triangulated Outerplanar Graph: Outerplanar graph where all bounded faces are triangles.

Previous Results Our Results

Our Results

Carmi, Dujmovic, Morin, Wood('08): Do outerplanar graphs have uniformly bounded (degenerate) distance number?

() < </p>

Previous Results Our Results

Our Results

Carmi, Dujmovic, Morin, Wood('08): Do outerplanar graphs have uniformly bounded (degenerate) distance number?

Theorem (Alon, F.)

For almost every **triple** $a, b, c \in (0, 1)$, every outerplanar graph has a **degenerate drawing** using only edge-lengths a, b and c.

・ロン ・回と ・ヨン ・ヨン

Previous Results Our Results

Our Results

Carmi, Dujmovic, Morin, Wood('08): Do outerplanar graphs have uniformly bounded (degenerate) distance number?

Theorem (Alon, F.)

For almost every **triple** $a, b, c \in (0, 1)$, every outerplanar graph has a **degenerate drawing** using only edge-lengths a, b and c.

Work in progress...

For almost every **nine** values $a_0, ..., a_8 \in (0, 1)$, every outerplanar graph has a **drawing** using only edge-lengths $a_0, ..., a_8$.

Drawing Outerplanar Graphs

- 4 日 ト - 4 注 ト - 4

Triangle Trees Naive Approach Embedding Rhombi The Construction

Triangle Trees

Bdd. faces of triangulated outerplanar graphs have a binary tree structure.

Triangle Trees Naive Approach Embedding Rhombi The Construction

Triangle Trees

Bdd. faces of triangulated outerplanar graphs have a binary tree structure.

Triangle Trees Naive Approach Embedding Rhombi The Construction

Triangle Trees

Bdd. faces of triangulated outerplanar graphs have a binary tree structure.

Triangle Trees Naive Approach Embedding Rhombi The Construction

Triangle Trees

Bdd. faces of triangulated outerplanar graphs have a binary tree structure.

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

イロン イヨン イヨン

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

Naïve attempt: Take a general triangle T. Map every face of G to a copy of T preserving orientation.

イロン イヨン イヨン

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

Naïve attempt: Take a general triangle T. Map every face of G to a copy of T preserving orientation. We get a lattice...

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

Naïve attempt: Take a general triangle T. Map every face of G to a copy of T preserving orientation. We get a lattice...

- 4 同 2 4 三 2 4 三

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

Naïve attempt: Take a general triangle T. Map every face of G to a copy of T preserving orientation. We get a lattice...

- 4 同 2 4 三 2 4 三

Triangle Trees Naive Approach Embedding Rhombi The Construction

First Attempt

It would therefore be enough to draw every triangle tree G.

Naïve attempt: Take a general triangle T. Map every face of G to a copy of T preserving orientation.

We get a lattice... ...and fail due to commutativity.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Triangle Trees Naive Approach Embedding Rhombi The Construction

Rhombus

Rhombus graph, base edge in red.

It is simpler to work with rhombi then with triangles. Every triangle tree is covered by a tree of rhombi.

<ロト <回ト < 回ト < 回

Triangle Trees Naive Approach Embedding Rhombi The Construction

Embedding the Rhombi

External edges are always of length 1. $x \in \mathbb{T}$ the unit circle.

<ロ> (四) (四) (三) (三)

Triangle Trees Naive Approach Embedding Rhombi The Construction

Embedding the Rhombi

External edges are always of length 1. $x \in \mathbb{T}$ the unit circle.

We embed adjacent rhombi always turning to the left.

<ロ> (四) (四) (三) (三)

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Noga Alon and Ohad N. Feldheim Three Edge Lengths Suffice For Drawing Outerplanar Graphs

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

Triangle Trees Naive Approach Embedding Rhombi The Construction

How does it look with one rhombus type

The position of a vertex is thus $\sum k_i x^i$.

Triangle Trees Naive Approach Embedding Rhombi The Construction

Embedding the Rhombi - 2

It is enough to show that different vertices are mapped to different polynomials.

イロト イヨト イヨト

Triangle Trees Naive Approach Embedding Rhombi The Construction

Embedding the Rhombi - 2

It is enough to show that different vertices are mapped to different polynomials. Local obstruction:

() < </p>

Triangle Trees Naive Approach Embedding Rhombi The Construction

Embedding the Rhombi - 2

It is enough to show that different vertices are mapped to different polynomials. Local obstruction:

Solution: using two kinds of rhombi. The position of a vertex is thus $\sum_{i} \sum_{j} k_{ij} x^{i} y^{j}$.

Triangle Trees Naive Approach Embedding Rhombi The Construction

Our Construction

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

3

Remarks Open Problems

What's not on this talk

What's not on this talk?

• The actual proof

イロト イポト イヨト イヨト

Remarks Open Problems

What's not on this talk

What's not on this talk?

- The actual proof
- Why the construction yields degenerate drawings

イロト イポト イヨト イヨト

Remarks Open Problems

What's not on this talk

What's not on this talk?

- The actual proof
- Why the construction yields degenerate drawings

Remarks Open Problems

What's not on this talk

What's not on this talk?

- The actual proof
- Why the construction yields degenerate drawings
- How do we think this can be overcome

Remarks Open Problems

Open Problems

Open Problems

• Tighten the bounds. In particular -

Remarks Open Problems

Open Problems

Open Problems

- Tighten the bounds. In particular -
- Is 2 the degenerate distance number of every outerplanar graph?

イロト イポト イヨト イヨト

Remarks Open Problems

Open Problems

Open Problems

- Tighten the bounds. In particular -
- Is 2 the degenerate distance number of every outerplanar graph?
- Except outerplanarity and bdd. degree + bdd. treewidth, what other properties bound the asymptotics of the (degenerate) distance number?

・ロン ・回 と ・ ヨ と ・ ヨ と

