# Avoidance Coupling 

Ohad N. Feldheim<br>Institute of Mathematics and its Applications, UMN<br>Jan 2015

## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:


## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.



## Avoidance Coupling

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $k$ agents, $a_{0}, \ldots, a_{k-1}$ moving on $V$, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. $a_{0}$, then $a_{1}$ etc'),
- The agents never collide (i.e. at most one agent per site),
- The path of each agent is a simple random walk.


Q(AHMWW): Given $G$ what is the maximal $k$ for which an avoidance coupling exists?

## Terminology

- Sites: $\subset \mathbb{Z}$
- Agents: $a_{0}, \ldots, a_{k-1}$.
- "Step": the movement of a single agent.
- "Round" : the movement of all agnets.
- $t$ : measures time in terms of rounds.
- $K_{n}$ : complete graph.
- $K_{n}^{*}$ : complete graph with loops.


## Context and Motivation I

Coupling random walks

- Coupling of random variables $X_{1}, \ldots, X_{k}$ is their embedding in a joint probability space $\Omega$.


## Context and Motivation I

Coupling random walks

- Coupling of random variables $X_{1}, \ldots, X_{k}$ is their embedding in a joint probability space $\Omega$.
- Random walks are often coupled so that they will a.s. collide.


## Context and Motivation I

Coupling random walks

- Coupling of random variables $X_{1}, \ldots, X_{k}$ is their embedding in a joint probability space $\Omega$.
- Random walks are often coupled so that they will a.s. collide.
- Avoiding collision through scheduling was studied by Winkler, Basu, Sidoravicius and Sly.


## Context and Motivation I

Coupling random walks

- Coupling of random variables $X_{1}, \ldots, X_{k}$ is their embedding in a joint probability space $\Omega$.
- Random walks are often coupled so that they will a.s. collide.
- Avoiding collision through scheduling was studied by Winkler, Basu, Sidoravicius and Sly.
- SAC tends to be stronger, thus allows more agents.


## Context and Motivation II

Relating a distribution and its marginals

## Context and Motivation II

Relating a distribution and its marginals

- Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.


## Context and Motivation II

Relating a distribution and its marginals

- Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.
...followed by an industry of obtaining useful information about convex bodies from various projected properties.


## Context and Motivation II

Relating a distribution and its marginals

- Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.
...followed by an industry of obtaining useful information about convex bodies from various projected properties.
- $k$ i.i.d. random walkers on a connected graph always collide. The contra-positive of our question is:

When is it impossible for a joint distribution with the same marginals to avoid collision?

## Remarks

- Markovian and Hidden Markovian SAC.


## Remarks

- Markovian and Hidden Markovian SAC.
- Discrete time $\longleftrightarrow$ Continuous time poisson.


## Remarks

- Markovian and Hidden Markovian SAC.
- Discrete time $\longleftrightarrow$ Continuous time poisson.
- In general starting position cannot be assumed uniform.


## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.
- This is a minimum-entropy coupling.



## Simple Examples - I - Tori

On a $2 n$ cycle graph - maximal SAC is a least of size $n$.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.
- This is a minimum-entropy coupling.
- The same principle works for
 $\mathbb{Z}^{d} / n \mathbb{Z}^{d}$,


## Simple Examples - II - loop triangle

On a $K_{3}^{*}$ - maximal SAC is of size 2.

## Simple Examples - II - loop triangle

On a $K_{3}^{*}$ - maximal SAC is of size 2.

## Strategy:

- $a_{1}$ makes a random walk.
- If $a_{1}$ stays - $a_{0}$ moves, otherwise - $a_{0}$ follows its only viable option.



## Simple Examples - II - loop triangle

On a $K_{3}^{*}$ - maximal SAC is of size 2.

## Strategy:

- $a_{1}$ makes a random walk.
- If $a_{1}$ stays - $a_{0}$ moves, otherwise - $a_{0}$ follows its only viable option.

This walk is:

- minimum-entropy coupling,
- invariant to time reversal.



## Results for $K_{n}, K_{n}^{*}$

## Theorem (Angel, Holroyd, Martin, Wilson \& Winkler)

Let $n=2^{d+1}$. There exists a Markovian, minimum-entropy SAC of $2^{d}$ agents on $K_{n}^{*}, K_{n+1}^{*}$ and $K_{n+1}$.

## Results for $K_{n}, K_{n}^{*}$

## Theorem (Angel, Holroyd, Martin, Wilson \& Winkler)

Let $n=2^{d+1}$. There exists a Markovian, minimum-entropy SAC of $2^{d}$ agents on $K_{n}^{*}, K_{n+1}^{*}$ and $K_{n+1}$.
$A C(G):=$ maximum SAC on $G$.

## Theorem

$A C\left(K_{n}^{*}\right)$ is monotone in $n$.
(AHMWW)
$A C\left(K_{n}\right)$ is monotone in $n$.
(F)

## Results for $K_{n}, K_{n}^{*}$

## Theorem (Angel, Holroyd, Martin, Wilson \& Winkler)

Let $n=2^{d+1}$. There exists a Markovian, minimum-entropy SAC of $2^{d}$ agents on $K_{n}^{*}, K_{n+1}^{*}$ and $K_{n+1}$.
$A C(G):=$ maximum SAC on $G$.

## Theorem

$$
\begin{array}{lr}
A C\left(K_{n}^{*}\right) \text { is monotone in } n . & (\mathrm{AHMWW}) \\
A C\left(K_{n}\right) \text { is monotone in } n . & (F)
\end{array}
$$

## Corollary

There exists a SAC of $\lceil n / 4\rceil$ agents on both $K_{n}^{*}$ and $K_{n}$.

## Results for $K_{n}, K_{n}^{*}$

## Theorem (Angel, Holroyd, Martin, Wilson \& Winkler)

Let $n=2^{d+1}$. There exists a Markovian, minimum-entropy SAC of $2^{d}$ agents on $K_{n}^{*}, K_{n+1}^{*}$ and $K_{n+1}$.

$$
A C(G):=\text { maximum SAC on } G .
$$

## Theorem

| [Bernoulli SAC] | $A C\left(K_{n}^{*}\right)$ is monotone in $n$. | $($ AHMWW $)$ |
| :--- | :--- | ---: |
| [POSAC] | $A C\left(K_{n}\right)$ is monotone in $n$. | $(F)$ |

## Corollary

There exists a SAC of $\lceil n / 4\rceil$ agents on both $K_{n}^{*}$ and $K_{n}$.

## Results for $K_{n}, K_{n}^{*}$

## Theorem (Angel, Holroyd, Martin, Wilson \& Winkler)

Let $n=2^{d+1}$. There exists a Markovian, minimum-entropy SAC of $2^{d}$ agents on $K_{n}^{*}, K_{n+1}^{*}$ and $K_{n+1}$.
$A C(G):=$ maximum SAC on $G$.

## Theorem

[Bernoulli SAC] $A C\left(K_{n}^{*}\right)$ is monotone in $n$. [POSAC] $\quad A C\left(K_{n}\right)$ is monotone in $n$.
(AHMWW)
(F)

## Corollary

There exists a SAC of $\lceil n / 4\rceil$ agents on both $K_{n}^{*}$ and $K_{n}$.
These couplings are hidden Markovian.

Constructing an Avoidance Coupling on K $\mathcal{Z}^{d}+1$

"I think you should be more explicit here in step two."

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$

Write $n=2^{d}, V=\{0, \ldots, 2 n\}$,

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$

Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$.

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$

Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$.

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$

Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable.

Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$



Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$\delta_{t}$ determines $a_{0}(t)=a_{00}(t)$.


Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$\delta_{t}$ determines $a_{0}(t)=a_{00}(t)$.
Then $\varepsilon_{t}^{0}$ determines $a_{1}(t)=a_{01}(t)$,


Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$\delta_{t}$ determines $a_{0}(t)=a_{00}(t)$.
Then $\varepsilon_{t}^{0}$ determines $a_{1}(t)=a_{01}(t)$, and $\varepsilon_{t}^{1}$ determines $a_{2}(t)=a_{10}(t)$.


Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$\delta_{t}$ determines $a_{0}(t)=a_{00}(t)$.
Then $\varepsilon_{t}^{0}$ determines $a_{1}(t)=a_{01}(t)$, and $\varepsilon_{t}^{1}$ determines $a_{2}(t)=a_{10}(t)$. $a_{3}(t)=a_{11}(t)$ is fixed by $\varepsilon_{t}^{0}, \varepsilon_{t}^{1}$.


Write $n=2^{d}, V=\{0, \ldots, 2 n\}$, assume WLOG $a_{n}(t-1)=0$. Let $m<n$ and write $m:=\sum m^{i} 2^{i}$. We now define $a_{m}(t) \mid a_{n}(t-1)$. Let $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let $\delta_{t}$ be an independent uniform $\{0,1\}$ variable. we set

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$\delta_{t}$ determines $a_{0}(t)=a_{00}(t)$.
Then $\varepsilon_{t}^{0}$ determines $a_{1}(t)=a_{01}(t)$, and $\varepsilon_{t}^{1}$ determines $a_{2}(t)=a_{10}(t)$. $a_{3}(t)=a_{11}(t)$ is fixed by $\varepsilon_{t}^{0}, \varepsilon_{t}^{1}$.


## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i},
$$

We need to show:

- No collision in the same round
- Each agent performs simple random walk
- No collisions between rounds


## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i},
$$

We need to show:

- No collision in the same round - straightforward.
- Each agent performs simple random walk
- No collisions between rounds


## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i},
$$

We need to show:

- No collision in the same round - straightforward.
- Each agent performs simple random walk - we show this first.
- No collisions between rounds


## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i},
$$

$$
a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}
$$

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i},
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}$
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}=0$,
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}=0$,
$a_{m}(t-1) \equiv \sum_{i=0}^{d-1}\left(m^{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$.
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}=0$,
$a_{m}(t-1) \equiv \sum_{i=0}^{d-1}\left(m^{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$. Thus
$a_{m}(t)-a_{m}(t-1)$
$\equiv 2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}+\sum_{i=1}^{d-1}\left(1-m_{t-1}^{i}\right) \varepsilon_{t-1}^{i} 2^{i}$
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}=0$,
$a_{m}(t-1) \equiv \sum_{i=0}^{d-1}\left(m^{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$. Thus
$a_{m}(t)-a_{m}(t-1)$
$\equiv 2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}+\sum_{i=1}^{d-1}\left(1-m_{t-1}^{i}\right) \varepsilon_{t-1}^{i} 2^{i}$
$\equiv 2^{d}+\delta_{t}+\sum_{i=0}^{d-1} b^{i}(t) 2^{i}$ where $b^{i}$ are i.i.d. Bernoulli $\{-1,1\}$,
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}
$$

$a_{m}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i}$,
$a_{n}(t-1) \equiv a_{n}(t-2)+2^{d}+\delta_{t-1}+\sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i}=0$,
$a_{m}(t-1) \equiv \sum_{i=0}^{d-1}\left(m^{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$. Thus
$a_{m}(t)-a_{m}(t-1)$
$\equiv 2^{d}+\delta_{t}+\sum_{i=0}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}+\sum_{i=1}^{d-1}\left(1-m_{t-1}^{i}\right) \varepsilon_{t-1}^{i} 2^{i}$
$\equiv 2^{d}+\delta_{t}+\sum_{i=0}^{d-1} b^{i}(t) 2^{i}$ where $b^{i}$ are i.i.d. Bernoulli $\{-1,1\}$,
$\equiv \operatorname{Unif}\left\{1 \ldots 2^{d+1}\right\}$.

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}-$ cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i} .
$$

We need to show:

- No collision in the same round - Done.
- Each agent performs simple random walk - Done.
- No collisions between rounds


## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$. $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$
Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$.
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$. $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$ Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$,

## $2^{d}$ agents SAC on $K_{2^{d+1}+1}$ - cont.

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$
Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$, and so,
$\left|\Delta^{i}\right| \leq \begin{cases}1 & i>k \\ 0 & i=k \\ 2 & i<k\end{cases}$
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$ Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$, and so,

$$
\left|\Delta^{i}\right| \leq\left\{\begin{array}{ll}
1 & i>k \\
0 & i=k \\
2 & i<k
\end{array} \Rightarrow\left|\delta_{t}+\sum_{i=1}^{d-1} \Delta^{i} 2^{i}\right|<1+\sum_{i=2}^{d-1} 2^{i}<2^{d}\right.
$$

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$ Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$, and so,

$$
\left|\Delta^{i}\right| \leq\left\{\begin{array}{ll}
1 & i>k \\
0 & i=k \\
2 & i<k
\end{array} \Rightarrow\left|\delta_{t}+\sum_{i=1}^{d-1} \Delta^{i} 2^{i}\right|<1+\sum_{i=2}^{d-1} 2^{i}<2^{d}\right.
$$

$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$.
$\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$
Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$, and so,
$\left|\Delta^{i}\right| \leq\left\{\begin{array}{ll}1 & i>k \\ 0 & i=k \\ 2 & i<k\end{array} \Rightarrow\left|\delta_{t}+\sum_{i=1}^{d-1} \Delta^{i} 2^{i}\right|<1+\sum_{i=2}^{d-1} 2^{i}<2^{d}\right.$
$\Rightarrow a_{m}(t)-a_{q}(t-1) \neq 0$.
$n=2^{d}, V=\left\{0, \ldots, 2^{d+1}\right\}, a_{n}(t-1)=0 . m^{i}:=i$-th binary digit of $m$. $\varepsilon_{t}^{0} \ldots \varepsilon_{t}^{d-1}$ uniform $\{-1,1\}, \delta_{t}$ uniform $\{0,1\}$.

$$
a_{m}(t)=2^{d}+\delta_{t}+\sum_{i=1}^{d-1} m^{i} \varepsilon_{t}^{i} 2^{i}, \quad a_{m}(t-1) \equiv \sum_{i=1}^{d-1}\left(m_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}
$$

Let $m<q$ and recall that: $a_{q}(t-1) \equiv \sum_{i=1}^{d-1}\left(q_{i}-1\right) \varepsilon_{t-1}^{i} 2^{i}$,
and thus: $a_{m}(t)-a_{q}(t-1) \equiv 2^{d}+\delta_{t}+\sum_{i=1}^{d-1}\left[m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}\right] 2^{i}$ Write $\Delta^{i}:=m^{i} \varepsilon_{t}^{i}+\left(1-q^{i}\right) \varepsilon_{t-1}^{i}$. Taking $k=\max _{i}\left(m^{i} \neq q^{i}\right)$, we have $m^{k}=0, q^{k}=1$, and so,
$\left|\Delta^{i}\right| \leq\left\{\begin{array}{ll}1 & i>k \\ 0 & i=k \\ 2 & i<k\end{array} \Rightarrow\left|\delta_{t}+\sum_{i=1}^{d-1} \Delta^{i} 2^{i}\right|<1+\sum_{i=2}^{d-1} 2^{i}<2^{d}\right.$
$\Rightarrow a_{m}(t)-a_{q}(t-1) \neq 0$.

## $2^{d}$ agents $S A C$ on $K_{2^{d}+1}$ - cont.

And there is also an applet! (by David Wilson)
http://dbwilson.com/avoidance.svg

Monotonicity of Avoidance coupling on $K_{n}$


## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:


## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.



## Partly Ordered Simple Avoidance Coupling (POSAC)

Let $G=(V, E)$ be a finite graph (loops and multi-edges are OK). $m$ agents, $a_{0}, \ldots, a_{m-1}$ moving on $V$, are said to form a $k$-POSAC if:

- The agents move one at a time but in changing order,
- Agents $a_{1}, \ldots, a_{k}$ are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.




## Theorem

If there is a $k$-POSAC of $m$ agents on $K_{n}$, then there also is a $k$-POSAC of $m+1$ agents on $K_{n+1}$.


Add a special vertex $*$ with a special disordered agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.


Add a special vertex with a special disordered agent.
At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent.
At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.


Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.

collusion can occur only in the previous $*$ vertex.

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.

collusion can occur only in the previous $*$ vertex. However, it is occupied only as long as the new $*$ vertex is occupied.


Add a special vertex with a special disordered agent.
At start of a round flip the special vertex with another vertex.
Continue the process respecting the new labels.
As soon as $*$ clears - shift there the new agent.

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


The new agent clearly makes a simple random walk.

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


Other agents make a simple random walks on the $A-F$ labels.

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


Other agents make a simple random walks on the $A-F$ labels. Now suppose an agent is in $A$ at time $t$, its probability of ending in a vertex currently labeled by $B, \ldots, F$ is:

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


Other agents make a simple random walks on the $A-F$ labels. Now suppose an agent is in $A$ at time $t$, its probability of ending in a vertex currently labeled by $B, \ldots, F$ is:
$\mathbb{P}$ (it moved to that label) $\cdot \mathbb{P}($ the label isn't replaced by $*)$

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


Other agents make a simple random walks on the $A-F$ labels. Now suppose an agent is in $A$ at time $t$, its probability of ending in a vertex currently labeled by $B, \ldots, F$ is:
$\mathbb{P}($ it moved to that label $) \cdot \mathbb{P}($ the label isn't replaced by $*)$

$$
=\frac{1}{n-1} \cdot \frac{n-1}{n}=\frac{1}{n} .
$$

What is there to show?

- No collisions occur.
- Each walker makes a simple random walk.


Other agents make a simple random walks on the $A-F$ labels. Now suppose an agent is in $A$ at time $t$, its probability of ending in a vertex currently labeled by $B, \ldots, F$ is:
$\mathbb{P}($ it moved to that label $) \cdot \mathbb{P}($ the label isn't replaced by $*)$

$$
=\frac{1}{n-1} \cdot \frac{n-1}{n}=\frac{1}{n} .
$$

The complementary $\frac{1}{n}$ is the probability of moving to the vertex currently labeled by $*$.

## Open Problems

Open problems

- Upper bound.
- Is $\frac{K_{n}}{n} \rightarrow 1$ ?
- General \& random graphs.
- High entropy avoidance coupling.


## Thank you!


"How do you want it-the crystal mumbo-jumbo or statistical probability?"

* all cartoons by Sidney Harris.

