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Abstract

We prove that a uniformly chosen proper 3-coloring of the d-dimensional discrete torus has a

very rigid structure when the dimension d is sufficiently high. We show that with high probability

the coloring takes just one color on almost all of either the even or the odd sub-torus. In particular,

one color appears on nearly half of the torus sites. This model is the zero temperature case of the

3-state anti-ferromagnetic Potts model from statistical physics.

Our work extends previously obtained results for the hypercube, and for the discrete torus with

specific boundary conditions. The main challenge in this extension is to overcome certain topo-

logical obstructions which appear when no boundary conditions are imposed on the model. These

are addressed by developing discrete analogues of appropriate results from algebraic topology.

This theory is developed in some generality and may be of use in the study of other models.

1 Introduction

We study proper 3-colorings of Td
n, the d-dimensional discrete torus (Z/nZ)d, whose side length n is

even. Our main theorem is that in high dimensions, a uniformly chosen proper 3-coloring of Td
n is

nearly constant on one of the two bipartition classes of Td
n. Precisely, denote the partite classes of

Td
n by V 0 and V 1. A proper 3-coloring of Td

n is a function f : Td
n → {0, 1, 2} satisfying f(v) 6= f(w)

whenever v and w are adjacent in Td
n. Denote by CPi,k(f) the proportion of color k on V i, that is,

CPi,k(f) :=
|{v ∈ V i : f(v) = k}|

|V i|
.
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Theorem 1.1. There exist d0, c > 0 such that for every integer d ≥ d0 and every even n, a uniformly

chosen proper 3-coloring f : Td
n → {0, 1, 2} satisfies

E

(

min
i∈{0,1}

(CPi,k(f))

)

≤ exp

(

−
cd

log2 d

)

for all k ∈ {0, 1, 2}.

Thus, the theorem asserts that typically in high dimensions, for each color there is a partite class

on which the color hardly appears. Equivalently, one of the partite classes is dominated by a single

color.

The next section describes the main idea of the proof. More precise definitions are given in

Section 2.

1.1 Main idea of the proof

Our proof of Theorem 1.1 exploits a connection between proper 3-colorings and height functions,

which we now describe. It is convenient to introduce the required notions on a general graph. Suppose

G is a connected, bipartite graph with a fixed vertex v0 ∈ V (G). Let Col(G, v0) be the set of all

proper 3-colorings of G taking the value 0 at v0. That is,

Col(G, v0) := {f : V (G) → {0, 1, 2} : f(v0) = 0, f(v) 6= f(w) when (v,w) ∈ E(G)}. (1)

An integer-valued function on V (G) is called a homomorphism height function on G, or simply height

function or HHF, if it differs by exactly one between adjacent vertices of G. Let Hom(G, v0) be the

set of all homomorphism height functions on G which take the value 0 at v0. Precisely,

Hom(G, v0) := {f : V (G) → Z : f(v0) = 0, |f(v)− f(w)| = 1 when (v,w) ∈ E(G)}. (2)

In this paper, we always take G to be either Td
n or Zd for some n and d. We consider both Td

n and

Zd to come with a fixed coordinate system and denote by 0 the vector (0, 0, . . . , 0) in that system.

For these graphs, we abbreviate Col(G,0) to Col(G) and Hom(G,0) to Hom(G).

The connection we need between proper colorings and height functions is summarized by the

following two facts:

1. For any graph G, v0 ∈ V (G) and h ∈ Hom(G, v0), the function g : V (G) → {0, 1, 2} defined by

g(v) := h(v) mod 3

belongs to Col(G, v0).

2. When G = Zd, the above correspondence defines a bijection between Hom(Zd) and Col(Zd).

The first fact is straightforward. The second fact appears to be well-known to experts in the field.

It is a consequence of the fact that the basic 4-cycles in Zd span all other cycles.
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Our goal in this work is to use the above correspondence to transfer known results on height

functions, proved in [15], to results on colorings, thereby obtaining Theorem 1.1. Our task is, however,

made complicated by the following obstruction. The above correspondence is not a bijection when

the graph G = Td
n. In other words, there exist colorings in Col(Td

n) which are not the modulo 3 of

any height function in Hom(Td
n). For instance, the coloring 012012 of T 1

6 provides one such example.

The source of this problem is of a topological nature, stemming from the fact that the torus has

non-contractible cycles. This poses a major difficulty, preventing a direct use of the known results

on height functions. The following theorem, whose proof occupies most of this paper, provides a way

around this difficulty. It shows that the above correspondence is, nonetheless, close to being bijective

when the dimension d is sufficiently high.

Theorem 1.2. There exist d0 and c > 0 such that for every integer d ≥ d0 and every even n, a

uniformly chosen proper 3-coloring of Td
n satisfies

P(f is not the modulo 3 of some HHF on Td
n) ≤ exp(−cdn

d−1),

with cd = c
d log2 d

.

In the next section we explain how Theorem 1.1 follows from the above theorem and a result

on height functions proved in [15]. In Section 1.3 we present some background. The rest of the

paper is devoted to the proof of Theorem 1.2. Section 2 contains the first part of the proof and

a proof overview. The proof is inspired by ideas from algebraic topology but the necessary tools

are developed completely in the discrete setting. We believe that some of these tools could prove

useful in other models as well, especially the trichotomy theorems of Section 3, Theorem 3.2 and

Theorem 3.4, which deal with discrete counterparts of manifolds of codimension one. The connection

between our work and algebraic topology is expounded upon in Section 2.4. Section 6 is dedicated

to remarks and open problems.

1.2 Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 1.2 and a result of [15] on the fluctuations of

typical homomorphism height functions on Td
n.

We start with the following lemma, which states the required result on the typical behavior of

height functions.

Lemma 1.3. There exist c > 0 and d0 such that in all dimensions d ≥ d0, if h is uniformly sampled

from Hom(Td
n) then

P(|h(u)− h(v)| ≥ 3) ≤ exp

(

−
cd

log2 d

)

∀u, v ∈ Td
n.
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Proof. Theorem 2.1 in [15] gives, in particular, that there exist c > 0 and d0 such that in all

dimensions d ≥ d0 and for every u, v ∈ Td
n, if h is uniformly sampled from Hom(Td

n, u), then

P(|h(v)| ≥ 3) ≤ exp

(

−
cd

log2 d

)

.

The lemma follows from this by using the fact that the mapping Tu : Hom(Td
n) → Hom(Td

n, u) defined

by Tu(h)(v) := h(v) − h(u) is a bijection.

We are now ready to prove Theorem 1.1. First, observe that by symmetry, it suffices to prove

the theorem for a uniformly chosen coloring in Col(Td
n), i.e., a coloring normalized at 0.

Let f be uniformly chosen from Col(Td
n). Recall that

CPi,k(f) =
|{v ∈ V i : f(v) = k}|

|V i|
,

where V 0 and V 1 are the partite classes of Td
n. Fix k ∈ {0, 1, 2} and let

X := min
i∈{0,1}

CPi,k .

We need to show that E(X) ≤ exp(−cd/ log2 d) for some c > 0 and all sufficiently high d.

Fix d sufficiently high and c > 0 sufficiently small for the following arguments. Define the event

A := {f is the modulo 3 of some HHF in Hom(Td
n)}.

By symmetry again, Theorem 1.2 implies that

P(Ac) ≤ exp

(

−
c

d log2 d
nd−1

)

.

Hence,

E(X) = E(X1IA) + E(X1IAc) ≤ E(X|A) + exp

(

−
c

d log2 d
nd−1

)

. (3)

Thus we focus on estimating E(X|A). Conditioning on A, there exists some h ∈ Hom(Td
n) for which

f ≡ h (mod 3). Moreover, since distinct functions in Hom(Td
n) give rise to distinct colorings in

Col(Td
n) under the modulo 3 operation, it follows that, conditioned on A, h is uniformly distributed

in Hom(Td
n).

Now note that if u, v ∈ Td
n are vertices in different partite classes of Td

n then h(u) and h(v) have

different parity. Thus, for such vertices, we have the following containment of events,

{f(u) = f(v)} = {h(u) ≡ h(v) (mod 3)} ⊆ {|h(u) − h(v)| ≥ 3}.

We conclude that X satisfies the following relation.

X2 =
1

|V 0|2
min

i∈{0,1}
|{v ∈ V i : f(v) = k}|2 ≤

1

|V 0|2
|{v ∈ V 0 : f(v) = k}| · |{v ∈ V 1 : f(v) = k}| ≤

≤
1

|V 0|2

∑

u∈V 0, v∈V 1

1I(f(u)=f(v)) ≤
1

|V 0|2

∑

u∈V 0, v∈V 1

1I(|h(u)−h(v)|≥3).

4



Hence, we may use Lemma 1.3 to deduce that

E(X|A) ≤
√

E(X2|A) ≤
1

|V 0|

√

∑

u∈V 0, v∈V 1

P(|h(u) − h(v)| ≥ 3) ≤ exp

(

−
cd

log2 d

)

. (4)

Together with (3), this establishes Theorem 1.1.

1.3 Background and related works

Our work is not the first to establish rigidity of proper 3-colorings in high dimensions. However, it

is the first to do so when no boundary conditions are imposed. Previously, a result analogous to

Theorem 1.1 in which the proper 3-coloring is sampled from the set of colorings with ‘zero bound-

ary conditions’ was established in [15], and also by Galvin, Kahn, Randall and Sorkin in [6]. The

restriction to such ‘zero boundary conditions’ makes the problem simpler from a topological point of

view since it essentially removes the non-trivial cycles of Td
n, rendering the correspondence described

in section 1.1 into a bijection of height functions and proper 3-colorings with these boundary condi-

tions. The results of [15] and [6] imply Roman Kotecký’s conjecture (see [12] for context and [6] for

additional details), that the proper 3-coloring model admits at least 6 different Gibbs states in high

dimensions.

Other earlier works include that of Galvin and Randall [7] who established bounds on the mixing

time for Glauber dynamics in the proper 3-coloring model on Td
n. In addition, Kahn [10] and Galvin

[4] established a version of Theorem 1.1 for the hypercube graph {0, 1}d.

In statistical physics terminology, the proper 3-coloring model is the same as the zero temperature

case of the antiferromagnetic 3-state Potts model. It is expected that the analog of our result

continues to hold for small, positive temperature, but this remains unproven. In two dimensions, the

model is equivalent to the uniform six-vertex, or square ice, model (this was pointed out by Andrew

Lenard, see [14]). It is expected that the analog of Theorem 1.1 fails in two dimensions, as the square

ice model is conjectured to be in a disordered phase, in the sense that the model should have a unique

Gibbs state when d = 2. However, it may well be that multiple Gibbs states exist already for any

d ≥ 3. Kotecký, Sokal and Swart [13] have shown that there are planar lattices for which the model

does have multiple Gibbs states. Moreover, Huang et. al. [9] have shown that multiple Gibbs states

exist for proper q-colorings with arbitrary large q on suitably chosen, q-dependent, planar lattices.

It is conjectured that the rigidity phenomenon described by Theorem 1.1 has an analog for

proper colorings with more than 3 colors. Specifically, that for any q ≥ 4 there exists a d0(q)

such that a uniformly sampled proper q-coloring of Td
n, d ≥ d0(q), has the following structure with

high probability. The colors split into two sets of sizes ⌊q/2⌋ and ⌈q/2⌉, with the even sublattice

colored predominantly by colors from one set and the odd sublattice colored predominantly by

colors from the other set. While this conjecture remains open, several related results have appeared.

Galvin and Tetali [8], following work of Kahn [11], gave approximate counts for the number of graph

5



homomorphisms from d-regular graphs to arbitrary finite graphs. Specializing to proper q-colorings

of Td
n, their results support the above conjecture. Galvin and Engbers [3] established the analog of

the above conjecture, and more general rigidity results for graph homomorphisms, in the limit when

n is fixed and d tends to infinity. Similar rigidity results on expander and tree graphs are established

in [17, 18, 19].

Of related interest is the hard-core model in Td
n. In this model, one samples an independent

set I of Td
n with probability proportional to λ|I|. It is expected that there exists some λc = λc(d)

satisfying that, with high probability, if λ > λc the sampled independent set resides predominantly

in one of the two sublattices, whereas if λ < λc no such structure appears. While the existence of λc

is still open (and there are examples of graphs for which it does not exist, see [1]) one may still define

λ′
c = λ′

c(d) as the infimum over λ for which the model admits multiple Gibbs states. Dobrushin [2]

proved that λ′
c < ∞ in every dimension d ≥ 2, with an upper bound growing to infinity with d.

Galvin and Kahn [5] significantly improved this result by showing that λ′
c tends to zero with d. The

quantitative bound obtained in [5] was further improved in [16]. The main technical ingredient in

both [5, 16], as well as the aforementioned [15, 6], is a careful analysis of the structure of certain

special cutsets in Td
n, when the dimension d is sufficiently high. This is in contrast to this work, in

which discrete analogs of topological considerations constitute the bulk of the argument.

2 Preliminaries and Overview

This section is divided into an introduction to the objects and notation of the paper, and to a

reduction of Theorem 1.2 to a statement concerning quasi-periodic functions on the integer lattice.

At the end of the section we give a glimpse into the ideas of the proof, and discuss the relation

between our work and algebraic topology.

2.1 Preliminary definitions

Lattice and Torus. We write Zd for the nearest-neighbor graph of the standard d-dimensional

integer lattice, and Td
n = (Z/nZ)d for the graph of the d-dimensional discrete torus with side length

n. We assume n is an even integer greater or equal than 4, fixing it throughout the paper. We also

assume both graphs come with a fixed coordinate system, letting ei ∈ Zd be the ith standard basis

vector for 1 ≤ i ≤ d. In both graphs, two vertices are adjacent if they differ by one in exactly one

coordinate. As n is even, both graphs are bipartite. In both we thus refer to the vertices in the

bipartition class of 0 = (0, . . . , 0) as even, and to the rest of the vertices as odd. For a vector v ∈ Zd,

and a set U ∈ Zd we write U + v to denote {u+ v : u ∈ U}.

Distance and boundary. Let G be a connected graph. We write u ∼ v to denote that a pair of

vertices u, v ∈ V (G) are adjacent. For a set of vertices U ⊆ V (G) we define the boundary of U to be
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the set of edges

∂U := {e ∈ E(G) : e ∩ U 6= ∅ and e ∩ U c 6= ∅}.

We use dist(u, v) for the shortest-path distance between u and v, and extend this notion to non-empty

sets U, V ⊆ V (G), defining

dist(U, V ) := min{dist(u, v) : u ∈ U, v ∈ V }.

If one of the sets U, V is empty, we write dist(U, V ) = ∞. For a set of vertices U , we denote

U+ := {u ∈ V (G) : dist({u}, U) ≤ 1},

U− := {u ∈ V (G) : dist({u}, U c) > 1}.

Note that U− = ((U c)+)c. We also abbreviate U++ := (U+)+ and U−− := (U−)−. The following

simple relations hold for any two sets U, V ⊆ V (G):

U+ ⊆ V ⇐⇒ U ⊆ V and ∂U ∩ ∂V = ∅, (5)

dist(U+, V ) = max(dist(U, V )− 1, 0), (6)

U ⊆ V ⇐⇒ ∀W ⊂ V (G), dist(U,W ) ≥ dist(V,W ). (7)

For a set of vertices U , we define the internal vertex boundary of U to be

∂•U := U \ U−.

Similarly we define the external vertex boundary of U to be

∂◦U := U+ \ U.

In both Zd and Td
n, we call a set of vertices U odd if all the vertices of ∂•U have the same parity (in

[15] a different convention is used, calling a set U odd if all vertices of ∂•U are odd). The internal

and external vertex boundaries of an odd set of vertices U ( T 2
10, as well as U

+ and U−, are depicted

in Figure 1.

Homomorphism height functions, 3-colorings and quasi-periodic functions. A proper 3-

coloring of a graph G is a function f : V (G) → {0, 1, 2} satisfying f(v) 6= f(w) when (v,w) ∈ E(G).

An integer-valued function on V (G) is called a homomorphism height function on G, or simply height

function or HHF, if it differs by exactly one between adjacent vertices of G. We usually work with

Col(G, v0) and Hom(G, v0), the sets of colorings and height functions normalized to take the value 0

at the vertex v0, as defined in (1) and (2). When G = Td
n or Zd we abbreviate Col(G,0) to Col(G)

and Hom(G,0) to Hom(G).

Let V be either Z or {0, 1, 2}. We say a function

f : Zd → V is periodic if f(v) = f(w) whenever v − w = nei for some i.
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U+UU−

∂•U ∂◦U

Figure 1: Boundary operations on some odd set U in T 2
10.

We denote by PC the set of all periodic proper 3-colorings in Col(Zd). Similarly, form = (m1, . . . ,md) ∈

Zd we say that an HHF

h : Zd → Z is quasi-periodic with slope m if f(v) = f(w) +mi whenever v − w = nei for some i.

We write QPm for the set of quasi-periodic functions with slope m in Hom(Zd). Note that for an

HHF, being periodic is equivalent to being quasi-periodic with slope 0.

Observe that, in fact,

QPm = ∅ if m /∈ 2Zd or if |mi| > n for some i. (8)

To see this, note that any h ∈ Hom(Zd) must take even values on even vertices, and satisfy |h(v)| ≤

dist(v, 0), since h changes by one between adjacent vertices. Thus, we must have that mi = h(nei)

is even and |h(nei)| ≤ n for all i. The quasi-periodic functions whose slope is not a multiple of 6 will

not play a role in our work. Thus we define

QP :=
⋃

m∈6Zd∩[−n,n]d

QPm . (9)

Denote by π : Zd → Td
n the natural projection from the integer lattice to the torus, defined by

π((x1, . . . , xd)) = (x1 mod n, . . . , xd mod n)

(where we identify the coordinate system of the torus with {0, . . . , n− 1}d). Observe that π extends

naturally to a bijection between periodic proper 3-colorings (of Zd) and proper 3-colorings of Td
n,
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as well as to a bijection between periodic HHFs (on Zd) and HHFs on Td
n. With a slight abuse of

notation we also denote these extensions by π.

Relations between HHFs and 3-colorings. It is not difficult to see that the mapping Mod3,

which takes an HHF h to the function defined by

Mod3(h)(v) := h(v) mod 3,

maps every HHF to a proper 3-coloring. As mentioned in the introduction, it is a known fact that

Mod3 defines a bijection between Hom(Zd) and Col(Zd), that is between the set of HHFs on Zd

normalized at 0 and the set of proper 3-colorings of Zd normalized at 0.

This bijection does not extend to Td
n, as there are colorings in Col(Td

n) which are not the image of

any HHF through Mod3. Nonetheless, Col(Td
n) is still in bijection with a subclass of quasi-periodic

functions, as the following proposition states.

Proposition 2.1. The mapping π ◦Mod3 : QP → Col(Td
n) is a bijection.

Proof. We first show that the mapping is well-defined. Let h ∈ QPm for some m ∈ 6Zd. By quasi-

periodicity, h(v) ≡ h(v + nei) (mod 3), for all 1 ≤ i ≤ d and v ∈ Zd. Consequently Mod3(h) ∈ PC

and hence π may be applied to Mod3(h) to produce an element of Col(Td
n).

Since Mod3 is a bijection between Hom(Zd) and Col(Zd) and π is a bijection between PC and

Col(Td
n), we deduce that π ◦Mod3 is one-to-one on QP. All that remains in order to show that this

mapping is a bijection, is to prove that it is onto.

Let f ∈ Col(Td
n). Define g := π−1(f) ∈ PC and an HHF h by h := Mod3

−1(g). We need to show

that h ∈ QPm for some m ∈ 6Zd ∩ [−n, n]d. We first show that for any v,w ∈ Zd and 1 ≤ i ≤ d,

h(v + nei)− h(v) = h(w + nei)− h(w).

For this it suffices to show that for any v ∈ Zd and 1 ≤ i, j ≤ d,

h(v + nei)− h(v) = h(v + ej + nei)− h(v + ej). (10)

Since h(v + ej) − h(v) and h(v + ej + nei) − h(v + nei) are both in {−1, 1} by the definition of

homomorphism height function, the equality (10) follows upon recalling that g = Mod3(h) and

noting that

g(v + ej)− g(v) = g(v + ej + nei)− g(v + nei),

since g is periodic. Thus h ∈ QPm for some m ∈ Zd.

It remains to show that m ∈ 6Zd∩ [−n, n]d. By (8) it suffices to show that m ∈ 3Zd. This follows

from the fact that

mi = h(nei) ≡ g(nei) ≡ g(0) (mod 3).
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Proposition 2.1 enables us to define the following partition of Col(Td
n),

Colm := (π ◦Mod3)(QPm). (11)

It also implies the important fact that Col0 and Hom(Td
n) are in bijection through π ◦Mod3

−1 ◦π−1.

In other words,

Col0 = {f ∈ Col(Td
n) : f is the modulo 3 of some h ∈ Hom(Td

n)}. (12)

The relations between Col(Td
n),Hom(Td

n),QP and PC are summarized in Figure 2.
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Figure 2: The relations between Col(Td
n) and Hom(Td

n) through periodic colorings and quasi-periodic

HHFs on Zd. Notice that for PC and QP only a small region of the infinite lattice is illustrated.

All functions are normalized at 0, at the lower left corner of the displayed region. The illustrations

depicts the case n = 6, d = 2.

2.2 Most elements of QP are in QP
0

The following Theorem 2.2, which is the main technical statement of the paper, states that most

elements of QP have slope 0.
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Theorem 2.2. There exist d0 and c > 0 such that in all dimensions d ≥ d0, for every m ∈ 6Zd \{0}

we have
|QPm |

|QP0 |
≤ exp(−cdn

d−1), (13)

with cd = c
d log2 d

.

Given (9), we observe that the above theorem is trivial in for n ≤ 4, as in those cases |QPm | = 0.

Naturally we focus our attention on the non-trivial cases.

Theorem 1.2 is an immediate consequence of (and is, in fact, equivalent to) the Theorem 2.2.

Proof of Theorem 1.2 from Theorem 2.2. By symmetry, it is enough to prove Theorem 1.2 for col-

orings normalized at 0. That is, to establish that for sufficiently large d, if f is uniformly sampled

from Col(Td
n) then

P
(

f is not the modulo 3 of some h ∈ Hom(Td
n)
)

≤ exp

(

−
c

d log2 d
nd−1

)

. (14)

Suppose then that f is uniformly sampled from Col(Td
n). By Proposition 2.1, (9), (11) and (12),

P
(

f is not the modulo 3 of some h ∈ Hom(Td
n)
)

=

∣

∣

∣

⋃

m∈(6Zd∩[−n,n]d)\{0} Colm

∣

∣

∣

|Col(Td
n)|

=

=

∣

∣

∣

⋃

m∈(6Zd∩[−n,n]d)\{0} QPm

∣

∣

∣

|QP |
≤ (2n + 1)d max

m∈6Zd\{0}

|QPm |

|QP0 |
.

Thus (14) follows from Theorem 2.2.

2.3 Proof overview

Most of the remainder of the paper is dedicated to proving Theorem 2.2. Our proof can be divided into

two parts. First we construct a set of one-to-one mappings, Ψm : QPm → QP0 for m ∈ 6Zd\{0}. We

then apply results from [15] to show that the image of QPm under Ψm is relatively small. Theorem 2.2

follows. In this section we present for the reader a rough sketch of the idea behind the construction

of Ψm.

Let us first explain (a minor variant of) the construction of Ψm in dimension d = 1, where it is

rather simple. Suppose that h is a 1-dimensional quasi-periodic HHF with slope 6 · ℓ > 0 (the case

that the slope is negative is treated analogously). One can look for the minimal w ≥ 0 such that

h(w) = 2 and for the maximal u ≤ 0 such that h(u) = −3ℓ+ 2. Since h has slope 6ℓ it follows that

w−u < n. Thus, we may partition Z to segments of the form (u+in,w+in] and (w+in, u+(i+1)n],

i ∈ Z. We may then define, for v ∈ Z,

Ψ6ℓ(h)(v) =







h(v) − 6iℓ u+ in ≤ v ≤ w + in for some i ∈ Z

4− h(v)− 6iℓ w + in ≤ v ≤ u+ (i+ 1)n for some i ∈ Z.
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An example is shown in Figure 3.

It is not difficult to check that Ψ6ℓ(h) is still an HHF, noting that the action of Ψ6ℓ can be seen

as reversing the gradient of h between w and u + n and each of their translations by multiples of

n. Moreover, the resulting HHF will be periodic in the sense that Ψ6ℓ(h)(v + n) = Ψ6ℓ(h)(v) for

all v ∈ Z. To see that Ψ6ℓ is one-to-one, one may check that w is the minimal in Z+ satisfying

Ψ6ℓ(h)(w) = 2 and u is the maximal in Z− satisfying Ψ6ℓ(h)(u) = −3ℓ+2. Given ℓ, one can thereby

recover u and w from Ψ6ℓ(h) and use them to recover h.

Ψ6(h)h

u w u w
-1 1 2-2 0 3-3-4 5 7 84 6 932 11 1310 1298 -1 1 20 0 112 -1 1 20 0 112 -1 10 012

Figure 3: On the left - an example of a one-dimensional quasi periodic HHF with n = 8 and slope 6.

The gray regions are the regions where Ψ6 reverses the gradient of the function. On the right - the

image of the same HHF through Ψ6.

Generalizing this technique to higher dimensions is not immediate. The general idea is to use

the given HHF h to carefully define two sets U,W ⊆ Zd and a vector ∆ ∈ nZd suitable for our

purposes. The set U is the analog of the interval (−∞, u] and the set W is the analog of the interval

(−∞, w]. Among the properties which these sets satisfy is the fact that if we define Ui := U + i∆

and Wi := W + i∆ then the sets Wi \ Ui and Ui+1 \ Wi form a partition Zd. We then define Ψm,

analogously to the above one-dimensional case, by reversing the gradient of h in the regions Ui+1\Wi,

see (44). The main difficulty is to find such sets W,U , and vector ∆, for which this operation yields

an HHF, and, moreover, for which the operation is invertible, yields a periodic HHF, and such that

the size of the range of Ψm will be small compared to |QP0 |.

The sets U,W which we define are closely related to the level sets of the function h in the

sense that h is constant on ∂•U, ∂•W,∂◦U and ∂◦W . In addition, they satisfy special topological

properties. The boundaries ∂U and ∂W , regarded as a collection of plaquettes in Rd, are analogs of

continuous hypersurfaces. Furthermore, the projection of these boundaries to the torus are analogs

of hypersurfaces whose removal does not disconnect the torus.

The existence of sets U,W satisfying all the required properties is far from obvious. The intuition

for it comes from algebraic topology, specifically de Rham cohomology theory, and some of the
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connections are explained in the next section. However, our proof proceeds by developing the theory

fully in the discrete setup. This is achieved in sections 3 and 4. This theory is then applied in

Section 5 to define Ψm and prove that it satisfies the required properties.

To get a feeling of why the sets U and W exist, it may help to think first of continuous linear

functions on Rd. A multidimensional linear function is always simply a projection on its gradient

vector. Such a linear function could be made periodic by periodically reversing its gradient between

two hyperplanes which are perpendicular to the gradient vector. These hyperplanes are the analogs

of ∂W and ∂U . This case is therefore very similar to the one-dimensional case. Algebraic topology

tells us that every continuous function is a deformation of a linear function. Thus, a guiding intuition

may be that for more general functions, the above hyperplanes are deformed into some hypersurfaces,

and hence should still exist.

2.4 Relation with topology

The proof of Theorem 2.2 is motivated by ideas from algebraic topology. One element of the proof

that might puzzle a reader who lacks topological background is our ability to find a domain, bounded

by two hypersurfaces, such that reversing the gradient in translated copies of this domain suffices to

make our HHF periodic. We dedicate this short section to highlight some of the analogies between

concepts of the proof and their continuous topological counterparts and shed some light over this

particular point.

We begin with a brief review of concepts from de Rham cohomology theory. A 0-form on a

manifold is simply a smooth function. A 1-form is a differential form which can be integrated

against paths. On Riemannian manifolds a 1-form can be identified with a vector field through the

Riemannian metric. A 1-form is called closed if it satisfies that its integral over contractible loops is

0. The gradient of a 0-form is always a closed 1-form, and, locally, the converse is also true. Globally,

however, on non-contractible manifolds such as the torus, there are many closed 1-forms which are

not the gradient of any 0-form. The group of closed 1-forms modulo the gradients of the 0-forms is

called the first de Rham cohomology group of the manifold.

In the context of our work, 0-forms correspond to HHFs on the torus. Closed 1-forms correspond

to proper 3-colorings of the torus, in the sense that, locally, they describe the discrete gradient of an

HHF. In the continuous torus every closed 1-form is locally the gradient of a 0-form. Similarly, in

the discrete torus, every 3-coloring is locally the gradient of an HHF. However, the local information

does not always add up to form the global structure of an HHF.

Algebraic topology tells us that the first de Rham cohomology measures this global obstruction,

in the sense that a 1-form corresponds to the zero class of the cohomology group if and only if it is

globally the gradient of a 0-form. The first de Rham cohomology of the d-dimensional torus is Rd.

The class of a particular 1-form can be identified by the integral of the form over a loop in each of

the standard basis directions. In the terminology of this paper, this vector of integrals is called the
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slope of the form. Another way to represent the slope of a 1-form is to look at what is called the

universal cover of our space. In the case of the torus we look at quasi-periodic functions over Rd.

Taking this point of view, the slope is the vector of differences between the quasi-periodic function

at standard basis points and at 0.

Poincaré duality identifies H1, the first cohomology group of the torus, with Hn−1, the (n− 1)th

homology group of the torus, which corresponds, if the slope consists of integers, to a class of

hypersurfaces of codimension 1. The duality further tells us that for every nice enough 1-form in a

class of H1, there exist hypersurfaces in the dual class in Hn−1, orthogonal to the gradient of the

form and with the following property. Cutting the torus along such a hypersurface leaves the torus

connected, but nullifies the cohomology class, i.e., on the cut torus the 1-form becomes the gradient

of a 0-form.

Much of the above description carries over to the discrete case. Here too, we match proper

3-colorings with quasi-periodic HHFs, and classify them according to their slope. We find “level

sets”, corresponding to the above hypersurfaces, along which one may cut the torus, that is, remove

the corresponding edges, to make the coloring the gradient of an HHF. We consider two such level

sets with a specific height difference. Deleting the edges of these level sets splits the torus into two

connected components such that on each component, the coloring is the gradient of an HHF. Since

the height of the HHF is constant along each boundary of the cut torus (as we have cut along level

sets), we may reverse the gradient of the coloring on one of the connected components of the cut

torus to obtain a coloring which is globally the gradient of an HHF (here, our specific choice of

the height difference of the level sets enters). This illustrates the operation of Ψm. In practice, we

transfer most of the topological part of the proof to statements involving HHFs on Zd, the universal

cover of the torus. This gives us more direct access to the level sets.

The main difficulties in our task are to define the level sets in the discrete setup and to do so

in such a way that would allow their recovery after applying the gradient-reversal operation. As

mentioned above, the topological arguments are applicable to nice functions, with nice level sets. In

the discrete setting the level sets are made out of plaquettes that can have complicated intersections,

of various dimensions. Proving that discrete level sets still possess a nice structure requires the

theory developed in sections 3 and 4.

It remains unclear whether it is possible to avoid any combinatorial argument in our proof, and

use only topology. One can hope to achieve this either by defining a clever discrete variant of the

de Rham cohomology, or by mapping the discrete problem to an analogous question in Rd with the

hope of tackling it there. This, however, is a path we did not pursue.

3 Closed Hypersurfaces in Zd

In this section we introduce a class of subsets of Zd and discuss the topological properties of its

members. The definitions and results are inspired by continuous topological analogs in Rd but are
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given directly in the discrete setting without requiring knowledge of the continuous notions (but

see Section 2.4 for more on the connection). We make no mention of neither colorings nor height

functions here and thus the section may be read using only the definitions regarding set operations

in Section 2. The tools developed here are applied to the study of colorings and height functions in

the following section, but we believe that they are also of independent interest and may be of use for

other purposes.

The ultimate conclusion of the discussion here, Theorem 3.4 below, is a certain trichotomy for

systems of translates in Zd. This trichotomy is later applied to level sets of quasi-periodic HHFs.

We remind the reader that in the beginning of section 2 we fixed an even integer n for the

remainder of the paper. This integer plays the role of the side length of the torus Td
n in later

sections. In this section n will also play a role, though the torus Td
n will not be explicitly mentioned.

However, unlike the rest of the paper, the results and proofs presented in this section remain valid

regardless of whether n is even or odd.

The structure of the section is as follows. In Section 3.1 we present the fundamental properties

of the sets that we investigate and state our two main results, in the form of certain trichotomies.

Section 3.2 describes corollaries of the main results, which will be of use in our application. The

proofs of the main results are given in Sections 3.3 and 3.4.

3.1 Topology of Zd

We begin by defining three properties of sets in Zd: co-connectedness, boundary disjointness, and

translation respecting. These are repeatedly used throughout the paper.

Co-connectedness. A set U ⊆ Zd is called co-connected if U 6= ∅, U 6= Zd and U and U c are

connected.

A useful property of co-connected sets is that their boundaries are, in a sense, connected. Namely,

Proposition 3.1. If A is a co-connected set in Zd then ∂•A ∪ ∂◦A, A
++ \ A and A \ A−− are all

connected sets.

We delay the proof of this proposition to Section 3.3, as it requires the tools developed there.

In order to get a more intuitive grasp of the theorems and definitions of this section the reader

might find it useful to regard Zd as a lattice of d-dimensional cubes where the edges between adjacent

vertices represent plaquettes of codimension 1. Taking this continuous view, co-connected sets are

analogous to continuous sets whose boundary is a connected, oriented, closed hypersurface. A set

and its complement should be thought of as defining opposite orientations on the same surface.

Boundary disjointness. Two sets U1, U2 ⊆ Zd are called boundary disjoint if

1. ∂U1 ∩ ∂U2 = ∅,
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2. there is no 4-cycle in Zd whose vertices, in order, are (v00, v01, v11, v10) such that v00 ∈ U c
1 ∩U c

2 ,

v01 ∈ U c
1 ∩ U2, v11 ∈ U1 ∩ U2 and v10 ∈ U1 ∩ U c

2 .

Here and below, by a cycle in Zd we mean a finite set {(u1, v1), . . . , (uk, vk)} of distinct edges of Zd

satisfying that ui+1 = vi, 1 ≤ i ≤ k − 1, and u1 = vk. A 4-cycle is a cycle with k = 4, and by its

vertices, in order, we mean (u1, u2, u3, u4).

Continuing the analogy with hypersurfaces, two sets are boundary disjoint if their boundaries

neither overlap nor intersect transversally.

When both U1 and U2 are odd, as will always be the case from Section 4 and on, the second

condition for boundary disjointness is trivially fulfilled, yielding the simpler relation:

odd U1, U2 are boundary disjoint iff ∂U1 ∩ ∂U2 = ∅. (15)

Observe that by definition, boundary disjointness is preserved under taking complements, i.e., if

U1, U2 are boundary disjoint sets, then U c
1 and U2 are also boundary disjoint.

The containment relations between two co-connected boundary disjoint sets are restricted by the

following theorem.

Theorem 3.2. (Pair trichotomy) If U1, U2 ⊆ Zd are co-connected and boundary disjoint sets, then

exactly one of the following alternatives hold:

• U1 ∩ U2 = ∅,

• U c
1 ∩ U c

2 = ∅,

• U1 ( U2 or U2 ( U1.

The proof of this theorem is postponed to Section 3.3.

The following proposition relates containment of boundary disjoint sets and their distance from

a third set.

Proposition 3.3. If U1, U2 ⊆ Zd are non-empty, boundary disjoint sets satisfying U1 ⊂ U2 then for

every non-empty set V satisfying V ∩ U2 = ∅ we have dist(U1, V ) > dist(U2, V ).

Proof. Using boundary disjointness and (5), we have U+
1 ⊆ U2. By (6) and (7) we thus have

dist(U1, V ) > dist(U2, V ) as required.

Translation respecting sets. For a set U ⊆ Zd, we define TU = T n
U , the set of translates of U by

multiples of n in each of the coordinate directions, as

TU := {U + x : x ∈ nZd}.

Recalling that U + v := {u + v : u ∈ U}. We note that it may well be the case that different

translations of U yield the same set.
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A set U ⊆ Zd is called translation respecting if U is co-connected and every distinct U1, U2 ∈ TU

are boundary disjoint. Observe that by definition, if U is translation respecting, then so is U c.

Continuing the analogy with hypersurfaces, a set is translation respecting if the image of its

boundary through π is a connected, closed hypersurface on the torus.

The main result of this section, is that the trichotomy of Theorem 3.2 extends to translation

respecting sets in the following strong sense.

Theorem 3.4. (Translation trichotomy) If U ⊆ Zd is translation respecting and |TU | > 1, then

exactly one of the following alternatives holds:

• [Type 1] If U1, U2 ∈ TU and U1 6= U2 then U1 ∩ U2 = ∅.

• [Type -1] If U1, U2 ∈ TU and U1 6= U2 then U c
1 ∩ U c

2 = ∅.

• [Type 0] If U1, U2 ∈ TU then U1 ⊆ U2 or U2 ⊆ U1.

Moreover, if U satisfies the Type 0 alternative of the theorem, then there exists an order-preserving

bijection o : TU → Z. Here, order preserving means that o(U1) < o(U2) if and only if U1 ( U2.

Furthermore, there exists a ∆ ∈ nZd such that o−1(i + 1) = o−1(i) + ∆ for all i ∈ Z. We call any

such ∆ a minimal translation of U .

The proof of this theorem is postponed to Section 3.4. Observe that in dimension d > 2 the

requirement that |TU | > 1 is not equivalent to U /∈ {Zd, ∅} (e.g., the set U of vertices in Zd having

at most one coordinate which is not a multiple of n is a translation respecting set which satisfies

|TU | = 1).

Theorem 3.4 allows us to assign a type to every translation respecting set U satisfying |TU | > 1.

For i ∈ {−1, 0, 1}, we write Type(U) = i if U satisfies the Type i alternative of the theorem. The

case |TU | = 1 does not play a role in our application. However, for completeness, we say in this case,

with a slight abuse of notation, that both Type(U) = 1 and Type(U) = −1 hold. An illustration of

sets of the various types is given in Figure 4.

3.2 Corollaries of the trichotomy

In this section we state several useful corollaries of Theorem 3.4. The next proposition discusses how

the type of translation respecting sets is affected by taking complements.

Proposition 3.5. If U is translation respecting of type i then:

• U c is translation respecting of type −i.

• If U is of type 0 with minimal translation ∆, then −∆ is a minimal translation of U c.
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n

Figure 4: Examples of translation respecting sets of the three types. In each image a portion of the

plane is depicted, on which a set U and its translation U+ne1 are emphasized in light gray and in dark

gray respectively. Vertices contained in both sets are striped. In each image a different alternative

of Theorem 3.4 holds: At the top type 0, at the bottom-left type −1 and at the bottom-right type 1.

The proof of this proposition is straightforward from Theorem 3.4.

The following proposition investigates the possible containment relations between translation

respecting sets.

Proposition 3.6. Let U, V be two translation respecting sets satisfying that |TU |, |TV | > 1 and

U ⊆ V . Then Type(U) ≥ Type(V ).

Proof. Checking the possible cases we see that it suffices to prove that if Type(U) = −1 then also

Type(V ) = −1, and that if Type(V ) = 1 then also Type(U) = 1.

Suppose Type(U) = −1. Let ∆ ∈ nZd be such that U + ∆ 6= U , using that |TU | > 1. Since

Type(U) = −1, U c ⊆ U +∆. Thus,

V c ⊆ U c ⊆ U +∆ ⊆ V +∆.

It follows that V c ∩ (V +∆)c = ∅ and hence Type(V ) = −1.

The case that Type(V ) = 1 follows similarly.

Translation respecting sets of type 0. These have a unique structure, as the following proposition

indicates.
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Proposition 3.7. If U is translation respecting of type 0 then:

•
⋃

V ∈TU

V = Zd.

• There exists 1 ≤ i ≤ d such that for every v ∈ Zd, {v+ kei : k ∈ Z} intersects both U and U c.

Proof. Let v ∈ Zd and let ∆ be a minimal translation of U . Observe that by definition, U (

U + ∆, and U,U + ∆ are co-connected and boundary disjoint. Applying Proposition 3.3 we get

dist(U +∆, {v}) ≤ max(dist(U, {v}) − 1, 0). Iterating, we obtain that there exists some k such that

v ∈ U + k∆. We deduce the first item of the proposition.

Towards proving the second item, observe that there exists some 1 ≤ i ≤ d such that U+nei 6= U

(otherwise we would have U +∆ = U , contradicting the fact that U is of type 0). By the last part

of Theorem 3.4, there exists some ℓ ∈ Z \ {0} such that U + nei = U + ℓ∆. Notice that both

U and U c are translation respecting of type 0 with −∆ being a minimal translation for U c (by

Proposition 3.5). Thus, the first item of the proposition and the last part of Theorem 3.4 show that

there exist k1, k2 ∈ Z such that

v ∈ (U + k2ℓ∆) ∩ (U c + k1ℓ∆).

Equivalently v − k2nei ∈ U while v − k1nei /∈ U , as required.

3.3 Proof of the pair trichotomy

In this section we prove Proposition 3.1 and Theorem 3.2 using the approach of Timár in [20]. To

do so, we make use of the well-known fact that 4-cycles span the cycles of Zd, i.e., every cycle σ in

Zd can be written as

σ =
∑

c∈C

c, (16)

where C is a set of 4-cycles, and we interpret the sum as meaning that an edge is in σ if it appears

in an odd number of cycles in C.

To aid our proof we introduce the following family of graphs.

Definition 3.8. Given U ⊆ Zd, a set of vertices, we define a graph GU as follows. The vertices

of GU are the vertices of Zd. Two vertices u, v are adjacent in GU if there exist eu, ev ∈ ∂U and a

4-cycle c, such that v ∈ ev, u ∈ eu, and ev, eu ∈ c.

The following lemma connects this definition with co-connected sets.

Lemma 3.9. If U ⊂ Zd is a co-connected set of vertices, then ∂•U is connected in GU .

Proof. The proof is heavily based on ideas developed in [20]. It suffices to show that for any non-

trivial partition S1, S2 of ∂•U there exists an edge of GU connecting S1 and S2. Here, a non-trivial
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partition means that S1, S2 6= ∅, S1 ∩ S2 = ∅ and S1 ∪ S2 = ∂•U . Let S1, S2 be such a partition. We

set

E1 := {e ∈ ∂U : e ∩ S1 6= ∅},

E2 := {e ∈ ∂U : e ∩ S2 6= ∅}.

By the connectedness of U and U c in Zd, there exists some cycle σ in Zd which contains exactly

one edge of E1 and one edge of E2 (in fact, we can even pick those boundary edges arbitrarily). As

4-cycles span the cycles of Zd, we write σ as a sum of such cycles

σ =
∑

c∈C

c, (17)

as in (16). We notice that as σ contains an odd number of E1 edges (in fact, just one), there must

also be a 4-cycle c0 ∈ C containing an odd number of E1 edges. However as every cycle contains an

even number of edges from the boundary ∂U = E1⊎E2, c0 must contain an edge of E2 as well. Thus

S1 and S2 are connected by an edge of GU , concluding the proof.

Lemma 3.9 allows us to prove Proposition 3.1 and Theorem 3.2. In this proof we will make use

of [20, Theorem 4]. For convenience, we state a special case of this theorem in the context of our

work.

Theorem (Timár). For any co-connected A ( Zd, the set

{y ∈ Ac : y differs from some point in A by ±1 in each of exactly one or two coordinates}

is connected in Zd.

To see that this is a special case of [20, Theorem 4], take G = Zd, and let G+ be G with an edge

between every two vertices who differ by ±1 on each of exactly one or two coordinates. Also, take

C = A, and let x be some arbitrary point in Ac.

Proof of Proposition 3.1. Let A be a co-connected set in Zd. The first part of the proposition is an

immediate result of Lemma 3.9, as connectivity of ∂•A ∪ ∂◦A in Zd is weaker than connectivity of

∂•A in GA. The proof of the second part uses the above stated version of [20, Theorem 4]. By the

theorem,

B := {y ∈ Ac : y differs from some point in A by ±1 in each of exactly one or two coordinates}

is connected in Zd. In addition B satisfies that B ⊂ A++ \A and that every vertex in A++ \A has a

neighbor in B. We therefore have that A++ \A is connected in Zd as required. To get the third part

of the proposition, we recall that if A is co-connected, then so is Ac, and that A\A−− = (Ac)++ \Ac.

We can therefore derive the third part of the proposition by applying the second part to Ac.

20
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U1U1 ∩ U2

u00

u10
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v11
v01

Figure 5: Illustration accompanying the proof of Theorem 3.2. On the left the roles of u00, u10,

u11 and u01 are illustrated, as well as these of u0, u1, v01 and v11. On the right, all the possible

configurations of the 4-cycles c, up to rotation and reflection, are illustrated. When the boundary

disjointness is ruled out due to the existence of an edge violating ∂U1∩∂U2 = ∅, this edge is marked.

When no edge is marked, the alternative is ruled out due to the existence of a “forbidden cycle” (as

in the definition of boundary disjointness).

Proof of Theorem 3.2. We accompany the proof with Figure 5. Assume to the contrary all the

alternatives in the theorem do not hold. We can therefore pick u11 ∈ U1 ∩ U2, u10 ∈ U1 ∩ U c
2 ,

u01 ∈ U c
1 ∩ U2 and u00 ∈ U c

1 ∩ U c
2 . As U1 is connected, there exists a path inside U1 between u10

and u11. This path must contain a vertex u1 ∈ U1 ∩ ∂•U2. Similarly there exists a path outside U1

between u00 and u01 which contains a vertex u0 ∈ U c
1 ∩ ∂•U2.

By Lemma 3.9, ∂•U2 is connected in GU2
. In particular, if we partition ∂•U2 into U1 ∩ ∂•U2

and U c
1 ∩ ∂•U2, we must have an edge in GU2

crossing this partition. In other words, there exists a

4-cycle c which contains two edges e0, e1 ∈ ∂U2, and two vertices v01 ∈ e0 and v11 ∈ e1 such that

v01 ∈ U c
1 ∩ ∂•U2 and v11 ∈ U1 ∩ ∂•U2. A careful case study of all the possible configurations of such

a cycle (see Figure 5) yields that its existence must contradict the boundary disjointness for U1 and

U2. The theorem follows.

3.4 Proof of the translation trichotomy

This section is dedicated to the proof of Theorem 3.4.

We begin by showing the trichotomy itself. The pair intersection trichotomy, Theorem 3.2,

guarantees that every two sets U1, U2 ∈ TU satisfy one of the three alternatives of the theorem. Thus

it is sufficient to show that for any three distinct sets U1, U2, U3 ∈ TU , the same alternative holds

for both pairs U1, U2 and U1, U3. In particular, the theorem is immediate if |TU | = 2. Fix distinct
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U1, U2, U3 ∈ TU . We shall rule out three cases.

1. Alternatives 0 and 1 cannot coexist. Let δ,∆ ∈ nZd be such that U2 = U1+δ and U3 = U1+∆.

Assume, WLOG, that U1 ∩ U3 = ∅ and U1 ( U2. As U1 and U2 are boundary disjoint, by

Proposition 3.3 we get that dist(U1, U3) > dist(U2, U3). We note that, U1 + ∆ ⊆ U1 +∆ + δ,

as U1 ⊆ U1 + δ. We deduce, using (7), that dist(U1 + δ, U1 + ∆) ≥ dist(U1 + δ, U1 + ∆ + δ).

Putting all of this together, we get:

dist(U1, U1 +∆) > dist(U1 + δ, U1 +∆) ≥ dist(U1 + δ, U1 +∆+ δ) = dist(U1, U1 +∆),

which is a contradiction.

2. Alternatives 0 and -1 cannot coexist. The argument follows similarly to the previous part by

passing from U1, U2, U3 to U c
1 , U

c
2 , U

c
3 .

3. Alternatives 1 and -1 cannot coexist. To see this, assume, WLOG, that U1 ∩ U2 = ∅ and

U c
1 ∩ U c

3 = ∅. It follows that U1 ∪ U3 = Zd and hence U2 ⊆ U3. A contradiction follows since

alternatives 0 and 1 cannot coexist.

Next, we show the second part of the theorem, i.e., that if Type(U) = 0, then there exists a translation

∆ ∈ nZd and an order-preserving bijection o : TU → Z, such that o−1(i + 1) = o−1(i) + ∆ for all

i ∈ Z. Assume Type(U) = 0. Define o(U) := 0 and for any V ∈ TU let

o(V ) :=







∣

∣{W ∈ TU : U ( W ⊆ V }
∣

∣ U ⊆ V

−
∣

∣{W ∈ TU : V ⊆ W ( U}
∣

∣ V ⊆ U
.

To see that this is well defined, let us explain why {W ∈ TU : U ( W ⊆ V } is finite. A similar

argument will show that {W ∈ TU : V ⊆ W ( U} is finite. Since TU is ordered by inclusion, applying

Proposition 3.3 to the complements of two distinct sets {W ∈ TU : U ( W ⊆ V }, taking the V of the

proposition to be our U , shows that each setW in {W ∈ TU : V ⊆ W ( U} is uniquely characterized

by dist(W c, U). Since dist(W c, U) ≤ dist(V c, U) we conclude that {W ∈ TU : U ( W ⊆ V } is

finite, as we wanted to show.

To show that o is one-to-one, suppose V1, V2 ∈ TU satisfy o(V1) = o(V2). Assume WLOG that

o(V1) ≥ 0 and V1 ⊆ V2. This implies that

{W ∈ TU : U ( W ⊆ V1} ⊆ {W ∈ TU : U ( W ⊆ V2}.

However, as o(V1) = o(V2), we get

{W ∈ TU : U ( W ⊆ V1} = {W ∈ TU : U ( W ⊆ V2}

and, in particular, V2 ⊆ V1. Thus V1 = V2.
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Finally, we show that there is a ∆ ∈ nZd such that o−1(i + 1) = o−1(i) + ∆ for all i ∈ Z. We

begin by observing that o−1(1) is nonempty. To see this recall that |TU | > 1 and therefore U ( U+z

for some z ∈ nZd. This implies that o(U + z) ≥ 1 and therefore there must exist some ∆ ∈ nZd

such that o(U +∆) = 1. Equivalently, there is no W ∈ TU for which U ( W ( U + ∆. Since this

situation is preserved under translations it follows that o−1(i) = U + i∆ for all i ∈ Z.

4 Level Sets of HHFs

In this section we establish the theoretical basis for dealing with quasi-periodic HHFs. Much of the

intuition behind the theorems of this section stems from algebraic topology, viewing quasi-periodic

HHFs as a discrete analogue of co-cycles on the torus, and periodic HHFs as a discrete analogue of

co-boundaries. Nonetheless, we avoid making any direct reference to topology, and restrict ourselves

to purely combinatorial proofs.

We begin by introducing the notions of sublevel sets and sublevel components. Roughly, these

are discrete analogues of continuous sublevel sets, and of regions bounded by a single connected

component of a level set.

Formally, let G be either Zd or Td
n. Let k ∈ Z, h ∈ Hom(G) and let u, v ∈ V (G) satisfy

h(u) ≤ k < h(v). (18)

We define the k-sublevel set of u,

LCk+
h (u) is the connected component of u in G \ {w ∈ V (G) : h(w) = k + 1}.

While the sublevel set is itself connected, by definition, its complement may be disconnected. We

wish to isolate a single connected component of the complement and do this by enlarging the sublevel

set. Precisely, we define the k-sublevel component from u to v,

LCk+
h (u, v) is the complement of the connected component of v in G \ LCk+

h (u).

Figure 6 illustrates a sublevel component and a sublevel set in Zd. In our applications sublevel sets

are mostly used as a part of the definition of sublevel components, without a significant role of their

own. To simplify our notation we write LC+
h (u) for LC

h(u)+
h (u) and LC+

h (u, v) for LC
h(u)+
h (u, v).

4.1 Basic properties of level components

Let G be either Zd or Td
n. Let h ∈ Hom(G) and suppose u, v ∈ G satisfy (18). Let

U := LCk+
h (u, v).

The next proposition collects several basic properties of sublevel components of h.
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Figure 6: An illustration of sublevel components for a certain periodic h ∈ Hom(Zd), with respect to

the two vertices u, v ∈ Zd. On the left: a portion of LC1+
h (u) is highlighted. on the right: a portion

of LC1+
h (u, v). Observe that LC1+

h (u, v) is co-connected while LC1+
h (u) is not.

Proposition 4.1. The sublevel component U satisfies:

1. u ∈ U and v /∈ U .

2. h(x) = k for all x ∈ ∂•U , and h(x) = k + 1 for all x ∈ ∂◦U . In particular, U is odd.

3. U is co-connected.

4. ∂•U ⊆ LCk+
h (u) ⊆ U.

All of these properties are straightforward from the definition and we omit their proof.

In view of the second item of the proposition, we write, with a slight abuse of notation, h(∂•U)

and h(∂◦U) for the common height of all vertices in ∂•U and ∂◦U , respectively.

In the next corollary, we give a criterion for a set to have certain containment relations with a

sublevel component.

Corollary 4.2. The sublevel component U satisfies:

• If V is a connected set satisfying v ∈ V , u /∈ V and h(w) > k for all w ∈ ∂•V , then V ⊆ U c.

• If V is a connected set satisfying V ∩ U 6= ∅, ∂◦U ⊆ V c, then V ⊆ U .

Proof. To get the first item, observe that every path between a vertex of height smaller than k + 1

and a vertex of height greater or equal to k + 1 must contain a vertex of height k + 1. Therefore,

h(x) ≤ k for all x ∈ LCk+
h (u) and in particular ∂•V ⊂ LCk+

h (u)c. Every connected set containing

a vertex in V and a vertex outside V must contain a vertex in ∂•V . Since ∂•V ⊂ LCk+
h (u)c and
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u ∈ LCk+
h (u) ∩ V c, we deduce that V ⊂ LCk+

h (u)c. Together with the fact that V is a connected set

containing v, the first item follows.

The second item is straightforward and we omit its proof.

4.2 Level components on Zd

Until the end of Section 4 we discuss the structure of the set of level components of a single HHF

on Zd. Throughout the rest of Section 4, we denote by h an arbitrary function in Hom(Zd). In the

beginning of Sections 4.3 we shall impose additional restrictions on h. Note that dependence on h

will often be implicit in our notation.

Boundary disjointness. The following proposition relates sublevel components to the theory

developed in Section 3.

Proposition 4.3. Distinct sublevel components of a function h ∈ Hom(Zd) are boundary disjoint.

Proof. Consider U := LCk+
h (u, v) and V := LCℓ+

h (x, y), where k, ℓ ∈ Z and u, v, x, y ∈ Zd satisfy

h(u) ≤ k < h(v) and h(x) ≤ ℓ < h(y). Observe that if k 6= ℓ, the proposition holds trivially, by the

second item of Proposition 4.1 and (15). We thus assume k = ℓ. Suppose U and V are not boundary

disjoint and let us show that this implies them being equal. From the second item of Proposition 4.1,

and using (15), we get that there exists e = (w1, w2) ∈ ∂U ∩ ∂V , such that w1 ∈ ∂•U ∩ ∂•V . By the

fourth item of Proposition 4.1 we have w1 ∈ LCk+
h (u)∩LCk+

h (x) and thus LCk+
h (u) = LCk+

h (x), by the

definition of sublevel sets. Since w2 is in the connected component of both v and y in Zd \ LCk+
h (u),

then these connected components are equal and we get LCk+
h (u, v) = LCk+

h (x, y), as required.

From Proposition 4.3 we derive the following corollary.

Corollary 4.4. Every edge (u, v) ∈ Zd is contained in the boundary of a unique sublevel component.

Proof. Assume WLOG that h(v) = h(u)+1. By definition, (u, v) ∈ ∂ LC+
h (u, v). By Proposition 4.3

no other sublevel component has (u, v) in its edge boundary.

The next proposition shows that in Zd, the fact that A is a sublevel component of h depends

only on a certain neighborhood of the boundary of A.

Proposition 4.5. Let h1, h2 ∈ Hom(Zd) be two HHFs. Let A be a sublevel component of h1 and let

u ∈ ∂•A. Suppose there exists S ⊇ ∂•A ∪ ∂◦A satisfying that h1(w) = h2(w) for all w ∈ S and that

LC+
h1
(u) ∩ S is a connected set. Then A is also a level component of h2.

Proof. By our assumption h1(w) = h2(w) for all w ∈ S, and by definition h1(w) ≤ h(u) for all

w ∈ LC+
h1
(u). We get that h2(w) ≤ h(u) for all w ∈ LC+

h1
(u) ∩ S. Putting this together with our

assumptions that u ∈ ∂•A ⊆ S, and that LC+
h1
(u) ∩ S is connected, we get that

LC+
h1
(u) ∩ S ⊆ LC+

h2
(u), (19)
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by the definition of sublevel sets.

Next, let v ∈ ∂◦A be such that u ∼ v. Observe that by Corollary 4.4, we have A = LC+
h1
(u, v).

Let U := LC+
h2
(u, v). We shall show that A = U , establishing the proposition. By the fourth item of

Proposition 4.1 we have that ∂•A ⊆ LC+
h1
(u) so that, using (19) and our assumption that ∂•A ⊆ S,

we get that ∂•A ⊆ LC+
h2
(u). Thus, using the fourth item of Proposition 4.1 again yields that

∂•A ⊆ U. (20)

By our assumptions and Proposition 4.1, Ac is connected and satisfies v ∈ Ac, u /∈ Ac and

h2(∂◦A) = h1(∂◦A) = h(u) + 1. Thus, the first item of Corollary 4.2 implies that Ac ⊆ U c. Thus,

using (20) and the fact that U c is connected by Proposition 4.1, shows that Ac = U c. Hence U = A

as we wanted to show.

Expressing height differences via level components. Here we develop a formula expressing the

difference between the height assigned to a pair of vertices u and v in terms of sublevel components.

Let u, v ∈ Zd. We define the set of sublevel components separating u from v by

L(u,v) := {A : ∃u′, v′, k s.t. h(u′) ≤ k < h(v′) and A = LCk+
h (u′, v′) satisfies u ∈ A, v /∈ A}. (21)

Proposition 4.6. Let u, v ∈ Zd. L(u,v) is finite and ordered by inclusion. Furthermore, the following

formula holds:

h(v) − h(u) =
∣

∣L(u,v)

∣

∣−
∣

∣L(v,u)

∣

∣.

Proof. Let U, V be distinct elements of L(u,v). We begin by showing that L(u,v) is ordered by inclusion.

By Proposition 4.1, U and V are co-connected and by Proposition 4.3 they are boundary disjoint.

Thus, U and V satisfy the conditions of Theorem 3.2. By the definition of L(u,v), we have u ∈ U ∩V

and v ∈ U c ∩ V c. We deduce that either U ⊆ V or V ⊆ U . As containment relations are transitive

we deduce that L(u,v) is ordered by inclusion.

To prove the remaining claims we use induction on the distance between u and v. Indeed, the

case u = v is trivial. Assume the proposition holds for every pair of vertices exactly at distance ρ and

suppose u, v satisfy dist(u, v) = ρ + 1. Next, let w be a vertex satisfying w ∼ u and dist(w, v) = ρ.

By our assumption

h(v) − h(w) =
∣

∣L(w,v)

∣

∣−
∣

∣L(v,w)

∣

∣,

and thus

h(v)− h(u) =
∣

∣L(w,v)

∣

∣−
∣

∣L(v,w)

∣

∣+ h(w) − h(u). (22)

Suppose that h(w) = h(u) + 1. Thus U = LC+
h (u,w) is well defined. By Corollary 4.4, it is the

only sublevel component containing u and not containing w, and there is no sublevel component which

contains w and does not contain u. If v ∈ U , we get that L(u,v) = L(w,v) and that L(v,w) = L(v,u)⊎{U}.

If v 6∈ U , we get that L(u,v) = L(w,v) ⊎ {U} and that L(v,u) = L(v,w). In either case, by (22),

h(v) − h(u) =
∣

∣L(u,v)

∣

∣−
∣

∣L(v,u)

∣

∣.
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The case h(u) = h(w) + 1 follows similar lines.

4.3 Level components of quasi-periodic HHFs

In this section we require h to satisfy h ∈ QPm, for some m ∈ Zd. We show that sublevel components

of such functions have a special structure.

The first property we observe is that the set of sublevel components of h is itself periodic.

Proposition 4.7. Let k ∈ Z and u, v ∈ Zd be such that h(u) ≤ k < h(v). For any x ∈ nZd we have

LC
(k+δx)+
h (u+ x, v + x) = LCk+

h (u, v) + x where δx := h(x) − h(0).

The proposition follows directly from the definition of sublevel component and quasi-periodic

function and we omit its proof. Combining this with the third item of Proposition 4.1, Proposition 4.3,

and recalling the definition of translation respecting sets from Section 3.1, we get the following

corollary.

Corollary 4.8. Every sublevel component of h is translation respecting.

Corollary 4.8 tells us that sublevel components of quasi-periodic HHFs may be assigned a type,

as in Section 3.1.

The next proposition establishes a duality between L(u,v) and L(v,u) when u− v ∈ nZd.

Proposition 4.9. Let u, z ∈ Zd with z 6= 0. If A ∈ L(u,u+nz) has Type(A) 6= 0 then

A+Type(A) · nz ∈ L(u+nz,u).

Proof. Suppose A ∈ L(u,u+nz) satisfies Type(A) 6= 0, i.e., Type(A) ∈ {−1, 1}. Recall that by

definition, u ∈ A and u+ nz /∈ A. Since A is a sublevel component then, by Proposition 4.7, A± nz

are also sublevel components. Both are distinct from A since u + nz ∈ A + nz and u /∈ A − nz. If

Type(A) = 1, then by the trichotomy of Theorem 3.4, u ∈ A implies that u /∈ A + nz. Similarly if

Type(A) = −1, then by the same trichotomy u+nz /∈ A implies u+nz ∈ A−nz. In either case the

proposition holds.

An important corollary of the above proposition is the following:

Corollary 4.10. If h ∈ QPm for m satisfying m1 > 0, then there exists a sublevel component of

type 0 which contains 0 and does not contain ne1.

Proof. Suppose to the contrary that every sublevel component in L(0,ne1) is either of type 1 or of

type −1. By Proposition 4.9 we get that |L(0,ne1)| ≤ |L(ne1,0)|. By Proposition 4.6 this implies

h(ne1) ≤ h(0), in contradiction to our premise. Here, we have also used the fact that the type of

a level component is preserved under translation, thus distinct level components A ∈ L(0,ne1) are

mapped to distinct level components in L(ne1,0) by the mapping A 7→ A+Type(A) · ne1.
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4.4 Superlevel components and level components of type 0

In the construction of our embedding (in Section 5) we make use of superlevel components. These are

counterparts of sublevel components, in which the role of the sublevel set is replaced by a superlevel

set. While these could be defined in an analogous way to that of sublevel components, as given at

the beginning of Section 4, we rather define them through a duality.

Definition 4.11. For any u, v ∈ Zd and k ∈ Z satisfying h(v) < k ≤ h(u), we define

LCk−
h (u, v) := LC

(−k)+
−h (u, v).

This definition allows us to apply propositions dealing with sublevel components to superlevel

components. For instance, combining the definition with Corollary 4.8 and Theorem 3.4 we can

assign a type to every superlevel component. In addition, by Proposition 4.1, a superlevel component

U = LCk−
h (u, v) satisfies h(x) = k for all x ∈ ∂•U , and h(x) = k − 1 for all x ∈ ∂◦U . However,

to avoid confusion, we remark that the complement of a superlevel component is not necessarily a

sublevel component.

The next lemma shows that certain sublevel and superlevel components which are “sandwiched”

between two type 0 sublevel components must also be of type 0.

Lemma 4.12. Let U ( W be a pair of type 0 sublevel components, such that h(∂◦U) < h(∂◦W ) and

let u ∈ ∂•U , w ∈ ∂•W and k ∈ Z. Then:

• If h(u) ≤ k < h(w) then V+ := LCk+
h (u,w) is a sublevel component of type 0, satisfying

U ⊆ V+ ( W .

• If h(u) < k ≤ h(w) then V− := (LCk−
h (w, u))c satisfies that (V−)

c is a superlevel component of

type 0 and U ⊆ V− ( W .

Proof. We start by proving the first item and let V+ be as in the proposition. We first show that

U = LC+
h (u,w). (23)

By our assumptions, U = LC
h(u)+
h (u′, v′) for some u′, v′. By the fourth item of Proposition 4.1 we

have LC+
h (u) = LC

h(u)+
h (u′). Next, w /∈ U since U ( W and U and W are boundary disjoint by

Proposition 4.3. Hence (23) follows.

Now observe that by applying (23), Proposition 4.1 and the first item of Corollary 4.2 to U and

(V+)
c, we get that (V+)

c ⊆ U c, i.e., U ⊆ V+. Similarly, by Proposition 3.1,

∂•W ∪ ∂◦W is a connected set containing w, whose vertices are of height greater than k, (24)

and hence u /∈ ∂•W ∪ ∂◦W . Thus, applying (24), the first item of Corollary 4.2, we deduce that

(∂•W ∪ ∂◦W ) ⊆ V c
+. We can now use the second item of Corollary 4.2 to deduce that V+ ⊆ W .
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Consequently, U ⊆ V+ ( W , where we have used also that w ∈ W \ V+. It remains to show that

V+ is of type 0. All that we need in order to draw this conclusion from Proposition 3.6 is to show

that |TW |, |TV+
|, |TU | > 1. To see this first observe that since Type(U) = Type(W ) = 0, we have by

definition |TW |, |TU | > 1. By Proposition 3.7 there exists some ∆ ∈ nZd satisfying (U+∆)∩(V+)
c 6= ∅

while U +∆ ⊆ V+ +∆. We deduce that |TV+
| > 1, so that V+ is of type 0.

The second item is proved similarly. Let V− be as in the proposition. By the definition of

superlevel component and Proposition 4.1, we have that (V−)
c is connected, u /∈ (V−)

c, w ∈ (V−)
c

and h(∂◦V−) > h(u). Applying (23) and the first item of Corollary 4.2 to (V−)
c we deduce that

(V−)
c ⊆ U c, i.e., U ⊆ V−.

Applying (24), the definition of a superlevel component, and the fourth item of Proposition 4.1

we get that ∂•W ∪ ∂◦W ⊆ (V−)
c, as it is contained in the corresponding superlevel set. We deduce

that V− is a connected set satisfying u ∈ V− and ∂◦W ⊆ (V−)
c. Therefore by the second item

of Corollary 4.2, we have V− ⊆ W . Consequently, U ⊆ V− ( W , where we have used also that

w ∈ W \ V−. It remains to show that V− is of type 0. All that we need in order to draw this

conclusion from Proposition 3.6 is to show that |TV−
| > 1. This is done in exactly the same way as

in the proof of the first part of the lemma.

We conclude this section with a criterion for applying Proposition 4.5.

Proposition 4.13. Let h1, h2 ∈ Hom(Zd) be two HHFs and let A be a sublevel component of h1.

Suppose that

h1(w) = h2(w) for all w ∈ A+ \B−, (25)

for some B ( A which is either a sublevel component of h1 or the complement of a superlevel

component of h1. Then A is also a sublevel component of h2.

Proof. Let u ∈ ∂•A. Let v ∈ ∂◦A be such that u ∼ v. By Corollary 4.4,

A = LC+
h1
(u, v). (26)

Let us show that u /∈ B. Suppose to the contrary that u ∈ B. Hence u ∈ ∂•B by our assumption

that B ( A. Then, by Proposition 4.1 and the definition of superlevel component, Bc is a connected

set satisfying v ∈ Bc and satisfying h1(∂◦B) = h1(u) + 1 > h1(∂•A). Thus, by the first item of

Corollary 4.2, we have that Bc ⊆ Ac. However, this contradicts the fact that B ( A.

We continue by considering separately two cases. First, assume that

either h1(∂•B) > h1(u) or h1(∂◦B) > h1(u). (27)

Since u /∈ B, the definition of LC+
h1
(u) and the assumption (27) imply that LC+

h1
(u) ∩ B = ∅.

Now, Proposition 4.1 and (26) imply that LC+
h1
(u) ⊆ A. Thus, by (25), h1(w) = h2(w) for all

w ∈ (LC+
h1
(u))+. Hence the definition of sublevel set yields that LC+

h1
(u) = LC+

h2
(u), which, in turn,

implies that LC+
h1
(u, v) = LC+

h2
(u, v). Thus, recalling (26), A is also a sublevel component of h2.
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Second, let us assume that (27) does not hold. That is, that

h1(∂•B) ≤ h1(u) and h1(∂◦B) ≤ h1(u). (28)

Denote S := A+ \B−. Recalling (25) and observing that

A+ \ A− = ∂•A ∩ ∂◦A ⊆ S,

all that we need to show in order to apply Proposition 4.5 and derive the proposition, is that

LC+
h1
(u) ∩ S is connected. (29)

Observe that, by Proposition 4.1, LC+
h1
(u) ⊆ LC+

h1
(u, v) = A we have

LC+
h1
(u) ∩ S = LC+

h1
(u) \B−.

Let H0 ⊎H1 be a non-trivial partition of LC+
h1
(u) \B−. Assume for the sake of obtaining a contra-

diction that there is no edge in Zd connecting H0 and H1 (that is an edge between a vertex in H0

and a vertex in H1). Since H0 ⊎H1 ⊎ (LC+
h1
(u) ∩ B−) = LC+

h1
(u), and LC+

h1
(u) is a connected set,

there must be an edge of Zd connecting H0 and LC+
h1
(u)∩B−, and an edge of Zd connecting H1 and

LC+
h1
(u) ∩B−. The existence of these edges implies that

(B+ \B−) ∩H0 6= ∅ and

(B+ \B−) ∩H1 6= ∅.
(30)

In particular,

(B+ \B−) ∩ (LC+
h1
(u) \B−) 6= ∅. (31)

By Proposition 3.1, we have that

B+ \B− is a connected set. (32)

Observe that LC+
h1
(u) is a connected component of {w : h1(w) ≤ h1(u)}, and, by (28), B+ \B− ⊆

{w : h1(w) ≤ h1(u)}. Thus, using (31) and (32) we may deduce that

(B+ \B−) ⊆ LC+
h1
(u) \B− = H0 ∪H1. (33)

Putting together (33) and (30) we get that H0 ⊎H1 induces a non-trivial partition on B+ \B− that

is not crossed by any edge. Since this contradicts (32), we deduce that (29) holds.

5 Proof of the Embedding Theorem

In this section we use the theory developed in the previous sections to prove Theorem 2.2. In

Section 5.1 we present a one-to-one mapping from QPm, the set of quasi-periodic HHFs with slope

m, to QP0, the set of periodic HHFs. In Section 5.2 we prove Theorem 2.2 using a probabilistic

bound taken from [15] and an auxiliary lemma. This lemma, which relates the boundaries of level

components in QP0 with the boundaries of level components of HHFs on Hom(Td
n), is then proved

in Section 5.3.
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5.1 Mapping quasi-periodic to periodic functions

Throughout this section we fix some m ∈ 6Zd such that

m1 > 0 and QPm 6= ∅.

We also fix h ∈ QPm. With the structural results of Sections 3 and 4 in our toolkit, we are ready to

construct Ψm, our one-to-one mapping from QPm into QP0. We start by defining three sets, U0,W0

and V0. The definition relies on the fact that by Corollary 4.8, sublevel and superlevel components

of h are translation respecting and can therefore be assigned a type by Theorem 3.4. The first and

the third sets will be used to construct Ψm. The second set will be used in Section 5.2 to show that

the image of Ψm is small. Proposition 5.1 below shows that the three sets are well-defined.

In the following definition, and throughout the entire section, we say that a set S ⊂ Zd is the

minimal set with a given property, if S is contained in every other set with that property.

• W0 = W0(h) is the minimal type 0 sublevel component satisfying

0 ∈ W0 and ne1 /∈ W0. (34)

We let ∆ be a minimal translation of W0 as in Theorem 3.4. We choose ∆ in some prescribed

manner, e.g., as the minimal translation which is first in lexicographic order among the minimal

translations with smallest ℓ1 norm. Write

δ := h(∆).

• V0 = V0(h) is the minimal type 0 sublevel component satisfying

h(∂•V0) = h(∂•W0)− 1, W0 −∆ ⊆ V0 ⊆ W0, 0 /∈ V0 and −ne1 ∈ V0. (35)

• U0 = U0(h, δ) is defined by the property that its complement U c
0 is the minimal type 0 superlevel

component such that

h(∂•U0) = h(∂◦W0)− δ/2, W0 −∆ ⊆ U0 ⊆ W0, 0 /∈ U0 and −ne1 ∈ U0. (36)

U0, V0 and W0 of a certain h ∈ QP(6,0) are illustrated in Figure 7.

Proposition 5.1. W0, V0 and U0 are well-defined, and satisfy

W0 −∆ ( U0 ( V0 ( W0. (37)

Proof. For brevity we write U , V and W , for U0, V0 and W0 respectively. We begin by showing that

W is well defined. Write W for the set of type 0 sublevel components which contain 0 and do not

contain ne1. Recalling (21) we observe that W ⊆ L(0,ne1). Thus, by Proposition 4.6, W is ordered
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Figure 7: An illustration of the boundaries of U0, V0, W0 and W−1 = W0−∆ for ∆ = ne1 and δ = 6.

The sets themselves are in all cases to the left of the boundary. 0 is marked in white.
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Figure 8: The image through Ψ of the HHF illustrated in figure 7. The boundaries of U0, W0 and

W−1 are highlighted to allow the reader to follow the behavior of Ψ in different regions. 0 is marked

in white.

by inclusion and finite. By Corollary 4.10, W 6= ∅, and thus W , the minimal element of W, is well

defined.

Next, towards showing that V is well defined, we write V for the set of type 0 sublevel components

V ′ satisfying h(∂•V
′) = h(∂•W ) − 1, W −∆ ( V ′ ( W , 0 /∈ V ′ and −ne1 ∈ V ′. We observe that

V ⊆ L(−ne1,0), and thus by Proposition 4.6, V is ordered by inclusion and finite. To derive the

existence of V , all that remains is to show that V 6= ∅.

To see that V 6= ∅, we make some observations about ∆ and δ. Since h ∈ QPm, m ∈ 6Zd and
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∆ ∈ nZd, it follows that

δ ≡ 0 (mod 6). (38)

Since W is of type 0, 0 ∈ W and ne1 /∈ W we get that W ( W +ne1 and therefore, by Theorem 3.4,

W + ne1 = W + k∆ for some positive k. (39)

We deduce, using Proposition 4.7, that h(∂•W + ne1) = h(∂•W ) + h(ne1) = h(∂•W ) + m1, and

therefore that m1 = kδ. In particular, since m1 > 0, we see that

δ ≥ 6. (40)

By subtracting ne1 and k∆ from both sides of (39) we have that W −ne1 = W −k∆. Thus, recalling

that 0 ∈ W and W − k∆ ⊆ W −∆, we obtain that

−ne1 ∈ W −∆. (41)

By Proposition 4.7 and (40) we get that W−∆ is a sublevel component satisfying h(∂◦(W−∆)) =

h(∂◦W )− δ ≤ h(∂◦W )− 6. Thus, the first item of Lemma 4.12 guarantees the existence of a type 0

sublevel component V ′ satisfying h(∂•V
′) = h(∂•W )− 1, W −∆ ( V ′ ( W . Since −ne1 ∈ W −∆

by (41) we get that −ne1 ∈ V ′. By the minimality of W , we get that 0 /∈ V ′ implying that V ′ ∈ V

so that V 6= ∅.

To show that U is well defined, we write U for the set containing all U ′ such that (U ′)c is a type 0

superlevel component such that h(∂•U
′) = h(∂◦W )− δ/2, W −∆ ⊆ U ′ ⊆ W , 0 /∈ U ′ and −ne1 ∈ U ′.

Recalling Definition 4.11 of superlevel sets we use Proposition 4.6 to deduce that the set of superlevel

sets containing 0 and not containing −ne1 is finite and ordered by inclusion, and therefore U is also

finite and ordered by inclusion. All that remains in order to deduce the existence of U is to show

that U 6= ∅.

This time we apply (40) and the second item of Lemma 4.12, to h, V and W −∆, to show the

existence of U ′ satisfying that (U ′)c is a superlevel component of type 0, W − ∆ ⊆ U ′ ( V and

h(∂•U
′) = h(∂◦W )− δ/2. Since 0 /∈ V by definition and −ne1 ∈ W −∆ by (41) we get that 0 /∈ U ′

and −ne1 ∈ U ′. Thus U ′ ∈ U , U 6= ∅ so that U is well defined. The definition of U and the fact that

U ⊆ U ′ imply that W −∆ ⊆ U ( V . In fact, by (40) we have h(∂•(U)) > h(∂•(W −∆)) so that

W −∆ ( U ( V.

This relation and the definition of V imply (37).

For i ∈ Z, we write

Ui := U0 + i∆, Vi := V0 + i∆ and Wi := W0 + i∆. (42)

Proposition 5.2. For every z ∈ nZd and i ∈ Z the following are equivalent:
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• U0 + z = Ui,

• V0 + z = Vi,

• W0 + z = Wi.

Proof. We begin by showing that U0, V0 and W0 all have ∆ as a minimal translation. For W0, this

is the case by the definition of ∆. We now show this for V0. The proof for U0 is similar. Let ∆V be

a minimal translation of V0. Since

V0 −∆ ( W0 −∆ ( V0 ( W0

by (37), we have V0 − k∆V = V0 −∆ for some integer k ≥ 1. By Proposition 3.3, we have

dist(V0 −∆V ,W
c) > dist(V0,W

c
0 ) = dist(V0 −∆V ,W

c
0 −∆V ).

We deduce that W0 −∆V ( W0, and thus W0 −∆V ⊆ W0 −∆ (by the minimality of ∆). Suppose

to the contrary that W0 −∆V ( W0 −∆. Since ∆ is a minimal translation of W0, we get that

V0 −∆V ( W0 −∆V ⊆ W0 − 2∆ ( V0 −∆,

contradicting the minimality of ∆V . We conclude that W0 −∆ = W0 −∆V .

Fix z ∈ nZd. Since U0, V0 and W0 are of type 0 with ∆ as a minimal translation, there exist

i, j, k for which U0 + z = Ui, V0 + z = Vj , W0 + z = Wk. Translating (37) by z, we have

Wk−1 ( Ui ( Vj ( Wk. (43)

However, (37) and (42) imply that

W−1 ( U0 ( V0 ( W0 ( U1 ( V1.

Hence we conclude from (43) and the fact that (Ui), (Vi) and (Wi) are ordered by inclusion that

k − 1 < i ≤ j ≤ k

and therefore that i = j = k.

We define the mapping Ψm : QPm → QP0 by

Ψm(h)(v) :=







h(v − i∆) = h(v)− iδ, v ∈ Wi \ Ui for some i ∈ Z

2h(∂◦W0)− h(v − i∆) = 2h(∂◦W0)− h(v) + iδ, v ∈ Ui+1 \Wi for some i ∈ Z
.

(44)

The remainder of the section is dedicated to showing that Ψm is well defined and has the required

properties.
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By Theorem 3.4, for every i ∈ Z we have Wi ( Wi+1. Thus, applying Proposition 3.7 to W0, we

have that every v ∈ Zd belongs to exactly one set of the form Wi+1 \Wi. Hence Ψm(h)(v) is defined

for every v ∈ Zd. The image through Ψ of the HHF illustrated in Figure 7 is depicted in Figure 8.

By definition, Ψm(h) is ∆-periodic , i.e., it satisfies Ψm(h)(v) = Ψm(h)(v +∆) for every v ∈ Zd.

Thus to understand Ψm(h) it suffices to understand its values on v ∈ W0 \W−1. As a first step to

this end we point out that on the region W0 \U0, Ψm is the identity while on the region U0 \W−1 it

is a reflection with respect to height h(∂◦W0)− δ/2 = h(∂•U0).

Proposition 5.3. Ψm is a one-to-one mapping from QPm to QP0.

Proof. Write t := Ψm(h). We need to show is that t is periodic in nei for every 1 ≤ i ≤ d, that it is

a height function, and that Ψm is one-to-one.

t is Periodic. First we show that for every ∆′ ∈ nZd, a ∈ Z such that W0 +∆′ = Wa, we have

h(v) = h(v +∆′ − a∆) for all v ∈ Zd. (45)

By quasi-periodicity, for all v ∈ Zd, we have h(v+∆′ − a∆) = h(v) + (h(∆′ − a∆)− h(0)). Hence it

suffices to prove (45) for a single v ∈ Zd. Next, note that sinceW0 = Wa−∆′ = W0+a∆−∆′ we have

that if v ∈ ∂•W0, then v+∆′ − a∆ is also a member of ∂•W0, implying that h(v) = h(v+∆′ − a∆).

This establishes (45).

Now, let 1 ≤ j ≤ d, and suppose that oW0
(W0 + nej) = a ∈ Z where oW0

is the order function

of W0 given by Theorem 3.4. Observe that W0 + nej = Wa. Note that if v ∈ Wi \ Ui then, by

Proposition 5.2, v + nej ∈ Wi+a \ Ui+a. Thus, using (45), if v ∈ Wi \ Ui then

t(v) = h(v − i∆) = h(v + nej − (i+ a)∆) = t(v + nej).

Similarly, if v ∈ Ui+1 \Wi then, using Proposition 5.2, we have

t(v) = 2h(∂◦W0)− h(v − i∆) = 2h(∂◦W0)− h(v + nej − (i+ a)∆) = t(v + nej).

t is an HHF. We claim that t ∈ Hom(Zd), i.e., that the values which t assigns to adjacent vertices

differ by exactly 1. Let u, v be adjacent vertices in Zd. We need to show that

|t(u)− t(v)| = 1. (46)

Since t is ∆-periodic, for every vertex w ∈ Zd there exists j ∈ Z such that w + j∆ ∈ U1 \ U0 and

t(w) = t(w + j∆). We may therefore assume WLOG u ∈ U1 \ U0, and v ∈ U1. We consider three

cases separately.

First, if both u, v ∈ U1 \W0 or both u, v ∈ W0 \U0 then (46) follows directly from the definition

of Ψm.
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Second, note that

t(∂◦W0)− t(∂•W0) = 2h(∂◦W0)− h(∂◦W0)− h(∂•W0) = h(∂◦W0)− h(∂•W0) = 1.

Hence (46) holds if either u ∈ ∂◦W0 and v ∈ ∂•W0 or vice versa.

Third,

t(∂◦U0)− t(∂•U0) = h(∂◦U0)− (2h(∂◦W0)− h(∂•U0)− δ),

and plugging the relation h(∂◦W0) = h(∂•U0) + δ/2 from (36) yields

t(∂◦U0)− t(∂•U0) = h(∂◦U0)− h(∂•U0) = 1.

Thus (46) holds if u ∈ ∂◦U0 and v ∈ ∂•U0.

Ψm is one-to-one. To show that Ψm is one-to-one, we explain how to construct an inverse for it.

Suppose that we are able to recover U0,W0,∆ and δ from t and m. Then we may define Ui = U0+i∆,

Wi = W0 + i∆ and the mapping

Ψ−1
m (t)(v) :=







t(v) + iδ, v ∈ Wi \ Ui for some i ∈ Z

2t(∂◦W0)− t(v) + iδ, v ∈ Ui+1 \Wi for some i ∈ Z
.

It is simple to check that this Ψ−1
m is indeed an inverse to Ψm. It is therefore sufficient to show that

U0,W0,∆ and δ may be recovered from t and m.

We begin by recovering W0. To do this we follow the lines of the proof of proposition 5.1. Write

Wt for the set of type 0 sublevel components of t which contain 0 and do not contain ne1. Again

we recall (21) and observe that Wt ⊆ L(0,ne1), where L is defined with respect to t. Thus, by

Proposition 4.6, Wt is ordered by inclusion and finite. We now argue that Wt is a non-empty set

whose minimal element is W0.

The definition (44) of Ψm and the relation h(∂◦W0) = h(∂•U0) + δ/2 from (36) imply that

t(x) = h(x) for x ∈ W+
0 \ U−

0 . (47)

We can therefore apply Proposition 4.13 with h1 = h, h2 = t, A = W0 and B = U0 to get that

W0 ∈ Wt. (48)

Applying the same proposition with A = V0 yields that

V0 is a sublevel component of t. (49)

Let us write Wt for the minimal element of Wt. Since W0 ∈ Wt we conclude that

Wt ⊆ W0. (50)
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To obtain the opposite inclusion we now show thatWt is also a sublevel component of h. Observe that

since Wt is of type 0, and since 0 ∈ Wt and ne1 /∈ Wt we have by Theorem 3.4 that Wt − ne1 ( Wt.

We deduce that −ne1 ∈ Wt ∩ V0. In addition, our definitions imply that ne1 ∈ (Wt)
c ∩ (V0)

c and

0 ∈ (Wt \V0). By Theorem 3.2, using that distinct sublevel components of t are boundary disjoint by

Proposition 4.3, we deduce that V0 ( Wt. Applying Proposition 4.13 with h1 = t, h2 = h, A = Wt

and B = V0, using (47) and (50) to check the condition (25), we get that Wt is a sublevel component

of h. Together with (50), the minimality of W0 now implies that Wt = W0, allowing the recovery

of W0 from t. After recovering W0, we can recover ∆ and δ using the fact that ∆ is a minimal

translation of W0 chosen in a prescribed manner and the fact that δ · oW0
(W0 + ne1) = m1, where

oW0
is the order function on translations of W0, given by Theorem 3.4.

All that remains is to recover U0. Following again the lines of the proof of Proposition 5.1, we

write Ut for the set containing all U ′ such that (U ′)c is a type 0 superlevel component of t and

t(∂•U
′) = t(∂◦W0) − δ/2, W0 − ∆ ⊆ U ′ ⊆ W0, 0 /∈ U ′ and −ne1 ∈ U ′. Recalling Definition 4.11

of superlevel sets we again use Proposition 4.6 to deduce that the set of superlevel components

containing 0 and not containing −ne1 is finite and ordered by inclusion, implying that Ut is also

finite and ordered by inclusion. We now use (47) and Proposition 4.13, with h1 = −h, h2 = −t,

A = (U0)
c and B = (W0)

c, to get that U c
0 is a superlevel component of t (again, using Definition 4.11

of superlevel components). It follows from (47) that U0 ∈ Ut. Write Ut for the maximal element of

Ut, that is, the complement of the minimal element amongst complements of elements in Ut. Since

U0 ∈ Ut we conclude that

U c
t ⊆ U c

0 . (51)

Recall that, by the definition of Ut, we have (W0)
c ( (Ut)

c and that, by (48), W0 is also a sublevel

component of t. Applying Proposition 4.13 to h1 = −t, h2 = −h, A = (Ut)
c and B = (W0)

c, using

(47) and (51) to check the condition (25), we get that U c
t is also a superlevel component of h. We

also have h(∂•Ut) = h(∂◦W0) − δ/2 by (47). Thus, together with (51), the minimality of U c
0 now

implies that U0 = Ut. As W0, U0,∆ and δ can be recovered from t and m, we deduce that Ψm is

one-to-one.

5.2 Proof of Theorem 2.2

In this section we prove Theorem 2.2 using a bound on the probability for a uniformly chosen HHF

on the torus to have a level component with long boundary. Here, for the first time, we use level

components on Td
n (defined in Section 4). To clarify our proof we will always denote HHFs in

Hom(Td
n) by r, HHFs in QP0 by t and HHFs in QPm, for arbitrary m, by h.

Recall that for u ∈ Td
n we denoted by Hom(Td

n, u) the set of all homomorphism height functions on

Td
n which are zero at u. We use the following theorem of [15] to derive the estimates of Theorem 2.2.

Theorem 5.4 ([15, special case of Theorem 2.8]). There exist c > 0 and d0 such that in all dimen-

sions d ≥ d0, for all even n, all u, v ∈ Td
n and all L ≥ 1, if h is uniformly sampled from Hom(Td

n, u)
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then

P
(

|∂ LC0+
h (u, v)| ≥ L

)

≤ d exp

(

−
cL

d log2 d

)

,

where we mean that LC0+
h (u, v) = ∅ if h(v) ≤ 0.

We adapt Theorem 5.4 to our setting through the following corollary.

Corollary 5.5. There exist c > 0 and d0 such that in all dimensions d ≥ d0, for all even n and all

L ≥ 1, denoting

A :=
{

r ∈ Hom(Td
n) : there exists a sublevel component A such that |∂A| ≥ L

}

,

the following holds,
|A|

|Hom(Td
n)|

≤ 2d2nd exp

(

−
cL

d log2 d

)

.

Proof. Fix L ≥ 1 and let B := {r ∈ Hom(Td
n) : ∃v ∈ Td

n, v ∼ 0, s.t. |∂ LC+
r (0, v)| ≥ L}. By

Theorem 5.4 with u = 0, and using a union bound on all v ∼ 0, we have

|B| ≤ 2d · d exp

(

−
cL

d log2 d

)

∣

∣

∣
Hom(Td

n)
∣

∣

∣
for all d greater then some fixed d0.

Now, for every w ∈ Td
n define the mapping ηw : Hom(Td

n) → Hom(Td
n) by

ηw(r)(v) := r(v + w)− r(w).

It is not difficult to check that this mapping is well defined and is a bijection. Moreover, for every

r ∈ A there exists a w ∈ Td
n such that ηw(r) ∈ B. The corollary follows.

In order to apply Corollary 5.5, we must show that HHFs in the image of Ψm, when projected

to the torus, contain a sublevel component with a long boundary. We proceed in two steps. First,

we claim that the projection of the boundary of the set V0 from Proposition 5.1 is contained in the

boundary of a level component of the projection of Ψm(h). Then we claim that this boundary is long.

This strategy is expressed in the following two lemmata. Recall that π was defined in Section 2.1 to

be the natural projection from Zd to Td
n. Here we use also the natural extension of π to edges of Zd.

Lemma 5.6. Let h ∈ QPm for m ∈ 6Zd satisfying m1 > 0. Let r = π ◦ Ψm(h) and V0 be as in

Proposition 5.1. There exists a sublevel component R of r such that π(∂V0) ⊆ ∂R.

We delay the proof of this lemma to Section 5.3.

Lemma 5.7. Let t ∈ QP0. Let u, v ∈ Zd and k ∈ Z satisfy t(u) ≤ k < t(v). Suppose V :=

LCk+
t (u, v) ⊆ Zd is a sublevel component of type 0. Then

max
1≤i≤d

|{(w0, w1) ∈ π(∂V ) : w0 − w1 = ei}| ≥ nd−1.

38



Proof. By Proposition 3.7, there exists 1 ≤ i ≤ d such that for every x ∈ Zd there exists ℓ ∈ Z such

that

(x+ ℓei, x+ (ℓ+ 1)ei) ∈ ∂V. (52)

We deduce that π(x+ ℓei, x+ (ℓ+ 1)ei) ∈ π(∂V ). Using (52) for all x in

{z ∈ Zd : zi = 0 and ∀j 6= i, 0 ≤ zj < n}

yields that |{(x, x+ ei) ∈ π(∂V )}| ≥ nd−1, as required.

At last we are ready to prove the theorem.

Proof of Theorem 2.2. Let m ∈ 6Zd \ {0}. Using the appropriate rotation we may assume without

loss of generality that m1 > 0. Fixing h ∈ QPm and applying Lemma 5.6 and Lemma 5.7, we obtain

the existence of a sublevel component R of π ◦Ψm(h) such that |∂R| ≥ nd−1. Thus

π(Ψm(QPm)) ⊂ {r ∈ Hom(Td
n) : there exists a sublevel component A of r such that |∂A| ≥ nd−1 }.

Recall that π is a bijection from QP0 to Hom(Td
n). Thus, applying Corollary 5.5, we get that for

large enough d,

|Ψm(QPm)| ≤ 2d2nd exp

(

−
cnd−1

d log2 d

)

|Hom(Td
n)| ≤ exp

(

−
c′nd−1

d log2 d

)

|QP0 |

for some c, c′ > 0. Thus, since Ψm is one-to-one, the theorem follows.

5.3 Projecting type 0 level components to the torus

In this section we prove Lemma 5.6 connecting level components on QP0 with those on Hom(Td
n).

While the relation between sublevel components of HHFs on the integer lattice and those of HHFs

on the torus is non-trivial, the relation between sublevel sets of the two spaces is much simpler. In

particular,

π(LC+
π−1(r)

(u)) = LC+
r (π(u)) for all r ∈ Hom(Td

n) and u ∈ Zd. (53)

This can be easily verified from the definition of sublevel sets.

Next, we prove a proposition relating the boundaries of level components on Zd to level compo-

nents on Td
n. We then show that this proposition applies to the set V0 from Proposition 5.1, and

use this fact to prove Lemma 5.6. We remind the reader that A+ and A++ were introduced in

Section 2.1.

Proposition 5.8. Let r ∈ Hom(Td
n) and t = π−1(r) ∈ QP0. Suppose V := LC+

t (u, v) for adjacent

vertices u, v ∈ Zd satisfying t(v) = t(u) + 1. If

π(V ++ \ V ) ∩ π(LC+
t (u)) = ∅ (54)

then

π(∂V ) ⊆ ∂ LC+
r (π(u), π(v)). (55)
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Proof. Let R := LC+
r (π(u), π(v)). We first note that (55) follows from the following two claims,

π(∂•V ) ⊆ R, (56)

π(∂◦V ) ⊆ Rc. (57)

We begin by showing (56). Indeed, we have:

π(∂•V ) ⊆ π(LC+
t (u)) = LC+

r (π(u)) ⊆ R,

where the equality follows from (53), and the two containment relations follow from Proposition 4.1.

Next we show (57). By Proposition 3.1, using the fact that V is co-connected by Proposition 4.1,

we get that π(V ++ \ V ) is a connected set which contains v (recall that u ∼ v). By (53) and (54),

π(V ++ \ V ) is disjoint from LC+
r (π(u)). By the definition of sublevel component this implies that

π(V ++ \ V ) ⊆ Rc. Since π(∂◦V ) ⊆ π(V ++ \ V ), we deduce (57).

At last, we prove Lemma 5.6. Let h ∈ QPm for m ∈ 6Zd satisfying m1 > 0. Let U = U0, V = V0,

W = W0 and ∆ be as in Proposition 5.1. Let also t := Ψm(h) and r := π(t). Our goal is to show

that V satisfies the conditions of Proposition 5.8, from which Lemma 5.6 will follow.

Write T for the set of type 0 sublevel components T ′ satisfying h(∂•T
′) = h(∂◦W ) − δ + 1 and

W−∆ ( T ′ ( V . Recall that W−∆ ( V by (37), h(∂•(W−∆)) = h(∂•W )−δ, h(∂•V ) = h(∂•W )−1

by (35) and that δ ≥ 6 by (40). Hence, by Lemma 4.12, we conclude that T is non-empty. Write T

for the minimal element of T .

Let us show that T ⊆ U . By Lemma 4.12 applied to T ( V , using that h(∂•T ) = h(∂◦W )− δ+1

and h(∂•V ) = h(∂•W )− 1, there exists a U ′ satisfying that (U ′)c is a type 0 superlevel component

such that h(∂•U
′) = h(∂◦W ) − δ/2 and T ⊆ U ′ ( V . Next, observe that 0 /∈ U ′, since 0 /∈ V by

(35), and that −ne1 ∈ U ′, since −ne1 ∈ W −∆ ( T by (41). Thus, (37) and the definition of U (in

particular, the fact that U c is minimal), imply that U ′ ⊆ U . We conclude that

W −∆ ( T ⊆ U. (58)

Next, the definition (44) of Ψm, (58) and the definition of T imply that

t(∂•T ) = 2h(∂◦W )− h(∂•T )− δ = h(∂◦W )− 1.

Now, since U ( V ( W by (37), the definition of Ψm implies that

h(∂◦V ) = t(∂◦V ).

Thus, by (35),

t(∂•T ) = t(∂◦V ). (59)
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We now check that V satisfies the conditions of Proposition 5.8. Recall that by (49), V is a

sublevel component of t. Let u ∈ ∂•V , v ∈ ∂◦V be two adjacent vertices. By Corollary 4.4 we have

V = LC+
t (u, v). Observe that the condition (54) is equivalent to

((V ++ \ V ) + z) ∩ LC+
t (u) = ∅ for all z ∈ nZd.

Since (V ++ \ V ) + z = (V ++ + z) \ (V + z) and since V is of type 0 having, by Proposition 5.2, ∆

as a minimal translation, this is equivalent to

((V ++ + k∆) \ (V + k∆)) ∩ LC+
t (u) = ∅ for all k ∈ Z. (60)

We note that T ( V by the definition of T . It follows from (59) that the set S := V \ T satisfies

t(s) = t(∂◦V ) for all s ∈ ∂◦S. This implies that LC+
t (u) ⊆ S. Thus, to check condition (60) it

suffices to show that

((V ++ + k∆) \ (V + k∆)) ∩ S = ∅ for all k ∈ Z,

which, since S = V \ T , is itself implied by

(V ++ + k∆) ⊆ T for all k ≤ −1,

(V + k∆) ⊇ V for all k ≥ 0.
(61)

Since ∆ is a minimal translation for V , the second part of (61) follows trivially and it suffices to

check the first part for k = −1. Finally, the condition that (V ++ − ∆) ⊆ T follows from the fact

that V − ∆ ( W − ∆ ( T , a consequence of (37) and the definition of T . Thus the condition of

Proposition 5.8 is satisfied. Lemma 5.6 follows from (55).

6 Remarks and Open Problems

In this section we discuss a few open problems and make a remark.

1. (Tori with odd side length) In this work we consider a uniformly sampled proper 3-coloring

of a high-dimensional discrete torus with even side length. Our main result is that for such a

coloring, with high probability, one of the two bipartition classes is dominated by a single color.

How will this result change if we take the side length of the torus to be odd? Since tori with odd

side length are no longer bipartite, some change must occur. We expect that in this situation,

a typical coloring will exhibit two ‘pure phases’, regions in which one of the bipartition classes

is dominated by a single color, separated by a single, roughly straight, interface.

2. (Positive temperature) In physical terminology, the proper 3-coloring model is the zero-temperature

case of the antiferromagnetic 3-state Potts model. The positive temperature version of this

model is defined as follows. A 3-coloring f , not necessarily proper, of the underlying graph is
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sampled with probability proportional to exp(−βH(f)), where β > 0 is a parameter propor-

tional to the inverse temperature and H(f) is the number of edges (u, v) for which f(u) = f(v).

We expect that the analog of Theorem 1.1 continues to hold when the temperature is small,

but positive (that is, when β is sufficiently large). Proving this is complicated by the fact that

non-proper 3-colorings are no longer related to height functions.

3. (Larger amount of colors) As explained in Section 1.3, it is expected that Theorem 1.1 has a

natural extension to proper colorings of the torus with more than 3 colors. Specifically, that

for each q there is some d0(q) such that if d ≥ d0(q) then a typical proper q-coloring of Td
n has

the property that the q colors split into two sets of sizes ⌊q/2⌋ and ⌈q/2⌉ with each bipartition

class dominated by colors from one of the two sets. Proving this is wide open even for the case

q = 4. A result of Vigoda [21] implies that d0(q) ≥
3
11q. In [3, Conjecture 5.3] it is conjectured

that d0(q) = q/2, at least in the sense that certain “long range influences” exist if and only if

d ≥ q/2. However, any result showing that d0(q) < ∞ will constitute a major advance.

We end with the following remark. Our work extends certain results from [15]. The results in

[15] were proven in greater generality than simply for the torus Td
n. There, also tori with non-equal

side lengths were considered, of the form T1
n1

× T1
n2

× · · · × T1
nd
. These include, in particular, “two-

dimensional” tori of the form T2
n × Td

2 for d a fixed large constant. In our work, for simplicity, we

considered only the case of the torus Td
n. However, it seems that our results can be adopted with no

difficulty to the more general tori for which results were obtained in [15].
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