HIPPOPOTOMONSTROSESQUIPEDALIOPHOBIA (THE FEAR OF LONG WORDS)

Definition. Given a word $w(x_1,...,x_r)$ in a free group, and a group G, we define a word map $w_G: G^r \to G$, $(g_1,...,g_r) \mapsto w(g_1,...,g_r)$. Given $w_1 \in F_{r_1}$ and $w_2 \in F_{r_2}$ we write $w_1 * w_2 \in F_{r_1+r_2}$ for their concatenation. We write $w^{*t} = w * ... * w$. E.g. w = [x,y]. Then $w * w = [x,y] \cdot [z,w]$.

We would like to study the solution set $\{x, y \in G : [x, y] = g\}$, for $g \in G$.

Definition. Let G be a compact group, with Haar measure μ_G . Let $w \in F_r$. Then $\tau_{w,G} := (w_G)_* \mu_G^r$ is the word measure associated to w and G. If G is finite $\tau_{w,G}(g) = \frac{|w^{-1}(g)|}{|G|^r}$.

w induces a natural random walk on G. Suppose G finite.

1st step: randomly choose $g_1, ..., g_r$ and move to $w(g_1, ..., g_r)$. Probability to reach $g \in G$ is $\tau_{w,G}(g)$.

 2^{nd} step: randomly choose $h_1, ..., h_r$ and move to $w(g_1, ..., g_r) \cdot w(h_1, ..., h_r)$, and so on. Probability to reach $g \in G$ at the t-th step is

$$\tau_{w,G}^{*t}(g) = \tau_{w^{*t},G}(g) = \frac{|(w^{*t})^{-1}(g)|}{|G|^{rt}}.$$

Slogan: "word measures admit uniform behavior in high complexity".

Fix $w \in F_r$, and consider $w_G : G^r \to G$ for $G = \mathrm{SL}_2(\mathbb{F}_5)$ and $G = \mathrm{SL}_{10^9}(\mathbb{F}_{4001})$.

Theorem (Larsen-Shalev-Tiep). For any $w \in F_r$, there exist $N(w), \epsilon(w) > 0$ such that:

- (1) LST '11. $(w*w)_G: G^{2r} \to G$ is surjective on every finite simple group G, |G| > N(w).
- (2) **LS** '12. $|\tau_{w,G}(g)| < |G|^{-\epsilon(w)} \forall g \text{ and for every finite simple group } G, |G| > N(w).$
- (3) LST '19. (Uniform L^{∞} -mixing time) $\exists t(w) > 0$, such that

$$\lim_{Gfsg,|G|\to\infty} \left(\max_{g\in G} \left| \tau_{w,G}^{*t(w)}(g) |G| - 1 \right| \right) = 0.$$

Explicitly, $t(w) \sim \ell(w)^4$, $\epsilon(w) \sim \ell(w)^{-4}$.

Question. Do we have similar phenomena for:

- compact p-adic groups, $\{\mathrm{SL}_n(\mathbb{Z}_p)\}_{n,p}$ (i.e the collection $\{\mathrm{SL}_n(\mathbb{Z}/p^k\mathbb{Z})\}_{n,p,k}$)
- Compact simple Lie groups, e.g. $\{SU_n\}_n$.
- (Hui-Larsen-Shalev '13) $w * w : SU_n^{2r} \to SU_n$ is surjective for $n \gg_w 1$.
- (Avni-Gelander-Kassabov-Shalev '13) w^{*3} is surjective on $SL_n(\mathbb{Z}/p^k\mathbb{Z})$, for $p \gg 1$ and k.

Approach: word maps on $\mathrm{SL}_n(\mathbb{F}_p)$, $\mathrm{SL}_n(\mathbb{Z}_p)$, SU_n all come from one polynomial map $w_n: \mathrm{SL}_n^r \to \mathrm{SL}_n$. We will see that the singularities of w_n provide probabilistic information on $\mathrm{SL}_n(\mathbb{Z}_p)$ and SU_n , even when they are completely different groups.

0.1. Singularities and pushforward measures. $w_n : \mathrm{SL}_n^r(\mathbb{C}) \to \mathrm{SL}_n(\mathbb{C})$ is a special case of a polynomial map $f : X \to Y$ between smooth varieties. For simplicity, $X = \mathbb{C}^n$ and $Y = \mathbb{C}^m$.

A polynomial map $f: \mathbb{C}^n \to \mathbb{C}^m$ is **smooth** if it is a submersion $(Df_x \text{ is onto } \forall x \in \mathbb{C}^n)$.

Example. Let $f = x^2$. Then $f^{(1)} = 2xx'$, $f^{(2)} = 2(x')^2 + 2xx''$. Hence

$$J_2(f)(x, x', x'') = (x^2, 2xx', 2(x')^2 + 2xx'').$$

Definition. Given $f = (f_1, ..., f_m) : \mathbb{C}^n \to \mathbb{C}^m$, its k-th jet is the map $J_k(f) : \mathbb{C}^{n(k+1)} \to \mathbb{C}^{m(k+1)}$ given by $(f, f^{(1)}, ..., f^{(k)})$.

Definition. Let $f: \mathbb{C}^n \to \mathbb{C}^m$. $0 < \epsilon \le 1$.

- (1) f is ϵ -flat if all its fibers are of dimension $\leq n \epsilon m$.
- (2) f is ϵ -jet-flat, if $J_k(f)$ is ϵ -flat for all $k \in \mathbb{N}$.

Example. $f: \mathbb{C} \to \mathbb{C} \ x \mapsto x^d \text{ is } \frac{1}{d}\text{-jet flat.}$

Theorem (Clucker-G.-Hendel). Let $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$, where $f_{p,k} : (\mathbb{Z}/p^k\mathbb{Z})^n \to (\mathbb{Z}/p^k\mathbb{Z})^m$ is the induced map, $\tau_{p,k}(y) := \frac{|f_{p,k}^{-1}(y)|}{p^{kn}}$. Then $f = (f_1, ..., f_m)$ is ϵ -jet flat iff $\exists C, M > 0$ s.t for every $k \in \mathbb{N}$, prime p, and $y \in (\mathbb{Z}/p^k\mathbb{Z})^m$:

$$\tau_{p,k}(y) < C \cdot k^M p^{-\epsilon km} \sim \left| (\mathbb{Z}/p^k \mathbb{Z})^m \right|^{-\epsilon}$$

0.2. Word maps on simple algebraic groups and Lie algebras. We can now make sense of LST for word maps on geometric objects.

Definition. A Lie algebra word $w(X_1, ..., X_r)$ is a \mathbb{Q} -linear combination of iterated commutators. E.g X + [X, Y] and [[X, Y], Y]. For each Lie algebra \mathfrak{g} , w induces a Lie algebra word map $w_{\mathfrak{g}} : \mathfrak{g}^r \to \mathfrak{g}$. If w = [X, Y] then we set w * w := [X, Y] + [Z, W].

Theorem 1 (G.-Hendel). Let w be a Lie algebra word of degree d. Then $\exists C > 0$, s.t for every simple Lie algebra \mathfrak{g} , where $0 \neq w_{\mathfrak{g}}$:

- (1) $w_{\mathfrak{g}}:\mathfrak{g}^r\to\mathfrak{g}$ is $\frac{1}{Cd^3}$ -jet-flat.
- (2) The map $w_{\mathfrak{g}}^{*t}$ is 1-jet-flat for $t \geq Cd^4$.

Theorem 2 (G.-Hendel). Let $w \in F_r$ of length ℓ . Then $w_n : \mathrm{SL}_n(\mathbb{C})^r \to \mathrm{SL}_n(\mathbb{C})$ is $\frac{1}{10^{17}\ell^9}$ -jet-flat $\forall n$.

0.3. Probabilistic applications.

Theorem 3 (G.-Hendel). Let $w \in F_r$. For every $n, k \in \mathbb{N}$, $p \gg_n 1$, and $A \in \mathrm{SL}_n(\mathbb{Z}/p^k\mathbb{Z})$:

$$\left|\tau_{w,\operatorname{SL}_n(\mathbb{Z}/p^k\mathbb{Z})}(A)\right| < \left|\operatorname{SL}_n(\mathbb{Z}/p^k\mathbb{Z})\right|^{-\frac{1}{2\cdot 10^{17}\ell(w)^9}}.$$

Let $\mathrm{SL}^1_n(\mathbb{Z}_p)$ be the kernel of $\mathrm{SL}_n(\mathbb{Z}_p) \to \mathrm{SL}_n(\mathbb{F}_p)$ (first congruence subgroup).

Theorem 4 (G-Hendel). Let $w \in F_r$. $\exists C > 0$, s.t for every $t \geq C\ell(w)^4$, $n \in \mathbb{N}$, $p \gg_n 1$, $\tau_{w,\operatorname{SL}_n^1(\mathbb{Z}_p)}^{*t}$ has bounded density.