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These lecture notes were made for a course I gave during the spring term of
2021 at the Hebrew University, as part of David Kazhdan’s Sunday seminars.
Some of the topics that appear I did no cover, or did cover but not in the
order they appear here (in particular, I taught Section 3 between Sections
2.3 and 2.4). I would not have been able to give this course without the
help of friends who are much more knowledgable in these topics, to whom
I am greatly indebted: Martin Bauer, Philipp Harms, Boris Khesin, Peter
Michor and Klas Modin. In particular, much of the content of Section 2 is
taken from notes of Martin, Philipp and Peter. I am also indebted of all the
attendees of the course for their invaluable questions and comments, and in
particular to David. All mistakes and inaccuracies are, of course, my fault
alone.

The bibliography is not intended to be a comprehensive bibliography of the
subject; it mainly includes books and articles I used while making these
notes.
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Week-by-week, the material covered was:

• Week 1: Introduction and motivation (§ 1)

• Week 2: Functional analytic preliminaries and definition of manifolds
(§ 2.1–2.2)

• Week 3: Manifolds of smooth mappings (§ 2.3)

• Week 4: Manifolds of mappings of finite regularity (§ 3.1–3.2)

• Week 5: Volumorphisms and non-compact base manifold (§ 3.3–3.5),
weak and strong Riemannian metrics (beginning of § 2.4)

• Week 6: Right-invariant metrics on diffeomorphism groups (§ 4.1),
geodesic equation the Christoffel symbols (§ 2.4.1)

• Week 7: Sprays and the Exponential map (§ 2.4.2)

• Week 8: Geodesic distance, curvature, Hopf–Rinow theorem (§ 2.4.3–
2.4.5)

• Week 9: The exponential map of the right-invariant L2 metric (§ 4.2)

• Week 10: The Ebin–Marsden spray method, Camassa–Holm equation
(§ 4.3–4.4)

• Week 11: Incompressible Euler equation, regularity (§ 4.5–4.6)

• Week 12: Boundary regularity (§ 4.6.1), Hunter–Saxton equation (§ 4.7)

• Week 13: Geodesic distance (§ 5), without the diameter section (§ 5.3)

• Week 14: Completeness (§ 6), discussion of some open problems
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Chapter 1

Motivation and outline

Let M,N be (finite dimensional, complete) smooth manifolds. Let Diff(M)
be the set of all smooth diffeomorphisms on it; it is obviously a group, that
acts on M . Similarly, one may consider the set of all immersions Imm(M,N)
from M to N (or embeddings Emb(M,N)). But they are more than sets —
they are, in fact, infinite dimensional manifolds. On these manifolds one can
prescribe a variety of Riemannian metrics, turning them into Riemannian
manifolds; however, as they are infinite dimensional, many of the things that
are standard textbook material in finite dimensional Riemannian geometry —
like existence of geodesics, behavior of the distance function the Riemannian
metric induce, etc. — become highly non-trivial. The study of these topics
is the goal of this course.

We will now give a few motivations for studying these topics, followed by a
more detailed outline of the course.

1.1 Motivation #1: comparing shapes

Say we have two immersions f0, f1 ∈ Imm(S1,R2), which we want to compare:

• How different f0 and f1 are?

• What is an “optimal” way of matching the sets f0(S1) and f1(S1)?

• Is there a natural flow ft ∶ [0,1] → Imm(S1,R2) from f0 to f1 that is
”optimal” or ”short”?
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These questions arise naturally in many imaging applications: The first one
appears in ”geometric statistics”, where one wants to automatically group a
large set of images into clusters (”cups” versus ”knives”); the second one is
natural appears, if, say, we want to understand which parts of the first image
correspond to a part of the second; the third appears in applications where
one wants to create motion from finitely many frames.

To be more accurate, if f1 is only a re-parametrization of f0, that is, if
f1 = f0 ○ ϕ for some ϕ ∈ Diff(S1), we would like to identify them, that is, to
look on the space of unparametrized curves Imm(S1,R2)/Diff(S1).

A natural way of addressing these questions is by introducing a Rieman-
nian metric on Imm(S1,R2). The distance between f0 and f1 would be the
geodesic distance, and the natural flow would be the geodesic flow.

The tangent space of Imm(S1,R2) at f is

Tf Imm(S1,R2) ≅ Γ(f∗TR2) ≅ C∞(S1;R2).

So we can simply put an inner-product on C∞(S1;R2). The simplest one is
probably

⟨u, v⟩ = ∫
S1
u(θ) ⋅ v(θ)dθ.

However, this one has a major drawback: This metric is not invariant under
reparametrizations of θ; as a consequence, it does not induce a metric on the
space of unparametrized curves. Instead, we can look on the metric

⟨u, v⟩L2 = ∫
S1
u(θ) ⋅ v(θ)ds,

where ds = ∣f ′(θ)∣dθ which is reparametrization-invariant, or on higher order
metrics, say

⟨u, v⟩H1 = ∫
S1

(u ⋅ v +∇∂su ⋅ ∇∂sv)ds

⟨u, v⟩H2 = ∫
S1

(u ⋅ v +∇∂su ⋅ ∇∂sv +∇
2
∂s
u ⋅ ∇2

∂s
v)ds

and so on. Here ∂s =
1

∣f ′(θ)∣∂θ.

Natural questions are then:

• Does these Riemannian metrics yield a true metric space structure on
Imm(S1,R2)? This is obvious in finite dimensions, but may fail in
infinite dimensions (indeed, the answer is negative for L2 but positive
for H1 and H2).
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• Do geodesics exist? For all time (geodesic completeness)? (no for L2

and H1, yes for H2)

• Can two immersions be connected by a minimizing geodesic? (unknown
for L2 and H1, yes for H2)

As we will see, the reparametrization-invariance of the metrics is also a fea-
ture that plays a role in studying the geodesic equations (in particular, their
regularity theory). There are, of course, also more applied questions — can
we compute these geodesics? Are there efficient algorithms for implementing
these ideas to real data — but we will not discuss them here.

1.2 Motivation #2: geometric approach to

hydrodynamics

A second motivation is what is known as ”geometric hydrodynamics” or
”topological hydrodynamics”, that was initiated by the seminar 1966 paper
of Arnold [Arn66]. His key idea was that many equations in hydrodynamics
can be cast as geodesic equations of various diffeomorphism groups —the
full diffeomorphism group, volume preserving diffeomorphisms, and quotients
and extensions thereof — with respect to different Riemannian metrics.1 This
reveals the geometric nature of these equations, and provides new tools to
study them.

In hydrodynamics one considers a fluid domain (a manifold M), and for each
time t, u(t, x) is the velocity of the fluid at the point x in the domain. That
is, u(t, ⋅) ∈ X(M) is a vector field. The evolution of the vector field is given
by an equation. The simplest one (which is more of a toy model than a
description of an actual fluid) is the (inviscid) Burgers’ equation on R (or
S1):2

ut + uux = 0.

1The paper [Arn66] refers to the incompressible-Euler equation, but this was later
extended to many other equations.

2This equation is, among other things, probably the simplest example of equations that
develops shockwaves.
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A more realistic (and famous) equation is the incompressible Euler equation:

⎧⎪⎪
⎨
⎪⎪⎩

ut +∇uu = −∇p

divu = 0.

Here M is a Riemannian manifold, divu = 0 is an incompressible constraint,
and p is a scalar function representing the pressure.

From a physics perspective, these equations are given in Eulerian coordi-
nates; that is, x is the coordinate of the ambient space, and u(t, x) is the
velocity at time t at a point x. The complement view is that of Lagrangian
coordinates — we let x be the position of a fluid particle, and we want
to describes how it evolves in time; that is, we are looking at ϕ(t, x), the
position in ambient space, at time t, of the particle that was at time 0 at x.
The Lagrangian and Eulerian viewpoints are related: ϕ(t, x) is simply the
flow of the vector field u, that is,

⎧⎪⎪
⎨
⎪⎪⎩

ϕt(t, x) = u(t, ϕ(t, x))

ϕ(0, x) = x.
(1.1)

For each time t for which the flow exists, we have that ϕ(t, ⋅) ∈ Diff(M). So
while the Eulerian viewpoint describes the system as an evolution of a vector
field, the Lagrangian viewpoint describes an evolution of a diffeomorphism.
What equation does ϕ satisfy? For the Burgers’ equation the answer is
simple: From (1.1) we have

ϕtt(t, x) = ut(t, ϕ(t, x)) + ux(t, ϕ(t, x))ϕt(t, x)

= ut(t, ϕ(t, x)) + ux(t, ϕ(t, x))u(t, ϕ(t, x)) = 0.

That is, each particle x flows freely, along a geodesic. However, the flow
t ↦ ϕ(t, ⋅) can also be viewed from a global point of view, as a curve on the
space Diff(S1) (for simplicity), and in fact, as a geodesic flow: Here we have
that Tϕ Diff(S1) ≅ Γ(ϕ∗TS1) — we will prove that later, but intuitively, for
v ∈ Tϕ Diff(S1), at each point x ∈ S1, v(x) is a vector at Tϕ(x)S1 — so v ○ϕ−1

is a vector field. The Riemannian metric that will yield the Burgers’ equation
is then

⟨u, v⟩L2 = ∫
S1
u ○ ϕ−1 ⋅ v ○ ϕ−1 dθ,
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or more generally, on a Riemannian manifold (M,g), we have for u, v ∈
Tϕ Diff(M),

⟨u, v⟩L2 = ∫
M
g(u ○ ϕ−1, v ○ ϕ−1)Volg = ∫

M
g(u, v)Volϕ∗g.

Incompressible Euler, turns out to be the same Riemannian metric, restricted
to the submanifold DiffVolg(M) of volume-preserving diffeomorphisms.

The full diffeomorphism group Diff(M), and the group of volume-preserving
diffeomorphisms Diffµ(M) are Lie groups (the group actions are smooth).
The construction of the metrics above can be generalized as follows: Given
a Lie group G, with a Lie algebra G = TeG, we have that TgG = Gg. Thus,
given an inner-product ⟨ , ⟩ on G (in the above example this is the L2-inner
product on vector fields), we obtain a Riemannian metric by

⟨u, v⟩g ∶= ⟨ug−1, vg−1⟩ .

This exact setting, on different groups and different inner-products (similar to
the Sobolev metrics mentioned above for immersions), yields many equations
that arise in physical contexts, and the symmetry of the problem provides
tools to study them.

1.3 Other motivations

There are more places where such metrics play a role; these are not far away
from the topics of this course, but we will not focus on them:

• In image registration, one models a three-dimensional greyscale image
by a map I ∶ Ω ⊂ R3 → R of a certain regularity. Let us denote by
X the space of all such mappings. Given two images I0, I1 ∈ X, the
first apporach to the image registration problem would be to search for
ϕ ∈ Diff(Ω), such that I0 ○ ϕ = I1. Two things can go wrong. First,
such a ϕ may not exist and second, if it exists, it may not be unique.
To address these problems, we can introduce a distance d(ϕ,ψ) on the
set of transformations and a distance ρ(I, J) on the set of images and
search for the minimizer of

ρ(I0 ○ ϕ, I1)
2 + εd(Id, ϕ)2
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among ϕ ∈ Diff(Ω). The first term addresses the case of not having an
exact matching, and the second term chooses between possible match-
ings the simplest one. The parameter ε chooses between accuracy and
simplicity. The large deformation diffeomorphic metric mapping (LD-
DMM) approach to image registration takes the metric d to be a right-
invariant Riemannian-metric on Diff(Ω). Here one wants a metric that
will induce a distance function d with ”good” properties, but also that
d will be computable.3

• In symplectic geometry, one considers the Lie group of Hamiltonian
symplectomorphisms on a manifold M , Diffω(M). An important tool
is the Höfer metric, which is a bi-invariant Finsler metric on this
group, which induces a non-degenerate distance function (by Finsler
metric it means that instead of an inner product on the Lie algebra
there is a norm).

• The space Met(M) of all Riemannian metrics on a manifold M is a
manifold, and has reparametrization-invariant L2 metric that is related
to Teichmüller theory.

• The 2-Wasserstein distance on the space of volume forms can be realized
as a distance induced by a Riemannian metric (which is closely related
to the metric of the incompressible Euler equation).

1.4 Outline

We plan to cover the following material (though not necessarily in this order):

1. A short functional-analytic background: mainly, what we mean by
smoothness in various topological vector spaces.

2. Infinite dimensional geometry: basic definitions (what is a manifold),
main examples (immersions, diffeomorphisms), Riemannian metrics
(weak and strong), what goes through and what does not from finite
dimensional Riemannian geometry.

3This introduction was taken from [BH15].
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3. Focus on diffeomorphism groups of various kinds (different regularities,
non-compact manifolds, etc.).

4. The Sobolev hierarchy of Riemannian metrics on Diff(M) and their
geodesic equations, curvature, etc.

5. A few miracles: special cases that can be solved explicitly.

6. Metric theory: collapse and non-collapse of the geodesic distance. Di-
ameter of the manifolds.

7. Local theory: local existence and well-posedness of the geodesic equa-
tions, regularity theory, blow-up of solutions.

8. Global theory: global existence of geodesics (geometric completeness),
metric completeness.
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Chapter 2

Infinite dimensional manifolds

In this section we intend to define smooth infinite dimensional manifolds.
These are going to be modelled after infinite dimensional topological vector
spaces, mainly on Hilbert spaces, Banach spaces and Fréchet spaces; recall
the basic definitions:

Definition 2.1 1. A Hilbert space is a complete inner-product space.

2. A Banach space is a complete normed space.

3. A Fréchet space is a locally convex t.v.s. whose topology is induced
by a complete, translation invariant metric; equivalently, it is a t.v.s.
whose topology is induced by a countable family of seminorms, which is
point seperating and yields a complete space.

The topological vector space that are important for us are spaces of functions,
in particular:

Example 2.2 1. The space Ck(M) of k-times continuously differentiable
maps on a compact manifold M (possibly with boundary). This is a
Banach space with the norm

∥f∥Ck =
k

∑
i=0

sup
x∈M

∣∇if(x)∣.
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2. The space W k,p(M), which is the closure of the smooth functions with
respect to the norm

∥f∥Wk,p = (
k

∑
j=0
∫
M

∣∇jf ∣p)

1/p

.

Here (M,g) is a compact Riemannian manifold, p ∈ [1,∞) and k ∈
N ∪ {0}. For p = 2 this is a Hilbert space, which is also denoted by
Hk(M).

3. The space C∞(M) of smooth functions over a compact manifold M ,
with the topology of uniform convergence on each derivative separately.
This is a Fréchet space with the seminorms {∥ ⋅ ∥Ck}k≥0 or with the
seminorms {∥ ⋅ ∥Wk,p}k≥0 for some p.

4. The space C∞(R) of smooth functions over R, with the topology of
uniform convergence on each derivative separately on each compact
subset. This is a Fréchet space with the seminorms {∥⋅∥Ck([−n,n])}k≥0,n>0.
The same is true for functions between finite dimensional spaces.

There are important spaces of functions that are not even Fréchet , for ex-
ample the space C∞

c (R) of compactly supported smooth functions, with the
direct limit topology of C∞([−n,n]), meaning that a sequence converges if
all of it is supported in a compact set, and the sequence and of all its deriva-
tives uniformly converges over this set. For simplicity, we will not focus on
these. Also, the dual space1 of a Fréchet space, with the natural topology of
uniform convergence on bounded sets,2 is never a Fréchet unless the space
was normable to begin with [Köt83, §29.1(7)], [Vog00, Theorem 2.3]. This
tells us that, in some sence, once we consider the Fréchet category, we need
to go beyond it, if, say, we want to consider the cotangent bundle of a Fréchet
manifold.

1If E is a Fréchet space, then the space of bounded linear functionals and continuous
linear functionals coincide [Vog00, Theorem 2.2].

2The structure of E∗ are detailed in [Vog00, Corollary 2.6].
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2.1 Infinite dimensional t.v.s. and differentia-

bility

As we will require the transitions maps being smooth in the infinite dimen-
sional manifold to be smooth, we should first address the issues of differen-
tiability and smoothness in infinite dimensional t.v.s.

Definition 2.3 (Fréchet derivative) Let E and F be normed spaces. A func-
tion f ∶ U → F defined on an open subset U ⊆ E is called Fréchet differ-
entiable at x ∈ U with derivative df(x) ∈ L(E,F ) if

lim
E∖{0}∋v→0

f(x + v) − f(x) − df(x)(v)

∥v∥
= 0.

The function f is called continuously Fréchet differentiable if it is Fréchet
differentiable at every x ∈ U with continuous Fréchet derivative

df ∶ U → L(E,F ).

Higher-order Fréchet derivatives, provided they exist, are defined iteratively
as

dkf = d(dk−1f) ∶ U → L(E,L(E, . . . ,E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

;F )⋯)) ≅ L(E, . . . ,E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

;F ),

where the isomorphism is the standard canonical map. The function f is
called Fréchet smooth if it is Fréchet Ck for all k ∈ N.

However, it is not clear how this definition generalizes to more general locally-
convex t.v.s.; in fact, it is not clear that L(E,F ) is in the same category as E
and F , what locally-convex topology to put on it, etc. We therefore consider
“directional derivatives” instead of a “full derivative”:

Definition 2.4 (Gâteaux differentiability) Let E and F be Hausdorff locally
convex topological vector spaces. A function f ∶ U → F defined on an open
subset U ⊆ E is called Gâteaux differentiable at x ∈ U if for every hv ∈ E
there exists Dvf(x) ∈ F such that

lim
R∖{0}∋t→0

f(x + tv) − f(x) − tDvf(x)

t
= 0.
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The function f is called continuously Gâteaux differentiable if it is Gâteaux
differentiable at every x ∈ U with continuous Gâteaux derivative

Df ∶ U ×E ∋ (x, v)↦Dvf(x) ∈ F.

Higher-order Gâteaux derivatives, provided they exist, are defined iteratively
as

Dkf(x; v1, . . . , vk) ∶= (DvkDvk−1⋯Dv1f)(x) ∶ U ×Ek → F.

The function f is called Gâteaux smooth if it is Gâteaux Ck for all k ∈ N.

Note that our continuity requirement is rather mild: we require that Df ∶
U ×E → F is continuous, rather than Df ∶ U → L(E,F ) is. This is, because,
as we mentioned earlier, there is an ambiguity on which topology to put
on L(E,F ) (beyond the Banach category). Moreover, even in the Banach
category, these notions of continuity are different:

Example 2.5 consider L ∶ R×C(S1)→ C(S1), defined by L(t, f)(x) = f(x+t).
Then L is continuous, however the map R → L(C(S1),C(S1)) is not, since
supx∈S1 ∣f(x + t) − f(x)∣ can be as large as 2 when ∥f∥∞ = 1, regardless of t,
hence L(t, ⋅) does not converge to L(0, ⋅). Note also that L ∶ R × C(S1) →
C(S1), is not Gâteaux differentiable at all points, since ∂tL(0, f) must be
f ′(0), which is not defined over all C(S1).

Proposition 2.6 1. The continuity of Dkf implies that Dkf(x, ⋅) is linear
(this is not clear a priori).

2. Continuous linear functions are Gâteaux smooth.

3. The chain rule holds for Gâteaux Ck functions.

4. If E and F are normed spaces, then Gâteaux Ck functions are Fréchet
Ck−1.

5. In particular, for normed spaces there is no difference between Fréchet
smoothness and Gâteaux smoothness.

We will not prove that here.

A t.v.s. that will be important for us is the following:



Infinite dimensional manifolds 13

Definition 2.7 (The space of smooth curves) Let F be a locally-convex t.v.s..
The space of (Gâteaux) smooth curves C∞(R, F ), is endowed with the locally
convex topology of uniform convergence of the function and all its deriva-
tives on all compact subsets separately, where uniform convergence is the uni-
form convergence with respect to all Minkowski functionals on all absolutely-
convex, bounded subsets.

2.1.1 Smooth functions

The previous example shows that the correspondence

C(E × F,G) ≅ C(E,C(F,G))

fails, even in the category of Banach spaces. Here we will see that for smooth
functions, the situation is much better, even for Fréchet spaces.

We have seen the for normed spaces, Gâteaux and Fréchet smoothness are
the same. For Fréchet spaces, there is another notion of smoothness that is
equivalent to Gâteaux smoothness, and is useful for discussing smoothness
in more general spaces:

Proposition 2.8 Let E,F be Fréchet spaces, and let U ⊂ E be open. A map
f ∶ U → F is Gâteaux smooth if and only if f ○ c ∶ R→ F is smooth for every
smooth c ∶ R→ E.

We will not prove this here.

From now on, by smoothness we will mean exactly that:

Definition 2.9 A map f ∶ U ⊂ E → F between a Fréchet space E and a
locally-convex t.v.s. F will be called smooth if f ○ c ∶ R → F is smooth for
every smooth c ∶ R→ E.

The fact that smoothness can be tested by composition with smooth curves
will expedite calculations. In particular, we have the following useful prop-
erty:

Proposition 2.10 If E,F,G are finite dimensional normed space, and α ∈
C∞(F,G), then the map C∞(E,F ) → C∞(E,G) defined by f ↦ α ○ f is
smooth, where C∞(F,G) is with its standard Fréchet topology.
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We also have the following useful property (see [KM97, Cor. 3.13] for a more
general setup):

Proposition 2.11 Let E,F,G be finite dimensional normed spaces, then a map
f ∶ E × F → G is smooth, if and only if f ∶ E → C∞(F,G) is smooth, where
C∞(F,G) is with its standard Fréchet topology.

In fact, this also holds if E,F,G are Fréchet spaces, provided we have the
correct topology on C∞(E,F ), as follows.3

We denote by C∞(U,F ) the space of smooth functions from U ⊂ E to F . It is
endowed by the topology induced by all the maps c∗ ∶ C∞(U,F )→ C∞(R, F ),
f ↦ f ○ c for c ∈ C∞(R, U). This is, in general, not a Fréchet space, however
it is a locally-convex t.v.s. [KM97, §3.11].

2.2 Hilbert, Banach and Fréchet manifolds

Definition 2.12 A smooth Hilbert/Banach/Fréchet manifold is a set
M together with the following data:

1. A cover of M by subsets (Uα)α∈A, and

2. For each α ∈ A, an injective functions uα ∶ Uα → Eα with values in a
Hilbert/Banach/Fréchet space Eα, such that

3. For all α,β ∈ A, the image uα(Uαβ) of the set Uαβ ∶= Uα ∩Uβ is open in
Eα (in particular, uα(Uα) is open), and

4. The mapping uαβ ∶= uα ○ u−1
β ∶ uβ(Uαβ)→ uα(Uαβ) is smooth.

The spaces Eα are called modeling vector spaces of M ,4 the tuples (Uα, uα)
are called a charts, the mappings uαβ are called a chart changings, and the

3A remark to myself: There is no contradiction between Lemma II.3.2 and Section
II.3.9 in the notes of Bauer, Harms and Michor for the case of E being a Fréchet space,
because of a delicate issue with the product topology, which is finer in Section II.3.9 than
in Lemma II.3.2. Note that the convenient topology induced on E∗ from C∞(E,R) is the
same as standard functional analytic one (uniform convergence on bounded sets).

4Note that we do not assume that all Eα are the same space.



Infinite dimensional manifolds 15

collection (Uα, uα)α∈A is called an atlas. Two atlases are called equivalent if
their union is again an atlas. An equivalence class of atlases is sometimes
called a manifold structure. The union of all atlases in an equivalence class
is again an atlas, the maximal atlas for this manifold structure.

As in finite dimensional manifolds, the manifold structure induces a topology
onM in the standard way — A ⊂M is open if uα(A∩Uα) is open in Eα for
every α. Similarly, we can define continuous and smooth functions on M.
We can also define fiber-bundles over M and so on.

Definition 2.13 Let M be a Fréchet manifold with an atlas (uα ∶ Uα →
Eα)α∈A. The tangent bundle is a Fréchet manifold TM defined the set

∐
α∈A

Uα ×Eα ∶= ⋃
α∈A

{α} ×Uα ×Eα

modulo the relation

(α,x, s) ∼ (β, y, t) ⇔ x = y and duαβ(uβ(x))t = s,

with the bundle maps

ψα ∶ {α} ×Uα ×Eα → Uα ×Eα, ψα(α,x, s) = (x, s).5

TM can be identified with C∞(R,M) modulo equivalence relations of curves,
as usual, via the map [c(t)] ↦ [(α, c(0), (uα ○ c)′(0))], for any α such that
c(0) ∈ Uα.

Proposition 2.14 For every x ∈M,M is locally diffeomorphic to TxM. That
is, we can consider M as modelled by TxM.

Proof : Let α ∈ A such that x ∈ Uα, then TxM is diffeomorphic to Eα by
construction. Therefore the coordinate chart uα ∶ Uα → Eα defines the wanted
diffeomorphism. n

5This induces the manifold atlas on TM by composing with uα.
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Proposition 2.15 A map f ∶M→ N between two Fréchet manifolds is smooth
if and only if f ○ c ∶ R→ N is smooth for any c ∈ C∞(R,M).

This follows from the definitions of smoothness via charts, and the fact that
for the Fréchet spaces that appear in the charts, smoothness can be tested
via smooth curves (see Proposition 2.8). See III.3.8.

2.3 Manifolds of mappings

Let M be a compact, finite dimensional Riemannian manifold, and let π ∶
V → M be a vector bundle over M . We denote by Γ(M ;V ) the vector
space of smooth sections. It is a Fréchet space with the topology of uniform
convergence of all derivatives (separately).

Now let M be a compact finite dimensional Riemannian manifold, and let
N be a finite dimensional Riemannian manifold. We start by showing that
C∞(M,N), with its natural topology (convergence of all derivatives, each
one uniformly6), is a Fréchet manifold.7

There exists a neighborhood W0 of the zero section of TN such that the map

(πN , exp) ∶W0 → N ×N, (πN , exp)(wp) = (p, expp(w))

is a diffeomorphism onto its image, which we denote by WN×N . Given f ∈
C∞(M,N), define the inverse charts (Vf , vf) by

Vf ∶= {h ∈ Γ(f∗TN) ∶ h(M) ⊂W0}

vf ∶ Vf → C∞(M,N), vf(h)(x) ∶= expf(x) h(x).

The chart (Uf , uf) is then given by

Uf ∶= vf(Vf) = {g ∈ C∞(N,M) ∶ (f, g)(M) ⊂WN×N}

uf ∶ Uf → Γ(f∗TN), uf(g)(x) = exp−1
f(x)(g(x)).

6Here, uniform convergence can be viewed either in coordinate charts, or via jets.
7The fact that C∞(M,N) is a manifold is true in much greater generality (N needs

not to be finite dimensional, M needs not to be compact), however the manifold may not
be Fréchet in this case, and there are delicate topological issues (the manifold topology
on C∞(M,N) in the non-compact case differs from the ∞-compact-open or ∞-whitney
topologies, and we will not get into it here. See [KM97, Chapter IX] for more details.
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Proposition 2.16 The charts (Uf , uf)f∈C∞(M,N) define a manifold structure
on C∞(M,N). The topology of the manifold is that of uniform convergence
of functions and each of their derivatives.

Corollary 2.17 1. Following the discussion above on the tangent space (see
Proposition 2.14) we can identify TfC∞(M,N) ≅ Γ(f∗TN). Moreover,
we can identify the whole tangent space as TC∞(M,N) ≅ C∞(M,TN);
this identification is not only as sets but also as manifolds.

2. Following Proposition 2.11, we have that if M is a compact manifold,
and S,N finite-dimensional manifolds, then a map F ∶ S → C∞(M,N)
if and only if the associated map F ∧ ∶ S ×M → N is smooth.

Proof : Note that vf is injective by the definition of Vf and W0. For given
f, f̄ ∈ C∞(M,N), consider the set

Uf ∩Uf̄ = {g ∈ C∞(N,M) ∶ (f, g)(M), (f̄ , g)(M) ⊂WN×N}.

If g ∈ Uf ∩Uf̄ and g′ is sufficiently close to g in C0, then g′ ∈ Uf ∩Uf̄ as well,
as WN×N is open. It follows that uf(Uf ∩Uf̄) is open in Γ(f∗TN) (since the
topology on Γ(f∗TN) is stronger than C0).

We now show that the transition maps are smooth: To this end, define, for
a given f ∈ C∞(M,N), the sets

V f∗TN
f ∶= {w ∈ f∗TN ∶ (p∗f)(w) ∈W0}

V M×N
f ∶= {(x, y) ∈M ×N ∶ (f(x), y) ∈WN×N} ,

where p ∶ f∗TN →M is the projection (and thus (p∗f)(x,w) = (f(x),w) is
simply the canonical identification of (f∗TN)x ≅ (TN)f(x)). Then the map

Σf ∶ V
f∗TN
f → V M×N

f , Σf(w) = (π(w), expf(π(w))w),

is obviously smooth and invertible. Now, we have that

uf̄ ○ u
−1
f ∶ uf(Uf ∩Uf̄)→ uf̄(Uf ∩Uf̄)

is simply uf̄ ○ u
−1
f (h) = Σ−1

f̄
○Σf ○ h, and since the composition operator with

smooth maps is smooth (see Proposition 2.10), uf̄ ○ u
−1
f is smooth.
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The fact that the topology is that of uniform convergence of the maps and
all derivatives follows from the natural topology on Γ(f∗TN) and the fact
that the exponential map is smooth. n

One can generalize this result is for the case where N is not necessarily finite
dimension: this will be useful when we consider the path space in an infinite
dimensional manifold M, when we discuss geodesics. For this, we need to
assume that N has a local addition:

Definition 2.18 (Local addition) Let N be a smooth manifold. A local ad-
dition on N is a smooth mapping Σ ∶ WTN → N fitting into the following
commutative diagram:

TN WTN
? _

open
oo (πN ,Σ)

≅
//WN×N

� �

open
// N ×N

N
5 Uzero section

ZZ

( � diagonal

BB

For finite dimensional manifolds, Σ can be taken to be the exponential map of
any Riemannian metric. Moreover, any Lie group G admits a local addition,
since TG ≅ G × TeG via (g,X) ↦ TLg(X), and a neighborhood of 0 ∈ TeG
is diffeomorphic to a neighborhood of e ∈ G. Once we have a local addition,
the previous proof works verbatim.

This construction is, in fact, a special case of smooth fiber bundles sections,
Γ(M ;B) of a smooth bundle π ∶ B → M over a compact M (see [Ham82,
§I.4]). The idea is similar: B takes the role of M ×N , and instead of f∗TN
we have the bundle f∗V B →M consisting of all vectors of the vertical bun-
dle V B = ker(Tπ) ⊂ TB that lie above f . In order to prove the manifold
structure, all we need is to have, instead of the exponential map (or a local
addition), is a map Σ ∶WV B ⊂ V B → B, such that the following commutative
diagram holds:

V B WV B
? _

open
oo (πN ,Σ)

≅
//WB×B

� �

open
// B ×B

B5
Uzero section

ZZ

( � diagonal

CC

Example 2.19 We may consider also the space met(M) of all Riemannian
metrics over a compact M , since the positively definite matrices is open in
the symmetric matrices.
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2.3.1 Immersions, embeddings, diffeomorphisms

Theorem 2.20 Let M be a compact manifold, and let N be a finite-
dimensional manifold with dim(M) ≤ dim(N).

1. The set Imm(M,N) of all smooth functions f ∈ C∞(M,N) whose dif-
ferential Txf ∶ TxM → Tf(x)N is injective at every point x ∈ M is an
open subset of the Fréchet manifold C∞(M,N).

2. The set Emb(M,N) of all immersions which are a homeomorphism
onto their range is an open subset of the Fréchet manifold Imm(M,N).

3. The set Diff(M) of all smooth mappings M →M with smooth inverse
coincides with the Fréchet manifold Emb(M,M) and is a Lie group,
i.e., inversion and composition are smooth.

Proof :

1. The set Imm(M,N) is open in C∞(M,N) because the manifold topol-
ogy of C∞(M,N) is finer than the topology of uniform convergence of
the first spatial derivative.

2. The manifold topology of C∞(M,N) coincides with the final topology
with respect to the set of all smooth curves. Thus, a set is open in
C∞(M,N) if and only if its pre-images under all smooth curves are
open. Let c ∶ R → Imm(M,N) be a smooth curve such that c0 ∶=
c(0) is an embedding. We have to show that then c(t) remains an
embedding for small t. Note that an injective immersion f ∶M → N is
a homeomorphism as a map M → f(M), since M is compact: Indeed,
let U ⊂ M be open, then U c is compact, hence f(U c) is compact and
in particular closed, hence f(U) = f(U c)c is open.

Thus, it is sufficient to prove that the mapping c(t) stays injective
for t near 0: Otherwise, there are tn → 0 and xn ≠ yn in M with
c(tn)(xn) = c(tn)(yn). Passing to subsequences we may assume that
xn → x and yn → y inM . Since c as a map R×M → N is also continuous,
we get c0(x) = c0(y), so x = y. The mapping (t, z) ↦ (t, c(t)(z))
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is a diffeomorphism near (0, x), since it is an immersion. But then
c(tn)(xn) ≠ c(tn)(yn) for large n, a contradiction.

3. The sets Diff(M) and Emb(M,M) coincide: M is the disjoint union of
its connected components Mi, which are compact manifolds. For any
f ∈ Emb(M,M), the set f(Mi) is open since f is a local diffeomorphism
and closed since Mi is compact. Thus, f(Mi) equals all of Mj for some
j. As f is injective, no two connected components are mapped into the
same connected component. As M has only finitely many connected
components, every connected component appears as the image of some
connected component. Thus, f is surjective. The inverse of f is smooth
by the inverse function theorem. Thus, f is a diffeomorphism.

Composition comp ∶ Diff(M)×Diff(M)→ Diff(M) is smooth: Consider
two smooth curves f, g ∶ R → Diff(M). Because of Proposition 2.15,
it is sufficient to prove that f ○ g ∶ R → Diff(M) is a smooth map. As
discussed in Corollary 2.17, we can identify f and g with smooth maps
f∧, g∧ ∶ R+×M →M . But then, by standard composition rule for finite-
dimensional manifolds, the map R ×M ∋ (t, x) ↦ f∧(t, g∧(t, x)) ∈M is
smooth. We can now do the same identification in the other direction,
and identify this map with a smooth map R ∋ t↦ f(t)○g(t) ∈ Diff(M).
Thus, the composition map is smooth along smooth curves. Therefore,
it is smooth.

Inversion inv ∶ Diff(M)→ Diff(M) is smooth: Consider a smooth curve
f ∶ R → Diff(M). Equivalently, by the exponential law of convenient
calculus, the map f∧ ∶ R ×M → M ∋ (t, x) ↦ f(t)(x) is smooth. Let
g ∶= inv ○f ∶ R→ Diff(M) be the inverse of f . Then y ∶= g∧(t, x) satisfies
the implicit equation f∧(t, y) − x = 0. Note that the left-hand side
has a non-degenerate ∂y-derivative because f∧(t, ⋅) is a diffeomorphism.
Therefore, the implicit function theorem (in finite dimensions!) implies
that y depends smoothly on (t, x), i.e., g∧ is smooth. Thus, by the
exponential law of convenient calculus, g is smooth. We have shown
that the inversion map is smooth along smooth curves. Therefore, it is
smooth.

n
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2.4 Weak and strong Riemannian metrics

Definition 2.21 (Weak and strong Riemannian metrics) A weak Riemannian
metric on a manifold M is a smooth map g ∶ TM ×M TM→ R such that gx
is an inner product on TxM for every x ∈M. The metric g is called strong
if the inner product gx induces the locally convex topology on TxM for every
x ∈M.

The following result shows the scarcity of strong Riemannian metrics in infi-
nite dimensions and thus motivates the study of weak Riemannian geometry.

Theorem 2.22 (Strong Riemannian metrics) Let g be a weak Riemannian met-
ric on a manifold M. Then the following are equivalent:

1. g is a strong Riemannian metric on M.

2. M is a Hilbert manifold and g∨ ∶ TM→ T ∗M is surjective.

3. M is a Hilbert manifold and g∨ ∶ TM → T ∗M is a vector bundle
isomorphism.

Proof : (1) ⇒ (2). Fix a point x ∈M. By assumption, the locally convex
topology of TxM is normable by ∥ ⋅ ∥gx . This norm is complete since TxM is
a Fréchet space. Thus, (TxM, gx) is a Hilbert space. This implies thatM is
a Hilbert manifold because M is locally diffeomorphic to TxM, as is easily
seen in a chart (Proposition 2.14). Moreover, g∨ ∶ TM → T ∗M is surjective
by the Riesz representation theorem.

(2) ⇒ (3) follows from the open mapping theorem.

(3) ⇒ (1). Fix a point x ∈M and define U ∶= {u ∈ TxM ∶ ∥u∥gx < 1}. Then
U is absolutely convex (convex and balanced). As g∨x is surjective, every
bounded linear functional ϕ ∈ T ∗

xM is of the form ϕ(u) = gx(u, v) for some
v ∈ TxM. Every such functional is bounded on U because supu∈U ∣ϕ(u)∣ =
∣g(v, u)∣ ≤ ∥v∥g. A weakly-bounded set in a locally convex t.v.s. is bounded
(see [KM97, 52.19]), hence U is bounded in TxM. Since gx is smooth, it is in
particular continuous; thus the norm ∥ ⋅∥gx is continuous, and consequently U
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is open in TxM. Now U is an absolutely convex and bounded 0-neighborhood
in TxM, and is thus TxM is normable, with µU(v) ∶= inf{t > 0 ∶ v ∈ tU} a
norm on TxM. As µU = ∥ ⋅ ∥gx , the topology induced by g coincides with
the topology of TxM. This holds for all x ∈M, and therefore g is a strong
Riemannian metric. n

2.4.1 Geodesic equation and the Christoffel symbol

In this section we discuss the geodesic equation of a Riemannian manifold
(M, g). Recall that we can define the geodesic in two different ways:

• As a curve c ∶ [0,1]→M which is of zero acceleration:

∇ċċ = 0. (2.1)

For this we need to define the Levi-Civita connection of the metric,
that is, an operator X×X→ X that satisfies the connection axioms, as
well as being symmetric and compatible with the metric g.

• As a critical point of the (kinetic) energy,

E(c) ∶=
1

2 ∫
1

0
gc(ċ, ċ)dt, (2.2)

with fixed endpoints at times t = 0 and t = 1.

Much of the theory in this case is similar to the theory in finite dimensions,
with a big caveat: For weak Riemannian metrics, the Levi-Civita connec-
tion may fail to exist. The easiest way to see it is in coordinate charts
— recall that if M is a finite dimensional manifold, then we have that the
Levi-Civita connection can be defined by

∇∂i∂j = Γkij∂k, Γkij =
1

2
gkm(∂igjm + ∂jgim − ∂mgij).

The problem lies in multiplication with gkm, which is basically using the
isomorphism TM → TM induced by the metric. However, this isomorphism
does not exist in general for weak Riemannian metrics. Nevertheless, for a
lot of Riemannian metrics the Christoffel symbols, and thus the Levi-Civita
connection, do exist.
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Let us begin by seeing how the Christoffel symbols are defined for infinite-
dimensional manifolds. Christoffel symbols, are, as usual, not intrinsic ob-
jects; they ”live” in a coordinate system, and as such, we will define them
on charts, that is, on manifolds that are open subsets of Fréchet spaces.

Definition 2.23 (Christoffel symbol) Let M be an open subset of a Fréchet
space F , endowed with a weak Riemannian metric g. Then the Christoffel
symbol, provided it exists, is defined as the unique map Γ ∶M × F × F → F
such that

gx(Γx(u, v),w) =
1

2
(Dx,ug)(v,w) +

1

2
(Dx,vg)(u,w) −

1

2
(Dx,wg)(u, v)

holds for all x ∈ M and u, v,w ∈ F , where Dx,u is the directional derivative
at x in the direction u.

The Christoffel symbol is defined precisely to make the following theorem
work.

Theorem 2.24 (Geodesic equation) Let x, y be points in an open connected sub-
set M of a Fréchet space. Then the kinetic energy E is a smooth func-
tion on the path space C∞

x,y([0,1],M), and its derivative satisfies for any
m ∈ TcC∞

x,y([0,1],M) that

dE(c).m = ∫
1

0
( − gc(ctt,m) − (Dc,ctg)(ct,m) +

1

2
(Dc,mg)(ct, ct))dt,

where ct = ∂tc and ctt = ∂2
t c. If the Christoffel symbol Γ exists, this can be

rewritten as

dE(c).m = ∫
1

0
gc(−ctt − Γc(ct, ct),m)dt.

Thus, in this case the first-order optimality condition dE(c) = 0 is equivalent
to the geodesic equation

ctt + Γc(ct, ct) = 0. (2.3)

Here C∞
x,y([0,1],M) is the space of all smooth curves c with c(0) = x and

c(1) = y. It is a manifold with TcC∞
x,y([0,1],M) being the subspace of the

vector fields C∞(c∗TM) that vanish at t = 0,1.
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In other words, the theorem states that if the Christoffel symbol does not
exist, the geodesic equation exists only in a weak form.

Proof : By the “kinetic” interpretation of tangent vectors as equivalence re-
lations of curves, the derivative of E can be computed along a variational
family c ∶ R→ C∞

x,y([0,1],M), where c(0) corresponds to the given curve and
c′(0) to the tangent vector m in the statement of the theorem. As discussed
Corollary 2.17(2), we can identify this variational family with a smooth func-
tion c ∶ R × [0,1] → M subject to the boundary conditions c(⋅,0) = x and
c(⋅,1) = y. Then

∂s∣0E(c(s, )) =
1

2
∂s∣0∫

1

0
gc(ct, ct)dt = ∫

1

0
(1

2(Dc,csg)(ct, ct) + gc(cst, ct))dt

= ∫
1

0
(1

2(Dc,csg)(ct, ct) − (Dc,ctg)(cs, ct) − gc(cs, ctt))dt

= ∫
1

0
gc(cs,−ctt − Γc(ct, ct))dt,

where the step from the first to the second line uses integration by parts with
respect to t, and the step from the second to the third line uses the definition
of the Christoffel symbol, provided it exists. n

Lemma 2.25 (Existence of the Christoffel symbol) Let M be an open subset of
a Fréchet space, endowed with a Riemannian metric g.

1. If g is a weak Riemannian metric then the Christoffel symbol is unique
but may fail to exist.

2. If g is a strong Riemannian metric, then the Christoffel symbol exists.

Proof : Uniqueness of the Christoffel symbol is guaranteed by the injectivity
of the metric g∨x ∶ TxM → T ∗

xM . Existence of the Christoffel symbol may fail
for weak Riemannian metrics due to the non-surjectivity of g∨x ; see Exam-
ple 2.26. This cannot happen for strong Riemannian metrics, where the map
g∨x is invertible. n
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Example 2.26 (Non-existence of the Christoffel symbol) For any sequence m ∶
N → (0,∞) with limi→∞mi = 0, the Christoffel symbol of the following weak
Riemannian metric on `2 does not exist:

gx(u, v) ∶= e
− 1

2
∥x∥2

`2 ⟨u, v⟩`2m ∶= e−
1
2
∥x∥2

`2 ∑
i

miuivi, x ∈ `2, u, v ∈ Tx`
2 = `2.

To see this, note that the directional derivative of the metric with respect to
the foot point is given by

Dx,wgx(u, v) = −⟨x,w⟩`2 gx(u, v) = −⟨u, v⟩`2m gx(m
−1x,w),

provided that the element-wise product m−1x belongs to `2. Thus, the
Christoffel symbol, if it exists, satisfies

gx(Γx(u, v),w) =
1

2
(Dx,ug)(v,w)

1

2
(Dx,vg)(u,w) −

1

2
(Dx,wg)(u, v),

Γx(u, v) = −
1

2
⟨x,u⟩`2 v −

1

2
⟨x, v⟩`2 u +

1

2
⟨u, v⟩`2m m−1x.

Thus, at any point x ∈ `2 such that m−1x is not square integrable, the right-
hand side above does not belong to `2, and consequently the Christoffel
symbol does not exist. However, the Christoffel symbol does exist if the
same metric is considered on the subspace of rapidly decreasing sequences,
provided that m has polynomial decay. Similarly, as shall be seen later on,
the Christoffel symbol of Sobolev metrics of order < 1/2 on groups of non-
smooth diffeomorphisms fails to exist, whereas it exists on groups of smooth
diffeomorphisms.

Example 2.27 Consider the right-invariant L2 metric on Diff(S1): For u, v ∈
Tϕ Diff(S1),

gϕ(u, v) = ∫
S1
u ○ ϕ−1v ○ ϕ−1 dx = ∫

S1
uvϕx dx,

where we identify S1 with the interval [0,1] so that Tϕ Diff(S1) ≅ C∞(S1).
This is obviously a weak metric. This identification induced a coordinate
system on Diff(S1), in which we calculate the Christoffel symbol and show
it exists:

(Dϕ,ug)(v,w) = lim
s→0

1

s
(∫

S1
vw(ϕ + su)x dx − ∫

S1
vwϕx dx) = ∫

S1
vwux dx
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and thus

gϕ(Γϕ(u, v),w) =
1

2 ∫S1
(vwux+uwvx−uvwx)dx = ∫

S1
(vux+uvx)wdx = gϕ (

vux + uvx
ϕx

,w)

hence
Γϕ(u, v) =

vux + uvx
ϕx

.

This tells us that the Christoffel symbol exists on Diff(S1), but also that it

does not exist in DiffH
k

(S1) for any k, since if u, v,ϕ ∈ Hk, then Γϕ(u, v) is
only in Hk−1. The geodesic equation is given by

ϕtt + 2
ϕtx
ϕx

ϕt = 0.

In Eulerian coordinates, using

ϕt = u ○ ϕ, ϕtx = ux ○ ϕϕx, ϕtt = ut ○ ϕ + ux ○ ϕϕt,

we obtain
ut + 3uux = 0,

the Burgers’ equation.

Example 2.28 (Geodesic equations of right-invariant metrics on Lie groups) The
previous example is a special case of right-invariant metrics on Lie groups:8

Let G be a Lie group, with a Lie algebra g. We then have that TgG ∼ gg.
Given an inner product ⟨ , ⟩ on g, we obtain a smooth right-invariant met-
ric on G by

⟨ξ, η⟩g ∶= ⟨ξ ○ g−1, η ○ g−1⟩ .

For u ∈ G, denote by adu ∶ g → g the adjoint operator adu(v) ∶= [u, v]. We
then have that the geodesic equation, in a weak form, is

∫
1

0
⟨ut, v⟩ + ⟨u,adu(v)⟩ dt = 0 ∀v ∈ C∞

0 ((0,1);g)

for every u(t) = gt(t)g(t)−1 is the velocity. If the adjoint operator has a
well defined adjoint relative to ⟨ , ⟩ is well-defined, that is, if ⟨adu v,w⟩ =
⟨v,adTu w⟩, we obtain the strong form

ut + adTu u = 0. (2.4)

8The presentation below borrows from [Kol17, §1]. See also [KW09, §I.4.3]
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This equation was first introduced by Arnold in [Arn66] (for left-invariant
metrics, but this is the same up to a sign). This equation has an integral
version, known as conservation of momemtum:

AdTg(t) u(t) = u0,

where Adg ∶ g→ g is defined by Adg ∶= TLg ○ TRg−1 .

Let us obtain (2.4), assuming that adT exists: Let g(0, t) be a geodesic, and
let g(s, t) be a variation of it, with gs(0, t)g−1(0, t) = v, gtg−1 = u. We then
have

1

2

d

ds
∣
s=0
∫

1

0
⟨gtg

−1, gtg
−1⟩ dt = ∫

1

0
⟨(gtg

−1)s, gtg
−1⟩ dt

= ∫
1

0
⟨(gsg

−1)t + [gsg
−1, gtg

−1], gtg
−1⟩ dt

= ∫
1

0
− ⟨gsg

−1, (gtg
−1)t⟩ + ⟨[gsg

−1, gtg
−1], gtg

−1⟩ dt

= ∫
1

0
− ⟨v, ut⟩ + ⟨[v, u], u⟩ dt = −∫

1

0
⟨v, ut⟩ + ⟨adu v, u⟩ dt

= −∫
1

0
⟨v, ut + adTu u⟩ dt.

In the transition to the second line we used the fact that

(gtg
−1)s − (gsg

−1)t = [gsg
−1, gtg

−1].

For matrix Lie groups, this follows from the fact that (g−1)t = −g−1gtg−1 and
similarly for the s derivative, and the fact that gts = gst. For genera Lie
groups this is more complicated, see [BKMR96, Proposition 5.1]

Note that the existence of adTu is different, and is not implied by the existence
of the Christoffel symbol (or the Levi-Civita connection, see below). In fact,
in most of the cases that will interest us, it rarely exists. For example, in the
case of G = Diff(S1), we have g = X(S1) and thus [u, v] = uvx − vux. For the
L2 metric, we have

⟨w, [u, v]⟩ = ∫
S1
w(uvx−vux)dx = ∫

S1
(−(wu)x−wux)v dx = ∫

S1
(−wxu−2wux)v dx,

and thus adTu (w) = −wxu−2wux, and indeed we retrieve the Burgers equation
(There is a sign error somewhere here). On the other hand, for the right-
invariant H1-metric

⟨u, v⟩ ∶= ∫
S1
uv + uxvx dx,
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we have

⟨u, [u, v]⟩ = ∫
S1
u(uvx − vux) + ux(uvx − vux)x dx

and it is not so trivial how to write this as ∫S1 f(u)v + f(u)xvx dx for some
function f(u) (though it is possible, as we will later see, see (4.7) and the foot-
note that follows). Nevertheless, we will see later in § 4.3 that the Christoffel
symbol exists and can be calculated in this case (also for finite smoothness,
in which adTu u does not exist).

We now define the Levi-Civita connection using the Christoffel symbol. Al-
ternatively, it can be defined as a symmetric, metrically-compatible connec-
tion, showing that if it exists, than it is unique (using the Koszul formula).

Definition 2.29 Let (M, g) be a Riemannian manifold such that the Christof-
fel symbol Γα exists in every chart (Uα, uα) of some smooth atlas. Then, the
Levi-Civita covariant derivative ∇XY ∈ X(M) of Y ∈ X(M) in the
direction of X ∈ X(M) is defined as9

∇XY (x) = (x,dȲ (x).X̄(x) + Γx(Ȳ (x), X̄(x))),

where X(x) = (x, X̄(x)) and Y (x) = (x, Ȳ (x)) for any x ∈M .

. Exercise 2.1 Verify that ∇XY is indeed a vector field (i.e., that it does
not depend on the chart), and that the geodesic equation is indeed given by
(2.1).

2.4.2 Exponential map

Recall that a vector field on a manifoldM is a section of the tangent bundle
TM.

Definition 2.30 (Integral curves and local flows) Let X be a vector field on a
manifold M. An integral curve of X is a smooth curve c ∶ J →M defined
on an interval J ⊆ R such that c′(t) = X(c(t)) holds for all t ∈ R. A local
flow of X is a smooth mapping FlX ∶M × R ⊇ U →M defined on an open
neighborhood U of M × {0} such that

9∇XY can also be defined via the connector K ∶ TTM → TM , defined locally by
K(x,h;k, `) ∶= (x, ` − Γx(k, h)).
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1. U ∩ ({x} ×R) is a connected open interval.

2. If FlXs (x) exists then FlXt+s(x) exists if and only if FlXt (FlXs (x)) exists,
and we have equality.

3. FlX0 (x) = x for all x ∈M.

4. d
dt FlXt (x) =X(FlXt (x)).

In formulas similar to (4) we will often omit the point x for sake of brevity,
without signalizing some differentiation in a space of mappings. The fol-
lowing lemma summarizes some existence and uniqueness properties of local
flows: while existence may fail beyond Banach manifolds, uniqueness is a
consequence of the flow property.

Lemma 2.31 (Existence and uniqueness) Let X be a vector field on a manifold
M. IfM is a Banach manifold, then X has a local flow, and if X is smooth,
so is the flow. If X has a local flow, then every integral curve c of X satisfies
c(t) = FlXt (c(0)) as long as both sides are well-defined. Thus, in this case
there exists a unique maximal flow. Furthermore, X is FlXt -related to itself,
i.e., T (FlXt ) ○X =X ○ FlXt .

Proof : Existence of a local flow on Banach manifolds, and its smoothness,
can be verified in charts using the Picard–Lindelöf theorem, and the standard
argument for continuous dependence (used iteratively on derivatives of the
ODE) on initial conditions using Grönwall’s inequality.10 Uniqueness follows
from the computation

d
dt FlX(−t, c(t)) = − d

ds ∣s=−t FlX(s, c(t)) + d
ds ∣s=t FlX(−t, c(s))

= − d
ds ∣s=0 FlX−t FlX(s, c(t)) + T (FlX−t).c

′(t)

= −T (FlX−t).X(c(t)) + T (FlX−t).X(c(t)) = 0,

which implies that FlX−t(c(t)) = c(0) is constant, and therefore c(t) = FlXt (c(0)).
The last assertion follows fromX○FlXt = d

dt FlXt = d
ds ∣s=0 FlXt+s =

d
ds ∣s=0(FlXt ○FlXs ) =

T (FlXt )○ d
ds ∣s=0 FlXs = T (FlXt )○X, where we omit the point x ∈M for the sake

of brevity. n

10For more details see [Lan99, IV], in particular theorems 1.11 and 1.16.
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The geodesic spray is an object, related to the connection and the Christof-
fel symbols, that enables us to define the geodesic equations as a flow. Gen-
erally, spray on M is a vector field on TM satisfying

TπM ○ S = IdTM

and
S ○mMt = T (mMt ).mTM

t .S,

where mNt ∶ TN → TN is the scalar multiplication by t. In local coordinates,
a spray is of the form

S(x,h) ∶= S(x,h) ∶= (x,h;h, Γ̄x(h)),

where Γ̄ is quadratic in h (see [Mic20, Section 5.9]).

Definition 2.32 Let (M, g) be a Riemannian manifold such that the Christof-
fel symbol Γα exists in every chart (Uα, uα) of some smooth atlas. Then, the
geodesic spray, the vector field S on TM defined by

S(x,h) ∶= (x,h;h,−Γx(h,h)).

. Exercise 2.2 Show that S is indeed a spray (in particular, that it is in-
variant under coordinate changes and thus a vector field.

Assume that (M, g) admits a geodesic spray (equiv., Christoffel symbols/Levi-
Civita connection), and that the flow of the spray exists. Let x ∈ M and
v ∈ TxM. Then, FlSt (x, v) = (c(t), ct(t)), where c is a solution to the geodesic
equation with initial data (x, v). Indeed, denote γ(t) = FlSt (x, v), where
γ(t) = (x(t), h(t)), then

(x,h, xt, ht) = γt = S(γ) = (x,h, h,−Γx(h,h)),

hence xtt + Γx(xt, xt) = 0.

Definition 2.33 (Geodesic exponential map) The exponential map of a spray
S is defined as

exp(X) ∶= πM(FlS1 (X)),

for all X ∈ TM such that the flow FlS1 (X) of the spray exists. The geodesic
exponential map is the exponential map of the geodesic spray on a Rieman-
nian manifold.
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Theorem 2.34 (Geodesic exponential map) Let (M, g) be a Riemannian man-
ifold. If M is a Banach manifold and the spray exists and is smooth, then
the exponential map is well-defined on a neighborhood U of the zero section
in TM, which may be chosen such that (πM, exp) ∶ U →M ×M is a diffeo-
morphism onto its range. In particular, this is always true for strong metrics
on Hilbert manifolds.

Proof : Assume the geodesic spray is a smooth vector field on the Banach
manifold TM. Thus, it has a local flow defined on some open set V ⊆ TM×R
by Lemma 2.31. This local flow satisfies

εFlSεt(X) = FlSt (εX), ε, t ∈ R, X ∈ TM,

whenever either side exists, thanks to the uniqueness of local flows and the
following computation:

∂
∂tεFlSεt(X) = ∂

∂tm
M
ε FlSεt(X) = T (mMε ) ∂∂t FlSεt(X)

= T (mMε )mTM
ε S(FlSεt(X)) = S(mMε FlSεt(X)) = S(εFlSεt(X)),

where the second to last equality follows from the quadratic structure of
sprays (recall that mNε ∶ TN → TN is the scalar multiplication by ε). In
particular, the open set U = π1(V ∩TM× {1}), on which exp is defined, is a
non-empty open set that contains the zero section of TM.

Note that for expx ∶= exp ∣π−1M{x}∩U , the differential at 0x is the identity: in-
deed, for X ∈ TxM, we have

d
dt ∣t=0πM(FlS1 (tX)) = d

dt ∣t=0πM(tFlSt (X)) = d
dt ∣t=0πM(FlSt (X))

= T (πM).S(FlS0 (X)) = T (πM).S(X) =X.

where we used the properties of the spray described above. It follows that
(T expx)0 = IdTxM. Thus, since (πM, exp)(x,X) = (x, expx(X)), it follows
that (T (πM, exp))0x is invertible, hence (πM, exp) is locally a diffeomorphism
near 0x for every x, by the inverse function theorem (for Banach spaces), and
thus a diffeomorphism onto its image for a sufficiently small neighborhood of
the zero section. [Lan99, VIII Proposition 5.1]

For strong metrics on Hilbert manifolds, the geodesic spray is automatically
a smooth vector field by Lemma 2.25. n
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We will later see that for the right-invariant L2 metric on Diff(S1), the spray
is smooth, however the exponential map fails to be even a C1 diffeomorphism
on any neighborhood of the zero section. [CK02, Theorem 3]

Example 2.35 Let M be a compact manifold, with a volume form µ, and let
(N,g) be a finite dimension Riemannian manifold. Define the (non-invariant)
L2 metric on C∞(M,N) by

Gf(u, v) = ∫
M
gf(x)(u(x), v(x))µ(x), f ∈ C∞(M,N), u, v ∈ Γ(f∗TN).

(2.5)
For simplicity, let us assume that N can be covered by a single chart, that
is, N ⊂ Rn, and let γ ∶ N × Rn × Rn → Rn be the Christoffel symbol of g in
this chart. We can identify f ∈ C∞(M,N) with f ∶M → Rn, and similarly, a
tangent vector u ∈ TfC∞(M,N) is identified with a function u ∶M → Rn via
u = [f + tu]. We then have

(Df,wG)(u, v) =
d

dt
∣
t=0
∫
M
gij(f(x) + tw(x))ui(x)vj(x)µ(x)

= ∫
M
∂kgij(f(x))u

i(x)vj(x)µ(x),

from which a direct calculation shows that the Christoffel symbol of G, which
we denote by Γ ∶ C∞(M,N) × C∞(M,Rn) × C∞(M,Rn) → C∞(M,Rn), is
given by

Γf(u, v)
i(x)

=
1

2
gim(f(x)) [∂kgjm(f(x)) + ∂jgkm(f(x)) − ∂kgjm(f(x))]uj(x)vk(x)

= γijk(f(x))u
j(x)vk(x) = γif(x)(u(x), v(x)),

which we can simply write as Γ(u, v) = γ ○ (u, v). In particular, since γ is
smooth, we obtain that Γ is smooth. Therefore, we have that the geodesic
equation is

0 = ctt(x) + Γc(ct, ct)(x) = ctt(x) + γc(x)(ct(x), ct(x)).

In other words, for every x, we obtain that c(⋅, x) ∶ R → N is a geodesic
in (N,g) — each particle evolves as a free particle along a geodesic in N .
These results continue to hold even if N is not a subset of Rn (see [Bru18],
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where the derivation is somewhat different; see also [EM70, Theorem 9.1,
Corollary 9.3]); namely, the geodesic spray is given by

S(u) = σ ○ u u ∈ Γ(f∗TN),

where σ ∈ X(TN) is the geodesic spray of N , and the exponential map EXP
of C∞(M,N) is given by

EXP(u) = exp ○u, u ∈ Γ(f∗TN),

that is, EXPf(u)(x) = expf(x)(u(x)) for every x ∈ M . In particular, we
obtain that if N is geodesically complete, so is C∞(M,N).

Finally, note that EXPf ∶ TfC∞(M,N) → C∞(M,N) is a local diffeomor-
phism onto its image; indeed, it is the inverse of the coordinate charts that we
defined! Therefore (π,EXP) ∶ U ⊂ TC∞(M,N)→ C∞(M,N) ×C∞(M,N) is
a diffeomorphism onto its range.

. Exercise 2.3 In the above example, calculate the geodesic equation using
the energy.

. Exercise 2.4 Show that for the case N = M = S1, if we restrict the met-
ric to the diffeomorphism group Diff(S1) ⊂ C∞(S1, S1), then the geodesic
equation can be written in Eulerian coordinates u ∈ X(S1) ≅ C∞(S1), where
ϕt(x, t) = u(t, ϕ(t, x)), as Burgers’ equation

ut + uux = 0,

Show that the Diff(S1) with this metric is not geodesically complete.

2.4.3 Geodesic distance

Definition 2.36 (Geodesic distance) Let (M, g) be a Fréchet Riemannian man-
ifold. The Riemannian metric induces a pseudo distance on the manifold,
called the geodesic distance:

distg(x, y) = inf
c∈C∞

x,y([0,1],M)
Len(c),

where the Riemannian length of a path c is defined as

Len(c) = ∫
1

0

√
gc(t)(ċ(t), ċ(t))dt.
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The length and kinetic energy of a curve c are related by the Cauchy–Schwarz
inequality Len(c) ≤ 2E(c)1/2 with equality for constant-speed curves. As
any curve can be reparameterized to constant speed, it follows that length-
minimization is equivalent to energy-minimization.

On finite-dimensional manifolds, the geodesic distance separates points and
induces the manifold topology. The situation is similar for strong Riemannian
metrics on infinite-dimensional manifolds. However, for weak Riemannian
metrics, a surprising degeneracy can appear:

Theorem 2.37 (Geodesic distance) Let (M, g) be a Riemannian manifold.

1. If g is a strong Riemannian metric, then the geodesic distance separates
points and induces the original manifold topology.

2. If g is merely a weak Riemannian metric, then the geodesic distance
may fail to separate points or even vanish completely. In particular, the
manifold topology may differ from the topology induced by the geodesic
distance.

Proof :

1. We follow the presentation in [Lan99, Proposition VII.6.1]. Let x0 ≠
y0 ∈ M, and U be a chart at x0. We can thus identify U with an
open set in a Hilbert space H. let ∥ ⋅ ∥ and ⟨⋅, ⋅⟩ be the Hilbert norm
and inner product on H. For sufficiently small r > 0, the closed ball
B̄r(x0, r) with respect to ∥ ⋅ ∥ does not contain the point y. As the
Riemannian metric g is strong, the inner product gx depends smoothly
and thus continuously on the foot point x. Thus, one may choose r > 0
even smaller to ensure that there exists a constant C > 0 such that

gx(u,u) ≥ C
2∥u∥2, x ∈ B̄r(x0, r), u ∈ TxM.

Indeed, since g is strong, we have that

gx(u, v) = ⟨(u,A(x)v),
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where A(x) ∶ H → H is a positive definite, invertible symmetric op-
erator. In particular, we have that gx0(u,u) ≥ C

2
0∥u∥

2. Since the de-
pendence x ↦ A(x) is continuous, we have that for r small enough,
∥A(x) −A(x0)∥ <

1
2C

2
0 . The result then follows with C2 = 1

2C
2
0 .

We will show that this implies that distg(x0, y0) ≥ Cr. As the point y
lies outside of the ball B̄r(x0, r), any path c that connects x to y has to
cross the boundary ∂B̄r(x0, r). Let t0 be the first time where the curve
c crosses the boundary, i.e., c(t) ∈ B̄r(x0, r) for t ≤ t0. In the chart
centered at x0 one has c(t0) = ru for some unit vector u with respect
to ∥ ⋅ ∥. Now we decompose the path c as c(t) = s(t)u + w(t), where
⟨w(t), u⟩ = 0. Then s(0) = 0, s(t0) = r, and

Len(c) = ∫
1

0

√
gc(ċ, ċ)dt ≥ ∫

t0

0

√
gc(ċ, ċ)dt ≥ C ∫

t0

0

√
⟨ċ, ċ⟩dt

≥ C ∫
t0

0

√
⟨ṡu, ṡu⟩dt = C ∫

t0

0
∣ṡ∣dt ≥ Cr.

Thus, distg(x0, y0) ≥ Cr. This calculation shows that distg separates
points and that every set which is open in a manifold chart contains a
metric ball. Conversely, one easily sees that every metric ball contains
some set which is open in a manifold chart. Thus, the manifold and
metric topologies (induced by distg) coincide.

2. A weak Riemannian metric with vanishing geodesic distance on the
space `2 is constructed below in Example 2.38. Further examples on
spaces of diffeomorphisms, symplectomorphisms, and immersions are
discussed later on.

n

Example 2.38 (Vanishing geodesic distance) The following example of a Rie-
mannian manifold with vanishing geodesic distance is adapted from [MT20].
We consider the same weak Riemannian manifold as in Example 2.26. Namely,
for a sequence m ∶ N→ (0,∞) with limi→∞mi = 0, we consider the weak Rie-
mannian metric on `2 given by:

gx(u, v) ∶= e
− 1

2
∥x∥2

`2 ⟨u, v⟩`2m ∶= e−
1
2
∥x∥2

`2 ∑
i

miuivi, x ∈ `2, u, v ∈ Tx`
2 = `2.
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Let {en}∞n=1 denote the basis of canonical unit vectors in `2, and let x and
y be two arbitrary elements of `2. We aim to construct paths of arbitrarily
short length which connect x to y. Therefore, let for t ∈ [0,1]

c1(t) = x + tm
−1/4
n en, c2(t) = x +m

−1/4
n en + t(y − x), c3(t) = y + (1 − t)m

−1/4
n en.

Note that the concatenation of these three paths connects x to y. The ve-
locities of these linear paths are

ċ1(t) =m
−1/4
n en, ċ2(t) = (y − x), ċ3(t) = −m

−1/4
n en.

The curve segments c1 and c3 are arbitrarily short for large n because

Len(c1) = ∫
1

0
e−

1
4
∥c1(t)∥2

`2∥m
−1/4
n en∥`2mdt ≤ ∫

1

0
∥m

1/4
n en∥`2dt = ∥m

1/4
n en∥`2 =m

1/4
n ,

with a similar estimate for c3, where we used in the last step that en has
unit length in `2. The curve segment c2 is also arbitrarily short for large n
because the `2 norm is large along c2,

∥c2(t)∥
2
`2 ≥m

−1/2
n −2m

−1/4
n (∥x∥`2+∥y−x∥`2) =m

−1/4
n (m

−1/4
n −2(∥x∥`2+∥y−x∥`2))

leading to the following upper bound on the length of c2:

Len(c2) = ∫
1

0
e−

1
4
∥c2(t)∥2

`2∥y − x∥`2mdt ≤ e−
1
4
m
−1/4
n (m−1/4

n −2(∥x∥`2+∥y−x∥`2))∥y − x∥`2m .

Thus, the geodesic distance between any two points x and y is zero.

Note that in this example we do not have a geodesic spray (see Example 2.26).
However, we can restrict ourselves to rapidly decreasing sequences, and as-
sume that m has a polynomial decay, and then we have a smooth spray and
thus a smooth exponential map, and still, the geodesic distance still collapses,
with the same construction.

The above example shows for weak Riemannian manifolds that the manifold
topology may differ from the (trivial) metric topology. The following lemma
is a partial converse to this statement.

Proposition 2.39 (Manifold versus metric topology) Let (M, g) be a Rieman-
nian manifold. If the exponential map at every point x ∈M is a local dif-
feomorphism and the geodesic distance induces the manifold topology on M,
then g is already a strong Riemannian metric.
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Proof : Assume for contradiction that g is merely a weak Riemannian metric.
Then there exists a point x ∈M and a sequence hn ∈ TxM such that ∥hn∥gx →
0, but hn does not converge to zero in TxM with respect to the original
topology on TxM. Let xn ∶= expx(hn). Since expx is a local diffeomorphism
and hn ↛ 0 with respect to the original topology, then xn ↛ x in the manifold
topology on M. On the other hand, distg(xn, x) = ∥hn∥gx → 0. n

Finally, we note that for strong Riemannian metrics, as for finite dimensional
Riemannian manifolds, there exist normal neighborhoods, around points,
in which geodesics are length minimizing. In particular, we obtain local
existence of minimal geodesic for strong metrics. See [Lan99, VIII,
§6] for details.

2.4.4 Curvature

Lemma 2.40 (Lie bracket) For any vector fields X and Y on a manifold M,
there exists a unique vector field [X,Y ] on M , which is called the Lie bracket
of X and Y , such that

[X,Y ]f =XY f − Y Xf, f ∈ C∞(M),

where Xf ∈ C∞(M) is defined by Xf(x) = df(x).X(x) for all x ∈M.

Recall that we can think of vector fields as equivalence classes of curves in
the manifolds, and thus as derivations. The lemma above and its proof below
use this identification in both directions. For more details, see [Lan99, V,
§1].

Proof : In finite dimensions the derivation f ↦XY f(x)−Y Xf(x) automat-
ically corresponds to a tangent vector at x. In infinite dimensions this can
be verified in local coordinates as follows. Temporarily assume M to be an
open subset of a Fréchet space F , and write X = (IdM, X̄) and Y = (IdM, Ȳ )
using the identification TM ≅M × F . Then the vector field given by

[X,Y ](x) ∶= (x,dȲ (x).X̄(x) − dX̄(x).Ȳ (x)) ∈ TxM, x ∈M,

has the desired property that [X,Y ]f =XY f −Y Xf . Moreover, it is invari-
ant under coordinate changes, i.e., if ϕ ∶M → N is a diffeomorphism to an
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open subset N of a convenient space and y ∶= ϕ(x), then some cancellations
of dϕ and dϕ−1 imply that

[ϕ∗X,ϕ∗Y ](y) = [Tϕ ○X ○ ϕ−1, Tϕ ○ Y ○ ϕ−1](y)

= (y,dϕ(x).dȲ (x).X̄(x) − dϕ(x).dX̄(x).Ȳ (x)) = (ϕ∗[X,Y ])(y).

Therefore, the above formula for [X,Y ] is the coordinate expression of a
unique vector field on the given manifold M. n

Lemma 2.41 (Riemann curvature) On any manifoldM with covariant deriva-
tive ∇, there exists a unique (1

3
)-tensor field R, which is called the curvature

of ∇, such that for any vector fields X, Y , and Z,

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Proof : We need to show that R is tensorial, i.e., R(X,Y )Z ∣x depends on the
vector fields X, Y , and Z only through their values at the point x. This is
essentially the same proof as in finite dimensions: Temporarily assume M
to be an open subset of a Fréchet space F , identify TM with M × F , and
choose arbitrary “constant” vector fields X(x) = (x, X̄), Y (x) = (x, Ȳ ), and
Z(x) = (x, Z̄) with X̄, Ȳ , and Z̄ in F (in finite dimensions we would have
taken the coordinate vector fields X(x) = ∂i etc.). Then [X,Y ] = 0, and the
coordinate expression of the covariant derivative in Lemma ?? shows that
R(X,Y )Z ∣x = (x, R̄x(X̄, Ȳ )Z̄), where

R̄x(X̄, Ȳ )(Z̄) = ∇X∇YZ ∣x −∇Y∇XZ ∣x − 0

= ∇X(−Γ(Ȳ , Z̄))∣x −∇Y (−Γ(X̄, Z̄))∣x

= −dΓx(X̄)(Ȳ , Z̄) + Γx(Γx(Ȳ , Z̄), X̄) + dΓx(Ȳ )(X̄, Z̄) − Γx(Γx(X̄, Z̄), Ȳ ).

Clearly, the right-hand side is tensorial in X, Y , and Z. n

Theorem 2.42 (Boundedness of the curvature tensor) Let (M, g) be a Rie-
mannian manifold.

1. If g is a strong Riemannian metric, then the curvature is locally bounded
in g-norm.
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2. If g is a weak Riemannian metric admitting a covariant derivative, then
the curvature may be unbounded in g-norm not only locally but also as
a multilinear operator on the tangent space at a single point.

Proof :

1. As g is strong,M is a Hilbert manifold, and the curvature is a smooth
section of the bundle of (1

3
)-tensors overM. In particular, it is continu-

ous and locally bounded, in the sense that for every x ∈M, there exists
a constant C > 0 and a neighborhood U of x such that ∥R(X,Y )Z∥g ≤ C
whenever the g-norm of X,Y,Z ∈ TU is bounded by 1.

2. See Example 2.43 below.

n

Example 2.43 (Unbounded curvature) We restrict the Riemannian metric of
Example 2.26 to the space s of rapidly decreasing sequences. Thus, for some
fixed sequence m ∶ N→ (0,∞) with a polynomial decay, we consider the weak
Riemannian metric g on s given by

gx(u, v) ∶= e
− 1

2
∥x∥2

`2 ⟨u, v⟩`2m ∶= e−
1
2
∥x∥2

`2 ∑
i

miuivi, x ∈ s, u, v ∈ Txs = s.

By Example 2.26 the Christoffel symbol of this metric exists and is given by

Γx(u, v) =
1

2
⟨x,u⟩`2 v +

1

2
⟨x, v⟩`2 u −

1

2
⟨u, v⟩`2m m−1x.

Accordingly, the derivative of the Christoffel symbol satisfies

dΓx(u)(v,w) =
1

2
⟨u, v⟩`2w +

1

2
⟨u,w⟩`2v −

1

2
⟨v,w⟩`2mm

−1u.

By the coordinate expression for the curvature in the proof of Lemma 2.41,
the curvature at x = 0 satisfies

g0(R0(u, v)v, u) = −g0(dΓ0(u)(v, v), u) + g0(dΓ0(v)(u, v), u)

= −⟨u, v⟩`2⟨v, u⟩`2m +
1

2
⟨v, v⟩`2m⟨u,u⟩`2 +

1

2
⟨v, v⟩`2⟨u,u⟩`2m .
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In particular, for i ≠ j, the multiples u ∶= m
−1/2
i ei and v ∶= m

−1/2
j ej of the

canonical basis vectors ei and ej are orthonormal with respect to g0 and
satisfy

g0(R0(u, v)v, u) =m
−1
i +m−1

j .

Letting i, j →∞ shows that the sectional curvature at x = 0 is unbounded.

2.4.5 Completeness and the Hopf–Rinow theorem

Definition 2.44 (Completeness properties) Let (M, g) be a convenient Rieman-
nian manifold.

1. Geodesic completeness of (M, g) means that the exponential map
is defined on all of TM. Equivalently, geodesics exist for all time.

2. Metric completeness of (M, g) means that M equipped with the
geodesic distance distg is a complete metric space. Note that this pre-
supposes the geodesic distance to separate points.

3. Existence of minimizing geodesics on (M, g) means that any two
points x, y ∈ M can be connected by a smooth curve c with Len(c) =
distg(x, y).

Recall the theorem of Hopf–Rinow in finite dimensions [dC92, §7 Theo-
rem 2.8].

Theorem 2.45 (Hopf–Rinow in finite dimensions) Let (M, g) be a finite di-
mensional Riemannian manifold. Then geodesic and metric completeness
are equivalent, and either of them implies existence of minimizing geodesics.

In infinite dimensions most of these statements do not hold, as summarized
in the following theorem:

Theorem 2.46 (Hopf–Rinow in infinite dimensions) Let (M, g) be a strong
Riemannian manifold. Then metric completeness implies geodesic complete-
ness, but all other statements of Hopf–Rinow may fail.
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Proof : To prove that metric completeness implies geodesic completeness, let
c ∶ J →M be a geodesic parameterized by arc length on its maximal interval
of existence J ⊆ R. By the existence and uniqueness theorem for differential
equations, J is open in R. Assume for contradiction that J is bounded above
and let tn be a sequence in J converging to the supremum of J . For any
n,m ∈ N we have

distg(c(tn), c(tm)) ≤ ∣tn − tm∣, (2.6)

and thus c(tn) is a Cauchy sequence in (M,distg). As (M,distg) is metrically
complete, c(tn) converges to a point x in (M,distg). Thus, c(tn) converges
to x in the manifold topology ofM by Theorem 2.37. By Theorem 2.34 there
is ε > 0 such that the exponential map exp is defined on the ball of radius 2ε
around 0x ∈ TM, hence, for all sufficiently large n ∈ N, expc(tn) is defined in
a ball of radius ε around 0c(tn) ∈ Tc(tn)M. Consequently, the geodesic can be
extended to an interval of length at least ε beyond tn, thereby contradicting
the maximality of J . It follows that J is unbounded above, and by the same
argument J is unbounded below, which implies that all geodesics exist for
all time.

An example that neither metric nor geodesic completeness implies existence
of minimizing geodesics is Grossman’s ellipsoid [Gro65] in Example 2.48 be-
low. Atkin [Atk75] further extended this example to find a metrically and
geodesically complete Riemannian manifold with two points that cannot be
joined by any geodesic (not just a minimizing one).

We will see later several examples that geodesic completeness does not imply
metric completeness in the context of weak Riemannian metrics on spaces of
mappings; see also Atkin [Atk97] for an example of a metrically incomplete,
geodesically complete metric on a Hilbert manifold in which any two points
can be joined by a minimizing geodesic. n

While Theorem 2.46 shows that metrically complete Riemannian manifolds
may not have minimizing geodesics between all of their points, the following
theorem by Ekeland [Eke78] states that this cannot be happen too often (the
proof uses Ekeland variational principle):

Theorem 2.47 Let x be a point in a metrically complete strong Riemannian
manifold (M, g). Then the set of all points y ∈M such that there exists a
unique geodesic connecting x to y is dense in M.
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Example 2.48 (Metric completeness does not imply existence of minimizing geodesics)
Let m ∶ N → (0,1] satisfy m0 = 1, mi < 1 for all i ≥ 1, and limi→∞mi = 1.
Then the ellipsoid

M = {x ∈ `2 ∶ ∥x∥2
`2m
∶=∑

i

mix
2
i = 1} ⊂ `2

with the Riemannian metric inherited from `2 is metrically and consequently
geodesically complete, but there is no minimizing geodesic between the north
pole (1,0,0, . . . ) and the south pole (−1,0,0, . . . ) in M. To see this, note
that M = F (S) is the diffeomorphic image of the unit sphere S = {x ∈ `2 ∶
∥x∥`2 = 1} under the bounded linear map

F ∶ `2 → `2, x↦m−1/2x ∶= (m
−1/2
i xi)i∈N.

Let c be a smooth path in S from the north to the south pole. Then the
lengths of c in S and of F ○ c in M satisfy

π ≤ Len(c) = ∫
1

0
∥ċ(t)∥`2dt ≤ ∫

1

0
∥m−1/2ċ(t)∥`2dt = Len(F ○ c).

This implies distM(e0,−e0) ≥ π because every smooth curve in M is of the
form F ○c for some c. One actually has distM(e0,−e0) = π because Len(F ○c) =
m−1/2π if c is the half great circle joining the north and south poles in the
(e0, en)-plane, and this length tends to π as n → ∞. However, there exists
no minimizing geodesic between the north and south pole in S: this would
imply Len(c) = Len(F ○ c) and consequently ċi(t) = 0 for all i ≥ 1, which is
possible only for the constant curve.
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Diffeomorphism groups

3.1 Manifolds of mappings revisited

Recall that we have seen that, given a compact manifold M and a finite
dimensional manifold N , the space C∞(M,N) is a Fréchet manifold, with

TfC
∞(M,N) ≅ Γ(f∗TN),

which follows from the fact that Γ(f∗TN) is the modelling space in the chart
at f we constructed around f (Proposition 2.16). In particular, we have that

TC∞(M,N) ≅ C∞(M,TN) = ⋃
f∈C∞(M,N)

Γ(f∗TN).

We have also seen (Theorem 2.20) that in the case M = N , the space Diff(M)
is an open subspace of C∞(M,N), hence also a Fréchet manifold, and is a
Fréchet Lie group, whose Lie algebra is the space of vector fields

TId Diff(M) ≅ X(M) ∶= Γ(TM).

3.2 Spaces of non-smooth maps

We can also consider the space of non-smooth mappings. The upside of this
is that in the Banach or Hilbert category, analysis is simpler, and that in the
Hilbert category there are strong Riemannian metrics. The downside is that
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these spaces are somewhat ”less clean” geometrically; in particular, in the
non-smooth case, diffeomorphisms do not form a Lie-group.

We start with Ck maps, for k ≥ 1.

Theorem 3.1 (Manifolds of Ck-mappings) Let M be a compact manifold, let
N be a finite-dimensional manifold, and let k ∈ N ∪ {0}. Then Ck(M,N)
is a smooth Banach manifold modeled on Banach spaces ΓCk(f

∗TN) with
f ∈ C∞(M,N).

Here ΓCk(f
∗TN) stands for the sections of regularity Ck.

Proof : The construction is similar to Proposition 2.16: We define a neigh-
borhood W0 of the zero section of TN such that the map

(πN , exp) ∶W0 → N ×N, (πN , exp)(wp) = (p, expp(w))

is a diffeomorphism onto its image, which we denote by WN×N , and define
the chart maps

Vf ∶= {h ∈ ΓCk(f
∗TN) ∶ h(M) ⊂W0}

vf ∶ Vf → C∞(M,N), vf(h)(x) ∶= expf(x) h(x),

and the chart maps by (Uf , uf). The caveat is that the transition maps uf̄ ○
u−1
f (h) = Σ−1

f̄
○Σf ○h, where Σf(w) = (π(w), expf(π(w))w), are not necessarily

smooth. However, if f and f̄ are smooth, then Σf and Σf̄ are (note that the
argument of Σf is a point, and not a section), and consequently also uf̄ ○u

−1
f .

Therefore, we take the charts only around f ∈ C∞(M,N).

Since we do not take the charts around all functions in Ck(M,N), it is left to
check that the chart {Uf}f∈C∞(M,N) do cover Ck(M,N). This follows from the
density of C∞(M,N) maps in Ck(M,N) (with respect to Ck convergence):
Say we have g ∈ Ck(M,N), then from this density there exists f ∈ Ug, hence
(g, f) ∈ WN×N . However, note that we could have chosen, to begin with,
WN×N to be symmetric; hence (f, g) ∈ WN×N , and so g ∈ Uf . Thus g ∈

⋃{Uf}f∈C∞(M,N). n

Similarly, we can discuss mappings of Sobolev regularity Hk or W k,p. To
this end, we start by defining Sobolev spaces on sections of vector bundles
[Weh04, Appendix B]:
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Definition 3.2 (Sobolev spaces) In the following, p ∈ [1,∞) and k ∈ N ∪ {0}.

1. Let π ∶ E → M be a finite dimensional vector bundle over a compact
manifold, endowed with a connection ∇. The Sobolev space ΓWk,p(E)
is the completion of Γ(E) with respect to the norm

∥h∥Wk,p = (
k

∑
j=0
∫
M

∣∇jh∣p)

1/p

.

ΓWk,p(E) is a Banach space, and for p = 2, the space ΓHk(E) = ΓWk,2(E)
is a Hilbert space.

2. If N is a finite dimensional Riemannian manifold, then the Sobolev
space W k,p(M,N) is given by

{f ∶M → N ∶ ι ○ f ∈ ΓWk,p(M ×RD)},

where ι ∶ N → RD is a (fixed) isometric embedding.

Theorem 3.3 (Sobolev embedding) 1. If (k−m)p > dim(M), then ΓWk,p(E)
is continuously embedded in ΓCm(E).

2. If (k −m)p > dim(M), then W k,p(M,N) ⊂ Cm(M,N).

3. For kp > dim(M), the above definitions are equivalent to definitions via
local charts. Moreover, in this case C∞(M,N) is dense in W k,p(M,N)
with respect to the W k,p-topology induced by the embeddings (or equiv-
alently, charts).

Definitions via local charts also enable us to consider fractional Sobolev space
W s,p (where s ∈ [0,∞) rather than an integer), but we will not focus on that
here.

Theorem 3.4 (Manifolds of W k,p-mappings) Let M be a compact manifold,
let N be a finite-dimensional manifold, and let k ∈ N ∪ {0} and p ∈ [1,∞)
such that kp > dimM . Then W k,p(M,N) is a smooth Banach manifold
modeled on Banach spaces ΓWk,p(f∗TN) with f ∈ C∞(M,N). For p = 2, the
space Hk(M,N) is a Hilbert manifold.
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The proof is identical to the proof of Theorem 3.1.

Now, because we only have charts around smooth functions, we a-priori only
have the identification TfW k,p(M,N) ≅ ΓWk,p(f∗TN) for smooth f . How-
ever, using these charts, one can construct the whole TW k,p(M,N), and it
turns out that

TW k,p(M,N) ≅W k,p(M,TN)

(here, TN is endowed with the Sasaki metric that corresponds to the metric
of N). In particular, we obtain that we can identify TfW k,p(M,N) with {h ∈
W k,p(M,TN) ∶ π ○ h = f} for any f ∈W k,p(M,N) (see [EM70, Section 2]).

3.2.1 Lie groups and half-Lie groups

We now turn our focus to immersions, embedding and diffeomorphism groups.
As long as we consider spaces of non-smooth maps, who are modeled on
spaces in which the topology is at least as strong as C1 convergence, then
the results of Theorem 2.20(1)–(2) hold, with the same proof. That is, we
have the following:

Theorem 3.5 Let M be a compact manifold, and let N be a finite-dimensional
manifold with dim(M) ≤ dim(N).

1. For k ≥ 1, the set ImmCk(M,N) of all smooth functions f ∈ Ck(M,N)
whose differential Txf ∶ TxM → Tf(x)N is injective at every point x ∈M
is an open subset of the Banach manifold Ck(M,N).

2. The set EmbCk(M,N) of all immersions which are a homeomor-
phism onto their range is an open subset of the Banach manifold
ImmCk(M,N).

The same holds for W s,p, instead of Ck, assuming that (s − 1)p > dimM (so
that W s,p ⊂ C1).

However, in the non-smooth case, the diffeomorphism groups do not form a
Lie group [Ebi70, Section 3]:
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Theorem 3.6 Let M be a compact manifold, and let k ≥ 1. The set DiffCk(M)
of all Ck invertible maps M → M coincides with the Fréchet manifold
EmbCk(M,M), and is a half Lie-group, i.e., inversion and composition
are continuous, and right-multiplication is smooth.

Proof : The proof that DiffCk(M) coincides with EmbCk(M,M) is the same
as in Theorem 2.20(3).

Continuity and smoothness can be checked in charts of M ; that is, we can
assume that M is a (flat) closed unit ball.

Let fn, f, gn, g ∈ DiffCk(M) where fn → f and gn → g. We aim to prove that
fn ○ gn → f ○ g in Ck. For C0, we have

sup
x∈M

d(fn ○ gn(x), f ○ g(x)) ≤ sup
x∈M

d(fn ○ gn(x), f ○ gn(x)) + sup
x∈M

d(f ○ gn(x), f ○ g(x))

= sup
y∈M

d(fn(y), f(y)) + sup
x∈M

d(f ○ gn(x), f ○ g(x))

and the righthand-side tends to zero since fn → f uniformly, and gn → g
uniformly and f is uniformly continuous. For the first derivative, we assume
that M ⊂ RdimM :

D(fn○gn)−D(f○g) = (Dfn−Df)○(gn).Dgn+Df○gn.(Dgn−Dg)+(Df○gn−Df○g).Dg,

which converges to zero since Dfn → Df and Dgn → Dg uniformly. Higher
derivatives follow the same pattern.

Smoothness of right-translation: Let f ∈ DiffCk(M), and consider the ac-
tion Rf ∶ DiffCk(M) → DiffCk(M), Rf(g) = g ○ f . Consider now TRf . We
show that it is a continuous mapping T DiffCk(M) → T DiffCk(M). Let
v ∈ Tg DiffCk(M) = ΓCk(g

∗TM), and let g(t) be a smooth curve such that
g(0) = g and g′(0) = v, then

TRfv =
d

dt
∣
t=0

Rfg(t) =
d

dt
∣
t=0

g(t) ○ f = v ○ f ∈ ΓCk((g ○ f)
∗TM).

Note that TRf is thus indeed a map T DiffCk(M)→ T DiffCk(M). It is con-
tinuous by the same argument that shows that the composition is continuous.
Iterating this argument shows that this is a smooth function.
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Note what goes wrong for left translation:

TLfv =
d

dt
∣
t=0

Lfg(t) = (Tf ○ g)v.

Since Tf is only a Ck−1 map, we have that TRf maps T DiffCk(M) to sections
of regularity Ck−1. 1

Now consider the inversion operator inv ∶ DiffCk(M) → DiffCk(M), and let
fn → f in Ck. We then have

sup
x∈M

d(f−1
n (x), f−1(x)) ≤ sup

y∈M
d(f−1

n (fn(y)), f
−1(f(y))) + sup

y∈M
d(f−1(f(y)), f−1(fn(y))

= sup
y∈M

d(f−1(f(y)), f−1(fn(y))),

which tends to zero by the same argument as for the composition. For the
first derivative, we have

D(f−1) = i ○Df ○ f−1,

where i ∶ GLdimM → GLdimM is the matrix inversion operator. Since i is
smooth, the map f ↦ D(f−1) is a continuous function C1 → C0. Higher
derivative follow by induction.

Note that inv is not smooth: Let g(t) be a smooth curve such that g(0) = g
and g′(0) = v, then we have that inv g(t, g(t, x)) = x, from which it follows
that

∂t inv g(t, g(t, x)) +D(inv g)(t, g(t, x)).∂tg(t, x) = 0,

or in other words

∂t inv g(t, x) = −D(inv g).∂tg ○ inv g = (i ○Dg.∂tg) ○ inv g,

Therefore,
T inv v = −(i ○Dg.v) ○ inv g,

but due to the derivative, this is not in Tinv g DiffCk(M) since it is only a Ck−1

vector field.2 n

1 This loss of derivative does not happen, of course, if f is a smooth map, in
which case one can show that Lf is indeed smooth. In more detail, we have that if
f ∈ DiffCk+l(M), then Lf ∶ DiffCk(M) → DiffCk(M) is a Cl map. In fact, as a map
DiffCk+l(M) ×DiffCk(M)→ DiffCk(M), the composition map is Cl.

2This reasoning also show that if one considers inv ∶ DiffCk+l(M) → DiffCk(M), then
it is a Cl map.
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The same holds (including the footnotes in the previous page) in the Sobolev
category:

Theorem 3.7 Let M be a compact manifold, and let k ∈ N, p ∈ [1,∞], such that
(k − 1)p > dimM . The set DiffWk.p(M) of all invertible W k,p-maps M →M
is a half Lie-group, i.e., inversion and composition are continuous, and
right-multiplication is smooth.

The proof follows the same lines, but the calculations are more cumbersome
so we will not repeat them here, and only mention the key estimates:

Proposition 3.8 (Sobolev algebra) Let k > n/p, l ≤ k. Then the map
W k,p(Rn) ×W l,p(Rn)→W l,p(Rn), (f, g)↦ fg is a continuous bilinear map.

See [Ebi70, Lemma 3.2], [IKT13, Lemma 2.3] for proofs.

Proposition 3.9 Let Dn be the closed n-dimensional disc. Let f0 ∈
W k,p(Dn;Dn), g0 ∈ W k,p(Dn), where (k − 1)p > n and Df0 invertible ev-
erywhere (note that f is C1). Then the composition map W k,p(Dn;Dn) ×
W k,p(Dn)→W k,p(Dn) is jointly continuous near (f0, g0).

See [Ebi70, Lemma 3.1]. The key issues in proving this are:

• The chain rule holds for composition g ○ f of Sobolev maps of this
regularity: D(g ○ f) = (Dg ○ f)Df . See [EG15, Theorem 4.4(ii)] and
[IKT13, Lemma 2.4(ii)].

• The Jacobian J(f) and its inverse are bounded uniformly in the vicinity
of f0 (because of the topology is stronger than C1). This is repeatedly
used when we change variables. This is also used when showing that
the inverse map inv ∶ DiffWk,p(M)→ DiffWk,p(M) is continuous, as the
inverse operator for matrices involves a polynomial in the matrix entries
(here Proposition 3.8 is useful), divided by the determinant.
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More details can be found in [Ebi70, §3], [IKT13, §2] and [Kol17, §2].

Comment: We will often denote DiffHk(M) simply by Diffk(M). For a com-
pact manifoldM , the space Diff(M) is the inverse limit of (Diffk(M))k>dimM

2
+1.

This makes Diff(M) into something with more structure than a general
Fréchet manifold, namely an inverse limit Hilbert (ILH) manifold [Omo70].
In layman terms, this means that the topology of Diff(M) is the one induced
by the inclusions Diff(M) ⊂ Diffk(M), and a map Diff(M)→ Diff(M) is C l if
and only if for every k it has an extension to a C l map Diffk′(M)→ Diffk(M)
for some k′ [EM70, pp. 108–109].3 This will turn out to be useful when we
study existence of geodesics on Diff(M), since we can study them by studying
the existence on Banach, and even Hilbert manifolds.

Finally, we note that the fact that we only get Lie group in the Fréchet
setting and not in the Banach setting is actually related to a much more
general phenomenon [Omo79, Omo96]:

Theorem 3.10 (Omori, 1978) If a connected Banach Lie group G acts effec-
tively, transitively and smoothly on a compact manifold, then G is finite
dimensional.

3.3 Volume preserving diffeomorphisms

Definition 3.11 Let M be a finite dimensional compact manifold, endowed
with a volume form µ. The space of all volume preserving diffeomor-
phisms is

Diffµ(M) = {f ∈ Diff(M) ∶ f∗µ = µ} .

Similarly, for k such that k − 1 > dim(M)/2, one can define DiffH
k

µ .

We now show that this is a closed submanifold of the whole diffeomorphism
group. This was originally shown in [EM70, Theorem 4.2], though we will
follow a slightly different proof [Ebi15, §3].

3See also
https://mathoverflow.net/questions/74064/fr%C3%A9chet-manifolds-vs-ilh-manifolds.

https://mathoverflow.net/questions/74064/fr%C3%A9chet-manifolds-vs-ilh-manifolds
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Theorem 3.12 Diffµ(M) is a smooth closed Fréchet Lie subgroup of Diff(M),
whose Lie algebra is

TId Diffµ(M) = Xµ(M) ∶= {v ∈ X(M) ∶ div v = 0} .

A similar statement (changing Lie group to half-Lie group) holds for DiffH
k

µ

and DiffHk , and Diffµ(M) is the inverse limit Hilbert manifold of DiffH
k

µ .

Here, the divergence operator is defined by Lvµ = div(v)µ. In local coordi-
nates, writing µ = ρdx1 ∧ . . . ∧ dxn, it is given by div(v) = ρ−1∂i(ρvi).

Before giving the proof, recall the implicit function theorem for finite dimen-
sional manifolds: if f ∶M → N is smooth, and q is a regular value of f , then
f−1(q) ⊂M is a submanifold. The proof goes with local coordinates around q
and p ∈ f−1(q), so M = Rm and N = Rn, and then we split Rm = kerTpf ⊕ V ,
and then we have that Tpf ∣V is invertible and use the standard implicit func-
tion theorem. The tangent space of f−1(q) at p is then kerTpf . Now, the
implicit function theorem works in the Banach category, but the fact that
kerTpf splits TpM needs to be assumed:

Definition 3.13 Let f ∶M → N be a smooth map between Banach manifolds.
We say that p is a regular point of f if Tpf is onto and kerTpf splits TpM
(that is, there exists a closed V ⊂ TpM such that TpM = kerTpf ⊕ V ). q is a
regular value of f if f−1(q) contains only regular points.

In finite dimensional settings the splitting assumption is automatically satis-
fied, but this is also true in Hilbert settings, since one can take the orthogonal
complement of kerTpf . This is the reason in the above theorem we only dis-

cuss DiffH
k

µ and not DiffW
k,p

µ (although the proof can probably be adapted to
this case as well). More on splitting can be read in [Lan99, II §2] and [Ger75,
§5] (the later also includes examples for non-splitting closed subspaces).

Proof : Denote m = dimM , and denote by Hk(Λm) the top-forms of M of
regularity Hk, and let

Hk
µ(Λ

m) = {0 < ν ∈Hk(Λm) ∶ ∫
M
ν = ∫

M
µ} ,
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where by ν > 0 we mean that ν = fµ for a strictly positive f . Hk
µ(Λ

m) is
obviously an open subset of an affine subspace of codimension one of Hk(Λm).
Its tangent space (at every point!) is

Hk
0 (Λ

m) = {λ ∈Hk(Λm) ∶ ∫
M
λ = 0} .

Define
ψ ∶ Diffk(M)→Hk−1

µ (Λm), ψ(η) = η∗µ.

It is immediate that ψ indeed maps Diffk(M) to Hk−1
µ (Λm). We will show

that ψ is a submersion (i.e., that all points are regular points of ψ), and thus
it will follow that Diffkµ(M) = ψ−1(µ) is a submanifold of Diffk(M), whose
tangent space at the identity is

TId Diffkµ(M) = kerTIdψ = {v ∈ XHk(M) ∶ div v = 0} .

The closedness of Diffkµ(M) in Diffk(M) is obvious (since convergence in Hk

is stronger than C1), as well as the group properties; this will complete the
proof for the Sobolev case. The smooth case will then follow by taking the
intersection of the Sobolev maps as k →∞ (we will not detail that here).

Let us calculate the derivative of ψ at the identity: Let η(t) be the flow of
v ∈ TId Diffk(M), then

TIdψ(v) =
d

dt
∣
t=0

ψ(η(t)) =
d

dt
∣
t=0

η(t)∗µ = Lvµ = div(v)µ.

In order to show that ψ is a submersion at Id, we need to show that for every
λ ∈ Hk−1

0 (Λm), there exists v ∈ XHk(M) such that div(v) = λ/µ. Restricting
ourselves to conservative vector fields, v = ∇f for some f ∈ Hk+1(M), this
yields the equation

∆f = λ/µ.

Since M is closed and ∫M λ = 0, there exists a solution (existence follows for
example by using Riesz representation theorem on the functional f ↦ ∫M fλ

on the Hilbert space of H1(M) functions with zero mean with the Ḣ1 inner-
product; regularity follows by standard elliptic regularity arguments). Thus,
Id is a regular point.

The fact that all other points are regular follow by right-translation: let
η ∈ Diffk(M), then Tη Diffk(M) = TId Diffk(M) ○ η, hence if v ∈ TId Diffk(M)
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with a flow ϕ(t), then

Tηψ(v ○ η) =
d

dt
∣
t=0

(ϕ(t) ○ η)∗µ = η∗ (
d

dt
∣
t=0

ϕ(t)∗µ) = div(v) ○ ηη∗µ.

Therefore we can similarly show that div(v) = (λ/η∗µ) ○ η−1 has a solution
for every λ ∈Hk−1

0 (Λm). n

In fact, one can prove a stronger result, namely that Diff(M) is diffeomorphic
to Diffµ(M) × C∞

µ (Λm), and that since C∞
µ (Λm) is convex, Diffµ(M) is a

deformation retract of Diff(M) [EM70, Theorem 5.1].

3.4 Other diffeomorphism groups

One can also consider other related spaces, in various regularities. We will
not prove here that they are indeed manifolds.

1. Given symplectic 2-form ω, the diffeomorphism which preserve ω for
the group of symplectomorphisms, whose Lie algebra consists of all
symplectic vector fields

{X ∈ X(M) ∶ LωX = 0} .

One can also consider all Hamiltonian symplectomorphisms.

2. Another related group that arises in hydrodynamics (in particular, to
the KdV equation) is the Virasoro group (or Virasoro–Bott group).

3. Yet another group that arises in applications is the group of a diffeo-
morphisms that fix a given point (or a submanifold). For example,
the Hunter–Saxton equation is a geodesic equation on the elements in
Diff(S1) that fix a point (equivalently, the quotient space of Diff(S1)
modulo rotations). [Len07]

3.5 Non-compact base manifold

In the above discussions we only considered compact base manifolds. For
a non-compact base manifold, one needs to be more cautious, and specify
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conditions at infinity. To illustrate this, we will consider diffeomorphisms of
the Euclidean space. Some of the spaces that we can consider include [Mic20,
Section 6.9]:

1. The space S(Rn) denotes the space of all Schwartz functions. It is a
Fréchet space.

2. The space W∞,p(Rn) = ∩∞k=1W
k,p. It is a Fréchet space (and an inverse-

limit Banach space).

3. The space C∞
c (Rn) of compactly supported smooth functions (where

fn → f if all of them are supported in the same compact set on which
there is uniform convergence of all derivatives). This is not a Fréchet
space, but an LF-space (a locally convex inductive limit of the Fréchet
spaces C∞(Ki) for and increasing sequence of compact sets (Ki)i∈N that
cover Rn). In this case smoothness is trickier, and we will not get into
details.

Theorem 3.14 The diffeomorphism groups

Diffc(Rn) = {f ∈ Diff(Rn) ∶ f − Id ∈ C∞
c (Rn)n}

DiffS(Rn) = {f ∈ Diff(Rn) ∶ f − Id ∈ S(Rn)(Rn)n}

DiffW∞,p(Rn) = {f ∈ Diff(Rn) ∶ f − Id ∈W∞,p(Rn)n}

are all smooth Lie groups, with Lie algebras being the vector fields with the
appropriate decay. Moreover,

Diffc(Rn) ⊂ DiffS(Rn) ⊂ DiffW∞,p(Rn),

and the inclusions are smooth, and each one is normal in the ones containing
it. The connected component of the identity in Diffc(Rn) is simple.

We will not prove it here, see [Mic20, Theorem 6.10]. For references on the
simplicity of the connected components of the diffeomorphism groups, see
[BBHM13, p. 15].
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Geodesic equations of
right-invariant metrics

In this section we will focus on some natural/famous metrics on diffeomor-
phism group, calculate their geodesic equations and see some of their proper-
ties. In the next chapters we will discuss more some of their metric properties,
existence of geodesics etc.

4.1 Right-invariant metrics

Our main focus will be right-invariant metrics, which will follow Example 2.28
for the case G = Diff(M), where M is a closed Riemannian manifold, or for
G = Diffc(Rn) (or with other decay conditions on Rn). Recall that in this
case, an inner product ( , ) on g, induces a right-invariant metric on G by

⟨u, v⟩g ∶= (u ○ g−1, v ○ g−1).

The geodesic equation is then given by (2.4), although in most cases writing
down (2.4) explicitly is equivalent to deriving the geodesic equation from
the energy to begin with, which is the path we will usually take. Also, for
proving existence of solutions, (2.4) typically not very useful.

Recall that for G = Diff(M), the Lie algebra g = X(M) is the space of vector
fields. We have the following natural metrics:
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1. The L2 metric:

(u, v)L2 = ∫
M
g(u(x), v(x))dVolg(x)

2. The Hk metrics:

(u, v)Hk =
k

∑
i=0
∫
M
g(∇iu(x),∇iv(x))dVolg(x)

=
k

∑
i=0
∫
M
g((−∆)iu(x), v(x))dVolg(x)

Here, in the first line, we consider g as an inner product on all tensors
over M .

3. More generally, given a symmetric, positive definite, pseudo-differential
operator A ∶ X(M)→ X(M), we obtain the A-metric

(u, v)A = ∫
M
g(Au, v)dVolg

This enables us, for example, to define fractional Sobolev metrics on
Diff(M).

4. The H(div) metric:

(u, v)H(div) = ∫
M
g(u, v) + divudiv v dVolg = ∫

M
g(u, v) − g(∇divu, v)dVolg

This space is simpler than the H1 metric (if dimM = 1 they coincide),
but still richer than the L1 metric.

5. The Ḣ1 (semi-)metric:

(u, v)Ḣ1 = ∫
M
g(∇u(x),∇v(x))dVolg(x).

This is not necessarily an inner product: It is on Xc(Rn), but not on
any space of vector fields that contains a vector field u such that ∇u = 0.
For example, X(S1) = C∞(S1), which allows for constant vector fields.
However, the resulting Riemannian semi-metric is a true Riemannian
metric on the right cosset Rot(S1)/Diff(S1) of diffeomorphism groups
modulo the rotations subgroup (this is not surprising since the flow of
a constant vector field generates all the rotations).

Similarly, one can also consider the Ḣdiv semi-metric.
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Note that all these metrics are smooth on Diff(M), or Diffµ(M), since the
group operations are smooth. However, for diffeomorphism groups of finite

regularity, e.g., DiffH
k

(M), it is not obvious that this method produces a
smooth metric, as it involves composition with the inverse map, and the
inverse operator in non-smooth. We will ignore this subtlety for now, but
later we will note how this is proven in many cases (in fact, in all of the cases
above, except for the L-case, unless we make further assumptions).

4.2 Burgers Equation: L2 metric on Diff(S1)

Let us calculate directly the geodesic equation associated with the right-
invariant L2 metric on Diff(S1) (we already did it when we calculated its
Christoffel symbols):1 Given a path ϕ ∶ [0,1] → Diff(S1), its energy is given
by

E(ϕ) = ∫
1

0
∫
S1

(ϕt ○ ϕ
−1)2 dxdt = ∫

1

0
∫
S1
ϕ2
tϕx dxdt,

and thus its variation, with respect to a family ϕ ∶ R×[0,1]→ Diff(S1) fixing
the boundary conditions, is

∂s∣0E(ϕ(s, )) = ∫
1

0
∫
S1

(2ϕtsϕtϕx + ϕ
2
tϕtx)dxdt

= −∫
1

0
∫
S1

(2ϕs(ϕttϕx + 2ϕtϕtx)dxdt,

hence the geodesic equation is

ϕtt + 2ϕt
ϕtx
ϕx

= 0.

Moving to Eulerian coordinates, and using the identities:

ϕt = u ○ ϕ, ϕtx = ux ○ ϕϕx, ϕtt = ut ○ ϕ + ux ○ ϕϕt,

we obtain Burgers’ equation

ut + 3uux = 0.

This equation can be solved by the method of characteristics: Consider the
graph (t, x, u(t, x)) in R3; its normal is the vector field (ut, ux,−1), so the

1In this subsection I follow some parts of [CK02].
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equation tells us that the vector field (1,3u,0) is tangent to the graph. In
other words, the graph is an integral manifold of this vector field. We thus
have to solve the system of ODEs

dt

ds
= 1,

dx

ds
= 3u,

du

ds
= 0,

t∣s=0 = 0, x∣s=0 = x0, u∣s=0 = u0(x0),

hence t = s, u(t(s), x(s)) = u0(x0) and x(s) = x0 + 3su0(x0), and so

u0(x0) = u(t(s), x(s)) = u(s, x0 + 3su0(x0)), (4.1)

or, after renaming,

u0(x) = u(t, x + 3tu0(x)) t ∈ [0, T ), x ∈ S1. (4.2)

Differentiating this equation with respect to x, we obtain

ux(t, x + 3tu0(x))(1 + 3tu′0(x)) = u
′
0(x),

hence, if minS1 u′0(x) < 0, this equation breaks down when

T = min
x∈S1

1

−3u′0(x)
.

Note that since x ∈ S1 (periodic solutions) minS1 u′0(x) is always negative
unless u0 is constant. It can be shown that T is indeed precisely the blowup
time of the equation. Note that from (4.2) we have that

max
x∈S1

∣u(t, x)∣ = max
x∈S1

∣u0(x)∣,

and that as t→ T ,
min
x∈S1

ux(t, x)→ −∞,

hence the solution looks like a shockwave. If we go to the Lagrangian coor-
dinates, as t → T , the map ϕ(t, ⋅) stop being a diffeomorphism (it loses the
immersion property). In geometric terms, we proved the following:

Proposition 4.1 The exponential map expId ∶ U ⊂ X(S1)→ Diff(S1) is defined
on the open set

U = {u0 ∈ C
∞(S1) ∶ u′0(x) > −

1

3
} .
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In other words, geodesics of the right-invariant L2 metric on Diff(S1) exist
locally in time, but not globally in time (the above proposition discusses
geodesics from the identity map, but all other base points behave in the same
way). Note that U is indeed open in C∞(S1). We will later see that geodesics
in this case are never length minimizing (Section 5.2)2, and that while the
exponential map is defined on an open set, it is not a local diffeomorphism
on any open set.

We can write the geodesic equation in Lagrangian coordinates as

0 = ϕttϕx + 2ϕtϕtx =
∂t(ϕt(t, x)ϕ2

x(t, x))

ϕx(t, x)
,

and thus we have

ϕt(t, x)ϕ
2
x(t, x) = ϕt(0, x)ϕ

2
x(0, x).

If we consider a geodesic that starts at the identity, i.e., ϕ(0, x) = x, we
obtain

ϕt(t, x)ϕ
2
x(t, x) = u0(x). (4.3)

We now use this formula to prove the following result:

Theorem 4.2 ([CK02], Theorem 3) The exponential map expId ∶ U → Diff(S1)
is not a C1-diffeomorphism on any open neighborhood of zero.

Proof : We will show that if expId is a C1 map, then D expId(vn) is not invert-
ible for a sequence vn that converges to zero (note that D expId(0) = IdX(S1)
and thus invertible). In the following we will use the standard coordinate
chart on Diff(S1), that is, we will identify both diffeomorphisms and vector
fields on S1 with functions in C∞(S1).

Assume that expId is C1, and let v ∈ U and w ∈ X(S1). Let ϕε the geodesic
starting at Id in the direction (v + εw). From (4.3) we have that for ε small
enough,

ϕε(t, x) = x + ∫
t

0

v(x) + εw(x)

(ϕεx(s, x))
2
ds, ∣ε∣ < ε0, t ∈ [0,1], x ∈ S1.

2In fact, they are not even local minimizers, see [Bru13].
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We therefore have,

ϕε(t, x) − ϕ0(t, x)

ε
= ∫

t

0

w(x)

(ϕεx(s, x))
2
ds

− ∫
t

0

v(x) [ϕεx(s, x) + ϕ
0
x(s, x)]

(ϕεx(s, x)ϕ
0
x(s, x))

2

ϕεx(s, x) − ϕ
0
x(s, x)

ε
ds.

(4.4)

We would like to take ε→ 0. Here the C1 assumption plays a role.

Note that
ϕε(t) − ϕ0(t) = expId(t(v + εw)) − expId(tv),

hence, for every t, we have that the following limits hold uniformly on x ∈ S1,

lim
ε→0

ϕε(t, x) − ϕ0(t, x)

ε
= d expId(tv)(tw) =∶ ψ(t, x)

lim
ε→0

ϕεx(t, x) − ϕ
0
x(t, x)

ε
= ψx(t, x),

since by assumption ϕε(t,x)−ϕ0(t,x)
ε → d expId(tv)(tw) in C∞(S1). This is,

however, still not enough in order to use the dominated convergence theorem
to take ε→ 0 under the integral sign in (4.4).

For t ∈ [0,1] and ε > 0 small enough, define

F ∶ [0,1]→ C∞(S1) F (s) =
expId(tv + εsw) − expId(tv)

ε
− sd expId(tv)w.

Note that since expId is C1, so is F (s), and so,

∥F (s0)∥C1(S1) = ∥F (s0) − F (0)∥C1(S1) ≤ max
s∈[0,1]

∥F ′(s)∥C1(S1)

= max
s∈[0,1]

∥d expId(tv + εsw)w − d expId(tv)w∥C1(S1).

Now, by assumption d expid is continuous in the C∞(S1) topology, and in
particular in the C1(S1) topology; thus, it is norm-bounded on compact
sets. In particular, there exists M > 0 such that for every t ∈ [0,1] and
ε ∈ [−ε0, ε0], we have

max
s∈[0,1]

∥d expId(tv + εsw)w − d expId(tv)w∥C1(S1) ≤M,
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hence

max
s,t∈[0,1],∣ε∣<ε0

∥F (s)∥C1(S1) = max
s,t∈[0,1],∣ε∣<ε0

∥
expId(tv + εtw) − expId(tv)

ε
− t d expId(tv)w∥

C1(S1)
≤M,

and thus, for s = t, we have

max
t∈[0,1],∣ε∣<ε0

∥
ϕεx(t, ⋅) − ϕ

0
x(t, ⋅)

ε
− ψx(t, ⋅)∥

C0(S1)
≤M.

Thus, by dominated convergence, we can take ε→ 0 in (4.4), and obtain

t d expId(tv)(w) = ψ(t, x) = ∫
t

0

w(x)

ϕ2
x(s, x)

ds − ∫
t

0

2v(x)

ϕ3
x(s, x)

ψx(s, x)ds, (4.5)

for every t ∈ [0,1] and x ∈ S1. Differentiating with respect to t, we obtain

ψt(t, x) =
w(x)

ϕ2
x(t, x)

−
2v(x)

ϕ3
x(t, x)

ψx(t, x).

Now, take v(x) = c > 0 be a constant vector field. In this case, it is easy to
see (say from (4.3)) that ϕ(t, x) = x + ct, and thus

ψt(t, x) = w − 2cψx.

Since ψ(0, x) = d expId(0)0 = 0, the solution to this equation is

ψ(t, x) =
1

2c ∫
x

x−2ct
w(y)dy,

and in particular, for t = 1, we obtain

(d expId(v)w)(x) =
1

2c ∫
x

x−2c
w(y)dy. (4.6)

Now, for vn(x) =
1
n , take wn(x) = sin(πnx), then d expId(vn)wn ≡ 0, and in

particular d expId(vn) is not invertible. However vn → 0 in C∞(S1), and thus
d expId is not invertible in any neighborhood of 0. n

Comment: Note that, in principle, once we “guessed” vn and wn, we can go to
(4.4), and try to estimate the limit ε→ 0 directly for these vn and wn (by esti-
mating the specific solutions to these initial conditions for the geodesics), and
obtain either the vanishing of d expId(vn)wn, or its non-existence, directly.
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Note that the proof works not only on smooth diffeomorphisms, but basically
on diffeomorphisms on any regularity that controls C1, in particular, for
DiffCk(S

1) for k ≥ 1 or DiffHk(S1) for k ≥ 2. In these Banach settings,
if expId would have been a C1 map, we would immediately obtain by the
inverse function theorem that it is a local diffeomorphism in the vicinity of
0, since d expId(0) = Id is invertible. Thus, the above proof, that shows that
if expId is C1 then there are vn → 0 in which d expId(vn) is not invertible,
actually shows that

Theorem 4.3 For Banach diffeomorphisms of S1 the exponential map expid of
the right-invariant L2 metric is not a C1 map in any neighborhood of zero.

In particular, since in the Banach category, a smooth spray implies a smooth
flow, we obtain

Corollary 4.4 For Banach diffeomorphisms of S1 with the right-invariant L2

metric, the geodesic spray does not exist (equiv., the Christoffel symbol).

Note we already seen this in Example 2.27 by calculating the Christoffel
symbol explicitly for the smooth case, obtaining

Γϕ(u, v) =
vux + uvx

ϕx
,

and showing that this formula only makes sense (as a Christoffel symbol)
only for smooth diffeomorphisms.

Question: Is expId a C1 map in some neighborhood of 0? Is the exponential
map similarly badly behaved for the right-invariant L2 metric on Diffc(R) or
DiffS(R)?
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4.3 Camassa–Holm Equation: H1 metric on

Diff(S1)

The right-invariant H1 metric on Diff(S1) is much better behaved than the
L2 metric. In particular, we will prove that the exponential map exists, and
is a smooth map on an open neighborhood of the zero section.3 The proof of
existence is of a type, known as the Spray method of Ebin and Marsden
(or simply the Ebin-Marsden method), which was initiated for the study of
the incompressible Euler equation in [EM70], which we will discuss later.
The presentation in this section also follows later versions of the method, as
presented in [Ebi15, Kol17, Bru17]. The main ingredients of the methods
are:

1. Working on Banach manifolds: In general, a (geodesic) smooth
spray on a Fréchet manifold does not guarantee existence of a (geodesic)
flow. However, it does for Banach manifolds. Thus we will treat at first
the larger space DiffHk(S1) for some large enough k. This also gives
us other analytic tools, like the inverse function theorem.

2. Proving the spray is smooth: The main goal is therefore to prove
that the spray exists, and is smooth. Here we pay the price for work-
ing in the Banach category, as there are natural operations that are
only continuous but not smooth in this case (e.g., the Lagrangian-to-
Eulerian map ϕ↦ u = ϕt ○ ϕ−1).

3. Regularity: Finally, we will show (quite generally) that for a right-
invariant metric we have a no-loss-no-gain result — namely, that if
the geodesic in DiffHk(M) has initial conditions of higher regularity,
than this regularity remains throughout the existence of the geodesic.
In particular, we will obtain short-time existence of geodesics also in
the smooth category, as well as smooth dependence on the initial data.
We will cover this in Section 4.6.

We will illustrate this method in detail for the right-invariant H1-metric on

3expId is, in fact, a local diffeomorphism [CK02, Theorem 5], but we will not prove
that here.
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Diff(S1).4 Let us start by calculating its geodesic equation:

E(ϕ) = ∫
1

0
∫
S1

(u2 + u2
x)dxdt = ∫

1

0
∫
S1

(ϕ2
t + (ϕtx/ϕx)

2) ○ ϕ−1 dxdt

= ∫
1

0
∫
S1

(ϕ2
tϕx + ϕ

2
txϕ

−1
x )dxdt.

Note that this calculation also shows that the metric itself is smooth. Thus
we have

δE(ϕ)(h) = ∫
1

0
∫
S1

(2ϕtϕxht + ϕ
2
thx − ϕ

2
txϕ

−2
x hx + 2ϕtxϕ

−1
x htx)dxdt

= −∫
1

0
∫
S1

(2(ϕtϕx)t + (ϕ2
t )x − (ϕ2

txϕ
−2
x )x − 2(ϕtxϕ

−1
x )tx)hdxdt

Hence we obtain

0 = 2(ϕtϕx)t + (ϕ2
t )x − (ϕ2

txϕ
−2
x )x − 2(ϕtxϕ

−1
x )tx

= 2(ϕttϕx + 2ϕtϕtx) − (ϕ2
txϕ

−2
x )x − 2(ϕtxϕ

−1
x )tx

= 2(ut + 3uux) ○ ϕϕx − (ϕ2
txϕ

−2
x )x − 2(ϕtxϕ

−1
x )tx

= 2(ut + 3uux) ○ ϕϕx − (u2
x ○ ϕ)x − 2(ux ○ ϕ)tx

= 2(ut + 3uux) ○ ϕϕx − 2uxuxx ○ ϕϕx − 2(uxx ○ ϕϕx)t

= 2(ut + 3uux) ○ ϕϕx − 2uxuxx ○ ϕϕx − 2(uxxt ○ ϕϕx + uuxxx ○ ϕϕx + uxx ○ ϕϕtx)

= 2(ut + 3uux) ○ ϕϕx − 2uxuxx ○ ϕϕx − 2(uxxt + uuxxx + uxuxx) ○ ϕϕx

where the transition to the third line is exactly as in the L2 case, and the
transition to the sixth line uses the fact that (f(t, ϕ(t, x)))t = ft○ϕ+fx○ϕϕt =
(ft + fxu) ○ ϕ. Therefore we obtain the Camassa–Holm equation

ut + 3uux − 2uxuxx − uuxxx − uxxt = 0,

which we can also write as

Aut + uAux + 2uxAu = 0, A = 1 − ∂2
x.

Now, note that A ∶ Hk(S1) → Hk−2(S1) is a bounded linear operator (and
in particular, smooth). It is also invertible (a solution of u = A−1f is im-
mediately given by convolution using Fourier series); by the open mapping
(Banach–Schauder) theorem A−1 is also bounded, hence smooth as well.

4This presentation is influenced by Klas Modin’s lecture https://slides.com/

kmodin/diffeos, and also by [CK02, §4].

https://slides.com/kmodin/diffeos
https://slides.com/kmodin/diffeos
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The Camassa–Holm equation was introduced by Camassa and Holm in 1993
[CH93] as a model for shallow water waves, and was intensely studied since.
It was observed to be a geodesic equation by Misio lek in 1998 [Mis98] (in fact,
he showed that a slightly more general version of the equation is a geodesic
equation of a right-invariant metric on an extension of the diffeomorphism
group).

However, if we try to write this as an ODE, we run into problems:

ut = −A
−1 [uAux + 2uxAu] , (4.7)

and, just counting derivatives, we get stuck — in order for it to be solved as
an ODE on Banach spaces, then, assume that u ∈ Hk(S1), we would get a
solution if we can write ut = F (u), where F ∶ Hk(S1) → Hk(S1). However,
if u ∈ Hk(S1), then ux ∈ Hk−1(S1), so uAux ∈ Hk−3(S1), hence A−1(uAux) ∈
Hs−1(S1) so we lose one derivative, hence F ∶ Hk(S1) → Hk−1(S1) and we
cannot use the contractive mapping theorem to conclude existence of solu-
tions for short time.5

However, a miracle happens in Lagrangian coordinates:

ϕtt = (u ○ ϕ)t = (ut + uux) ○ ϕ

= −A−1 (uAux + 2uxAu −A(uux)) ○ ϕ

= −A−1 (uAux + 2uxAu − uAux + 3uxuxx) ○ ϕ

= −A−1 (2uux + uxuxx) ○ ϕ

The operator u↦ A−1 [2uux + uxuxx] is a smooth operatorHk(S1)→Hk(S1),
so we are in good shape.6

However, we are not done: We are studying the system of ODEs

⎧⎪⎪
⎨
⎪⎪⎩

ϕt = v

vt = Sϕ(v), Sϕ(v) = −A−1 (2(v ○ ϕ−1)(v ○ ϕ−1)x + (v ○ ϕ−1)x(v ○ ϕ−1)xx) ○ ϕ,

5Note that, in the language of Example 2.28, this tells us that adTu u =
A−1 [uAux + 2uxAu]. This tells us, that the transpose to the adjoint operator exists for
g = C∞(S1), but not for g =Hk(S1).

6A more conceptual version of this calculation is

ϕtt = −A−1 (uAux −A(uux) + 2uxAu) ○ ϕ
= −A−1 ([∇u,A]u + 2uxAu) ○ ϕ.



66 Chapter 4

but it is not obvious that that S is smooth since ϕ ↦ ϕ−1 is not smooth
in DiffHk(S1); this is the price we have to pay for working in the Banach
category (in the Fréchet category S would have been smooth, but we would
not have a ”black-box” ODE methods).

The hope for proving that (ϕ, v)↦ Sϕ(v) is smooth even though the inversion
is not comes from its conjugation structure:

Sϕ(v) = (TRϕ○S○TRϕ−1)(v), S(u) = −A−1 ((u2 +
1

2
u2
x)x) = −A

−1○B○C(u),

where B(u) = u2 + 1
2u

2
x and C(u) = ux. The strategy is as follows: Define

(A−1)ϕ = TRϕ ○A−1 ○ TRϕ−1 , and similarly Bϕ and Cϕ. We will prove that,
for k large enough,

• (ϕ, v) ↦ (ϕ,Cϕ(v)) is smooth DiffHk(S1) × Hk(S1) → DiffHk(S1) ×
Hk−1(S1).

• (ϕ, v) ↦ (ϕ,Bϕ(v)) is smooth DiffHk(S1) ×Hk−1(S1) → DiffHk(S1) ×
Hk−2(S1).

• (ϕ, v)↦ (ϕ, (A−1)ϕ(v)) is smooth DiffHk(S1)×Hk−2(S1)→ DiffHk(S1)×
Hk(S1) in some neighborhood of (Id,0)

This will show that exp ∶ T DiffHk(S1) ≅ DiffHk(S1) ×Hk(S1) → DiffHk(S1)
is smooth in a neighborhood of (Id,0). However, this suffices for proving
that exp is smooth in the neighborhood of the zero section: Indeed, fix
ϕ0 ∈ DiffHk(S1), then, from the right-invariance, we have

exp(ψ, v) = exp(ψ ○ ϕ−1
0 , v ○ ϕ

−1
0 ) ○ ϕ0 = Rϕ0 ○ exp ○TRϕ−10

(ψ, v).

In a neighborhood of (ϕ0,0), TRϕ−10
(ψ, v) will be in the neighborhood of

(Id,0) in which we have shown that exp is smooth, and thus on this neigh-
borhood exp will be smooth as a composition of smooth maps (since right
translation is smooth, and ϕ0 and ϕ−1

0 are fixed).

For simplicity, let us see first that (ϕ, v) ↦ (ϕ,Bϕ(v)) is smooth. Writing
Bϕ explicitly, we have

Bϕ(v) = (v ○ ϕ−1)x ○ ϕ = vxϕ
−1
x ,

which is a continuous map DiffHk(S1) ×Hk−1(S1) → DiffHk(S1) ×Hk−2(S1)
as long as k − 1 > 1/2, since then ϕx is C∞ and bounded away from zero,
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and by the module property of Sobolev spaces (see Proposition 3.8). Since
Bϕ is linear in v, in order to show it is C∞ we only need to check the
derivative with respect to ϕ. Let t ↦ ϕ(t) be some curve with ϕ(0) = ϕ and
ϕt(0) = w ∈Hk(S1). Then, the derivative with respect to

∂ϕBϕ(w)(v) =
d

dt
∣
t=0

Bϕ(v) =
d

dt
∣
t=0

(vxϕ
−1
x ) = −vxϕ

−2
x wx,

which is again continuous as long as k − 1 > 1/2. Similarly,

∂nϕBϕ(w1, . . . ,wn)(v) = (−1)nϕ−n−1
x vx(w1)x . . . (wn)x.

Thus the map (ϕ, v) ↦ (ϕ,Bϕ(v)) is indeed smooth. The smoothness of
(ϕ, v) ↦ (ϕ,Cϕ(v)) follows a similar path (with more cumbersome calcula-
tions).

We now turn to (ϕ, v)↦ (ϕ, (A−1)ϕ(v)). First, we note that its inverse map
is (ϕ, v)↦ (ϕ,Aϕ(v)), and this map is a smooth map DiffHk(S1)×Hk(S1)→
DiffHk(S1)×Hk−2(S1) by similar calculations as for Bϕ (recall that A = 1−∂2

x),
provided that k − 2 > 1/2. In order to prove smoothness of the inverse,
one can calculate the derivative of (ϕ, v) ↦ (ϕ,Aϕ(v)) at (Id,0) and show
that it is invertible. By the inverse function theorem, this will imply that
(ϕ, v) ↦ (ϕ, (A−1)ϕ(v)) is smooth near (Id,0). This is the approach we will
take here. The more general approach (see [Kol17, §2, §4], [EK14]) is to look
at the map ϕ ↦ Aϕ as a map DiffHk(S1) → Aut(Hk−2(S1),Hk(S1)), and
show that the map P ↦ P −1 on automorphisms of Banach spaces is smooth
(in fact, real analytic). This will imply that ϕ ↦ (A−1)ϕ is smooth, and
consequently (ϕ, v)↦ (ϕ, (A−1)ϕ(v)) is smooth, since the evaluation map of
continuous linear maps between Banach spaces is a smooth operation.

Let us calculate the derivative of (ϕ, v)↦ (ϕ,Aϕ(v)) at (Id,0). Denote this
map by F = (F1, F2). Then

D1F1 = Id D2F1 = 0,

Since F2(ϕ, v) is linear in v, we have

D2F2(ϕ, v)(w) = F2(ϕ,w) = w −wxxϕ
−2
x +wxϕ

−3
x ϕxx.

In particular, at (Id,0), we have

D2F2(Id,0)(w) = (1 − ∂2
x)(w),
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which is, as we have seen before, an isomorphism Hk(S1)↦Hk−2(S1). Thus
we obtain that

DF(Id,0) = (
Id 0
∗ 1 − ∂2

x
) ∈ L(Hk(S1) ×Hk(S1),Hk(S1) ×Hk−2(S1)).

which is invertible (in fact, ∗ = 0 here). To conclude, we have completes the
proof of the following result:

Theorem 4.5 The exponential map of the right-invariant H1 metric on
DiffHk(S1), k ≥ 3, is a smooth map in a neighborhood of the zero section.
Moreover, expId ∶H

k(S1)→ DiffHk(S1) is a local diffeomorphism near zero.

4.4 Local existence for other metrics on DiffHk(M)

Here we follow [Kol17]. For a closed manifold (or Rn), a general right-
invariant metric on of the type

(u, v)A = ∫
M
g(Au, v)dVolg

whereA ∶ X(M)→ X(M) is a symmetric, positive definite, pseudo-differential
operator, the geodesic equation for geodesic emanating from the identity (also
know as Euler-Poincaré equation (EPDiff)) is given by

mt +∇um + (∇u)tm + (divu)m = 0, m ∶= Au,

where (∇u)t is the adjoint of ∇u with respect to the Riemannian metric g
of M (adjoint in both the vector and co-vector parts, so it is still a (1,1)-
tensor). Au is also known as the momentum. If A in invertible, can write
the equation as

ut = −A
−1 (∇uAu + (∇u)tAu + (divu)Au) ,

which is known as the Euler–Arnold equation for Diff(M). Note that the red
term shows us that this equation is not an ODE in the Eulerian variable u.
Moving to the Lagrangian variable ϕ, we obtain that the equation is

⎧⎪⎪
⎨
⎪⎪⎩

ϕt = v,

vt = {A−1 ([A,∇u]u − (∇u)tAu − (divu)Au)} ○ ϕ =∶ S(u) ○ ϕ
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where u = v ○ ϕ−1. Note the similarity to the H1 case we discussed in detail.
If A is a differential operator of order 1 at least (which corresponds to an H l

metric, l ≥ 1/2), then the order of the red term is the same as A, so, at least
from a perspective of counting derivative, there is a possibility of solving
this system by ODE methods. This also shows, why in the right-invariant
L2-case, A is the identity map, this method does not work.

The geodesic spray in this case is given by

(ϕ, v)↦ (ϕ, v, v, Sϕ(v)), Sϕ = TRϕ ○ S ○ TRϕ−1 .

Proving local well-posedness of the geodesic equation in DiffHk(M) then boils
down to prove that the map (ϕ, v)↦ Sϕ(v) is smooth (or at least Lipschitz).
This can be done for a wide variety of metrics — basically, on DiffHk(M), for
all H l-metrics such that l ≥ 1/2, and k − 1 > dimM/2 and k − 2l ≥ 0, [BEK15,
Theorem 5.4] (fractional l on Rd and Td), [MP10] (integer l for general closed
manifolds).

Note that if k − 1 > dimM/2, then the Hk-metric on DiffHk(M) is a strong
metric. In this case, the local well-posedness of the geodesic equation is im-
mediate by general results on the exponential maps of strong metrics (The-
orem 2.34). We will later show that in this case we also have long term
existence, and, in fact, metric and geodesic completeness.

4.5 Incompressible Euler: L2 metric on Diffµ(M)

We now turn to the right-invariant L2 metric on Diffµ(M). It is a restriction
of the right-invariant L2 metric on Diff(M), which seems to be bad news,
since, as we have seen in Section 4.2, it is badly behaved. However, it is
also the restriction of the non-invariant L2 metric on Diff(M), which we
defined in Example 2.35 on C∞(M,M), and which has a good local behavior
(smooth exponential map). We will denote the non-invariant L2 metric on
Diff(M) by Ḡ, and by G = Ḡ∣Diffµ(M) its restriction to Diffµ(M). Note, that
indeed G is right-invariant: For ϕ ∈ Diffµ(M) we have

Gϕ(u, v) = ∫
M
gϕ(x)(u(x), v(x))µ(x) = ∫

M
gx(u ○ ϕ

−1(x), v ○ ϕ−1(x))ϕ∗µ(x)

= ∫
M
gx(u ○ ϕ

−1(x), v ○ ϕ−1(x))µ(x) = GId(u ○ ϕ
−1, v ○ ϕ−1),
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where the transition to the second line follows by the fact that ϕ is volume-
preserving. We will therefore be able to use the simplicity of the non-invariant
metric on Diff(M) to study the invariant metric on Diffµ(M). This is the
approach used by Ebin and Marsden in their seminal paper [EM70]; the
presentation below borrows also from [Ebi15].

First, let us calculate the geodesic equation:

Theorem 4.6 (Arnold 1966) Let (M,g) be a closed Riemannian manifold. The
geodesic equation of the right-invariant L2 metric on Diffµ(M),

Gϕ(v1, v2) = ∫
M
gϕ(x)(v1(x), v2(x))µ(x), vi ∈ Tϕ Diffµ(M) ≅ Xµ(M) ○ ϕ

is, in Eulerian coordinates, in incompressible Euler equation

⎧⎪⎪
⎨
⎪⎪⎩

ut +∇uu = −∇p

divµ u = 0,
(4.8)

where u is a vector field and p a scalar funcion.

Before proving it, let us first recall the decomposition of a vector field into its
solonoidal and gradient parts, that is, the Hodge-Helmholtz decomposition:
Let u be a vector field; we can decompose it into

u = v +∇f, divµ v = 0,

v is uniquely determined, and f is uniquely determined up to a constant.
Moreover, v and ∇f are L2-orthogonal (with respect to g), so we can write

v = Pu, ∇f = Qu,

where
P ∶ X(M)→ Xµ(M) Q ∶ X(M)→ Xµ(M)⊥

are the orthogonal projections. We can write Q explicitly via

Qu = ∇∆−1 divµ u. (4.9)

Indeed:
∇∆−1 divµ(v +∇f) = ∇∆−1∆f = ∇f = Qu.
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Note that we used the fact that ∆−1 is well defined in this case. This is true
only functions of zero mean, since constant functions are harmonic functions
on M ; however, since they are the only harmonic functions (which follows
from integration by parts), then ∇∆−1 is well-defined (one can also put the
projection on zero mean function between div and ∆−1). All the above ar-
guments hold also for Sobolev vector fields XHk

(M).

We can now prove Theorem 4.6.

Proof : Let ϕ ∶ [0,1]→ Diffµ(M), with ϕ(0) = Id, whose energy is

E(ϕ) =
1

2 ∫
1

0
∫
M
gϕ(x)(ϕt(x), ϕt(x))dµ(x)dt.

Let ϕ ∶ R × [0,1] → Diffµ(M) be a variation of ϕ, fixing the endpoint, then
Then, repeatedly using the fact that ϕ(s, t, ⋅) is volume preserving, we have

∂sE(ϕ(s, )) =
1

2 ∫
1

0
∫
M
∂s∣s=0gϕ(ϕt, ϕt)µdt = ∫

1

0
∫
M
gϕ(∇

g
∂s
ϕt, ϕt)µdt

= ∫
1

0
∫
M
gϕ(∇

g
∂t
ϕs, ϕt)µdt

= ∫
1

0
∫
M
∂tgϕ(ϕs, ϕt) − gϕ(ϕs,∇

g
∂t
ϕt)µdt

= ∫
M
gϕ(ϕs, ϕt)∣t=1 − gϕ(ϕs, ϕt)∣t=0 µ − ∫

1

0
∫
M
gϕ(ϕs,∇

g
∂t
ϕt)µdt

= −∫
1

0
∫
M
gϕ(ϕs,∇

g
∂t
ϕt)µdt

= −∫
1

0
∫
M
gId(ϕs ○ ϕ

−1,∇g
∂t
ϕt ○ ϕ

−1)µdt,

Now denoting u = ϕt ○ ϕ−1∣s=0 and w = ϕs ○ ϕ−1∣s=0, both are maps [0,1] →
Xµ(M), we obtain

δEϕ(w) = −∫
1

0
∫
M
g(w,ut +∇uu)µdt.

Therefore, if ϕ is a geodesic, this equals to zero for every w ∶ [0,1]→ Xµ(M),
and thus

ut +∇uu ∈ Xµ(M)⊥.

Since Xµ(M)⊥ consists of gradient of functions, we obtain the result. Note
that we can also write the equation as

ut +∇uu = Q(ut +∇uu) = Q(∇uu),
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where the second equality holds since divµ(ut) = ∂t(divµ(u)) = 0. n

We now want to prove local existence of the geodesic equation. The idea
is similar — we will prove that for k large enough, the geodesic spray in

DiffH
k

µ (M) is smooth, and as such, the exponential map exists as a smooth
map on a neighborhood of the zero section. In the next section, we will see
that from that, we get existence also in Diffµ(M).

Theorem 4.7 (Existence for incompressible Euler in Hk) Let (M,g) be a

closed Riemannian manifold, and let k > dimM
2 + 1. Then the exponential

map of the right-invariant L2-metric on DiffH
k

µ (M) is a smooth map on
a neighborhood of the zero section. In particular, this shows that the
incomporessible Euler equation (4.8) has a unique solution, at least for
small times, for every initial condition u0, and that the solution depends
continuously on the u0.

Comment: Note that for the solution in Lagrangian coordinates we ob-
tain smooth dependence on the initial condition, as the exponential map
is smooth, that is u0 ↦ expId(u0) is a smooth map. However, in Eule-
rian coordinates we only obtain only continuous dependence: Denote by
ϕ(t) the solution in Lagrangian coordinates, then u0 ↦ u∣t = 1 is the map
u0 ↦ ϕt(1, ⋅) ○ ϕ−1(1, ⋅), and the map ϕ ↦ ϕ−1 is merely continuous [EM70,
Theorem 15.2(ii)–(iii)]. Note that this is not just a matter of our methods,
but it has been shown that the solution map in Hk is not even uniformly
continuous [HM10]. We will later see that the map u0 ↦ expid(u0) is smooth
also in the smooth category. In this case, since Diffµ(M) is a Lie group, the
data-to-solution map in smooth also in the Eulerian variable.

Proof : Denote by Ḡ the non-invariant L2 metric on Diffk(M), and by G =
Ḡ∣Diffkµ(M) the right-invariant L2 metric on Diffkµ(M). Recall that Diffkµ(M)

is a closed submanifold of Diffk(M) (Theorem 3.12). In Example 2.35 we
have shown the following, regarding the metric Ḡ (everything was discussed
in smooth settings, but the same arguments hold also in Sobolev settings):
We showed that the geodesic spray S̄ ∈ X(T Diffk(M)) exists and is given by

S̄(u) = σ ○ u u ∈ Γ(ϕ∗TM),
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where σ ∈ X(TM) is the geodesic spray of M . In particular, the existence of
S̄ is equivalent to the existence of a covariant derivative ∇̄ (and both imply
that the exponential map exists as a smooth map). In order to prove the
the exponential map exists as a smooth map for G as well, it is sufficient to
prove that its covariant derivative ∇ exists as a smooth map. However, there
is a simple relation between ∇̄ and ∇, as in finite dimensional Riemannian
geometry:

∇ = P ○ ∇̄,

where P ∶ T Diffk(M)∣Diffkµ(M) → T Diffkµ(M) is the Ḡ-orthogonal projection.

Thus, it is sufficient to prove that P is a smooth map. Recall that we denoted
by P ∶ Xk(M)→ Xk

µ(M) the orthogonal projection on divergence-free vector
fields. It is immediate that

Pϕ(v) = P (v ○ ϕ−1) ○ ϕ.

Thus P is a twisted map based on P , of a similar structure as we have seen
in the previous Sections. From (4.9) we have that

P = I −Q = I −∇∆−1 divµ,

and thus P is a twisted pseudo-differential operator of order 0, whose smooth-
ness follows similar lines as Theorem 4.5 and Section 4.4. n

4.6 Regularity

In this section we will see how right-invariance can be used to obtain regu-
larity. The idea dates back to Ebin–Marsden [EM70, §12], but we will follow
a generalization due to Bruveris [Bru17]:

Theorem 4.8 (Exchanging regularities of a Diff(M)-equivariant map) Let
M be a compact manifold, N and P smooth manifolds (without boundary).
Let k − 1 > dimM/2, 0 ≤ l ≤ q, and F ∶ U ⊂Hk(M,N)→Hk(M,P ), where U
is open, be a DiffHk(M)-equivariant map, i.e., F (u ○ ϕ) = F (u) ○ ϕ.
Then, if F is Cq, then it maps Hk+l(M,N) to Hk+l(M,P ), and
F ∶ U ∩Hk+l(M,N)→Hk+l(M,P ) is Cq−l.
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An immediate corollary is

Corollary 4.9 Under the above hypotheses, if F ∶ Hk(M,N) → Hk(M,P ) is
C∞, then F ∶ C∞(M,N)→ C∞(M,P ) is C∞.

In our case, let g be a smooth, right-invariant metric on a compact manifold
without boundary M . Let U ⊂ T DiffHk(M) ≅ Hk(M,TM) be a neigh-
borhood of the zero section on which the exponential map is defined, and
consider

F = exp ∶ U → DiffHk(M) ⊂Hk(M,M)

We immediately obtain

Corollary 4.10 Assume G is a smooth, right-invariant Riemannian metric
on DiffHk(M), where M is a compact manifold without boundary M , and
k−1 > dim(M)/2. If the exponential map is smooth on an open neighborhood
of the zero section of T DiffHk(M), then the exponential map exists and is
smooth on DiffHk+l(M) for any l > 0, and on Diff(M).

Thus we can lift all the results from the previous section to the smooth cat-
egory. This result is known as a no-loss-no-gain result: namely, if we con-
sider a right-invariant metric on DiffHk(M), then the geodesic will continue
to be as regular as it initial condition. In particular, if the initial condition
happens to be smooth, then the geodesic will continue being smooth as long
as it exists.

We now prove Theorem 4.8. We will need the following generalization of
Proposition 3.9, (see also Footnote 1):

Lemma 4.11 Let k − 1 > dimM/2 and q ∈ N. Then

Hk+q(M,Rn) ×DiffHk(M)→Hk(M,Rn), (f,ϕ)↦ f ○ ϕ

is a Cq-map.

Proof : (of Theorem 4.8) To simplify notation, we will assume that F is define
on the whole Hq(M,N) (All our arguments will be local in nature so it will
not matter).
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Step I: reduction fo N = Rn and P = Rm. Let us embed N and P into
Euclidean space, and let N0 ⊂ Rn0 and P0 ⊂ Rm0 be tubular neighborhoods
of N and P . Denote the inclusions and retraction maps by ιN ∶ N → N0

and rN ∶ N0 → N and similarly for p. Note that we can extend F to F0 ∶
Hk(M,N0)→Hk(M,P0) via

F0(u0) = ιp ○ F ○ rN ○ u0.

Note that if F is Cq, then F0 is also Cq, since composition with C∞ func-
tion is a C∞ operator on Sobolev spaces. This extension is still DiffHk(M)-
equivariant, as

F0(u0 ○ ϕ) = ιp ○ F (rN ○ u0 ○ ϕ) = ιp ○ F (rN ○ u0) ○ ϕ = F0(u0) ○ ϕ.

Since Hk(M,N0) is an open subset of Hk(M,Rn0), and similarly for P0.
Thus, if the theorem is proven for Euclidean target spaces, the result holds for
F0 ∶Hk(M,N0)→Hk(M,P0) as well. Thus we obtain that F0 ∶Hk+l(M,N0)→
Hk+l(M,P0) is Cq−l; since

F (u) = rp ○ ιpF (rN ○ ιN ○ u) = rp ○ F0(ιN ○ u),

we obtain that F ∶Hk+l(M,N)→Hk+l(M,P ) is Cq−l as well.

Step II: If F ∶ Hk → Hk is C1, then F ∶ Hk+1 → Hk+1 is C0. Let
X1, . . . ,XA ∈ X(M) be smooth vector fields such that

span{X1(x), . . . ,XA(x)} = TxM

for all x ∈M . Then, an equivalent norm for Hr(M,Rn) is

∥u∥Hr ∼ ∥u∥Hr−1 +
A

∑
j=1

∥Tu.Xj∥Hr−1 . (4.10)

Let ϕj ∶ (−ε, ε)→ Diff(M) be any smooth map satisfying ϕj(0) = Id, ϕ̇j(0) =
Xj (for example, take the flow of Xj). Fix u ∈Hk+1(M,Rn). By Lemma 4.11,
the map

R→Hk(M,Rn), t↦ u ○ ϕj(t)

is C1. Since F ∶Hk →Hk is C1, we obtain that the map

R→Hk(M,Rm), t↦ F (u ○ ϕj(t)) = F (u) ○ ϕj(t)
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is C1. Differentiating at t = 0, we obtain

DFu(Tu.Xj) = T (F (u)).Xj,

and taking the Hk-norm on both sides we obtain

∥T (F (u)).Xj∥Hk ≤ ∥DFu∥L(Hk,Hk)∥Tu.Xj∥Hk

hence by (4.10),

∥F (u)∥Hk+1 ≲ ∥F (u)∥Hk + ∥DFu∥L(Hk,Hk)∥u∥Hk+1 ,

hence F (u) ∈Hk+1(M,Rm).

Continuity follows in a similar manner: By differentiating t↦ F (u ○ϕj(t))−
F (v ○ ϕj(t)), we obtain

∥F (u)−F (v)∥Hk+1 ≲ ∥F (u)−F (v)∥Hk+∥DFu−DFv∥L(Hk,Hk)∥u∥Hk+1+∥DFv∥L(Hk,Hk)∥u−v∥Hk+1 .

If u, v are close in Hk+1, then ∥u − v∥Hk+1 is small, and since they are close
in Hk and ∥DFu −DFv∥L(Hk,Hk) is small (since F ∶ Hk → Hk is C1). Thus
F ∶Hk+1 →Hk+1 is continuous.

Step III: Induction. The rest of the proof does not involve the equiv-
ariance explicitly, but is rather a clever induction, and we will not repeat it
here. See [Bru17, Steps 2–3, pp. 15–16]. n

Note that we can extend Theorem 4.8 to functions that are equivariant with
respect to submanifolds of the whole diffeomorphism groups. Namely, the
place where the equivariance was needed was in equivariance of the map with
respect to the flow of the vector fields X1, . . .XA (see Step II of the proof).
Thus, whenever we have spanning vector fields such that F is invariant under
their action, we obtain the same result. In particular, this is true for functions
that are equivariant under volume-preserving diffeomorphisms:7

7This combines [Bru17] with the main idea of [EM70, Lemma 12.2].
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Theorem 4.12 (Exchanging regularities of a Diffµ(M)-equivariant map)
Let M be a compact manifold with a volume form µ, N and P smooth
manifolds (without boundary). Let k − 1 > dimM/2, 0 ≤ l ≤ q, and

F ∶ U ⊂ Hk(M,N) → Hk(M,P ), where V is open, be a DiffH
k

µ (M)-
equivariant map, i.e., F (u ○ ϕ) = F (u) ○ ϕ. Then, if F is Cq, then it maps
Hk+l(M,N) to Hk+l(M,P ), and F ∶ U ∩Hk+l(M,N)→Hk+l(M,P ) is Cq−l.

Proof : All we need to show is that we can construct divergence-free vector
fields X1, . . .XA ∈ Xµ(M) such that, for every x ∈M ,

span{X1(x), . . . ,XA(x)} = TxM.

Indeed, the flow of these vector fields generates volume-preserving diffeomor-
phisms, on which F is equivariant. By covering M with coordinate patches,
we can assume that M = Rn and that we want need to prove this for x in
the unit disc Dn. In these coordinates, we have that µ = ρdx1 ∧ . . . ∧ dxn for
some positive smooth function ρ. Let λ ∈ C∞

c (Rn) be a bump function, such
that λ∣Dn ≡ 1. Define f(x) = λ(x)x2, and let

X1 = (
1

ρ
∂2f,−

1

ρ
∂1f,0, . . . ,0) .

X1 is divergence-free: Indeed

divµ(X1) =
1

ρ
∂i(ρX

i
1) =

1

ρ
(∂1∂2f − ∂2∂1f) = 0.

Moreover,

X1∣Dn =
1

ρ
e1.

Similarly, we can find Xi ∈ Xµ(M) such that Xi∣Dn = ρ−1ei. This concludes
the proof. n

Note that we cannot directly obtain the equivalent of Corollary 4.10 also

holds for right-invariant metrics on DiffH
k

µ (M), since we do not have an

identification of T DiffH
k

µ (M) with a Sobolev space. However, given the
construction ofXi we can apply the same method of proof to obtain regularity
of the exponential map (see [EM70, Theorem 12.1]).
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4.6.1 Boundary value problem regularity

Note that what we proved so far is initial value problem regularity —
that is, that if the initial data if smooth, the geodesic flow remains smooth
as long as it exists. A related question is boundary value problem regu-
larity:

Question:

1. Global question: Assume that ϕ ∈ Diff(M) such that there exists an
Hk-geodesic from Id to ϕ.8 Is the geodesic smooth for all time?

2. Local question: Corollary 4.10 implies that expId ∶ U ⊂ X(M) →
Diff(M) is a smooth map in many cases. Is it a local diffeomorphism?
(Note that for the Banach case this is immediate by the inverse function
theorem since (D expId)0 = IdX(M).)

Note that, in view of the initial value regularity, the first question can be
rephrased as

If ϕ = expid(X) ∈Hk+l, is X ∈Hk+l?

For this we can give a conditional result [Bru17, §5]:

Proposition 4.13 Let g be a smooth, right-invariant metric on Diffk(M) for

some k−1 > dimM/2, with a smooth exponential map exp ∶ U ⊂ T Diffk(M)→
Diffk(M). Assume that ϕ1 = exp(ϕ0,X), where ϕ0, ϕ1 ∈ Diffk+l(M) for some
1 ≤ l ≤ ∞. Then, if π × exp ∶ U → Diffk(M) × Diffk(M) is locally invertible
around X, then X ∈ T Diffk+l(M).

The proof is immediate by noting that the local inverse is still Diffk(M)-
equivariant. This relates the boundary value problem to the question of
conjugate points:

Definition 4.14 Let (M, g) be a Riemannian manifold with a smooth expo-
nential maps. Two points p, q ∈ M, connected by a geodesic γ are called
conjugate points along γ, if d(expp)γ̇(0) ∶ TpM→ TqM is non invertible.

8note that we showed that expid ∶ V ⊂ XHk(M)→ DiffHk(M) is a local diffeomorphism
in many cases, so this assumption holds in an Hk neighborhoow of Id.
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In our case, if ϕ0 and ϕ1 are nonconjugate in (Diffk(M), g) along a geodesic
ϕ(t), then π × exp ∶ U → Diffk(M) × Diffk(M) is locally invertible around
ϕ̇(0). We therefore obtain

Corollary 4.15 Let g be a smooth, right-invariant metric on Diffk(M) for
some k − 1 > dimM/2. Let ϕ0, ϕ1 ∈ Diff(M) that are nonconjugate along a
geodesic ϕ(t), then ϕ(t) is smooth for all t ∈ [0,1].

The boundary value regularity problem is thus closely related to the study
of conjugate points. Some results about them (basically that for metrics of
order > 1/2 they are isolated along finite geodesic segments) can be found in
[MP10].

Non-conditional boundary value results are often of a local nature:

• For the Camassa–Holm equation (H1-metric on Diff(S1)), it is proven
in [CK02, Lemma 4, Theorem 5] that expId is a local diffeo in the
smooth category.

• In [KLT08], this was proven for Hk metrics, k ≥ 1, on Diff(T2).

• A global, unconditional, boundary regularity result for the L2 metric
on Diffµ(M) (incompressible Euler equation), when dimM = 2 was
recently announced by Patrick Heslin.

4.7 The miracle of the Hunter–Saxton equa-

tion

In this last part of this chapter, we will another way in which the viewpoint
of a PDE as a geodesic equation can give us tools to solve it. The PDE
that we will study is the Hunter–Saxton equation that was introduced by
Hunter and Saxton in 1991 in the study of nematic liquid crystals [HS91]. It
was given a geometric interpretation by Khesin and Misio lek in 2003 [KM03].
The equation is

utxx + 2uxuxx + uuxxx = 0, (4.11)

where u is a time-dependent vector field of a one-dimensional manifold. We
will study two cases:
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• The periodic case u ∶ [0, T ) × S1 → R.

• The non-periodic case u ∶ [0, T ) ×R→ R.

We will generally follow [Len07] for the periodic case and [BBM14] for the
non-periodic case.

Following a calculation similar to § 4.3, it is easy to see that this is the
geodesic equation of the Ḣ1 metric:9

Gϕ(u, v) = ∫
M
(u ○ ϕ−1)x(v ○ ϕ

−1)x dx = ∫
M
uxvxϕ

−1
x dx (4.12)

where M is either S1 or R. We need to be more precise now, since in the
periodic case G is not a metric but just a semi-metric, and in the non-periodic
case we need to specify decay conditions. We will therefore work on these
spaces:

• In the periodic case we will consider G as a metric on Rot(S1)∖Diff(S1)
of the right-cosets of diffeomorphism of S1 modulo rotations, which we
will identify with the set

MS1 = {ϕ ∈ Diff(S1) ∶ ϕ(0) = 0} .

The Lie algebra in this case is

mS1 = {u ∈ C∞(S1) ∶ u(0) = 0}

• In the non-periodic case, we will consider G to be a metric on the space
of H∞ diffeomorphism that decay to the identity at minus infinity

MR = {ϕ = Id + f ∶ R→ R ∶ f ′ ∈W∞,1(R), f ′ > −1, lim
x→−∞

f(x) = 0} .

The Lie algebra in this case is

mR = {f ∶ R→ R ∶ f ′ ∈W∞,1(R), lim
x→−∞

f(x) = 0} .

We can also impose other decay conditions on f ′.

9One can also observe that the Camassa–Holm equation (geodesic equation of H1

metric) is essentially the Hunter–Saxton equation (Ḣ1 metric) plus the Burgers equation
(L2 metric).
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Why in the non-periodic case we need to work with MR and not with the

smaller space DiffW
∞,1

(R)? Let us look on the Christoffel symbol of G:
Differentiating (4.12), we obtain that

DGϕ(w)(u, v) = −∫
R
uxvxwxϕ

−2
x dx,

and thus

Gϕ(Γϕ(u, v),w) = −
1

2 ∫R

uxvx
ϕx

wxϕ
−1
x dx,

hence

Γϕ(u, v)(x) = −
1

2 ∫
x

−∞

ux(y)vx(y)

ϕx(y)
dy.

Now, even if ϕ = Id and u, v are compactly supported, then Γϕ(u, v) does
not decay as x → ∞, but we only have that Γϕ(u, v) ∈ mR. In other words,
the Christoffel symbol does not exist on smaller spaces with decay on both
boundaries.10

We now turn to explicitly solving the geodesic equation:

Theorem 4.16 (Periodic Hunter–Saxton is a flow on an ∞-dimensional sphere)
The map

Ψ ∶ (MS1 ,G)→ (C∞(S1), L2), Ψ(ϕ) = 2
√
ϕx,

is an isometric embedding, whose image is an open subset of the sphere:

Ψ(MS1) = US1 ∶= {f ∈ C∞(S1) ∶ f > 0, ∥f∥L2 = 2} .

Proof : Let u, v ∈ TϕMS1 . Then we have

TΨϕu =
ux

√
ϕx
,

10In the periodic case the Christoffel symbol has a somewhat more complicated formula,
since we need to maintain the constraint ∫S1 udx = 0 also for the symbol. See [Len07, §2]
for an explicit formula.
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and thus, by (4.12),

⟨TΨϕu,TΨϕv⟩L2 = ∫
S1

ux
√
ϕx

vx
√
ϕx

dx = Gϕ(u, v),

hence Ψ is an isometric immersion. Its image is indeed US1 , since ∫S1 ϕx dx = 1
(since we identify S1 with [0,1]). It is obviously an embedding, as we can
write the inverse map

Ψ−1 ∶ U →MS1 , Ψ−1(f)(x) =
1

4 ∫
x

0
f 2(t)dt.

n

Corollary 4.17 (Explicit solutions for periodic Hunter–Saxton) Let
u ∶ [0, T ) → mS1 be a solution of (4.11) with initial data u(0) = u0.
Then the integral curve ϕ ∶ [0, T ) →MS1 of u, starting from the identity, is
given by

ϕ(t, x) = x −
1 − cos(2t)

8 ∫
x

0
(4 − u′0(y)

2)dy +
u0(x)

2
sin(2t).

In particular, the maximal time of existence of the solution is given by

T ∗(u0) =
π

2
+ arctan(

1

2
min
x∈S1

u′0(x)) <
π

2
.

Proof : Since Ψ ∶ MS1 → U is an isometry, we can find the geodesics in U
(with the induced metric from the L2 metric on C∞(S1)), and apply Ψ−1.
This is a standard calculus of variations with constraint problem: Let f0, f1 ∈
U , and f ∶ [0,1] → U curve between them. We need to minimize the L2

energy ∫
1

0 ∫S1 f 2(t, x)dxdt, subject to the constraint ∥f(t, ⋅)∥L2 = 2. This is
equivalent to the minimization problem of the energy

E(f) = ∫
1

0
∫
S1
f 2
t (t, x)dxdt − ∫

1

0
λ(t) (∫

S1
f 2(t, x) − 4dx) dt.

The variation of this energy is then

dE(f).δf = −2∫
1

0
∫
S1

(ftt + λf)δf dxdt,
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and thus we obtain the system

ftt(t, x) + λ(t)f(t, x) = 0, ∫
S1
f 2 dx = 4. (4.13)

Multiplying the ODE by f and integrating, we obtain

∫
S1
fftt dx = −λ(t)∫

S1
f 2 dx = −4λ(t).

Differentiating the integral equality in (4.13) once and twice with respect to
t, we obtain

2∫
S1
fft dx = 0, 2∫

S1
fftt + f

2
t dx = 0. (4.14)

Thus

λ(t) =
1

4 ∫S1
f 2
t dx = const,

since a geodesic is of constant speed. In order to simplify the calculations
below, we will rescale time so that λ(t) = 1. Thus

f(t, x) = A(x) cos (t) +B(x) sin (t) .

Now, let f(t, ⋅) = Ψ(ϕ(t, ⋅)). Since ϕ(0, ⋅) = Id, we have that A = f(0, ⋅) = 2.
Since ϕt(0, ⋅) = u0, we have that B = ft(0, ⋅) = TΨid(u0) = u′0. Thus we obtain

√
ϕx(t, x) =

1

2
f(t, x) = cos (t) +

u′0(x)

2
sin (t)

from which the solution formula follows by integration.

The solution continues to exist as long as f > 0, that is, as long as t is such

that cos (t)+
u′0(x)

2 sin (t) > 0 for all x ∈ S1, from which the formula for T ∗(u0)
follows immediately. n

Theorem 4.18 (Non-periodic Hunter–Saxton is a flow on a flat space) The
map

Ψ ∶ (MR,G)→ (W∞,1(R), L2), Ψ(ϕ) = 2(
√
ϕx − 1),

is an isometric embedding, whose image is the open, convex subset:

Ψ(MR) = UR ∶= {f ∈ C∞(S1) ∶ f > −2} .
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The proof is essentially the same as of Theorem 4.16, noting that

Ψ−1(f)(x) = x + ∫
x

−∞
((
f(y)

2
+ 1)

2

− 1) dy.

Note that indeed Ψ−1(f) ∈MR.

Corollary 4.19 (Explicit solutions for non-periodic Hunter–Saxton) Let u ∶
[0, T ) → mR be a solution of (4.11) with initial data u(0) = u0. Then the
integral curve ϕ ∶ [0, T )→MR of u, starting from the identity, is given by

ϕ(t, x) = x + ∫
x

−∞

⎛

⎝
(
tu′0(y)

2
+ 1)

2

− 1
⎞

⎠
dy. (4.15)

In particular, the maximal time of existence of the solution is given by

T ∗(u0) =

⎧⎪⎪
⎨
⎪⎪⎩

∞ inf u′0 ≥ 0

− 2
inf u′0

inf u′0 < 0.

Proof : The proof follows a similar line as (4.17), only it is much simpler:
UR in this case is an open subset of an inner-product space, and thus the
geodesics there are straight lines, and in particular, the geodesic starting
from

f(0, ⋅) = Ψ(Id) = 0,

in direction
ft(0, ⋅) = TΨId(u0) = u

′
0

is simply
f(t, x) = tu′0(x).

n

Comment:

1. Theorem 4.16 implies that the right-invariant Ḣ1 metric on S1 has
constant positive sectional curvature, and Theorem 4.18 implies that
right-invariant Ḣ1 metric on R has zero curvature.
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2. Consistently with what we have seen regarding the Christoffel sym-
bol, the solution map (4.15) implies that indeed MR is the correct
space to consider, and that we cannot simply consider the smaller space
DiffW∞,1(R), since, if u0 is not identically zero, we obtain that for any
t > 0, limx→∞ϕ(t, x) − x > 0. In other words, there is no exponential
map of the right-invariant Ḣ1 metric on DiffW∞,1(R).

3. Everything that was done here can be done also for maps with finite
(e.g., Sobolev) regularity, as is evident from the solution maps.
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Chapter 5

Geodesic distance

In this chapter we consider the geodesic distance of weak right-invariant
Riemannian metrics on Diff(M), where M is a closed Riemannian manifold;
see Definition 2.36 for the definition of the geodesic distance.

In particular, we will investigate for which metrics the geodesic distance
collapses (fails to separate points), and for which it induces a true metric
on Diff(M). Since the geodesic distance is strictly infinite between elements
that are not path-connected (and these manifolds, are, in general, not, for
example if M is closed and oriented), we will consider only the connected
component of the identity map; with a slight abuse of notation, we will still
denote this connected component by Diff(M).

In the definition of the geodesic distance, only the norm induced by the
Riemannian metric plays a role, so instead of specifying an inner product on
the Lie algebra X(M), we will specify a norm, ∥ ⋅∥A. Then the norm on some
ξ ∈ Tϕ Diff(M) is given by right-translation,

∥ξ∥ϕ,A ∶= ∥ξ ○ ϕ−1∥A,

as usual. We will denote the geodesic distance induced by ∥ ⋅∥A by distA, and
the length of a curve ϕ ∶ [0,1]→ Diff(M) by LenA(ϕ).

Notice that the right invariance immediately implies that

distA(ϕ,ψ) = distA(Id, ψ ○ ϕ
−1),

and thus it is sufficient to consider distances from the identity in order to
investigate collapse/non-collapse of the metric.
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As before, we will be mainly interested in Sobolev norms A = W s,p. For an
integer s, these are defined similar as the Hk metrics in Section 4.1. However,
it will be illuminating to consider also fractional s; we will not delve too
much on their definition here, and we will mainly use the fact that Sobolev
embeddings work the same way for fractional s. See, e.g., [JM19b, Section 2]
for explicit definitions (although other notions of fractional Sobolev spaces
are likely to work as well).

5.1 Non-vanishing geodesic distance

The simplest criterion that guarantees non-collapse of distA was observed in
[BBHM13, Theorem 4.1]:

Theorem 5.1 If ∥ ⋅ ∥A controls ∥ ⋅ ∥L∞, that is, if there exists C > 0 such that

∥u∥L∞ ≤ C∥u∥A,

then distA separates points.

Proof : Let Id ≠ ϕ1 ∈ Diff(M), and let ϕ ∶ [0,1]→ Diff(M) be a path from Id
to ϕ1 = ϕ(1, ⋅). Since ϕ1 ≠ Id, then there exists x ∈ M such that ϕ1(x) ≠ x.
We therefore have that ϕ(⋅, x) is a path from x to ϕ(x), and thus

distM(x,ϕ1(x)) ≤ ∫
1

0
∣∂tϕ(t, x)∣dt ≤ ∫

1

0
∥∂tϕ(t, ⋅)∥L∞ dt

= ∫
1

0
∥∂tϕ(t, ϕ

−1(t, ⋅))∥L∞ dt

≤ C ∫
1

0
∥∂tϕ ○ ϕ

−1∥A dt = C LenA(ϕ).

Taking an infimum over all paths from Id to ϕ1 we obtain the result. n

In other words, this result tells us that if the norm controls the movement of
a single point, then the distance does not collapse. A second criterion that
guarantees non-collapse is a control over the L1 norm of the divergence of a
vector field (i.e., the infinitesimal volume change), as was shown by Michor
and Mumford [MM05, Theorem 5.7]:
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Theorem 5.2 Assume there exists C > 0 such that

∥u∥L1 + ∥divµ(u)∥L1 ≤ C∥u∥A,

where µ = Volg is a volume form on M . Then distA separates points.

Proof : Let Id ≠ ϕ1 ∈ Diff(M), and let ϕ ∶ [0,1]→ Diff(M) be a path from Id
to ϕ1 = ϕ(1, ⋅). Denote ψ(t, ⋅) ∶= ϕ−1(t, ⋅), and u = ∂tϕ ○ ϕ−1. Differentiating
ψ(t, ϕ(t, x)) = x with respect to t we obtain that

∂tψ = −Dψ ○ u,

where D is the spatial differentiation.

Let ϕ1 ≠ Id. First, assume that ϕ1 is not volume preserving; then there exists
a real-valued function f on M such that

∫
M
f(ψ(1, x))dVolg(x) ≠ ∫

M
f(x)dµ(x).

We have

∫
M
f(ψ(1, x)) − f(x)dµ(x)

= ∫
1

0
∫
M
∂tf(ψ(t, x))dµ(x)dt

= ∫
1

0
∫
M
(df ○ ψ)(∂tψ(t, x))dµ(x)dt

= −∫
1

0
∫
M
(df ○ ψ)(Dψ(t, u(t, x)))dµ(x)dt.

Now, notice that

divµ(f(ψ(t, ⋅)) ⋅ u) = f(ψ(t, ⋅)) ⋅ divµ(u(t, ⋅)) + dfψ(t,⋅)(Dψ(t, u(t, ⋅))),
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and thus we have

∣∫
M
f(ψ(1, x)) − f(x)dVolg(x)dt∣

= ∣∫
1

0
∫
M
f(ψ(t, x)) ⋅ divµ(u(t, ⋅)) − divµ(f(ψ(t, x)) ⋅ u)dµ(x)dt∣

= ∣∫
1

0
∫
M
f(ψ(t, x)) ⋅ divµ(u(t, ⋅))dµ(x)dt∣

≤ sup ∣f ∣∫
1

0
∫
M

∣divµ(u(t, ⋅))∣dµdt

≤ C sup ∣f ∣∫
1

0
∥u∥A dt = C sup ∣f ∣LenA(ϕ).

Again, taking the infimum over all paths ϕ completes the proof for the case
ϕ1 is not volume preserving. Now, if ϕ1 is volume preserving; in this case, we
simply need to change the volume form, that is, to choose a positive function
ρ ∈ C∞(M) such that

∫
M
f(ψ(1, x))ρ(x)dµ(x) ≠ ∫

M
f(x)ρ(x)dµ(x).

For some f ∈ C∞(M). This can always be done (verify!). Now the proof
continuous in a similar manner, only we take the the divergence with respect
to the volume form ρµ instead of µ. Since

divρµ(u) = divµ(u) + dρ(u),

we obtain similar estimates, involving the C1 norm on ρ and the L1 norm of
u. n

Note that this proof shows that the right-invariant L2 metric on the group
of volume preserving diffeomorphisms Diffµ(M) separates points — in this
case divµ(u) = 0 so only control of the L1 norm of u is needed.

5.2 Vanishing geodesic distance

In this section we will show that the mechanisms described above — control-
ling the movement of a point and controlling volume change — are essentially
the only ones that play a role. That is, if ∥ ⋅ ∥A does not control them, the
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geodesic distance collapses. The collapse of the geodesic distance for right-
invariant metrics was first observed by Eliashberg and Polterovich [EP93] in
the context of Hamiltonian symplectomorphisms for some bi-invariant met-
rics. For the full diffeomorphism group it was first observed by Michor and
Mumford [MM05] for the L2 case, and then generalized in a sequence of works
[BBHM13, BBM13, JM19b, BHP20], culminating in a full classification for
Sobolev metrics in [JM19a].

5.2.1 General considerations

In order to show collapse of the geodesic distance, one should construct a
sequence of paths ϕn from Id to some fixed ϕ1 such that Len(ϕn) → 0. The
paths are usually constructed by specifying the vector fields un whose flows
are ϕn; a technical difficulty in achieving that is verifying that all these flows
indeed hit ϕ1 at time t = 1. In [EP93], Eliashberg and Polterovich found
an ingenious way of bypassing this problem, via the use of “displacement
energy”, defined below. Here we follow [BHP20], which generalized their
method so to adapt it to right-invariant metrics (see also [She17]).

Definition 5.3 The displacement energy of a set V ⊂ M with respect to
distA is defined by

EA(V ) ∶= inf {distA(Id, ϕ) ∶ ϕ ∈ Diff(M), ϕ(V ) ∩ V = ∅} .

That is, displacement energy measures the cost of moving a set V to a disjoint
set. Obviously, if distA(Id, ϕ) = 0, then there is some open set V such that
EA(V ) = 0. Remarkably, the converse is also true:

Proposition 5.4 Assume that for every ϕ ∈ Diff(M), the left multiplication
operator Lϕ ∶ Diff(M) → Diff(M), Lϕ(ψ) = ϕ ○ ψ is smooth and Lipschitz
with respect to distA, that is

∣Lϕ∣ ∶= inf {C > 0 ∶ d(ϕϕ0, ϕϕ1) ≤ Cd(ϕ0, ϕ1), ∀ϕ0, ϕ1 ∈ Diff(M)} <∞.
(5.1)

Then, there exists ϕ ∈ Diff(M), ϕ ≠ Id, such that distA(Id, ϕ) = 0 if any only
if there exists an open set V such that EA(V ) = 0.
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This makes our lives much easier — now we need to construct a sequence
of vector field un, with distA(Id, ϕn) → 0, that displace some open set V ,
without worrying about the endpoint of ϕn. The condition that the left
multiplication (for a fixed ϕ) is Lipschitz is satisfied in virtually for all metrics
of interest, and in particular for all Sobolev metrics that we discussed. We
will not prove this Lipschitz property here.

Proof : In order to shorten notation, we will write d instead of distA through-
out the proof. We start with a bound of d(Id, [ϕ0, ϕ1]), where [ϕ0, ϕ1] ∶=
ϕ−1

0 ϕ
−1
1 ϕ0ϕ1 is the commutator of ϕ0 and ϕ1. We have:

d(Id, [ϕ0, ϕ1]) ≤ (1 + ∣Lϕ−10 ∣)d(Id, ϕ1). (5.2)

Indeed,

d(Id, [ϕ0, ϕ1]) = d(Id, ϕ
−1
0 ϕ

−1
1 ϕ0ϕ1) = d(ϕ

−1
1 ϕ

−1
0 , ϕ

−1
0 ϕ

−1
1 )

≤ d(ϕ−1
1 ϕ

−1
0 , ϕ

−1
0 ) + d(ϕ−1

0 , ϕ
−1
0 ϕ

−1
1 )

≤ d(ϕ−1
1 , Id) + ∣Lϕ−10 ∣d(Id, ϕ−1

1 ) = (1 + ∣Lϕ−10 ∣)d(Id, ϕ1).

Now, let V be an open set with EA(V ) = 0, and denote by GV ⊂ Diff(M) the
subgroup of diffeomorphisms supported on V (that is, ϕ(x) = x for x ∉ V ).
Denote by DV ⊂ Diff(M) the set of diffeomorphisms ϕ that displace V , that
is ϕ(V )∩V = ∅. Note that this is not a subgroup but it is inverse-invariant.

A simple calculation shows that for ϕ,ψ ∈ GV and α ∈ DV , ϕ and α−1ψα
commute, that is

α−1ψ−1αϕα−1ψα = ϕ. (5.3)

This is obtained by showing that their (effective) action on each x ∈ M is
the same (check the three cases αx ∈ V , x ∉ V and αx ∉ V , x ∉ V and x ∈ V
separately).

Now let ϕ0, ϕ1 ∈ GV whose commutator [ϕ0, ϕ1] ≠ Id (these exist since GV is
not abelian). Rewriting (5.3) with ϕ = ϕ−1

0 ϕ1ϕ0 and ψ = ϕ1, we obtain

[ϕ1, ϕ0] = [ϕ1, β],

where β = [ϕ−1
0 , α]. We can now estimate, using (5.2)

d(Id, [ϕ1, ϕ0]) = d(Id, [ϕ1, β]) ≤ (1 + ∣Lϕ−11 ∣)d(Id, β)

= (1 + ∣Lϕ−11 ∣)d(Id, [ϕ−1
0 , α]) ≤ (1 + ∣Lϕ−11 ∣)(1 + ∣Lϕ−10 ∣)d(Id, α).
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Taking the infimum over all α ∈DV , we obtain that d(Id, [ϕ1, ϕ0]) = 0, since
EA(V ) = 0. n

Proposition 5.5 Under the assumption (5.1), the set

Diffd=0(M) ∶= {ϕ ∈ Diff(M) ∶ distA(Id, ϕ) = 0}

is a normal subgroup of Diff(M).

Proof : The fact that Diffd=0(M) is a subgroup only uses right-invariance:
Let ϕ,ψ ∈ Diffd=0(M), then

distA(Id, ϕψ) ≤ distA(Id, ψ) + distA(ψ,ϕψ) = distA(Id, ψ) + distA(Id, ϕ) = 0.

For normality, let now α ∈ Diff(M) and ϕ ∈ Diffd=0(M), then

distA(Id, αϕα
−1) = distA(α,αϕ) ≤ ∣Lα∣distA(Id, ϕ) = 0.

n

The normality of Diffd=0(M) is important because of the following classical
statement about the group structure of Diff(M) [Eps70]:

Theorem 5.6 Given a manifold M , the connected component of the identity
of Diffc(M) is a simple group.

Combining all the above results, we obtain

Corollary 5.7 If there exists an open set V ⊂ M such that EA(V ) = 0, then
distA vanishes identically on Diff(M).
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5.2.2 Constructions

We first consider the case dimM = 1, that is, M = S1 or M = R. In this case,
controlling volume change (L1 control of ux) is a stronger condition than a
pointwise control of u. Thus our aim is to show that whenever we do not
have a pointwise control of u, the geodesic distance collapses.

A more formal way of saying ”not having a pointwise control of u” is by the
notion of capacity:

Definition 5.8 Let ∥ ⋅ ∥A be a norm on X(M). The capacity of a point
x0 ∈M is defined as

inf {∥u∥A ∶ u ∈ X(M), ∣u(x0)∣ = 1} .

Note that if ∥u∥L∞ ≤ C∥u∥A, then all points have positive capacity.

Theorem 5.9 Let dimM = 1, Let ∥ ⋅ ∥A be a translation invariant norm (i.e.,
∥u(⋅−x0)∥A = ∥u(⋅)∥A) and assume that there exists a point x0 with zero capac-
ity. Furthermore, assume that for each ϕ ∈ Diff(M), the left-multiplication
operator Lϕ is smooth and Lipschitz with respect to distA. Then distA ≡ 0 on
Diff(M). In particular, this is true for A =W s,p whenever sp ≤ 1.

Proof : Let vn ∈ X(M) be a sequence of vector fields with vn(x0) = 1 and
∥vn∥A → 0. Define time-dependent vector fields by un(t, x) = vn(x − t), and
let ϕn(t, x) be their flow. We then have that

ϕn(t, x0) = x0 + t.

In particular, for some small enough ε > 0, we have that ϕn(2ε, (x0, x0+ε))∩
(x0, x0 + ε) = ∅, that is, ϕn displaces (x0, x0 + ε). Now,

distA(Id, ϕn) ≤ ∫
2ε

0
∥un(t, ⋅)∥A dt = 2ε∥vn∥A → 0.

This show that EA((x0, x0 + ε)) = 0, and by Corollary 5.7 this completes the
proof. n

Note that the translation invariance assumption can be relaxed to assuming
that ∥u ○ ϕ∥A ≤ Cϕ∥u∥A, for ϕ ∈ Diff(M) and that the constant Cϕ can be
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chosen uniformly on compact subsets of Diff(M). This assumption holds for
any reasonable norm I am familiar with.

For higher dimensional M , the same proof holds if some hypersurface has zero
capacity (again, we can work in local coordinates, and translate a neighbor-
hood of the hypersurface a bit). For Sobolev norms W sp, hypersurfaces have
zero capacity if and only if sp ≤ 1. In particular, this shows vanishing geodesic
distance for the L2 metric on any manifold.

This result can be improved to norms in which points have zero capacity
(which is equivalent, for Sobolev norms, to sp ≤ dimM), if in addition large
volume changes are undetected by the norm (that is, the norm does not con-
trol the L1 norm of the divergence of the vector field). For Sobolev metrics,
the result reads

Theorem 5.10 Let A = W s,p for sp ≤ dimM and s < 1. Then distA ≡ 0 on
Diff(M).

The proof of this claim is much more elaborate, and requires a combination
of squeezing parts of an open set V , transporting it outside of V using vector
fields of small capacity, and then expanding again. See [JM19a] for details.
A schematic video of the idea for dimM = 2 (hitting a specific target dif-
feomorphism) can be seen in this link: https://www.math.toronto.edu/

rjerrard/geo_dist_diffeo/vanishing.html.

Finally, we note that the classification of vanishing/non-vanishing geodesic
distance is quite open for other diffeomorphism groups, for example volume-
preserving diffeomorphisms and Hamiltonian symplectomorphisms; for some
recent developments in these cases see [BHP20].

5.3 Diameter

Assuming ∥⋅∥A is a norm on (M), the geodesic distance it induces on Diff(M)
is non-degenerate. One of the next natural questions is whether the resulting
metric space is bounded or not. One might expect, given the complexity of
the manifolds, that the resulting metric space will always be of infinite diam-
eter; however, we have already seen one example of a bounded metric space:

https://www.math.toronto.edu/rjerrard/geo_dist_diffeo/vanishing.html
https://www.math.toronto.edu/rjerrard/geo_dist_diffeo/vanishing.html
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recall that the right invariant Ḣ1-metric on Rot(S1)∖Diff(S1) is isometric to
an open subset of a sphere, that has a bounded diameter (Section 4.7). The
study of finiteness/infiniteness of diameter was initiated by Shnirelman in
the late 1980’s for volumorphisms, in the context of the incompressible Euler
equation; it was later investigated in the context of Hamiltonian symplecto-
morphisms by Eliashberg and Ratiu. For the full diffeomorphism group this
question was studied in [BM21], which we follow here.

Recall that if ∥u∥A controls ∥divg(u)∥1
L, then there is no collapse; we now

show that controlling ∥divg(u)∥L∞ results in infinite diameter:

Proposition 5.11 Assume that there exists C > 0 such that ∥divg(u)∥L∞ ≤
C∥u∥A. Then the metric space (Diff(M),distA) has infinite diameter. For
Sobolev metrics A =W s,p, this holds whenever s > 1 + dimM

p .

Proof : Let ϕ1 ∈ Diff(M), and let ϕ ∶ [0,1] → Diff(M) be a path from Id
to ϕ1. To shorten notation we will write ϕt(⋅) = ϕ(t, ⋅). As usual, we write
∂tϕt = ut ○ ϕt for ut ∈ X(M). For each t, we denote by Dϕt the spacial
derivative of ϕt, and by ψt = ∣Dϕt∣ the Jacobian determinant of ϕt with
respect to the metric g of M . A direct calculation shows that

∂tψt = divg(ut) ○ ϕt ⋅ ψt.

We therefore have, for any x ∈M ,

log ∣Dϕ1∣(x) = ∫
1

0
∂t(logψt(x))dt = ∫

1

0
divg(ut)(ψt(x))dt

≤ ∫
1

0
∥divg(ut)∥L∞ dt ≤ C ∫

1

0
∥ut∥A dt

= LenA(ϕ).

Taking the infimum over all paths from Id to ϕ1 we obtain

log ∣Dϕ1∣(x) ≤ CdistA(Id, ϕ1).

Thus, diffeomorphisms ϕ1 with arbitrary large Jacobian determinants at a
point (for example, ones that squeezes a ball of radius 1 in M to a ball of
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radius ε, with ε→ 0), are arbitrarily far away from Id with respect to distA,
and thus the diameter is infinite. n

Proving that distA has a finite diameter is trickier — one must find, for each
ϕ ∈ Diff(M), a path from Id with a uniformly bounded length. The best
result so far, for Sobolev metrics, is

Theorem 5.12 The diameter of (Diff(M),distW s,p) is infinite for s ≥ 1+ dimM
p .

If s < 1 + 1
p , the diameter of (Diff(Sn),distW s,p) is finite.

We will not detail the proof, but focus on some of the main components of
the finiteness proof:

• Uniform fragmentation property of spheres: For a fixed finite
atlas of Sn, there exists a number N such that every ϕ ∈ Diff(Sn) can
be written as ϕ = ϕN ○ . . .○ϕ1, where each ϕi is supported in one of the
coordinate charts in the atlas (in fact, it can be shown that N ≤ 6).

• Localization: By right-invariance,

distA(Id, ϕ) ≤
N−1

∑
i=1

dist(ϕi ○ . . . ○ ϕ1, ϕi+1 ○ . . . ○ ϕ1) =
N−1

∑
i=1

dist(Id, ϕi+1).

Thus, it is enough to prove that the diameter is finite for diffeomor-
phism that are supported in a single coordinate chart. Since changing
the metric g on each chart results in an equivalent distance function,
and thus does not affect finiteness/infiniteness of the diameter, the di-
ameter (Diff(Sn),distW s,p) is finite if the diameter of (Diffc(B1(Rn)),distW s,p)
is finite, where B1(Rn) is the open flat unit ball in Rn.

• Reduction to a two-parameter family of maps: Write B1(Rn) =
{(r, θ) ∶ r ∈ [0,1), θ ∈ Sn−1} in polar coordinate, and let λ ∈ N and δ ∈
(0,1). Consider the maps Ψλ,δ ∈ Diffc(B1(Rn)) that satisfy

Ψλ,δ(r, θ) = (λr, θ), r ∈ [0,
1 − δ

λ
] , θ ∈ Sn−1.
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That is, Ψλ,δ radially expends a ball of radius 1−δ
λ to a ball of radius

1−δ. Let ϕ ∈ Diffc(B1(Rn)). Then there exists δ > 0 such that suppϕ ⊂
B1−δ(Rn). We therefore have that, for every λ ∈ N,

ϕλ(r, θ) ∶=
1

λ
ϕ(λr, θ) = Ψ−1

λ,δ(r, θ) ○ ϕ ○Ψλ,δ(r, θ),

and thus, by right-invariance,

distA(Id, ϕ) = 2distA(Id,Ψλ,δ) + distA(Id, ϕ
λ).

Now, given time dependent vector field ut, whose flow at time t = 1 is
ϕ, the flow of

uλt (r, θ) =
1

λ
ut(λr, θ)

at time t = 1 is ϕλ. Thus, simple rescaling properties of the Sobolev
norms W s,p shows that

distW s,p(Id, ϕλ) ≤ λ(s−1)−n
p distW s,p(Id, ϕ).

Assume (s − 1)p < n. Taking λ→∞, we obtain that

distW s,p(Id, ϕ) ≤ lim sup
λ→∞

2distW s,p(Id,Ψλ,δ).

In other words, we obtain that if (s − 1)p < n and distW s,p(Id,Ψλ,δ) is
uniformly bounded for every λ and δ, then the diameter of (Diffc(B1(Rn)),distW s,p)
is finite.

• When (s−1)p < 1, a lengthy but straight-forward calculation shows that
the affine homotopy in the radial direction between Id and Ψλ,δ has a
uniformly bounded length in δ and λ, thus completing the finiteness
proof.

The sketch above does not cover the infiniteness of the diameter in the critical
case s = 1 + dimM

p ; this requires a more elaborate argument that in Propo-
sition 5.11, that, in particular, involves isometries to infinite dimensional
spheres, similar to the ones used in Section 4.7 that allows us to obtain
explicit lower bounds for the diameter.

Presumably, the diameter of (Diff(Sn),distW s,p) is finite whenever (s−1)p <
n. As the proof above shows, the only component missing is constructing a
“smarter” path to Ψλ,δ of length that is independent of λ and δ.
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Finally, I do not know for which manifolds, except spheres, the uniform
fragmentation property discussed above holds (and for which it does not).
For those it does not, it might be that the diameter is never finite — this is
an interesting open question.
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Chapter 6

Metric and geodesic
completeness

In this section we will give a very brief overview of results regarding met-
ric and geodesic completeness of right-invariant metrics on diffeomorphism
groups. Namely, the strongest result to-date is of Bruveris–Vialard [BV17]:

Theorem 6.1 Let M be a closed manifold, and k > dimM
2 + 1. If Gk be a

right-invariant Sobolev metric of order k on DiffHk(M) then

1. (DiffHk(M),distGk) is a complete metric space;

2. (DiffHk(M),Gk) is geodesically complete — geodesic continue to exist
for all time;

3. Any two elements in the same connected component of DiffHk(M) can
be joined by a minimizing G-geodesic.

By a Sobolev metric of order k we mean as defined in Section 4.1. Note that
such G is a strong metric on DiffHk(M). Thus, by the Hopf–Rinow theorem
(Theorem 2.46), the metric completeness property (1) implies the geodesic
completeness property (2).1

1Though note that there exists works earlier than [BV17] that proved geodesic com-
pleteness directly.
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The regularity results we proved in Section 4.6 (see Corollary 4.10 and the
discussion prior to it) for right-invariant metrics immediately implies the
following corollary:

Corollary 6.2 Under the assumptions of the above theorem,
(DiffHk+l(M),Gk) for l > 0 and (Diff(M),Gk) are geodesically complete.

Note that neither (DiffHk+l(M),distGk) nor (Diff(M),distGk) are metrically
complete, since it is not difficult to construct a distGk-Cauchy sequence in
Diff(M) that converges pointwise to a map ϕ ∈ DiffHk(M) ∖ DiffHk+1(M).
These give another example in which the finite dimensional Hopf-Rinow the-
orem fails in infinite dimensions.

Note that negative results in this direction are less general: We have seen that
solutions to the Burgers equation (that is, geodesics of the right-invariant
L2 metric) on Diff(S1) breaks down after finite time; this is also true for
the H1 metric (Camassa–Holm), where, unlike the Burgers equation, the
exponential map behaves nice locally. As far as I know, for Hk metrics in
the range 1 < k ≤ dimM

2 + 1, the geodesic completeness is unknown.

We will now describe the general framework of the proof of metric complete-
ness in Theorem 6.1, focusing on the soft arguments. For simplicity, we will
show that (DiffHk(Rd),distGk) is complete. The basic idea is to use the fact
that DiffHk(Rd) is an open subset of the Hilbert space Hk(Rd,Rd), which is
complete.

• We have two Riemannian metrics on DiffHk(Rd): the metric Gk, and
also the trivial Riemanninan metric Hk on Hk(Rd,Rd) (trivial as it
does not depend on the base point). In detail, we have that for η, ξ ∈
Tϕ DiffHk(Rd) ≅Hk(Rd,Rd)

Hk
ϕ(η, ξ) =

k

∑
i=0
∫
Rd

⟨∇iη,∇iξ⟩dx,

Gk
ϕ(η, ξ) =

k

∑
i=0
∫
Rd

⟨∇i(η ○ ϕ−1),∇i(ξ ○ ϕ−1)⟩dx =Hk(η ○ ϕ
−1, ξ ○ ϕ−1).

Both are strong metrics on DiffHk(Rd), and are pointwise equivalent,
that is

C−1
ϕ ∥ ⋅ ∥Hk

ϕ
≤ ∥ ⋅ ∥Gkϕ ≤ Cϕ∥ ⋅ ∥Hk

ϕ
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for some Cϕ > 0.

• The key analytic estimate is to show that this equivalent is uniform
locally — that is, that given r > 0, there exists a constant C > 0 such
that

C−1∥ ⋅ ∥Hk
ϕ
≤ ∥ ⋅ ∥Gkϕ ≤ C∥ ⋅ ∥Hk

ϕ

for all ϕ ∈ DiffHk(Rd) with distGk(Id, ϕ) < r.

• This implies, that for r > 0, there exists a constant Cr > 0 such that

∥ϕ0 − ϕ1∥Hk ≤ CrdistGk(ϕ0, ϕ1) (6.1)

for all ϕ0, ϕ1 ∈ DiffHk(Rd) with distGk(Id, ϕi) < r. Indeed, distGk(ϕ0, ϕ1) <
2r, and it follows that every path ϕ of length < 2r between ϕ0 and ϕ1

is satisfies distGk(Id, ϕt) < 2r for all t — otherwise,

LenGk(ϕ) ≥ distGk(ϕ0, ϕt) + distGk(ϕt, ϕ1)

≥ 2distGk(Id, ϕt) − distGk(Id, ϕ0) − distGk(Id, ϕ1) > 2r,

in contradiction. Therefore, one can use the above bounds to bound
the length of ϕ with respect to Hk.

• Since DiffHk(Rd) is an open subset of the Hilbert space Hk(Rd,Rd),
there exists ε > 0 such that Id+Bε(0) ⊂ DiffHk(Rd), where Bε(0) is the
Hk(Rd,Rd) ball.

• Let (ϕn)n∈N be a Gk-Cauchy sequence in DiffHk(Rd). By looking at
the tail of the sequence, we can assume that distGk(ϕ

n, ϕm) < 1
2ε/Cε

for all n,m. By right-invariance, ϕn converges if and only if ϕn ○(ϕ1)−1

converges, and thus, we can assume without loss of generality that
ϕ1 = Id.

• Now, by (6.1) we have that (ϕn)n∈N is an Hk-Cauchy sequence in
Hk(Rd,Rd), and thus converges to some function ϕ∗ ∈ Hk(Rd,Rd).
Note that

∥Id − ϕ∗∥Hk = lim
n→∞

∥ϕ1 − ϕn∥Hk ≤ Cε lim sup
n→∞

distGk(ϕ
1, ϕn) ≤

1

2
ε.

Thus Id − ϕ∗ ∈ Bε(0) and therefore ϕ∗ ∈ DiffHk(Rd).

• Since both Hk and Gk are strong metrics on DiffHk(Rd), they induce
the same (manifold) topology, and thus ϕn → ϕ∗ also with respect to
distGk . Therefore (DiffHk(Rd),distGk) is complete.
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