
NOTES FOR LECTURE ABOUT SIMPSON’S “HIGGS BUNDLES

AND LOCAL SYSTEMS”

ALEXANDER YOM DIN

1. Notations and conventions

1.1. I try to digest part of Simpson’s paper ”Higgs bundles and local systems” for
a learning seminar at IAS, 2019-2020. The notes are a bit disorganized.

1.2. We fix X - a smooth projective variety over C.

We denote by A‚pXq the coconnective commutative dg-algebra of smooth dif-
ferential forms on X. We have the differential

d : A‚pXq Ñ ApXq‚`1

which decomposes d “ d1 ` d2 into the p1, 0q and p0, 1q-parts. More generally, we
will use p´q1 for the p1, 0q-part and p´q2 for the p0, 1q-part.

By a bundle on X we mean a smooth (C8) vector bundle. Bundles form a
category BunpXq.

Given V P BunpXq, we denote by A0pXq the space of smooth sections of V and

A‚pVq :“ A0pVq b
A0pXq

A‚pXq.

2. Simpson’s correspondence

2.1. Connections. Let

δ : A‚pXq Ñ A‚`1pXq

be a derivation, i.e.

δpω1ω2q “ δpω1qω2 ` p´1qdegpω1qω1δpω2q @ω1, ω2 P A
‚pXq,

such that additionally δ2 “ 0. A δ-connection on a vector bundle V on X is a

∇ : A‚pVq Ñ A‚`1pVq

for which

∇psωq “ ∇psqω ` p´1qdegpsqsδpωq @s P A‚pVq, ω P A‚pXq.

Notice that ∇2 is A‚pXq-linear. We say that ∇ is flat if ∇2 “ 0.

2.2. Flat bundles.

2.2.1. Let us denote by

BunfltpXq

the category of bundles V on X equipped with a flat d-connection (“flat bundles”).
Morphisms are morphisms of bundles which commute with the connection.
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2.2.2. Recall that we have:
"

representations of
π1pX,x0q

*

«
ÐÑ

"

local systems
on X

*

«
ÐÑ BunfltpXq.

Here local systems are sheaves locally isomorphic to the constant sheaf with fiber
Cn for some n P Zě0. The equivalence from the third to the second is by passing
to the subsheaf of sections killed by the connection. Representations are finite-
dimensional representations, and the equivalence from the second to the first is by
the construction of monodromy.

2.2.3.

Remark 2.1. Thus, BunfltpXq uses the differential geometry of X but is equiva-
lent to a topological notion.

2.3. Higgs bundles.

2.3.1. Let us denote by
BunHgspXq

the category of bundles V on X equipped with a flat d2-connection (“Higgs bun-
dles”). Morphisms are morphisms of bundles which commute with the connection.

2.3.2. Decomposing the d2-connection ∇ on V into p1, 0q and p0, 1q parts,

∇ “ ∇1 `∇2,
we have that ∇2 is a d2-connection, ∇1 is a 0-connection, and the flatness condition
∇2 “ 0 is rewritten as the system of conditions

$

’

&

’

%

p∇2q2 “ 0

r∇1,∇2s “ ∇1∇2 `∇2∇1 “ 0

p∇1q2 “ 0

.

2.3.3. The first condition is, by the Newlander-Nirenberg condition, exactly what
is needed for ∇2 to come from an holomorphic structure on the bundle V (and ∇2
determines uniquely that holomorphic structure - the holomorphic sections are the
sections killed by ∇2). The second condition is then interpreted as saying that
∇1 is holomorphic, i.e. corresponds to a holomorphic 1-form with values in the
endomorphism bundle of V viewed as a holormorphic bundle with the use of ∇2.

2.3.4. We therefore have
$

&

%

holomorphic bundle with a holomorphic
1-form with values in the endomorphism bundle

which squares to 0

,

.

-

«
ÐÑ BunHgspXq.

2.3.5.

Remark 2.2. Thus, incorporating GAGA, BunHgspXq uses the complex structure
of X, but can be formulated as an algebro-geometric notion.

Remark 2.3. Perhaps in a different direction of emphasis, also BunfltpXq, using
GAGA, can be reformulated as an algebro-geometric notion.

3. The Simpson correspondence

3.1. Pre-flat correspondence.



NOTES FOR LECTURE ABOUT SIMPSON’S “HIGGS BUNDLES AND LOCAL SYSTEMS” 3

3.1.1. Let K be an Hermitian metric on V. Using K, one constructs a bijection

td-connections on Vu
OO

��
td2-connections on Vu

.

3.1.2. Let ∇ be a d-connection on V. Decompose into p1, 0q and p0, 1q-parts

∇ “ ∇1 `∇2.
Let r∇1 (resp. r∇2) be the unique d1-connection with p1, 0q-values (resp. d2-connection

with p0, 1q-values) such that r∇1 `∇2 (resp. ∇1 ` r∇2) preserves K. Then the cor-
responding d2-connection we consider is

D :“
1

2

´

∇1 ´ r∇1
¯

`
1

2

´

∇2 ` r∇2
¯

.

3.1.3. A calculation shows that in this correspondence ∇ ÐÑ
K

D, if D2 “ 0 then

also p∇´Dq2 “ 0 (here ∇´D is a d1-connection).

3.2. Harmonic bundles.

3.2.1. A harmonic bundle is a vector bundle V equipped with:

‚ A flat d-connection ∇flt

‚ A flat d2-connection ∇Hgs

such that there exists a Hermitian metric K on V for which

∇flt ÐÑ
K

∇Hgs.

3.2.2. It is also convenient then to consider the d1-connection

∇coHgs :“ ∇flt ´∇Hgs.

By above, we also have ∇2
coHgs “ 0, and therefore we find that

r∇Hgs,∇coHgss “ ∇Hgs∇coHgs `∇coHgs∇Hgs “ 0.

3.2.3. We will have some preliminaries before discussing what are morphisms of
harmonic bundles.

3.3. Hodge theory - first dive.

3.3.1. Let V be a harmonic bundle. Fixing a Kahler structure on X, we obtain
an inner product on each space AkpVq for k P Zě0. We therefore can talk about
formal adjoints of differential operators between these spaces.

3.3.2. Denote by
Λ : A‚pXq Ñ A‚´2pXq

the formal adjoint of multiplication by ω.

Proposition 3.1 (Kahler relations). One has

∇˚coHgs “ irΛ,∇Hgss, ∇˚Hgs “ ´irΛ,∇coHgss.

Remark 3.2. In fact these relations hold also in the pre-flat correspondence, when
∇flt is not assumed to be flat, but ∇Hgs is. Simpson mentions that this is a
motivation for the pre-flat correspondence.
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3.3.3. The Laplacian of a flat δ-connection

∇ : A‚pVq Ñ A‚`1pVq

is defined as

∆ :“ r∇,∇˚s “ ∇∇˚ `∇˚∇ : A‚pVq Ñ A‚pVq.

An α P A‚pVq is called ∇-harmonic if ∆α “ 0. This is equivalent to ∇α “ 0 and
∇˚α “ 0.

3.3.4. We therefore have Laplacians

∆flt :“ ∆∇flt , ∆Hgs :“ ∆∇Hgs ,∆coHgs :“ ∆∇coHgs .

Proposition 3.3. One has

r∇coHgs,∇˚Hgss “ 0, r∇Hgs,∇˚coHgss “ 0,

∆coHgs “ ∆Hgs,

∆flt “ 2∆coHgs “ 2∆Hgs.

Proof. This is an elementary algebraic calculation using the Kahler relations and
the relation r∇coHgs,∇Hgss “ 0. �

3.3.5. In particular, the notion of harmonic form is the same for ∇flt,∇Hgs,∇coHgs.

3.3.6. By elliptic theory, one obtains:

Proposition 3.4. We have

A‚pVq “ Imp∆q ‘Kerp∆q,

and Kerp∆q is finite-dimensional, for ∆ any of the three Laplacians above.

Corollary 3.5 (Hodge decomposition). We have

A‚pVq “ Imp∇q ‘ Imp∇˚q ‘Kerp∆q.
for ∇ any of the three connections above (and ∆ the corresponding Laplacian).

Proof. Clearly Imp∆q Ă Imp∇q`Imp∇˚q so A‚pVq “ Imp∇q`Imp∇˚q`Kerp∆q.
If ∇α `∇˚β ` γ “ 0 (where γ P Kerp∆q) then applying ∇ we obtain ∇∇˚β “ 0
and therefore (by a standard inner product trick) ∇˚β “ 0. Similarly ∇α “ 0.
And we are left with γ “ 0. �

3.4. The category of harmonic bundles.

3.4.1.

Lemma 3.6. Let V be a harmonic bundle. Let s P A0pVq. Then ∇flts “ 0 if and
only if ∇Hgss “ 0.

Proof. Notice that

∇flts “ 0 ðñ ∆flts “ 0 ðñ ∆Hgss “ 0 ðñ ∇Hgss “ 0.

The middle equivalence is by Proposition ?? while the left one, say, is because
∆flts “ ∇˚flt∇flts, and so if ∆flts “ 0 then

0 “ x∇˚flt∇flts, sy “ x∇flts,∇fltsy “ ||∇flts||
2

and thus ∇flts “ 0. �
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3.4.2.

Lemma 3.7. Let V1,V2 be harmonic bundles. Let T : V1 Ñ V2 be a morphism of
bundles. Then T ˝∇flt “ ∇flt ˝ T if and only if T ˝∇Hgs “ ∇Hgs ˝ T .

Proof. There is the standard monoidal formalism, by which we have a harmonic
bundle

HompV1,V2q,

and a morphism of bundles V1 Ñ V2 is interpreted as a section of HompV1,V2q.
Furthermore, the morphism will commute with ∇? (? standing for flt or Hgs) if
and only if the corresponding section is killed by ∇?. Therefore the current Lemma
follows from Lemma ??. �

3.4.3. In view of Lemma ??, we can define the category BunhrmpXq of harmonic
bundles, whose objects are harmonic bundles, and morphisms are morphisms of
bundles commuting with either ∇flt or ∇Hgs, which is the same.

3.5. The correspondence. We have fully faithful “forgetful” functors

BunhrmpXq

ww ''
BunfltpXq BunHgspXq

.

The main theorem is then:

Theorem 3.8 (Simpson Correspondence).

(1) The essential image of the left functor consists of semisimple flat bundles,
i.e. those which can be written as a direct sum of irreducible ones.

(2) The essential image of the right functor consists of slope 0 polystable Higgs
bundles - Higgs bundles which can be written as a direct sum of stable
Higgs bundles with all rational Chern classes trivial (in particular, those
have slope 0).

The proof is via hard analysis.

3.6. The rank 1 example.

3.6.1. Let us suppose for simplicity that H2pX,Zq has no torsion (for example,
dimCX “ 1). Fix x0 P X and abbreviate π1 :“ π1pX,x0q. Also, by the Higgs field
of a Higgs bundle we will understand minus the p1, 0q-part.

3.6.2. The set of isomorphism classes of local systems of rank 1 is in bijection with

Hompπ1,Cˆq – H1pX,Cˆq – H1pX,Cˆ1 q ˆH
1pX,Rˆą0q –

–
H1pX,Rq
H1pX,Zq

ˆH1pX,Rq –
Hrm1

RpXq

H1pX,Zq
ˆHrm1

RpXq.

Here taking quotient by H1pX,Zq is in the sense of taking quotient by the image
of this. The second factor was by treated by taking logarithm and the first factor
was treated using the short exact sequence

0 // Z // R // Cˆ1 // 0 .

Then both factors were treated by considering harmonic representatives.
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Given pω1, ω2q on the right, the corresponding homomorphism χ : π1 Ñ Cˆ is
seen to be given by

χpγq “ e2πi
ş

γ
ω1`

ş

γ
ω2 .

3.6.3. The Higgs field on a Higgs bundle of rank 1 is simply an holomorphic 1-form
(there is no dependence on the bundle, as the endomorphism bundle of a bundle of
rank 1 is the trivial bundle of rank 1). Therefore the set of isomorphism classes of
Higgs bundles of rank 1 (with the Chern vanishing conditions) is in bijection with

Pic0pXq ˆH0pX,Ω1q –
H1pX,Oq

H1pX,Zq
ˆH0pX,Ω1q –

Hrm0,1pXq

H1pX,Zq
ˆHrm1,0pXq.

The first factor was treated using the short exact sequence

0 // Z // O // Oˆ // 0 .

Then both factors were treated by considering harmonic representatitves.

3.6.4. Let us consider a flat bundle of rank 1 corresponding to a Cˆ1 -local system
with monodromy χ : π1 Ñ Cˆ1 . It admits an invariant Hermitian metric, w.r.t.
which the d2-connection corresponding to the d-connection ∇flt is simply ∇2flt, in
particular it is flat. Therefore the corresponding Higgs bundle is the holomorphic
bundle where holomorphic sections are holomorphic functions multiplied by flat
sections, and the Higgs field is trivial. Therefore, the map providing the correspon-
dence is H1pX,Cˆ1 q Ñ H1pX,Oˆq induced by the injection of sheaves Cˆ1 Ñ Oˆ.

In terms of the descriptions above, this map is seen to correspond to the projection
onto p0, 1q-type Hrm1

RpXq Ñ Hrm0,1pXq. From this we see that if ω P Hrm0,1pXq
is the form representing the resulting Higgs bundle in our above decomposition, we
have

χpγq “ e2πi2<
ş

γ
ω.

3.6.5. Let us now consider a trivial holomorphic bundle of rank 1 together with
a Higgs field ω P H0pX,Ω1q and the standard Hermitian metric. One calculates
that the Higgs connection f ÞÑ ´ωf ` d2f corresponds to the flat connection
f ÞÑ ´pω ` ω̄qf ` df . Therefore the corresponding monodromy χ : π1 Ñ Cˆ is

given by χpγq “ e2<
ş

γ
ω.

3.6.6. Let us summarize:

π0BunHgspXq
polyst,1 –

Hrm0,1pXq

H1pX,Zq
ˆH0pX,Ω1q,

and the monodromy χ : π1 Ñ Cˆ of the flat connection corresponding to pω, θq in
this decomposition is

χpγq “ e2πi¨2<p
ş

γ
ωq`2<p

ş

γ
θq

4. Hodge theory for an harmonic bundle

4.1. Let V be a harmonic bundle. Let us denote

A‚“pVq :“ Kerp∇coHgsq Ă A‚pVq.
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One immediately checks that ∇flt and ∇Hgs preserve A‚“pVq (and of course are
equal on it). We therefore have complexes and morphisms of complexes

(4.1) pA‚“pVq,∇flt “ ∇Hgsq

F f

ss

� x

++
pA‚pVq,∇fltq pA‚pVq,∇Hgsq

Proposition 4.1. The above morphisms are quasi-isomorphisms.

Proof. We want to show that harmonic forms represent the cohomology of

pA‚“pVq,∇flt “ ∇Hgsq.

So let α be harmonic and assume that α “ ∇fltβ “ ∇Hgsβ. Then by ∇flt-Hodge
decomposition, α “ 0.

Conversely, let α be such that ∇fltα “ 0 and ∇Hgsα “ 0. We want to show that
α can be written as a harmonic form plus a form of the shape ∇fltβ “ ∇Hgsβ. By
the ∇Hgs-Hodge decomposition, we can write α as a harmonic form plus a form in
the image of ∇Hgs. Substracting the harmonic form, we can assume that α itself
lies in the image of ∇Hgs. Then the next Lemma shows that α lies in the image
of ∇Hgs∇coHgs. Writing α “ ∇Hgs∇coHgsγ, we notice that it is clear that also
α “ ∇flt∇coHgsγ, so β “ ∇coHgsγ gives the desired. �

Lemma 4.2.

Kerp∇coHgsq X Imp∇Hgsq Ă Imp∇Hgs∇coHgsq.

Proof. Let us abbreviate D :“ ∇Hgs, E :“ ∇coHgs. Let α belong to the left hand
side. We write α “ Dβ, and by E-Hodge decomposing β we can assume β “ E˚γ.
By E-Hodge decomposing γ, we can assume that Eγ “ 0. We have:

∆DDγ “ DD˚Dγ “ D∆Dγ “ D∆Eγ “

“ DEE˚γ “ DEβ “ ´EDβ “ ´Eα “ 0.

Thus, Dγ is harmonic and D-exact, and hence by the D-Hodge decomposition we
have

Dγ “ 0.

Now the Kahler relation E˚ “ irΛ, Ds gives

α “ DE˚γ “ iDΛDγ ´ iDDΛγ “ 0.

�

5. Extending to extensions

5.1. dg-categories.
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5.1.1. A dg-category C is a category enriched in complexes. That is, for any two
objects M1,M2 P C we are given a complex of morphisms HompM1,M2q, and so
on. We will write

HomipM1,M2q

for the i-th component of HompM1,M2q,

ZiHompM1,M2q Ă HomipM1,M2q

for the closed elements, and

HiHompM1,M2q

for the i-th cohomology of HompM1,M2q.

5.1.2. We have three categories attached to the dg-category C:

Hom0C, Z0C, H0C,

where objects are the same as objects of C, and morphisms are derived from the
complex of morphisms by the way suggested in the notation. We call Z0C the
underlying category of C and H0C the homotopy category of C.

5.1.3. We have the notion of dg-functors. A dg-functor will be called strictly fully
faithful (resp. dg-fully faithful) if it induces isomorphism (resp. quasi-isomorphisms)
on Hom-complexes. A dg-functor F will be called strictly essentially surjective
(resp. dg-essentially surjective) if Z0F is essentially surjective (resp. H0F is es-
sentially surjective). A dg-functor will be called a strict equivalence (resp. dg-
equivalence) if it is strictly fully faithful and strictly essentially surjective (resp.
dg-fully faithful and dg-essentially surjective).

5.1.4. Ignoring set-theoretic nuiance, a very important distinction between the
theory of categories and the theory of dg-categories is that an equivalence of cate-
gories admits an inverse, while an equivalence of dg-categories does not necessarily.
Thus, we might typically get dg-equivalences

C

�� ��
C1 C2

and then we want to think of C1 and C2 as dg-equivalent under that, although there
might be no actual dg-functor C1 Ñ C2 which realizes this dg-equivalence. Anyhow,
applying H0 we obtain equivalences of categories H0C1 Ð H0C Ñ H0C2, and we
can find an equivalence of categories H0C1 Ñ H0C2 realizing this (which will be
unique up to a unique isomorphism if things are formulated correctly).

5.2. dg-enhancements in our case.
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5.2.1. Our three categories

Bun?pXq

for ? P tflt,Hgs, hrmu can be extended to dg-categories

Bundg? pXq

(this means that we find a dg-category whose underlying category is our category).
Namely, this is based on on the copmlexes

(5.1) pA‚p´q,∇fltq, pA
‚p´q,∇Hgsq, pA

‚
“p´q,∇flt “ ∇Hgsq

above. For V,W P Bun?pXq, we define the Hom-complex between V and W in

Bundg? pXq to be what we get by evaluating (??) on HompV,Wq.

5.2.2. Using (??), we have dg-functors

BundghrmpXq

xx ''
BundgfltpXq BundgHgspXq

.

By Proposition ??, these are dg-fully faithful.

5.2.3. We therefore obtain a dg-equivalence

BundgfltpXq
ss «
ÐÝ BundghrmpXq

«
ÝÑ BundgHgspXq

polyst.

We would like now to see how to extend this to a dg-equivalence

BundgfltpXq
«
ÐÑ BundgHgspXq

semist,

where a Higgs bundle is semistable if it admits a filtration with subquotients being
polystable Higgs bundles (with the Chern vanishing as before).

6. Passing to extensions

6.1. Semidirect extensions.

6.1.1. A semidirect extension in C is the data of two closed morphisms

M1
α
ÝÑM

β
ÝÑM2,

for which β ˝ α “ 0, such that there exist non-closed morphisms

α˚ P Hom0pM,M1q, β
˚ P Hom0pM2,Mq

such that

α˚ ˝ β˚ “ 0, α˚ ˝ α “ 1, β ˝ β˚ “ 1, α ˝ α˚ ` β˚ ˝ β “ 1.

In other words, in Hom0C our data becomes part of a direct sum diagram. An
isomorphism between two semidirect extensions

M1
α
ÝÑM

β
ÝÑM2

and

M1
α1

ÝÑM 1 β
1

ÝÑM2
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is a closed isomorphism γ fitting in a commutative diagram

M1
α // M

γ

��

β // M2

M1
α1

// M 1
β1

// M2

.

6.1.2. Given a semidirect extension and fixing α˚ and β˚ as above, one checks
that the element

α˚ ˝ dpβ˚q P Hom1pM2,M1q

is closed, and its cohomology class does not depend on the choice of α˚ and β˚.
So we obtain an element of H1HompN,Lq in this way. One checks then that we
obtain in this way an injection from the set of isomorphism classes of semidirect
extensions to H1HompM2,M1q.

6.1.3. We say that C is strictly extension-saturated if the above injection is a
bijection for every M1,M2 P C.

6.1.4. The dg-category of complexes is strictly extension-saturated. Indeed, given
complexes M1,M2 and δ P Z1HompM2,M1q, we can define on M1‘M2 the differ-
ential

ˆ

d δ
0 d

˙

and this gives a semidirect extension as desired. More generally, we can take com-
plexes M1, . . . ,Mn and a matrix

∆ “

¨

˚

˚

˚

˚

˝

0 δ21 . . . δn1

...
. . .

...
. . . δn,n´1

0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‚

where δij P Hom
1pMi,Mjq, such that

pd ¨ Id`∆q2 “ 0,

and then consider M1‘ . . .‘Mn with the differential d ¨ Id ` ∆. This will be a
complex which can be obtained by a series of semidirect extensions:

M1 ÑM12 ÑM2,

M12 ÑM123 ÑM3,

...

M1¨¨¨n´1 ÑM1¨¨¨n ÑMn.

Notice that the condition pd ¨ Id`∆q2 “ 0 can be written as

dp∆q `∆2 “ 0,

the Maurer-Cartan equation (here dp∆q is the entrywise application of d to ∆).
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6.1.5. Inspired by the above construction in the dg-category of complexes, we can
formally add semidirect extensions to any dg-category C, as follows. We construct
a new dg-category Csde. An object of Csde consists of a series M1, . . . ,Mn of objects
in C, and a matrix

∆ “

¨

˚

˚

˚

˚

˝

0 δ21 . . . δn1

...
. . .

...
. . . δn,n´1

0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‚

where δij P Hom
1pMi,Mjq, such that

dp∆q `∆2 “ 0.

One can see what the complexes of morphisms should be by looking at the example
of complexes: ...

6.1.6. Notice that we have a strictly fully-faithful dg-functor CÑ Csde. If CÑ D

is a dg-functor, we have a naturally constructed Csde Ñ Dsde and we have naturally

C //

��

D

��
Csde // Dsde

(the diagram 2-commutes).

6.1.7. It is easy to check that Csde is strictly extension-saturated. Additionally,
C is strictly extension-saturated if and only if the strictly fully-faithful dg-functor
CÑ Csde is a strict equivalence (i.e. the corresponding Z0CÑ Z0Csde is essentially
surjective). One can say that C is extension-saturated if the weaker condition,
that the dg-functor is dg-essentially surjective (i.e. H0C Ñ H0Csde is essentially
surjective), is satisfied.

6.1.8. Suppose that C Ñ D is a strictly fully-faithful dg-functor, with D strictly
extension-saturated and also such that every object of D can be obtained from
objects in the essential image of our functor via successive semidirect extensions.
Then we claim that the corresponding Csde Ñ Dsde is a strict equivalence. Since
DÑ Dsde is also a strict equivalence, we obtain a strict equivalence between Csde

and D.

One checks first that given a dg-functor F : C1 Ñ C2, a semidirect extension
M1 Ñ M Ñ M2 in C1 and an object N P C1, if the functor F is strictly fully
faithful on pN,M1q and pN,M2q then it is also strictly fully faithful on pN,Mq: We
will have a commutative diagram in the dg-category of complexes

HompN,M1q //

��

HompN,Mq //

��

HompN,M2q

��
HompFN,FM1q // HompFN,FMq // HompFN,FM2q

with rows being semidirect extensions, and then it is easy to see that since the
extremal vertical arrows are isomorphisms, so is the middle one. Similarly, one
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checks that if F is strictly full faithful on pM1, Nq and pM2, Nq then it is also
strictly fully faithful on pM,Nq.

Similarly, given a dg-functor F : C1 Ñ C2, if objects M1,M2 P C2 are in the
strict essential image of F and M1 Ñ M Ñ M2 is a semidirect extension, then M
lies in the strict essential image of F .

We ask ourselves now on which pairs of objects our functor Csde Ñ Dsde is strictly
fully faithful. If both objects are in C, then it is so by assumption. Since every
object in Csde can be obtained from objects of C by repeated semidirect extension,
the above remark shows that the functor will be strictly fully faithful on all pairs
of objects.

Now we ask oursevles which objects of Dsde lie in the strict essential image of our
functor F : Csde Ñ Dsde. Suppose that N1, N2 P D

sde do and that N1 ÑM Ñ N2

is a semidirect extension. Fix FM1 – N1, FM2 – N2. Corresponding to the
semidirect extension we have a class in H1HompN2, N1q. Since F is already known
to be strictly fully faithful, we have a corresponding class in H1HompM1,M2q, to
which corresponds a semidirect extension M1 Ñ M Ñ M2 in Csde. Then FM1 Ñ

FM Ñ FM2 is a semidirect extension in Dsde, with the same class as N1 Ñ N Ñ

N2, and therefore FM – N . In other words we showed that the strict essential
image is closed under semidirect extensions. Since it contains the strict essential
image of C, it contains the whole of D by assumption, and then the whole of Dsde.

6.1.9. Suppose that C Ñ D is a dg-equivalence. Then Csde Ñ Dsde is a dg-
equivalence. We omit the proof for now.

6.2. Our case.

6.2.1. We claim that BundgfltpXq and BundgHgspXq are strictly extension-saturated.

Indeed, let us be given bundles with connections V and W (in any of the cases),
and an element T P Z1HompW,Vq. Then T can be interpreted as a A0pXq-linear
map

A0pWq Ñ A1pVq,

so by extension an A‚pXq-linear map

A‚pWq Ñ A‚`1pVq,

satisfying r∇, T s “ ∇˝T `T ˝∇ “ 0. We can then define on V‘W the connection

∇pv, wq “ p∇v ` Tw,∇wq.

This gives a semidirect extension as desired. Notice that BundgHgs,semistpXq is basi-

cally defined as the full dg-subcategory of BundgHgspXq consisting of objects which

can be obtained via a successive semidirect extension from object inBundgHgs,polystpXq,
so it is also strictly extension-saturated.
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6.2.2. We now obtain the following diagram of dg-categories and dg-functors (here
we drop the dg-superscript, and the pXq, for aesthetics):

pBunhrmq
sde

„
ww

„

''
pBunfltq

sde pBunflt,semisq
sde„oo Bunhrm

OO

„

ww

„

''

pBunHgs,polystq
sde „ // pBunHgs,semistqsde

Bunflt

„

OO

Bunflt,semis_?

OO

BunHgs,polyst

OO

� � BunHgs,semist

„

OO

.

Hence, we obtain an equivalence of dg-categories

BundgfltpXq « BundgHgs,semistpXq.

Passing to H0, we obtain an equivalence of categories

BunfltpXq « BunHgs,semistpXq.

7. The non-abelian Hodge structure

7.1. Tannakian formalism.

7.1.1. We have seen the most probably amazing transformation

Reppπ1q « LSpXq « BunfltpXq « BunHgspXq
semist,

and want to figure out whether this tells something interesting about π1.

7.1.2. So first natural step is to see whether π1 can be resconstructed fromReppπ1q,
or say a discrete group Γ from ReppΓq. A usual double-commutator idea is that
ReppΓq is defined as things on which Γ acts, so maybe Γ can be recovered as
the things which act on the things in ReppΓq. Namely, given γ P Γ, for every
V P ReppΓq, denoting by V the underlying vector space (forgetting the Γ-action),
we have an invertible operator

γ : V Ñ V .

Moreover, for every morphism T : V Ñ W in ReppΓq, the following diagram com-
mutes:

V
T //

γ

��

W

γ

��
V

T // W

.

Also, there is compatability with the tensor product. for every V,W P ReppΓq:

V bW oo //

γ

��

V bW

γbγ

��
V bW oo // V bW

.

7.1.3. So let us now consider the group Γproalg consisting of families of invertible
operators pγV qV PReppΓq with commutation conditions as above. More categorically,
this can be expressed as the group of tensor automorphisms of the forgetful functor
ReppΓq Ñ V ect. We clearly have a homomorphism Γ Ñ Γproalg.
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7.1.4. For W P ReppΓq, we can consider a group ΓproalgW similar to the above, but
where we run only over V P ReppΓq which are subquotients of direct sums of tensor
products of copies of W and W_. One can show that this group is a Zariski closed

subgroup of GLpW q (via the obvious map ΓproalgW Ñ GLpW q). We have

Γproalg “ lim ΓproalgW ,

and this gives Γproalg the structure of a pro-algebraic group - the cofiltered limit
of affine algebraic groups.

7.1.5. Moreover, given a homomorphism Γ Ñ G where G is an affine algebraic
group, we can embed G Ñ GLpW q for some vector space W , making W a repre-
sentation of Γ. Then the image of Γ Ñ Γproalg Ñ GLpW q lies in G, so Γ Ñ G
factors via Γ Ñ Γproalg. One can see that this gives a bijection, for every affine
algebraic group G:

HompΓproalg, Gq
„
ÝÑ HompΓ, Gq

where on the left we have abstract group homomorphisms, and on the right we have

group homomorphsms which factor as Γproalg Ñ ΓproalgW Ñ G for some W , where
the second homomorphism is algebraic. This explains that Γproalg has a universal
property of being the pro-algebraic completion of Γ.

7.1.6. Let us consider for example the case when Γ is commutative. Then every
homomorphism from Γ to an affine algebraic group is written canonicaly as the
product of a homomorphism with image consisting of unipotent elements and a
homomorphism with image consisting of semisimple elements. Then one deduces a
canonical decomposition

Γproalg “ Γprou ˆ Γpross.

Γprou is the commutative pro-algebraic group for which

HompΓprou,Gaq – HompΓ,Gaq.

We can think of HompΓ,Gaq as a C-vector space, so the filtered colimit of finite-
dimensional C-vector spaces, and so Γprou is described as a cofiltered limit, which
can be thought of as the linearly topologized C-vector space which is the con-
tinuous dual of the discrete vector space HompΓ,Gaq. Similarly, Γpross is the
pro-diagnolizable group for which

HompΓpross,Gmq – HompΓ,Gmq.

I will skip the further particular form, since it will be glued from a pro-torus and
a profinite group, and I got confused about the gluing (a source says it is a direct
product, and I could not figure out why).

7.2. The Hodge action.

7.2.1. Suppose that we are given a symmetric monoidal auto-equivalence F :
ReppΓq Ñ ReppΓq, together with a functorial monoidal isomorphism F pV q – V .
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Then we can construct an automorphism of Γproalg as follows. Given pγV q P Γproalg,
we define a new element pδV q by considering

V
δV //

OO

��

VOO

��
F pV q

γF pV q // F pV q

7.2.2. In our case, notice that the equivalences

Reppπ1q « LSpXq « BunfltpXq « BunHgspXq
semist

are compatible with the “fiber functor” - the forgetful functor for Reppπ1q, and the

functors of fiber at x0 for the other categories. Therefore πproalg1 can be recovered
from all of them. Given c P Cˆ, we have an auto-equivalence of BunHgspXq

semist

given by sending pV,∇1Hgs`∇2Hgsq to pV, c∇1Hgs`∇2Hgsq. This is compatible with

the fiber functor, and so yields an automorphism of πproalg1 . In this way we obtain

an action of Cˆ (viewed as a discrete group for now) on πproalg1 . This is Simpson’s
Hodge structure on the pro-algebraic completion of the fundamental group.

7.3. Example.

7.3.1. Fix x0 P X and let as assume that Γ :“ π1pX,x0q is commutative (recall
that it is also known that Γ is finitely presented, so a finitely generated abelian
group). Let us again assume for simplicity that H2pX,Zq has no torsion. We want
to calculate the action of Cˆ on Γproalg. From the description above, we see that
it is enough to calculate the action of Cˆ on HompΓ,Cˆq and the action of Cˆ on
HompΓ,Cq.

7.3.2. Let us describe the action of Cˆ on HompΓ,Cˆq. Recall that we had:

HompΓ,Cˆq –
Hrm0,1pXq

H1pX,Zq
ˆH0pX,Ω1q

where the bijection from right to left is given by

pω, θq ÞÑ
´

γ ÞÑ e2πi¨2<p
ş

γ
ωq`2<p

ş

γ
θq
¯

.

Via this bijection, the action is by scaling the second factor.

7.3.3. Let us now describe the action of Cˆ on

HompΓ,Cq – H1pX,Cq.

Fix µ : Γ Ñ C. We embed

Ga –
"ˆ

1 ˚

0 1

˙*

Ă GL2,

and obtain a two-dimensional representation of Γ which is an extension of two
trivial representations. The corresponding flat bundle is then an extension of two
trivial bundles, and thus can be expressed via a connection

ˆ

d ω
0 d

˙

.
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Here ω is a closed 1-form, which can also be thought of as representing an element

in H1HompTriv, Trivq in BundgfltpXq. One calculates that µpγq “ ´
ş

γ
ω. We can

choose ω to be harmonic, and decompose into p1, 0q and p0, 1q-parts ω “ ω1 ` ω2.

Since the Hom-complexes in BundgfltpXq and BundgHgspXq were defined to correspond
precisely by harmonic representatives, the Higgs bundle corresponding to our flat
bundle is the extension of two trivial ones, with connection

ˆ

d2 ω
0 d2

˙

.

Then application of c P Cˆ yields
ˆ

d2 cω1 ` ω2

0 d2

˙

,

and since cω1`ω2 is harmonic, we can go back to flat bundles and consider the flat
bundle given by

ˆ

d cω1 ` ω2

0 d

˙

.

Thus, we see that the action of Cˆ on

HompΓ,Cq – H1pX,Cq
is, decomposing

H1pX,Cq – H1,0pXq ‘H0,1pXq,

the tautological homotethy action on the p1, 0q-part and the trivial action on the
p0, 1q-part.


