NOTES FOR LECTURE ABOUT SIMPSON’S “HIGGS BUNDLES
AND LOCAL SYSTEMS”

ALEXANDER YOM DIN

1. NOTATIONS AND CONVENTIONS

1.1. T try to digest part of Simpson’s paper "Higgs bundles and local systems” for
a learning seminar at IAS, 2019-2020. The notes are a bit disorganized.

1.2. We fix X - a smooth projective variety over C.

We denote by A®(X) the coconnective commutative dg-algebra of smooth dif-
ferential forms on X. We have the differential

d: A% (X) — A(X)"H!

which decomposes d = d’ + d” into the (1,0) and (0, 1)-parts. More generally, we
will use (=)’ for the (1,0)-part and (—)” for the (0, 1)-part.

By a bundle on X we mean a smooth (C*®) vector bundle. Bundles form a
category Bun(X).

Given V € Bun(X), we denote by A"(X) the space of smooth sections of V and
A (V) :=A(V) ®@ A*(X).
A(X)

2. SIMPSON’S CORRESPONDENCE
2.1. Connections. Let
§:AN(X) - ATHX)
be a derivation, i.e.
§(wiws) = 0w )ws + (—1)38@) 0 §(ws)  Vwy,ws € A%(X),
such that additionally 6> = 0. A J-connection on a vector bundle V on X is a
V:iA(V) - ATTH(Y)
for which
V(sw) = V(s)w + (—1)%8®)s5(w) Vse A*(V), we A*(X).
Notice that V2 is A®*(X)-linear. We say that V is flat if V2 = 0.
2.2. Flat bundles.

2.2.1. Let us denote by
Bunﬂt (X)
the category of bundles V on X equipped with a flat d-connection (“flat bundles”).

Morphisms are morphisms of bundles which commute with the connection.
1
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2.2.2. Recall that we have:

representations of ~ | local systems ~
{ m1(X, x0) } { on X Bun u(X).

Here local systems are sheaves locally isomorphic to the constant sheaf with fiber
C" for some n € Zxp. The equivalence from the third to the second is by passing
to the subsheaf of sections killed by the connection. Representations are finite-
dimensional representations, and the equivalence from the second to the first is by
the construction of monodromy.

2.2.3.

Remark 2.1. Thus, Bung;(X) uses the differential geometry of X but is equiva-
lent to a topological notion.

2.3. Higgs bundles.

2.3.1. Let us denote by

Bunggs(X)
the category of bundles V on X equipped with a flat d”-connection (“Higgs bun-
dles”). Morphisms are morphisms of bundles which commute with the connection.

2.3.2. Decomposing the d’-connection V on V into (1,0) and (0,1) parts,
V=V +V"

we have that V” is a d”-connection, V' is a 0-connection, and the flatness condition

V2 = 0 is rewritten as the system of conditions

(V”)2 =0
[V/7 V”] =V'V'+V'V' =0
(V)2 =0

2.3.3. The first condition is, by the Newlander-Nirenberg condition, exactly what
is needed for V” to come from an holomorphic structure on the bundle V (and V”
determines uniquely that holomorphic structure - the holomorphic sections are the
sections killed by V”). The second condition is then interpreted as saying that
V'’ is holomorphic, i.e. corresponds to a holomorphic 1-form with values in the
endomorphism bundle of V viewed as a holormorphic bundle with the use of V”.

2.3.4. We therefore have

holomorphic bundle with a holomorphic
1-form with values in the endomorphism bundle § <> Bun Hgs(X).
which squares to 0

2.3.5.

Remark 2.2. Thus, incorporating GAGA, Bung4s(X) uses the complex structure
of X, but can be formulated as an algebro-geometric notion.

Remark 2.3. Perhaps in a different direction of emphasis, also Bun s, (X), using
GAGA, can be reformulated as an algebro-geometric notion.

3. THE SIMPSON CORRESPONDENCE

3.1. Pre-flat correspondence.
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3.1.1. Let K be an Hermitian metric on V. Using K, one constructs a bijection

{d-connections on V} .

|

{d”-connections on V}

3.1.2. Let V be a d-connection on V. Decompose into (1,0) and (0, 1)-parts
V=V +V.
Let V' (resp. V") be the unique d’-connection with (1, 0)-values (resp. d”-connection

with (0, 1)-values) such that ¥V’ + V” (resp. V' 4+ V") preserves K. Then the cor-
responding d”’-connection we consider is

D= (V=) 45 (v ¥7).
3.1.3. A calculation shows that in this correspondence V < D, if D? = 0 then
also (V — D)2 = 0 (here V — D is a d’-connection).
3.2. Harmonic bundles.

3.2.1. A harmonic bundle is a vector bundle V equipped with:

o A flat d-connection Vg
o A flat d”-connection V45

such that there exists a Hermitian metric K on V for which

Vi < Vigs-

3.2.2. Tt is also convenient then to consider the d’-connection
vcngs = vfliE - ngs-

By above, we also have vgngs = 0, and therefore we find that

[VH957 vcngs] = VHgsvcngs + Vcngsngs = 0.

3.2.3. We will have some preliminaries before discussing what are morphisms of
harmonic bundles.

3.3. Hodge theory - first dive.

3.3.1. Let V be a harmonic bundle. Fixing a Kahler structure on X, we obtain
an inner product on each space A¥(V) for k € Z>o. We therefore can talk about
formal adjoints of differential operators between these spaces.

3.3.2. Denote by
A:A(X) - ATH(X)
the formal adjoint of multiplication by w.

Proposition 3.1 (Kahler relations). One has
\% =i[A, Vigs], Vigs = —i[A, Veorgs]-

*
coHgs
Remark 3.2. In fact these relations hold also in the pre-flat correspondence, when

Vit is not assumed to be flat, but Vg4 is. Simpson mentions that this is a
motivation for the pre-flat correspondence.
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3.3.3. The Laplacian of a flat é-connection
V:A(V) - ATH(V)
is defined as
A= [V, V¥ =VV* +V*V: A°(V) > A*(V).
An a € A*(V) is called V-harmonic if Aa = 0. This is equivalent to Vo = 0 and
V*a = 0.
3.3.4. We therefore have Laplacians
Aflt = AVf,“ AHgs = AVHgSa Acngs = AVCOHQS'
Proposition 3.3. One has
[Veorgs, v?—[gs] =0, [Vigs, v>cl-gngs] =0,
Acngs = AHgsv
Aflt = 2Acngs = 2AH_qs~

Proof. This is an elementary algebraic calculation using the Kahler relations and
the relation [Veorgs, Vigs] = 0. O

3.3.5. In particular, the notion of harmonic form is the same for V ¢4, Vi gs, Veorrgs-
3.3.6. By elliptic theory, one obtains:
Proposition 3.4. We have
A*(V) = Im(A) ® Ker(A),

and Ker(A) is finite-dimensional, for A any of the three Laplacians above.
Corollary 3.5 (Hodge decomposition). We have

A*(V) = Im(V)® Im(V*)® Ker(A).
for V any of the three connections above (and A the corresponding Laplacian).

Proof. Clearly Im(A) c Im(V)+Im(V*)so A*(V) = Im(V)+Im(V*)+ Ker(A).
If Va+ V¥ + v = 0 (where v € Ker(A)) then applying V we obtain VV*3 = 0
and therefore (by a standard inner product trick) V*5 = 0. Similarly Va = 0.
And we are left with v = 0. O

3.4. The category of harmonic bundles.
3.4.1.

Lemma 3.6. Let V be a harmonic bundle. Let s € A°(V). Then Vs = 0 if and
only if Virgss = 0.

Proof. Notice that
Vigs =0 &= Apys =0 = Apges =0 < Vpgs =0.

The middle equivalence is by Proposition ?? while the left one, say, is because
Appys = V?ltvms, and so if Ayys = 0 then

0= (VuVus,s) = (Vus,Viusy = ||V jusl®
and thus Vy;s = 0. O
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3.4.2.

Lemma 3.7. Let V1,Vy be harmonic bundles. Let T : Vi — Vo be a morphism of
bundles. Then T oV =V oT if and only if T oViggs = VagsoT.

Proof. There is the standard monoidal formalism, by which we have a harmonic
bundle

Hom(V1,Vs),
and a morphism of bundles V; — Vs is interpreted as a section of Hom(V1,Vs).
Furthermore, the morphism will commute with V- (? standing for fit or Hgs) if
and only if the corresponding section is killed by V7. Therefore the current Lemma
follows from Lemma 77. ([

3.4.3. In view of Lemma ??, we can define the category Bunp,qn(X) of harmonic
bundles, whose objects are harmonic bundles, and morphisms are morphisms of
bundles commuting with either V¢;; or V4., which is the same.

3.5. The correspondence. We have fully faithful “forgetful” functors
Bunprm (X)

T

Bun i (X) Bunggs(X)
The main theorem is then:

Theorem 3.8 (Simpson Correspondence).

(1) The essential image of the left functor consists of semisimple flat bundles,
i.e. those which can be written as a direct sum of irreducible ones.

(2) The essential image of the right functor consists of slope 0 polystable Higgs
bundles - Higgs bundles which can be written as a direct sum of stable
Higgs bundles with all rational Chern classes trivial (in particular, those
have slope 0).

The proof is via hard analysis.
3.6. The rank 1 example.

3.6.1. Let us suppose for simplicity that H?(X,Z) has no torsion (for example,
dim¢ X =1). Fix 29 € X and abbreviate m; := m1 (X, 2g). Also, by the Higgs field
of a Higgs bundle we will understand minus the (1, 0)-part.

3.6.2. The set of isomorphism classes of local systems of rank 1 is in bijection with
Hom(m,C*) = H'(X,C*) =~ H'(X,C{) x H'(X,R%) =

_ H'(X,R) Hrm (X)

T HY{(X,Z) H(X,Z)

Here taking quotient by H'(X,Z) is in the sense of taking quotient by the image

of this. The second factor was by treated by taking logarithm and the first factor
was treated using the short exact sequence

0 z R Cr 0.

x H'(X,R) = x Hrmk (X).

Then both factors were treated by considering harmonic representatives.
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Given (wy,ws) on the right, the corresponding homomorphism y : m; — C* is
seen to be given by
X(’Y) _ eQTri Sw w1 +S‘r wa .
3.6.3. The Higgs field on a Higgs bundle of rank 1 is simply an holomorphic 1-form
(there is no dependence on the bundle, as the endomorphism bundle of a bundle of
rank 1 is the trivial bundle of rank 1). Therefore the set of isomorphism classes of
Higgs bundles of rank 1 (with the Chern vanishing conditions) is in bijection with

Pic®(X) x HO(X, Q') = == "2 x HY(X, Q") =~ ———— 2 x Hrm"°(X).

The first factor was treated using the short exact sequence

0 Z O 0 0.

Then both factors were treated by considering harmonic representatitves.

3.6.4. Let us consider a flat bundle of rank 1 corresponding to a C;-local system
with monodromy x : m; — C;. It admits an invariant Hermitian metric, w.r.t.
which the d”-connection corresponding to the d-connection Vy; is simply V7, in
particular it is flat. Therefore the corresponding Higgs bundle is the holomorphic
bundle where holomorphic sections are holomorphic functions multiplied by flat
sections, and the Higgs field is trivial. Therefore, the map providing the correspon-
dence is H*(X,Cy) — HY(X,0*) induced by the injection of sheaves C;* — 0*.
In terms of the descriptions above, this map is seen to correspond to the projection
onto (0, 1)-type Hrmk(X) — Hrm%!(X). From this we see that if w € Hrm%!(X)
is the form representing the resulting Higgs bundle in our above decomposition, we

have

X(’Y) _ 627”.2%5"’“).
3.6.5. Let us now consider a trivial holomorphic bundle of rank 1 together with
a Higgs field w € H°(X, Q') and the standard Hermitian metric. One calculates
that the Higgs connection f — —wf + d”f corresponds to the flat connection
f— —(w+®)f +df. Therefore the corresponding monodromy y : m — C* is
given by x(v) = R

3.6.6. Let us summarize:
Hrm%1(X)
lyst,1 ~ 0 1
WOBU/anS(X)pO ys = m X H (X,Q )7

and the monodromy x : m; — C* of the flat connection corresponding to (w, ) in
this decomposition is

X(’Y) _ 627”;'2%(&"7 L/.J)-F2§R(S,Y 0)

4. HODGE THEORY FOR AN HARMONIC BUNDLE

4.1. Let V be a harmonic bundle. Let us denote
AL (V) := Ker(Veorgs) < A*(V).
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One immediately checks that Vy;, and Vpgs preserve A2 (V) (and of course are
equal on it). We therefore have complexes and morphisms of complexes

(4.1) (AL(V), Ve = Vigs)

/\

(A*(V), Vi) (A*(V), Vigs)
Proposition 4.1. The above morphisms are quasi-isomorphisms.
Proof. We want to show that harmonic forms represent the cohomology of

(A.= (V)v vflt = ngs)~

So let o be harmonic and assume that o = V8 = Vg gs8. Then by V s-Hodge
decomposition, a = 0.

Conversely, let o be such that Vo = 0 and Vigsa = 0. We want to show that
o can be written as a harmonic form plus a form of the shape V8 = Vggs8. By
the Vgg4s-Hodge decomposition, we can write o as a harmonic form plus a form in
the image of Vgg4s. Substracting the harmonic form, we can assume that « itself
lies in the image of Vgs. Then the next Lemma shows that « lies in the image
of VagsVeorgs. Writing a = VggsVeomgsy, we notice that it is clear that also
o=V 1:VeorgsY, 50 B = Veomrgs gives the desired. O

Lemma 4.2.
Ker(Veorrgs) N Im(Vigs) € Im(VigsVeorgs)-

Proof. Let us abbreviate D := Vg, /1= Viomgs. Let o belong to the left hand
side. We write o = Df, and by E-Hodge decomposing 8 we can assume 3 = E*~.
By F-Hodge decomposing v, we can assume that Ey = 0. We have:

ApDy = DD*Dy = DApy = DAgy =

= DEE*y = DES = ~EDf = —Ea = 0.

Thus, D~ is harmonic and D-exact, and hence by the D-Hodge decomposition we
have

D~y =0.
Now the Kahler relation E* = i[A, D] gives

a = DE*y =i{DADy —iDDA~y = 0.

5. EXTENDING TO EXTENSIONS

5.1. dg-categories.
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5.1.1. A dg-category C is a category enriched in complexes. That is, for any two
objects My, My € C we are given a complex of morphisms Hom(M;, Ms), and so
on. We will write

Hom' (My, M)
for the i-th component of Hom (M, Ms),

Z'Hom(My, My) ¢ Hom® (M, M>)

for the closed elements, and
H'Hom(My, My)
for the i-th cohomology of Hom(M;, Ms).

5.1.2.  We have three categories attached to the dg-category C:
Hom°¢, z°¢, H°¢,

where objects are the same as objects of €, and morphisms are derived from the
complex of morphisms by the way suggested in the notation. We call Z°C the
underlying category of € and H°C the homotopy category of C.

5.1.3.  We have the notion of dg-functors. A dg-functor will be called strictly fully
faithful (resp. dg-fully faithful) if it induces isomorphism (resp. quasi-isomorphisms)
on Hom-complexes. A dg-functor F' will be called strictly essentially surjective
(resp. dg-essentially surjective) if ZOF is essentially surjective (resp. HCF is es-
sentially surjective). A dg-functor will be called a strict equivalence (resp. dg-
equivalence) if it is strictly fully faithful and strictly essentially surjective (resp.
dg-fully faithful and dg-essentially surjective).

5.1.4. Ignoring set-theoretic nuiance, a very important distinction between the
theory of categories and the theory of dg-categories is that an equivalence of cate-
gories admits an inverse, while an equivalence of dg-categories does not necessarily.
Thus, we might typically get dg-equivalences

e

VRN

(‘31 G2

and then we want to think of C; and Cy as dg-equivalent under that, although there
might be no actual dg-functor €¢; — €5 which realizes this dg-equivalence. Anyhow,
applying H° we obtain equivalences of categories H°C; «— H°C — HYC,, and we
can find an equivalence of categories H°C; — HY@, realizing this (which will be
unique up to a unique isomorphism if things are formulated correctly).

5.2. dg-enhancements in our case.
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5.2.1. Our three categories
Bun+(X)

for ? € {flt, Hgs, hrm} can be extended to dg-categories
Bun$(X)

(this means that we find a dg-category whose underlying category is our category).
Namely, this is based on on the copmlexes

(5.1) (A*(=), Vi), (A*(=),VHgs), (A2(=), Vit = Vigs)
above. For VW € Buns(X), we define the Hom-complex between V and W in
Bun$?(X) to be what we get by evaluating (??) on Hom(V, W).

5.2.2. Using (?7?), we have dg-functors

Bun

flt(X) Buntli-?gs(X)

By Proposition 77, these are dg-fully faithful.

5.2.3.  We therefore obtain a dg-equivalence
Bun'f,(X)** < Buny,, (X) = Bung, (X)PWe".
We would like now to see how to extend this to a dg-equivalence
Bun??t(X) o Bun?j’gs (X )semist,
where a Higgs bundle is semistable if it admits a filtration with subquotients being
polystable Higgs bundles (with the Chern vanishing as before).
6. PASSING TO EXTENSIONS

6.1. Semidirect extensions.

6.1.1. A semidirect extension in C is the data of two closed morphisms
My B,
for which o a = 0, such that there exist non-closed morphisms
o € Hom® (M, M), B* € Hom®(My, M)
such that
a*of* =0, a*oa=1, Bof*=1, aca®+8%0p=1.

In other words, in Hom®C our data becomes part of a direct sum diagram. An
isomorphism between two semidirect extensions

M, % M2 M,

and
M, <5 M B



10 ALEXANDER YOM DIN
is a closed isomorphism ~ fitting in a commutative diagram

M14>M4>M2.

)

M1*>M/HM2

6.1.2. Given a semidirect extension and fixing o® and S* as above, one checks
that the element

a* od(B*) e Hom"(M,, My)
is closed, and its cohomology class does not depend on the choice of a* and [*.
So we obtain an element of H* Hom(N, L) in this way. One checks then that we

obtain in this way an injection from the set of isomorphism classes of semidirect
extensions to H'Hom(Ma, My).

6.1.3. We say that C is strictly extension-saturated if the above injection is a
bijection for every My, M € C.

6.1.4. The dg-category of complexes is strictly extension-saturated. Indeed, given
complexes My, My and § € Z' Hom (M, My), we can define on M;@®M, the differ-

ential
d ¢
0 d

and this gives a semidirect extension as desired. More generally, we can take com-
plexes My, ..., M, and a matrix

0 521 577,1
A =
6n,n 1

where 8;; € Hom! (M;, M), such that
(d-1d + A)? =

and then consider M1@... @M, with the differential d - Id + A. This will be a
complex which can be obtained by a series of semidirect extensions:

My — Mo — Mo,

My — M2z — Ms,

Ml...n,1 g Mln g Mn
Notice that the condition (d -Id + A)? = 0 can be written as
d(A) + A% =0,

the Maurer-Cartan equation (here d(A) is the entrywise application of d to A).
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6.1.5. Inspired by the above construction in the dg-category of complexes, we can
formally add semidirect extensions to any dg-category C, as follows. We construct
a new dg-category %%, An object of @3 consists of a series M, ..., M, of objects
in G, and a matrix

0 621 ... On1
A =
6n,n71
0 --- 0
where 8;; € Hom! (M;, M), such that
d(A) + A% = 0.

One can see what the complexes of morphisms should be by looking at the example
of complexes: ...

6.1.6. Notice that we have a strictly fully-faithful dg-functor € — %%, If @ — D
is a dg-functor, we have a naturally constructed %% — D% and we have naturally

C———D

L

esde S Dsde
(the diagram 2-commutes).

6.1.7. It is easy to check that C*% is strictly extension-saturated. Additionally,
C is strictly extension-saturated if and only if the strictly fully-faithful dg-functor
€ — ©*? is a strict equivalence (i.e. the corresponding Z°C — Z°@%%¢ is essentially
surjective). One can say that C is extension-saturated if the weaker condition,
that the dg-functor is dg-essentially surjective (i.e. H°C — HC®% is essentially
surjective), is satisfied.

6.1.8. Suppose that € — D is a strictly fully-faithful dg-functor, with D strictly
extension-saturated and also such that every object of D can be obtained from
objects in the essential image of our functor via successive semidirect extensions.
Then we claim that the corresponding €% — D% ig a strict equivalence. Since

D — D4 is also a strict equivalence, we obtain a strict equivalence between 5%
and D.

One checks first that given a dg-functor F : €; — G, a semidirect extension
My - M — M in C; and an object N € €y, if the functor F' is strictly fully
faithful on (N, M) and (N, My) then it is also strictly fully faithful on (N, M): We
will have a commutative diagram in the dg-category of complexes

Hom(N,M,) ——— Hom(N,M) —— Hom(N, My)
Hom(FN,FM,) —— Hom(FN,FM)——= Hom(FN, FM,)

with rows being semidirect extensions, and then it is easy to see that since the
extremal vertical arrows are isomorphisms, so is the middle one. Similarly, one
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checks that if F' is strictly full faithful on (M7, N) and (Ms, N) then it is also
strictly fully faithful on (M, N).

Similarly, given a dg-functor F' : C; — Cs, if objects My, My € Gy are in the
strict essential image of F' and M1 — M — M5 is a semidirect extension, then M
lies in the strict essential image of F'.

We ask ourselves now on which pairs of objects our functor @*#¢ — D3%€ is strictly
fully faithful. If both objects are in €, then it is so by assumption. Since every
object in €%%¢ can be obtained from objects of € by repeated semidirect extension,
the above remark shows that the functor will be strictly fully faithful on all pairs
of objects.

Now we ask oursevles which objects of D% lie in the strict essential image of our
functor F : %% — D5 Suppose that N1, Ny € D% do and that Ny — M — N,
is a semidirect extension. Fix FM; =~ N;, FMs; =~ N. Corresponding to the
semidirect extension we have a class in H! Hom(Na, N7). Since F is already known
to be strictly fully faithful, we have a corresponding class in H!Hom(Mj, Ms), to
which corresponds a semidirect extension My — M — My in C%%. Then FM; —
FM — FM, is a semidirect extension in D%, with the same class as Ny — N —
No, and therefore FM =~ N. In other words we showed that the strict essential
image is closed under semidirect extensions. Since it contains the strict essential
image of ©, it contains the whole of D by assumption, and then the whole of D%,

6.1.9. Suppose that € — D is a dg-equivalence. Then C*% — D% is a dg-
equivalence. We omit the proof for now.

6.2. Our case.

6.2.1. We claim that Bun?ft(X ) and Bun?fgs(X ) are strictly extension-saturated.

Indeed, let us be given bundles with connections V and W (in any of the cases),
and an element T' € Z!Hom(W,V). Then T can be interpreted as a A°(X)-linear
map

AY(W) — AL(V),
so by extension an A®(X)-linear map
A (W) — ATH(Y),
satisfying [V, T] = VoT +T oV = 0. We can then define on V@W the connection

V(v,w) = (Vv + Tw, Vw).

.. 1. . . . dg . .
This gives a semidirect extension as desired. Notice that Bun'y gs)semist(X ) is basi-
dg

cally defined as the full dg-subcategory of Bun Hos (X) consisting of objects which
can be obtained via a successive semidirect extension from object in BunnggS’ polyst (X),
so it is also strictly extension-saturated.
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6.2.2.  'We now obtain the following diagram of dg-categories and dg-functors (here
we drop the dg-superscript, and the (X), for aesthetics):

(Bumnpym, )*%
sd sde _~ de
(Bunflt)g ¢ (Bunflt semzs Bunhrm Buans polyst ¢ — (Buans,semist)s ¢
Bunflt ﬁBunflt,semzs Buans,polyst; Buans,semist

Hence, we obtain an equivalence of dg-categories
d
Bunf!l]t (X) Buans semist (X)
Passing to H?, we obtain an equivalence of categories
Bunflt (X) ~ BuanS,se’mist (X)

7. THE NON-ABELIAN HODGE STRUCTURE
7.1. Tannakian formalism.

7.1.1. 'We have seen the most probably amazing transformation
Rep(m1) ~ LS(X) ~ Bunj;;(X) ~ Bunpgs(X)%m™t,
and want to figure out whether this tells something interesting about 7.

7.1.2.  So first natural step is to see whether 71 can be resconstructed from Rep(71),
or say a discrete group I' from Rep(T'). A usual double-commutator idea is that
Rep(T") is defined as things on which I' acts, so maybe I' can be recovered as
the things which act on the things in Rep(I'). Namely, given v € T, for every
V € Rep(T'), denoting by V the underlying vector space (forgetting the I'-action),
we have an invertible operator
v:V -V

Moreover, for every morphism 7 : V' — W in Rep(T"), the following diagram com-
mutes:

VW <—VRW .

lv l@w

VIW <—VRW

7.1.3.  So let us now consider the group I'""°%9 consisting of families of invertible
operators (v )yegep(ry With commutation conditions as above. More categorically,
this can be expressed as the group of tensor automorphisms of the forgetful functor
Rep(T') — Vect. We clearly have a homomorphism I' — T'Proals,
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7.1.4. For W € Rep(T'), we can consider a group F%oal‘q similar to the above, but
where we run only over V' € Rep(I") which are subquotients of direct sums of tensor
products of copies of W and WVY. One can show that this group is a Zariski closed
subgroup of GL(W) (via the obvious map T'%/°*Y — GL(IW)). We have

proalg 1 proalg
T = lim 'y,

)

and this gives I'P"°%9 the structure of a pro-algebraic group - the cofiltered limit
of affine algebraic groups.

7.1.5. Moreover, given a homomorphism I' — G where G is an affine algebraic
group, we can embed G — GL(W) for some vector space W, making W a repre-
sentation of I'. Then the image of I' — P49 — GL(W) lies in G, so ' — G
factors via I' — T'?"°%9_ One can see that this gives a bijection, for every affine
algebraic group G:

Hom(I'P"°"9 G = Hom(T', G)

where on the left we have abstract group homomorphisms, and on the right we have
group homomorphsms which factor as T'Pre*d — I‘%O“lg — @G for some W, where
the second homomorphism is algebraic. This explains that ['P"°*9 has a universal
property of being the pro-algebraic completion of T

7.1.6. Let us consider for example the case when I' is commutative. Then every
homomorphism from I' to an affine algebraic group is written canonicaly as the
product of a homomorphism with image consisting of unipotent elements and a
homomorphism with image consisting of semisimple elements. Then one deduces a
canonical decomposition

F;m‘oalg = [Prou g pross

I'Pret is the commutative pro-algebraic group for which
Hom(ITP™" G,) = Hom(T',G,,).

We can think of Hom(T',G,) as a C-vector space, so the filtered colimit of finite-
dimensional C-vector spaces, and so I'P"°" is described as a cofiltered limit, which
can be thought of as the linearly topologized C-vector space which is the con-
tinuous dual of the discrete vector space Hom(T',G,). Similarly, T'?"°%% is the
pro-diagnolizable group for which

Hom(T?P"°%* G,,) = Hom(T, G,y,).

I will skip the further particular form, since it will be glued from a pro-torus and
a profinite group, and I got confused about the gluing (a source says it is a direct
product, and I could not figure out why).

7.2. The Hodge action.

7.2.1. Suppose that we are given a symmetric monoidal auto-equivalence F' :
Rep(I') — Rep(T"), together with a functorial monoidal isomorphism F(V) =~ V.
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Then we can construct an automorphism of I'?"°%9 as follows. Given (yy/) € ['Proal9,
we define a new element (dy) by considering

7.2.2. In our case, notice that the equivalences
Rep(m) ~ LS(X) ~ Bung(X) ~ BuanS(X)Semist

are compatible with the “fiber functor” - the forgetful functor for Rep(m;), and the
functors of fiber at xy for the other categories. Therefore 7¥"°*Y can be recovered
from all of them. Given ¢ € C*, we have an auto-equivalence of Bunpgs(X)semst
given by sending (V, VY, + V) to (V, eVl + Vi) This is compatible with

the fiber functor, and so yields an automorphism of 777", In this way we obtain

gs)

an action of C* (viewed as a discrete group for now) on 7?"°*9_ This is Simpson’s
Hodge structure on the pro-algebraic completion of the fundamental group.

7.3. Example.

7.3.1. Fix zp € X and let as assume that I' := m1 (X, z) is commutative (recall
that it is also known that I' is finitely presented, so a finitely generated abelian
group). Let us again assume for simplicity that H?(X,Z) has no torsion. We want
to calculate the action of C* on I'P"°®9. From the description above, we see that
it is enough to calculate the action of C* on Hom(I',C*) and the action of C* on
Hom(T',C).

7.3.2. Let us describe the action of C* on Hom(I',C*). Recall that we had:
Hrm%1(X)
HY(X,Z)
where the bijection from right to left is given by

(w, ) — (7 s o2 2R( W) +2R(,, 9)) .

Hom(T',C*) = x HY(X,Qh

Via this bijection, the action is by scaling the second factor.
7.3.3. Let us now describe the action of C* on

Hom(T,C) =~ H*(X,C).
Fix pp: ' - C. We embed

1 =
o {(3 1))cen

and obtain a two-dimensional representation of I" which is an extension of two
trivial representations. The corresponding flat bundle is then an extension of two
trivial bundles, and thus can be expressed via a connection

(5%)
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Here w is a closed 1-form, which can also be thought of as representing an element

in H*Hom(Triv, Triv) in Bun%’t(X). One calculates that pu(y) = —§_ w. We can
8!

choose w to be harmonic, and decompose into (1,0) and (0, 1)-parts w = w’ + w”.

Since the Hom-complexes in Bun%t (X) and Bunff’gs (X)) were defined to correspond

precisely by harmonic representatives, the Higgs bundle corresponding to our flat

bundle is the extension of two trivial ones, with connection

" w
(0 )
Then application of ¢ € C* yields

d// C(U/ +OJ”
( O d// )7

and since cw’ +w” is harmonic, we can go back to flat bundles and consider the flat

bundle given by
d o' + "
0 d ’

Thus, we see that the action of C* on
Hom(T',C) =~ H'(X,C)
is, decomposing
HY(X,C) =~ H"(X)® H*(X),
the tautological homotethy action on the (1,0)-part and the trivial action on the
(0, 1)-part.



