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1 Warning

There might be errors, inaccuracies, and unpleasancies in the following text. I
will be happy if you let me know about it.

2 Convention

Whenever we say ”nice variety over F”, we mean a geometrically connected,
smooth and projective scheme over F .

3 The problem

Let k0 be a finite field with q = |k0| elements. We will denote kn0 an exetnsion
field of k0 with qn elements. Let X0 be a nice curve over k0, of genus g.

We let an (n ≥ 0) be the number of effective divisors of degree n on X0.
That is, formal non-negative integer combinations of closed points of the scheme
X0,

∑
cp · p, such that

∑
cp[κ(p) : k0] = n. We let bn (n ≥ 1) be the number of

points of X0 with values in kn0 . That is, bn = |X0(kn0 )|.
We define the zeta series:

z =
∑
n≥0

ant
n.

Then we have also (Euler product formula):

z =
∏
p

1

1− t[κ(p):k0]

where the product runs over closed points p of the scheme X0. Also, it is
easy to calculate:

t · dlog(z) =
∑
n≥1

bnt
n.
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Using Riemann-Roch formula, it is not hard to find that z has the following
form:

z =
p

(1− t)(1− qt)
where p is a polynomial whose free coefficient is 1, and which is of degree ≤

2g. Let us interpret p as a polynomial over the complex numbers, and decompose
p =

∏
i(1−αit). We remark that it is possible to show using Serre duality that

α 7→ q/α preserves the set of αi‘s. We can calculate:

t · dlog(z) =
∑
n≥1

(1 + qn +
∑
i

αni )tn.

The Riemann hypothesis for curves over finite fields then says:

Theorem 3.1. The two following equivalent statments do hold:

• We have |αi| = q1/2 for all i.

• We have bn = qn +O(qn/2).

The equivalence between the two statements is elementary, but one needs to
use the fact mentioned above, that α 7→ q/α preserves the set of αi‘s.

Actually, a slightly better statement can be made:

Theorem 3.2. We have |bn − (1 + qn)| ≤ 2gqn/2.

We will prove in this text the Riemann hypothesis for curves over finite
fields, using intersection theory on the square of the curve.

4 Intersection theory on surfaces

4.1 Divisors

Let S be a nice variety over an algebraically closed field k. We denote by k(S)
the function field of S (i.e. the stalk of the structure sheaf at the generic point).
We recall that smoothness implies that for p ∈ |S| of codimension one (we write
p ∈ |S|1), OS,p is a discrete valuation ring (DVR).

We will offer several descriptions of the divisor class group Cl(S).

4.1.1 first description

By a prime divisor on S we will mean a point of |S| of codimension one. Those
are in bijection with closed and integral subschemes of S of codimension one.

We denote by Div(S) the free abelian group generated by the prime divisors
on S. It has a positive structure - divisors all of whose coefficients are non-
negative are called effective.
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We have a morphism k(S)× → Div(S), given as follows: For a function
f ∈ k(S)× and a prime divisor p ∈ |S|1, we can consider f as an element
in the fraction field k(S) of the DVR OS,p, and so take its valuation. I.e.,
f 7→

∑
p∈|S|1 vp(f) · p.

The image of the morphism above is said to consist of princiapl divisors. We
will denote the cokernel of this morphism by Cl(S) (divisor class group).

4.1.2 second description

Let M be a coherent sheaf on S, whose support is not |S|. Then Mp is a
finite-length OS,p-module, for every p ∈ |S|1. Hence, we get a (effective) divisor
by associating to each p ∈ |S|1 the length of Mp. This construction gives in

fact a morphism K0(Coh≤1S /Coh<1
S ) → Div(S), where Coh≤1S is the abelian

category of coherent sheaves on S whose support is not |S| and Coh<1
S is the

Serre subcategory of Coh≤1S consisting of coherent sheaves whose stalks at points
of |S|1 are zero. One can see that this morphism is an isomorphism. This gives
another description of divisors.

In this picture, the morphism k(S)× → K0(Coh≤1S /Coh<1
S ) can be described

locally (on affines) by sending a regular function f to O/(f), and one can extend
this definition to non-affines by gluing.

Via this description, we see that given a closed subscheme of S, which is not
equal to S, we get naturally a (effective) disivor; Consider the structure sheaf
of this subscheme as a coherent sheaf on S. Of course, this is compatible with
the identification with the first description, when prime divisors are considered
as closed integral subschemes.

4.1.3 third description

The morphism above k(S)× → Div(S) can be naturally sheafified (considered
as a morphism between obvious sheaf versions). It then gives rise to an iso-
morphism Γ(k(S)×/O×S ) → Div(S). The principal divisor morphism is then
interpreted as Γ(k(S)×)→ Γ(k(S)×/O×S ). Thus, it is easy to see that Cl(S) is
then identified with H1(S,O×S ).

4.1.4 fourth description

Inspired by the third description, we recall that H1(S,O×S ) classifies line bun-
dles on S. How to describe divisors in this geometric language? Consider
the symmetric monoidal groupoid Pic(S) of line bundles on S, and the sym-
metric monoidal groupoid Picrigid(S) of line bundles on S, together with a
fixed non-zero rational section. We have a forgetful morphism Picrigid(S) →
Pic(S). Then it is easy to see that he have isomorphisms of abelian groups
π0(Picrigid)→ Div(S) and π0(Pic)→ Cl(S), such that the forgetful morphism
corresponds to the canonical projection Div(S)→ Cl(S).
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4.2 Pull and Push

Here, we consider nice varieties S, T and a finite surjective morphism φ : S → T .
Consider a point q ∈ |S|1. Then φ(q) ∈ |T |1. We define e(q) as the length

of the OS,q-module OS,q/OS,qmT,φ(q). Also, we define f(q) as [κ(q) : κ(φ(q))].
It is known that for every p ∈ |T |1,

∑
φ(q)=p e(q)f(q) = [k(S) : k(T )].

4.2.1 pull

We define φ∗ : Div(T )→ Div(S) on prime divisors by φ∗(p) =
∑
φ(q)=p e(q) · q

, and extend by additivity.
This factors through to give φ∗ : Cl(T ) → Cl(S). How does it look in the

different interpretations?
In the second one, it is given by pullback of coherent sheaves. In the third

one, it is given by pullback of functions. In the fourth one, it is given by pulback
of line bundles.

4.2.2 push

We define φ∗ : Div(S)→ Div(T ) on prime divisors by φ∗(q) = f(q) · φ(q), and
extend by additivity.

This factors through to give φ∗ : Cl(S) → Cl(T ). How does it look in the
different interpretations?

In the second one, it is given by pushforward of coherent sheaves. In the
third one, it is given by the norm map in field extensions. In the fourth one? I
stil did not figure out completely.

4.2.3 monad

The following property holds: φ∗φ
∗ : Div(T ) → Div(T ) is equal to multiplica-

tion by [k(S) : k(T )].

4.3 Intersection pairing

4.3.1 characterization

We assume here that S is a nice surface over an algebraically closed field k. We
want to characterize a symmetric biadditive pairing (·, ·) : Cl(S)× Cl(S)→ Z,
called the intersection pairing, in different ways.

In the first description: Let C,D be simple divisors on S (considered as closed
integral curves). Assume that C and D intersect transversally. This means that
the intersection is zero-dimensional, and at every point of the intersection, local
equations of C and D generate the ideal of local vanishing functions at that
point. Then (C,D) is equal to the number of intersection points of C and D.

In the second description: Let M1,M2 ∈ Coh≤1S . Assume that M1 ⊗OS

M2 ∈ Coh<1
S . Then (M1,M2) = dimΓ(S,M1 ⊗OS

M2). In particular, this
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includes information about how to count intersection of curves which intersect
non-transversally (but zero-dimensionally).

In the third description: I still did not figure out completely.
In the fourth description: Let L1,L2 be two line bundles on S. Then

(L1,L2) = χ(OS)− χ(L−11 )− χ(L−12 ) + χ(L−11 ⊗OS
L−12 ).

We also have some ”mixed” characterizations. The intersection of a line
bundle and a simple divisor, for example, can be calculated as the degree of the
pullback of the line bundle to the divisor, considered as a nice curve. As an
application of that, let X be a nice curve and S = X ×X. Then we claim that
(∆,∆) = 2χ(X), where ∆ is the diagonal in S (a simple divisor), and χ(X) is
the algebraic Euler characteristic of X (the dimension of the space of regular
differential forms). Indeed, OS(−∆) restricts to the sheaf of differentials on ∆,
and so (−∆,∆) = deg(ΩX) = −2χ(X).

4.3.2 ample divisors

Let D ∈ Div(S) be a very ample divisor. This means that for some embedding
of S into projective space, D is the (scheme-theoretical) intersection of some
hyperplane with S. Then D is ”very” positive - for every non-zero effective
divisor E, we have (D,E) > 0 (in particular, (D,D) > 0). This is not hard to
understand, as most hyperplanes do not contain E, so intersect E properly (i.e.
with zero-dimensional intersection), and the result follows.

4.3.3 Hodge index theorem

Consider the subgroup Clnum∼0(S) ⊂ Cl(S) which is the kernel of the inter-
section pairing. Write Clnum(S) = Cl(S)/Clnum∼0(S). Finally, set HS =
Q ⊗Z Clnum(S). Thus, HS is a vector space over Q, which admits a non-
degenerate symmetric bilinear pairing (·, ·).

The Hodge Index theorem claims that the positive index of HS is 1. This
means that there exists v such that (v, v) > 0 and (w,w) ≤ 0 for every w such
that (v, w) = 0. It then follows that for every v such that (v, v) > 0 we have
(w,w) ≤ 0 for every w such that (v, w) = 0.

Let us see how to establish it. Fix a very ample divisor D (recall that
(D,D) > 0), and let E be a divisor such that (E,E) > 0. It will be enough
to show that (D,E) 6= 0. The Riemann-Roch theorem for surfaces tells us
that, since (E,E) > 0, χ(nE) tends to +∞ as n tends to +∞. As χ(nE) =
h0(nE) − h1(nE) + h2(nE), this implies that either h0(nE) > 0 for arbitrarly
big n > 0, or h2(nE) > 0 for arbitrarly big n > 0. In the first case, nE will
be equivalent to an effective divisor, and hence (D,nE) > 0, which implies
(D,E) > 0. In the second case, recalling h2(nE) = h0(K − nE), K − nE will
be equivalent to an affective divisor, and hence (D,K −nE) > 0, which implies
(taking n big) that (D,E) < 0.
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4.3.4 flat families

Suppose that P is a nice variety andM is a coherent sheaf on S×P , which is flat
over P and whose fiber at any S-section is in Coh≤1S . Thus, we get a P -family
of divisors on S. The constancy of Euler characteristic in flat families easily
shows that all these divisors are in fact the same when considered in Clnum(S).

For example, if we consider two nice curves X,Y and S = X × Y , then the
X-sections of S all give rise to the same element in Clnum(S).

4.3.5 unitarity-like

If T is another nice surface over k and φ : S → T is a finite surjective morphism,
then it is not hard to see that (φ∗(·), φ∗(·)) = [k(S) : k(T )](·, ·).

I did not completely figure out whether φ∗ is adjoint (up to scalar) to φ∗ or
not.

4.3.6 counting fixed points

Suppose now that S = X × X, where X is a nice curve over k. For every
morphism ψ : X → X, we can consider its graph Gr(ψ), a closed subscheme of
S, which is isomorphic to X. In particular, Gr(ψ) can be also considered as a
(prime) divisor on S. We also note for later convinience that (id×ψ)∗Gr(id) =
Gr(ψ).

Suppose that a morphism ψ : X → X is not equal to the identity morphism
id. So, ψ has a finite number of fixed points. Suppose that all of its fixed points
are non-degenerate. It means that the endomorphism which ψ generates of the
tangent line at the fixed point is not equal to one.

Then we claim that the number of fixed points of ψ is equal to (Gr(ψ), Gr(id)).
Indeed, that ψ 6= id garantuees the intersection to be zero-dimensional. That
all the fixed points of ψ are non-degenerate garantuees the intersection to be
transversal. So (Gr(ψ), Gr(id)) equals just the naive number of intersection
points, which is clearly the number of fixed points of ψ.

5 Proof of the Riemann hypothesis for curves
over finite fields

Let X0 be a nice curve over the finite field k0; |k0| = q. Let k be an algebraic
closure of k0, and set X = X0 ×k0 k (it is considered as a nice curve over k).
We denote by kn0 the subfield of k consisting of qn elements.

Let us note that when we write X0(k) (or X0(kn0 )), we mean the k (or kn0 )
points of X0 over k0. Similarly, when we write X(k), we mean the k points of
X over k. Note that we have an identification X0(k) ∼= X(k).
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5.1 the miracle of Frobenius

The Galois group Gal(k/k0) acts on X0(k) ∼= X(k). In particular, the inverse of
Frob ∈ Gal(k/k0) acts. It is crucial that the action of this element is actually
induced by a morphism X0 → X0!

Considering the category of schemes over k0, we have a unique endomorphism
of its identity fucntor, which on affine schemes Spec(A)→ Spec(k0) is given by
A → A : a 7→ aq. We denote it by F . Then considering the map F : X0(k) →
X0(k) induced by F : X0 → X0, we easily see that it is equal to the map induced
by the inverse of Frob ∈ Gal(k/k0). In particular, X0(kn0 ) is the fixed point set
of Fn : X0(k)→ X0(k).

We continue our abuse of notation, and denote by F : X → X the base
change of F : X0 → X0.

So, to summarize the miracle, we now have a completely geometric data
- a nice variety X over k and a morphism F : X → X, which captures the
arithmetic data - the points of X0 with values in finite extensions of k0.

5.2 the end

We set S = X ×k X (it is a nice surface).
Let us notice that Fn : X → X induces zero on all tangent lines. Hence, all

of its fixed points are non-degenerate. We thus deduce:

bn := |X0(kn0 )| = |{α ∈ X(k)|Fn(α) = α}| = (Gr(Fn), Gr(id)) = ((Φn)∗(∆),∆)

where we set Φ = id× F and ∆ = Gr(id).
We will now be able to estimate bn by decomposing ∆ into positive definite

and non-negative definite parts.
Except ∆, we have two more special elements in HS : H = X × pt and

V = pt×X.
The following relations are clear:

(H,H) = 0, (V, V ) = 0, (H,V ) = 1.

Let us write HS = Sp{H,V } ⊕ G, where G is the orthogonal complement
to Sp{H,V }. Notice that the positive index of Sp{H,V } is 1, so that G is
non-positive definite. The relations:

(∆, H) = 1, (∆, V ) = 1

show that we can decompose ∆ = H + V + Γ, with Γ ∈ G.
It is not hard to see that Φ∗H = H and Φ∗V = qV (and that the degree

of Φ is q). In particular, from the almost-unitarity of the pullback, we also see
that Φ∗ preserves G.

Thus, we can calculate=:

((Φn)∗∆,∆) = 1 + qn + ((Φn)∗Γ,Γ)
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and by Cauchy-Schwartz the last term is estimated as being ≤ qn/2(Γ,Γ).
We can also compute (Γ,Γ) = −2g where g is the genus of X. This finishes the
proof.
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