
A NOTE ON THE TOPOLOGY OF POLYHEDRAL HYPERSURFACES AND
COMPLETE INTERSECTIONS

KARIM ADIPRASITO

ABSTRACT. We discuss mixed faces of Minkowski sums of polytopes, and show that
any stable complete intersection of pointed hypersurfaces is homotopy Cohen-Macaulay,
generalizing a result of Hacking, and answers a question of Markwig and Yu. In partic-
ular, it has the homotopy type of a wedge of spheres of the same dimension.

1. INTRODUCTION

A pointed hypersurface X in Rd is a (d − 1)-dimensional polyhedral complex that de-
composes Rd into pointed polyhedra. A complete intersection (of codimension n) is
the intersection of n pointed hypersurfaces. We prove

Theorem 1.1. The complete intersection X1 ∩ · · · ∩ Xn of n pointed hypersurfaces in Rd is
(d− n− 1)-connected.

Unfortunately, the naive intersection is dissatisfying on occasion, and within (tropical)
intersection theory, a different form of intersections is more interesting.

1.1. Stable complete intersections. A pointed hypersurface is regular if it is obtained
as the domains of linearity of a piecewise linear convex function.

Let X1, . . . , Xn be pointed hypersurfaces in Rd. The stable intersection is a subcomplex
of pure dimension d − n in X1 ∩ · · · ∩ Xn, which can be realized as a Hausdorff limit
of transverse intersections of translates of X1, . . . , Xn by small displacement vectors.
This is not well-defined in general, and motivates our restriction to regular pointed
hypersurfaces, in which case it is [MS15, §3.6].

Theorem 1.2. The stable complete intersection X1 ∩st · · · ∩st Xn of n regular pointed hyper-
surfaces in Rd is homotopy Cohen-Macaulay of dimension d− n.
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The regularity is only used to make the limit property work; it is still true under milder
conditions however that the stable intersection is well-defined, and in those conditions
imposed on pointed hypersurfaces1, the above theorem applies.

Note that, if X1 . . . , Xn meet properly, meaning that their intersection has dimension
d− n, then the stable intersection is equal to the naive intersection.

The theorem solves a special case of a question of Markwig and Yu [MY09], who asked
whether tropical complete intersections are shellable (which is a combinatorial property
stronger than homotopy Cohen-Macaulay). This question remains open.

The result also generalizes a result of Hacking [Hac08], who proved the same for ratio-
nal cohomology (i.e. Cohen-Macaulay with respect to rational homology) under a mild
general position condition.

Note that the poset of faces of a hypersurface fan Xi is dual to the poset of faces in the
boundary of a full-dimensional polytope Pi ⊂ Rd, and the poset of faces ofX1∩st · · ·∩st
Xn is dual to the poset of mixed faces of the Minkowski sum P1 + · · ·+Pn, meaning those
faces F1 + · · ·+Fn, with Fi a face of Pi, such

∑
i∈I Fi has dimension at least #I , for every

subset I ⊂ {1, . . . , n}. Counting mixed faces was discussed in [AS16]

Corollary 1.3. Let P1, . . . , Pn be d-dimensional polytopes in Rd. Then the poset of mixed faces
of the Minkowski sum P1 + · · ·+ Pn is homotopy Cohen-Macaulay of rank d− n.

1.2. Polyhedral Hodge theory. Following Mikhalkin (see for instance [IKMZ16]) , we
recall the p-groups Fp(Σ) of a fan Σ in Rd is the subgroup of

∧pRd generated by the
exterior products of vertices in a common face.

We consider now a polyhedron P , and a subset Q of the faces of ∂P on its boundary
closed under reverse inclusion. We call this a tropical domain. It is called projective
if there is a point v outside P such that ∂P \ Q is induced by the facets of ∂P invisible
from the point (i.e. they cannot be connected to v by lines that do not intersect P ).

Consider now a polyhedral complex X in P . We call it tropical in (P,Q) if faces of X
intersect Q orthogonally and transversally.

The p-group at a point of x of X is the p-group of its tangent fan, and the tangent fan
at a cell σ of Q is the tangent fan of σ intersected with X . For faces F,G of X with G

included in F , this induces a natural map of p-groups from the p-group at F to the p-
group at G, with the map at the boundary of P given by orthogonal projection. Notice
that this allows us to define homology with p-group coefficients.

1For instance, when the hypersurface admits a balancing with strictly positive weights
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Finally, let us fix the notation for a pointed hypersurface in P . We say X is a pointed
hypersurface in P ifX divides P into polyhedra, that is, closed regions combinatorially
equivalent to pointed polyhedra.

We say it is stably pointed if there exists a polyhedron P ′ containing P in its interior,
with a pointed hypersurface X ′ such that the restriction to P induces a combinatorial
isomorphism to X . This is to ensure stable intersection is well-defined in the case of
regularity.

We call it regular if it lifts to a convex function as usual, and ample if the restriction to
any open component of the complement in P ◦ ∪Q is combinatorially an orthant.

We prove:

Theorem 1.4. Consider (P,Q) a projective tropical domain of dimension d. The stable complete
intersection X1 ∩st · · · ∩st Xn of n regular ample stably pointed hypersurfaces in (P,Q) has
vanishing cohomology Hq(X,Fp)) provided p + q < d − n. Moreover, it is homotopy Cohen-
Macaulay.

1.3. Convex geometry. We should say what the notion of pointedness is important,
as it is clearly necessary for the theorems to hold (indeed, observe that the theorem is
wrong for general hypersurfaces, for instance, a collection of parallel hyperplanes.) The
key observation lies in the following basic fact from convex geometry:

Consider the space of convex functions C(P,Q) on a polyhedron P that vanish on the
boundary of P and are constant on a polyhedron Q ⊂ intP with the same recession
cone as P . We call such Q coherent with P , and allow Q to be empty.

Lemma 1.5. If P is pointed, then the subset Cs(P,Q) of functions that are strictly convex in
the interior intP \Q is dense in C(PQ). In fact, it is comeagre in the uniform topology.

This follows a basic construction of Klee [Kle59].

Proof. Consider a point v in intP \Q, and the recession cone C of P . Consider then the
minimal convex function 1v on C(P ) that evaluates to 1 on v + C and Q. Notice that it
is strictly convex at v.

Given any function f in C(P,Q), consider the function f + ε1v. It is strictly convex at
v, and so is every function in a small neighborhood of it. This shows that the set of
non-strictly convex functions is of the first Baire category. �
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We call smooth elements Cs(P,Q) the (P,Q)-coherent functions. As smooth functions
are comeagre (again a result of Klee in the same paper), the (P,Q)-coherent functions
are comeagre.

2. NAIVE INTERSECTIONS OF HYPERSURFACES

We first address the case of pointed polyhedra and their naive intersection, that is, The-
orem 1.1.

Lemma 2.1. Consider a pointed polyhedron P of dimension d in Rd, a complete intersection X
of codimension n, and a polyhedron Q coherent with P .

Then (P \Q) ∩X, ∂P ∩X) is (d− n− 1)-connected.

To clean up the induction, we clarify: Having established this statement for parameters
up to n and d will be abbreviated by Cn,d.

We prove this in conjunction with Theorem 1.1. Having proven this statement for pa-
rameters up to n and d will be abbreviated by Pn,d.

2.1. Tandem proof. We shall prove the following two implications:

• Pn,d−1 =⇒ Cn,d.
• Pn−1,d ∧ Cn−1,d =⇒ Pn,d

This leaves us with proving the statement when n or d is 0, which is trivial.

We begin by proving
Pn,d−1 =⇒ Cn,d.

Consider a generic (P,Q)-coherent function f , so that f is a stratified Morse function
on X , in the sense [GM88]. Explicitly, assume that f takes a maximum on cells of X (i.e.
relative interiors of faces) at distinct times. We can now trace the change in topology of
(P \ Pt) ∩X as t decreases.

At every change in topology, that is, at every critical point, the Morse data is given by a
codimension n complete intersection in Rd−1.

We can see this elementarily as follows: consider the critical point x, that is, a maximum
of f in a cell of X . Assume for the start that x is a vertex of X , and encountered at time
t. Then (P \ Pt−ε) ∩ X is obtained from (P \ Pt+ε) ∩ X , up to homotopy equivalence,
by attaching TxX ∩Txf

−1[0, t], where Tx denotes the tangent fan at a point. The latter
component, Txf

−1[0, t], is a halfspace, say with boundary H .
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Consider now a parallel hyperplane H ′ to H in the interior of that halfspace. Then
TxX ∩Txf

−1[0, t] is the cone overH ′∩TxX , which in turn is a codimension n complete
intersection inH ′. This is (d−n−2)-connected by Pn,d−1. The claim follows by the exact
sequence of relative homotopy groups.

If x lies in the relative interior of a face σ of X instead (say of dimension k), and en-
countered at time t, then TxX ∩ Txf

−1[0, t] splits into two parts, the so called nor-
mal and tangential Morse data: Consider the orthogonal complement N to Txσ. Then
TxX ∩ Txf

−1[0, t] is homotopy equivalent to the free join of ∂σ with

TxX ∩ Txf
−1[0, t] ∩N.

The latter is the cone over a (d − n − 1 − k)-dimensional set, the former is (k − 2)-
connected. Hence, their free join is (d − n − 1)-connected, as desired. This proves the
first implication. �

We now prove
Pn−1,d ∧ Cn−1,d =⇒ Pn,d

Consider then a codimension n − 1 complete intersection X ′, and another pointed hy-
persurface X . By Lemma 2.1, the stable intersection of X ′ and X is obtained from X ′

by attaching cells2 of dimension d − n + 1. This can introduce nontrivial homotopy
groups of dimension d− n, but not below. Hence, the stable intersection of X ′ and X is
(d− n− 1)-connected, because X ′ is. �

3. STABLE INTERSECTIONS

We now prove Theorem 1.2. Once again, it is enough to prove that the stable complete
intersection of codimension is (d − n − 1)-connected; the links of nonempty faces are
analyzed as before. Once again, we prove two statements in tandem:

Lemma 3.1. Let X be a stable intersection of n regular pointed hypersurfaces in Rd. Let P
be a pointed polyhedron of dimension d in Rd, let v ∈ Rd, and let Ps = P + sv. Let Q be
coherent in P . Then lims→0(Ps \Q)∩X is obtained from lims→0(∂Ps ∩X) by attaching cells
of dimension (d− n).

To clean up the induction, we clarify once again: Having established this statement for
parameters up to n and d will be abbreviated by C ′n,d.

Notice in particular:

2When speaking of attaching cells, we generally understand this up to homotopy equivalence
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Corollary 3.2. In the situation above, i-spheres mapped to lims→0(Ps \ Q) ∩ X homotope to
lims→0(∂Ps∩X) provided that i ≤ d−n−1. In particular, every relative (i+1)-disk (D, ∂D)
mapped (X ∩Q,X ∩ ∂Q) is a restriction of a relative disk mapped to the pair

(lim
s→0

(Ps \Q) ∩X, lim
s→0

(∂Ps ∩X)),

provided that i ≤ d− n− 1.

The implication of this corollary is direct for the same parameters, so we shall not assign
it another symbol. Finally, we note that instead of proving Theorem 1.2, it is enough to
prove the following proposition. We shall cleanly argue so in the next section.

Proposition 3.3. A stable complete intersection of codimension n in Rd is (d−n−1)-connected.

Having proven this statement for parameters up to n and d will be abbreviated by P ′n,d.

3.1. Proof of Theorem 1.2. Once again, we need the following implications:

• P ′n,d−1 =⇒ C ′n,d.
• P ′n−1,d ∧ C ′n−1,d =⇒ P ′n,d

Once again, the cases when n or d equals 0 are trivial.

The implications work as before, with the only nontrivial word to be said for the impli-
cation P ′n,d−1 =⇒ C ′n,d when v 6= 0.

Indeed, if we begin by proving

P ′n,d−1 =⇒ C ′n,d

for v = 0, then once again, we start by considering a generic (P,Q)-coherent function
f , so that f is a stratified Morse function on X , in the sense [GM88]. Explicitly, assume
that f takes a maximum on cells of X (i.e. relative interiors of faces) at distinct times.
We can now trace the change in topology of (P \Pt)∩X as t decreases, and analyze the
Morse data as before.

We consider this now the case v 6= 0, treating the limit of the approximations of P by
its translates Ps = P + sv. Note that the face poset of Ps ∩ X is independent of s,
for sufficiently small s. Since we have proved the first implication for v = 0, we may
assume that Ps \ Q ∩X is obtained from Ps ∩X by attaching (d − n)-cells. As X itself
is (d − n)-dimensional, this is equivalent the homotopy groups of the pair (Ps \ Q ∩
X, ∂Ps ∩ X) vanishing up to dimension i = d − n − 1. Equivalently, if Di is an i-disc,
with i ≤ d−n−1, then any map of pairs (Di, ∂Di)→ (Ps\Q∩X, ∂Ps∩X) is homotopic
relative to ∂Di to a map into ∂Ps ∩X .
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Notice first that lims→0(Ps ∩ X) = lims→0(P ∩ Ps ∩ X). Let us therefore abbreviate
P ′s := P ∩ Ps, and LX := lims→0 P

′
s \ Q ∩X and ∂LX := lims→0(∂P ′s) ∩X . It remains

to show that (LX, ∂LX) is (d − n − 1)-connected. By the case v = 0, applied to case
when the enveloping polyhedron is P ′s and Q is a close inner approximation of P , the
inclusion map LX → P ′s ∩X induces a surjection of relative homotopy groups

πi(P ′s \Q ∩X, (∂P ′s) ∩X) � πi(LX, ∂LX)

for i ≤ d − n. In fact, every relative i-disk mapped to (LX, ∂LX), i ≤ d − n is the
restriction of a relative i-disk mapped to (P ′s \Q ∩X, (∂P ′s) ∩X), see Corollary 3.2.

We must show that any map of pairs of pairs (Di, ∂Di)→ (lims→0(LX, ∂LX) is homo-
topic relative to ∂Di to a map into lims→0(∂PS ∩ X). Now, this disk (Di, ∂Di) is the
restriction of a disk (Di

s, ∂D
i
s) in (P ′s \Q ∩X, (∂P ′s) ∩X).

As the combinatorial type of Ps∩X remains unchanged for s small, we can assume that
D̃i
s has combinatorially invariant image, (as the combinatorial type, and therefore the

underlying CW complex, remain unchanged) that is, we can take D̃i
s as a combinatori-

ally invariant polyhedral i-disk D̃i that maps cobinatorially to ∂(Ps) ∩X , such that the
maps ϕs are invariant as maps of posets.

For the reader unfamiliar with combinatorial topology, we can construct D̃i as follows.
We take a map D̃i

s to the i-skeleton of ∂Ps ∩X that is locally injective on every i-cell of
the latter. As the i-skeleton generates the i-th homotopy group (this well known fact is
a basic application of the exact sequence of relative homotopy groups for the skeleta of
a cell complex), we can ensure that these conditions are satisfied. Now, pull back the
cell decomposition to D̃i

s, which gives the desired disk D̃i.

Now, if P (and therefore Ps) is compact, we are done: each of these faces have limits as
compact polyhedra, and hence also the image of D̃i

s has a limit. This is easy: Remember
that a cellular map can be realized, up to homotopy equivalence, as a facewise linear
map on the barycentric subdivision (in our case of D̃i

s) as it is realized by a simplicial
map [Bry02]. But the space of facewise maps on a fixed simplicial complex to a com-
pact set is itself compact (as the finite power of a compact space is compact, so that
up to passing to a subsequence, the limit exists. In fact, it is not necessary to pass to a
subsequence: since we chose the map to be combinatorially invariant, and each face of
∂Ps ∩X has a compact limit face, the limit exists as a simplicial map.3

3In fact, we can simply take the honest barycenters, and use the following simple but cute corollary of the
integral formula for the volume of polytopes as given by Lawrence [Law91]: If σs is a convergent sequence
of normally equivalent polytopes, then the limit of the barycenters is the barycenter of the limit. Note that
normal equivalence is critical here, and the same is not true for arbitrary limits.
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If P is not compact, then we observe that any polyhedral complex whose faces are
pointed polyhedra deformation retracts onto its subcomplex of bounded faces (which
we call the bounded part for short).

The bounded part is compact, as a finite union over compact sets, so that Di
s lie in the

compact bounded part of X ∩ ∂Ps.

It remains to see that this sequence of bounded parts is uniformly bounded as s tends
to 0. For this, observe first that if σ is a bounded face of X , then any intersection of it
is bounded, so it remains to understand the intersection of σ ∩ ∂Ps for unbounded σ.
Here, the situation is simple: if the sequence is unbounded as s tends to 0, then a face
of ∂Ps and σ share a ray in the recession cone by the aforementioned stability property.
Hence, for s small enough, σ ∩ ∂Ps is unbounded, and hence not in the bounded part.
This proves that the limit of bounded parts exists and is bounded, and so therefore we
can guarantee the limit of Di

s to exist in it.

This finishes the proof of the first implication.

Next we prove the second implication:

P ′n−1,d ∧ C ′n−1,d =⇒ P ′n,d

Suppose both propositions hold for (d, n − 1). Recall that, as discussed in Section 3, if
X ′ is a stable intersection of hypersurfaces in Rd, and X is a hypersurface in Rd, then

X ′ ∩st X = lim
ε→0

X ′ ∩ (X + εv)

for a generic displacement vector v.

We must show that a stable intersection of n pointed hypersurfaces in Rd is (d− n− 1)-
connected.

Let X ′ = X1 ∩st · · · ∩st Xn−1. We consider the stable intersection limε→0X
′ ∩Xn + εv,

for a generic displacement vector v.

Lemma 3.1 for (d, n− 1) implies that

πi(X ′, lim
ε→0

X ′ ∩ (Xn + εv))

which, as group, is the direct sum over

lim
ε→0

πi(X ′ ∩ (P + εv), lim
ε→0

X ′ ∩ (∂P + εv))

ranging over the regions of P of the complement of Xn, is concentrated in dimension
d− n+ 1. In particular, X ′ is obtained from limε→0X

′ ∩ (Xn + εv) by attaching cells of
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dimension d− n+ 1. But this can only affect homotopy groups in dimension d− n and
d− n+ 1, and hence preserves (d− n− 1)-connectivity.

3.2. The spherical case. Let us connect this to Theorem 1.2, and to Cohen-Macaulayness,
by examining tangent spaces and spherical hypersurfaces. Indeed, it remains to discuss
the links of nonempty faces to finish the proof of the theorem.

A pointed hypersurface X inside the sphere Sd is a polyhedron that divides Sd convex
polyhedra whose closure contain no antipodal points. In other words, the cones over
the faces of X induce a pointed hypersurface fan in Rd+1.

With this viewpoint as fans, we can extend the notion of stable intersection to pointed
hypersurfaces in the sphere, provided the decomposition is regular. We have the fol-
lowing two facts.

Proposition 3.4. The stable intersection of n pointed hypersurfaces in Sd is of dimension d−n,
and (d− n− 1)-connected. This is still true when restricted to an open hemisphere.

The second claim is clear, by central projection and Theorem 3.3. For the first claim, we
use the second claim and the following corollary of Lemma 2.1.

Lemma 3.5. Consider a stable complete intersection X of codimension n in Sd. Let H denote a
closed hemisphere of Sd. Then X ∩H is obtained from X ∩ ∂H by attaching cells of dimension
d− n.

Proof. Pick a spherical polyhedron P in the interior of H which contains (in its interior)
all faces of X in the interior of H , for instance by taking the convex hull of those faces,
and enlarging the result slightly. Then X ∩ H \ P deformation retracts to X ∩ ∂H , so
it suffices to prove that X ∩ P is obtained from X ∩ ∂P by attaching cells of dimension
d− n. The claim follows by central projection and Lemma 3.1. �

This finishes the proof of Proposition 3.4, and in particular also the proof of Theorem 1.2.

3.3. The case of Hodge groups. We now prove Theorem 1.4. The homotopy case works
as before, the same proof going through without modification.

For the case of tropical Hodge groups, we make some basic observations. First, let us
observe that a stable reguler complete intersection if nowhere acyclic:

We call a polyhedral fan Σ nowhere acyclic if it is pure and, for any point p of Σ, the
tangent fan to Σ in p does not lie in a closed halfspace with linear boundary unless it
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lies within that boundary. A polyhedral complex is nowhere acyclic if the tangent fans
are nowhere acyclic.

As stable complete intersections of regular pointed hypersurfaces is balanced with pos-
itive weights. The nowhere acyclic property follows immediately (see the proof of
Lemma 10.09 in [AB14]). We now need also the lemma immediately following this in
the same source, telling us we can push local coefficient systems through critical points.

Lemma 3.6. Consider a nowhere acyclic fan Σ of dimension n ≥ 2 in Rd and let H+ denote a
closed general position halfspace whose boundary contains the origin.

Then (F1Σ)|0 is generated by (F1(Σ ∩H+))|0.

We obtain results as follows:

(1) We observe first that (P,Q) satisfies Theorem 1.4 with zero hypersurfaces. This
follows at once by induction on the number of facets in Q, and using the fact that Q
is shellable.

(2) Next, argue by tandem induction to prove that (C”) given a stable intersection X ′

of codimension n − 1, and another hypersurface X , the inclusion of X ′ ∩st X into
X ′ induces isomorphisms for (p, q)-homology in dimension p + q ≤ d − n, and a
surjection in dimension p+q = d−n+1, and (P”) that the homology ofX ′ vanishes
up to p+q ≤ d−n. Both are proved in tandem as in the previous cases. Theorem 1.4
follows.
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