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Abstract

In Hart, Kremer, and Perry (2017) we use the assumption that a col-

lection of functions is single-peaked. It is shown here that this condition

is essentially equivalent to applying a monotonic transformation to a col-

lection of strictly concave functions.

A real function f : R → R is single-peaked if there is a point v such that

f is increasing for x ≤ v and decreasing for x ≥ v; thus, f has a unique local

maximum—which is therefore its global maximum—at v. The (slightly stronger,

but more convenient) differentiable version requires that there is v such that

f ′(v) = 0 and f ′′(v) < 0, (1)

because then f ′(x) > 0 (and so f is increasing) for x < v, and f ′(x) < 0 (and

so f is decreasing) for x > v; in particular, it follows that v is the unique point

where f ′ vanishes.1

From now on we assume that all the functions are twice continuously differ-

entiable, i.e., C2, and use the differentiable version (1) of single-peakedness.

A finite set (ht)t∈T of real functions (where T is a finite index set) satisfies

the single-peakedness condition (SP) if all weighted averages of the functions ht,

i.e., hq :=
∑

t∈T qtht for all2 q ∈ ∆(T ), are single-peaked functions; see Hart,

Kremer, and Perry (2017).
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1An equivalent way to state the condition is that f ′(x) = 0 implies f ′′(x) < 0, and there
is some x with f ′(x) = 0 (the uniqueness of such x then follows since between any two local
maxima x 6= y there must be a local minimum z, where f ′(z) = 0 and f ′′(z) ≥ 0).

2∆(T ) = {q = (qt)t∈T ∈ R
T

+
:
∑

t∈T
qt = 1} denotes the unit simplex on T, i.e., the set of

probability distributions on T.
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Remarks (cf. Hart, Kremer, and Perry 2017, Section III.A and Appendix C.3).

(a) All the functions ht being single-peaked does not imply that their aver-

ages must be single-peaked as well, and so is not sufficient for (SP).

(b) All the functions ht being strictly concave with a finite maximum implies

that so are all their averages, and so (SP) holds.

(c) The condition (SP) is invariant to applying a strictly increasing trans-

formation to the variable x: If (ht)t∈T satisfies (SP) then so does (ht ◦ψ)t∈T , for

any ψ : R → R with ψ′(x) > 0 for all x. Indeed, (ht(ψ(x))′ = h′
t(ψ(x))ψ′(x) and

(ht(ψ(x))′′ = h′′
t (ψ(x))(ψ′(x))2 + h′

t(ψ(x))ψ′′(x), and therefore (ht(ψ(x))′ = 0

if and only if h′
t(ψ(x)) = 0, in which case (ht(ψ(x))′′ = h′′

t (ψ(x))(ψ′(x))2 < 0.

(d) One may allow the peak to be infinite (i.e., v = +∞ or v = −∞, which

means that the function is monotonic), in which case everything (including the

result below) goes through, except that the functions no longer need to have a

finite maximum.

Combining (b) and (c) yields a sufficient condition for (SP). We now show

that this condition is also necessary.

Theorem 1 The finite set of functions (ht)t∈T satisfies (SP) if and only if there

exists a monotonic transformation ψ : R → R with ψ′(x) > 0 for all x such that

ht ◦ ψ is a strictly concave function with a finite maximum for every t ∈ T .

Proof. We will construct the inverse ϕ = ψ−1 of ψ. Assuming the conclusion

holds, we have gt(ϕ(x)) = ht(x) and ϕ′(x) > 0 for all x ∈ R and t ∈ T, and so

g′t(ϕ(x)) = h′
t(x)/ϕ′(x) and g′′t (ϕ(x)) = [h′′

t (x)ϕ′(x) − h′
t(x)ϕ′′(x)]/[ϕ′(x)]3. To

get g′′t (y) < 0 for all y we need h′′
t (x)ϕ′(x) − h′

t(x)ϕ′′(x) < 0 for all t and all x,

i.e.,

h′′
t (x) < h′

t(x)
ϕ′′(x)

ϕ′(x)
(2)

for all t and all x.

We will show that for every x there is a finite scalar λ(x) such that for all t

we have

h′′
t (x) < h′

t(x)λ(x). (3)

Putting ϕ′′(x)/ϕ′(x) = (ln ϕ′(x))′ = λ(x) yields lnϕ′(x) =
∫ x

0
λ(z)dz, hence

ϕ′(x) = exp
(∫ x

0
λ(z)dz

)

> 0, and ϕ(x) =
∫ x

0
exp

(∫ y

0
λ(z)dz

)

dy; then (2) holds,

which gives g′′t (y) < 0 for all y (and we have g′t(ϕ(vt)) = 0 at that vt with

h′
t(vt) = 0).
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To prove the claim of the previous paragraph, fix x. Let

C := conv{(h′
t(x), h′′

t (x)) : t ∈ T} = {(h′
q(x), h′′

q (x)) : q ∈ ∆(T )} ⊂ R
2,

then the compact convex polygon C is disjoint from the closed ray D := {(0, w) :

w ≥ 0} (because hq is single-peaked and so h′
q(x) = 0 implies h′′

q (x) < 0).

Therefore one can separate them strictly: there is p = (p1, p2) ∈ R
2 such that

max
t∈T

p1h
′
t(x) + p2h

′′
t (x) = max

c∈C
p · c < inf

d∈D
p · d = inf

w≥0

p2w.

Therefore p2 ≥ 0 (otherwise the right-hand side equals −∞), the right-hand

side equals 0, and we can take p2 > 0 (slightly increasing p2 preserves the strict

inequality, because C is compact). Then λ(x) := −p1/p2 satisfies (3).
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