
1. Rank of a matrix

Definition 1.1. Let A = (aij)1≤i≤m,1≤j≤n be an m × n matrix. An m′ × n′

submatrix B is obtained by choosing m′ rows and n′ columns and removing all
entries outside of these rows and columns. Formally speaking, one fixes numbers
1 ≤ i1 < i2 < · · · < im′ ≤ m and 1 ≤ j1 < j2 < · · · < jn′ ≤ n and defines
B = (bpq)1≤p≤m′,1≤q≤n′ by bpq = aipjq . We say that B is the submatrix whose
rows are i1, i2, . . . , im′ and columns are j1, j2, . . . , jn′ .

Definition 1.2. Given an m× n matrix A one defines the following numbers:
(i) The rank of A is the maximal number r = rk(A) such that A possesses an

invertible r × r submatrix.
(ii) The row rank of A is the maximal number r = rkrow(A) such that A possesses

r linearly independent rows (in the space of rows Fn).
(iii) The column rank rkcol(A) is defined similarly to rkrow(A) but using columns

instead of rows.

Lemma 1.3. Let A be a matrix, then
(i) rk(A) = rk(At),
(ii) rkrow(A) = rkcol(A

t).

Proof. Observe that the rows of A are the columns of At and vice versa, so we
obtain (ii). In addition, this observation implies that if B is a submatrix of A given
by rows i1, . . . , im′ and columns j1, . . . , jn′ then Bt is the submatrix of At given by
rows j1, . . . , jn′ and columns i1, . . . , im′ . Since B is invertible if and only if Bt is
invertible, we obtain that rk(A) = rk(At). �

Lemma 1.4. If v1 = (x11, . . . , x1n), . . . , vr = (xr1, . . . , xrn) are r linearly indepen-
dent vectors in Fn and n > r, then there exists 1 ≤ j ≤ n such that the vectors
w1 = (x11, . . . , x̂1j , . . . , x1n), . . . , wr = (xr1, . . . , x̂rj , . . . , xrn) are linearly indepen-
dent in Fn−1.

Proof. Since the vectors are linearly independent, V = Span(v1, . . . , vr) is of di-
mension r. In particular, V 6= Fn, and there exists a standard basis vector εj not
contained in V . Consider the linear map (in fact, a projection) p : Fn → Fn−1

given by p((x1, . . . , xn)) = (x1, . . . , x̂j , . . . , xn). Its kernel consists of all vectors
with xk = 0 for any k 6= j, so Ker(p) = Span(εj). Let q : V → Fn−1 be the re-
striction of p onto V , i.e., q : V → Fn−1 is the linear map given by q(v) = p(v)
for v ∈ V . Since εj /∈ V , we have that Ker(q) = Ker(p) ∩ V = Span(εj) ∩ V = 0.
Thus, q is an embedding and dim(Im(q)) = r. But Im(q) is generated by r vec-
tors q(vi) = (xi1, . . . , x̂ij , . . . , xin) with 1 ≤ i ≤ r, so these vectors are linearly
independent and we are done. �

Theorem 1.5. For any matrix A all three ranks coincide: rk(A) = rkrow(A) =
rkcol(A).

Proof. We start with the equation rk(A) = rkrow(A). Assume that B is an r × r
matrix given by rows i1, . . . , ir and columns j1, . . . , jr. If B is invertible then its rows
are linearly independent (by our theory of invertible matrices). It follows that the
rows i1, i2, . . . , ir of A are also linearly independent, hence rkrow(A) ≥ r = rk(A).

Conversely, assume that r = rkrow(A) and choose r linearly independent rows
of A, say v1 = (ai11, . . . , ai1n), . . . , vr = (air1, . . . , airn). The rows live in the n-
dimensional row space, so r ≤ n. If r < n then by the above lemma there exists
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1 ≤ j ≤ n such that the rows remain linearly independent after removing the j-th
column. So, we can remove columns one by one obtaining a chain of submatrixes
r×n, r× (n−1), . . . , r× r such that each submatrix has linearly independent rows.
The last submatrix is a square matrix, so linear independence of its rows implies
invertibility (by the theory of invertible matrices). We found an r × r invertible
submatrix, so rk(A) ≥ r = rkrow(A).

The two inequalities imply that rk(A) = rkrow(A) for any matrix A. In par-
ticular, rk(At) = rkrow(At) and by the first lemma we obtain that rkcol(A) =
rkrow(At) = rk(At) = rk(A), completing the proof. �


