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RELATIVE DESINGULARIZATION AND PRINCIPALIZATION

OF IDEALS

DAN ABRAMOVICH, MICHAEL TEMKIN, AND JAROS LAW W LODARCZYK

Abstract. In characteristic zero, we construct relative principalization of
ideals for logarithmically regular morphisms of logarithmic schemes, and use
it to construct logarithmically regular desingularization of morphisms. These
constructions are relatively canonical and even functorial with respect to loga-
rithmically regular morphisms and arbitrary base changes. Relative canonicity
means, that the principalization requires a fine enough non-canonical modifi-
cation of the base, and once it is chosen the process is canonical. As a conse-
quence we deduce the semistable reduction theorem over arbitrary valuation
rings.

1. Introduction

If not said to the contrary, all schemes and stacks considered in this paper are
assumed to be qe (quasi-excellent), noetherian and of characteristic zero, though
we recall these assumptions when formulating the main results.

1.1. Motivation. Comparing to desingularization of schemes and varieties, the
theory of resolution of morphisms or families has a much shorter history. The clas-
sical example of such problem is stable reduction of curves. This case is extremely
important and the solution is relatively canonical, and even holds in mixed char-
acteristics, but it is a low-dimensional exception. With this exception there were
two main achievements in the characteristic zero case, and both were based on
breakthroughs in the absolute desingularization theory.

First, Mumford et al. observed in [KKMSD73] that Hironaka’s theorem implies
that if R is a DVR of pure characteristic 0 and X is flat, of finite type and with
a smooth generic fiber Xη over S = Spec(R), then there exists a modification
X ′ → X such that X ′

η = Xη and X ′ → S is logarithmically smooth (or toroidal).
This implication is in fact obvious and the main goal of [KKMSD73] is to prove
that X ′ can be made semistable, after base change, by combinatorial methods. By
later works Hironaka’s method can be made canonical, and then the modification
X ′ → X becomes canonical, but it heavily depends on R and changes completely
after any ramified extension of R.

Second, Abramovich and Karu used in [AK00] de Jong’s method of alterations to
prove that any dominant morphism of finite type between integral schemes Z → B
can be made logarithmically smooth after modifying Z and B. This was the only
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known result applying to any dimension of the base and of the fibers, but the
method is non-canonical and even a smooth generic fiber Zη can be modified by it.

In addition, there were a series of works by Cutkosky, see [Cut02] and [Cut07],
where toroidalization of a dominant morphism Z → B with dim(Z) ≤ 3 of charac-
teristic zero was achieved. These works have different goals: one starts with smooth
Z and B — not a real restriction due to Hironaka — and the main challenge is
to achieve torodalization by only blowing up Z and B at smooth centers, with the
added flexibility of working locally. The restriction to blowings up makes the prob-
lem much subtler. It leads to applications somewhat different from ours — with a
stronger emphasis on strong factorization of birational maps rather than families
and moduli.

The following questions were open until now: Can one resolve Z/B relatively
canonically? Can one at least achieve that the smooth locus of Z/B is kept un-
changed? And, finally, an even more specific but famous question extending the
semistable reduction to non-discrete valuation rings R: given a smooth proper vari-
etyXη over Frac(R), can one extend it to a proper logarithmically smooth R-scheme
X?

In this paper we answer all these questions affirmatively (in characteristic zero).
Moreover, we construct a relatively canonical resolution of morphisms compati-
ble with arbitrary base changes B′ → B and logarithmically smooth morphisms
Z ′ → Z.1 Our construction is strongly based on ideas and methods of the clas-
sical desingularization, but involves completely new ingredients, such as extensive
use of logarithmic geometry and non-representable modifications. To the best of
our knowledge, this is the first relative desingularization algorithm for arbitrary
dimensions. We are also working on another paper, where a canonical resolution
of proper morphisms will be achieved.

Finally, in the end of our project Belotto Da Silva and Bierstone informed us
about their work [BDSB19]. Its main result provides local monomialization of
dominant morphisms in characteristic zero in arbitrary dimensions. A careful com-
parison of our methods should be done in the future, here we only note that there
are definitely some similar ideas, such as the use of relative logarithmic differentials
and the centers they define. As in the works of Cutkosky, the paper [BDSB19] does
not aim at a global functorial procedure, and on the other hand, they restrict the
class of modifications of the base to the simplest possible ones. In comparison, in
our work we are mainly concerned with the relative method, and pay much less
care to modifications of the base. Another major difference is that we use arbi-
trary logarithmically smooth morphisms and allow to blow up fractional powers of
monomials ideals. Our resulting algorithm is faster and more functorial, but it has
to work with (mild) stacks.

1.2. Statement of main results.

1.2.1. Overview. In this paper we accomplish our program on functorial desingu-
larization (or semistable reduction) of morphisms in characteristic zero. Oversim-
plifying, the main idea is to take the classical desingularization method of Hironaka,
Giraud, Bierstone and Milman, Villamayor, W lodarczyk, Kollar, and others and
adjust all its ingredients to logarithmic and relative settings. In particular, one

1Relatively canonical is given precise meaning below.
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should first obtain a logarithmic relative principalization of ideals on logarithmi-
cally smooth morphisms, and deduce desingularization from it. Half of this work
was done in [ATW17], where we constructed logarithmically functorial desingular-
ization of logarithmic varieties. It turned out that the stronger functoriality forces
one to use non-representable stack theoretic modifications, that we called Kummer
blow ups, but the algorithm’s structure became simpler than in the classical case.

In this paper, we show that the algorithm constructed in [ATW17] applies to mor-
phisms Z → B once one adjusts all definitions to the relative setting. Developing
plenty of foundations in the relative setting is one of main technical contributions
of the paper. However, there is also a principally new relative phenomenon which
required a new ingredient: one might need to modify the base B before — or in the
process of — running the desingularization algorithm. Technically this happens be-
cause relative differential saturation does not have to produce a monomial ideal. To
overcome this issue we prove a surprisingly hard monomialization theorem 3.6.13,
which “repairs” the differential saturation by a modification of the base.

An additional challenge we took on in this paper is to deal with morphisms not
necessarily of finite type. In particular, we study principalization for logarithmically
regular morphisms (defined and studied in a separate paper [MT19]) rather than for
logarithmically smooth morphisms. This has the advantage of applications to other
categories, such as formal schemes and analytic spaces. This direction is new even
for classical desingularization, since [Tem18] does not construct principalization for
qe schemes.

1.2.2. Absolute desingularization. Our first application of working with morphisms
not of finite type generalizes [ATW17, Theorem 8.3.4] to qe schemes, see §8.4:

Theorem 1.2.3. For any formally equidimensional generically logarithmically reg-
ular qe noetherian logarithmic scheme Z of characteristic zero, there exists a mod-
ification F(Z) : Zres → Z such that Zres is logarithmically regular. Moreover, one
can achieve that the process assigning the morphism F(Z) to Z is functorial for
logarithmically regular quasi-saturated morphisms Z ′ → Z. In particular, F(Z) is
an isomorphism over logarithmic regularity locus Zreg ⊆ Z. Finally, each F(Z) can
be realized as a blow up whose center is disjoint from Zreg.

See [ATW17, Section 8.2.2] for the notion of quasi-saturated morphisms used in
this statement.

Remark 1.2.4. (i) It might be the case that the center of the blow up can be
chosen functorially with respect to surjective logarithmically regular morphisms,
but we do not pursue this direction.

(ii) By functoriality, the morphism F(Z) : Zres → Z is defined even without Z
noetherian, since the local constructions glue.

(iii) Any normal qe scheme is formally equidimensional. So desingularization
can be achieved without assuming Z is formally equidimensional, by taking the
composition Z ′

res → Z ′ → Z, where Z ′ is the normalization of Z.

1.2.5. Functorial relative principalization. Throughout this paper, we say that a
morphism f : X → B of qe noetherian fs logarithmic DM stacks of characteristic
zero is a relative logarithmic orbifold2 if X → B is logarithmically regular and has

2When the morphism X → B is specified we might just call it a logarithmic orbifold, suppress-
ing the word relative.
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enough derivations, see §2.3–2.6. We will work with fs logarithmic structures, hence
only saturated base changes X ′ = (X×BB′)sat will be considered and we may omit
the superscript “sat”. See also [ATW17, §1.2.1]. In addition, we have to impose
some restrictions on B: we assume throughout that

(B) B belongs to the class B of logarithmically regular logarithmic DM stacks.

See Remark 1.2.9 for implications beyond B ∈ B.

A Kummer ideal J ⊆ OXkét
is called submonomial if it is the sum of a suborbifold

ideal and a Kummer monomial ideal, see §4.1, and the submonomial Kummer
blow up along J is a stacky Proj of the corresponding Rees algebra h : X ′ =
ProjX(⊕nπ∗(In)) → X , where π : Xkét → Xét is the natural morphism, see §4.2.
Note that h−1J is an invertible ideal. By a principalization method we mean a
rule F which obtains a relative logarithmic orbifold f : X → B with B ∈ B and
an ideal I ⊆ OX and outputs either F(f, I) = ∅, which means “F fails over
the given B, blow it up first”, or a sequence of submonomial Kummer blowings
up F(f, I) : X ′ = Xn → · · · → X0 = X such that each Xi → B is a relative
logarithmic orbifold, the center of each Xi+1 → Xi is supported on V (IOXi ), and
IOX′ is a monomial ideal.

Our first main result states that there exists a principalization method that does
not fail after a large enough modification of the base and satisfies three functoriality
conditions as follows:

Theorem 1.2.6 (Principalization). There exists a principalization method in char-
acteristic zero F satisfying the following properties:

(i) Existence: let f : X → B be a relative logarithmic orbifold with an ideal
I ⊆ OX , and assume that B ∈ B and either dim(B) ≤ 1 or f has abundance
of derivations. Then there exists a blow up g : B′ → B with saturated pullback
f ′ : X ′ → B′ and I ′ = IOX′ such that F(f ′, I ′) 6= ∅. Moreover, if B is a scheme,
then one can also achieve that the center of g is monomial away from the closure
f(V (I)) ⊂ B.

(ii) Base change functoriality: if F(f, I) 6= ∅ and B′ → B is any morphism
of logarithmic stacks from B with noetherian saturated base change f ′ : X ′ → B′

and I ′ = IOX′ , then the sequence F(f ′, I ′) is obtained from the saturated pullback
sequence F(f, I) ×B B′ by removing Kummer blowings up with empty centers.

(iii) Logarithmically regular functoriality: if F(f, I) 6= ∅ and I ′ = IOX′ for a
logarithmically regular morphism X ′ → X such that X ′ → B is a relative loga-
rithmic orbifold (i.e. has enough derivations), then F(f ′, I ′) is obtained from the
saturated pullback sequence F(f, I) ×X X ′ by removing Kummer blowings up with
empty centers.

(iv) Compatibility with closed embeddings: if f : X → B is another relative
logarithmic orbifold and i : X →֒ X is a B-suborbifold embedding of pure codi-
mension, then the pushforward sequence i∗(F(f, I)) coincides with F(f, I), where
I := (i∗)−1I and i∗ : OX → OX is the reduction homomorphism.

Remark 1.2.7. First, a few comments on the obtained principalization.

(i) In brief, the main result is that there exists a relative principalization algo-
rithm F , which works after a fine enough modification of B assuming B is reason-
able and X/B has abundance of derivations, for example, X → B is logarithmically
smooth.



RELATIVE DESINGULARIZATION AND PRINCIPALIZATION OF IDEALS 5

(ii) When dim(B) ≤ 1 the abundance condition is not needed. In particular, the
algorithm automatically succeeds if B = Spec(R) for a field or a DVR R with the
logarithmic structure Rr{0}, because the logarithmic scheme B has no non-trivial
logarithmic modifications.

(iii) Once B is fine enough, our method is constructive and applies beyond al-
gebraic geometry. However, the result on existence of the modification B′ → B is
purely existential and might not apply as broadly, see §1.2.22. This is the main
reason why our formulation separates the canonical construction of X ′ → X from
the non-canonical refinement B′ → B.

(iv) Ideally, one would like g in 1.2.6(i) to be T -supported for T = f(V (I)). At
least when B is a scheme we achieve just a bit less – g is a logarithmic blow up
over U = X r T . In particular, the triviality locus Utr of the logarithmic structure
is kept unchanged.

Remark 1.2.8. Next, let us compare the relative principalization to its predecessor
from [ATW17].

(i) The functoriality property (iii) is the analogue of the functoriality in [ATW17].
Property (iv) strengthens the re-embedding principle in [ATW17]. Finally, property
(ii) only makes sense in the relative situation, and it is necessary since the algorithm
often fails without base change.

(ii) The algorithm in [ATW17] is the particular case of the relative principal-
ization when B = Spec(k) and f is of finite type. The only new feature of the
algorithm is that when dim(B) > 1 it may fail in the initial cleaning stage (see
§1.3.11), which means that a modification of B is needed. The justification of the
algorithm in this paper differs in one aspect: independence of the choice of a max-
imal contact is proven using equivalence of marked ideals. In particular, we prove
a slightly stronger claim, see Theorem 7.1.1(iv).

Remark 1.2.9. Finally, let us discuss what happens if B /∈ B.

(i) In claim (i) of the Theorem one can take any qe B and make it logarithmically
regular by Theorem 1.2.3. The only weakening of the formulation in this case is
that the modification locus will also contain Bsing.

(ii) So far, our definition of submonomial Kummer blow ups is developed only
for a logarithmically regular B. Probably, this assumption can be eliminated, but
in this paper the notion of principalization does not make sense otherwise. In
addition, logarithmic regularity of B is used a couple of times in the proofs. On
the other hand, we definitely know that the class B is not the widest possible, see
Remark 3.1.11.

1.2.10. Order reduction. As in other cases, the principalization theorem is a partic-
ular case of an order reduction theorem for marked ideals on X . The formulation
is similar to Theorem 1.2.6 and will be given in 7.1.1. In a sense, this is the main
theorem of the paper, since principalization and desingularization are its corollaries.

1.2.11. Functorial relative desingularization. Similarly to the absolute case, the
main application of relative principalization is the following relative desingular-
ization theorem that was the main motivation for our project started at [ATW17].

In §8.3 we introduce a class of morphisms locally embeddable into relative loga-
rithmic orbifolds. In particular, this class includes all morphisms of finite type. By
a relative desingularization method we mean a rule as follows:
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• Its input is a generically logarithmically regular morphism g : Z → B of
logarithmic DM stacks such that Z is formally equidimensional, B ∈ B and
g is locally embeddable;

• Its ouput is either the empty value (“sorry, please blow up B first”),
or a stack theoretic modification Zres → Z such that gres : Zres → B is
logarithmically regular, Zres → Z is a composition of stack-theoretic Proj
constructions (in particular, IZres/Z is finite and diagonalizable), and IZres/Z

acts trivially on the stalks of MZres .

The following theorem will be deduced from Theorem 1.2.6 in §8.

Theorem 1.2.12 (Relative desingularization). There exists a relative desingular-
ization method R in characteristic zero such that

(i) Existence: assume that g : Z → B is a generically logarithmically regular
morphism of qe noetherian logarithmic DM stacks of characteristic 0, B ∈ B, Z is
formally equidimensional, and g is embeddable into a logarithmic orbifold f : X →
B, so that either dim(B) ≤ 1 or f has abundance of derivations. Then there exists
a blow up h : B′ → B with saturated base change g′ : Z ′ → B′ such that R(g′) does
not fail. Moreover, if B is a scheme, then one can also achieve that the center of
h is monomial over any open U ⊆ B such that Z ×B U → U is logarithmically
regular.

(ii) Base change functoriality: if R(g) does not fail and B′ → B is a morphism
of logarithmic stacks from B with noetherian saturated base change g′ : Z ′ → B′,
then R(g′) is the saturated pullback of R(g).

(iii) Logarithmically regular functoriality: if R(g) does not fail and Z ′ → Z is a
logarithmically regular morphism such that g′ : Z ′ → B is locally embeddable into a
relative logarithmic orbifold, then R(g′) is the saturated pullback of R(g).

1.2.13. Destackification. Starting with a scheme, for some applications it is im-
portant to obtain a scheme-theoretic desingularization. As in [ATW17], it can be
obtained from the stack-theoretic desingularization by applying a destackification
functor. Moreover, almost all nice properties of the desingularization are preserved,
but logarithmic functoriality is weakened. Unfortunately, properties of the destack-
ification functor were studied in [ATW, Secion 4] only in the absolute setting. In
appendix A we briefly indicate how they are extended to the relative case.

By a representable relative desingularization method we mean a construction
assigning to a locally embeddable morphism of logarithmic schemes Z → B a blow
up h : Zres → Z such that gres : Zres → B is logarithmically regular and the center
of h is disjoint from the logarithmic regularity locus of Z → B.

Theorem 1.2.14. Composing R from Theorem 1.2.12 with destackification and
taking coarse moduli space, one obtains a representable relative desingularization
method R′ in characteristic zero which satisfies properties (i) and (ii) of Theo-
rem 1.2.12, while (iii) is only satisfied for logarithmically regular quasi-saturated
morphisms Y → Z.

Again, see [ATW17, Section 8.2.2] for the notion of quasi-saturated morphisms.

Proof. Assume that g : Z → B is locally embeddable into a qe relative logarithmic
orbifold and R(g) : Z ′ → Z is its desingularization. Let T denote the complement
of the locus on which Z → B is logarithmically regular. Let Z ′′ = DZ(Z ′) be the
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relative destackification of Z ′ over Z (see §A). Then Z ′′
cs/Z → Z is the composition

of T -supported blow ups Z ′′
cs/Z → Z ′

cs/Z → Z, hence is a T -supported blow up. In

addition, Z ′′
cs/Z → B is logarithmically regular and the destackification is compati-

ble with base change B′ → B by Theorem A.2.1. Functoriality of the construction
with respect to quasi-saturated morphisms Y → Z is checked in the same way as
in the proof of [ATW17, Theorem 8.3.4]. ♣

1.2.15. Weak semistable reduction. In [Mol16] Molcho shows that, assuming Z → B
is a proper surjective logarithmically smooth morphism of toroidal embeddings,
there is a universal stack theoretic toroidal modification B → B with toroidal
pullback Z → B which is weakly semistable. Molcho’s work is a refinement of
[AK00, ADK13]. In his treatment a logarithmically smooth morphism is weakly
semistable if it is an integral and saturated morphism of logarithmic structures -
this comes down to requiring the morphism to be flat with reduced fibers. This
notion is clearly stable under logarithmic pullbacks. It is more flexible than the
terminology of [AK00, ADK13] which also requires the base to be regular. Molcho’s
stack theoretic modification B → B is naturally the composition of a representable
modification and a generalized root stack.

We note that Molcho’s toroidal modification B → B is necessarily functorial,
in the following sense. Assume B′ → B is a logarithmic morphism of toroidal
embeddings, let Z ′ → B′ be the pullback of Z → B in the fs category, so that Z ′

is a toroidal embedding and Z ′ → B′ logarithmically smooth. Molcho provides a
universal B′ → B′, and we claim that B′ = B×BB′, the pullback in the fs category.

Indeed let T → B′ is a dominant morphism of toroidal embeddings such that
ZT → T is weakly semistable. Then the composite morphism T → B factors
uniquely through B → B by its universal property. Hence T → B′ factors uniquely
through the fs pullback B ×B B′, as needed.

A similar argument shows that Molcho’s modification B → B is functorial for
proper, surjective, logarithmically smooth Z ′ → Z: if we denote by Z ′ → B′ the
modification associated to Z ′ → Z then Z ×B B′ → B′ is necessarily integral and
saturated, since it is dominated by Z ′. Thus B′ → B factors uniquely through B.
If, moreover, Z ′ → Z is smooth and strict, then in fact B′ = B.

Molcho’s work implies that, if we allow the base to inherit a stack structure and
insist on the morphism Z → B to be a proper morphism of varieties, the results of
our earlier theorems can be made weakly semistable, with functoriality properties
preserved.

We note that, in another manuscript, we show that when X → B in Theorem
1.2.6 is proper, the modification B′ → B in part (i) of the theorem can be made
functorial as well. Together with Molcho’s result this allows weak semistable reduc-
tion of proper morphisms of varieties to be functorial also for base change. It would
be interesting to understand the extent to which functoriality can be retained when
Z → B is not necessarily proper.

Molcho’s constructions are entirely combinatorial, and certainly extend beyond
varieties. Note also that [ALT18, Section 2.3] achieves weak semistable reduction
for general logarithmically smooth morphisms of logarithmic schemes. It only uses
scheme-theoretic modifications of the base, but achieves a weaker form of functori-
ality.
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Using Kawamata’s trick, the stack theoretic modification B → B can be replaced
by an alteration B1 → B, see [AK00, Section 5]. Unfortunately Kawamata’s trick
requires choices and cannot be done in a functorial way. For example, if B =
Spec(O) with O = k[t](t)) is the localization of A1

k at 0 and X = Spec(O[x, y]/(x2y−
t)), then B1 → B must have even ramification degree. For any a ∈ k×, sending
t and y to t/(t − a) and y/(t − a) defines an automorphism of X → B. This
automorphism translates any ramified cover of B1 → B to a non-isomorphic one.

1.2.16. Semistable reduction. It is proved in [ALT18] that by toroidal methods gres

can be even made semistable. A logarithmically regular morphism Z → B is
semistable if it is integral and saturated, and both Z and B are regular and log-
arithmically regular. In local monomial coordinates, the morphism is given by a
system of monomial equations of the form

t1 = y1 · · · yk1
...

...

tℓ = ykℓ−1+1 · · · ykℓ ,
in other words it is, locally, a product of ℓ one-parameter semistable families. Com-
bining the main theorem of [ALT18] with Molcho’s formalism§1.2.15 and Theorem
1.2.6 we obtain:

Theorem 1.2.17. Let g : Z → B be a morphism as in Theorem 1.2.12. There
exists a logarithmic alteration B1 → B and a logarithmic modification Z1 → B1×B
Z of the saturated pullback, such that Z1 → B1 is semistable. The construction is
compatible with regular surjective morphisms Z ′ → Z, in particular with arbitrary
actions of groups on Z over B.

Semistable reduction is inherently not stable under base change. A version which
is stable under base change is polystability, a notion which goes back to de Jong
and Berkovich, which is defined in local monomial coordinates by equations of the
form

m1 = y1 · · · yk1
...

...

mℓ = ykℓ−1+1 · · · ykℓ ,
with mi arbitrary monomials on the base.

The main theorem of [ALT18] of course implies the existence of polystable re-
duction. It would be interesting to provide a functor giving polystable reduction.
This must necessarily allow the base to be a stack. The combinatorial methods of
[ALT18] suggest that this should be possible.

1.2.18. Morphisms of finite presentation. For morphisms f : X → B of finite pre-
sentation one can use the noetherian approximation theory from [Gro67, IV3, §8] to
substantially weaken assumptions on B. We assume the stacks are quasi-compact
quasi-separated (abbreviated qcqs). By an approximation of f we mean a mor-

phism f̃ : X̃ → B̃ such that f̃ is of finite type, B̃ is of finite type over Q fitting in
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a base-change diagram:

X //

f

��

X̃

f̃
��

B // B̃.

Approximation of a pair (f, I ⊆ OX) consists also of an ideal Ĩ ⊆ OX̃ such that

I = ĨOX . An approximation is called a B-approximation if, in addition, B̃ ∈ B.

If f possesses a B-approximation f̃ such that the desingularization of f̃ succeeds,
then its pullback is a desingularization of f . We will show in §9.1 that the latter
is independent of the choice of the B-approximation and deduce that the desin-
gularization algorithms extend to finitely presented morphisms f which possess
B-approximation étale-locally. A similar result will be obtained for principaliza-
tions. Combining this with the standard approximation technique we will obtain
the following result. Here in part (2) we say that a morphism g : Z → B of qcqs
logarithmic DM stacks is nice if it is generically logarithmically smooth and any
connected component of Z has equidimensional generic fibers over B.

Theorem 1.2.19. In the case of finitely presented morphisms Theorems 1.2.6,
1.2.12 and 1.2.14 extend to non-noetherian qcqs DM logarithmic stacks of charac-
teristic zero as follows:

(1) The principalization algorithm of Theorem 1.2.6 extends to a principaliza-
tion F of ideals I on logarithmically smooth morphisms f : X → B such that the
pair possesses a B-approximation étale-locally on X and B. It satisfies properties
(ii), (iii) and (iv) for arbitrary base changes B′ → B and log smooth morphisms
X ′ → X and X → B. In addition, for any log smooth f : X → B and I ⊆ OX with
integral qcqs B whose logarithmic structure is saturated quasi-coherent and generi-
cally trivial, there exists a blow up B′ → B such that the saturated base change f ′

of f and I ′ = IOX′ possess a B-approximation étale locally and F(f ′, I ′) succeeds.

(2) The desingularization algorithm of Theorems 1.2.12 and 1.2.14 extend to nice
morphisms g : Z → B which possesses a B-approximation étale-locally on Z and
B. They satisfy properties (ii) and (iii) for arbitrary base changes B′ → B and log
smooth morphisms Z ′ → Z. In addition, for any nice g : Z → B with an integral
stack B whose logarithmic structure is quasi-coherent, saturated and generically
trivial, there exists a blow up B′ → B such that the saturated base change g′ of g
possesses a B-approximation étale locally and R(g′) and R′(g′) succeed.

In particular, this covers the case when B is the spectrum of a valuation ring R
and MB = R r {0}.

1.2.20. Logarithmically smooth compactification theorem. As another application
we obtain the following compactification result.

Theorem 1.2.21. Let f : X → B be a separated logarithmically smooth morphism
of qcqs logarithmic schemes. Assume that B ∈ B and the logarithmic structures are
Zariski. Then there exists a logarithmic blow up g : B′ → B, a proper logarithmi-
cally smooth morphism X → B′ and an open immersion XB′ →֒ X of logarithmic
schemes over B′. In addition, if U ⊂ B is an open subscheme such that XU → U
is proper, then one can achieve that the center of g is monomial on U
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Proof. First, by Nagata compactification theorem (e.g. see [Con07]) there exists a
compactification of f to a proper morphism of schemes f0 : X0 → B. Find a finite
covering X = ∪iXi whose elements possess charts Xi → Spec(Q[Pi]) and let {pij}
be finite sets of generators of Pi. Then the log structure on Xi is given by the
Cartier divisors Dij = V (upij ) and blowing up the schematic closures Dij of Dij

in X0 we obtain a finer compactification of X , still denoted X0 for shortness, such
that each Dij is a Cartier divisor. Then the divisors Dij define a fine log struc-

ture on X0 which extends the log structure on X , hence we obtain a logarithmic
compactification f0 : X0 → B of f . Replacing X0 by its saturation we can assume
that X0 is fs, and then by Theorem 1.2.14 there exists a relative desingularization
X → B′ of X0 → B. Since f0 is logarithmically smooth on X and over U , the
center of B′ → B is monomial on U and X → X0 ×B B′ is an isomorphism over
XB′ . Thus, f : X → B′ is as required. ♣

Examples such as the Whitney umbrella punctured at the origin show that one
cannot remove the assumption that the logarithmic structures are Zariski in The-
orem 1.2.21.

1.2.22. Extension to other geometries. Part of our motivation stems from profound
questions arising in non-archimedean geometry, see [BLR95, Page 364]. Being func-
torial for regular morphisms, our relative principalization and desingularization
methods extend to these categories immediately, and existence would be equivalent
to extending the monomialization theorem to these contexts. Remark 1.3.10 below
shows that at the very least, one should either restrict the class of objects one
resolves or allow non-proper base changes. This is a separate question not related
much to the content of this paper, so we will not study it here. On the positive
side, we expect that our main results extend to other categories verbatim when the
base is at most one-dimensional, and this is explained in §9.2.

1.3. Methods. Now, let us describe our methods and discuss certain choices we
make and possible alternatives.

1.3.1. Ambient spaces. We resolve morphisms Z → B by embedding them into log-
arithmically regular morphismsX → B and principializing IZ onX/B. Similarly to
[ATW17], principalization is done by a sequence of non-representable modifications
σ : X ′ → X with finite diagonalizable inertia IX′/X , which are called submonomial
Kummer blow ups in this paper. This forces us to work with stacks.

Remark 1.3.2. (i) Similarly to [ATW17] one could consider only stacks with finite
diagonalizable inertia, but we decided to extend the generality to logarithmic DM
stacks because this does not change a single argument.

(ii) Modifications of this type were called Kummer blow ups in [ATW17]. We
prefer to change the terminology because one can, more generally, construct Kum-
mer blow ups along arbitrary centers using the same stack theoretic Proj formula
as in §4.2.

1.3.3. Derivations. As in [ATW17], all constructions of our method are expressed
in terms of sheaves of logarithmic derivations and differential operators of order

at most a, but this time we use the relative sheaves D(≤a)
X/B . In particular, the

logarithmic order a of I is the minimal number such that D(≤a)
X/B(I) = OX , the ideal
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I is clean if a < ∞, and the (hypersurface of) maximal contact to I is H = V (t),

where t is an element of logarithmic order one in D(≤a−1)
X/B (I).

1.3.4. Marked ideals. Order reduction operates with marked (or weighted) ideals
denoted I = (I, a) throughout the paper. We define products, equivalence and
domination as usual, but replace sums with the homogenized sums, see §5.1 and

Remark 5.1.8. Also, we use the homogenized coefficient ideals C =
∑a−1
i=0 D(≤i)

X/BI
defined by use of homogenized sums. In fact, this is precisely the logarithmic
analogue of Kollar’s tuning ideal Wa!(I), see [Kol07].

1.3.5. Modules of derivations. Certain submodules of DX suffice to run various
parts of the principalization algorithms, for example, see [BM08, Exercise 4.4]. This
was essentially used in [BMT11] to show that the algorithm of Bierstone-Milman
depends only on the (huge) module of absolute derivations and hence resolutions
of varieties over different fields are compatible. Submodules of DX were also used
in [ATW17].

For an arbitrary logarithmically regular morphism the module DX/B can be very
large or very small, even 0. Also it is may be not quasi-coherent and does not satisfy
good functoriality properties, see §2.4. Therefore, we prefer to work with concrete
OX -submodules F ⊆ DX/B and their transforms. In particular, in Proposition 4.3.7
and Theorem 5.3.6 we obtain equalities for transforms of derivations and coefficient
ideals, while in the classical situation and in [ATW17] one only proved inclusions.
This equality, which only holds for homogenized coefficient ideals, allows us to
simplify the formalism of [ATW17] – we do not have to consider normal closures
of marked ideals anymore, see [ATW17, Proposition 6.1.3] for comparison. Note
that we still have to consider normal closures of powers of admissible centers, see
Remark 4.1.5 and Lemma 5.1.13(ii). This technicality is avoided in [ATW19] by
systematically using valuative Q-ideals.

1.3.6. Relative logarithmic orbifolds. At each step of the algorithm we precisely de-
scribe the conditions that modules of derivations F should satisfy. We say that F
is separating (resp. logarithmically separating) if it separates all parameters (resp.
parameters and logarithmic parameters) on X/B. It turns out that almost all
stages of the algorithm only require that F is separating, for example, this pro-
vides enough derivations to compute the logarithmic order and define the maximal
contact. However, only the property of being logarithmically separating is stable
under blow ups, so we call a logarithmically regular morphism X → B a relative
logarithmic orbifold if DX/B is logarithmically separating, and we construct relative
principalization for arbitrary relative logarithmic orbifolds.

1.3.7. Base change. Loosely speaking everything described in §1.3 up to now is
obtained from the method of [ATW17] by passing to the relative and logarithmically
regular setting and making some (relatively minor) improvements. The really new
issue is that one has to take base changes into account. First, they provide a new
form of functoriality which one should establish. This task is easy. Second, one has
to allow that the algorithm might fail without prior base-change, and to resolve
this by modifying the base first and running the algorithm after that. Here is the
simplest example.
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Example 1.3.8. (i) We start with a “non-trivial” example. Take B = A2
k =

Spec(k[x, y]) and X = A3
k = Spec(k[x, y, t]) with the trivial logarithmic structures,

and let I = (x, y, t). A minimal submonomial center J containing P = V (I) is
two-dimensional, for example (t), hence there exists no J with support at P , and I
cannot be principalized. The situation can be solved by modifiying B. In this case,
the most natural way is to blow up (x, y) and enrich the logarithmic structure with
the exceptional divisor, but one can even simply enlarge the logarithmic structure
to xN × yN so that I = (t) + (x, y) becomes submonomial.

(ii) Precisely the same example works when B = Spec(k[x]), but it is less illu-
minating since blowing up (x) and increasing the logarithmic structure to xN have
the same effect.

(iii) In fact, even in the “most trivial” case of X = B = A2
k or X = B = A1

k, the
only way to principalize I = (x, y) or I = (x) is by base change.

1.3.9. Monomialization. For a monomial ideal I we denote its saturation by Isat,
see [ATW17, Remark 3.2.1(1)]. Similarly to the absolute case in [ATW17], our
relative order reduction of I = (I, a) starts with blowing up the weighted monomial
saturation W(I) := (M(I)sat)1/a, as this is the best possible attempt to get rid
of the monomial part. If the transformed ideal is clean, one proceeds precisely
as in the absolute case. However, the main new issue one has to deal with is
that the new ideal may be not clean, and then the algorithm fails. The reason is
that, unlike the absolute case, the differential saturation D∞

X/B(I) can be strictly

smaller than the monomial saturation M(I). For example this is what happens in
Example 1.3.8(iii). Our main result in this direction is that if dim(B) ≤ 1 or X/B
has abundance of derivations (for example, X → B is logarithmically smooth, see
§2.5.5), then the situation can be restored by a preliminary blow up of B, which
monomializes D∞

X/B(I). This is proved in a surprisingly difficult monomialization

theorem 3.6.13. The subtlety of this result is also indicated by the fact that its
naive generalizations fail:

Remark 1.3.10. (i) Monomialization does not hold for complex analytic spaces.
For example, take X →֒ B an open immersion and I ⊆ OX an ideal which cannot
be extended to OB. Then I cannot be monomialized by modifications of B. Similar
“non-trivial” examples exist when X → B factors through an open immersion. This
indicates that monomialization requires some restrictions: either restrict the class
of objects one resolves, for example, by imposing a properness assumption, or allow
non-proper base changes, for example, open covers of B. We plan to study this
question elsewhere.

(ii) In view of the above remark, it also makes sense to study whether Theorem
3.6.13 can be extended to more general relative logarithmic orbifolds by enlarging
the class of base changes.

1.3.11. The relative order reduction algorithm. As usual, the principalization algo-
rithm of I makes an order reduction of (I, 1). Our order reduction algorithm for
a marked ideal I = (I, a) follows the steps of the algorithm from [ATW17]. Here
is an outline, see §7 and §7.3 for details. The algorithm runs by induction on the
relative dimension of X/B and consists of three steps.



RELATIVE DESINGULARIZATION AND PRINCIPALIZATION OF IDEALS 13

Step 1. Initial cleaning. Blow up the weighted monomial saturation W(I), and
output the fail value if the controlled transform is not clean. This step certainly
successes if D∞

X/B(I) is monomial.

Step 2. Reducing the logarithmic order of the clean part below a. Throughout
this step the ideal is balanced, that is, I = M · Icln with an invertible monomial
M = M(I) and a clean Icln of order b. By induction, one simply performs the order

reduction of the maximal order marked ideal Icln = (Icln, b), which automatically
results in reducing the order of the clean part of the transform. The order reduction
of Icln is constructed by finding étale-locally a maximal contact H to Icln and
descending to X the order reduction of the equivalent marked ideal (C(Icln)|H , b!)
on H .

Step 3. Final cleaning. At this stage the clean part is resolved, so one simply
blows up M(I)1/a.

1.3.12. Equivalence classes. Similarly to other principalization algorithms, the most
subtle thing is to show that the process is independent of the choice of H and hence
descends to a Kummer blow up sequence of X . As in [ATW17], one possible way
would be to prove that C(Icln)|H is unique up to a formal isomorphism, where we
use that our coefficient ideal is homogenized. However, we decided to use equiv-
alence classes instead, in a manner modeled on [BM08]. This route is a bit more
sophisticated, but it also proves the stronger claim that the order reduction only
depends on the functorial equivalence class of I as defined in §5.2 and §6.2.4. We
explain in Remark 5.2.2 why it is more natural to consider functorial logarithmic
equivalence, and how it sheds a new light on the classical definitions of Hironaka
and Bierstone-Milman. In addition, we prove in Theorem 7.2.11 that the functorial
equivalence class determines the main invariants of I used in the order reduction
– the weighted logarithmic order and the weighted monomial part. This is a loga-
rithmic version of Hironaka’s trick, and the proof is more straightforward than in
the classical case, see §7.2.1.

1.3.13. Induction on length. All proofs in this paper are designed so that claims
about blow up sequences are proved by simple and formal induction on the length of
the sequence. In this way we achieve that any coordinate-dependent check is done
for a single Kummer blow up, and there is no need to consider charts of sequences,
which might be unpleasant due to non-representability of Kummer blow ups. This
becomes possible because we use transforms of derivations in Theorem 5.3.6. In
particular, we manage to restrict the use of explicit Taylor series (or another form of
a Weierstrass preparation) only to the proof of Proposition 6.3.6, which deals with
lift of admissibility of a single Kummer center and not a whole blow up sequence.

1.3.14. The relative desingularization method. The relative desingularization is ob-
tained by embedding into relative logarithmic orbifolds and principalizing ideals
there, and the main issue is to prove that there is a unique minimal embedding.
In [ATW17] we did this in étale topology. In this paper we use formal topology
instead. This is possible because principalization was constructed for arbitrary
logarithmically regular morphisms, and this even leads to simpler proofs because
uniqueness of minimal formal embedding is less technically demanding.
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1.4. Conventiones. Unless said to the contrary, all schemes and stacks we consider
are noetherian of characteristic zero. In particular, we will only consider noetherian
base changes of a morphism f : Y → Z, that is, base changes f ′ : Y ′ = Y ×ZZ ′ → Z ′

with noetherian Y ′ and Z ′.

Unless said to the contrary, all logarithmic schemes and logarithmic stacks we
consider are assumed to be fs. In particular, fiber products are taken in the fs
category. All logarithmic structures are defined in the étale topology. In particular,
it will be usually convenient to work étale locally and use geometric points. By
convention, we only consider minimal such points x → X , that is, Ox is the strict
henselization Osh

x of the local ring of the underlying Zariski point x ∈ X . Zariski
points will be sometimes used when a choice of a geometric point above is not
important.
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2. Relative logarithmic orbifolds

Our principalization algorithm works with ideals on a relative logarithmic orb-
ifold f : X → B of characteristic zero. Throughout this paper this means that X
is a logarithmic DM stack, f is logarithmically regular and the sheaf of relative
logarithmic derivations DX/B is logarithmically separating. Section 2 is devoted to
defining and studying these properties.

2.1. Charts. In this subsection we fix notation and recall basic facts. Especially
important will be the notion of neat charts.

2.1.1. Monoids. Unless the opposite is clear from the context, all monoids are as-
sumed to be fs, and by rkQ(P ) we denote the number dimQ(P gp ⊗Q).

2.1.2. Charts of logarithmic schemes. By A we denote the natural functor from
monoids to affine schemes: AP = Spec(Q[P ]). If P is a group, we will also use the
notation DP = AP to stress that it is a diagonalizable group, Cartier-dual to P .

We will use conventiones of [Ogu18, II.2.3.1]: A chart Z → AP is exact at a
geometric point z → Z if P = Mz, and this happens if and only if the homomor-
phism P →Mz is local. Thus, the chart is exact at z if and only if z is mapped to
the closed logarithmic stratum of the chart. Moreover, a chart is neat if it is sharp
(§2.1.9 below) and exact, that is, P = Mz. Neat charts always exist; in a sense,
they are the minimal charts at z.

Example 2.1.3. Take P = N and let Z = AP , Z ′ = AP gp and z ∈ Z ′ be any
point. Then the tautological chart Z = AP is not exact at z, the chart Z ′ = AP gp

is exact but not neat at z, and the trivial chart Z0 → A0 = Spec(Q) is neat at z.

2.1.4. Base change of monoids. Assume that A is a ring, P is a monoid and u : P →
(A, ·) a homomorphism, which will be written exponentially: p 7→ up. For any
homomorphism of monoids P → Q we will use the notation AP [Q] = A⊗Z[P ] Z[Q].
If (A,m) is local and Q is sharp, then the completion of AP [Q] with respect to the

maximal ideal generated by m and Q+ will be denoted ÂP JQK.

2.1.5. Relative toric schemes. If Z → AP is a chart and P → Q is a homomorphism
of monoids, we let ZP [Q] = Z ×AP AQ denote the associated relative toric scheme.

Remark 2.1.6. Any chart Z → AP , Y → AQ, φ : P → Q of a morphism f : Y →
Z factors f into a composition Y

h→ ZP [Q] → Z of a strict morphism h and a
relative toric scheme, the pullback of the toric morphism AQ → AP . For brevity,
we will usually encode a chart by writing down Y → ZP [Q].

2.1.7. Relative characteristic. Given a geometric point y → Y with z = f(y) we

will use notation M
gp

y/z = Coker(M
gp

z → M
gp

y ). In fact, M
gp

y/z is the stalk at y of

the sheaf MY/Z (see [Ogu18, p. 187]), though we will not need this fact.
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2.1.8. Exact charts. We say that a chart Y → ZP [Q] of f is exact at y if both
Y → AQ and Z → AP are exact. We say that a chart is exact if it is exact at some

geometric point y → Y . This happens if and only if P = Γ(MZ) and Q = Γ(MY ).
In fact, any chart can be made exact by appropriate localizations of P and Q:
simply invert all elements that become units in MZ and MY .

2.1.9. Sharp charts. We say that f is sharp at y if the homomorphism φy : Mz →
My is injective. If this is the case, then a chart of f is called sharp at y if it is

modeled on the homomorphism φy : Mz →My, where z = f(y). We will see below
that any sharp morphism possesses a sharp chart.

The quintessential logarithmically smooth morphism which is not sharp is the
blowing up of the affine plane at the origin, with the toric logarithmic structure.

2.1.10. Neat chart. We say that a chart Y → ZP [Q] is neat at y if P gp →֒ Qgp and

Qgp/P gp = M
gp

y/z. This notion was introduced by Kato and studied in detail in

[Ogu18].

Remark 2.1.11. (i) The meaning of the definition is that once the chart Z → AP

is fixed, one chooses a minimal chart for Y such that P →֒ Q. In particular, if f is
sharp, then a chart is sharp if and only if it is neat and P is sharp.

(ii) In general, neat charts provide a natural generalization of the notion of sharp
charts to the case of non-sharp morphisms. In order to work with neat charts, one
has to consider a non-sharp Q even when P is sharp. Furthermore, in order to work
with compositions one should also study the case where P itself is not sharp.

Working with neat charts often simplifies arguments, and fortunately they do
exist in the case of interest. By [Ogu18, Theorem III.1.2.7] we have:

Theorem 2.1.12. Assume that f : Y → Z is a morphism of logarithmic schemes
of characteristic zero,3 y → Y is a geometric point, and z = f(y). Then locally
at y and z there exists a neat chart of f . Moreover, any local chart of Z at z can
extended to a local neat chart of f at y.

2.1.13. Composition of neat charts. Let g : X → Y and f : Y → Z be two mor-
phisms of logarithmic schemes, h = f ◦ g the composition, x → X a geometric
point, y = g(x), z = h(x). Any pair of charts α : X → YQ[R] and β : Y → ZP [Q]
induce a chart γ : X → ZP [R] composed from α and the base change βQ[R] of β:

X
α //

!!
❉

❉

❉

❉

❉

❉

❉

❉

❉

YQ[R]
βQ[R]

//

��

�

ZP [R]

��

Y

$$■
■

■

■

■

■

■

■

■

■

■

β
// ZP [Q]

��

Z

3This is a point where characteristic 0 is used for a technical purpose. We believe that the
only characteristic 0 assumpition that cannot be circumvented in this paper is the use of maximal
contact hypersurfaces — the usual obstruction for procedures following [Hir64].
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Assume now that α and β are neat at x and y, respectively. If MY,y
φ→MX,x is

injective, then γ is neat at x by [Ogu18, Corollary II.2.4.7]. Here is a simple case,
when γ is not neat.

Example 2.1.14. Take P = 0, Q = N2 with basis v, w, and R = N2 with basis
v, w − v and consider the toric schemes Z = z = AP , Y = AQ and X = AR with
the tautological charts. In particular, X is the v-chart of the logarithmic blow up
of Y at the origin y. Note that P = Mz, Q = My, and the chart Y ∼−→ ZP [Q] is
neat at y.

Let x be any point of the exceptional divisor of X except the origin, that is,
x ∈ V (v) r V (wv ). Then the chart X = AR is not exact at x as w

v ∈ O×
x . In

fact, R → Mx factors through the local homomorphism Rx → MX,x, where Rx =

R[v − w] ∼−→ N · v + Z · (v − w), and hence Mx = Rx = N with basis v. Note
that Xx := ARx is a neighborhood of x and its tautological chart is exact at x.
Since My ։ Mx, both charts X → YQ[R] and Xx → YQ[Rx] are neat at x, and
the latter is even exact. On the other hand, the composed charts X → ZP [R]
and Xx → ZP [Rx] are not neat at x because Rgp/P gp = Rgp

x /P
gp = Z2, while

M
gp

x/z = Z.

2.2. Logarithmic fibers.

2.2.1. Relative toric stacks. If Z → AP is a chart and φ : P → Q is a homo-
morphism of monoids, then the multiplicative group Dφ := AN , where N =
Coker(P gp → Qgp), acts on the Z-scheme ZP [Q]. Indeed, Dφ is the kernel of
the homomorphism DQgp → DP gp , hence it acts on AQ in an AP -equivariant way,
and by base change it also acts on ZP [Q] in a Z-equivariant way.

The relative toric stack is defined to be the stack theoretic quotient ZP [Q] =
[ZP [Q]/Dφ]. It is easy to see that the Z-stack ZP [Q] depends only on the homo-

morphisms P → Γ(MZ) and P → Q, for example, use [MT19, Lemma 2.2.4]. In
particular, given a morphism Y → Z, the stack ZP [Q] is the same for all exact
charts of f .

Remark 2.2.2. Olsson introduced in [Ols03] a stack Log(Z) parameterizing loga-
rithmic structures on Z-schemes. For a morphism of logarithmic schemes f : Y →
Z, the morphism lf : Y → Log(Z) corresponding to the logarithmic structure of Y
can be used to define for f logarithmic analogues of usual properties of morphisms,
such as flatness, smoothness, etc. In fact, working étale locally, one can assume
that a global chart exists and then the morphism Y → ZP [Q] can often be used
as a replacement of lf because ZP [Q] → Log(Z) is étale. Moreover, invariance of
ZP [Q] can be used for an alternative ad hoc approach to defining various logarith-
mic properties in a rather elementary way – one works with Z → ZP [Q] and takes
the action of Dφ into account.

2.2.3. Neat charts. Now we can provide a very geometric characterization of neat
charts.

Lemma 2.2.4. Assume that a morphism of logarithmic schemes f : Y → Z pos-
sesses a chart Y → ZP [Q] modeled on an injective homomorphism φ : P →֒ Q, and
y → Y is a geometric point with image z′ ∈ ZP [Q]. Let Qy be obtained by inverting
all elements of Q whose images in Oy are units. Then,
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(i) The stabilizer of z′ under the action of Dφ is DL, where

L = Qgp/(Q×
y + P gp).

(ii) The chart is neat at y if and only if z′ is a single orbit of Dφ. The subfield
k(z′) ⊆ k(y) is the same for all neat charts.

Proof. (i) Note that DQgp acts on ZP [Q] through its action on AQ, and the stabi-
lizer of z′ is DQgp/Q×

y
. Restricting to the action of Dφ, we obtain that the stabilizer

is DL.

(ii) The chart is neat at y if and only if the homomorphismQgp/P gp →M
gp

y /M
gp

x

is injective. Since the homomorphisms Qgp →M
gp

y and P gp → M
gp

x are surjective,

this happens if and only if Ker(Qgp →M
gp

y ) = Q×
y is contained in P gp. The latter

means that L = Qgp/P gp or DL = Dφ. By (i), this happens if and only if the
stabilizer of Z ′ is the whole Dφ.

The second claim follows from the fact that z′/Dφ is the stacky point of ZP [Q],
which is the image of y. In particular, the morphism y → z′/Dφ is independent of
the chart. ♣

2.2.5. Sharp factorization. Recall that a homomorphism of monoids φ : P → Q
is exact if P is the preimage of Q under φgp : P gp → Qgp. In general, setting

P̃ = (φgp)−1(Q) we obtain a canonical factorization of φ into the homomorphism

ψ : P → P̃ , such that ψgp is an isomorphism, and the exact homomorphism φ̃ : P̃ →
Q. In particular, if φ is injective, then the sharpening of φ̃ is injective.

Given a chart Y → ZP [Q] modelled on φ : P → Q we obtain a canonical sharp

factorization of f into the composition Y
f̃→ Z̃ = ZP [P̃ ]

f0→ Z, where f̃ is sharp
(even exact) at any point of Y , and f0 is logarithmically étale (even a chart of a
logarithmic blow up). For any point y → Y with z = f(y) we will also use the

notation z̃ = f̃(y).

Remark 2.2.6. (i) Sharp factorization isolates all pathologies related to non-sharp-
ness of f in the logarithmically étale morphism f0, which is often more convenient
to deal with.

(ii) If z′ is the image of y in ZP [Q], then it is easy to see that k(z̃) = k(z′), and
hence k(z̃) ⊆ k(y) is independent of the chart.

(iii) It may happen that the inclusion k(z) ⊆ k(z̃) is not an equality even when
Dφ is trivial, and no stack-theoretic issues show up. For example, let P = N2 with
basis (v, w) and Q = N2 with basis (v, w−v). Then Z := AP is a plane, Y := AQ is

the v-chart of the blow up, Dφ is trivial, and Y = ZP [Q] = ZP [Q] = Z̃. If y is the
generic point of the exceptional divisor, then k(y) = k(z̃) = Q(wv ) and k(z) = Q.
Note also that the logarithmic fibers — defined below — of Y → Z are trivial,
because they are the fibers of Y → ZP [Q].

2.2.7. Logarithmic fibers. Given a morphism of logarithmic schemes f : Y → Z, by
its logarithmic fibers we mean connected components of the fibers of the morphism
Y → Log(Z). In particular, if f possesses a chart Y → ZP [Q], then the logarithmic
fibers are also the connected components of the fibers of Y → ZP [Q]. Furthermore,
the fibers of ZP [Q] → ZP [Q] are the orbits of Dφ, hence the logarithmic fibers of
f are the connected components of the preimages of the orbits of Dφ under the
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morphism Y → ZP [Q]. The logarithmic fiber of a point y — geometric or Zariski
— will be denoted Sy.

Remark 2.2.8. The description with orbits can be used as an alternative definition
of the logarithmic fibers, as independence of choices can be checked by comparing
the charts via mutual refinements. This approach does not need to use stacks at
all.

2.2.9. Another description of logarithmic fibers. Combining the above description
of logarithmic fibers with Lemma 2.2.4(ii), we obtain the following result, which
will be our main tool when working with logarithmic fibers.

Lemma 2.2.10. Assume that f : Y → Z is a morphism of logarithmic schemes

and Y
h→ ZP [Q] is a chart which is neat at y ∈ Y . Then locally at y the logarithmic

fiber Sy is the connected component of y in the corresponding fiber of h.

Logarithmic fibers also possess the following geometric interpretation. It is ob-
tained similarly but will not be used in the paper.

Remark 2.2.11. (i) The logarithmic fiber Sy is the logarithmic stratum of y in

the fiber of f̃ : Y → Z̃ over z̃. If f is sharp at y, then Sy is a logarithmic stratum
of the fiber of f itself.

(ii) Note also that f̃ restricts to regular morphisms between logarithmic strata

of Y and Z̃, and the logarithmic fibers of f are the fibers of these morphisms
between logarithmic strata. In particular, from this description it is obvious that
the logarithmic fibers are regular.

2.2.12. Functoriality. We will also need the following basic properties of logarithmic
fibers.

Lemma 2.2.13. Let g : X → Y be a strict morphism. Then for each logarithmic
fiber C of f : Y → Z, the connected components of its pullback C ×Y X are the
logarithmic fibers of h = f ◦ g.

Proof. The morphism X → Log(Z) is the composition of g and Y → Log(Z)
because g is strict. The lemma follows easily. ♣

Lemma 2.2.14. Assume that f : Y → Z and g : Z ′ → Z are morphisms of loga-
rithmic schemes and f ′ : Y ′ → Z ′ is the base change. Then each logarithmic fiber
of f ′ is an open subscheme of a ground field extension of a logarithmic fiber of f .

Proof. Starting with the strict morphism Y → Log(Z) and changing the base
from Z to Z ′ we obtain a strict morphism α : Y ′ → Log(Z) ×Z Z ′ of logarithmic
stacks over Z ′. Since α is strict, the tautological morphisms β : Y ′ → Log(Z ′) and
γ : Log(Z) ×Z Z ′ → Log(Z ′) are compatible: β = γ ◦ α. By Lemma 2.2.15 below
γ is étale and hence the log fibers of f ′, which are the fibers of β, are open in the
fibers of α, which are ground field extensions of logarithmic fibers of f . ♣

Lemma 2.2.15. Let f : X → Y be a morphism of logarithmic schemes and let
γ : Log(Y ) ×Y X → Log(X) be the tautological morphism corresponding to the
saturated base change Log(Y ) ×Y X → X. Then γ is étale.
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Proof. The claim is étale-local hence it suffices to consider the case when f pos-
sesses a global chart X → YP [Q]. Then Log(Y ) possesses an étale presentation∐
P→P ′ YP [P ′], see [Ols03, Corollary 5.25], and similarly for Log(X). The map γ

then lifts to the open immersion of étale presentations
∐

P→P ′

(YP [P ′] ×X Y )sat =
∐

P→P ′

XQ[(Q ⊗P P ′)sat] →֒
∐

Q→Q′

XQ[Q′].

♣

Remark 2.2.16. (i) We are grateful to Sam Molcho for the idea of proving Lemma
2.2.15. Note that it also holds for non-saturated base changes and the same argu-
ment applies with ∗sat replaced by ∗int.

(ii) Lemma 2.2.15 also follows from results of [Ols05]. Here is a short argument
provided by Martin Olsson (we consider the non-saturated case). Define L to be
the stack over X classifying commutative squares of log structures

f∗MY

��

// MX

��

M2
// M3

By [Ols05, Lemma 3.12 (i)] Log(Y )×Y X → L sending f∗MY →M2 to the pushout
square is an open immersion. It remains to notice that γ is the composition of this
open immersion with the map q1 in [Ols05, Example 2.9] base-changed to X .

2.3. Logarithmically regular morphisms. The theory of logarithmically reg-
ular morphisms was developed in [MT19] as a generalization of logarithmically
smooth morphisms. We recall some relevant points.

2.3.1. The definition. A morphism f : Y → Z of logarithmic schemes is called loga-
rithmically regular if the morphism Log(f) : Log(Y ) → Log(Z) is regular, that is,
it is flat and has regular geometric fibers. It is proved in [MT19] that this happens
if and only if Y → Log(Z) is regular. Also it is proved there that a morphism
is logarithmically smooth if and only if it is logarithmically regular and locally of
finite presentation.

2.3.2. Functoriality. Basic properties of logarithmic regularity are proved in [MT19,
Corollary 5.1.3 and §5.3], but here we only recall those that we will use. Recall
also that logarithmic regularity of logarithmic schemes was introduced by Kato for
Zariski logarithmic structures, see [Kat94, Definition 2.1], but the same definition
works in general, see [Niz06, Definition 2.2].

Lemma 2.3.3. (i) Logarithmic regularity is flat local on the base and étale local
on the source: if f : Y → Z, a : Z ′ → Z and b : Y ′ → Y ×Z Z ′ are morphisms of
noetherian logarithmic schemes, a is flat, b is étale and both are strict and surjective,
then f is logarithmically regular if and only if Y ′ → Z ′ is logarithmically regular.

(ii) Logarithmically regular morphisms are preserved by compositions and noe-
therian base changes.

(iii) A logarithmic scheme Y of characteristic 0 is logarithmically regular if and
only if Y → Spec(Q) is logarithmically regular, where Spec(Q) is endowed with the
trivial logarithmic structure.
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2.3.4. Parameters. Now we will introduce the notion of local parameters of f : Y →
Z at y. In principle, these are the parameters of the regular morphism Y → Log(Z).
So, there are parameters corresponding to the tangent space and to the extension
of the residue fields, that we call regular and constant parameters, respectively. In
addition, there is a family of parameters corresponding to the stabilizer of the image
of y, which is DM

gp
y/z

. They can be naturally interpreted as monomial parameters.

2.3.5. Regular parameters. Set S = Sy for shortness. By a family of regular pa-
rameters of f at y we mean any set t = (t1, . . . ,td) ⊂ Oy, whose image is a family
of regular parameters of the regular ring OS,y, that is, its image is a basis of the
cotangent space T ∗

S,y = mS,y/m
2
S,y to S at y.

2.3.6. Monomial parameters. By a family of monomial parameters at a geometric
point y we mean any set of monomials q = (q1, . . . ,qn) ⊂ My ⊂ Oy such that its

image in the vector space M
gp

y/z ⊗Q is a basis.

2.3.7. Constant parameters. Recall that the subfield k(z̃) ⊆ k(y) is independent of
the choice of chart at y. By a family of constant parameters at y we mean any set
u = {ui}i ⊂ Oy, whose image u(y) ⊂ k(y) is a transcendence basis over k(z̃).

2.3.8. Full family of parameters. The full family of parameters (t, q, u) ⊂ Oy at
y consists of families of parameters of the three types above. Any element (resp.
subset) of such a family will be called a parameter at y (resp. a partial family of
parameters at y), and we will specify the type when needed.

2.3.9. Relative logarithmic ranks. The sizes of families of parameters of f at y are
invariants that we denote

ry = |t| = dimy(Sy), r′y = |u| = tr.deg.(k(y)/k(z̃)), r′′y = |q| = rkQ(M
gp

y/z).

The number logrky(Y/Z) := ry+r′′y is finite, and we will use the number logrk(Y/Z) =
maxy∈Y logrky(Y/Z) to run induction on “dimension”. If r′y is finite, then ry+r′y+
r′′y is another reasonable invariant, which sometimes behaves better. For example,
if f is logarithmically smooth, then the morphism Y → Log(Z) is smooth and its
relative dimension at y is precisely ry + r′y + r′′y .

2.3.10. Charts. Our work with logarithmically regular morphisms will be based on
the following result proved in [MT19, Theorem 5.2.5].

Theorem 2.3.11. Assume that f : Y → Z is a morphism of logarithmic schemes
with a chart h : Y → ZP [Q], and y → Y is a geometric point such that the chart is
neat at y. Then f is logarithmically regular at y if and only if the morphism h is
regular at y.

Corollary 2.3.12. If f : Y → Z is a logarithmically regular morphism, then its
logarithmic fibers are regular schemes.

Proof. We can work locally at a geometric point y → Y . By Theorem 2.1.12 we can
assume that there exists a chart h : Y → ZP [Q] neat at y. Then the logarithmic fiber
Sy is the fiber of h by Lemma 2.2.10, and hence Sy is regular by Theorem 2.3.11. ♣
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2.3.13. Formal description. As another corollary, we can describe logarithmically
regular morphisms on formal completions.

Lemma 2.3.14. Let f : Y → Z be a logarithmically regular morphism of noetherian
schemes of characteristic zero, y → Y a geometric point and z ∈ Z its image.
Assume that f is sharp at y and the logarithmic structure at z is Zariski. Then any

choice of a regular family of parameters t1, . . . ,tn ∈ Ôy, a sharp chart P = Mz →
Oz, Q = My → Oy of f at y and compatible fields of coefficients k(z) →֒ Ôz and

k(y) →֒ Ôy induces an isomorphism

(Ôz)P JQKJt1, . . . ,tnK⊗̂k(z)k(y) ∼−→ Ôy.

Proof. Since the logarithmic structure at z is Zariski, locally at y and z there exists
a sharp chart. It is automatically neat since f is sharp at y. By Theorem 2.3.11
the homomorphism (Oz)P [Q] → Oy is regular. Thanks to the quasi-excellence
assumption its completion is also regular, for example, see [Tem12, Corollary 2.4.5].
By the classical formal description of regular morphisms in characteristic zero (e.g.
see [AT18, Remark 2.2.12]), we obtain the asserted isomorphism. ♣

2.3.15. Submanifolds. Given a logarithmically regular morphism f : Y → Z, by a
Z-submanifold of Y we mean any strict closed logarithmic subscheme Y ′ →֒ Y such
that the induced morphism f ′ : Y ′ → Z is logarithmically regular. An ideal I ⊆ OY

will be called a Z-submanifold ideal if the strict closed logarithmic subscheme it
defines is a Z-submanifold.

Lemma 2.3.16. Let Y → Z be a logarithmically regular morphism and I ⊆ OY

an ideal. Then I is a Z-submanifold ideal at y ∈ Y if and only if it is generated by
a partial family of regular parameters at y.

Proof. If the logarithmic structures are trivial, then the morphisms are regular and
the claim is classical and recalled in Lemma B.2.1(ii)). We will deduce the lemma
from this case. The first condition is étale local on Y by Lemma 2.3.3(i). By
Nakayama’s lemma, the second condition is equivalent to injectivity of the map
I/myI → T ∗

S,y, where S = Sy. Therefore it is étale local too, and we can assume

that f possesses a chart h : Y → ZP [Q] neat at y. Since the closed immersion
Y ′ = V (I) →֒ Y is strict, the composition h′ : Y ′ → T → ZP [Q] is a chart of Y ′.
By Theorem 2.3.11, h is regular at y, and I is a submanifold ideal if and only if h′

is regular at y′. Since locally at y the logarithmic fiber S = Sy is the fiber of h, the
claim reduces to the classical case discussed in the above paragraph. ♣

2.3.17. Increasing the logarithmic structure. A standard tool in the theory of log-
arithmically regular schemes is to increase or decrease the logarithmic structure.
For example, it is used in [AT17, Sections 3.4, 3.5] to study toroidal actions. We
will only need a relative version of the increasing operation.

Lemma 2.3.18. Assume that f : Y → Z is a logarithmically regular morphism
and t1, . . . ,tl a partial family of regular parameters at a point y ∈ Y . Let W be
a neighborhood of y where ti are defined and consider the logarithmic structure
M ′
W obtained from MW by adding t1, . . . ,tl, that is, M ′

W is associated with the
prelogarithmic structure MW ⊕ Nl → OW , where the basis elements of Nl are sent

to ti. Then the morphism (W,M ′
W ) → Z is logarithmically regular at y and M

′

y =

My ⊕ Nl.
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Proof. Working étale locally one reduces to the case, when Y = W and f possesses
a chart h : Y → ZP [Q] neat at y. Let Y ′ = (Y,M ′

Y ) denote the logarithmic scheme
with the enlarged logarithmic structure. Sending the basis of the second summand
of Q′ = Q ⊕ Nl to ti gives rise to a chart h : Y ′ → ZP [Q′] = ZP [Q] × Al of
f ′ : Y ′ → Z which is neat at y. Since h is regular at y by Theorem 2.3.11 and
t1, . . . ,tl form a partial family of regular parameters of h at y, the morphism h′ is
regular at y by Lemma B.2.1(i). By Theorem 2.3.11 f ′ is logarithmically regular
at y, as claimed. ♣

2.4. Logarithmic derivations and differential operators.

2.4.1. Logarithmic derivations. Let f : Y → Z be a morphism of logarithmic schemes.
Recall that a logarithmic OZ-derivations on OY with values in an OY -module L con-
sists of an OZ -derivation ∂ : OY → L and an (additive) homomorphism δ : MY → L
such that ∂(uq) = uqδ(q) for any monomial uq, see [Ogu18, Definition IV.1.2.1]. For
a Y -scheme U let DY/Z(U) denote the set of logarithmic OZ-derivations OY → OU .
This defines a presheaf of OYét

-modules, which is easily seen to be a sheaf even for
the fpqc topology. We call it the sheaf of logarithmic Z-derivations on Y .

Example 2.4.2. Assume that the underlying scheme of Y is locally integral, for
example, Y is logarithmically regular. Then the data (∂, δ) is equivalent to the data
of an OZ-derivation ∂ : OY → OU which preserves monomial ideals: ∂(uq) ∈ uqOU .
In particular, DY/Z is a subsheaf of the usual sheaf of relative derivations DerY/Z .

2.4.3. Logarithmic differentials. As in the classical theory, there exists a universal

logarithmic derivation dY/Z : OY → Ωlog
Y/Z , whose target is the logarithmic mod-

ule of differentials. In particular, DY/Z = HomOZ (Ωlog
Y/Z ,OY ), yielding another

explanation why it is a sheaf. As opposed to DY/Z , the module Ωlog
Y/Z is always

quasi-coherent and possesses good functoriality properties.

Lemma 2.4.4. If f : Y → Z is a morphism of logarithmic schemes, then DY/Z =

DerY/Log(Z) and Ωlog
Y/Z = ΩY/Log(Z).

Proof. It suffices to construct the first isomorphism. The claim is étale local, hence
we can assume that there exists a global chart h : Y → ZP [Q] modeled on φ : P →
Q. Since ZP [Q] → Log(Z) is étale, DerY/Log(Z) = DerY/ZP [Q]. We have the exact
sequence

0 → DerY/ZP [Q] → DerY/ZP [Q] → DerZP [Q]/ZP [Q](Y )

associated to the morphisms of stacks Y → ZP [Q] → ZP [Q] and

0 → DY/ZP [Q] → DY/Z → DZP [Q]/Z(Y )

associated to the morphisms of logarithmic schemes Y → ZP [Q] → Z. It remains to
note that DerY/ZP [Q] = DY/ZP [Q] because h is strict, and both DerZP [Q]/ZP [Q](Y )
and DZP [Q]/Z(Y ) are naturally isomorphic to Hom(Coker(φgp),OY ) (in the first
case, one uses that ZP [Q] → ZP [Q] is a Dφ-torsor). ♣

As an immediate corollary we obtain the following result, which is also a conse-

quence of Kato’s computation of Ωlog
Y/Z .
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Corollary 2.4.5. If f is logarithmically smooth, then Ωlog
Y/Z and DY/Z are locally

free, and the rank at a point y equals to the relative dimension of Y → Log(Z) at
y.

2.4.6. Pullback. Let g : X → Y be a morphism and h = f ◦ g. By g!DY/Z we

denote the restriction of the fpqc sheaf DY/Z on Xét, that is, g!DY/Z(U) = DY/Z(U)

for an étale X-scheme U . Clearly, g!DY/Z is an OXét
-module, which can also be

characterized as Homh−1OZ
(g−1Ωlog

Y/Z ,OX). There exists a natural homomorphism

of OX -modules g∗DY/Z → g!DY/Z , but in general g∗DY/Z can be much smaller

than g!DY/Z , similarly to an infinite direct sum embedded into the direct product.
If f is logarithmically smooth, then ΩY/Z is locally free of finite rank, and hence

g∗DY/Z = g!DY/Z .

By a slight abuse of language, for any OY -submodule F ⊆ DY/Z the image of

g∗F in g!DY/Z will be denoted by g∗F .

Remark 2.4.7. We had to introduce g! because it shows up in base changes and
the fundamental sequence. However, distinguishing g!DY/Z and g∗DY/Z plays a
purely technical role and can be essentially ignored by the reader.

2.4.8. Base change. Base change is compatible with logarithmic derivations via g!.

Lemma 2.4.9. Let f : Y → Z and g : Z ′ → Z be morphisms of logarithmic schemes
with base changes f ′ : Y ′ → Z ′ and g′ : Y ′ → Y . Then there is a natural isomor-
phism g′!(DY/Z ) = DY ′/Z′ .

Proof. The inverse isomorphisms are given by the restriction map and by extending
logarithmic OZ -derivations OY → OY ′ to logarithmic OZ′ -derivations OY ′ → OY ′

by OZ′ -linearity (see also [Ogu18, Proposition IV.1.2.3(2a)]). ♣

2.4.10. The first fundamental sequence. Logarithmic derivations and compositions
are related via the following exact sequence:

Lemma 2.4.11. Given morphisms of logarithmic schemes g : X → Y and f : Y →
Z, there exist natural exact sequences

0 → DX/Y → DX/Z
φ→ g!(DY/Z ), g∗(Ωlog

Y/Z)
ψ→ Ωlog

X/Z → Ωlog
X/Y → 0.

In addition, if g is logarithmically smooth, then ψ is injective and φ is surjective.
In particular, if g is logarithmically étale then DX/Z = g!(DY/Z).

Proof. The left exact sequence is tautological: any logarithmic Y -derivation on
X is also a logarithmic Z-derivation, and any logarithmic Z-derivation on X can
be restricted to Y . As a corollary one obtains the first fundamental sequence of
logarithmic differentials (see also [Ogu18, Proposition IV.2.3.1]). Note that the left
sequence is obtained from the right one by applying the functor HomOX (·,OX). If

g is logarithmically smooth, then Ωlog
X/Y is a locally free module of finite rank and

ψ is injective. Therefore φ is surjective in this case. ♣

2.4.12. Differential operators. In this subsection we essentially use that the char-
acteristic is zero. By the algebra of logarithmic OZ-differential operators D∞

Y/Z on

OY we mean the algebra of OZ-linear operators on OY generated by DY/Z . It has a

natural filtration by modules of operators D(≤d)
Y/Z of degree at most d. In particular,
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D(≤1)
Y/Z is a direct sum of OY and DY/Z . For any OY -submodule F ⊆ DY/Z we denote

by F∞ the OZ-subalgebra of D∞
Y/Z generated by F and set F (≤i) = F∞ ∩ D(≤i)

Y/Z .

Remark 2.4.13. We will not need this, but D∞
Y/Z is the sheaf of differential oper-

ators of Y/Log(Z).

2.5. Abundance of derivations. In this section, f : Y → Z is a logarithmically
regular morphisms, D = DY/Z , y → Y a geometric point with image z ∈ Z,
S = Sy the logarithmic fiber of y. Our aim is to study the stalk Dy and the “fiber”
D(y) = D(k(y)). The restriction map induces a natural embedding of the usual
fiber i : D⊗ k(y) →֒ D(y). Note that D(y) can be viewed as the tangent space at y
to the fiber of Y → Log(Z) or the relative logarithmic tangent space, though this
is precise only when f is of finite type and hence i is an isomorphism.

2.5.1. Formal description. We start with studying the formal picture, so assume

for now that f is sharp at y. Let O = Ôz and A = Ôy with the induced logarithmic

structures, and let t1, . . . ,tn be regular parameters at y, P = Mz, Q = My, k = k(z)

and l = k(y). In particular, M
gp

y/z = Qgp/P gp. By Lemma 2.3.14 there exists an

isomorphism A = OP JQKJt1, . . . ,tnK⊗̂kl depending on the choice of charts and fields
of definition. We will work with the usual module of logarithmic derivations DA/O
because any derivation ∂ on A takes mn

A to mn−1
A and hence is continuous. In

particular, this implies that a derivation ∂ ∈ DA/O is determined by its action on
l, Q and t1, . . . ,tn.

Consider the following three types of derivations, whose uniqueness follows from
the above and existence is an easy exercise:

(1) Ordinary derivations: ∂i is defined by ∂i(tj) = δij , ∂i(l) = ∂(uQ) = 0.

(2) Monomial derivations: for any φ ∈ HomZ(M
gp

y/z, A) ∂φ is defined by ∂φ(uq) =

φ(q)uq , ∂φ(tj) = ∂φ(l) = 0.
(3) Constant derivations: any ∂l ∈ Dl/k uniquely extends to DA/O so that

∂l(tj) = ∂l(u
Q) = 0.

Lemma 2.5.2. Keep the above notation. Then

DA/O = (Dl/k⊗̂lA) ⊕ HomZ(M
gp

y/z, A) ⊕ (⊕ni=1A∂i).

In particular, if m = tr.deg.(l/k) <∞, then DA/O is free of rank rkQ(M
gp

y/z)+m+n.

Proof. Restricting derivations onto l, Q and t1, . . . ,tn one obtains projections of
DA/O to the direct summands. The induced map to the direct sum is injective
because derivations are determined by the restrictions. The surjectivity follows
because any element of the direct sum lifts to the corresponding linear combination
of derivations ∂i, ∂φ and ∂l. ♣

2.5.3. A filtration on D(y). The isomorphism in Lemma 2.5.2 depends on choices.
The only natural local structure on D is described by the following three homomor-
phisms and induced filtration on D(y)

(1) φ1 : D(y) → TS,y = Homk(y)(mS,y/m
2
S,y, k(y)), where φ1(∂)(a) = ∂(a).

(2) φ2 : D′(y) → Dk(y)/k(z̃), where D′(y) = Ker(φ1) and φ2 is the restriction
map.
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(3) φ3 : D′′(y) → Hom(M
gp

y/z, k(y)), where D′′(y) = Ker(φ2) and φ3(∂)(q) =

δ(q) = q−1∂(q).

Indeed, any ∂ ∈ D′(y) satisfies ∂(my) = 0 because my is generated by the maximal
monomial ideal and the preimage of the maximal ideal of the logarithmic fiber,
and both are taken to 0 by ∂. Therefore, ∂(a)(y) depends only on a(y) and the
restriction map φ2 is well defined. Note also that we have only defined k(z̃) using
charts, hence one should work étale locally on Z, but this poses no problems because
replacing k(z̃) by a finite (separable) extension does not modify the module of
derivations Dk(y)/k(z̃).

Similarly, φ3 is independent of the choice of a representative q ∈ Mgp
y in a

class q ∈ M
gp

y/z, because for another choice q′ = qu with u ∈ O×
y we have that

δ(q′) = δ(q) + δ(u), and δ(u) = 0 for any element ∂ ∈ D′′(y).

Lemma 2.5.4. The homomorphisms φi induce embeddings of the graded pieces

D(y)/D′(y) →֒ TS,y, D′(y)/D′′(y) →֒ Dk(y)/k(z̃), D′′(y) →֒ HomZ(M
gp

y/z, k(y)).

Proof. The first two claims are obvious, so we should only prove that φ3 is injective.
It suffices to consider the case when f possesses a chart and hence a sharp factor-

ization Y → Z̃ → Z. By Lemma 2.4.11 DY/Z̃ = DY/Z , hence we can replace Z by

Z̃ and assume that f is sharp at y. Any Oz-logarithmic derivation ∂ : Oy → k(y)

extends to an Ôz-logarithmic derivation ∂ : Ôy → k(y) by continuity. Fix a descrip-

tion of Ôy as in Lemma 2.3.14, then ∂ is completely determined by its values on a

field of coefficients k(y), parameters ti and the monoid Q = My. Any element in
Ker(φ3) vanishes on them all and is therefore zero. ♣

2.5.5. Abundance of derivations. If Y → Z is of finite type, then the sheaf DY/Z is
quasi-coherent, but in general DY/Z can be very bad and may even have zero stalks
and fibers: see [Tem11a, Example 2.3.5(ii)] for a pathological example already in
the case of trivial logarithmic structures. Our algorithm may only work when DY/Z
has large enough stalks. We formalize this below. For technical reasons which will
become clearer later, we prefer to work with an arbitrary OY -submodule F ⊆ DY/Z .

The homomorphism Fy ⊆ Dy → D(y) induces homomorphisms ψ1 : Fy → TS,y,

ψ2 : Ker(ψ1) → Dk(y)/k(z̃) and ψ3 : Ker(ψ2) → Hom(M
gp

y/z, k(y)). We say that F is
separating at y if ψ1 is onto, logarithmically separating at y if ψ1 and ψ3 are onto,
abundant at y if in addition ψ2 has a dense image with respect to the weak topology.
We say that F is separating, logarithmically separating or abundant if it is so at all
points of Y .

Remark 2.5.6. (i) Informally speaking, F is separating if it distinguishes regular
parameters, it is logarithmically separating if it also distinguishes monomials, and
it is abundant if it distinguishes arbitrary finite families of parameters at y.

(ii) We will not need this, but it is easy to see that DY/Z has abundance of
derivations at y if and only if the natural map DY/Z,y → DÔy/Ôz

has a dense

image.

2.5.7. Derivations and parameters. Given a partial family of parameters S ⊂ Oy,
by a dual family of derivations we mean a set of derivations ∂a ∈ DY/Z,y indexed
by elements of S such that ∂a(b) = 0 if a 6= b, ∂a(a) = 1 if a is not a monomial,
and ∂a(ua) = ua if ua is a monomial parameter.
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Lemma 2.5.8. Let f : Y → Z be a logarithmically regular morphism and y → Y a
geometric point z = f(y). Let (t, v, q) ⊂ Oy be a family of parameters at y and let
F ⊆ DY/Z be an OY -submodule. Then

(i) F is separating at y if and only if t possesses a dual family of derivations
from Fy.

(ii) F is logarithmically separating at y if and only if {t, q} possesses a dual
family of derivations from Fy.

(iii) F is abundant at y if and only if {t, v0, q} possesses a dual family of deriva-
tions from Fy for any finite subset v0 ⊆ v.

Proof. All three claims are proved by the same argument, so we stick to (i) for
simplicity of notation. Let t = {t1, . . . ,tn}. Since F is separating, there exist
derivations ∂′1, . . . ,∂

′
n ∈ Fy such that ∂′ktj ∈ δkj + my. In particular, the square

matrix D with entries dkj = ∂′ktj lies in GLn(Oy). We claim that for each i ∈
{1, . . . ,n} there exist f1, . . . ,fn ∈ Oy such that ∂i =

∑n
k=1 fk∂

′
k is as required.

Indeed, this is equivalent to solving the system
∑n
k=1 fkdkj = δij , which is possible

since D is invertible. ♣

2.5.9. Relative logarithmic manifolds. Let f : Y → Z be a logarithmically regular
morphism of logarithmic schemes. If DY/Z is logarithmically separating, then we
say that f is a relative logarithmic manifold or Y is a logarithmic Z-manifold. If,
moreover, DY/Z is abundant, then we say that f has abundance of derivations.
These notions are very important for what follows, so let us make some comments.

Remark 2.5.10. (i) In the particular case of schemes with the trivial log structure
over Q, we say that a regular Y is a manifold if DY/Q is separating. Manifolds
were studied by Matsumura in detail; he called them schemes satisfying the weak
Jacobian condition (WJ), see [Mat89, §30]. Matsumura proved, that if X,Y are
regular, X → Y is of finite type, and Y is a manifold, then X is a manifold.
Also, he proved that it suffices to check the weak Jacobian condition (WJ) only
at maximal ideals, and deduced that many natural examples of excellent regular
schemes (spectra of convergent power series, etc.) are manifolds.

(ii) We postpone a detailed study of the notion of relative logarithmic manifold
to another paper, and will only prove the necessary minimum – Theorem 2.7.9
and Lemma 2.7.10. However, it seems that at least if dim(Z) ≤ 1, then most
natural logarithmically regular morphisms Y → Z arising from formal or analytic
geometries are logarithmic Z-manifolds. On the other hand, it seems that the class
of abundant morphisms is rather small.

(iii) Intuitively, tangent spaces on a manifold are glued into a vector bundle
DY/Z , and this is what happens in the logarithmically smooth case. In general, the
condition of being logarithmically separating is the minimal assumption needed to
guarantee that DY/Z is large enough to be useful for us. Note also that it would not
be enough to work with derivations of the localizations DOy/Of(y)

, since it can be
larger than the stalk DY/Z,y when DY/Z is not quasi-coherent. So, certain coherence
condition is built into the definition of logarithmic manifolds.

(iv) In fact, most constructions of our principalization algorithm only need that
DY/Z is separating. However, this property is not stable in the following sense: there
might exist logarithmically smooth morphisms Y ′ → Y , even logarithmic blow ups,
such that DY ′/Z is not separating. The technical reason why this happens is that
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monomial parameters can be “transformed” to regular parameters as we will see
in Proposition 2.7.4. It seems that logarithmically separating is the weakest stable
property that covers our needs.

2.5.11. The logarithmically smooth case. If f is logarithmically smooth, then D is
free and its rank at y equals to the size of a family of parameters (t, q, u) at y.
Clearly, |t| = dim(TS,y), and using that the characteristic is zero, we also have that

|q| = rkQ(M
gp

y/z) = dim(Hom(M
gp

y/z, k(y))), |u| = tr.deg.(k(y)/k(z̃)) = dim(Dk(y)/k(z̃)).

Therefore, all homomorphisms φi have to be surjective and we obtain

Lemma 2.5.12. Any logarithmically smooth morphism f : Y → Z has abundance
of derivations. In addition, for any choice of parameters (t, q, v) at a geometric
point y of Y , there exists a unique dual family of logarithmic derivations (∂t, ∂q, ∂v)
and they form a basis of DY/Z,y.

2.6. Relative logarithmic orbifolds. As in the absolute case of [ATW17], the
relative principalization algorithm involves non-representable analogues of blow ups.
So, we are going to extend the theory of relative logarithmic manifolds to DM stacks.

2.6.1. Logarithmically regular morphisms of stacks. A morphism f : Y → Z of log-
arithmic DM stacks is called logarithmically regular if it logarithmically regular
étale-locally on Y and Z. The latter means that there exist a compatible strict
étale coverings of Y and Z by logarithmic schemes Y0 and Z0 such that the mor-
phism f0 : Y0 → Z0 is logarithmically regular. Moreover, this property is actually
independent of the choice of a covering because logarithmic regularity is local with
respect to strict étale morphisms.

A strict closed substack Y ′ →֒ Y is called a logarithmic Z-submanifold if its
preimage Y ′ ×Y Y0 is a logarithmic Z0-submanifold.

2.6.2. Sheaves of derivations. Given a logarithmic Z-orbifold Y find a strict étale
covering p : Y0 → Y , Z0 → Z, and set Y1 = Y0 ×Y Y0. Strict étale (and even
logarithmically étale) morphisms are compatible with the sheaves of logarithmic
derivations, hence p!

1DY0/Z0
= DY1/Z0

= p!
2DY0/Z0

and this isomorphism satisfies
the cocycle condition. By étale descent we obtain a sheaf DY/Z of logarithmic

derivations of Y/Z. In the same way the sheaves of operators D(≤i)
Y/Z are defined. A

submodule F ⊆ DY/Z is separating, logarithmically separating or abundant if this

property is satisfied by the submodule F0 = p!F of DY0/Z = p!DY/Z .

2.6.3. Logarithmic orbifolds. We say that f is a relative logarithmic orbifold if it is
logarithmically regular and DY/Z is logarithmically separating. Sometimes, if f is
representable we will stress this by saying that f is a relative logarithmic manifold.
This is compatible with the terminology of Section 2.5.9.

2.7. Functoriality. It will be important throughout the text to check that all our
constructions on logarithmic Z-orbifolds Y are functorial with respect to logarith-
mically smooth morphisms Y ′ → Y and arbitrary base changes Z ′ → Z. So, let us
study functoriality of notions introduced so far.
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2.7.1. Base change. Base change functoriality is easy.

Proposition 2.7.2. Let f : Y → Z and g : Z ′ → Z be morphisms of logarithmic
DM stacks with base changes f ′ : Y ′ → Z ′ and g′ : Y ′ → Y , and assume that all
stacks are noetherian and f is logarithmically regular. Then

(i) The morphism f ′ is logarithmically regular. Furthermore, if f is a relative
logarithmic orbifold or has an abundance of derivations, then f ′ satisfies the same
property.

(ii) If a submodule F of DY/Z is separating, logarithmically separating or abun-
dant, then g′∗(F) satisfies the same property.

(iii) Let y′ → Y ′ be a geometric point with y = g′(y′). If t ⊂ Oy is a family of
regular, logarithmic or constant parameters to f at y, then its image in Oy′ is such
a family for f ′ at y′.

(iv) If T →֒ Y is a logarithmic Z-submanifold, then T ′ = T×Y Y ′ is a logarithmic
Z ′-submanifold of Y ′.

Proof. Note that (iv) and the first claim of (i) are covered by Lemma 2.3.3. Claim
(iii) for regular and constant parameters follows from Lemma 2.2.14. In addition,
it is easy to see that My/z = My′/z′ by a general property of monoid pushouts, and
we obtain claim (iii) for monomial parameters. Finally, (ii) is a direct consequence
of (iii), and (ii) implies the second claim of (i). ♣

2.7.3. Parameters of a composition. Next we will study compositions h = f ◦ g
of logarithmically regular morphisms. The main point will be to describe local
parameters of h, and loosely speaking, they can be obtained by combining parame-
ters of f and g but with one important subtlety: some monomial parameters of the
second morphism should be replaced by parameters of other types. This behavior
is well-understood in case of logarithmically smooth morphisms, and our task is
to describe it when f is only logarithmically regular. We start with isolating the
“redundant” monomial parameters.

Let X
g→ Y

f→ Z, points x, y, z and neat charts be as in §2.1.13, and assume
that f and g are logarithmically regular. In particular, Qgp/P gp = M

gp

y/z and

Rgp/Qgp = M
gp

x/y, but the kernel N of the surjection Rgp/P gp ։ M
gp

x/z can be

non-trivial. By a simple diagram chase (see [Ogu18, Remark II.2.4.6]), there is an
exact sequence

0 → N →M
gp

y/z →M
gp

x/z →M
gp

x/y → 0.

Choose a family r ⊂ R of monomial parameters of g at x and subsets n ⊂ Qgp,
q ⊂ Q such that the image of (n, q) in M

gp

y/z ⊗Q is a basis and the image of n is a

basis of N ⊗Q. One can view (n, q) as virtual monomial parameters of f at y. In
fact, it is easy to see that the preimage of N in Qgp has zero intersection with Q
and hence one cannot choose n in Q.

Let N ′ ⊆ Qgp ⊆ Rgp be the lattice with basis n, and let Z ′ = Z ×DN ′ . Since
N ′ is mapped to 0 in M

gp

x/z, it is contained in P gp + R×. In particular, shifting

the elements of n by elements of P gp we can achieve that in addition n ⊂ R×, and
hence a natural morphism X → XP [R] → Z ′ arises. We denote the image of x by
z′ ∈ Z ′.

Proposition 2.7.4. Keep the above notation and let (t, w) and (s, v) be families
of regular and constant parameters of f and g at y and x, respectively. Then there
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exists a set n′ = (n′
1, n

′
2) ⊂ Oz′ such that |n′| = |n| and the sets (t, s, n′

1), (w, v, n′
2),

(q, r) are the families of regular, constant and monomial parameters of h at x.

Proof. We use the notation and diagram from §2.1.13 describing the composition
of neat charts α : X → YQ[R] and β : Y → ZP [Q]. By the usual theory of regular
morphisms, parameters of γ : X → ZP [R] at x can be obtained by combining
parameters of α and the base change βQ[R] of β, hence (t, s) and (w, v) are regular
and constant parameters of γ. Since γ is strict and regular, the parameters of h are
obtained by combining the parameters of γ and λ : ZP [R] → Z, hence it remains
to describe parameters for λ. At this stage we already proved that constant and
regular parameters of f are pulled back to constant and regular parameters of h.

By construction, q and r are mapped to bases of the vector spaces M
gp

x/y ⊗ Q

and (M
gp

y/z/N)⊗Q, hence (q, r) is mapped to a basis of their extension M
gp

x/z, that

is, (q, r) is a family of monomial parameters of λ at x′ = γ(x).

Finally, notice that λ factors into the composition ZP [R] → Z ′ → Z of log-
arithmically regular morphisms. Since Z ′ → Z is a strict regular morphism of
relative dimension |n| = RankN ′, it possesses a set n′ = (n′

1, n
′
2) of parameters at

z′ consisting only of regular and constant parameters, and clearly |n| = |n′|.
In the first paragraph above we have proved that certain parameters pull back to

parameters of the same type under composition. Applying this to ZP [R] → Z ′ → Z,
we obtain that the parameters n′ are pulled back to parameters of corresponding
type of λ at x′ ∈ ZP [R], that we also denote by n′. Since the types are different,
the union (n′, q, r) is a partial family of parameters of λ at x′. To show that this is
a full family it remains to count dimensions:

|(n′, q, r)| = rkQ(N) + rkQ(M
gp

x/z) = rkQ(Rgp/P gp),

hence (n′, q, r) is a full family of parameters at x′. ♣

2.7.5. Compositions. Now, we can establish the following properties of composi-
tions.

Proposition 2.7.6. Assume that g : X → Y and f : Y → Z are logarithmically
regular morphisms of DM logarithmic stacks and h : X → Z is the composition.
Then

(i) The morphism h is logarithmically regular. Furthermore, if g is of finite type
and f is a relative logarithmic orbifold or has abundance of derivations, then h
satisfies the same property as f does.

(ii) If g is of finite type and a submodule F of DY/Z is logarithmically separating

or abundant, then the preimage of g∗F under the homomorphism DX/Z → g!(DY/Z)
satisfies the same property.

(iii) Assume that X,Y, Z are logarithmic schemes, t1, . . . ,tn are regular parame-
ters of g at a point x ∈ X, and s1, . . . ,sl are regular parameters of f at g(x). Then
t1, . . . ,tn, g

∗(s1), . . . ,g∗(sl) is a partial family of regular parameters of h at x.

(iv) If T →֒ Y is a logarithmic Z-submanifold, then T ×Y X is a logarithmic
Z-submanifold of X.

Proof. Lemma 2.3.3 implies that h is logarithmically regular, and the remaining
claims of (i) follow from (ii). Part (iii) is covered by Proposition 2.7.4.
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We prove (iv). Lemma 2.3.3 implies that T ×Y X → Z is logarithmically regular,
being the composition of the logarithmically regular morphism T → Z and the base
change T ×Y X → T of the logarithmically regular morphism g. By Lemma 2.3.16
it suffices to note that regular parameters defining T ⊂ Y at a point y = g(x)
provide regular parameters defining T ×Y X ⊂ X at x.

It remains to prove (ii). For concreteness, we assume that F is abundant, but
the other case can be obtained by taking w0 = ∅ below. By Lemma 2.4.11 there is
an exact sequence

0 → DX/Y → DX/Z
φ→ g!(DY/Z ) → 0.

We will work locally at a geometric point x with images y, z. Choose parameters
(t, s, n′

1), (w, v, n′
2), (q, r) at x as in Proposition 2.7.4. Note that only w can be

infinite by our assumptions. By Lemma 2.5.8 it suffices to prove that any finite
subfamily of parameters has a dual family of derivations. It thus suffices to work
with a subfamily, where w is replaced by a finite subset w0 and the rest is unchanged.
Since DX/Y is abundant, the family (s, v, r) possesses a dual family (∂s, ∂v, ∂r),
whose image in DX/Z vanish on all parameters coming from Y . So, these derivations
form a part of the dual family for (s, v, r, t, w0, q, n

′). Moreover, it suffices now
to find a family dual to (t, w0, q, n

′), because by adding a linear combination of
∂s, ∂v, ∂r one can also achieve that its elements vanish on (s, v, r).

Let n ⊂ Mgp
y/z be as in §2.7.3 where we noted that (q, n) is only a family of

virtual monomial parameters; we correspondingly define a virtually dual family of
derivations (∂t, ∂w, ∂q, ∂n), where the virtual equation ∂a(ua) = ua for a ∈ n means
that the logarithmic derivative δa(ua) = 1, where δ : My → OY is extended to
Mgp
y by linearity. Using abundance of F it is easy to see that it contains such a

virtually dual family. Viewing its elements as derivations with values in OX we
obtain a family (g∗∂t, g

∗∂w, g
∗∂q, g

∗∂n) in g∗F . It is not dual to the parameters
(t, w0, q, n

′) only because g∗∂n is dual to n but not to n′. We claim that there exists
a matrix A ∈M|n|×|n|(Ox) such that Ag∗∂n is a family of |n| logarithmic derivations
Oy → Ox dual to n′. Once this is proved, the family (g∗∂t, g

∗∂w, g
∗∂q, Ag

∗∂n) is
dual to (t, w0, q, n

′), and hence any its preimage under φ is such a family in DX/Z,x,
completing the proof.

It remains to construct A. Note that its coefficients solve a system of |n|2 linear
equations and we should only prove that a solution exists in Ox. First we recall that
n ⊂M×

x hence for any a ∈ n we have that ∂′a = u−a∂a ∈ g∗DY/Z , and the family ∂′n
is dual to n in the sense of usual derivations. (Here we have already used that the
coefficients in g∗F are in Ox rather than Oy.) Their restrictions onto Z ′ = Z×DN ′

is the basis of the free module DZ′/Z . Since n′ is a parameter system for the regular
morphism Z ′ → Z at z′, it has a dual family of derivations ∂n′ ∈ DZ′/Z,z′ . Therefore
already over Oz′ there exists a matrix A such that ∂n′ = A∂n. ♣
Corollary 2.7.7. Let g : X → Y and f : Y → Z be logarithmically regular mor-
phisms, and let S be a logarithmic fiber of h = f ◦ g. Then g takes S to a log-
arithmic fiber T of f and for any point x ∈ S with y = g(x) the homomorphism

φx : ÔT,y → ÔS,x is regular.

Proof. The claim can be checked étale locally, hence we can assume that f and g
possess charts Y → ZP [Q] and X → YQ[R] and a diagram as in §2.1.13 arises. The
logarithmic fibers of h and f are the connected components of the preimages in X
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and Y of TRgp/P gp -orbits on ZP [R] and TQgp/P gp -orbits on ZP [Q], respectively. The
map XP [R] → XP [Q] is equivariant with respect to the homomorphism TRgp/P gp →
TQgp/P gp , hence it takes orbits of the first group to the orbits of the second group.
It follows that g takes the logarithmic fibers of h to the logarithmic fibers of f .

By Corollary 2.3.12 the rings ÔT,y and ÔS,x are regular and hence of the form

kJt1, . . . ,tsK. By Proposition 2.7.6(iii) φx takes a family of parameters of Ôy to a

partial family of parameters of Ôx, hence it is regular. ♣

2.7.8. Finite type stability. Finally, we show that largeness of DY/Z is preserved
under morphisms of finite type:

Theorem 2.7.9. Assume that f : Y → Z is a relative logarithmic orbifold and
g : Y ′ → Y is a morphism of finite type such that f ′ : Y ′ → Z is logarithmically
regular. Then f ′ is a relative logarithmic orbifold too. In particular, a logarith-
mic Z-submanifold of a logarithmic Z-orbifold is a logarithmic Z-orbifold too. In
addition, if f has abundance of derivations then so does f ′.

Proof. The question is étale local, hence we can assume that Y and Y ′ are logarith-
mic Z-manifolds, and it suffices to work locally at a geometric point y′ ∈ Y ′ with
y = g(y′). Notice that any morphism of finite type between logarithmic schemes
locally can be split into a composition of a strict closed immersion followed by a
logarithmically smooth morphism. Indeed, Theorem 2.1.12 reduces the claim to
the case of strict morphisms, which follows since Y ′ locally embeds in some AnY . In
particular, locally Y ′ can be embedded as a logarithmic Z-submanifold into a log-
arithmic Z-manifold W such that W is logarithmically smooth over Y . Therefore,
it suffices to consider two cases: Y ′ → Y is logarithmically smooth, Y ′ →֒ Y is a
logarithmic Z-submanifold. The first case is covered by Proposition 2.7.6(i).

In the second case, choose a family (t, u, q) of parameters at y such that t = (t′, t′′)
and Y ′ is given by the vanishing of (t′) locally at y. In particular, (t′′, u, q) is a
family of parameters at y′. If f is abundant, let u0 be a finite subset of u, and
take u0 = ∅ otherwise. By Lemma 2.5.8(ii) there exists a family of derivations
(∂t′ , ∂t′′ , ∂u, ∂q) dual to (t, u0, q). Since (∂t′′ , ∂u, ∂q) vanish on (t′), they restrict to
derivations on Y ′ which form a dual family to (t′′, u0, q). So, f ′ is abundant (resp.
logarithmically separating) at y′ by Lemma 2.5.8(ii). ♣
Lemma 2.7.10. Assume that f : Y → Z is a logarithmically regular morphism of
logarithmically regular logarithmic schemes, Y = Spec(A), Z = Spec(R) are spectra
of complete local rings, and dim(Z) ≤ 1. Then f is a relative logarithmic manifold.

Proof. Recall that A = lJQKJt1, . . . ,tnK with the logarithmic structure given by a
sharp fs monoid Q. A similar description holds for R and yields three possible
cases: R = k, R = kJxK, R = kJP K, where the logarithmic structure is given by
P = N in the third case and is trivial otherwise. We will deal only with the third
case, as the other two are similar and a bit simpler.

Extend the homomorphism P → Q to a surjective homomorphism Q′ = P ⊕
Nr ։ Q and set A′ = lJQ′KJt1, . . . ,tnK. Then Y is finite over Y ′ = Spec(A′), and
by Theorem 2.7.9 it suffices to prove the claim for Y ′ instead of Y . So, we assume
that Q = P ⊕ Nr and denote its free generators p, q1, . . . ,qr.

Let us now prove that DY/Z is logarithmically separating at a point y ∈ Y .
Assume first that y is a coordinate point in the sense that my is generated by a
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subset S of {p, q1, . . . ,qr, t1, . . . ,tn}. Then already the subsheaf of DY/Z generated
by qi∂qi and ∂tj with qi, tj ∈ S is logarithmically separating at y over Z. Assume
now that y is arbitrary. Renumbering q’s we can assume that qi ∈ my if and only

if 1 ≤ i ≤ r′, and then My = ⊕r′i=1qiN. Let r′ + n′ be the codimension of y in
the fiber over Z, then there exists f1, . . . ,fn′ ∈ A such that my is generated by
q1, . . . ,qr′ , f1, . . . ,fn′ and my ∩ {p}. It is easy to see that there exist fn′+1, . . . ,fn
such that p, q1, . . . ,qr, f1, . . . ,fn generate an open ideal. Therefore, the induced
morphism Y → Y ′ = Spec(lJQKJf1, . . . ,fnK) is finite, étale at y and takes y to a
coordinate point y′. Since Y ′ is a logarithmic Z-manifold at y′, we obtain that Y
is a logarithmic Z-manifold at y. ♣

2.8. Relative logarithmic orders of ideals.

2.8.1. Monomial saturation. By the monomial saturation M(I) of an ideal I on a
logarithmic DM stack Y we mean the minimal monomial ideal containing I.

2.8.2. Differential saturation. Let Y → Z be a logarithmically regular morphism
and F ⊆ DY/Z an OY -submodule. We say that an ideal I ⊆ OY is F-saturated if

F (≤1)(I) = I. For example, any monomial ideal is F -saturated. The ideal, F∞(I)
will be called the F-saturation of I. Obviously, it is the minimal F -saturated ideal
containing I, in particular, F∞(I) ⊆ M(I). The ideal D∞

Y/Z(I) will be called the

D-saturation of I over Z.

2.8.3. Logarithmically clean ideals. We say that I is logarithmically clean at a point
y ∈ Y over Z if D∞

Y/Z(I)y = M(I)y, and I is logarithmically clean over Z if

D∞
Y/Z(I) = M(I). We record the following obvious fact:

Lemma 2.8.4. Let f : Y → Z be a logarithmically regular morphism, I ⊆ OY

an ideal, and F ⊆ DY/Z an OY -submodule. If F∞(I) is monomial, then I is
logarithmically clean over Z and F∞(I) = D∞

Y/Z(I) = M(I).

Remark 2.8.5. (i) In the absolute situation all ideals are logarithmically clean,
see [ATW17, Theorem 3.4.2].

(ii) A typical example is illustrated by the following model case: Z = Spec(O)
with a chart P → O and Y = Spec(A) with A = OP [Q][t1, . . . ,tn]. If I ⊆ A is
generated by elements hi =

∑
q∈Q,l∈Nn biqlu

qtl, then it is easy to see (and will be

shown in Section 3) that D∞
A/O(I) is the ideal generated by the elements biqlu

q.

In particular, if biql are monomials, then I is logarithmically clean. This can be
achieved by a modification of the base, and even just by enlarging P . Surprisingly,
extending this observation to more general logarithmically regular morphisms, and
even logarithmically smooth ones, is substantially more difficult. This will be the
central topic of Section 3.

2.8.6. The logarithmic order. Let Y → Z be a logarithmically regular morphisms
and I an ideal on Y . Similarly to [ATW17, §3.6.1], if Y is a scheme then by the
logarithmic order logordI/Z(y) of I relative to Z at a point y ∈ Y we mean the

usual order of I|S at y, where S = Sy is the logarithmic fiber of y. Since logarithmic
order is compatible with strict étale morphisms Y ′ → Y , this definition extends to
the case when Y is a logarithmic DM stack. In particular, we obtain a function
logordI/Z : |Y | → N ∪ {∞}. By logordI/Z(Y ) = maxy∈Y logordI/Z(y) we denote
the logarithmic order of I on Y .
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2.8.7. Clean ideals. Let Y → Z be a logarithmically regular morphism. An ideal I
is called Z-clean at a point y ∈ |Y | if logordI/Z(y) <∞, and I is called Z-clean or
simply clean if it is Z-clean at all points of Y .

2.8.8. Relation to derivations. As in the absolute case ([ATW17, Lemma 3.6.3]),
the relative logarithmic order can be computed using derivations.

Lemma 2.8.9. Let Y → Z be a logarithmically regular morphism, F ⊆ DY/Z a
separating OY -submodule, I an ideal, and y ∈ |Y | a point. Then

logordI/Z(y) = min{a ∈ N | F (≤a)(I)y = OY,y},
where min(∅) = ∞ by convention. In particular, I is clean at y if and only if
y /∈ V (F∞(I)), and I is clean if and only if F∞(I) = 1.

Proof. Let S be the logarithmic fiber of y, and set IS = I|S and FS = F|S . Since
F (≤a)(I)|S = (FS)(≤a)(IS), we should check that ordy(IS) is the minimal a such

that F (≤a)
S (IS)y = OS,y. It suffices to check the latter in the formal completion

ÔS,y. Fix a family of regular parameters t1, . . . ,tn. Then ÔS,y
∼−→ k(y)Jt1, . . . ,tnK,

and by Lemma 2.5.8, FS contains derivations ∂i such that ∂i(tj) = δij (though the
action on k(y) can be non-trivial).

Now, it suffices to prove that for any h ∈ k(y)Jt1, . . . ,tnK of order a > 0 there
exists i ∈ {1, . . . ,n} such that ∂ih is of order a−1. Without restriction of generality,
h =

∑
n hnt

n
1 , where hn ∈ k(y)Jt2, . . . ,tnK and the inequality a ≤ ord(hn) + n is

an equality for some n0 > 0. It is easy to see that ord(∂1g) ≥ ord(g) for any
g ∈ k(y)Jt2, . . . ,tnK, and using that ∂1(hnt

n
1 ) = (n − 1)hnt

n−1
1 + tn1∂1(hn) one

obtains that ord(∂1(h)) = maxn>0(ord(hn) + n− 1) = a− 1. ♣
Remark 2.8.10. Lemma 2.8.9 implies that if DY/Z is separating, then any clean
ideal is logarithmically clean.

2.8.11. Balanced ideals. An ideal I ⊆ OY is called balanced if it is logarithmically
clean and M(I) is invertible.

Lemma 2.8.12. An ideal I is balanced if and only if it is of the form I = N ·Icln,
where N is invertible monomial and Icln is clean.

Proof. Only the direct implication needs a proof. If I is balanced, then N =
D∞
Y/Z(I) is invertible, hence an ideal Icln = N−1I is defined. Since

N = D∞
Y/Z(NIcln) = ND∞

Y/Z (Icln),

we obtain that D∞
Y/Z(Icln) = 1, and hence Icln is clean by Lemma 2.8.9. ♣

The ideal Icln = N−1I will be called the clean part of I.

2.8.13. Functoriality. We conclude this section with studying functoriality of D-
saturation and logarithmic order. We start with base change functoriality. Recall
that we only consider noetherian base changes in the sense of §1.4.

Lemma 2.8.14. Let f : Y → Z be a logarithmically regular morphism of logarith-
mic DM stacks, I ⊆ OY an ideal, F ⊆ DY/Z an OY -submodule, g : Z ′ → Z a
morphism of logarithmic DM stacks with noetherian base changes g′ : Y ′ → Y and
f ′ : Y ′ → Z ′, and I ′ = IOY ′ . Then
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(i) For a geometric point y′ of Y ′ we have logordI/Z(f ′(y′)) = logordI′/Z′(y′).

In particular, if I is Z-clean, then I ′ is Z ′-clean.

(ii) If F∞(I) is monomial, then g′−1(F∞(I)) = g′∗F∞(I ′).

(iii) If I is logarithmically clean over Z, then I ′ is logarithmically clean over Z ′.

Proof. Claim (i) follows from Lemma 2.2.14. Claim (ii) can be checked étale-locally
using global sections h ∈ Γ(I) and ∂ ∈ Γ(F), and then it becomes a tautology.
Taking F = DY/Z and applying Lemma 2.8.4 we obtain (iii). ♣

Functoriality for logarithmically regular morphisms is checked similarly.

Lemma 2.8.15. Let g : X → Y and f : Y → Z be logarithmically regular morphism
of logarithmic DM stacks, I ⊆ OY an ideal with I ′ = IOX , and F ⊆ DY/Z a
submodule. Then,

(i) logordI/Z = logordI′/Z ◦ |g|. In particular, if I is Z-clean, then I ′ is Z-clean
too.

(ii) If F∞(I) is monomial, then g−1(F∞(I)) = g∗F∞(g−1I).

(iii) If I is logarithmically clean over Z, then I ′ is logarithmically clean over Z
and M(I ′) = g−1(M(I)).

Proof. Order of ideals on regular schemes can be computed formally locally, hence
(i) follows from Corollary 2.7.7. Claims (ii) and (iii) are checked as in Lemma 2.8.14.

♣

3. Monomialization of D-saturated ideals

This section is devoted to proving a monomialization theorem, Theorem 3.6.13.
This is the only ingredient in our algorithms resulting in a base change B′ → B.
Unfortunately, the argument is non-functorial and involves choices. It consists of
two parts: (1) induction on codimension based on results of §3.4, and (2) localization
arguments in Lemmas 3.6.3, 3.6.6 and 3.6.8 based on results of §3.5, cofinality
arguments and RZ spaces. Part (2) is non-functorial. This seems to be unavoidable
in general. In a separate manuscript, we will provide more functorial arguments in
case f is proper.

3.1. Monomial ideals. We say that an ideal I on a logarithmic stack Y is mono-
mial at a geometric point y → Y if étale locally it is generated by monomials
uq ∈ My. Monomial ideals play an important role in the relative resolution algo-
rithm. To begin we establish some their properties.

3.1.1. The class B. Let B be the class of noetherian qe logarithmically regular
logarithmic DM stacks of characteristic zero. In the sequel, we will usually stick
to the following notation: f : Y → Z denotes a logarithmically regular morphism,
f : Y → B is used if in addition the target is in B, and f : X → B is used if in
addition f is a relative logarithmic orbifold.

3.1.2. Schematic closure. In our case, monomiality is preserved by closures.

Lemma 3.1.3. Assume that Y ∈ B, Y0 ⊆ Y is open, Z0 →֒ Y0 is a monomial
substack and Z →֒ Y is the schematic closure of Z0. Then Z is also monomial.
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Proof. The claim can be checked étale-locally, hence we can assume that Y is a
scheme. Monomiality of a subscheme is an open condition, hence by noetherian
induction it suffices to consider the case when Y0 = Y r {y} for a closed point y.
The latter case is local at y, hence we can assume that Y = Spec(Oy). Flatness of
the completion implies that it is compatible with schematic closures and an ideal

I ⊆ Oy is monomial if and only if IÔy is monomial. This reduces the claim to the
case when Y = Spec(A) for a complete local ring A. Since Y ∈ B, we have that
A = BJP K, where B is a complete normal local ring.

Consider the flat morphism Y → T = AP and let T0 be the image of Y0. If A is
not a field, then T0 = T , and T0 = T r {0} otherwise. By assumption, locally Z0

is induced from monomial subschemes of T0. Since the set of monomial schemes is
discrete and the fibers of the map Y0 → T0 are easily seen to be connected, these
subschemes glue to a single monomial subscheme V0 →֒ T0 whose preimage in Y0 is
Z0. It follows that Z is the preimage of the schematic closure V →֒ T of V0. Using
notation from 2.1.2, since V0 is DP gp -equivariant, V is DP gp -equivariant too, which
means that it is monomial. Thus, its preimage Z is monomial too. ♣

3.1.4. Kummer descent. On nice enough logarithmic schemes monomiality is local
in the Kummer topology.

Lemma 3.1.5. Assume that f : X → B is a Kummer logarithmically étale cover,
B ∈ B and I ⊆ OB is an ideal. Then IOX is monomial if and only if I is
monomial.

Proof. Monomiality of ideals is an étale-local property, and it can be checked at
formal completions. For a fine enough étale cover of B the completed local rings
are of the form lJt1, . . . ,tnKJP K. Therefore the assertion follows from Lemma 3.1.6
below. ♣

Lemma 3.1.6. Assume that P →֒ Q is a Kummer embedding of sharp fs monoids,
O is a ring, A = OJP K and C = OJQK. Then an ideal I ⊂ A is monomial if and
only if J = IC is monomial.

Proof. Only the inverse implication needs a proof, so assume that J is monomial.
If f =

∑
p∈P fpu

p is an element of I, then each up lies in J , say,

up =
∑

ci · gi

with gi ∈ I and ci ∈ C. Note that C is Qgp/P gp-graded and the component of
weight zero is A. Taking the weight-zero component of the above equality we obtain
that

up =
∑

(ci)0 · gi
with (ci)0 ∈ A, and hence up ∈ I. So I is monomial, as claimed. ♣

3.1.7. Integral closure and saturation. We refer to [ATW17, §4.3.1] for the definition
of the integral closure Inor of an ideal and to [AT17, Corollary 5.3.6] for the following
result.

Lemma 3.1.8. If Y ∈ B and I is a monomial ideal on Y , then Inor = Isat.
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3.1.9. Special logarithmic schemes. Let Y be a logarithmic scheme and let i : U =
Ytriv →֒ Y denote the maximal open subscheme on which the logarithmic structure
is trivial. We say that Y is special if the underlying scheme is normal and MY =
i∗O×

Uét
∩OYét

. The latter condition simply means that MY →֒ OY and any f ∈ OY

dividing a monomial is monomial.

Lemma 3.1.10. (i) Any logarithmic stack in B is special.

(ii) If Y → B is logarithmically regular and B ∈ B, then Y ∈ B.

Proof. The first claim is proved in [Kat94, Theorem 11.6]. The second one follows
from Lemma 2.3.3. ♣
Remark 3.1.11. (i) In fact, our choice of B is only dictated by Lemmas 3.1.3,
3.1.5, 3.1.8 and 3.1.10. Any wider class for which these hold would work as well.

(ii) At the very least, the class B can be enlarged to include logarithmic schemes

B such that étale locally on B formal completions are of the form ÔY,y = AJP K,
where A is a normal complete local ring, P is a sharp fs monoid and the logarithmic
structure is induced by P . We do not pursue such generality because of a current
lack of potential applications.

3.2. Gradings. Throughout §3.2, φ : P →֒ Q is an injective homomorphism of
sharp fs monoids. In addition, we assume that φ is exact, that is, P = Q ∩ P gp.

3.2.1. The monoid Q̃. In Section 3, we will not use the sharp factorizations and

the notation P̃ from Section 2, but we set Q̃gp = Qgp/P gp instead and denote the

image of Q in it by Q̃. Note that (Q̃)gp = Q̃gp, so there is no ambiguity in the

notation. For any q̃ ∈ Q̃ let Qq̃ denote the preimage of q̃ in Q. It is a P -set such
that P gp acts transitively on Qq̃ + P gp.

The following result is certainly not new. In particular, it can be deduced from
the results of [BG09]. Since we could not find a reference, we provide a sketch of
the proof.

Lemma 3.2.2. Keep the above notation and let q̃ ∈ Q̃. Then

(i) The P -set Qq̃ is finitely generated: there exist elements q1, . . . ,qn ∈ Qq̃ such
that Qq̃ = ∪i(qi + P ).

(ii) There exist p ∈ P and q ∈ Qq̃ such that p+Qq̃ ⊆ q + P .

Proof. Note that (ii) follows from (i) and the fact that translations of a strictly
convex cone cover the whole space. To prove (i) we consider the real cone PR

spanned by P in P gp
R := P gp ⊗ R. Note that PR = QR ∩ P gp

R by the exactness
of P →֒ Q. Fix a lift q ∈ Q of q̃. Then Qq̃ is the intersection of the lattice
q + P gp with the section X = QR ∩ (q + P gp

R ) of QR. Exactness implies that X is
a polyhedron with recession cone PR = QR ∩ P gp

R , hence by [BG09, Theorem 1.2.7
and Proposition 1.2.8] X = PR + X0 for a polytope X0. Let {v1, . . . ,vm} be a set
of generators of P , consider the bounded set X1 = X0 + Y with Y :=

∑m
i=1[0, 1)vi,

and consider the finite set X1 ∩ (q + P gp) = {q1, . . . ,qn}. Clearly, the set q1, . . . ,qn
generates Qq̃. ♣

Remark 3.2.3. It is well known (e.g. see [Ogu18, Proposition I.4.6.9]) that φ is
an integral homomorphism if and only if each Qq̃ is of the form q + P . In this
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Y

X0 X1

X

PR

Figure 1. The sets X0, Y and X1 (with Q̃ being the vertical axis).
The set X1 contains P -representatives of Qq̃ = X ∩Q.

case q is unique, hence one obtains a set-theoretic section Q̃ →֒ Q and a bijection

Q̃×P = Q. The above lemma is a technical tool, which will allow us to work with
morphisms which are exact but not necessarily integral in a similar fashion.

3.2.4. The grading of OP [Q]. If O is a ring and u : P → (O, ·) is a homomorphism,

then A = OP [Q] acquires a natural Q̃gp-grading A = ⊕q̃∈Q̃Aq̃ trivial on O. One

can define it directly or simply take the grading corresponding to the action of
Tφ on XP [Q], where X = Spec(A). By Lemma 3.2.2(i), each Aq̃ is an O-module
generated by finitely many elements uq with q ∈ Qq̃.

3.2.5. The formal grading of OP JQK. If O is local with maximal ideal m, then

n = m⊕
(
⊕06=q̃∈Q̃Aq̃

)

is a maximal ideal of A, and the following explicit description of the formal com-

pletion ÔP JQK immediately follows from [AT18, Prposition 4.5.6]. Notice that a

formal grading is a product of Ô-modules rather than a sum, and it makes sense
only when all non-trivially graded components lie in the maximal ideal.

Lemma 3.2.6. If O is local and A = OP [Q], then Â = ÔP JQK acquires a formal

grading Â =
∏
q̃∈Q̃ Âq̃, where each Âq̃ is the m-adic completion of Aq̃. In particular,

Âq̃ is an Ô-module generated by finitely many elements uq with q ∈ Qq̃.

3.2.7. Homogeneous ideals. An ideal Ĵ in Â is (formally) homogeneous if it is of

the form
∏
q̃∈Q̃ Ĵq̃. This happens if and only if for any f ∈ Ĵ with homogeneous

decomposition f =
∑

q̃∈Q̃ fq̃, all homogeneous components fq̃ belong to Ĵ .

3.3. D-saturated and B-monomial ideals. Until the end of Section 3 we are
given f : X → B such that

A1. f : X → B is a logarithmic orbifold, and
A2. B ∈ B.
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3.3.1. D-saturatedness. We say that an ideal J ⊆ OX is D-saturated over B at a

geometric point x → X if D(≤1)
X/B(Jx) = Jx, and J is D-saturated over B if it is

D-saturated at all geometric points of X . When B is clear from the context we will
simply say that J is D-saturated. For example, if X → B is logarithmically étale,
then any ideal is D-saturated. We will use the term F-saturated if the property

holds with respect to a submodule F ⊆ D(≤1)
X/B . The following immediate result will

be our main source of producing D-saturated ideals:

Lemma 3.3.2. For any ideal J ⊆ OX , the ideal D∞
X/B(J ) is the minimal D-

saturated ideal that contains J .

3.3.3. Why the monomialization theorem is needed. In some sense, D-saturated
ideals are “impenetrable” for our principalization algorithm and its main tool, the
sheaf D. So, the principalization algorithm can only treat a D-saturated ideal J
very primitively: it would blow up the monomial saturation M(J ). This works
fine when J is monomial, but usually fails when it is not. Our main result about
D-saturated ideals will be that they can be made monomial by an appropriate
logarithmic blowing up of B. In particular, if B is of dimension at most one,
then D-saturated ideals are automatically monomial, once B is provided with an
appropriate logarithmic structure.

3.3.4. Ideals defined over the base. Given a ring homomorphism R → A we say
that an ideal J ⊆ A is defined over R or R-defined if it is generated by elements of
R. Geometrically this means that the subscheme V (J) →֒ Spec(A) is the pullback
of a subscheme of Spec(R). We say that J ⊆ OX is B-defined at a geometric point
x→ X if Jx is defined over Of(x).

Remark 3.3.5. Simple examples with étale homomorphisms R → A show that
even if J is R-defined at every point of Spec(A), it does not have to be defined over
R globally. The local notion will be more important for us.

3.3.6. B-monomial ideals. We will also need a logarithmic analogue of being B-
defined. For simplicity, we introduce this notion only when f is sharp (§2.1.9) at all
geometric points of X and B is a logarithmic schemes whose logarithmic structure
is Zariski. Then, an ideal J ⊆ OX is B-monomial at x if Jx is generated by a

homogeneous ideal of the Q̃gp-graded ring (Ob)P [Q], where b = f(x), P = Mb and
Q = Mx. We say that J is B-monomial if it is B-monomial at all geometric points.
(This is a local property, in contrast to being B-defined.)

3.3.7. The strategy. Relative logarithmic derivations take any homogeneous ideal of

the Q̃gp-graded ring (Ob)P [Q] to itself. In particular, if J is B-monomial, then it is
D-saturated. The converse is not true in general, even if P = Q = 1. For example,

if Ox = Ôb then there are no non-trivial derivations (though there are enough
derivations), hence any ideal in Ox is D-saturated, but one can easily construct
examples of ideals in Ox not defined over Ob. However, the converse does hold
true in some specific cases, including the formal case (Proposition 3.4.5). If J is
B-monomial, then it can be easily monomialized (Lemma 3.6.8). Loosely speaking,
our approach to proving the monomialization theorem is to control the difference
between a D-saturated ideal I and its maximal B-monomial subideal. This will be
done by studying a formal case and applying an appropriate localization procedure
on B.
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3.4. Descent.

3.4.1. Notation and assumptions. Let f : X → B satisfy Assumptions A1–A2 of
§3.3. Until the end of §3.4, we study a D-saturated ideal J ⊆ Ox and work locally
on B and étale-locally on X . So fix a point b ∈ B and a geometric point x → X
over it, and let P = M b, Q = Mx. In addition, until §3.4.10 we make the following
assumptions:

A3. f has abundance of derivations,
A4. k(b) is algebraically closed,
A5. the logarithmic structure at b is Zariski,
A6. f is exact, and
A7. Qgp/P gp is torsion free.

Recall that the exactness at x means that the homomorphism P → Q is exact
(§2.2.5, §3.2).

3.4.2. Formal descent - trivial logarithmic structure. We start with studying the
situation on formal completions. When the logarithmic structure is trivial we have:

Proposition 3.4.3. Assume that R is a complete noetherian local ring with residue
field k = R/m of characteristic zero and l/k is a field extension such that k is
algebraically closed in l. Let k →֒ R be a field of definition and A = RJt1, . . . ,tnK⊗̂kl.
Let F ⊆ DA/R be a submodule of the module of R-derivations of A which contains
∂t1 , . . . ,∂tn and a dense submodule F0 ⊆ Dl/k. Then an ideal J ⊆ A is F-stable if
and only if it is defined over R.

Proof. Only the direct implication needs a proof, so assume that J is F -stable. The
general claim follows by applying successively two cases: (a) A = RJtK, (b) n = 0.

In case (a), choose h =
∑

i ait
i ∈ J . Since ideals of A are closed, the series h

lies in the ideal generated by the monomials ant
n; it suffices to prove that ant

n ∈
J for every n, because then an = ∂nt (ant

n)/n! ∈ J . Choose N > n and set

hN =
∑N
i=0 ait

i. Since ait
i is an eigenvector of ∂ = t∂t of eigenvalue i and the

characteristic is zero, there exists an operator δ =
∑N

j=0 lj∂
j such that δ(hN ) =

ant
n. (Use Vandermonde for 0, . . . ,N .) Therefore J contains the element δ(f) =

ant
n + δ(h − hN ) ∈ ant

n + tN+1A, and using that J is closed and N is arbitrary,
we obtain that ant

n ∈ J .

In case (b), fix a basis S of l over k. Then any element h ∈ A possesses a unique
presentation h =

∑
e∈S aee, where ae ∈ R; by definition of the completed tensor

product ⊗̂, for any n ∈ N, there exists a finite subset Tn ⊆ S such that if e ∈ SrTn,
then ae ∈ mn. We will prove the claim by first reducing it to a very particular case.

Step 1. It suffices to establish the case when J = F∞(h). Indeed, choose g ∈ J .
Then J contains the F -stable ideal I = F∞(g) generated by g, and it suffices to
prove that g ∈ (I ∩R)A.

Step 2. It suffices to consider the case where h =
∑

e∈T aee for a finite subset T ⊂
S. Indeed, if this case is proved, then in the general case setting hn =

∑
e∈Tn

aee,

we obtain that ae ∈ F∞(hn) for any e ∈ Tn. Thus, for any n and e ∈ Tn there
exists an operator δe,n with ae = δe,n(hn). Since mA = mA is preserved by any
derivation in DA/R, it follows that any mn

A is also preserved by δ, and hence the
sequence δe,n(h) tends to ae. Since J is closed, we obtain that ae ∈ J and, moreover,
J is generated by these elements.
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Step 3. It suffices to consider the case when tr.deg.(l/k) < ∞ and F = DA/R.
By steps 1–2 we can assume that J = F∞(h), h =

∑
e∈T aee and |T | < ∞. Let

l′ = k(T ) and A′ = R⊗̂kl′. If t1, . . . ,tn form a transcendence basis of l′/k, then
there exists a dual family of derivations ∂i ∈ F0, and their restrictions form an
l-basis of Dl′/k and hence also an A-basis of DA′/R = Dl′/k⊗l′A′. Therefore, J ∩A′

contains the ideal D∞
A′/R(h) and it suffices to show that the latter is defined over

R.

Step 4. It suffices to consider the case when tr.deg.(l/k) = 1. Find a tower k =
l0 ⊂ l1 ⊂ . . . ln = l such that li is algebraically closed in li+1 and tr.deg.(li+1/li) = 1.
It suffices to establish descent from R⊗̂kli+1 to R⊗̂kli, hence the claim reduces to
the case of extensions of transcendence degree one..

Step 5. If the conditions of steps 1–4 are satisfied, then the claim holds true. We
can assume that h =

∑n
i=1 aiei with ai ∈ R and e1, . . . ,en ∈ l linearly independent

over k. It suffices to prove that there exists an operator δ ∈ D∞
l/k such that δ(e1) = 1

and δ(ei) = 0 for i > 1, because then a1 = δ(h) ∈ J , and similarly for other ai.

Let {x} be a transcendence basis of l/k, then {∂x} is a basis of Dl/k. Since k

is algebraically closed in l, the kernel of ∂x is k. Therefore the operator ∂x · e−1
n

annihilates en and takes e1, . . . ,en−1 to a family

e
(1)
i := ∂x(ei/en)

linearly independent over k. Iterating this as

δ′ := . . . ∂x · (e
(1)
n−1)−1 · ∂x · e−1

n

we obtain an operator vanishing on e2, . . . ,en, but δ′(e1) 6= 0. It remains to take
δ = (δ′(e1))−1 · δ′. ♣

3.4.4. Logarithmic descent to Ôb. Let A = Ôx, O = Ôb, k = k(b), l = k(x), and
R = OP JQK. Note that A = RJt1, . . . ,tnK⊗̂kl by Lemma 2.3.14. We consider
the submodule F = DX/B,x ⊗Ox A of DA/O. Recall that DA/O was described in

Lemma 2.5.2, and F contains ∂1, . . . ,∂n, Hom(Q̃gp, A) and a dense submodule of
Dl/k by Lemma 2.5.8.

Proposition 3.4.5. Keep the above notation. Then for an ideal J ⊆ A the follow-
ing conditions are equivalent:

(i) J is F-saturated over O (§3.3.1),
(ii) J is O-monomial (§3.3.6),
(iii) J is generated by finite sums of the form aq̃ =

∑
q∈Qq̃

aqu
q, with q̃ ∈ Q̃ and

aq ∈ O.

Proof. Clearly, (ii) and (iii) are equivalent. It follows from the description of DA/O
that any element aq̃ is an eigenvector of DA/O, hence (iii) implies (i). Conversely,
assume that J is D-saturated and let us prove (ii). By Proposition 3.4.3, J is
defined over R, reducing our problem to the case A = R. Recall that R is graded,
and an element is homogeneous if and only if it is of the form

∑
q∈Qq̃

aqu
q. So we

need to prove that J is homogeneous, and since J is closed, it suffices to show that
if h ∈ J and h =

∑
q̃∈Q̃ hq̃ is its homogeneous formal decomposition (§3.2.7), then

each hq̃ is in J .
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The R-algebra D∞
R/O is generated by logarithmic derivations ∂φ with φ ∈ Hom(Q̃gp, R).

By the assumptions of §3.4.1, Q̃gp has no torsion, and hence these derivations sep-

arate elements of Q̃. Using Vandermonde as in the proof of Proposition 3.4.3, it

follows that for any finite subset S ⊂ Q̃gp and an element q̃ ∈ S, there exists a
differential operator ∂S ∈ D∞

R/O such that ∂S(q̃) = q̃ and ∂S(q̃′) = 0 for any other

q̃′ ∈ S. Let hS =
∑

q̃∈S hq̃. For any N > 0, taking S large enough we achieve that

h − hS ∈ mN and then ∂S(h) = hq̃ + ∂S(h − hS) ∈ hq̃ + mN−1. So, hq̃ ∈ J , as
claimed. ♣

3.4.6. Descent to Ob. So far we have used Ob-derivations to show that F -saturated
ideals on Ôx are defined over Ôb. We would like to know when they are defined

over Ob itself, but derivations are not useful anymore, because they vanish on Ôb

by continuity. The only tool which we have at our disposal is that open ideals are
automatically defined over Ob. Surprisingly, this obvious fact can be used to make
non-trivial conclusions. Here is the first step:

Proposition 3.4.7. Let f : X → B, b ∈ B, x → X, and J ⊆ Ox be as in §3.4.1.
Assume that there exists an ideal I ⊂ Ob such that J is monomial over the com-
plement of V (I) and Ĵ is Ôb,I-monomial, where Ĵ and Ôb,I are the completions
of J and Ob along mxJ and I, respectively. Then J is Ob-monomial.

We proved earlier that Ĵ is Ôb-monomial, where Ôb is the mb-adic completion.

The proposition assumes that Ĵ is monomial with respect to the slightly smaller

ring Ôb,I .

Proof. We can replace X by Spec(Ox). Let T = V (J ) be the closed subscheme
defined by J . Set B0 = B r V (I), X0 = X ×B B0 and T0 = T ×X X0, and let T ′

be the schematic closure of T0 in X . Since T0 is monomial by our assumption and
X is logarithmically regular by Lemma 2.3.3, T ′ is also monomial by Lemma 3.1.3.
Let J ′ ⊆ Ox be the monomial ideal defining T ′ at x, say J ′ = uJ

′Ox for an ideal
J ′ ⊆ Q. By the construction, J ⊆ J ′ and J ′/J is annihilated by a power Il of

I. In particular, we have inclusions of the mx-adic completions IlĴ ′ ⊆ Ĵ ⊆ Ĵ ′ in

Ôx.

Set C = Ob and Ĉ = Ôb,I for brevity. By assumption, Ĵ is generated by homo-

geneous elements ai ∈ ĈP [Q]. Since each ai lies in the monomial ideal J ′ĈP [Q],

one can present it as
∑
xru

qr with qr ∈ J ′. Expanding xr in ĈP [Q] we obtain a

presentation ai =
∑

j aiju
qij , where aij ∈ Ĉ and qij ∈ J ′. Moreover, the degree

of the homogeneous element ai is an element q̃j ∈ Q̃, and all aij vanish except
those with qij ∈ Qq̃i , using the notation of Section 3.2.1. Thus we can assume that
qij ∈ Qq̃i .

Consider approximations bij ∈ C such that aij − bij ∈ Il+1Ĉ, and set bi =∑
j biju

qij . Then ai − bi ∈ Il+1uJ Ĉ ⊂ IĴ ⊆ mxĴ in Ôx, and hence bi also

generate Ĵ by Nakayama’s lemma. By flatness of the completion, bi are generators
of J in Ox, and it remains to notice that bi are homogeneous elements of CP [Q]. ♣

3.4.8. The summary. We summarize §3.4 in the following result.

Proposition 3.4.9. Let f : X → B and b ∈ B satisfy Assumptions A1–A6 as in
§3.4.1, J ⊆ OX a D-saturated ideal, B′ → B a modification, X ′ = X ×B B′ and
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J ′ = JOX′ . Assume that b is closed, B′ ∈ B and the restriction of J ′ to X ′×BB0

is monomial, where B0 = Br{b}. Then J ′ is B′-monomial at any geometric point
x′ → X ′.

Proof. This is only non-trivial when x′ is in the preimage of b. So, assume this is
the case, and let b′ ∈ B′ and x → X denote the images of x′. It suffices to check
that J ′ and X ′ → B′ satisfy the assumptions of Proposition 3.4.7 at x′ for the
ideal I = mbOb′ . First, the complement of V (IOX′) coincides with X ′ ×B B0,

hence the restriction of J ′ to V (IOX′ ) is monomial. Second, Ĵ is Ôb-monomial

by Proposition 3.4.5, and since the homomorphism Ôb → Ôb′ factors through the

completion Ôb′,I along I, we obtain that Ĵ ′ is Ôb′,I-monomial. ♣

3.4.10. A complement in dimension ≤ 1. The above results can be essentially
strengthened when the base is at most one-dimensional, in particular, Assump-
tions A3–A7 are not needed. This case is used in the proof of Theorem 3.6.13.

Proposition 3.4.11. Assume that f : X → B is a logarithmic orbifold and B =
Spec(O) is local, logarithmically regular, of dimension at most one, and with the
logarithmic structure O r {0}. Then any D-saturated ideal J ⊆ OX is monomial.

Proof. Note that O is either a field or a DVR and fix a chart u : P → O, where
either P = 0 or P = N and u = u1 is a uniformizer of O. The claim is étale local on
X , hence we can assume that X = Spec(A) is local and the logarithmic structure
is Zariski. Replacing B by the generic point if necessary, we can assume that f is
surjective, and then P → O extends to a sharp chart Q→ A.

Since J is determined by its completion Ĵ ⊆ Â, it suffices to prove that the
latter is monomial. Consider the residue fields k = O/mO and l = A/mA, fix a

field of coefficients k →֒ Ô and set R = Ô⊗̂kl. Then Â = RP JQKJt1, . . . ,tnK by

Lemma 2.3.14, and by Propositions 3.4.3 and 3.4.5, the ideal Ĵ is R-monomial.

It suffices to prove that upĴ is monomial for an appropriate p ∈ P , hence by

Lemma 3.2.2 we can assume that Ĵ is generated by non-zero elements of the form
ruq with r ∈ R. It remains to note that R is a field or a DVR and mR = mOR,
hence r is a monomial. ♣

3.5. Modifications of logarithmic schemes.

3.5.1. Modifications and blow ups. By a modification of logarithmic schemes we
mean any morphism h : Y ′ → Y which is proper and restricts to an isomorphism of
dense open subschemes. We say that h is a blow up along an ideal I ⊆ OY if the
underlying morphism is the blowing up along I, the ideal IOY ′ is monomial and h
is an isomorphism over Y r V (I).

Remark 3.5.2. The blow up of a logarithmic scheme is a bit of an artificial notion.
In particular, it is not uniquely determined by I, as the following example shows.
Nevertheless, it will be convenient to use this notion in the paper.

Example 3.5.3. (i) Let Y = Spec(k[x]) with the trivial logarithmic structure and
let I = (x). Then the blow up along I is the same underlying scheme provided
with the logarithmic structure generated by xN. In this specific case, Y ′ is also
logarithmically smooth over k, while the morphism Y ′ → Y is not logarithmically
smooth, though it is an isomorphism on the level of schemes.
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(ii) With our definition, Y ′ → Y is also a blow up along I1 = (x2), though
the natural (or universal) blow up Y ′

1 along I1 is the scheme Y provided with the
logarithmic structure generated by x2N. It is not logarithmically smooth over k.

3.5.4. Supports. We will also want to control supports of blow ups. Assume given
a morphism g : Y → S and a closed subset T ⊆ S. A modification h : Y ′ → Y is
called a T -modification if it induces an isomorphism over g−1(SrT ). In particular,
this is the case when h is a T -supported blow up, that is, a blow up along I such
that V (I) ⊆ g−1(T ).

3.5.5. The class Bst. The class B of §3.1.1 is not a priori stable under modifications,
and we stabilize it as follows: the class Bst consists of logarithmic stacks Y ∈ B

such that for any closed T ⊆ Y and a T -modification Y ′ → Y there exists a T -
supported blow up Y ′′ → Y which factors through Y ′ → Y and satisfies Y ′′ ∈ B.
In fact, it follows from Theorem 1.2.3 that B = Bst, but until we prove it we have
to distinguish the two classes.

3.5.6. Basic properties of blow ups. It is easy to see that the well-known proper-
ties of usual blow ups imply their logarithmic analogues: T -supported blow ups
of logarithmic stacks are preserved by compositions, are compatible with flat mor-
phisms, can be extended from open substacks, and are cofinal in the family of all
T -modifications. The latter property is a version of Chow’s lemma, which was
extended to DM stacks by Rydh, see [Ryd, Corollary 5.1].

3.5.7. Kummer extension of cofinality. We will also need the following subtle prop-
erty. The main argument of its proof is based on relative RZ spaces and requires
that we recall some material not related to anything else in the paper. It is given
in appendix C, and here we only deduce a corollary about logarithmic schemes.

Proposition 3.5.8. Assume that h : Y → Z is a Kummer logarithmically étale
covering with Z ∈ Bst and T ⊆ Z is a closed subset. Then for any T -modification

Ỹ → Y there exists a T -supported blow up Z ′ → Z such that Z ′ ∈ B and Y ×ZZ ′ →
Y factors through Ỹ .

Proof. We can replace Y and Ỹ by an étale cover X of Y and the T -modification

X̃ = X ×Y Ỹ . In this way we can achieve that h factors into the composition of a
Kummer cover of logarithmic schemes h1 : Y → Y0 and a strict étale cover of stacks
h0 : Y0 → Z. So, it suffices to prove the claim for h0 and h1, and we restrict to two
cases: (1) Y and Z are schemes, (2) h is étale.

Since the proofs only differ in one ingredient, we prove case (1) and then indicate
the change for case (2). We can assume that T ( Z, as otherwise we can simply

replace it by any proper closed subset T ′ ( Z such that Ỹ → Y is a T ′-modification.
Note that U = Z r T and its preimage V = Y r h−1(T ) lie in B and hence are
normal. By Theorem C.3.1 applied to Y → Z and V → U , there exists a T -
supported blow up of schemes g : Z ′ = BlI(Z) → Z and a finite T -modification Y ′

of the closure of V in Z ′×Z Y such that the T -modification Y ′ → Y factors through

Ỹ . If I ′ is the ideal of T , then replacing Z ′ by BlII′(Z) we obtain a finer blow
up whose center is a closed subscheme with reduction T . Choosing an appropriate
logarithmic structure on Z ′ so that II ′OZ is monomial we obtain an enrichment
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of g to a blow up of logarithmic schemes, which will also be denoted g : Z ′ → Z.
Finally, since Z ∈ Bst, we can replace g by a finer blow up again so that Z ′ ∈ B.

We claim that Z ′ → Z is as required. The morphism h′ : Y ′ → Z ′ is Kummer
logarithmically étale, so by Lemma 3.1.10 the logarithmic scheme Y ′ = Z ′ ×Z Y
lies in B and hence is special (§3.1.9). In particular, its underlying scheme is
normal and hence coincides with the closure of V in the scheme-theoretic fiber
product. Therefore, the morphism of schemes Y ′ → Y factors through a morphism,

of underlying schemes, φ : Y ′ → Ỹ , and it remains to show that the latter extends
to a morphism of logarithmic schemes. Since Y ′ is special, it suffices to show that

Y ′
triv ⊆ φ−1(Ỹtriv). By our construction, Y ′

triv = h′−1(Z ′
triv), which is the preimage

of Ztriv r T . On the other hand, Ytriv = h−1(Ztriv) and since Ỹ → Z is a T -

modification, Ỹtriv contains the preimage of Ztriv r T . The claim follows.

Case (2) is proved similarly, replacing the use of Theorem C.3.1 by the flattening
theorem, extended by Rydh to stacks in [Ryd, Theorem D]. ♣

3.6. Monomialization of D-saturated ideals. Throughout §3.6, f : X → B
satisfies Assumptions A1–A2 of §3.3, J ⊆ OX is an ideal and T ⊆ B is the closure
of f(V (J )).

3.6.1. Ideals monomializable over a base. We say that a blow up g : B′ → B mono-
mializes (resp. almost monomializes) J if the pullback J ′ = JOX′ of J to the
saturated base change X ′ = X ×B B′ is monomial and g is T -supported (resp. the
center of g is monomial outside of T ). If such a blow up exists we say that J is
(almost) monomializable.

3.6.2. Descent. It seems probable that any D-saturated ideal J is monomializable,
and we will prove this in the end of §3 for an integral f . However, in the general
case we will only prove that J is almost monomializable. Our proof will run by
showing that the class of almost monomializable ideals is large enough. We start
with descent.

Lemma 3.6.3. The classes of monomializable and almost monomializable ideals
are Kummer local both on the source and on the base.

Proof. The two cases are similar, so we will only deal with monomializable ideals.
Say X1 → X is a Kummer cover and B′ → B a blowing up such that JOX′

1
is

monomial as in the following cartesian diagram:

X ′
1

//

��

X1

��

X ′ //

��

X

��

B′ // B.

By Lemma 3.1.5 applied to X ′
1 → X ′ the ideal J ′ = JOX′ is monomial, proving

that the property is local on the source.

The second claim asserts that if B1 → B is a Kummer logarithmically étale cover
and the pullback J1 of J to X1 = X ×B B1 is monomializable over B1, then J is
monomializable over B. Let g1 : B′′

1 → B1 be a modification that monomializes J1.



46 D. ABRAMOVICH, M. TEMKIN, AND J. W LODARCZYK

By Proposition 3.5.8 there exists a T -supported modification g : B′ → B such that
B′

1 = B′ ×B B1 → B1 factors through g1, and hence monomializes J1:

B′′
1

g1
  
❇

❇

❇

❇

❇

❇

❇

❇

B′
1

oo

��

// B′

∃g

��

B1
// B.

We claim that g monomializes J . Set X ′ = X ×B B′, J ′ = JOX′ , X ′
1 = X ×B B′

1

and J ′
1 = JOX′

1
:

X ′
1

//

��

X ′

��

B′
1

//

��

B′

g

��

B1
// B.

As we noted, J ′
1 is monomial, and since X ′

1 = X ′×BB1 is Kummer logarithmically
étale overX ′, we obtain that J ′ is monomial by Lemma 3.1.5. Thus, g monomializes
J . ♣
Corollary 3.6.4. If f : X → B is Kummer logarithmically étale, then any ideal
J ⊆ OX is monomializable.

Proof. Kummer locally on the base f is an isomorphism. By Lemma 3.6.3 we can
assume that X = B and then J is monomializable by a blow up along it. ♣

3.6.5. Localization. We will need a finer result about localization on the base.

Lemma 3.6.6. Let f : X → B be a logarithmic manifold, and assume that X and
B ∈ B are logarithmic schemes. Then an ideal J ⊆ OX is monomializable over B
if and only if for any point b ∈ B with the strict henselization Bb = Spec(Osh

b
) and

pullback Xb = X ×B Bb, the ideal Jb = JOXb
is monomializable over Bb.

Proof. Only the inverse implication needs a proof, so assume that each Jb is
monomializable. First we claim that for any b ∈ B with Bb = Spec(Ob) and
Xb = X ×B Bb, each Jb = JOXb

is monomializable. By definition, Osh
b is the

filtered union of étale Ob-subalgebras Ai. Choosing i large enough we can assume
that the center I ⊆ Osh

b of a monomializing blow up B′
b
→ Bb is of the form IiOsh

b

for an ideal Ii ⊂ Ai. Since Bb → Yi = Spec(Ai) is flat, B′
b
→ Bb is the pullback of

the blow up Y ′
i → Yi along Ii. Furthermore, for any j ≥ i one can take Ij = IiOYj

and then Y ′
j = Yj ×Yi Y

′
i . Since JOB′

b
is monomial, the ideal JOY ′

j
is monomial

for a large enough j. This means that JOYj is monomializable by the blow up
Y ′
j → Yj , and hence Jb is monomializable by Lemma 3.6.3.

For a point b ∈ B consider the blow up of Bb that monomializes Jb and extend
it to a blow up of B simply by taking the Zariski closure of the center. Since
being monomial is an open condition, the new blow up monomializes J over a
neighborhood of b. So, there exists an open cover X = ∪ni=1Xi such that J |Xi is
monomializable by a blow up gi : Bi → B. Any blow up which dominates all gi and
whose center lies in the union of the centers of gi monomializes J . ♣
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3.6.7. B-monomial ideals. Finally, let us obtain some criteria for monomializability
of B-monomial ideals (see §3.3.6).

Lemma 3.6.8. Let f : X → B be a logarithmic manifold with X and B ∈ B

schemes and J ⊆ OX an ideal. Assume that f is integral ([Ogu18, Definition III.2.5.1]),
the logarithmic structure on B is Zariski and J is B-monomial. Then J is mono-
mializable.

Proof. By Lemma 3.6.3, we can work étale locally on X and B, hence we can assume
that X = Spec(A), B = Spec(O), f is dominant and possesses a chart X → BP [Q],
where P →֒ Q is an integral embedding of sharp monoids. By definition of B-
monomiality, localizing further we can assume that J ⊆ A is generated by elements
ai =

∑
j aiju

qij , where qij ∈ Qq̃i and aij ∈ O. By Remark 3.2.3 Qq̃i = qi+P , hence

qij = qi + pij and J is generated by the elements ciu
qi , where ci =

∑
j aiju

pij ∈ O.

Let N be the maximal monomial subideal of J , and choose a decomposition
J = J ′ + N with J ′ = (c1u

q1 , . . . ,cnu
qn) and minimal possible n. Then each ci

is non-monomial, and by induction on n it suffices to find a T -supported blow up
B′ → B such that the pullback of J possesses an analogous decomposition with a
smaller n. A naive solution now would be to blow up the principal ideals (ci) on
B, that is, to just enlarge the logarithmic structure of B so that each ci becomes a
monomial. However, V (ci) does not have to be contained in T , and we have to be
more careful.

Consider the ideals I ′ = (c1, . . . ,cn) ⊆ O and N0 = N ∩ O. We claim that
N0 is monomial, say N0 = (up1 , . . . ,upm) with pi ∈ P . In fact, the claim is that
the schematic image of V (N ) is a monomial subscheme of B. As in the proof of
Lemma 3.1.3, it suffices to check this for the case X = AQ and B = AP , but then
the schematic image is DP gp -equivariant and hence monomial.

Next we claim that the ideal

I = I ′ + N0 = (c1, . . . ,cn, u
p1 , . . . ,upm)

is T -supported. Since J ⊆ I ′A+N , we have that f−1(V (I ′))∩V (N ) ⊆ V (J ) and

V (I ′) ∩ f(V (N )) = f(f−1(V (I ′)) ∩ V (N )) ⊆ T.

Hence T contains the closure of the left hand side, which is V (I ′)∩V (N0) = V (I).

Let g : B′ → B be the T -supported blow up along I and let X ′ = X ×B B′

and J ′ = JOX′ . It suffices to prove, with the induction scheme above, that J ′ is
monomializable over B′, and since the property is local it suffices to restrict to a
single chart of g. There are two cases.

(1) If B′
i is the chart corresponding to ci, set X ′

i = B′
i ×B X and J ′

i = JOX′

i
.

Since ci becomes monomial on Bi, the set c1u
q1 , . . . ,clu

ql , uqn+1 , . . . ,uql of
generators of J ′

i contains at most n− 1 non-monomial elements, and hence
J ′
i is monomializable by induction.

(2) If B′
j is the chart corresponding to upj and X ′

j, J ′
j are defined as above,

then upj divides each ci on B′
j , and since upj ∈ N ⊆ J the ideal J ′

j =

(upj , uqn+1, . . . ,uql) is already monomial.

♣
Remark 3.6.9. With an additional work Lemma 3.6.8 can be extended to the case
of an exact f as follows. By Lemma 3.2.2 the above argument can be run for an
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appropriate ideal upJ . In such a case, one obtains that J is almost monomializable
and, moreover, the blow up center is principal and monomial onBrT . In particular,
B′ → B is a T -modification, and by Proposition 3.5.8 enlarging B′ → B one can
make it a T -supported blow up.

3.6.10. Integralization and saturization. We will need the following results known
to experts, and proven in different context in the literature:

Proposition 3.6.11. Suppose given f : X → B as above.

• There exists a logarithmic blowing up B′ → B such that the fs base change
f ′ : X ′ → B′ is integral.

• There exists a further Kummer étale covering Kummer étale covering B′′ →
B′ such that the fs base change f ′′ : X ′′ → B′′ is saturated.

Proof. For part (1) we follow the argument of [AK00, Proposition 4.4 and Remark
4.6]. That paper is set in the language of toroidal embeddings over an algebraically
closed field, but the argument is general. An almost identical result, with similar
argument, in the logarithmic setting is given as the main result of [Kat99]4.

Choose a subdivision of cone complexes ∆′
B → ∆B, with induced subdivision

∆′
X → ∆X and morphism ∆′

f : ∆′
X → ∆′

B so that ∆′
B is regular and f ′ maps cones

to cones (rather than subcones). Let f ′ : X ′ → B′ be the resulting fs pullback. By
[AK00, Lemma 4.1] the morphism f ′ is equidimensional. Since B′ is regular and
X ′ Cohen-Macaulay, the morphism f ′ is flat, hence integral.

For part (2), we follow the argument of [AK00, Proposition 5.1] but skipping
the use of Kawamata’s trick5. Once again that paper is set in the language of
toroidal embeddings over an algebraically closed field, but the argument is general.
A logarithmic argument in a different context is given in [IKN05, Appendix A], see
the proof of [IT14b, Theorem 3.7] for an explanation why this applies to schemes.6

For each cone σ ∈ ∆′
X with image τ ∈ ∆′

B corresponding to atomic open
B′
τ ⊂ B′ consider the corresponding lattice homomorphism φ : Nσ → Nτ . There

is a positive integer mστ such that φ−1(mστNτ ) → Nτ is surjective. Take mτ =
lcm{mστ ′ |σ maps to a face τ ′ of τ} and choose a Kummer-étale morphism B′′

τ →
B′
τ corresponding to the sublattice mτNτ . Let X ′′

τ be the fs pullback. By [AK00,
Lemma 5.2] the flat logarithmically smooth morphism X ′′

τ → B′′
τ has reduced fibers,

hence it is saturated. Taking B′′ = ⊔B′′
τ and X ′′ = ⊔X ′′

τ gives the result.

♣

3.6.12. The monomialization theorem. Finally, we can prove the main result of §3.

Theorem 3.6.13. Let f : X → B be a relative logarithmic orbifold with B ∈ Bst,
let J ∈ OB be a D-saturated ideal with T = f(V (J )), and assume that either
dim(B) ≤ 1 or f has abundance of derivations. Then

(i) There exists a blow up g : B′ → B with saturated base change X ′ = X ×B B′

such that JOX′ is monomial.

(ii) If B is a scheme, then J is almost monomializable: one can also achieve
that the center of g is monomial outside of T .

4We are informed by the author that that paper is expected to appear in revised form, with
results stated in their full power, in the near future.

5See [Mol16] for a global result in the language of stacks.
6We note that Tsuji’s long-lost article [Tsu19] is key to the logarithmic arguments.
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(iii) If f is integral, then J is monomializable: one can also achieve that g is
T -supported.

For the sake of completeness we note that part (iii) can be extended to the case
of exact morphisms using Remark 3.6.9.

Proof. Reduction to schemes. Applying Proposition 3.5.8 to an étale cover of
B by a scheme reduces claim (i) to the case when B is a scheme. In the sequel we
assume that B is a scheme, and it suffices to prove (ii) and (iii).

Reduction to saturated morphisms. By Lemma 3.6.3 in the process of
proof we can replace f by the saturated base change f ′ : X ′ → B′ with respect to
a Kummer étale covering B′ → B. In addition, while proving (ii) we can also do
saturated base changes with respect to log blow ups B′ → B, hence by §3.6.10 we
can assume that f is saturated, in particular, integral. Thus, our task reduces to
proving (iii) for saturated morphisms.

Localization. Working étale locally we can assume that X and B are logarith-
mic schemes and f possesses a global sharp chart X → BP [Q]. Since f is saturated,
Qgp/P gp is torsion free.

Induction setup and reduction to strictly henselian schemes. We
proceed with few more reductions. By induction on d = dim(B) we can assume
that the claim is proved for smaller dimensions. By Lemma 3.6.6 it suffices to prove
the theorem when B = Spec(Osh

b ) is local and strictly henselian. In particular, k(b)
is algebraically closed. We can also assume that d = dim(Ob).

The base case d ≤ 1. If d = 1 and the logarithmic structure is trivial, increase
the logarithmic structure to Ob r {0} (that is, blow up the closed point). Then J
becomes monomial by Proposition 3.4.11.

The induction step. Assume now that d > 1 and f has abundance of deriva-
tions. Set B0 = B r {b} and X0 = X ×B B0. Since dim(B0) < d, J0 = J |X0 is
monomializable by a T -supported blow up B′

0 → B0 by the induction assumption.
Consider an arbitrary extension of B′

0 → B0 to a blow up B′ → B. By assumption
of the theorem, replacing B′ by its T -supported blow up we can also assume that
B′ is logarithmically regular. By the construction, if f ′ : X ′ → B′ denotes the base
change of f , then the restriction of J ′ = JOX′ onto X ′

0 = X ′ ×B B0 is monomial.
Moreover, J ′ is B′-monomial at any point of X ′ by Proposition 3.4.9, hence it is
monomializable by Lemma 3.6.8. ♣

4. Kummer blow ups and transforms

4.1. Submonomial Kummer ideals.

4.1.1. Submonomial ideals. Let f : Y → Z be a logarithmically regular morphism
of logarithmic DM stacks. Then by a Z-submonomial ideal on Y we mean any
ideal I ⊆ OY locally generated by a monomial ideal and a Z-submanifold ideal.
Equivalently, one has that locally V (I) is a monomial substack of a Z-submanifold
of Y . Our principalization algorithm runs by blowing up submonomial centers and
more general centers involving fractional powers of monomials. To introduce them
we use the Kummer topology.
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4.1.2. Kummer topology and ideals. First, we recall generalities that apply to an
arbitrary logarithmic scheme Y and a morphism Y → Z. Kummer étale morphisms
and covers form a Kummer étale topology Ykét, that we simply call the Kummer
topology of Y , e.g. see [ATW, §5.3] or [ATW17]. The presheaf OYkét

is a sheaf and
its finitely generated ideals will be called Kummer ideals on Y . Similarly to the
argument in §2.6.2, the presheaf of derivations DYkét/Z , which assigns to a Kummer
étale morphism Y ′ → Y the OY ′-module DY/Z(Y ′), is also a sheaf.

Often, we will view an ordinary ideal I ⊆ OY as the Kummer ideal Ikét =
IOYkét

it generates. In other words, Ikét is the pullback of I with respect to
π : Y

két
→ Y . This pullback operation is functorial and preserves arithmetic opera-

tions and derivations: (IJ )két = IkétJkét, (I + J )két = Ikét + Jkét, (DY/ZI)két =
DYkét/Z(Ikét), etc. In the sequel we will safely write I instead of Ikét and DY/Z in-
stead of DYkét/Z . With these conventions, any Kummer ideal I is an ideal Kummer-
locally: there exists a Kummer covering Y ′ → Y such that I|Y ′ is an ordinary ideal.
By the vanishing locus V (J ) we denote the minimal closed set such that J is the
unit ideal on its complement.

Finally, we note that all the definitions above are local with respect to strict
étale (and even Kummer étale) morphisms and hence extend to logarithmic DM
stacks.

4.1.3. Submonomial Kummer ideals. Now, assume that Y → Z is logarithmically
regular. A Kummer ideal J is called Z-submonomial (resp. monomial) if Kummer
locally it is a Z-submonomial (resp. monomial) ideal, as in 4.1.1.

4.1.4. Integral closure. The integral closure J nor of a Kummer ideal J is defined
via Kummer étale sheafification of the usual integral closure, see [ATW17, §4.3.1].
This operation will only be used in the following special case: for any submonomial
ideal J we set J (a) = (J a)nor for convenience of notation.

Remark 4.1.5. If may happen that J is integrally closed (even monomial and
saturated) but J a is not, and it will be convenient to use the ideals J (a) in the
definition of admissibility because for any ideal I onX , if xn ⊆ J (an) then x ⊆ J (a).
This property is an immediate consequence of integral closedness.

Part (2) of the following lemma is the only other result about J (a) we will need.
However, to prove this we have to describe this ideal precisely.

Lemma 4.1.6. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks and B ∈ B, J ⊆ OY is a B-submonomial ideal, and a ≥ 0.

(i) Fix a presentation J = I + N , where N is a monomial Kummer ideal and
I is a B-submanifold ideal. Then

J (a) =

a∑

j=0

(N j)sat · Ia−j .

(ii) For any i with 0 ≤ i ≤ a the inclusion D(≤i)
Y/B

(
J (a)

)
⊆ J (a−i) holds.

Proof. The argument from [ATW17, Lemma 4.3.2] applies here too: (ii) follows

from (i) because D(≤i)
Y/B preserves (N j)sat and takes Ib to Ib−i, and (1) is proved by

reducing to the monomial case as follows. First, one increases the logarithmic struc-
ture via Lemma 2.3.18 so that J becomes monomial. Then a direct computation
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shows that the sum in (i) describes the saturation (J a)sat, which by Lemma 3.1.8
coincides with J (a). ♣

4.2. Submonomial Kummer blow ups. Blow ups of submonomial Kummer
centers can be defined as in the absolute case, see [ATW, Section 5]. Rydh ob-
served that one can give a more conceptual construction using a stack theoretic
Proj construction — as also used in [ATW19, Section 3]. We will follow the latter
approach with one important difference: instead of the h-topology and correspond-
ing ideals we will use the Kummer topology and ideals. This is possible because
although our blow ups are weighted, all regular parameters have weight one. Our
construction will use non-saturated logarithmic schemes as an intermediary, so this
is the only section where we work with arbitrary integral logarithmic schemes.

4.2.1. Proj construction. As in [ATW19, §3.1], given a scheme Y and a graded
OY -algebra A = ⊕∞

e=0Ae by ProjY (A) we denote the stack-theoretic enhancement
of the usual Proj construction, which is defined similarly to the latter but with the
quotient by Gm taken stack-theoretically:

ProjY (A) = [(SpecY (A) r VA)/Gm],

where VA = VA(A≥1) is the vanishing locus of the ideal A≥1 = ⊕e>0Ae.

Note also that Proj extends to graded OYét
-algebras by flat descent. In this way

one extends the operation to DM stacks (and even further to Artin stacks). We
claim that Proj extends too, and the only non-trivial part is to divide the stack
Z = SpecY (A) r V by Gm. For this we consider a smooth groupoid in schemes
p1,2 : Y1 ⇒ Y0 with quotient Y and note that Zi = SpecYi

(A|Yi) r Vi with maps
q1,2 : Z1 ⇒ Z0 induced by p1,2 form a groupoid with quotient Z. The natural
actions of Gm on Zi are compatible with q1,2 hence they induce a strict action of
Gm on Z. By [Rom05, Theorem 4.1] there exists a stack-theoretic quotient [Z/Gm],
which is an Artin stack.

Lemma 4.2.2. If f : Y ′ → Y is a flat morphism, A is a graded OZ-algebra and
A′ = f∗(A), then ProjY ′(A′) = ProjY (A) ×Y Y ′.

Proof. Clearly, SpecY (A′) r V ′ = (SpecY (A) r V ) ×Y Y ′. It remains to use that
by [Rom05, Theorem 4.1], taking the quotient by the action of Gm is compatible
with the base change with respect to f . ♣

4.2.3. Proj and inertia. The Proj-construction may increase inertia of a stack,
but one has a certain control.

Lemma 4.2.4. Let Y be a DM stack, A a graded OY -algebra, and X = ProjY (A).

(i) The relative inertia IX/Y is a finite subgroup of (Gm)X . In particular, the
relative stabilizers IX/Y,x are µn.

(ii) Assume that Y → S is a morphism of stacks such that IY/S is diagonalizable
(resp. finite). Then IX/S is also diagonalizable (resp. finite).

Proof. (i) Recall that X is obtained as the Gm-quotient of the stack SpecY (A) r
V , which is representable over Y . Hence IX/Y is a closed subgroup of (Gm)X .
Moreover, V is precisely the locus of Gm-invariant points, hence IX/Y is a finite
subgroup.
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(ii) Similarly, IX/S ⊂ (IY/S ×Y X) × Gm is closed, hence diagonalizable, and
finite if IY/S is finite. ♣

4.2.5. Kummer blow ups. Let Y be a logarithmic DM stack and π : Ykét → Yét

denote the natural map. For any Kummer ideal I we consider the associated
Rees algebra RI = ⊕∞

e=0Ie, push it forward to Y and apply Proj. The resulting
stack ProjY (π∗(RI)) will be called the Kummer blow up of Y along I. If I is a
usual ideal on Y , then π∗(IOYkét

) = I and we recover the usual definition of Rees
algebra of I and blow up along I. This construction is étale local on Y because all
its ingredients, including π∗ and quotient by Gm, are étale local: if f : Z → Y is
étale, then π∗(Rf−1I) = f∗(π∗(RI)), and by Lemma 4.2.2

ProjZ(π∗(Rf−1I)) = ProjY (π∗(RI)) ×Y Z.

4.2.6. The submonomial case. The only case of Kummer blow ups used in this paper
is when the center J is Z-submonomial for a logarithmically regular morphism
f : Y → Z. Set R′ = R′

J = π∗(RJ ) and Y ′ = ProjY (R′) with the natural
morphism g′ : Y ′ → Y . In this case, we will also promote Y ′ to a logarithmic stack
by pulling back the logarithmic structure of Y and enlarging it by the exceptional
divisor. The saturation of the resulting logarithmic scheme Y ′ will be called the
Kummer blow up of Y along J and denoted BlJ (Y ). This plan is worked out in
detail in §§4.2.12–4.2.19.

4.2.7. Local charts. We start with studying the situation étale locally, so assume
that Y = Spec(A) and

J = (t1, . . . ,tl,m
1/d
1 , . . . ,m1/d

r ),

where V (t) is a Z-submanifold of codimension l and mj = uqj are monomials.

For convenience of notation we embed R′ into A = ⊕e∈ZAe = A[z±1], where
Ae = A and z corresponds to 1 ∈ A1. By the Rees subalgebra associated with this
choice of generators and the number d we mean the graded algebra

R̃ = ⊕e≥0R̃e ⊆ R′

generated by the sets of homogeneous elements t̃ = zt ⊂ A1 and zim ⊂ Ai with

1 ≤ i ≤ d. Also, we denote m̃ = zdm and g : Ỹ = ProjY (R̃) → Y .

Lemma 4.2.8. The morphism h : Spec(R′) → Spec(R̃) is integral, hence VR′ =

h−1(VR̃) and h induces an integral morphism Y ′ → Ỹ .

Proof. Find a finite Kummer cover Spec(B) → Y such that m1/d is a set of usual
monomials in B and hence I = J |B is an ordinary ideal. Then RI is the usual

Rees algebra generated over B by zt and zm1/d and hence it is finite over R̃. It

remains to note that R̃ ⊆ R′ ⊆ RI . ♣

For any s̃ ∈ {t̃, m̃} consider the open substacks Ỹs̃ = [Spec(R̃s)/Gm] and Y ′
s̃ =

[Spec(R′
s)/Gm] of Ỹ and Y ′, respectively.

Corollary 4.2.9. The closed sets VR̃ and VR′ are given by the vanishing of (t̃, m̃).

In particular, Ỹ = ∪s̃Ỹs̃ and Y ′ = ∪s̃Y ′
s̃ , and these coverings are compatible with

the morphism Y ′ → Ỹ .



RELATIVE DESINGULARIZATION AND PRINCIPALIZATION OF IDEALS 53

Proof. The claim for YR̃ is obvious, and the claim for YR′ follows by Lemma 4.2.8.
♣

4.2.10. Computation of charts. Let n ∈ {1, d} be the degree of s̃. In particular,
s = z−ns̃ ∈ {t,m}. To divide by Gm one can first divide by µn and then by

Gm/µn. The invertible homogeneous element s̃ ∈ R̃s of degree n trivializes the

latter operation in the following sense: V (s̃− 1) is a µn-invariant slice of Spec(R̃s̃)

and [V (s̃− 1)/µn] = Ỹs̃. The same is true for Y ′
s , so

Y ′
s̃ = [Spec(R′/(s̃− 1))/µn] and Ỹs̃ = [Spec(R̃/(s̃− 1))/µn].

We will now describe Ỹs̃ explicitly. An analogous computation of Y ′
s is messier,

since it should take into account divisibility properties of the monomials mj . So,

we prefer not to do it. In particular, the integral morphism Y ′ → Ỹ is finite, but
we will not prove this.

Lemma 4.2.11. (i) If Y is integral, then Y ′ and Ỹ are integral. In particular, Y ′

is a partial normalization of Ỹ .

(ii) Both g and g′ are isomorphisms over Y r V (t,m). In particular, g is a
V (t,m)-supported modification.

(iii) For any s̃ ∈ {t̃, m̃}

Ỹs̃ =
[
Spec

(
A
[
s1/n, s−1/nt, s−d/nm

])
/µn

]
.

(iv) The Kummer ideal J pulls back to invertible ordinary ideals J ′ on Y ′ and

J̃ on Ỹ . On the s-chart both are principal generated by the element (s1/n).

Proof. Claim (i) is obvious. To prove (ii) note that for any s ∈ {t,m} one has that

zs ∈ R̃ and hence R̃s = R′
s = As[z]. It follows that everything trivializes over

Y r V (s).

By definition, z−1s̃ ∈ R̃. Hence z−1 ∈ R̃s̃, and s = z−ds̃ = z−d in the Z/nZ-

graded ring R̃/(s − 1). It follows that R̃/(s̃ − 1) is generated by z−1 = s1/n and

the sets t̃ = s−1/nt, m̃ = s−d/nm yielding the formula for the chart in (iii). Finally,
this formula implies that JO(Ỹs)két

is generated by the element s1/n, and similarly

for Y ′
s . ♣

Note that claim (iii) above is a generalization of the usual blow ups formulas to
a weighted case, and it reduces to description of a usual blow up when d = 1 and
hence J is an ideal.

4.2.12. Divisorial enlargements of logarithmic structures. If Y is an integral log-
arithmic scheme and I is an invertible ideal, by MY (I) we mean the canonical
enlargement of MY obtained by locally adding the generator of I and all possible
quotients of monomials by it. More concretely, locally at a geometric point y we
have that I = (m) and we enlarge My by adding s with us = m and elements q−ks
with uq−ks = uq/mk whenever k ∈ N and q ∈My satisfy uq ∈ (mk).

Remark 4.2.13. (i) Since we work in the category of integral logarithmic struc-
tures, some relations are automatically imposed. For example, if q ∈ My satisfies
uq = mk, then automatically ks = q. In particular, if q′ ∈ My is another element
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with uq
′

= mk, then q = q′ in MY (I). Thus, the homomorphism MY → MY (I)
does not have to be injective when u : MY → OY is not injective.

(ii) In general, MY (I) does not have to be fine even when MY is. It is somewhat
analogous to the fact that in pathological situations normalization might not be
finite.

4.2.14. The unsaturated model. We provide Ỹ and Y ′ with the logarithmic struc-

tures MỸ = g∗MY (J̃ ) and MY ′ = g′∗MY (J ′), and denote the resulting fine loga-

rithmic schemes over Y by g : Ỹ → Y and g′ : Y ′ → Y . We call Ỹ the unsaturated
model associated with the choice (t,m1/d) of generators and d. First, let us describe
a model case.

Example 4.2.15. Assume that P → Q is an injective homomorphism of toric
monoids, Z◦ = AP and Y ◦ = Spec(A◦), with A◦ = Q[Q][t1, . . . ,tl] and the loga-
rithmic structure given by Q. Let J ◦ = (t,m1/d) be a Z◦-submonomial Kummer

ideal on Y ◦ and let Ỹ ◦ be the unsaturated model of Kummer blow up along J ◦.
It then follows from Lemma 4.2.11 that

(1) If s = ti, then Ỹ ◦
s̃ = Spec(Q[Qi][

t1
ti
, . . . , tnti ]), where ti

ti
is skipped, Qi is the

submonoid of Qgp ⊕ Zq generated by Q and q, q1 − dq, . . . ,qr − dq and the
logarithmic structure is given by Qi with uq = s.

(2) If s = m
1/d
j , then Ỹ ◦

s̃ = Spec(Q[Qj][
t1
mj
, . . . , tnmj

]), where the logarithmic

structure is given by Qj , which is the submonoid of 1
dQ

gp generated by Q

and the elements q = 1
dqj , q1 − qj , . . . ,qr − qj .

In fact, Ỹ ◦ is an unsaturated version of Kummer blow up of the smooth logarithmic
variety Y ◦ as described in [ATW, §5].

All properties of submonomial blow ups will be deduced from this example by
use of the following

Lemma 4.2.16. Let f : Y → Z be a relative logarithmic orbifold and J = (t,m1/d)
a submonomial ideal, and suppose that f possesses a chart h : Y → ZP [Q] such that
h is a regular morphism (for example, the chart is neat) and Z → AP is flat (for

example, Z ∈ B). Let Y ◦ → Z◦, J ◦ and Ỹ ◦ be as in Example 4.2.15, with

J = J ◦OY . Then Ỹ = Ỹ ◦ ×Y ◦ Y both as DM stacks and as fine logarithmic DM
stacks.

Proof. The morphism (h, t) : Y → ZP [Q] ×Al is regular by Lemma B.2.1(i). The
morphism ZP [Q] × Al → Y ◦ is the base change of Z → AP , hence it is flat and

the composition Y → Y ◦ is flat. Let R̃ and R̃◦ be the model algebras of J and
J ◦ associated with the generators {t,m1/d} and d. By the definition, we have

equality of ideals R̃◦
iA = R̃i and by the flatness of A◦ → A we also have that

R̃◦ ⊗A◦ A = R̃◦
iA. So we obtain an isomorphism of schemes Ỹ = Ỹ ◦ ×Y ◦ Y .

Let g : Ỹ → Y and g◦ : Ỹ ◦ → Y ◦ denote the natural morphisms and let J̃ and

J̃ ◦ be the pullbacks of J and J ◦. Since the morphism Y → Y ◦ is strict, we should

show that MỸ = g∗MY (J̃ ) is the pullback of MỸ ◦ = (g◦)∗MY ◦(J̃ ◦). Clearly,

g∗MY is the pullback of (g◦)∗MY ◦ , and it remains to notice that s̃k|uq on Ỹ ◦
s̃ if and

only if the same divisibility holds on Ỹ because the morphism Ỹ → Ỹ ◦ is flat. ♣
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Corollary 4.2.17. With assumptions as in Lemma 4.2.16, the morphism Ỹ → Z
is logarithmically regular. If J is monomial (that is, l = 0), then the morphism

Ỹ → Y is logarithmically smooth.

Proof. By Lemma 4.2.16 there exists the following commutative diagram with three
cartesian squares

Ỹ
h̃ //

��

Ỹ ◦ ×Z◦ Z //

��

Ỹ ◦

��

Y
h //

$$■
■

■

■

■

■

■

■

■

■

■

ZP [Q] //

��

Y ◦

��

Z // Z◦

Since h is logarithmically regular (even strict regular), the same is true for h̃.

By Example 4.2.15, Ỹ ◦ → Z◦ is logarithmically smooth, so the base change

φ : Ỹ ◦ ×Z◦ Z → Z is logarithmically smooth, and the composition φ ◦ h̃ : Ỹ → Z is

logarithmically regular. In the monomial case, Ỹ ◦ → Y ◦ is logarithmically smooth,

hence its base change Ỹ → Y is logarithmically smooth. ♣

Corollary 4.2.18. With assumptions as in Lemma 4.2.16, Ỹ sat = (Ỹ ◦ ×Y ◦ Y )sat

is logarithmically regular over Z. If, in addition Z ∈ B (see §3.1.1), then the mor-

phism Y ′ → Ỹ induces an isomorphism of saturations Y ′sat = Ỹ sat. In particular,

Ỹ sat does not depend on the choice of generators of J .

Proof. The first claim follows from Lemma 4.2.16 immediately. If Z ∈ B, then

Ỹ sat is special by Lemma 3.1.10. Recall that Y ′ → Ỹ is integral and birational
by Lemma 4.2.11, and by the construction the logarithmic structure MY ′ →֒ OY ′

is injective and is trivial over the triviality locus of MỸ . Since Y ′ is special, this

necessarily implies that the morphism Y ′sat → Ỹ sat is an isomorphism. ♣

4.2.19. Submonomial blow ups. We have established independence of generators in
the local case and can now deal with the case when J is an arbitrary submonomial
Kummer ideal. In general, our definition of Kummer blow ups is based on Corol-
lary 4.2.18, so we have to assume that the target is in B and switch to the notation
f : Y → B.

The pullback J ′ = JOY ′

két
with respect to g′ : Y ′ = ProjY (π∗RJ ) → Y is an

invertible ideal. Indeed, the claim can be checked étale locally, and hence follows
from Lemma 4.2.11. So, as in the local case we provide Y ′ with the enlarged
pullback logarithmic structure MY ′ = g′∗MY (J ′), and define the Kummer blow up
along J to be both the logarithmic DM stack BlJ (Y ) = Y ′sat and the morphism
g : BlJ (Y ) → Y . The pullback of J will be also denoted J ′ = IE , where its
vanishing locus E is the exceptional divisor of the blow up.

Theorem 4.2.20. Let Y → B be a logarithmically regular morphism of DM log-
arithmic stacks with B ∈ B, and let X = BlJ (Y ) → Y be a B-submonomial
Kummer blow up with center J . Then,

(i) σ : BlJ (Y ) → Y is a V (J )-supported modification with étale diagonalizable
relative inertia.
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(ii) BlJ (Y ) is logarithmically regular over B.

(iii) σ−1
(
J (a)

)
= IaE for any a ≥ 0.

(iv) For any morphism B′ → B, the pullback of J to Y ′ = Y ×B B′ is a B-
submonomial Kummer ideal J ′ and BlJ ′(Y ′) = Y ×B B′.

(v) For any logarithmically regular morphism T → Y , the pullback of J to T is a
B-submonomial Kummer ideal I and BlI(T ) = BlJ (Y )×Y T (in the fs category).

(vi) IX/Y is a finite subgroup of (Gm)X . In addition, if Y → S is a morphism

of stacks with a finite diagonalizable inertia IY/S acting trivially on monoids My,

then IX/S is also finite diagonalizable and acts trivially on monoids Mx.

Proof. The claim is étale local on B, Y , B′ and T . Therefore, (i), (ii) and (iv)
follow from Lemma 4.2.11 and Corollaries 4.2.17 and 4.2.18. To prove (iii) we note
that IaE = σ−1(J a) ⊆ σ−1

(
J (a)

)
⊆ (IaE)nor. Since IaE is an invertible monomial

ideal, it is saturated, and hence (IaE)nor = IaE by Lemma 3.1.8.

Let us prove (v). By Theorem 2.1.12 we can assume that there exist neat charts
Y → BP [Q] and T → YQ[R]. The composed chart does not have to be neat,
but the morphism T → BP [R] is regular by the diagram in §2.1.13. Therefore,
by Lemma 4.2.16 it suffices to prove the claim in the case when B = AP , Y =
Spec(Q[Q][t]) and T = Spec(Q[R][t]) with t = (t1, . . . ,tl) and J = (t,m1/d) for
monomials m = (m1, . . . ,mr). In this case, the claim follows by comparing the
explicit charts in Example 4.2.15 and observing that the new monoids Ri and Qi
are generated over the old monoids R and Q by the same generators and relations,
and hence Ri = Qi ⊕Q R.

Since X is obtained as ProjY , everything in (vi) except triviality of the action
on Mx follows from Lemma 4.2.4. The triviality can be easily reduced to the case
of charts and then checked explicitly. ♣

4.2.21. Sequences of submonomial Kummer blow ups. Since logarithmic regularity
is preserved by submonomial Kummer blow ups, we can define sequences of such
blow ups. Typically such a sequence

Y ′ =: Yn
σn // Yn−1

σn−1
// . . .

σ2 // Y1
σ1 // Y0 := Y.

will be denoted σk : Yk → Yk−1, 1 ≤ k ≤ n, or just σ : Y ′
99K Y .

4.2.22. Strict transforms. As in the classical case, by the strict transform H ′ of
a closed substack H →֒ Y under a B-submonomial Kummer blow up g : Y ′ =
BlJ (Y ) → Y we mean the schematic closure of H r V (J ) in Y ′.

Lemma 4.2.23. Keep the above notation and assume that H is a logarithmic B-
submanifold such that I = JOHkét

is a B-submonomial ideal on H. Then H ′

underlies a B-submanifold of Y ′ and H ′ → H is the B-submonomial Kummer blow
up along I.

Proof. The claim is étale local, hence we can assume that there exists regular
parameters (t1, . . . ,tn) and Kummer monomials m = (m1, . . . ,mr) such that J =
(t1, . . . ,tl,m) and H = V (tl+1, . . . ,tk). Then Corollary 4.2.18 reduces the claim to
the model case analogous to the one described in Example 4.2.15 but with additional
regular parameters:

Y ◦ = Spec(Q[Q][t1, . . . ,tk]) and H◦ = V (tl+1, . . . ,tk) = Spec(Q[Q][t1, . . . ,tl]).
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In this case, the claim immediately follows from the description of charts in the
same example. ♣

4.2.24. Pushforwards from submanifolds. For any logarithmicB-submanifold i : H →֒
Y and a Kummer ideal J ⊆ OHkét

we denote its preimage in OYkét
by i∗(J ).

Lemma 4.2.25. Assume that Y0 → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, H0 →֒ Y0 is a logarithmic B-submanifold, and
gk : Hk → Hk−1, 1 ≤ k ≤ n a sequence of B-submonomial Kummer blow ups with
centers Jk. Then there exists a unique sequence of B-submonomial Kummer blow
ups hk : Yk → Yk−1, 1 ≤ k ≤ n with centers Ik and logarithmic B-submanifolds
ik : Hk →֒ Yk such that Ik = (ik)∗(Jk) for any k ∈ {0, . . . ,n− 1}.

Proof. These conditions define h0, and since I0|H0 = J0, Lemma 4.2.23 yields that
H1 = Y1 ×Y0 H0. The rest follows by induction on k. ♣

In the situation described by Lemma 4.2.25 we call the blow up sequence h the
pushforward of g and use the notation h = i∗(g).

4.2.26. Admissibility. We say that aB-submonomial Kummer ideal J is a-admissible
with respect to an ideal I ⊆ OY if I ⊆ J (a). In this case, the submonomial Kummer
blow up σ : Y ′ → Y along J is also called a-admissible with respect to I.

Remark 4.2.27. In the classical Hironaka’s algorithm J a = J (a) automatically,
but in our case it is more convenient to use J (a) in this definition.

4.3. Pullbacks.

4.3.1. Serre’s twist. If σ : Y ′ → Y is a blow up along an ideal J , then IE = g−1(J )
is the Serre’s twisting sheaf OY ′(1) for Y ′ = ProjY (⊕eJ e). Informally, we will view
the invertible sheaf IE in this way also in the case of submonomial Kummer blow
ups. Transforms of various objects under blow ups often involve multiplication by
an appropriate power IdE with d ∈ Z, which can be viewed as Serre’s twist.

4.3.2. Ideals. Assume that σ is a-admissible with respect to an ideal I. Then
σ−1I ⊆ IaE by Theorem 4.2.20(iii), and hence the twisted pullback σ−1(I, a) :=
I−a
E σ−1(I) is defined as an ideal on Y ′. The notation follows the one in [ATW17];

note that the twist is by −a.

4.3.3. Derivations. As in the absolute case (see [ATW17, Lemma 4.2.1]), differen-
tial operators can be pulled back with an opposite twist.

Lemma 4.3.4. Assume that Y → B is a logarithmically regular morphism of DM
logarithmic stacks with B ∈ B and σ : Y ′ → Y is a submonomial Kummer blow up.

Then for any i ∈ N there is a natural embedding IiED
(≤i)
Y/B(Y ′) →֒ D(≤i)

Y ′/B given by a

unique extension of differential operators from OY to OY ′ .

Proof. Since the characteristic is zero, we can assume that i = 1. In addition, the
claim is Kummer-local on Y , hence it reduces to the particular case when Y =
Spec(A) and B = Spec(C) are affine logarithmic schemes and σ is a submonomial
blow up along an ideal J , see the proof of [ATW17, Lemma 4.2.1] for details. One
can now proceed as in the cited proof, but a direct computation as follows seems
to be the shortest argument.
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Let t = t1, . . . ,tn be generators of J . It suffices to study the situation on a
chart Y ′

t = Spec(A[Jt ]) of σ. We should show that for a logarithmic C-derivation

∂ : A→ A′ := A[Jt ], the logarithmic derivation t∂ uniquely extends to A′. It suffices

to deal with the A-generators ti
t of A′. The formula t∂( tit ) = ∂(ti) − ti

t ∂(t) gives
rise to a unique extension of t∂ to a C-derivation ∂′ : A′ → A′. It is a logarithmic

derivation since ∂′(t)
t = ∂(t) ∈ A, and for each ti, which is a monomial, we have

that ∂(ti)
ti

∈ A and hence ∂′( tit )/ tit ∈ A′. ♣

By Lemma 2.4.11 we obtain the following corollary for derivations:

Corollary 4.3.5. In the situation of Lemma 4.3.4, DY ′/Y = 0 and

IEDY/B(Y ′) ⊆ DY ′/B ⊆ DY/B(Y ′).

4.3.6. Derived ideals. For any OY -submodule F ⊆ DY/B let σ∗F ⊆ DY/B(Y ′) be as
in §2.4.6. Then σc(F) := IEσ∗(F) is an OY ′ -submodule of DY ′/B by Lemma 4.3.4.
More generally, for a sequence of submonomial Kummer blow ups σ : Y ′ 99K Y we
define the controlled transform σc(F) ⊆ DY ′/B by induction on the length, and

will usually use abbreviations Fσ = σ∗(F) and F (≤i)
σ = (Fσ)(≤i). The following

result describes compatibility of pullbacks and derived ideals. It extends and makes
[ATW17, Lemma 4.3.11] sharper, but the argument is the same.

Lemma 4.3.7. Let Y → B be a logarithmically regular morphism of DM stacks
with B ∈ B, σ : Y ′ → Y a submonomial Kummer blow up, and F ⊆ DY/B an
OY -submodule. If 0 ≤ i < a are integers and σ is a-admissible with respect to an
ideal I ⊆ OY , then

F (≤i)
σ (σ−1(I, a)) =

i∑

j=0

σ−1
(
F (≤j)(I), a− j

)
.

Proof. Set I ′ = σ−1(I, a). The case i = 1 reads:

Fσ(I ′) + I ′ = F (≤1)
σ (I ′) = σ−1

(
F (≤1)(I), a− 1

)
+ I ′ = σ−1(F(I), a− 1) + I ′,

where we use that σ−1(I, a−1) ⊂ I ′. Étale-locally Fσ(I ′) and σ−1(F(I), a−1) are
generated by global sections y∂(y−ah) and y1−a∂(h), respectively, where h ∈ Γ(I)
and ∂ ∈ Γ(F), and y ∈ Γ(IE). Note that

y1−a∂(h) − y∂(y−ah) = a∂(y) · y−ah ∈ Γ(I ′),

giving the case i = 1. Inductively,

F (≤i+1)
σ (σ−1(I, a)) = F (≤1)

σ

(
F (≤i)
σ (σ−1(I, a))

)

= F (≤1)
σ




i∑

j=0

σ−1
(
F (≤j)(I), a− j

)



=

i+1∑

j=0

σ−1
(
F (≤j)(I), a− j

)
,

as needed. ♣
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5. Marked ideals and admissibility

5.1. Basic facts.

5.1.1. The definition. A marked ideal I = (I, a) for a logarithmically regular mor-
phism f : Y → B consists of an ideal I ⊆ OZ and a positive integer a. The support
of I is the set supp(I) of points y ∈ |Y | such that logordI/B,y(y) ≥ a, and I is

resolved if supp(I) = ∅. At some places it is convenient to consider generalized
marked ideals, where a can equal 0.

Remark 5.1.2. Probably the best way of thinking about marked ideals is as a sort
of weighted ideals. In particular, this logic is consistent with operations we define
on marked ideals below.

5.1.3. Normalized invariants. Invariants of ideals possess the following normalized
analogues. Given a marked ideal I = (I, a) we define its normalized logarithmic
order as follows: µy(I) = 0 if logordI/B(y) < a, and µy(I) = logordI/B(y)/a
otherwise. Also, we define the normalized monomial saturation to be the mono-
mial Kummer ideal WY/B(I) = (M(I)sat)1/a. Sometimes we will write W(I) for
shortness.

Remark 5.1.4. The notation µy follows its analogue in [BM08, Section 6]. Note
that µy(I) ∈ Q≥1 ∪ {0,∞} and µy(I) = 0 if and only if y /∈ supp(I).

5.1.5. Cleaning blow up. A logarithmically clean ideal can be made clean by a single
blow up along W(I).

Theorem 5.1.6. Assume that X → B is a relative logarithmic orbifold with B ∈ B

and I = (I, a) is a marked ideal on X such that I ⊆ OX is logarithmically clean
over B (§2.8.3). Then the monomial Kummer blow up σ : X ′ → X along W(I) is
I-admissible and the ideal σ−1(I, a) is clean.

Proof. The blow up is admissible because I ⊆ M(I) ⊆ W(I)a. Furthermore,

D∞
X′/B′(σ−1I) = σ−1(D∞

X/B(I)) = σ−1(M(I)),

where the first equality holds by Lemma 2.8.15(iii) since σ is logarithmically étale,
and the second one holds because I is logarithmically clean. In addition, σ−1(M(I))
is a monomial ideal whose saturation is the invertible monomial ideal IaE , and hence
σ−1(M(I)) = IaE . Therefore D∞

X′/B′(σ−1(I, a)) = IaEI−a
E = OX′ , and we obtain

that σ−1(I, a) is clean by Lemma 2.8.9. ♣

5.1.7. Arithmetic operations. Given n marked ideals Ii = (Ii, ai) one usually sets

I1+. . .+In =
(
Ia/a11 + · · · + Ia/ann , a

)
, I1 ·. . .·In = (I1 · . . . · In, a1 + . . .+ an) ,

where a = a1 · . . . · an. However, we prefer to replace the definition of sums by the
following homogenized variant

I1 + . . .+ In :=




∑

l∈Nn| l1a1+...+lnan≥a

Il11 · . . . · Ilnn , a




In addition, we write I1 ⊆ I2 if a1 = a2 and I1 ⊆ I2.
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Remark 5.1.8. (i) Similarly to the situation with the usual definition, the ad-
dition is commutative but not associative. However, it is associative up to an
equivalence relation introduced in §5.2 below and this is enough for applications,
see also [ATW17, §5.2].

(ii) In fact, our definition and the usual one produce equivalent marked ideals.
The usual definition is lighter, so it may be preferable for computations. Homoge-
nized sums are critical to have Theorem 5.3.6 below.

5.1.9. Derivations. The action of differential operators on I is also defined in a
weighted way: if I = (I, a) and F is an OY -submodule of DY/B, then we provide

F with weight 1 and set F (≤i)(I) = (F (≤i)(I), a− i) for any i such that 0 ≤ i ≤ a.
Note that for i = a we obtain a generalized marked ideal.

5.1.10. Admissible sequences and transforms. Let I be a generalized marked ideal.
A B-submonomial Kummer blow up σ : Y ′ → Y is called I-admissible if it is a-
admissible with respect to I, and in this case we define the controlled transform
σcI = (σ−1(I, a), a), see §4.3.2. These definitions extend to the case when σ is
a sequence of B-submonomial Kummer blow ups of length n. Namely, σ is I-
admissible if each σi : Yi → Yi−1 for 0 ≤ i ≤ n − 1 is Ii−1-admissible, where
Ii = σciIi−1, and the controlled transform under σ is σcI = In. We will refer to
such σ as an I-admissible sequence. Note that any sequence of B-submonomial
Kummer blow ups is (I, 0)-admissible and the controlled transform is the usual
pullback in this case.

5.1.11. Order reduction. By an order reduction of a marked ideal I we mean an
admissible sequence σ : X ′ 99K X such that σc(I) is resolved in the sense of Section
5.1.1.

5.1.12. Transforms and operations. Compatibility relations between transforms and
operations are the same as in the classical case, see [W lo05, §3], [BM08, §3], and
the absolute logarithmic case, see [ATW17, §5]. Arguments are also the same, so
we just sketch them.

Lemma 5.1.13. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, σ : Y ′ 99K Y is a sequence of B-submonomial
Kummer blow ups, and I = I1, I2 . . .In are n marked ideals on Y . Setting P =
I1 · . . . · In and S = I1 + . . .+ In we have:

(i) If σ is Ii-admissible for 1 ≤ i ≤ n, then σ is P-admissible and σc(P) =
σc(I1) · . . . · σc(In).

(ii) Let k be a positive integer. Then σ is I-admissible if and only if it is Ik-
admissible, and in this case (σcI)k = σc(Ik).

(iii) σ is Ii-admissible for each i ∈ {1, . . . ,n} if and only if it is S-admissible,
and in this case σc(S) = σc(I1) + . . .+ σc(In).

(iv) If σ is I-admissible, F ⊆ DY/B is an OY -submodule, and 0 ≤ i ≤ a, where

I = (I, a), then σ is F (≤i)(I)-admissible and σc
(
F (≤i)(I)

)
⊆ F (≤i)

σ (σcI).

Proof. In all claims, induction on the length of σ reduces the proof to the case
when σ is a single Kummer blow up along J . The argument is the same for each
n ≥ 2, and we consider the case of n = 2 to simplify the notation. We start
with the admissibility claims. Admissibility is obvious in (i), and follows from
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Remark 4.1.5 in (ii). In (iii), if Ii ⊆ J (ai) for i = 1, 2 then Im1 Il2 ⊆ J (a1a2)

whenever ma1 + la2 ≥ a1a2 and hence J is (I1 + I2)-admissible. Conversely, if
J is (I1 + I2)-admissible, then it is admissible for Ia21 and Ia12 , and it remains to

use (ii). Finally, in (iv) we apply F (≤i) to the inclusion I ⊆ J (a) and use that
F (≤i)

(
J (a)

)
⊆ J (a−i) by Lemma 4.1.6(ii).

Concerning the relations between the transforms, the equalities in (i), (ii) and
(iii) are obtained by unwinding the definitions, and the inclusion in (iv) is obtained
from the equality in Lemma 4.3.7 by taking the summand with j = i. ♣

5.1.14. Maximal order. As usual, a marked ideal I = (I, a) is said to be of maximal
order if logordI/B(y) ≤ a (or µy(I) ≤ 1) for any y ∈ Y .

Lemma 5.1.15. Let Y → B be a logarithmically regular morphism of logarithmic
DM stacks with B ∈ B, I I1, . . . ,In marked ideals, and k a positive integer.

(i) I is of maximal order if and only if Ik is of maximal order.

(ii) If I1 is of maximal order, then I1 + . . .+ In is of maximal order.

Proof. Arithmetic operations commute with restriction onto the logarithmic fibers,
hence this reduces to basic properties of the usual order of ideals on regular schemes.

♣

Probably the following result holds for arbitrary logarithmically regular mor-
phisms, but proving this would involve a direct computation with completed loga-
rithmic fibers. We chose to establish a slightly less general case, where derivations
provide a nice short argument.

Lemma 5.1.16. Let X → B be a relative logarithmic orbifold and I = (I, a) a
marked ideal. Then

(i) I is of maximal order if and only if D(≤a)
X/B(I) = OX .

(ii) If I is of maximal order and σ : X ′ 99K X is an I-admissible sequence, then
I ′ = σc(I) is of maximal order too.

Proof. Claim (i) follows from Lemma 2.8.9. Using (i) and Lemma 5.1.13(v) we
obtain in (ii) that

(OX′ , 0) = σc
(
D(≤a)
X/B(I)

)
⊆ D(≤a)

X′/B′(I ′).

So D(≤a)
X′/B′(I ′) = OX′ , and hence I ′ is of maximal order by (i). ♣

5.1.17. Balanced marked ideals. We say that a marked ideal I is balanced if I is,
see §2.8.7. By the clean part of I we mean the marked ideal Icln = (Icln, b), where

b = max(a, logordI/B(X)). Note that Icln is of maximal order, and if I is clean,

then Icln is obtained from I by the maximal increase of the weight that keeps it of
maximal order.

Corollary 5.1.18. Let X → B be a relative logarithmic orbifold with B ∈ B and
I a balanced marked ideal. Then any Icln-admissible sequence σ : X ′

99K X is also
I-admissible and σc(I) is balanced with equality of clean parts (σc(I))cln = σc(Icln).

Proof. Let I = (I, a) and Icln = (Icln, b), in particular, I = M · Icln, where
M = M(I) is an invertible monomial ideal. By induction on the length it suffices
to consider a single blow up and then the admissibility claim is obvious.
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By Lemma 5.1.16, σc(Icln) = (I ′, b) is of maximal order, in particular, I ′ is

clean. It remains to note that σc(I) = (σ−1(M) · Ib−aE · I ′, a). ♣

5.2. Equivalence and domination of marked ideals.

5.2.1. The definition. Let Y → B be a logarithmically regular morphism and let
I1 and I2 be marked ideals on Y . We say that I1 is dominated by I2 if any I2-
admissible sequence of B-submonomial Kummer blow ups is also I1-admissible. If
I1 and I2 dominate each other, then we say that the marked ideals are equivalent.
Furthermore, we say that I1 and I2 are functorially equivalent (resp. functorially
dominated) if they stay equivalent (resp. dominated) after any noetherian base
change B′ → B and after pullback to any Y ′ for a logarithmically regular morphism
Y ′ → Y . We will use notation I1 4 I2 and I1 ≈ I2 to denote functorial domination
and functorial equivalence.

Remark 5.2.2. (i) Our definition of equivalence extends that of [ATW17, §5.1].
Similarly to the approach of Bierstone-Milman [BM08], our proof of independence
of maximal contact is based on equivalence, rather than étale isomorphisms used
in [W lo05, ATW17].

(ii) Non-functorial equivalence is not informative in general since non-resolved
marked ideals may admit no non-trivial admissible blow ups, see Example 1.3.8.

(iii) In fact, we will only need base changes B′ → B with B′ = Spec(O), where
O is either k(B) or a DVR with Frac(O) = k(B), and pullbacks with respect to
morphisms Y ′ → Y which are either strict étale or localizations. We prefer not to
restrict to these cases in the definition for aesthetical reasons. In the absolute case
with B the spectrum of a field, it even suffices to use the usual equivalence.

(iv) Naively, one might only want to test (or define) equivalence using only blow
up sequences. Already in the classical algorithm this is not enough, so Hironaka
and Bierstone-Milman had to introduce additional test morphisms in the definition
of equivalence, see [Hir03, Definition 1.3] and [BM08, §1.2]. They might look a
bit artificial, but logarithmic geometry clarifies the situation: these test morphisms
(Y ′, E′) → (Y,E) are logarithmically smooth, so including them just makes the
equivalence partially functorial in the logarithmic sense.

In our principalization algorithm, base changes and logarithmically regular mor-
phisms Y ′ → Y are such additional test morphisms. Their role is absolutely clear –
we want the algorithm to be functorial with respect to these classes of morphisms.

5.2.3. Main examples of equivalence. The main cases of functorial equivalence of
marked ideals follow from Lemma 5.1.13.

Lemma 5.2.4. Assume that f : Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, σ : Y ′ 99K Y is a sequence of B-submonomial
Kummer blow ups, and I = I1, . . . ,In are marked ideals on Y .

(o) If I1 ⊆ I2, then I1 4 I2. In particular, if I1 ⊆ I2 ⊆ I3 and I1 ≈ I3, then
I1 ≈ I2 ≈ I3.

(i) If (Ii, ai) 4 (I1, a1) for 2 ≤ i ≤ n, then (I2, a2) · . . . · (Im, am) 4 (I1, a1).

(ii) I ≈ Ik for any positive natural k.

(iii) If (Ii, ai) 4 (I1, a1) for 2 ≤ i ≤ n, then (I1, a1) + . . .+ (Im, am) ≈ (I1, a1).

(iv) I ≈ I + F (≤1)I + . . .+ F (≤a−1)I for any OY -submodule F ⊆ DY/B.
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Proof. Claim (o) is trivial. Claims (i)–(iv) follow from their counterparts in Lemma
5.1.13 and the previous claims. For example, (iv) follows from (iii) and the fact
that F (≤i)I 4 I by Lemma 5.1.13(iv). ♣

5.3. Coefficients ideals.

5.3.1. The definition. As in [ATW17, §6.1], given a marked ideal I = (I, a) and
an OY -submodule F ⊆ DY/B we define the F-coefficient marked ideal of I by the

formula CF (I) :=
∑a−1
i=0 F (≤i)I. Note that we are using the homogenized addition

of Section 5.1.7. In particular, for F = DY/B one obtains the natural relative
logarithmic version CY/B(I) of the coefficient ideal defined in [ATW17, §6.1], again
homogenized according to Section 5.1.7.

Remark 5.3.2. Usually, one defines the coefficient ideal using non-homogenized
sums. Our definition is an analogue of Kollar’s tuning ideal Wa!(I), see [Kol07].

5.3.3. Equivalence. Lemmas 5.2.4(v) and 5.1.15 yield the following result.

Lemma 5.3.4. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, I is a marked ideal on Y and F ⊆ DY/B is an
OY -submodule. Then I ≈ CF(I), and CF (I) is of maximal order whenever I is of
maximal order.

5.3.5. Transforms. The following result is an analogue of [ATW17, Proposition
6.1.3], which makes the statement sharper. Somewhat surprisingly, compatibility
of our version of the coefficient ideal with transforms is as good as possible.

Theorem 5.3.6. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, I is a marked ideal of maximal order, F ⊆
DY/B is an OY -submodule, and σ : Y ′ 99K Y is an I-admissible sequence of B-
submonomial Kummer blow ups. Then

Cσc(F)(σ
c(I)) = σc(CF(I)).

Proof. The inclusion σc(CF(I)) ⊆ Cσc(F)(σ
c(I)) follows from Lemma 5.1.13, so

let us prove that Cσc(F)(σ
c(I)) ⊆ σc(CF (I)). Induction on the length reduces the

claim to the case of a single blow up. We should prove that if n0, . . . ,na−1 ∈ N

satisfy
∑a−1
i=0 ni(a− i) ≥ a!, then

In :=

a−1∏

i=0

(
F (≤i)
σ (σ−1(I, a))

)ni

⊆ σ−1(CF(I), a!).

By Lemma 4.3.7 we have that

In =

a−1∏

i=0




i∑

j=0

σ−1
(
F (≤j)(I), a− j

)


ni

=
∑

(nij)

∏

0≤j≤i≤a−1

(
σ−1

(
F (≤j)(I), a− j

))nij

,

where the right hand sum is over the sets of partitions ni = ni0 + . . . + nii for

0 ≤ i ≤ a− 1. For each j ∈ {0, . . . ,a− 1} set lj =
∑a−1

i=0 nij . Then

a−1∑

j=0

lj(a− j) =
∑

0≤j≤i≤a

nij(a− j) ≥
∑

0≤j≤i≤a

nij(a− i) =

a−1∑

i=0

ni(a− i) ≥ a!
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and hence

∏

0≤j≤i≤a−1

(
σ−1

(
F (≤j)(I), a − j

))nij

=
a−1∏

j=0

(
σ−1

(
F (≤j)(I), a− j

))lj
=

σ−1



a−1∏

j=0

(
F (≤j)(I)

)lj
,

a−1∑

j=0

lj(a− j)


 ⊆ σ−1



a−1∏

j=0

(
F (≤j)(I)

)lj
, a!


 ⊆ σ−1(CF (I), a!).

♣

6. The theory of maximal contact

6.1. Existence.

6.1.1. Hypersurfaces of maximal contact. Let I = (I, a) be a marked ideal of max-
imal order on a logarithmically regular morphism Y → B. A hypersurface of
maximal contact or simply a maximal contact to I is a closed suborbifold H →֒ Y

of pure codimension 1 such that its ideal IH is contained in T (I) := D(≤a−1)
Y/B (I).

6.1.2. Local existence. In the classical situation, maximal contact exists Zariski
locally. For DM stacks one should use the étale topology instead.

Theorem 6.1.3. Assume that X → B is a relative logarithmic orbifold with B ∈ B

and I is a marked ideal on X of maximal order. Then there exists an étale covering
g : X ′ → X with a hypersurface of maximal contact H ′ →֒ X ′ to I ′ = g−1I.

Proof. Since D(≤a)
X/B (I) = 1 by Lemma 5.1.16(i), one can find an étale covering

X ′ → X and global sections h ∈ Γ(X ′, T (I)) and ∂ ∈ Γ(DX′/B) such that ∂(h) is
a unit. By Lemma 2.8.9 logord(h) ≤ 1 on X ′, hence H ′ = V (h) is a logarithmic
B-suborbifold as required. ♣

6.2. Equivalence of marked ideals on suborbifolds. In order to show that
restriction to maximal contact preserves equivalence of certain marked ideals we
should first extend the notion of equivalence that was defined in §5.2. Our goal is
to compare marked ideals Ii, i = 1, 2 on logarithmic B-orbifolds Yi via embeddings
of Yi as B-suborbifolds into a logarithmic B-orbifold Y . We will push forward se-
quences of Kummer blow ups of Yi and compare the obtained sequences of Kummer
blow ups of Y .

6.2.1. H-admissibility. Given a logarithmic relative morphism of logarithmic DM
stacks Y → B with a B-suborbifold i : H →֒ Y let IH ⊆ OY be the ideal defining
H and IH = (IH , 1). A submonomial Kummer blow up sequence σ : Y ′

99K Y is
called H-admissible if it is IH -admissible.

Lemma 6.2.2. Keep the above notation. Then a sequence σ : Y ′ 99K Y is H-
admissible if and only if it is a pushforward i∗(τ) of a submonomial Kummer blow
up sequence σ : H ′ 99K H. Furthermore, in this case IH′ = σc(IH).

Proof. Induction on the length of σ reduces the claim to the case when it is a single
Kummer blow up. Let J be its center. Since σ is H-admissible if and only if
I ⊆ J , the first claim reduces to unravelling the definitions, see §4.2.24.
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To check that IH′ = σc(IH) we can work étale-locally on Y , and then one can
assume that there exist regular parameters t1, . . . ,tn such that H = V (t1, . . . ,tl) and
J = (t1, . . . ,tm, u1, . . . ,us) for l ≤ m ≤ n and monomials u1, . . . ,us. In this case, for
any y ∈ {t1, . . . ,tm, u1, . . . ,us} the restrictions of both IH′ and σ−1(IH)(1) to the y-
chart equal (y−1t1, . . . ,y

−1tl). (In particular, both are trivial when y ∈ {t1, . . . ,tl}.)
So, the corresponding marked ideals are equal. ♣

6.2.3. (H, I)-admissibility. If H →֒ Y is a suborbifold and I is a marked ideal on
H , then a sequence Y ′ 99K Y is called (H, I)-admissible if it is H-admissible and the
induced sequence H ′

99K H is I-admissible. Thus, pushforward induces a bijection
between I-admissible sequences H ′ 99K H and (H, I)-admissible sequences Y ′ 99K

Y .

6.2.4. Equivalence on suborbifolds. As in §5.2, a pair (H1, I1) dominates (H2, I2) if
(H1, I1)-admissibility implies (H2, I2)-admissibility, and equivalence is defined as
mutual domination. Equivalence or domination is functorial if it is preserved under
noetherian base changes B′ → B and pullbacks with respect to logarithmically
regular morphisms Y ′ → Y . The functorial equivalence class of the pair (H, I) will
be denoted [H, I], and we say that a sequence Y ′ 99K Y is [H, I]-admissible if it is
(H, I)-admissible.

6.2.5. Pushforwards. If i : H →֒ Y is a suborbifold and I = (I, 1) is a marked ideal
on H of weight 1, then we set i∗I = (i∗I, 1). It is easy to see (and can be deduced
from Lemma 6.3.2(ii) below) that (H, I) ≈ (Y, i∗I).

6.3. Restriction to maximal contact.

6.3.1. Basic compatibilities. Operations on marked ideals and restriction onto a
suborbifold are related as follows.

Lemma 6.3.2. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B and i : H →֒ Y a B-suborbifold.

(i) If J is an H-admissible submonomial Kummer ideal on Y and a ≥ 1, then
J (a)|H ⊆ (J |H)(a).

(ii) If I is a marked ideal on Y and τ : H ′ 99K H is an I|H-admissible sequence
of submonomial Kummer blow ups, then the pushforward σ = i∗(τ) : Y ′ 99K Y is
I-admissible and σc(I)|H′ = τc(I|H).

Proof. These follows from the definitions, and induction in the case of (ii). ♣

6.3.3. H-contracting modules of derivations. LetH be a B-suborbifold of pure codi-
mension 1 in Y . As in [ATW17, §6.2.3], a module F ⊆ DY/B is called H-contracting
if F(IH) = OY . This property is preserved under submonomial Kummer blow ups:

Lemma 6.3.4. If F is H-contracting, σ : Y ′ → Y an H-admissible sequence of
submonomial Kummer blow ups, and H ′ is the strict transform of H, then F ′ =
σc(F) is H ′-contracting.

Proof. The proof is the same as in [ATW17, Lemma 6.2.4]. By étale localization
and induction on the length this reduces to the case of a single blow up along
J = (t1, . . . ,tn, u1, . . . ,us) such that IH = (t1) and there exists ∂ ∈ Γ(F) with ∂(t1)
a unit. On a y-chart one has that IH′ = (t′1) for t′1 = y−1t1 and ∂′ := y∂ ∈ Γ(F ′).
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Then it remains to note that ∂′(t′1) = ∂(t1) − t′1∂(y) is a unit along H ′ because
∂(t1) is a unit on H and hence also on H ′. ♣

6.3.5. Lift of admissibility. Despite a relatively simple proof, the following proposi-
tion is the only result where a simple induction on the order of differential operators
does not work, and one has to use Taylor series.

Proposition 6.3.6. Let f : Y → B be a logarithmically regular morphism of loga-
rithmic DM stacks with B ∈ B and let I be a marked ideal on Y of maximal order.
Assume that H is a maximal contact to I and F ⊆ DY/B is an H-contracting
submodule. Let J be a submonomial Kummer ideal. Then J is I-admissible if and
only if it is (H, CF (I)|H)-admissible.

Proof. Set C = CF(I) and Ci := F (≤i)(I)a!/(a−i), where 0 ≤ i ≤ a − 1. By

Remark 5.1.8(ii) we have C ≈ (C, a!), where C =
∑a−1

i=0 Ci. Recall that I ≈ C by

Lemma 5.3.4, hence J is I-admissible if and only if C ⊆ J (a!). If J is I-admissible,
then

C|H ⊆ J (a!)|H ⊆ (J |H)(a!)

by Lemma 6.3.2(i), so J |H is C|H -admissible. In addition, Ia!
H ⊆ Ca−1 ⊆ J (a!),

hence IH ⊆ J nor and J is H-admissible.

Conversely, we should prove that if Ci|H ⊆ (J |H)(a!) for 0 ≤ i ≤ a − 1 and
IH ⊆ J nor, then I ⊆ J (a). This can be checked étale-locally, so we can assume
that Y and B are schemes with Zariski logarithmic structure, H = V (h), and
∂ ∈ Γ(DY/B) is such that u = ∂(h) is a unit. Moreover, by flatness of completions
we can work on formal completions at a point y ∈ Y , where, crucially, we have an
isomorphism

ÔY,y = ÔH,yJhK.

Such an isomorphism exists by Lemma 2.3.14 applied to the sharp factorization

Y → B̃ of f (see §2.2.5) and a family of regular parameters t1 = h, t2, . . . ,tn. For any
φ ∈ Iy we obtain a Taylor series presentation φ =

∑∞
i=0 cih

i with 1
i!ui ∂

i(φ)|H = ci.

Then ci ∈ (Ĵ a−i
H,y )nor ⊂ (Ĵ a−i

y )nor and ha ∈ J (a), and hence φ ∈ (Ĵ a
y )nor. ♣

6.3.7. Equivalence of the restriction. Now, we are ready to prove the main theorem
of the theory of maximal contact.

Theorem 6.3.8. Assume that Y → B is a logarithmically regular morphism of
logarithmic DM stacks with B ∈ B, I is a marked ideal of maximal order on Y ,
i : H →֒ Y is a hypersurface of maximal contact to I, and F ⊆ DY/B is an H-
contractible OY -submodule. Then (Y, I) ≈ (H, CF(I)|H).

Proof. Recall that I ≈ C := CF(I) by Lemma 5.3.4, hence (Y, I) 4 (H, CH), where
we set CH = C|H . The main part is to prove the opposite domination. By induction
on the length of the sequences it suffices to prove the following assertion:

Assume that τ : H ′ 99K H is CH -admissible and such that its pushforward σ =
i∗(τ) : Y ′ → Y is I-admissible, and assume that J is anH ′-admissible submonomial
Kummer ideal on Y ′ such that J |H′ is τc(CH)-admissible. Then J is I ′-admissible,
where I ′ = σc(I).

To prove the assertion, recall that by Theorem 5.3.6 CF ′(I ′) = σc(C), where
F ′ = σc(F). Restricting this onto H ′ and applying Lemma 6.3.2(ii) we obtain that

CF ′(I ′)|H′ = σc(C)|H′ = τc(CH),
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and hence J |H′ is CF ′(I ′)|H′ -admissible. Since F ′ isH ′-contractible by by Lemma 6.3.4,
J is I ′-admissible by Proposition 6.3.6. ♣

6.4. Functoriality. We conclude Section 6 with a brief explanation of the fact that
all constructions with marked ideals are compatible with logarithmically regular
morphisms and noetherian base changes. If I = (I, a) is a marked ideal on Y and
g : Y ′ → Y is a morphism, then the pullback marked ideal is g−1(I) = (g−1(I), a).

Lemma 6.4.1. Let f : Y → B be a logarithmically regular morphism of logarithmic
DM stacks with B ∈ B, I a marked ideal on Y , F ⊆ DY/B an OY -submodule,

g : B′ → B a morphism of logarithmic DM stacks with B′ ∈ B and noetherian7 fs
base changes g′ : Y ′ → Y and f ′ : Y ′ → B′, and I ′ = g′−1I, F ′ = g∗(F). Then

(i) Assume that H is a maximal contact to I. Then H ′ = H×Y Y ′ is a maximal
contact to I ′. In addition, if F is H-contracting, then F ′ is H ′-contracting.

(ii) g′−1(CF (I)) = CF ′(I ′).

(iii) g′−1(W(I)) = W(I ′) and µI ◦ g′ = µI′ .

(iv) If a submonomial Kummer blow up sequence Yn 99K Y is admissible for I
(resp. is an order reduction of I), then the same is true for the pullback sequence
Y ′
n 99K Y and I ′.

Proof. Claim (iii) follows from Lemma 2.8.14, and claims (i) and (ii) are proved by
unravelling the definitions. For example, if F is H-contracting, then F(IH) = OY

and applying g−1 yields F ′(I ′
H) = OY ′ , that is, F ′ is H ′-contracting. ♣

In the same way, but using Lemma 2.8.15 as an input one proves

Lemma 6.4.2. Assume that g : Y ′ → Y and f : Y → B are logarithmically regular
morphism of logarithmic DM stacks with B ∈ B, I ⊆ OY an ideal with I ′ = g−1I,
and F ⊆ DY/B a submodule with F ′ = g∗(F). Then,

(i) Assume that H is a maximal contact to I. Then H ′ = H×Y Y ′ is a maximal
contact to I ′. In addition, if F is H-contracting, then F ′ is H ′-contracting.

(ii) g−1(CF (I)) = CF ′(I ′).

(iii) g−1(W(I)) = W(I ′) and µI ◦ g = µI′ .

(iv) If a submonomial Kummer blow up sequence Yn 99K Y is admissible for I
(resp. is an order reduction of I), then the same is true for the pullback sequence
Y ′
n 99K Y ′ and I ′.

7. Relative logarithmic order reduction

In this section we will construct the logarithmic relative principalization method
and prove Theorem 1.2.6.

7.1. Reduction to marked ideals. By an order reduction method we mean a
method F , such that given a marked ideals I on a relative logarithmic orbifold
f : X → B, it outputs either an order reduction F(f, I) : X ′ 99K X of I or the
empty value. As in the classical case, relative logarithmic principalization of I
is nothing else but a relative order reduction of the marked ideal (I, 1). Thus
Theorem 1.2.6 is a particular case of the following

7Noetherian in the sense of §1.4.



68 D. ABRAMOVICH, M. TEMKIN, AND J. W LODARCZYK

Theorem 7.1.1 (Order reduction). There exists an order reduction method F
satisfying the following properties:

(i) Existence: let f : X → B be a relative logarithmic orbifold with a marked
ideal I, and assume that B ∈ B and either dim(B) ≤ 1 or f has abundance
of derivations. Then there exists a blow up g : B′ → B with the saturated pullback
f ′ : X ′ → B′ and I ′ = IOX′ such that F(f ′, I ′) 6= ∅ and the center of g is monomial
over the complement to the closure of the image of V (I) in B.

(ii) Compatibility with base change: if F(f, I) 6= ∅ and g : B′ → B is any
morphism of logarithmic stacks from B with noetherian saturated base changes
f ′ : X ′ → B′ and g′ : X ′ → X, and I ′ = g′−1I, then the sequence F(f ′, I ′) is
obtained from the saturated pullback sequence F(f, I) ×B B′ by removing Kummer
blowings up with empty centers.

(iii) Functoriality: if F(f, I) 6= ∅ and I ′ = g−1I for a logarithmically regular
morphism g : X ′ → X such that X ′ → B is a relative logarithmic orbifold, then
F(f ′, I ′) is obtained from the saturated pullback sequence F(f, I)×XX ′ by removing
Kummer blowings up with empty centers.

(iv) Dependence on the equivalence class: if f : X → B is another relative log-
arithmic orbifold and i : X →֒ X is a B-suborbifold embedding of a pure codimen-
sion, then the pushforward sequence i∗(F(f, I)) depends only on f and the func-
torial equivalence class [X, I]. In particular, if I = (I, 1) is of weight 1, then
i∗(F(f, I)) = F(f, i∗I).

Remark 7.1.2. Since there are many functorially equivalent marked ideals on
X , part (iv) provides a non-trivial addendum even when X = X. However, it is
important for our argument to prove (iv) for an arbitrary i.

The rest of Section 7 is devoted to proving the theorem.

7.2. Invariants of functorial equivalence classes. Similarly to its predecessors,
our order reduction method runs by restricting to suborbifolds i : H →֒ X . In this
paper, we prove independence of choices using equivalence of marked ideals on
different suborbifolds as defined in §6.2.4. As a preparation, we are now going to
study invariants of equivalence classes.

7.2.1. A model case. We start with the following simple observation. Assume that
X is a smooth scheme with a marked ideal I = (I, a) and a closed point x ∈ X . If
b = ordx(I) and σ : X ′ → X is the blow up at x, then IbE is the maximal power of IE
that divides σ−1(I). Therefore, the sequenceX ′(d) → X ′ → X with centersmx and
IdE is I-admissible if and only if da ≤ b− a, that is d ≤ µx(I)− 1. In our approach
we allow d to be a rational number, hence the equivalence class of I determines
the normalized order in a very elementary way: µx(I) = max d+ 1, the maximum
taken over the above small class of admissible sequences. For comparison, in the
classical approach one blows up only smooth centers, and the goal of determining an
invariant from the collection of allowed transformations is achieved by Hironaka’s
trick, where one first replaces X by X × A1 with the logarithmic structure given
by X × {0}.

In general, we will have to solve a few minor technical problems: x might not be
closed, mx might not be submonomial, and the codimension of H is not determined
by [H, I]. The following result will be used to deal with the first two issues.
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Lemma 7.2.2. Let f : X → B be a relative logarithmic orbifold and x ∈ |X | a
point. Then there exists a morphisms B′ → B with B′ ∈ B and a noetherian
X ×B B′, a localized étale morphism X ′ → X ×B B′ with X ′ a scheme, and a
closed point x′ with image x ∈ |X | such that the ideal mx′ is submonomial.

Proof. It is easy to see that there always exists a morphism of logarithmic schemes
g : B′ = Spec(O) → B such that O is either a field or a DVR, the logarithmic
structure is O r {0}, and g takes the closed point b′ ∈ B′ to b := f(x). Find an
étale cover X ′ → X ×B B′ with X ′ a scheme, and choose a point x′ ∈ X ′ over x.
Then replacing X ′ by its localization at x′ we can assume that x′ is closed. Now,
the fiber X ′

b′ is a monomial subscheme, and it is easy to see that the logarithmic
fiber S = Sx′ coincides with the logarithmic stratum of x′ in X ′

b′ , hence Sx′ is
monomial. Since x′ is a closed point in Sx′ , the ideal mx′ is submonomial. ♣

Remark 7.2.3. One could use other classes of base changes in the lemma. For
example, one could replace B by the localization at B, increase the logarithmic
structure so that mb becomes monomial, and then apply a monomial blow up so
that the base change of f becomes exact at x.

7.2.4. Operations on equivalence classes. By definition, functorial equivalence is
preserved by base changes of B, pullbacks with respect to logarithmically regu-
lar morphisms g : X ′ → X , and controlled transforms under admissible blow us.
Hence all these operations are defined on equivalence classes [H, I]. For example,
g−1([H, I]) is defined to be [H ×X X ′, (g|H)−1I].

7.2.5. Codimensions. The codimension of H at a point x ∈ |X | will be denoted
cx(H). Let C be a functorial equivalence class of marked ideals on suborbifolds
of X . By the codimension cx(C) of C at x ∈ |X | we mean the maximal possible
codimension cx(H ′), where g : X ′ → X is an étale neighborhood of x and (H ′, I ′)
is a representative of g−1(C). Finally, if J is a submonomial Kummer ideal of
the form IH + N , where N is Kummer monomial and H is a suborbifold, then
the number cx(H) is easily seen to depend only J and we call it the monomial
codimension cx(J ) of J at x. We have the following natural inequality between
these codimensions:

Lemma 7.2.6. Assume that C is a functorial equivalence class on X and a sequence
σ : Xn 99K X0 = X with centers Ji ⊆ O(Xi)két is C-admissible. Let i ∈ {0, . . . ,n−1},
xi ∈ supp(Ji) and let x ∈ |X | be its image. Then cxi(Ji) ≥ cx(C).

Proof. Replacing X by an étale neighborhood of x and replacing σ by its pullback
we can assume that C contains a representative (H, I) with cx(H) = cx(C). Then
the strict transform Hi →֒ Xi satisfies cxi(Hi) = cx(H) and IHi ⊆ Ji. Therefore,
cxi(Ji) ≥ cxi(Hi) = cx(C), as required. ♣

Now we can show that codimensions detect whether a marked ideal is of maximal
order.

Theorem 7.2.7. Let X → B be a relative logarithmic orbifold, i : H →֒ X a
suborbifold, I a marked ideal on H with equivalence class C = [H, I], and x ∈
supp(I) a point. Then cx(C) > cx(H) if and only if I is of maximal order at x.
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Proof. Assume that I is of maximal order at x. We can replace X by an étale
neighborhood of x, hence by Theorem 6.1.3 we can assume that there exists a max-
imal contact H ′ →֒ H to I. By Theorem 6.3.8, C(I)|H′ is another representative
of C, and its codimension is larger than that of I.

Conversely, it suffices to obtain a contradiction to the following assumption:
I = (I, a) is not of maximal order at x, but cx(C) > cx(H). This situation persists
after base changes and pullbacks with respect to étale localizations of X , hence by
Lemma 7.2.2 we can assume that X is local, x is closed and mX,x is submonomial.
Then mH,x is submonomial too, say, mH,x = (t, u), where t = (t1, . . . ,tn) ⊂ mH,x

is a family of regular parameters at x and u = (u1, . . . ,ur) monomials generating
the maximal ideal of Mx.

By our assumption logordI/B(x) ≥ d := a+ 1. Since I ⊆ (t)d + (u) ⊆ (t, u1/d)d,

the blow up τ : H ′ → H along (t, u1/d) is (I, d)-admissible, and hence, IE divides

τ−1(I, a). Let H ′(1/a) → H ′ be the blow up along I1/a
E . Then the sequence

H ′(1/a) → H ′ → H is I-admissible, and its pushforward X ′(1/a) → X ′ → X is
C-admissible. Since the center of X ′(1/a) → X ′ is of monomial codimension cx(H),
Lemma 7.2.6 yields a contradiction. ♣

7.2.8. Normalized invariants. One can define analogues of normalized invariants
for equivalence classes [H, I]. Since H is not determined by the class, we take the
normalized invariants of I and push them forward to X . Namely, by µ[H,I] : |X | →
N we denote the normalized logarithmic order function µI : |H | → N extended by
zero outside of |H |, and by WX/B([H, I]) we denote the submonomial Kummer ideal
i∗(WH/B(I)). We have slightly abused notation because these invariants certainly
depend also on the codimension cH of H . In fact, they depend only on [H, I] and
cH , as will be proven soon.

Remark 7.2.9. It is important to push forward the invariants of I, instead of tak-
ing invariants of i∗(I). Indeed, if H is of positive codimension, then the logarithmic
order of i∗(I) is ≤ 1. In fact, logordi∗(I)/B is the characteristic function of supp(I).

In addition, WX/B(i∗I) is monomial, while WX/B([H, I]) is only submonomial in
general.

7.2.10. Hironaka’s trick: the logarithmic version. The following theorem is an ana-
logue of [BM08, Theorems 6.1, 6.2] and its proof runs along the same line and is
even more straightforward.

Theorem 7.2.11. Assume that f : X → B is a relative logarithmic orbifold,
i : H →֒ X is a suborbifold of pure codimension cH , and I = (I, a) is a marked ideal
on H. Then the function µ[H,I] : |X | → N and the Kummer ideal WX/B([H, I]) de-
pend only on C = [H, I] and cH rather than on the choice of the pair (H, I) ∈ C.

Proof. Since WH/B(I) is the maximal monomial I-admissible Kummer ideal, WX/B(C)
is the maximal submonomial Kummer ideal which is C-admissible and of monomial
codimension cH . This description only depends on C and cH .

The main task is to show that for any x ∈ |X | the number µ = µx(I) is de-
termined by C and cH . Since the logarithmic order is compatible with regular
morphisms and base changes by Lemmas 2.8.14 and 2.8.15, as in the proof Theo-
rem 7.2.7 we can use Lemma 7.2.2 to reduce to the case when X is a local scheme,
x is closed and mH,x = (t, u) is submonomial.
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Case 0: µ = 0. The vanishing locus of µ[H,I] is precisely X r supp(I), and
µx(I) = 0 if and only if d := logordI/B(x) < a if and only if mH,x is not I-

admissible if and only if mX,x is not C-admissible. Thus, supp(I) is detected by C
only.

Case 1: µ = 1. By Theorem 7.2.7 and Case 0, this happens if and only if
cH > cx(C) and mX,x is C-admissible.

Case 2: µ = ∞. This happens if and only if there exists an I-admissible mono-
mial ideal N ( OH with x ∈ V (N ) (in fact, N = (u1/a) will work). The latter
happens if and only if x lies in the support of a C-admissible submonomial ideal of
monomial index cH , the property depending on C and cH only.

Case 3: 1 < µ <∞. By the above cases, this situation is also detected by C and
cH . Let us show how to find µ. Note that a < d < ∞ and for any l ≥ d we have
that I ⊆ (t)d+ (u) ⊆ (t, u1/l)d and the blow up τl : Hl → H along (t, u1/l) is (I, d)-
admissible at x. For n ∈ Q>0 let τl,n : Hl(n) → Hl denote the blow up along the

monomial Kummer ideal InE , and let Xl(n)
σl,n→ Xl

σl→ X be the pushforward. By

Corollary 5.1.18 τcl (I) is balanced with monomial part Id−aE , hence the sequence
σ is C-admissible if and only if na ≤ d − a. The latter happens if and only if
n ≤ µ − 1. Taking l ≫ 0 this characterizes µ once we show that the sequence
Xl(µ − 1) → Xl → X depends only on C and cH (and not on H via IE). Clearly,
Xl → X depends only on l, and the center of σl,µ−1 is the maximal submonomial
σcl (C)-admissible Kummer ideal on Xl of monomial codimension cH , the property
which depends only on C and cH . ♣

Combining the above results with Corollary 5.1.18 one easily obtains the follow-
ing result:

Corollary 7.2.12. Assume that (H1, I1) ≈ (H2, I2) with I1 balanced and H1, H2

of pure codimension c in X. Then I2 is balanced too and (H1, Icln
1 ) ≈ (H2, Icln

2 ).

7.3. The method. Now, let us construct the method F whose existence is asserted
by Theorem 7.1.1. In this section, we will only check that F satisfies (ii), (iii) and
(iv) as this is used to justify the construction. The method itself is a generalization
of the absolute logarithmic order reduction in [ATW17, §2.11].

7.3.1. Induction scheme. The method runs by induction on n = logrk(X/B), as
defined in §2.3.9. The induction base is trivial, say n = −1, and in what follows we
establish the induction step for n ≥ 0.

The dimension of X in (iv) can be arbitrary, but the induction claim is as

follows: if C = [X, I] denotes the functorial equivalence class in X, and (X̃, Ĩ) is

another representative of C with logrk(X̃/B) ≤ n and the suborbifold embedding

ĩ : X̃ →֒ X, then i∗(F(f, I)) = ĩ∗(F(f, Ĩ)).

In (iii) we assume that logrk(X ′/B) ≤ n and logrk(X/B) ≤ n.

7.3.2. Functoriality. It will be clear from the construction of F that it satisfies (ii)
and (iii) because all intermediate constructions used in the process, including nor-
malized invariants, Kummer blow ups, transforms, coefficient ideals, and maximal
contacts, are compatible with logarithmically regular morphisms and base changes.
This was shown in Lemmas 2.8.14, 2.8.15, 6.4.1, 6.4.2, and Theorem 4.2.20. So we
will only show how F is defined and will check (iv).
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7.3.3. The maximal order case. First, let us construct σ = F(f, I) in the particular
case when I is of maximal order. The idea is this: étale-locally I is equivalent to a
marked ideal I0 on a maximal contact H0. By induction, the order reduction of I0

is defined and depends only on the equivalence class of I0. This implies that the
construction is independent of choices and hence descends to an order reduction of
I.

Now, let us work out details. By Theorem 7.2.7 there exists an étale covering
p : X0 → X such that the equivalence class [X0, p

−1(I)] contains a representative
(H0, I0) with i0 : H0 →֒ X0 of pure codimension 1. If g0 = f ◦ p ◦ i0 is the relative
logarithmic orbifold H0 → B, then F(g0, I0) is already defined by induction on
n. If it is empty, then we set F(f, I) = ∅. Otherwise we define σ0 : X ′

0 99K X0 to
be the pushforward of τ0 = F(g0, I0) : H ′

0 99K H0, and we claim that σ0 descends
to a Kummer blow up sequence σ : X ′ 99K X . (Note that H0 does not have to
descend to a suborbifold of X). Once we prove that σ exists its independence of
the covering p follows: given another covering p′ consider a mutual refinement and
use functoriality of F with respect to étale morphisms.

Let pi, i ∈ {1, 2} denote the projections of X1 := X0 ×X X0 onto X0. To prove
that σ0 descends it suffices to show that the two pullbacks σi = p−1

i σ0 coincide.

Consider the suborbifolds Hi = p−1
i (H0) of X1 with the sequences τi : H

′
i 99K Hi

pullbacked from τ0, morphisms gi : Hi → B and marked ideals Ii = p−1
i (I0). Étale

pullback is compatible with pushing forward the blow ups sequence, hence σi is the
pushforward of τi under Hi →֒ X1. In addition, logrk(Hi/B) = logrk(H0/B) < n
hence by induction F is functorial with respect to the étale morphisms Hi → H0

and we obtain that τi = F(gi, Ii). Also, by induction the equivalence (H0, I0) ≈
(X0, p

−1I) is pulled back via pi to (Hi, Ii) ≈ (X1, q
−1I), where q = p ◦ pi is the

projection X1 → X . Therefore, (H1, I1) ≈ (H2, I2) and the induction assumption
implies that σ1 = σ2. This proves that σ is well defined, and it is an order reduction
of I because its pullback σ0 to X0 is an order reduction of p−1I.

Remark 7.3.4. The above paragraph shows that the local procedure is indepen-
dent of the (étale-local) choice of maximal contact and hence globalizes. It critically
uses equivalence on suborbifolds of different codimensions.

It remains to check (iv) in the maximal order case, so let ĩ : X̃ →֒ X and (X̃, Ĩ) ∈
C be as in §7.3.1. Let cX and cX̃ be the codimensions of X and X̃ in X. By

Theorem 7.2.11 supp(I) = supp(Ĩ). If the supports are empty, there is nothing to
prove, so assume that this is not the case and choose a point x ∈ supp(I). Then

cX = logrkx(X̃/B) − logrkx(X/B) and cX̃ = logrkx(X̃/B) − logrkx(X̃/B), and
hence cX ≤ cX̃ .

We should check that i∗F(f, Ĩ) = ĩ∗F(f̃ , Ĩ). This can be done étale-locally on

X, and since the étale topology of X induces the étale topologies of X and X̃,
passing to a fine enough étale covering of X we can assume that there exists a
logarithmic B-suborbifold H →֒ X of pure codimension one and a marked ideal J
on H , such that (H,J ) ≈ (X, I) in X , and hence also in X. If cX = cX̃ , then

J̃ is also of maximal order, and we can assume in the same way that there exists

H̃ →֒ X̃ of pure codimension one and J̃ on H̃ , such that (H̃, J̃ ) ≈ (X̃, Ĩ). If

cX < cX̃ , then we simply take H̃ = X̃ and J̃ = Ĩ. Then we have equivalences

(H,J ) ≈ (X, I) ≈ (X̃, Ĩ) ≈ (H̃, J̃ ) in X , hence by the induction assumption the
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pushforwards of F(H → B, I0) and F(H̃ → B, Ĩ0) to X coincide. It remains to

note that the latter are precisely i∗F(f, Ĩ) and ĩ∗F(f̃ , Ĩ) by the construction of F
in the maximal order case.

7.3.5. The general case. Now, we will construct F in general, using the maximal
order case established above. The method outputs a sequence

σ : X0
σ0→ Xµl

σµl
99K Xµl−1

σµl−2

99K . . . . . .
σµ0
99K Xµ0 = X∞

σ∞→ X,

which will be constructed in three steps below. It is convenient to use weights in
the numbering because for each i and µ = µi we will have µ = µ(Icln

µ ), where
Iµ denotes the controlled transform of I to Xµ. We will also denote the pushout

sequence by σ : X0 → X and consider the induced embeddings iµ : Xµ →֒ Xµ and

equivalence classes Cµ = [Xµ, Iµ] in Xµ.

Step 1. Initial cleaning. Consider the blow up σ∞ : X∞ → X along the monomial
Kummer ideal WX/B(I).

• If the controlled transform I∞ is not clean, the step outputs “fail”.
• Otherwise, the step outputs σ∞, achieving that the controlled transform is

clean, and hence balanced.

The induced blow up σ∞ : X∞ → X is along WX/B(C) = i∗WX/B(I), so it only

depends on C and cH by Theorem 7.2.11.

Remark 7.3.6. (i) By Theorem 5.1.6, Step 1 never fails if I is logarithmically
clean.

(ii) Step 1 may also succeed for other ideals, and, moreover, it may even hap-
pen that the same equivalence class contains both logarithmically clean and not
logarithmically clean ideals.

Step 2. Reducing the order of the clean part. This step composes sequences
σµ := F(Xµ, Icln

µ ), which are defined by §7.3.3. Starting with µ0 = µ(I∞) and
Xµ0 = X∞, we inductively define σµi by this rule and label its target by µi+1 :=
µ((σcµi

Iµi
)cln).

By induction on i one obtains from Corollary 5.1.18 that each σµ is Iµ-admissible

and σcµ(Iµ) is balanced with the clean part being σcµ(Icln
µ ). In particular, the

logarithmic order of the clean part drops on each step: µ0 > µ1 > . . . . Since
µi ∈ 1

aN, after finitely many steps we arrive at µl = 0, obtaining Iµl
with a

resolved clean part.

Let us show that this step also satisfies property (iv). The class Ccln
µ = [Xµ, Icln

µ ]

in Xµ is determined by Cµ and cX by Corollary 7.2.12. By induction on i, the class
Cµ is determined by C and cX , so it remains to note that (iµ)∗(σµ) is determined
by Ccln

µ and cX by §7.3.3.

Step 3. Final cleaning. At this step, the ideal is balanced with a resolved clean
part, so σ0 is simply the Kummer blow up of W(Iµl

). The same argument as in

step 1, shows that the pushforward to X only depends on C and cX .

Remark 7.3.7. Note that the notation in the maximal order and general cases are
consistent. If I is of maximal order and µ = µ(I), then the first and third steps are
trivial and on the second step the composition reduces to taking the single sequence
σµ = F(f, I) as defined in §7.3.3. So, in this case the order reduction is the same
as was defined in the maximal order case.
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7.3.8. Addenda. We conclude with two remarks about the algorithm.

Remark 7.3.9. In the classical case, intensive study of resolution led to different
descriptions of essentially the same algorithm, with the only variations in combina-
torial parts of the algorithm. A natural question that interested us before starting
this project, is whether the algorithm is indeed essentially unique, or this happened
just because of the flow of ideas between different approaches. We expect that the
first possibility is true and show that our algorithm is essentially unique.

It follows from the construction that our order reduction method is uniquely
characterized by the following properties: (i) it only depends on the functorial

equivalence class, (ii) it treats I and Icln in the same way, and (iii) it starts and
finishes with blowing up W(I). Property (i) seems to be necessary for functorial
algorithms that use maximal contact to induct on dimension. Properties (ii) and
(iii) are not necessary, for example, one can first blow up W(I)1/2 and then the
pullback of W(I)1/2, but it seems that avoiding them could only result in dealing
with the monomial parts of ideals in a less efficient and superficial way.

Remark 7.3.10. Similarly, to [ATW17, §2.11.4] one can assign to I an invariant
invI : |X | → Inv, where Inv is the set of sequences (µ0, . . . ,µn) with µi ∈ Q≥1 for
i < n and µn ∈ Q≥1 ∪ {0,∞}. Its definition follows loc.cit. without changes: if
étale-locally over a point x, one denotes by Ii the appropriate restriction onto the

i-th maximal contact Hi, then µi(x) = µx(Icln
i ). In particular, invI only depends

on [X, I].

7.4. Existence of order reduction. It remains to establish claim (i) of Theo-
rem 7.1.1. We will do it under the additional assumption that B ∈ Bst. In §8.4,
the case B = Spec(Q) of the principalization theorem will be used to prove Theo-
rem 1.2.3, which implies that Bst = B. Since Spec(Q) ∈ Bst, this will imply the
assertion of Theorem 7.1.1 in full generality.

We say that a blow up B′ → B is permissible if its center is monomial over the
complement to the closure of the image of V (I) in B. We should prove that F does
not fail after base change via an appropriate permissible blow up.

We, again, proceed by induction on n = logrk(X/B). Assume first that F(f, I)
fails in Step 1 of Section 7.3.5, that is, D∞

X/B(I) is not monomial. By the mono-

mialization Theorem 3.6.13 there exists a blow up B′ → B with the base change
g : X ′ = X ×B B′ → X such that g−1D∞

X/B(I) is monomial. Let f ′ denote the

morphism X ′ → B′ and let I ′ = g−1(I). Then g−1D∞
X/B(I) = D∞

X′/B′(I ′) by

Lemmas 2.8.14 and 2.8.4, and hence by Remark 7.3.6(i) F(f ′, I ′) does not fail in
Step 1 and outputs a Kummer blow up σ′

∞ : X ′
∞ → X ′.

Let us prove that after an additional permissible blow up B′′ → B′ the algorithm
also does not fail in Step 2 of Section 7.3.5. This will complete the proof since
the algorithm blows up an invertible monomial ideal in Step 3, and hence cannot
fail there. Recall that in Step 2 the modification F(f ′, I ′) is the composition of
sequences σ′

µi
with 0 ≤ i ≤ l − 1, and fails if one of those fails. For any µ ∈ Q≥1

let F≥µ(f ′, I ′) (resp. F>µ(f ′, I ′)) be the compositions of σ′
∞ and σ′

µi
with µi ≥ µ

(resp. µi > µ). The length l is bounded by logordI′

∞
/B′(X ′), hence by decreasing

induction on µ it suffices to prove that if F>µ(f ′, I ′) does not fail, then there exists
a permissible blow up B′′ → B′ such that F≥µ(f ′′, I ′′) does not fail too.
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Let σ′
>µ : X ′

µ 99K X ′ be the sequence F>µ(I ′). Then the clean part of I ′
µ :=

(σ′
>µ)c(I ′) is of normalized logarithmic order at most µ, and the sequence F≥µ(I ′),

if exists, is obtained by composing σ′
>µ with the order reduction of (I ′

µ)cln. More-
over, the same is true after any base change B′′ → B′, since all ingredients of F ,
including F>µ, are compatible with base changes.

The order reduction of (I ′
µ)cln was constructed by pushing forward the order

reduction of a coefficient ideal from an étale-local maximal contact H0. By induc-
tion on n, the latter order reduction does not fail after an appropriate permissible
blow up B′′ → B′. Let g′ : B′′ → B be the composition. Setting I ′′ = g′−1(I),
σ′′
>µ = F>µ(I ′′) and I ′′

µ = (σ′′
>µ)c(I ′′), we have now achieved that the order reduc-

tion of (I ′′
µ)cln does not fail, and hence F≥µ(I ′′) does not fail too. This concludes

the induction in Step 2 and finishes the proof.

8. Relative logarithmic desingularization

This section is devoted to proving Theorem 1.2.12. As in the classical case, it is
easy to give a local construction based on principalization and the main issue is to
prove functoriality, including independence of the embedding. This will be easier
than in [ATW17] because we have developed the theory for general logarithmically
regular morphisms, hence once an algorithm (depending on choices) is constructed
all its properties can be checked on formal completions rather than étale locally.

8.1. The local construction. As one always does in Hironaka’s approach to desin-
gularization, one applies the principalization algorithm and stops it one step before
blowing up the strict transform.

Proposition 8.1.1. Let f : X → B be a relative logarithmic orbifold and let
i : Z →֒ X be a strict closed immersion of constant codimension such that the mor-
phism g : Z → B is generically logarithmically regular. Assume that the relative
logarithmic principalization F(f, IZ) of the defining ideal IZ ⊆ OX of Z is defined
and denote it σ : Xt 99K X. Then the generic points of Z are blown up at the same
stage σl : Xl+1 → Xl, and the strict transform Zl →֒ Xl of Z is a union of con-
nected components of the center of σl. In particular, gl : Zl → B is logarithmically
regular and Zl → Z is a relative logarithmic resolution of g that will be denoted
gres : Zres → B.

Proof. First, the claim is étale local on X and B, hence we can assume that they
are schemes. Recall that σ is the order reduction of (IZ , 1) and let (Ii, 1) denote
its controlled transform to Xi. By Zi →֒ Xi we denote the strict transform of Z.

Let z be a generic point of Z. Since g is logarithmically regular at z, its im-
age is the generic point b ∈ B. Consider first how the algorithm behaves on the
localization Zz = Spec(Oz) → Bb = Spec(Ob). Let d be the codimension of Z in
X . Since z → b is logarithmically regular, z is a suborbifold of Zz of codimension
d. Therefore the algorithm simply restricts d times to maximal contacts Hi

z, and
blows up the d-th maximal contact Hd

z = z at the initial cleaning step on Hd. In
particular, the algorithm behaves similarly at all maximal points of Z, and they
all are blown up at the same stage l. Moreover on this stage one works on a d-th
maximal contact Hd →֒ Xl and blows up Hd.

Each generic point of Zl is a generic point of Hd, hence the reduction H of Zl
is the union of the connected components of Hd contained in Zl. In particular,
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Il ⊆ IZl
⊆ IH . On the other hand, Hd is the iterated maximal contact to (Il, 1),

hence IHd ⊆ Il. It follows that all inclusions become equalities when restricted
onto Xl r (Hd rH), and hence H = Zl. ♣

Here are two complements concerning the proposition.

Remark 8.1.2. (i) The value of the invariant at step σl is (1, . . . ,1,∞) with 1
repeated d times, see also [ATW17, Proof of Theorem 1.2.4].

(ii) The assumption on codimension in the proposition is essential. The assump-
tion on generic logarithmic regularity can be removed similarly to [ATW17, §7.2.7].
We leave this to the interested reader.

8.2. Functoriality and independence of the embedding. Our next task is
to prove that Zres is functorial. The argument is formal local and we need some
preparations.

8.2.1. Logarithmic rings. By a local logarithmic ring we mean a local ring A with a
homomorphism of monoids M → (A, ·) such that M× = A×. Giving such a datum
is equivalent to giving a local scheme X = Spec(A) with a Zariski logarithmic
structure M → A. A homomorphism of monoids P → A is called a chart of (A,M)
if it is a chart of the logarithmic scheme(X,M).

8.2.2. Minimal presentations. Let i : O →֒ A be an embedding of local logarithmic
rings with a complete A, and assume that it has a sharp chart P →֒ O, P →֒
Q, Q →֒ A. By a logarithmically regular O-presentation we mean a factorization
O →֒ C ։ A such that C is a complete logarithmic ring, O →֒ C is logarithmically
regular, and C ։ A is strict. Factorizations correspond to strict closed immersions
of Spec(A) into schemes Spec(C) such that C is a complete local logarithmic ring
logarithmically regular over O.

Lemma 8.2.3. Let i : O →֒ A be as above, let k = O/mO and l = A/mA, and
let x = (x1, . . . ,xn) ⊂ mA be a set whose image form a basis x of mA/m

2
A
, where

A = A/mOq and q = umQA is the maximal monomial ideal of A. Then any logarith-

mically regular O-presentation of A is of the form O →֒ ÔP JQKJt1, . . . ,tmK⊗̂kl φ→ A
with φ(t) = (x, 0) (i.e. m ≥ n and φ(ti) = 0 for i > n). In particular, for any
pair of logarithmically regular O-presentations of A one of them factors through the
other one.

Proof. Let O →֒ C ։ A be a logarithmically regular presentation. Notice that
C/mC = l and MC = Q, and choose a family of regular parameters t = (t1, . . . ,tm).

By Lemma 2.3.14 C is of the form ÔP JQKJtK⊗̂kl and it remains to show that we
can rechoose t so that φ(t) = (x, 0).

Passing to the logarithmic fibers over O, that is, factoring by mOu
mQ , we obtain

a surjection φ : C ։ A, where C = lJtK and t is the image of t. Replace t by a

tuple such that (t1, . . . ,tn) is mapped to x and (tn+1, . . . ,tm) lies in Ker(φ) and is
mapped to a basis of Ker(mC/m

2
C

→ mA/m
2A). Then t is a basis of mC/m

2
C

,

hence a family of coordinates of C, and any lift t ∈ C of t is a family of regular
parameters of C over O.

We claim that the map φ : C → C ×A A is onto. If I = Ker(C → A) and

J = mOu
mQC = Ker(C → C), then A = C/(I + J). Dividing the exact sequence
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0 → C → C2 → C → 0 with c 7→ (c, c) and (c1, c2) 7→ c1 − c2 by the exact
subsequence 0 → I ∩ J → I ⊕ J → I + J → 0 we obtain an exact sequence
0 → C/(I ∩ J) → A ⊕ C → A → 0, and hence C ։ C/(I ∩ J) ∼−→ C ×A A. Since

φ(t) = (x, 0), there exists a lift t ∈ C such that φ(t) = (x, 0). ♣

Lemma 8.2.4. Let C ։ A be a strict surjective homomorphism of complete local
rings. Then for any logarithmically regular homomorphism A → A′ of complete
local logarithmic rings can be lifted to a logarithmically regular homomorphism C →
C′ of complete local ring. Namely, the homomorphism C → A′ factors as C →
C′

։ A′ such that C → C′ is logarithmically regular and A′ = A⊗C C′.

Proof. Let l = A/mA and l′ = A′/mA′, and let Q = MA and Q′ = MA′ . Then
A′ = AQJQ′KJt1, . . . ,tmK⊗̂ll′, and one can take C′ = CQJQ′KJt1, . . . ,tmK⊗̂ll′ with
the natural morphism C′ → A′. ♣

8.2.5. Functoriality. Now we can prove the main functoriality result about relative
desingularization.

Proposition 8.2.6. Assume that fj : Xj → B, j = 1, 2 are two logarithmic orb-
ifolds and ij : Zj →֒ Xj are strict closed immersions of constant codimensions
such that F(fj , IZj ) are defined. Then for any pair of logarithmically regular
morphisms Z → Z1 and Z → Z2 with a common source, the induced relative
desingularizations of Z coincide. Namely, there is an isomorphism of Z-stacks
(Z1)res ×Z1 Z = (Z2)res ×Z2 Z.

Proof. By flat descent, it suffices to check the isomorphism of modifications after
replacing Z by a flat covering. For example, we can replace Z by its étale covering,
or we can replace X1 by its étale covering X ′

1 and replace Z1 and Z by their base
changes with respect to X ′

1 → X . In this way one easily reduces the claim to the
case when B,Zi, Xi and Z are schemes. Moreover, it suffices to prove that for any
point z ∈ Z both τj : (Zj)res → Zj are pulled back to the same modification of

Ẑz = Spec(ÔZ,z).

Let zj ∈ Zj be the images of z. For shortness we denote ij(zj) by zj and

set Ẑj = Spec(ÔZj ,zj ), X̂j = Spec(ÔXj ,zj ). The morphism X̂j → X is regular

by the quasi-excellence of X and îj : Ẑj →֒ X̂j is the base change of i, hence the

principalization of Ẑj in X̂j is the pullback of the principalization of Zj in Xj by the

functoriality. In particular, the B-desingularization of Ẑj obtained from îj is the
base change of τj . This reduces the claim to the particular case when Z, Zj and Xj

are spectra of complete local rings. In addition, we can assume that B = Spec(Ob),
where b = g(z).

By Lemma 8.2.4, the embedding Ẑj →֒ X̂j can be lifted to an embedding

αj : Ẑz →֒ Yj , where Yj is logarithmically regular over X̂j and hence also over B.
By functoriality of the principalization, see Theorem 1.2.6(iii), the pullbacks of τj to

Ẑz coincide with the B-desingularizations of Ẑz induced by the logarithmically reg-

ular Ob-presentations αj . It remains to note that the latter desingularizations of Ẑz
coincide by Lemma 8.2.3 and the re-imbedding principle, see Theorem 1.2.6(iv). ♣

As an immediate corollary we obtain
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Corollary 8.2.7. The relative desingularization Zres defined in Proposition 8.1.1
depends only on the morphism Z → B and is independent of the embedding i : Z →֒
X. Moreover, if Z ′ is another logarithmic B-orbifold satisfying assumptions of
the proposition and Z ′ → Z is a logarithmically regular B-morphism, then the
desingularizations are compatible: Z ′

res = Zres ×Z Z ′.

8.3. The desingularization method. Now, let us prove Theorem 1.2.12. We
say that a morphism g : Z → B is locally embeddable into a relative logarithmic
orbifold if there exists an étale base change u : B′ → B and an étale covering
v : Z ′ → Z×BB′ such that the morphism g′ : Z ′ → B′ factors into the composition
of a strict closed immersion Z ′ →֒ X ′ and a relative logarithmic orbifold Z ′ → B′.
For any such g we have defined in Proposition 8.1.1 a resolution g′res of g′ and
showed in Corollary 8.2.7 that it is independent of the embedding Z ′ →֒ X ′.

We claim that g′res descends to a desingularization gres of Z ×B B′. Assume first
that B = B′. The two pullbacks of g′res with respect to the projections Z ′ ×Z Z ′ →
Z ′ induce the same desingularization of the source by Proposition 8.2.6. Therefore,
g′res descends to gres by étale descent. Descent with respect to a base change B′ → B
is done similarly. Functoriality of the desingularization asserted in claim (iii) of
Theorem 1.2.12 follows from Corollary 8.2.7. Parts (i) and (ii) about existence
and base changes directly follow from the analogous claims in the principalization
theorem 1.2.6.

8.4. The absolute case. This section is devoted to proving Theorem 1.2.3. Anal-
ogously to [Tem12, Section 4], this will be proved by reducing to the case of schemes
over complete local rings via an appropriate localization procedure performed by
induction on codimension. The latter case is covered by Theorem 1.2.14.

8.4.1. Induction on codimension. Let Z be as in Theorem 1.2.3. For a logarithmic
scheme X let Xsing = X r Xreg denote its logarithmic singularity locus. We will
construct a sequence of (Zi)sing-supported blow ups Zi+1 → Zi with Z0 = Z,
such that the image Ti ⊂ Z of (Zi)sing contains only points of codimension at
least i + 1. Given such a sequence, the closed sets Ti form a decreasing family,
and hence stabilize. By the codimension condition, this implies that Ti = ∅ for
some i, and then Zi → Z is a desingularization. Moreover, being a composition of
Zsing-supported blow ups, it is a Zsing-supported blow up itself.

Assume now that a sequence Zi → · · · → Z0 as above is given, and let us
construct a blow up h : Zi+1 → Zi as required. The closed set Ti contains finitely
many points of codimension i + 1, let us denote them z1, . . . ,zn. Fix for a while

z = zj and let Zz = Spec(Oz) and Ẑ = Spec(Ôz) be the localization and the

completion with the induced logarithmic structures. The morphisms Ẑ → Zz → Z

are strict and regular, hence the same is true for the base changes Ẑi → (Zz)i → Zi,

where Ẑi = Ẑ ×Z Zi and (Zz)i = Zz ×Z Zi. We will prove in Corollary 8.4.5 below

that Ẑi is locally embeddable into a logarithmic manifold, but let us use it to

complete the proof first. Applying Theorem 1.2.14 to the morphism Ẑi → Spec(Q),

we obtain a blow up Ẑi+1 → Ẑi whose source is logarithmically regular and whose

center V̂ is in (Ẑi)sing and hence is mapped to (Zi)sing. Therefore, the image of

(Ẑi)sing in Z lies in the intersection of the localization Zz and Ti, and hence consists
of the single point z.
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We claim that V̂ comes from a closed subscheme V →֒ (Zz)i. Indeed, V̂ lies
in a closed subscheme defined by mn

zOẐi
for a large enough n, and the latter is

mapped isomorphically onto the closed subscheme of (Zz)i defined by mn
zO(Zz)i .

Since Ẑi → (Zz)i is regular, the desingularization Ẑi+1 → Ẑi is the base change
of the blow up h : (Zz)i+1 → (Zz)i with center V , and h is a desingularization

because Ẑi+1 → (Zz)i+1 is a logarithmically regular surjective morphism with a
logarithmically regular source.

So far, for any zj we have constructed a desingularizing blow up hj : (Zzj )i+1 →
(Zzj)i whose center Vj is mapped to zj in Zzj . Take V to be the smallest closed
subscheme restricting to Vj in Zzj . Namely, we take V to be the schematic image of∐
j Vj under the morphism

∐
j(Zzj)i → Zi, and notice that

∐
j Vj = V ×Z

∐
j Zzj

is schematically dense in V . (For example, extend first to the open subscheme

obtained from Zi by removing pairwise intersections {zj}∩{zk} of Zariski closures.)
Since Vj ⊆ ((ZZj )i)sing ⊆ (Zi)sing, we have that V ⊆ (Zi)sing. We define h : Zi+1 →
Zi to be the blow up along V , and claim that it is as required. Clearly, h is trivial
over any point of Z of codimension at most i + 1 except z1, . . . ,zn. As for each
zj, the base change h ×Z Zzj is the blow up along V ×Z Zzj = Vj , hence it is the
desingularization hj. This shows that Zi+1 is logarithmically regular over all points
of Z of codimension at least i+ 1, hence the blow up h is as required.

8.4.2. Functoriality. If h : Z ′ → Z is a logarithmically regular morphism, then
Z ′

reg = h−1(Zreg) by [MT19, Corollary 5.1.3(1) and (3)]. Completions of qe schemes
are regular morphisms, hence for a point z′ ∈ Z ′ with z = h(z′) the completion

Ẑ ′
z′ → Ẑz is logarithmically regular. Therefore, all ingredients of our construc-

tion, including the desingularization provided by Theorem 1.2.14, are functorial
with respect to logarithmically regular quasi-saturated morphisms. This proves the
functoriality assertion in Theorem 1.2.3.

8.4.3. Local embeddability. It remains to prove Corollary 8.4.5 — the claim about
existence of embeddings used in Section 8.4.1. We start with a logarithmic Cohen’s
structure theorem.

Lemma 8.4.4. Let Z be an fs logarithmic scheme whose underlying scheme is the
spectrum of a complete local ring A containing Q. Then there exists a strict closed
immersion Z →֒ X, where X is of the form Spec(kJP KJt1, . . . ,tnK) with k a field
and the logarithmic structure given by an fs monoid P .

Proof. The logarithmic structure on Z possesses a sharp chart i : P → A. By
the classical Cohen’s structure theorem there exists a surjection kJt1, . . . ,tnK ։ A.
Therefore, the surjection kJP KJt1, . . . ,tnK ։ A mapping P to i(P ) gives rise to a
strict closed immersion as required. ♣

Corollary 8.4.5. Let Z be an fs logarithmic scheme whose underlying scheme is
the spectrum of a complete local ring A containing Q. Then any logarithmic scheme
Z ′ of finite type over Z is locally embeddable into a qe logarithmic manifold.

Proof. By Lemma 8.4.4, Z admits a strict closed immersion into a logarithmic
scheme Y = Spec(C), where C = kJP KJt1, . . . ,tnK. It follows easily, that Z ′ locally
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admits a strict closed immersion into a logarithmic scheme Y ′ which is logarith-
mically smooth over Y . It remains to recall that Y is a logarithmic manifold by
Lemma 2.7.10, and hence Y ′ is a logarithmic manifold by Theorem 2.7.9. ♣

9. Extension of main theorems to other categories

In this section we will use functoriality to extend Theorems 1.2.6, 1.2.12 and
1.2.14 to other settings.

9.1. Morphisms of finite presentation. In §9.1 we will work with qcqs (quasi-
compact and quasi-separated) stacks and schemes of characteristic zero, but they do
not have to be noetherian. Our main goal is to desingularize schemes over arbitrary
valuation rings, but our arguments apply to general non-noetherian bases as well.

9.1.1. Approximation. We briefly recall some facts, the main reference is [Gro67,
IV3, §8]. By [TT90, C.9] any qcqs scheme B of characteristic zero is a filtered
limit of a family {Bi, fij} with Bi of finite type over Q and fij affine. If B is
integral of characteristic zero, we can take all Bi to be integral of characteristic
zero. Furthermore, any B-scheme X of finite presentation is the base change of a
Bi-scheme Xi of finite type for a large enough i, and any two choices of such an
Xi become isomorphic already after base change to some Bj . If X → B is smooth,
étale, proper, etc., then the same is true for Xj → Bj for a large enough j. A
similar theory exists for morphisms of B-schemes, coherent sheaves on them, etc.

The above theory easily extends to logarithmic schemes: a quasi-coherent sat-
urated logarithmic structure M → OB is a direct colimit of its fs logarithmic
substructures Mα →֒M , and each Mα is obtained by pullback of an fs logarithmic
structure Miα on some Xi. Therefore, (X,Mα) is the filtered limit of fs logarithmic
scheme (Xj , f

∗
ijMiα), and varying α we obtain that (X,M) is the limit of fs loga-

rithmic scheme of finite type over Z. In the same way one approximates morphisms
of logarithmic schemes, their properties, etc. In particular, using the chart criterion
it is easy to see that X → B is logarithmically smooth if and only if the same is
true for approximations Xi → Bi with a large enough i.

9.1.2. Proof of Theorem 1.2.19. The proof is absolutely the same for F , R and
R′, so we will work with R for concreteness. Assume that g : Z → B possesses a
B-approximation étale locally, that is there exists étale covers by schemes Z0 → Z
and B0 → B and a morphism g0 : Z0 → B0 compatible with g and admitting an

approximation r̃ : Z̃ → B̃ with B ∈ B. If R(r̃) fails for any choice of such r̃, then
we set R(g) = R(g0) = ∅. Otherwise, choose r̃ with a non-empty R(r̃) and define
R(g0) to be the base change of R(r̃). We claim that this is well defined. Indeed,
assume that r̃′ is another B-approximation with R(r̃′) 6= ∅. Since g0 is a filtered

limit of approximations, there exist its approximation r̃′′ : Z̃ ′′ → B̃′′ such that both
g0 → r̃ and g → r̃′ factor through it. Already the pullbacks of R(r̃) and R(r̃′) to

Z̃ ′′ coincide by compatibility of R with base changes.

Next we claim that R(g0) descends to Z. Assume first that B0 = B. Then the
morphism g1 : Z1 = Z0 ×Z Z0 → B0 admits approximations induced from g0. By
the above paragraph, both induce the same desingularization R(g1) of Z1, and it
follows that the pullbacks of R(g0) to Z1 coincide. Therefore, R(g0) is the pullback
of a desingularization of g that we denote R(g). Descent with respect to B0 → B is
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done similarly. Our construction easily implies that R(g) is functorial with respect
to logarithmically smooth morphisms and base changes.

It remains to prove the claim about existence, so assume that g : Z → B is nice
and B is integral as a stack and has a generically trivial logarithmic structure.

Assume first that B is a scheme. Then g possesses an approximation r̃ : Z̃ → B̃,

where B̃ satisfies the same properties. By Theorem 1.2.12 there exists a blow up

B̃′ → B̃ with B̃′ ∈ B such that if r̃′ : Z̃ ′ → B̃′ denotes the saturated base change,

then R(r̃ ×B̃ B̃′) succeeds. By approximation there exists a blow up B′ → B

such that the morphism B′ → B̃ factors through B̃′. It satisfies the assertions
of the theorem because the saturated pullback g′ : Z ′ → B′ of g possesses the
B-approximation r̃.

In general, find an étale covering by a scheme B0 → B and let g0 : Z0 → B0

be the base change. By the above case, here exists a blow up B′
0 → B0 such

that R(g′0) is defined. By [Ryd, Theorem A] there exists a blow up B′ → B such
that B′ ×B B0 → B0 factors through B′

0. It is easy to see that it is a required
modification of B.

9.2. Analytic spaces and formal varieties. We conclude the paper with dis-
cussing how our results might extend to formal and complex or non-archimedean
analytic geometries. First, analogs of logarithmic structures and DM stacks in these
categories are defined as their analogs in the theory of schemes. The rest is based
on the ideas and results of [AT19, §6.2]. For simplicity of notation we assume that
the logarithmic structures are trivial.

By a formal variety X we mean a formal scheme locally isomorphic to comple-
tion of a variety over a field. So, X is covered by opens of the form Spf(A) with
A = k[x1, . . . ,xm]Jt1, . . . ,tnK/I. Let Sp be a category of analytic spaces or formal
schemes as in [AT19, §6.2], where in case (i) – qe formal schemes, we restrict the
category to formal varieties. It is shown in loc.cit. how any object X of Sp is ob-
tained by gluing affinoid objects Xi with excellent rings Ai = Γ(OXi). If f : X → B
is a regular morphism of affinoid objects with algebras A and O, then the morphism
f : X = Spec(A) → B = Spec(O) is regular.

Is f a relative manifold? Probably it is not when dim(B) > 1. A negative
indication is the following fact communicated to us by Ofer Gabber: if n ≥ 2,m > 0,
then the generic fiber of the morphism

Spec(kJx1, . . . ,xn, y1, . . . ,ymK) → Spec(kJx1, . . . ,xnK)

is of dimension m+n− 2, which is larger than m for n > 2. Despite this one might
still hope for some positive results, as was noticed in Remark 1.3.10.

Assume now that dim(B) ≤ 1. Then our expectation is that f is a relative
manifold and this seems plausible especially in light of the special case covered by
Lemma 2.7.10. This question will be studied in detail elsewhere, but assuming the
expectation is true one obtains that principalization of ideals is always possible
for f , and its analytification or completion induces principalization of ideals for
f. It remains to recall that morphisms of affine schemes corresponding to open
immersions in Sp are regular, hence functoriality of principalization implies that
the local principalization we have constructed in Sp extends to arbitrary regular
morphisms. As a corollary one would obtain that analogs of the main Theorems
1.2.6, 1.2.12, 1.2.14 and 1.2.17 extend to the category Sp.



82 D. ABRAMOVICH, M. TEMKIN, AND J. W LODARCZYK

Appendix A. Relative destackification

In [ATW, Section 4] we introduced a destackification functor that associates to
a simple toroidal orbifold X a blow up D(X) such that the coarse moduli space
D(X)cs is also logarithmically regular. This construction was used in [ATW17,
Section 8] to deduce scheme-theoretic resolution of logarithmic varieties from a
stack-theoretic one. To resolve morphisms, we need a relative version of this result.
Fortunately, the same destackification functor works, but we have to check the ad-
ditional property that it also preserves logarithmic regularity of certain morphisms.
This will require to open the box, and we will have to generalize certain results
from [AT17].

In addition, we will construct a relative version of the destackification DS(X)cs/S

with respect to a given stack S. Analogously to defining relative coarse spaces,
starting with D this will be done without opening the box by a standard étale
descent. Using this relativization we obtain projective resolution of morphisms of
stacks rather than schemes.

A.1. Étale descent construction.

A.1.1. Assumptions. Let X → S be a morphism of logarithmic DM stacks of char-
acteristic zero. We assume that X is logarithmically regular and the relative inertia
IX/S is finite diagonalizable and acts trivially on the monoids Mx.

A.1.2. The relative destackification. Consider an étale presentation S1⇒S0 of S and
set S2 = S1 ×S0 S1 and Xi = X ×S Si. By [ATW, §2.1.1], IXi = IX/S ×X Xi and
hence Xi are simple toroidal orbifolds in the sense of [ATW] and both morphisms
p1,2 : X1⇒X0 are surjective strict inert étale. In particular, the destackification
functor from [ATW, Theorem 4.1.5] applies to Xi and is compatible with both pi.
We will denote it Xi 7→ D(Xi). The same argument applied to the morphisms
X2 → X1 implies that D(X1)⇒D(X0) is a strict étale groupoid in DM stacks,
hence the quotient stack [D(X0)/D(X1)] is defined by [ATW, Lemma 2.1.4]. We
denote the latter stack DS(X) and call it the S-destackification of X .

Theorem A.1.3. Let X and S be as above, then

(i) The X-stack DS(X) depends only on X → S up to an isomorphism unique
up to a unique 2-isomorphism.

(ii) The construction of DS(X) is compatible with representable étale morphisms
S′ → S, that is, DS′(X ×S S′) = DS(X) ×S S′.

(iii) The stack DS(X) is logarithmically regular and the S-coarsening DS(X) →
DS(X)cs/S is logarithmically étale. In particular, DS(X)cs/S is logarithmically reg-
ular.

(iv) The morphisms h : DS(X) → X and h0 : DS(X)cs/S → Xcs/S have a natural
blow up structure.

(v) If X ′ → X is a surjective logarithmically smooth inert morphism, then the
blow ups DS(X ′) → X ′ and DS(X ′)cs/S → X ′

cs/S are pullbacks of h and h0.

Proof. To prove (i) we should check that DS(X) is independent of the presentation
of S. It suffices to consider the case of refinement, that is, S′

1⇒S′
0 is another

presentation with S′
0 → S factoring through S0. Then the natural equivalence of
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groupoids S′
i → Si gives rise to an equivalence of groupoids D(X ′

i) → D(Xi), hence
to a canonical isomorphism of the quotients.

Let us prove (ii). Choose a presentation S1⇒S0 of S and set Xi = X ×S Si,
S′
i = S′ ×S Si and X ′

i = X ′×S Si, where X ′ = X×S S′. Then X ′
i → Xi is the base

change of the étale morphism of schemes S′
i → Si and by [ATW, Theorem 4.1.5]

D(X ′
i) = D(Xi) ×Si S

′
i = D(Xi) ×S S′. By descent, passing to the quotients we

obtain the asserted isomorphism DS′(X ′) = DS(X) ×S S′.

Properties (iii)–(v) are deduced by étale descent from their absolute analogs,
which hold for D(X0) by [ATW, Theorem 4.1.5]. ♣

A.2. Logarithmic regularity. Now, we are going to strengthen claim (ii) above
by showing that DS(X)cs/S also preserves relative logarithmic regularity.

Theorem A.2.1. Let X and S be as in §A.1.1 and assume that Z is a logarith-
mically regular logarithmic DM stack and S → Z is a morphism such that the
composition f : X → Z is logarithmically regular. Then,

(i) The morphisms DS(X) → Z and DS(X)cs/S → Z are logarithmically regular
too.

(ii) If Z ′ → Z is a morphism of logarithmically regular logarithmic DM stacks,
S′ = S×ZZ ′ and X ′ = X×ZZ ′, then DS′(X ′) = DS(X)×ZZ ′ and DS′(X ′)cs/S′ =
DS(X)cs/S ×Z Z ′.

Proof. For shortness we will only check (i). Tracking the same steps one can also
see that all ingredients are compatible with the base change Z ′ → Z, obtaining (ii).

Logarithmic regularity can be checked étale locally on the source, hence by The-
orem A.1.3(ii) the claim is étale-local on S and we can assume that S is a scheme.
This reduces the claim to the absolute case: if Z and X → Z are logarithmi-
cally regular and the map of inertias IX → IZ is trivial (factors through the unit
Z →֒ IZ), then D(X) and D(X)cs are logarithmically regular over Z. In the same
way, one checks that the problem is étale local on Z, and hence one can assume
that Z = Spec(O) is affine. Finally, destackification is compatible with inert étale
morphisms X ′ → X , and any geometric point x → X factors through an inert
morphism X ′ → X whose source is a global X ′ = [Spec(A)/Gx]. Therefore, we
can assume that X = [Spec(A)/G], where G is an étale diagonalizable group acting
Z-equivariantly, and we can work locally at a G-invariant point x ∈ X . In this
case, D(X) → X pulls back to the torification T (W ) → W of the G-action on W
(see [ATW, §4.2.1]), and our problem reduces to showing that T (W ) and T (W )/G
are logarithmically regular over Z.

Recall that torification of balanced actions were constructed in [AT17, Theo-
rem 4.6.3 and 5.4.2]. To complete the proof we should show that it possesses the
relative logarithmic regularity property over Z. We assume a familiarity with that
paper and briefly indicate the argument.

SinceG is a finite group scheme, the localization at x is equivariant, and it suffices
to consider the case X and Z are local schemes. Furthermore, by étale localization
we can assume that both logarithmic structures are Zariski. Fix a sharp chart

Z → AP . By §2.2.5 f factors through the sharp factorization f̃ : X → Z̃ = ZP [P̃ ].

Clearly, f̃ is G-equivariant with respect to the trivial action on Z̃. Since, Z̃ → Z is

logarithmically étale, it suffices to prove the claim for the morphism f̃ . So, in the
sequel we also assume that f is sharp.
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It is easy to see that Z → AP can be extended to a sharp G-equivariant chart
Y → AQ. (One can show this directly, or use the first part of the proof of [IT14a,
Proposition 1.2].) The logarithmic fiber S at x isG-equivariant, hence we can choose
a family of equivariant parameters s = (s1, . . . ,sn). (The action of G corresponds to
a grading, so equivariance simply means that we choose homogeneous parameters
that lift a G-equivariant basis of the cotangent space.) Also, fix a family of regular
parameters t = (t1, . . . ,tn) at f(z), obtaining a regular morpihsm Z → Z0 =
Spec(Q[P ][t]). Then (s, t) is the family of regular parameters of X at x and h : X →
X0 = Spec(Q[Q][s, t]) is an inertia preserving regular morphism, where the right
hand side is provided with the natural action via the gradings on Q and s. By
[AT17, Theorem 4.6.3], T (X) = T (X0) ×X0 X , and this reduces us to the model
case claim that T (X0) and T (X0)/G are logarithmically regular over Z0. The
explicit computation of T (X0) is given in the proof of [AT17, Lemma 4.5.4], and
a direct inspection shows that not only T (X0) and T (X0)/G are logarithmically
regular, they are also logarithmically regular over Z0. (The parameters t are sort
of dummy ones – they are G-invariant, hence do not show up in the formulas for
torific ideals and the torification blow up.) ♣

Remark A.2.2. In fact, blowing up the same torific ideal as defined in [AT17] in
the absolute case, one obtains a torification for logarithmically regular morphisms
X → Z with an arbitrary logarithmic scheme Z, and it is compatible with arbitrary
base changes Z ′ → Z. The latter would then extend to destackification of logarith-
mically regular stacks over an arbitrary Z. However, proving this would require
to repeat too many arguments from [AT17] and [ATW], and we decided to only
consider the case when Z is logarithmically regular, and hence X is logarithmically
regular and the absolute torification and destackification has been already defined
in the cited papers.

Appendix B. Regular morphisms

B.1. The definition. Recall that a morphism f : Y → Z of noetherian schemes is
regular if it is flat and has geometrically regular fibers. This notion is smooth local
on Y and fppf local on Z, in particular, it extends to morphisms between algebraic
stacks. If f is of finite type, then f is regular if and only if it is smooth. Thus,
regularity is a natural extension of smoothness to arbitrary morphisms. In fact, the
famous theorem of Popescu states that any regular morphism is a filtered limit of
smooth ones.

B.2. Parameters. Assume that f : Y → Z is a regular morphism of schemes,
y ∈ Y is a point, and S = Y ×Z Spec(k(z)) is the fiber over z = f(y). By a family
of regular parameters of f at y we mean any family t1, . . . ,tn ∈ Oy whose image is
a family of regular parameters of the regular ring OS,y.

Lemma B.2.1. Assume that f : Y → Z is a morphism of qe stacks of characteristic
zero such that Y is a scheme and f is regular at a point y.

(i) Let t1, . . . ,tl be global functions on Y . Then the morphism Y → Z × Al

induced by f and t1, . . . ,tl is regular at y if and only if t1, . . . ,tl is a partial family
of regular parameters of f at y.

(ii) A closed subscheme X →֒ Y is regular at y over Z if and only if it is given
by the vanishing of a partial family t1, . . . ,tl of regular parameters at f at y.
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Proof. We will prove only (i), since the other claim is proved similarly. The claim
is flat-local on the base and local at y, hence we can assume that the schemes are
local with closed points y and z = f(y).

Recall that a homomorphism φ : A→ B of qe local rings is regular if and only if

its completion φ̂ : Â → B̂ is regular. Indeed, the completion A → Â is regular, so

if φ̂ is regular, then A → B̂ is regular. The latter is the composition of φ and the

regular homomorphism B → B̂, hence in this case φ is regular. Conversely, if φ is

regular, then φ̂ is regular by [Tem12, Corollary 2.4.5].

Set C = Ôy and A = Ôz . By the above paragraph the homomorphism ψ : A→ C
is regular, and we should prove that the homomorphism φ : B = AJt1, . . . ,tlK → C
is regular if and only if t1, . . . ,tl is a partial family of regular parameters.

Recall that φ is regular if and only if there exists an isomorphism of B-algebras
B⊗̂klJs1, . . . ,smK ∼−→ C, where k and l are compatible fields of definition (e.g.,
see [AT18, Remark 2.2.12])). Moreover, one can take s1, . . . ,sm to be any family of
regular parameters of φ. If φ is regular, then choosing such an s we obtain that (t, s)
is a family of regular parameters of ψ, and hence t is a partial family. Conversely,
if t is a partial family, complete it to a full family (t, s) obtaining an isomorphism
A⊗̂klJs, tK ∼−→ C. Hence B⊗̂klJsK ∼−→ C, and φ is regular. ♣
Remark B.2.2. (i) The same argument applies in any characteristic when the
extension k(y)/k(z) is separable (that is, y is a simple regular point). The assertion
is false when the extension is inseparable.

(ii) The lemma holds for noetherian schemes without the quasi-excellence as-
sumption, but proving this would require more work. (For example, one could use
the characterization of regular homomorphisms in terms of the cotangent complex.)

Appendix C. Relative Riemann-Zariski spaces

In this appendix we work with arbitrary schemes. Our goal is to prove Theorem
C.3.1. Its claim is an easy corollary of the flattening theorem of Raynaud-Gruson
in the case when h is flat over Z r T . However, in our application h can be an
arbitrary Kummer cover, so it does not have to be flat, and we have to find another
argument. Our proof uses a technique of relative RZ spaces developed in [Tem11b],
which can also be used to prove the flattening theorem.

C.1. The space RZU (Z). Recall that to any qcqs (i.e. quasi-compact and quasi-
separated) scheme Z with a schematically dense open U →֒ Z one associates the
relative RZ space Z = RZU (Z), which is the limit of all U -modifications of Z
considered in the category of locally ringed spaces. By a strong version of Chow
lemma (or by the flattening theorem), the family of T -supported blow ups is cofinal,
where T = Z r U , hence Z is also the limit of all T -supported blow ups of Z.

Lemma C.1.1. With the above notation, a family of U -modifications {Zi}i is
cofinal if and only if the morphism of locally ringed spaces p : RZU (Z) → limi Zi is
an isomorphism.

Proof. Only the opposite direction needs a proof. So, assume that p is an isomor-
phism and for a given U -modification g : Z ′ → Z let us find a finer U -modification
of the form Zi → Z. Fix for a while a point z ∈ Z = RZU (Z) and let Z ∈ Z, z′ ∈ Z ′

and zi ∈ Zi be its images. Then Zz = Spec(Oz) coincides with limi Spec(Ozi) =
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limij Zij , where {Zij}j is the family of open neighborhoods of zi. We claim that
the morphism Zz → Z ′ factors through some Zij .

By [Ryd, Theorem D(i)] there exists a closed immersion Z ′ →֒ Z̃ ′ with Z̃ ′ of
finite presentation over Z. (For our argument, we could also replace Z ′ by a small

enough affine neighborhood of z′, and then existence of such Z̃ ′ is obvious.) Let
Z ′ be given by I ⊂ OZ̃′ . This ideal is finitely generated on the open subscheme

Ũ ′ = U ×Z Z̃ ′ because U →֒ Z is finitely presented. By [GD71, Lemma 6.9.10.1]
there exists a finitely generated ideal I ′ ⊆ I such that I ′|U = I|U . Replacing Z ′

by V (I ′) we can also achieve that Ũ ′ = U , and then U is an open subscheme of Z̃ ′

whose schematic closure is Z ′. By [Gro67, IV3, Theorem 8.14.2], Zz → Z̃ ′ factors
through some Zij . Since U ×Z Zij is schematically dense in Zij and is mapped to

U ⊆ Z̃ ′, the morphism Zij → Z̃ ′ factors through Z ′.

Now, for any z ∈ Z fix an appropriate Zij that we denote Zz ⊆ Zi(z). Their preim-
ages form an open covering of Z, and since the latter is quasi-compact by [Tem10,
Proposition 3.3.1], there exist z1, . . . ,zn such that the preimages of Zz1 , . . . ,Zzn cover
Z. Taking i which dominates i(z1), . . . ,i(zn) and replacing Zzj by their preimages
in Zi we can assume that i = i1 = . . . = in. The map Z → Zi is surjective (for
example, this follows from the valuative description of Z = RZU (Zi) below), hence
Zi = ∪nj=1Zzj . By the construction the morphisms Zzj → Z factor through Z ′, and
they agree on the intersections because all maps are uniquely determined by their
behaviour on the preimage of U . This proves that Zi → Z factors through Z ′, as
claimed. ♣

C.2. The space ValU (Z). Our next goal is to describe the RZ spaces explicitly in
terms of semivaluations.

C.2.1. Recollections. The set Z = RZU (Z) is described in [Tem11b, Proposition
2.2.1 and Corollary 3.4.7] by constructing an explicit locally ringed space ValU (Z)
with a homeomorphism ValU (Z) ∼−→ Z. Points of ValU (Z) are minimal semival-
uations on Z with kernel on U , which can also be described as follows: a point
is a pair u ∈ U , ψ : Spec(R) → Z, where R is a valuation ring of k(u) and ψ
extends the morphism u → Z, such that u → U cannot be extended to an open
subscheme of Spec(R) containing at least two points. In particular, u is uniquely
determined by z (and this gives a retraction Z → U , which sends each to point
to its minimal generization contained in U). In addition, Oz is the preimage of R
under Ou ։ k(u).

C.2.2. Semivaluation rings. The ring OZ composed from Ou and R is an example
of the notion of a semivaluation ring O with a semifraction ring A introduced in
[Tem11b, §2.1]: it consists of a local ring (A,m) and a subring O ⊆ A such that
m ⊆ O and R = O/m is a valuation ring with fraction field A/m. Equivalently, O
is the preimage of a valuation ring R of A/m.

Remark C.2.3. (i) The diagram formed by A,O,R and A/m is bicartesian, and
the same is true for the dual diagram of affine schemes. In a sense, Spec(O) is
obtained by gluing Spec(A) and Spec(R) along the point Spec(A/m), which is
closed in Spec(A) and generic in Spec(R).
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(ii) The notion is chosen due to the fact that this datum induces a semiaval-
uation on A with kernel m, and any semivaluation gives rise to an appropriate
semivaluation ring.

The following result generalizes the classical fact that if A is a valuation ring
and B is a local normal A-algebra with Frac(B)/Frac(A) algebraic, then B is a
valuation ring.

Lemma C.2.4. Assume that O is a semivaluation ring with semifraction ring
(A,m) and O′ a normal local O-algebra such that the fiber over m is non-empty
and for any prime of O′ over m the extension of residue fields is algebraic. Then
O′ is a semivaluation ring with semifraction field A′ = O′ ⊗O A.

Proof. Set m′ =
√
mO′ and S = O r m. Then A = OS and mS = m, and

hence A′ = O′
S and m′ = m′

S . We claim that the reduced ring R′ = O′/m′

is normal. If not, then there exists a, b ∈ R′ such that b is regular, a /∈ bR′

and an +
∑n−1
i=0 cia

ib
n−i

= 0 for some n and ci ∈ R′. Choosing arbitrary lifts

a, b, ci ∈ O′ we obtain that x = an +
∑n−1
i=0 cia

ibn−i ∈ m′. Since b is regular, b
is not contained in any prime ideal of O′ over m, and hence b becomes a unit in
O′
S . In particular, b−nx ∈ S−1m′ = m′ and replacing c0 by c0 − b−nx we achieve

that an +
∑n−1

i=0 cia
ibn−i = 0. Thus a/b ∈ O′ by the normality of O′, and reducing

modulo m′ we obtain that a/b ∈ R′. A contradiction.

Thus, R′ is a local normal ring, hence a domain. In particular, the ideal m′ is
prime and it is the whole fiber over m. Furthermore, R′ contains the valuation ring
R and Frac(O′/m′) is algebraic over Frac(O/m) by the assumptions. So, by the
classical theory, R′ is a valuation ring. Finally, A′ = O′

S is a local ring with the
maximal ideal m′

S = m′ and field of fractions Frac(R′). So, O′ is a semivaluation
ring with semifraction field A′. ♣

C.3. A cofinality theorem. Now we can prove the main result of the appendix.
Let us call a morphism of schemes V → U quasi-integral if for any point v ∈ V with
u = h(v) the extension k(v)/k(u) is algebraic. This class of morphisms contains
quasi-finite and integral ones, but is wider than compositions of open immersions
and integral morphisms. For example, it also contains localizations.

Theorem C.3.1. Let Z be a qcqs scheme with a schematically dense normal open
subscheme U and T = Z r U . Assume that h : Y → Z is a dominant morphism
such that V = U ×Z Y is normal, quasi-integral over U and schematically dense in
Y . Let {Zi}i be the family of T -supported blow ups of Z, and for each i let Yi be the
schematic closure of V in Zi×Z Y . Then the family of all finite T -modifications of
the schemes Yi is cofinal in the family of all T -modifications of Y .

Proof. If {Yij}j denotes the family of all finite T -modifications of Yi, then Ỹi :=
limj Yij is normal (it corresponds to the integral closure of OYi in OV ). Set Z =

RZU (Z), Y = RZV (Y ) and Y′ := limi Ỹi. By Lemma C.1.1 it suffices to prove that
the map p : Y → Y′ is an isomorphism. Choose any point y′ ∈ Y′ and let z ∈ Z, yi ∈
Ỹi and zi ∈ Zi be its images. Since Oy′ = colimiOyi is a filtered colimit of normal
rings, it is a normal Oz-algebra. Set Zz = Spec(Oz) and Y′

y′ = Spec(Oy′). By the
valuative description of RZ spaces, Oz is a semivaluation ring with semifraction
field Ou for some u ∈ U and Uu = Spec(Ou) is isomorphic to Zz ×Z U . Therefore
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Y′
y′ ×Zz

Uu is isomorphic to limi Spec(Oyi)×Z U . It follows that Y′
y′ ×Zz

Uu is the

limit of localizations of V , in particular, the map Y′
y′ ×Zz

Uu → Uu is quasi-integral,
and the fiber over u is quasi-integral. Thus, Lemma C.2.4 applies to the extension
Oz ⊂ Oy′ and we obtain that Oy′ is a semivaluation ring with semifraction ring
Oy′ ⊗Oz

Ou. Spectrum of the latter is a limit of open subschemes of V , hence it is
of the form Spec(Ov′) for a point v′ ∈ V .

By the valuative description of Y, giving a point y above y′ is equivalent to
giving a local homomorphism Oy′ → Oy, where the target is a semivaluation ring
composed from its semifraction ring Ov and a valuation ring R ⊆ k(v), where v ∈ V
and Ov′ → Ov is a specialization. Since the morphism u → Y cannot be extended
to a non-trivial part of Spec(R), it follows easily that v = v′, and then by locality
Oy′ = Oy. This shows that the fiber over y′ in Y consists of a single point with the
same local ring, and hence Y = Y′, as required. ♣
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