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REDUCTION AND LIFTING PROBLEM FOR DIFFERENTIAL

FORMS ON BERKOVICH CURVES

MICHAEL TEMKIN AND ILYA TYOMKIN

Abstract. Given a complete real-valued field k of residue characteristic zero,
we study properties of a differential form ω on a smooth proper k-analytic curve
X. In particular, we associate to (X, ω) a natural tropical reduction datum
combining tropical data of (X, ω) and algebra-geometric reduction data over

the residue field k̃. We show that this datum satisfies natural compatibility
condition, and prove a lifting theorem asserting that any compatible tropical
reduction datum lifts to an actual pair (X, ω). In particular, we obtain a short
proof of the main result of [BCG+18].

1. Introduction

1.1. Motivation. The motivation for this work is two-fold. A general motivation
is to establish one more important instance of tropical reduction on Berkovich
curves, while a concrete motivation was to re-interpret in terms of non-archimedean
geometry the main result of [BCG+18], which describes a compactification of a
moduli space of curves with a differential form. In particular, we obtain a short
proof of [BCG+18, Theorem 1.3] and suggest a natural interpretation of the global
residue condition discovered in [BCG+18]. Our methods are much more algebraic
and apply over any complete valuation field k of residual characteristic zero, though
we do use analytic geometry over k and algebraicity of proper k-analytic curves.

We learned about [BCG+18] from the talks given by Sam Grushevsky at our
departments, and we are grateful to Sam for that and for the subsequent discussions.

1.2. Tropical reduction. Let us explain first what we mean by tropical reduction
of k-analytic objects.

1.2.1. Metrized curve complexes. Two main invariants of a non-archimedean field

k are its residue field k̃ and the group of values |k×|. Algebraic geometry over k̃
and polyhedral or tropical geometry over |k×| are very useful in studying geometry
over k. There are various constructions (often depending on choices) that associate

to a k-analytic space X reductions X̃, which are k̃-varieties, and skeletons ΓX ,
which are piecewise linear spaces. In this paper, X is a curve and ΓX is just
a metric graph. Naturally, the two types of invariants are related and one may
want to combine them into a single invariant of a mixed type. Amini and Baker

introduced in [AB15] metrized curve complexes by placing k̃-curves as vertices of
ΓX and identifying the ends of the edges with points of these curves, and we will
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follow this approach in the paper. We will use the term tropical reduction to denote
constructions mixing reduction with tropical data.

Remark 1.2.2. A more conceptual way to encode the same information is to enrich

a nodal reduction X̃ with tropical information. This is achieved by providing X̃

with a natural log structure induced from the formal model. In fact, this makes X̃

a log smooth curve over k̃ provided with the log structure (k◦ \ {0})/(1 + k◦◦), see
[BT20, §5.1.8]. It is natural to call such construction log reduction, as in [BT20].
However, we do not use log geometry in the sequel, and the additional data we
consider is still an ad hoc mix of tropical and algebra-geometric data. It is an
interesting and important question if it can be interpreted as a meaningful object
of log geometry.

1.2.3. p-covers. It is natural to ask if tropical reduction of a k-analytic curve X
extends to finer objects. In [BT20] this problem was solved for finite covers Y → X

of degree p = char(k̃). The reduction data was rather non-trivial, and involved in
addition to a finite map of tropical reduction data also a pl function on ΓY (the
different function) and certain meromorphic differential forms at the vertex curves
of ΓY . Moreover, [BT20] provides a list of compatibilities between these objects and
its main result is a lifting theorem claiming that any such tropical reduction datum
can be lifted to an actual p-cover Y → X . This indicates that the constructed
reduction is “as fine as possible” and no “hidden parameters are left”.

1.2.4. Differential forms. The goal of this paper is to solve a similar problem for
X provided with a global meromorphic differential form ω: construct a tropical
reduction of (X,ω), describe a list of compatibilities this datum satisfies, and show
that the list is complete by proving a lifting theorem – any compatible tropical
reduction datum lifts to an actual pair (X,ω).

1.3. Compactifications of ΩMg. Next, we briefly recall some results of [BCG+18].
For simplicity we consider regular differential forms, the meromorphic case is sim-
ilar, but requires a minimal care for poles. Pairs consisting of a smooth proper
curve X with a non-zero regular differential form ω ∈ Γ(ΩX) defined up to a scalar
are classified by the projectivized Hodge bundle PΩMg whose fibers over Mg are
Pg−1. For a partition µ = (µ1, . . . ,µn) of 2g − 2, let PΩMg(µ) be the stratum of
pairs (X,ω) such that the pattern of zeros of ω is µ. Since ω is determined up to
a scalar by its divisor, the stratum embeds also into the space Mg,n (modulo the
group of symmetries of the partition).

The two embeddings induce two different compactifications: by taking the clo-
sure in the natural extension of the projectivized Hodge bundle to PΩMg → Mg,
where Ω is replaced by the dualizing sheaf over the nodal curves, and by taking
the closure in Mg,n. Moreover, it is even more natural to consider the finer com-
pactification KMg,µ refining these two, which is obtained by taking the closure

in PΩMg,n. In a sense, one modifies the first compactification by imposing the
condition that the pattern of zeros is preserved, i.e., stay in the smooth locus and
do not collide. Points of PΩMg,n are given by nodal curves X , smooth points
p1, . . . ,pn ∈ X and a non-zero section ω ∈ Γ(ωX) up to a multiplicative scalar.

The main result of [BCG+18] describes which points (X, p, ω) belong to KMg,µ.
The starting point is that the datum (X, p, ω) is still not fine enough since ω may
vanish on components of X . If (X, p, ω) is the central fiber over a complex disc
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and the generic fiber (Xt, pt, ωt) is smooth, then the order of pole ℓi of ω along the

components X̃i of X is a valuable invariant, and after rescaling by tℓi one obtains

a non-trivial limit ω̃i = tℓiω|X̃i
, which is a differential form on X̃i that might have

poles at the nodes. This idea goes back to Kontsevich, who also noted that this
data satisfies some simple compatibility conditions along the nodes. The function

ℓ associating ℓi to X̃i is called level function.
It was proved in [BCG+18] that the datum (X, p, ℓ, ω̃) also satisfies a much less

intuitive global residue condition taking into account the structure of the dual graph
of the components of bounded level, and imposing extra vanishing conditions on
the residues of ω̃i at a given level. The main result [BCG+18, Proposition 3.8]
shows that any datum satisfying the global residue condition extends to a family
over a disc. As an immediate corollary one obtains the following characterization of
KMg,µ: a tuple (X, p, ω) lies in KMg,µ if and only if it lifts to a compatible data
(X, p, ℓ, ω̃) satisfying the global residue condition, see [BCG+18, Theorem 1.3].

Remark 1.3.1. It is not an accident, that points of KMg,µ are described in
terms of liftability of a datum (X, p, ω) to a compatible datum (X, p, ℓ, ω̃). In
[BCG+19], a finer compactification of PΩMg is constructed, whose points more
or less correspond to the data (X, p, ℓ, ω̃) with an additional piece of “stacky”
information, called prong-matching in loc.cit. The latter compactification is smooth
and has a natural modular interpretation. Its construction is rather complicated,
and we do not discuss it in this paper.

Finally, let us say a few words about the methods of [BCG+18]. The main result
is proved over C in two ways. The first one uses plumbing techniques over the
punched disc, and it has many similarities with our method. The other one relies
on the theory of flat surfaces, and its output is a family over [0, ε) rather than over
a complex disc, it is not related to the sequel.

1.4. Outline of the paper. Now, let us explain what is done in this work. The

case considered in [BCG+18] corresponds to k = ̂∪nC((t1/n)).

1.4.1. Tropical reduction of ω. We work with a nice k-analytic curve X (see §1.5)
and a meromorphic differential form ω on X . Also, we fix a skeleton Γ of X con-
taining all poles and zeros of ω, and we enrich Γ to a metrized curve complex

X̃ = (Γ, Cx, pi), see §2.2 for a precise definition. Note that a tropical reduction of
a function f with poles and zeros in Γ is nothing but the pl function log |f | on Γ

and scaled reductions f̃x of f at the vertices x ∈ Γ of type 2. The latter are mero-
morphic functions on the reduction components Cx, satisfying simple compatibility
conditions. This is a very natural construction, that appeared in different settings
in [BPR13, Theorem 5.15] and in [Tyo12, §2.2.1].

In §2 we introduce a tropical reduction of ω. A natural metrization ‖ ‖of ΩX was
constructed in [Tem16], so we can just imitate the case of a function: we associate
to ω the level function ℓ = log ‖ω‖ on Γ and scaled reductions ω̃x at the vertices
of type 2. In fact, we prefer a slightly more technical but canonical approach – we
consider the so called graded reduction, so that ω̃x lives at the ℓ(x)-graded piece.
This allows us to avoid the choice of a scaling element c ∈ k×. Note also that the

reductions of Ω with respect to this norm were computed in [BT20]: Ω̃x = Ωlog
Cx

,
where Cx is the reduction of X at x. So we view ω̃x as a meromorphic differential
form on Cx but measure its zeros and poles using the log-order.
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Remark 1.4.2. (i) A family (Xt, ωt) over a punched complex disc gives rise to a

pair (X,ω) over k = ̂∪nC((t1/n)), and then the tropical reduction datum of (ℓ, ω̃) of
(X,ω) is nothing but the datum (ℓ, ω̃) of [BCG+18]. Also, it was noted in [MUW21,
Theorem 5.2] that this construction extends to the case when k is an arbitrary DVF.

(ii) In [BCG+18] and [MUW21] one considers the usual order of zeros and poles
of ω̃x, so the compatibility condition along an edge e is that the sum of orders on
the two sides of e is −2. We use the log order, so in our case the sum is 0, similarly
to reduction of functions or sections of any other line bundle.

Finally, we introduce one more tropical reduction invariant – the residue function
ℜω, which associates to an oriented edge of Γ a scalar in ground field k. To do so,
we show that ω has a well-defined residue ResA(ω) ∈ k along any oriented annulus
A. This is a rather straightforward generalization of a classical result of Serre,
see [Ser88, Ch. II, §11]. We define ℜω(e) to be ResA(ω), where A is an oriented
annulus whose skeleton is contained in e and has compatible orientation. The
compatibilities satisfied by the residue function are also very natural: it changes
sign when the orientation of e is changed, it is harmonic at the vertices of type 2,
if e is a leg of Γ and pl is the corresponding point of type 1 then ℜω(l) = respl

(ω),
and if x ∈ Γ is a vertex of type 2 and e ∈ Star(x) then the (graded) reduction
of ℜω(e) coincides with the residue of ω̃x at the point pe ∈ Cx corresponding to
the branch e. It turns out that the global residue condition of [BCG+18] is an
immediate corollary of the above properties of ℜω.

Remark 1.4.3. (i) The function ℜω : E(Γ) → k is a sort of a tropical datum, but

it obtains values in k rather than k̃. We do not know other interesting examples of
this form.

(ii) Our tropical reduction datum (X̃, ℓ, ω̃,ℜω) extends the datum of [BCG+18]
by including the residue function ℜω. The latter is a sort of a hidden parameter
in loc.cit. responsible for the global residue condition – the reduction of ℜω can
vanish on components of high level, while the global harmonicity of ℜω might force
non-trivial restrictions at lower levels.

1.4.4. Main results. Our main results concern with tropical reduction and lifting.

In Theorem 3.2.1, we prove that the tropical reduction (X̃, ℓ, ω̃,ℜω) satisfies a list
of natural compatibility conditions, some of which have been mentioned above.

Conversely, Theorem 3.3.1 asserts that any compatible datum (X̃, ℓ, ω̃,ℜ) lifts to a
pair (X,ω) over k. We shall emphasize that in this paper, we do not consider the
question of liftability of purely tropical data, i.e., data consisting only of a tropical
curve and a level function. This question was answered in [MUW21], to which we
refer the interested reader for details.

Remark 1.4.5. We want to stress that both X and ω are constructed in the
lifting theorem. This is analogous to the main result of [BT20], where one lifts an
appropriate tropical reduction datum to a p-cover Y → X , but neither Y nor X
can be fixed. Notice that one cannot expect a compatible datum to be liftable with

a prescribed lift X of X̃. Indeed, by [KZ03, Theorem 1], there exist components
of the moduli space of stratified differentials supported over the hyperelliptic locus

of the moduli space of curves. Thus, the reduction (X̃, ℓ, ω̃,ℜω) of a pair (X,ω) in

such a component can not be lifted to a non-hyperelliptic lift X ′ of X̃.
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1.4.6. The methods. Our method of proving the reduction and lifting theorems for
a differential form in the residual characteristic zero case is surprisingly close to
the method used in [BT20] to prove analogous results for p-covers in the positive
residual characteristic case. Everything is based on Proposition 4.1.3, which clas-
sifies differential forms without zeros and poles on an annulus A. Explicitly, it
asserts that there exists a good coordinate t on A such that ω acquires a binomial
form (cnt

n + c0)
dt
t . Moreover, c0 is the residue of ω on A and |cntn| = ‖ω‖ on the

skeleton eA, so the isomorphism class of ω is determined by the two invariants: the
residue and the norm on the skeleton. Note that this result is a natural generaliza-
tion of a classical result providing a local description of meromorphic differential
forms on Riemann surfaces. The proof is similar, and constructs the required co-
ordinate by a series of approximations. Notice also, that a similar assertion in the
complex-analytic setting plays an important role in the proof of the main result in
[BCG+18].

Remark 1.4.7. The analogous result in [BT20] shows that a p-cover Y → A is
presented by y = tp + cnt

n for an appropriate choice of coordinates on Y and
A, and |cntn| coincides with the different function δf on eA. It is also proved by
successive approximations, but the computation is subtler, see Theorem 4.3.8 and
Corollary 4.3.9 in loc.cit.

The most subtle result about the residue function is its harmonicity at a vertex
x ∈ Γ of type 2. We prove this by cutting out a star-shaped neighborhood U of x,
patching it by discs to a smooth proper curve U , and extending the form into the
added discs using its description on the intersection annuli. In this way we obtain
a full control on the poles of ω on U and the harmonicity follows from the fact that
the residues on the algebraic curve U sum up to zero.

Finally, the lifting theorem is proved by lifting forms ω̃x to star-shaped neigh-
borhoods Ux and gluing these to a single curve X along annuli using the same
classification of forms on the annuli. The only subtle point here is to lift the forms
so that the residues at the edges at v are precisely ℜω(e) ∈ k, as an arbitrary lift
of ω̃x would only give a form with residues having the same graded reduction as
ℜω(e)’s. We solve this problem, again, by patching Ux to a good reduction curve
Ux and proving algebraically that the problem of precise lift of residues is solvable
for Ux.

1.4.8. Torsor of good coordinates. Existence of good coordinates was basic for all
our proofs. We conclude this paper with a detailed study of the set of all such
coordinates in §5. In particular, we prove that they form a torsor under the group
Gn(k

◦), where Gn := Gm ⋉n Ga and Gm acts on Ga by λ(µ) := λ−nµ, which gives
rise to an identification of certain torsors in the tropical reduction. This result
provides another interpretation of the prong matching of [BCG+19], and can be
useful for further studies.

1.4.9. Comparisons. Our method was inspired by that of [BT20]. Despite the sim-
ilarity, the lifting and tropical reduction for forms is a bit more straightforward and
less technical, than in the case of p-covers, though the residue function ℜω pro-
vides a new aspect for this type of problems. As for [BCG+18], we are not familiar
enough with the technique of plumbing, but it seems certain that there is a large
intersection of ideas between the approaches. It still might be the case that the
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non-archimedean approach isolates the core problems one has to solve in a sharper
way, whence leading to a shorter argument.

1.4.10. Open questions. In addition, our approach at least makes it reasonable to
ask what happens without the restriction on the characteristic. At the very least,
our construction of the tropical reduction datum works as well. To simplify the

arguments, we use the assumption that char(k̃) = 0, but it can be removed. On
the other hand, our classification of forms on annuli certainly does not hold when

char(k̃) = p, and we do not know what happens to the lifting theorem. Studying
the latter case is a very interesting question for further research. It seems possible
that in this case the tropical reduction datum is incomplete (there are some other
tropical or reduction invariants), and the lifting theorem will hold only for a finer
tropical reduction datum.

1.5. Notation and convention. Throughout the paper k denotes an algebraically
closed complete non-archimedean field of residue characteristic 0, ν : k → R ∪ {∞}
is the valuation, k◦ is the ring of integers, k◦◦ its maximal ideal, and k̃ is the residue
field. When it is more convenient to use multiplicative notation we use the absolute
value |c| := 10−ν(c).

By a nice k-analytic curve we mean a quasi-smooth connected compact separated
strictly k-analytic curve. By a star-shaped curve we mean a pair (X, x) where X is
a nice k-analytic curve, x ∈ X a point of type two, and X \ {x} a disjoint union of
open discs and semi-open annuli.

A branch of a nice curveX at a point x is an equivalence class of germs of intervals
[x, y] ⊂ X and the set of all branches is denoted Br(x). In particular, there is one
branch at a point of type one, and for a point y of type 2 there is a one-to-one

correspondence between the branches e ∈ Br(y) and the k̃-points pe ∈ Cy.
In this paper, the tropical curves are skeleta of analytic curves. Thus, we include

the vertices at infinity that correspond to points of type 1. Other vertices corre-
spond to points of type 2. We denote the set of vertices of type i by Vi(Γ). The edges
adjacent to the vertices of type 1 are called legs, and have infinite length. Other
edges are bounded. All edges of tropical curves are oriented, and each bounded
edge (even a loop) is considered twice by equipping it with the two possible orien-
tations. The legs are always oriented towards the vertex of type 1. By abuse of
notation the set of oriented edges and legs is denoted by E(Γ), and the set of legs
by L(Γ). If e ∈ E(Γ) is bounded then eop denotes the same edge with the opposite
orientation. Finally, t : E(Γ) → V (Γ) and h : E(Γ) → V (Γ) denote the tail and the
head functions respectively. If Γ is a tropical curve and x ∈ V (Γ) is of type 2 then
Star(x) denotes the set of oriented edges of Γ with tail x. We shall not distinguish
between tropical curves and their geometric realizations.

2. Tropical reduction of curves with differentials

Let X be a nice k-analytic curve equipped with a non-zero meromorphic differen-
tial form ω. In this section we associate to (X,ω) a natural tropical and reduction
datum.

2.1. Skeletons of the pair. By a skeleton of (X,ω) we mean any skeleton Γ of
X such that D = div(ω) ⊂ Γ.
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Remark 2.1.1. (i) It is well known that there exists such a minimal skeleton unless
X = P1

k and |D| ≤ 2, or X = E is a Tate curve and D = 0. The first case happens
when ω = cxndx for an appropriate choice of a coordinate x on P1

k and the second
case happens when ω is regular on E.

(ii) Our further constructions will work for any choice of Γ. It is natural to work
with the minimal skeleton, if it exists, obtaining the stable tropical reduction.

2.2. The metrized curve complex with boundary. The first ingredient of the
tropicalization is a version of the metrized curve complex as introduced in [AB15].

For each vertex x ∈ Γ of type 2, let Cx be the reduction curve over k̃ corresponding
to x, and for each edge e ∈ Star(x), let pe ∈ Cx be the corresponding point.
Then the datum C :=

(
Γ, (Cx)x∈V2(Γ), (pe)e∈E(Γ)

)
is the metrized curve complex

associated to (X,Γ), cf. [AB15, Section 1.2]. Notice that unlike in loc.cit., in our
setting some of the curves Cx may be non-proper. In fact, Cx is not proper if
and only if x is a boundary point of X . We shall call such a complex metrized
curve complex with boundary, and the set of vertices x ∈ V2(Γ) for which Cx is not
projective will be called the boundary of C.

2.3. The norm and the graded reduction of ω.

2.3.1. The level function. Let ‖ ‖ be the Kähler norm on the sheaf of differential
forms as defined in [Tem16]. It induces a level function on the tropical curve Γ
defined by ℓ(x) := log ‖ω‖x. More explicitly, if x ∈ Γ is of type two then ℓ(x) = ν(c),
where c ∈ k× is any scalar for which cω admits a non-zero reduction, cf. [MUW21,
§5.3]. By [Tem16, Theorem 8.1.6], the level function ℓ is piecewise ν(k×)-integral
affine and continuous. Hence ℓ is completely defined by the collection of its values
at the finite vertices of Γ together with the slopes of ℓ along the unbounded edges.

2.3.2. The graded reduction. For x ∈ X , denote by Ω≤r
X,x the space of sections

η ∈ ΩX,x for which ‖η‖x ≤ r. Then Ω≤r
X,x defines a filtration on ΩX,x, and we denote

the associated graded k̃(Cx)-module by Ωgr
x . We shall mention that each c ∈ k×

induces an isomorphism between the |c|-graded summand of Ωgr
x and Ω◦

X,x/Ω
◦◦
X,x =

Ωk̃(Cx)/k̃
, and in fact, Ωgr

x is canonically isomorphic to Ωk̃(Cx)/k̃
⊗k̃k

gr. Each section

η ∈ ΩX,x induces a uniquely defined graded element η̃grx ∈ Ωgr
x and a well-defined

class η̃x ∈ Ωk̃(Cx)/k̃
/k̃× of forms modulo scaling, which are called the graded tropical

reduction and the scaled reduction of the form η at the point x.
Let η̃grx be a graded form. Since the divisor of a form is independent of scaling,

we have a well defined divisor div(η̃grx ) := div(η̃x). We can also extend the notion
of residue of a form, which will take values in kgr. To do so, pick any c ∈ k× whose
norm is equal to the grading of η̃grx , and set resp(η̃

gr
x ) := c · resp(c−1η̃grx ). The result

is clearly independent of c. The following proposition is a particular case of [BT20,
Lemma 3.3.2]:

Proposition 2.3.3. For any x ∈ V2(Γ) and e ∈ Star(x), the slope ∂ℓ
∂e of the level

function ℓ along e is equal to the minus log-order of η̃x at pe. In particular,

div(η̃grx ) =
∑

e∈Star(x)

(
−1− ∂ℓ

∂e

)
pe,
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and if x is not a boundary point of X then
∑

e∈Star(x)

∂ℓ

∂e
= 2− 2g(Cx)− |Star(x)|.

Remark 2.3.4. In [BCG+18] and [MUW21], the reduction datum associated to
a one-parameter degeneration of a differential form on a stable curve consists of
a level function and a twisted differential. The level function is ℓ and the twisted
differential is the scaled reductions ω̃. The two ways to describe the reduction datum
are essentially equivalent since the level function ℓ as well as the scaled reduction ω̃
are determined by the graded reduction ω̃gr. However, in this paper we work with
actual differential forms rather than sections of a projectivized Hodge bundle, thus
the language of graded reductions is slightly more natural in our setting. Also, it
is convenient to have one object encoding simultaneously tropical and reduction
datum similarly to metrized curve complexes.

2.4. The residue function. The last ingredient of the tropical reduction datum
is the residue function ℜω : E(Γ) → k. Although, ℜω takes values in the ground

field k rather than in the residue field k̃ it is very convenient to include it in the
tropicalization datum as we explain below.

2.4.1. The residues along an annulus. Let A = M(k{t, rt−1}) be an annulus with
skeleton e ∼= [r, 1]. By an orientation on A we mean a choice of an equivalence class
of coordinates such that the two coordinates are equivalent if and only if either both
are decreasing on e or both are increasing on e. We define the induced orientation
on the skeleton e to be the one along which the coordinate is decreasing, i.e., the
head of e with respect to the induced orientation from the coordinate t on A is
h(e) = r, and the tail is t(e) = 1. Although this choice may seem strange, it
simplifies various formulae involving residues of differential forms.

Let ω be a differential form without zeros and poles on an oriented analytic
annulus A = M(k{t, rt−1}). Then ω = (

∑∞
−∞ cnt

n)dtt , and we define the residue
of ω along A to be ResA(ω) := c0. Note that it is invariant under the orientation-
preserving changes of coordinate in any characteristic, see [Boj19]. We use the
capital letter in the notation, to distinguish between this type of residue and the
usual one, which will be denoted by resy(ω).

For completeness, we give a simpler proof of the fact that ResA(ω) is well-defined
that applies in our case. Notice that c = c0 is the only scalar for which the form
ω − cdtt is exact. If s = s(t) is another coordinate on A compatible with the
orientation then the dominant monomial of u(t) := s

t is of degree zero, and hence
the series for log(u) converges under our assumption that k is of pure characteristic
zero. Thus, ds

s − dt
t = du

u is exact, and hence so is ω − c0
ds
s .

It follows from the definition that the residue is alternating, i.e., changing the
orientation on A gives rise to the change of sign of the residue. Indeed, changing
the orientation corresponds to the choice of coordinate s = rt−1 on A, and the
coefficient of ds

s in ω is clearly −c0.

2.4.2. Residues at branches. Assume now that X is a nice curve equipped with a
form ω. It follows from the semistable reduction theorem, that any closed interval
e ⊂ X possesses a finite subdivision to intervals ei = [ai, ai+1] such that each
interior (ai, ai+1) is the skeleton of an open (semi-)annulus Ai ⊂ X containing
neither zeros nor poles of ω. Then ResAi

(ω) is a well defined element of k, as it is
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defined on closed subannuli in a compatible way. In particular, it follows that for
any point x of type 2 and a branch e ∈ Br(x) oriented away from x, the residue
Rese(ω) is a well defined element of k. Here are simple basic properties of Res.

Lemma 2.4.3. Let X be a nice curve with a meromorphic form ω. Then,
(i) if x is of type 1 and e ∈ Br(x) then Rese(ω) = −resx(ω);

(ii) if x is of type 2 and e ∈ Br(x) then R̃ese(ω)
gr

= respe
(ω̃gr).

Proof. To prove (i), consider the Laurent decomposition ω = (
∑∞

i=n cit
i)dtt in a

punched disc around x. Then, the orientation of e is not compatible with the
coordinate t, and hence resx(ω) = c0 = −Rese(ω).

To prove (ii), pick c ∈ k× with |c|−1 = ‖ω‖x, and note that it suffices to check the
claim for cω. Thus, we may assume that ‖ω‖x = 1 and ω̃gr is the usual reduction.

Choose t ∈ O◦
X,x such that t̃ is a meromorphic function on Cx with a simple zero

at pe. Then t is a coordinate on a small enough open annulus A along the branch

of pe and hence ω = (
∑

n cnt
n)dtt . Furthermore, |ci|x ≤ 1 and (

∑
n c̃nt̃

n)dt̃
t̃
is the

Laurent series of ω̃ at pe. In particular, respe
(ω̃) = c̃0 = R̃ese(ω). �

2.4.4. The residue function. Assume now that Γ is a skeleton of (X,ω). Then
each edge e is the skeleton of an open annulus or a punched disc A and we set
ℜω(e) := ResA(ω), obtaining an alternating function ℜω : E(Γ) → k compatible
with classical residues and reduction by Lemma 2.4.3:

Proposition 2.4.5. Keep the above notation. Then,
(i) ℜω(e

op) = −ℜω(e) for any bounded edge;
(ii) ℜω(l) = resql(ω) for any leg l adjacent to a point ql of type 1;

(iii) ℜ̃ω(e)
gr

= respe
(ω̃gr

x ) for any vertex x ∈ Γ of type 2 and any e ∈ Star(x).

Remark 2.4.6. Notice that |ℜω(e)| ≤ min{‖ω‖t(e), ‖ω‖h(e)}, and it is possible that
the inequality is strict, which implies that no evidence of the residue can be seen
at the components ω̃t(e) and ω̃h(e) of the scaled reduction of ω.

3. The main results

In this section we formulate our main results, proofs will be given in Section 4.

3.1. The harmonicity of the residue function. Our first main result, whose
proof relies on the study of differential forms on analytic annuli, asserts that the
residue function ℜω is harmonic:

Theorem 3.1.1. If x ∈ V2(Γ) is not a boundary point then

∑

e∈Br(x)

Rese(ω) =
∑

e∈Star(x)

ℜω(e) = 0.

If x ∈ V (Γ) and e ∈ Br(x) is a branch not in Γ, then e leads to a disc on which ω
is regular, and hence Rese(ω) = 0. This explains why the infinite sum on the right-
hand side is well-defined, and implies the first equality. The proof of the second
equality will be given in §4.2.
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Remark 3.1.2. The alternating and harmonicity properties of the residue function
have a series of “traces” over the residue field. Indeed, if G ⊂ Γ is a full subgraph
all of whose vertices are of type 2 and do not belong to the boundary ∂X then

∑

x∈V (G),e∈Star(x)∩E(G)

ℜω(e) = 0

by the alternating property. On the other hand, by the harmonicity of ℜω, we have
∑

x∈V (G),e∈Star(x)

ℜω(e) = 0,

and hence

(3.1)
∑

x∈V (G),e∈Star(x)∩L(Γ)

ℜω(e) =
∑

x∈V (G),e∈Star(x)\(E(G)∪L(Γ))

ℜω(e
op).

In particular, ifX has no boundary, G is a connected component of the full subgraph
of all vertices of type 2 of level greater than ℓ0, and along any leg l with t(l) ∈ G,
the level function ℓ has negative slope then the left-hand side of (3.1) vanishes,
and hence so does the right-hand side. Set r := 10−ℓ0. Then the vanishing of the
r-graded component of the graded reduction of the right-hand side is the global
residue condition of [BCG+18].

To formulate other results we will need the following definition.

3.1.3. The tropical reduction datum. Let γ = (C, η̃gr,ℜ) be a triple consisting of
a metrized curve complex with boundary C =

(
Γ, (Cx)x∈V2(Γ), (pe)e∈E(Γ)

)
, a col-

lection of graded elements η̃grx ∈ Ωk̃(Cx)/k̃
⊗k̃ kgr for x ∈ V2(Γ), and a function

ℜ : E(Γ) → k. Let ℓγ : Γ → R be the unique continuous, piecewise affine function

such that (i) ℓγ is affine on the edges of Γ, (ii) 10ℓγ(x) is the grading of η̃grx for all
x ∈ V2(Γ), and (iii) the slope of ℓγ along any leg l is equal to the minus log-order
of η̃grx at pl, where x = t(l) is the vertex of type 2 adjacent to l.

Definition 3.1.4. A triple γ is called a tropical reduction datum if the following
compatibilities hold:

(1) for any e ∈ E(Γ) with tail x, the log-order of η̃grx at pe is −∂ℓγ
∂e ;

(2) for any e ∈ E(Γ) with tail x, we have ℜ̃(e)
gr

= respe
(η̃grx );

(3) if x ∈ V2(Γ) is not boundary then
∑

e∈Star(x)ℜ(e) = 0;

(4) if e ∈ L(Γ) if
∂ℓγ
∂e < 0 then ℜ(e) = 0.

Notice that if γ is a tropical reduction datum and e ∈ Star(x) is an edge, then
the slope of ℓγ along e is negative if and only if η̃grx is regular at pe. Furthermore,

if
∂ℓγ
∂e = 0 then η̃grx has a simple pole at pe by condition (1). Thus, respe

(η̃grx ) 6= 0,
and hence ℜ(e) 6= 0 by condition (2). In particular, ℓγ(x) = −ν(ℜ(e)).

3.2. Tropical reduction. Combining Propositions 2.3.3 and 2.4.5, and Theo-
rem 3.1.1, we obtain the following reduction result.

Theorem 3.2.1. Let X be a nice k-analytic curve equipped with a non-zero mero-
morphic differential form ω. Let γ(X,Γ, ω) be the triple consisting of the metrized
curve complex with boundary C associated to (X,Γ), the graded reduction ω̃gr, and
the residue function ℜω. Then γ(X,Γ, ω) is a tropical reduction datum.
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3.3. Lifting. The main result of the paper is the following lifting theorem.

Theorem 3.3.1. For any tropical reduction datum γ, there exists a nice k-analytic
curve X with a skeleton Γ and a non-zero meromorphic differential form ω such
that γ(X,Γ, ω) = γ.

3.4. Relation to [BCG+18]. Finally, let us explain the relation to other lifting

results. We will use the notation from §1.3. Let k̃ be an algebraically closed field

of residual characteristic zero and k =
̂∪nk̃((t1/n)).

3.4.1. The crude lifting theorem. [BCG+18, Theorem 1.3] asserts that a k̃-point

γ0 = (X̃, p, ω̃) of PΩMg,n belongs to KMg,µ if and only if it lifts to a tropical

reduction datum γ over k̃. In loc.cit., this was deduced from [BCG+18, Proposi-
tion 4.8], and it follows from our results in a similar way. Indeed, if γ0 ∈ KMg,µ,
then there exists a morphism Spec(k◦) → KMg,µ which takes the closed point to
γ0 and the generic point to (X, q, ω) lying in PΩMg,n. Applying Theorem 3.2.1 to
the pullback of (X, q, ω) to k we obtain a tropical reduction datum γ which lifts γ0.
Conversely, if γ0 lifts to a tropical reduction datum γ then we can lift γ to a tuple
(X, q, ω) over k by Theorem 3.3.1. The induced morphism Spec(k) → PΩMg,n

extends to a morphism Spec(k◦) → KMg,µ by the properness of the target and
the valuative criterion. Thus, γ0 is the image of the closed point in KMg,µ.

3.4.2. The fine lifting theorems. Note that [BCG+18, Proposition 4.8] is a precise
analogue of Theorem 3.3.1, but we construct a formal lifting while [BCG+18] con-
structs a lifting to a complex analytic family. It seems that neither result implies
another one in a simple way, though our proof can perhaps be adapted to produce
a complex analytic family too by lifting γ to the subfield of convergent power series
in ∪nC((t

1/n)). This mainly reduces to the check that the process for finding good
coordinates in Proposition 4.1.3 below preserves complex analytic convergence of
the coefficients, but we will not pursue this direction.

Note also that equivalence of the two fine lifting theorems follows from the very
difficult main result of [BCG+19] which constructs a finer proper moduli space
whose points are described by tropical reduction data. This is done by the same
argument as used in §3.4.1.

4. Proofs

4.1. Good coordinates on analytic annuli. Let A be an oriented annulus of
modulus 0 < r < 1 and ω a differential form having neither zeros nor poles on A.

Definition 4.1.1. An analytic coordinate t on A is called good with respect to ω
if either ω = c0

dt
t or ω = (cnt

n + c0)
dt
t , n 6= 0, and |cntn|x > |c0|x for all x ∈ A.

Remark 4.1.2. If ω = (cnt
n + c0)

dt
t with n 6= 0 then n is nothing but minus

the slope of the level function ℓ(x) := log ‖ω‖x on the skeleton of A. Similarly, if
ω = c0

dt
t then the level function is constant on the skeleton of A.

Proposition 4.1.3. If a form ω has neither zeros nor poles on an oriented analytic
(semi-)annulus A, then A admits a good coordinate with respect to ω.

Proof. We will assume that A is closed. Since the construction we present is canon-
ical, in the case of an open (semi-)annulus it produces a compatible set of good
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coordinates on all closed subannuli, and hence also on A. Pick any coordinate s on
A compatible with the orientation. Then ω =

∑
ais

i ds
s . Since ω has neither zeros

nor poles on A, there exists n ∈ Z such that

(4.1) |ansn|x >
∣∣aisi

∣∣
x

for all x ∈ A and all i 6= n.
The case n = 0 is easy, and we explain it first. We are looking for a unit u(s)

such that the coordinate t = su(s) is good, i.e., u is a solution of the differential
equation

∑
ais

i ds
s = ω = a0

dt
t = a0

ds
s + a0

du
u , or equivalently, du

u =
∑

i6=0
ai

a0
si dss .

The later can be solved explicitly by setting u(s) := exp(
∑

i6=0
ai

ia0
si), which is a

unit converging on A by (4.1).
Assume now that n 6= 0. Unlike the case n = 0, we cannot write the coordinate

t explicitly. Instead, we construct it by a converging sequence of approximations.
For a coordinate t, set

ǫω(t) :=
‖ω − (cnt

n + c0)
dt
t ‖A

‖cntn‖A
< 1,

where ω =
∑

cit
i dt
t . It is sufficient to construct a coordinate t for which ǫω(t) = 0.

As a first approximation, we construct a coordinate s1 for which

ω − a0
ds

s
= ans

n
1

ds1
s1

.

It is given by s1 = su1, where u1 = n

√∑
i6=0

n
i

aisi

ansn
is unit on A by (4.1). It follows

that

ω = ans
n
1

ds1
s1

+ a0
ds

s
= (ans

n
1 + a0)

ds1
s1

− a0
du1

u1
=
∑

a′is
i
1

ds1
s1

.

By construction, ‖u1 − 1‖ ≤ ǫω(s) < 1 and ‖du1‖ ≤ ǫω(s) < 1. Thus, |a′n| = |an|
and hence

ǫω(s1) ≤

∥∥∥a0 du1

u1

∥∥∥
A

‖a′nsn1‖A
≤ ǫω(s)

|a0|
‖ansn‖A

≤ (ǫω(s))
2.

Repeating the construction above, we produce a sequence of coordinates sj on
A and a sequence of units uj satisfying the following:

sj = s
∏j

i=1 ui,
ǫω(sj) ≤ (ǫω(s))

j+1,
‖uj − 1‖ ≤ (ǫω(s))

j .

Since ǫω(s) < 1, it follows that the products
∏j

i=1 ui converge to a unit u, the
coordinates sj converge to a coordinate t = su, and ǫω(t) = lim ǫω(sj) = 0 as
needed. �

4.2. Proof of Theorem 3.1.1. We reduce the assertion to the classical statement
about algebraic curves. Let e ∈ Star(x) be an edge, and A an annulus whose
skeleton is supported on e and has compatible orientation. By Proposition 4.1.3,
there exists a good analytic coordinate t on A, i.e., ω|A = (cnt

n + c0)
dt
t , where

c0 = ResA(ω). Re-scaling t we can assume that A = M(k{t, rt−1}), where r is
the modulus of A. Let us truncate the curve X at the end point of A and glue
in an open unit disc D along A by identifying the coordinate s of the disc with t.
By construction, ω|A extends to D by the formula ω|D = (cns

n + c0)
ds
s , and this
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form has residue c0 at the origin and is regular outside the origin. Repeating this
process for all edges in Star(e) we obtain a complete analytic curve Y with a form
ωY having total residue

∑
e∈Star(x)ℜω(e). By GAGA, (Y, ωY ) is the analytification

of an algebraic curve with differential. And hence its total residue vanishes.

4.3. Proof of Theorem 3.3.1. The general plan is as follows: cut γ into stars,
lift the datum to star-shaped curves, and then glue the local lifts.

4.3.1. Lifting the form. We start with lifting a local datum, and ignore residues
at first. In this case we can just use a constant family over k◦ and restrict to the
generic fiber.

Lemma 4.3.2. Assume that C is a smooth proper curve over k̃ with a finite set
p = {p1, . . . ,pn} of closed points and a meromorphic differential form η̃ such that
div(η̃) =

∑
imipi for mi ∈ Z. Then there exists a nice proper k-curve Y with

reduction C, a set of k-points q = (q1, . . . ,qn) lifting p, and a lift η of η̃ such that
div(η) =

∑
imiqi.

Proof. By the theory of coefficient fields, the homomorphism k◦ → k̃ admits a

section k̃→֒k◦. This yields a homomorphism k̃→֒k, and we simply take our lifts Y ,
q and η to be the analytifications of C ⊗k̃ k, p⊗k̃ k and η̃ ⊗k̃ k. �

Remark 4.3.3. One could wonder if for a given lift Y of C, there exists a lift
η of the differential form preserving the profile of zeros and poles. By [KZ03,
Theorem 1], there exist components of the moduli space of stratified differentials
supported over the hyperelliptic locus of the moduli space of curves. Thus, it may
happen that η̃ is liftable only for particular choices of the lift Y . Notice that if
p1, . . . ,pr are the poles of η̃ then for any lift (Y, q1, . . . ,qr) of (C, p1, . . . ,pr) one can
lift η̃ so that

∑r
i=1 miqi is the polar part of div(η). Indeed, if r > 0 then the

lift exists because the obstruction H1
(
C,Ω1

C/k̃
(−∑r

i=1 mipi)
)
vanishes by Serre’s

duality. If r = 0, then consider the smooth model f : Y → Spec(k◦) with the closed
fiber C, and note that η̃ lifts to a section of Ω1

Y/k◦ because f∗(Ω
1
Y/k◦) is a vector

bundle. However, such lift provides no control on the zeros of η, and, in particular,
the zeros of high multiplicity can split.

4.3.4. Lifting the residues. In order to correct the residues locally at y we will use
the following result.

Lemma 4.3.5. Assume that Y is a proper nice k-curve with a good reduction
Cy, y is the point of type 2 mapped to the generic point of Cy by the reduction
map, q1, . . . ,qm ∈ Y points of type 1 with distinct reductions p1, . . . ,pm ∈ Cy, and
a1, . . . ,am ∈ k elements summing up to 0. If not all ai vanish then there exists

η ∈ H0
(
Y,Ω1

Y/k(
∑

i qi)
)
such that ‖η‖y = maxi |ai| and resqi(η) = ai for all i.

Proof. Let W be the set of differential forms η ∈ H0
(
Y,Ω1

Y/k(
∑

i qi)
)
for which

resqi(η) = ai for all i. Recall that by Serre’s duality the sequence

0 → H0(Y,Ω1
Y/k) → H0

(
Y,Ω1

Y/k

(∑
qi

))
→

m∑

i=1

k
∑
−→ k → 0

is exact. Thus, W is not empty. Furthermore,W = η0+H0(Y,Ω1
Y/k), where η0 ∈ W

is any form. Set li := [y, qi] ⊂ Y . Then, by Proposition 2.4.5, ℜη(li) = resqi(η) = ai
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for all i and η ∈ W . In particular, it follows that ‖η‖y ≥ maxi |ai|, and our next
goal is to minimize ‖η‖y.

Recall that by [BGR84, Definition 2.4.3/2], a normed k-vector space V is k-
Cartesian if and only if any finite dimensional subspace U ⊆ V is strictly closed,
i.e., for any v ∈ V there exists a vector u ∈ U closest to v. Furthermore, k(Y ) with
the norm | |y is k-Cartesian by [BGR84, Proposition 5.3.3/2], and multiplication by
a meromorphic form ω with ‖ω‖y = 1 induces an isometry between this space and
the space Ω1

k(Y )/k with the norm ‖ ‖y. Thus, there exists a form η1 ∈ H0(Y,Ω1
Y/k)

such that ‖η0 − η1‖y is minimal possible. Set η := η0 − η1.
We claim that the graded reduction η̃gr is not regular. Otherwise, by the argu-

ment from Remark 4.3.3 it can be lifted to a regular form η′ ∈ H0(Y,Ω1
Y/k) and

then ‖η−η′‖y < ‖η‖y, which contradicts the minimality of ‖η‖y. Let p be a pole of
η̃gr, then its preimage Dp ⊂ Y contains a pole qi of η. Since qi is a simple pole and
no other poles lie in Dp, it follows that p is a simple pole too. The graded reduction
of ai = ℜη(li) equals resp(η̃) by Proposition 2.4.5, and the latter does not vanish
since the pole is simple. Thus, ‖η‖y = |ai|, which concludes the proof. �

4.3.6. The construction of local lifts. Let y ∈ Γ be a vertex of type 2, and p1, . . . ,pn ∈
Cy the points corresponding to Star(y). Let Cy \Cy = {pn+1, . . . ,pm}, where Cy is
the smooth compactification of Cy. By Lemma 4.3.2, there exists a smooth proper

k-curve Y with reduction Cy, a collection of k-points q = (q1, . . . ,qm) that lifts
p, and a form η that lifts the scaled reduction η̃y such that the support of div(η)
belongs to q.

For i = 1, . . . ,m, set li := [y, qi] and ai := ℜη(li), where y ∈ Y is the preimage
of the generic point of Cy. After multiplying η by an appropriate c ∈ k×, we
may assume that the graded reduction of η is η̃gry . It follows that for i ≤ n, the
graded reductions of ai and ℜ(li) are equal to respi

(η̃gry ), and hence a′i = ℜ(li)− ai
satisfies |a′i| < ‖η‖y. In the non-boundary case, m = n and the a′i’s sum up to zero.
Otherwise, set a′n+1 := −∑n

i=1 a
′
i and a′i := 0 for i ≥ n+ 2. Thus, in any case, the

a′i’s sum up to zero.
If a′i = 0 for all i then set ωy := η. Otherwise, by Lemma 4.3.5, there exists a

form η′ on Y with at worst simple poles in q such that ℜη′(li) = a′i for all i and

‖η′‖y < ‖η‖y. Set ωy := η + η′. We constructed a lift ωy of η̃gry to Y with desired
residues around y, namely ℜωy

(ei) = ai for all i, where ei ∈ Br(y) denotes the
branch of li. Note however, that ωy may have zeros outside of q.

We consider all open discs of Y \{y} as having radius one. Let Y be the nice curve
obtained from Y by removing the open discs of radius one around qn+1, . . . ,qm, and
removing large enough open discs around q1, . . . ,qn of radius smaller than 1 so that
the slope of ‖ωy‖ along the edge ei ⊂ li ∩ Y is constant, and the length of ei is
smaller than one half of the length of the corresponding edge in Star(y). Then
(Y, y) is a star-shaped curve with a star skeleton Γy whose edges are e1, . . . ,en, in
particular, Γy is obtained from Star(y) by shortening the edges. Furthermore, ωy

is a differential form on Y such that γ(Y,Γy, ωy) is the restriction of γ onto the
subgraph Γy. Strictly speaking, one also inserts P1’s in the ends of ei, etc., but
these details are not essential, since we can always cut the edges further.

4.3.7. The patching of local lifts. In the last step, we show how to patch the star-
shaped nice k-analytic curves constructed in the previous step in order to get a nice
k-analytic curve representing γ. There are two types of patches we should do.
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First, assume that l = [y, q] is a leg. It corresponds to an annulus A in Y \ {y}
with a form ωy, and by Proposition 4.1.3, there exists a good analytic coordinate

t on A such that ωy|A = (cnt
n + ℜ(e))dtt , where n is minus the slope of the level

function along the oriented edge e, and cn = 0 if n = 0. In addition, if ℜ(e) 6= 0,
then n ≤ 0. After rescaling t, we may assume that A = M(k{t, rt−1}). Consider
an open unit disc Dq with a coordinate s and a form ωq = (cns

n + ℜ(e))dss and
glue Y and Dq along A via t = s. Clearly, ωy and ωq agree on A.

Next, assume that e ∈ E(Γ) is bounded, and set y := t(e) and z := h(e). The
cases y = z and y 6= z are similar, so assume that y 6= z. Consider the star-shaped
local lifts (Y, ωy) and (Z, ωz) with open annuli AY ⊂ Y and AZ ⊂ Z. Then the
orientation of AY is compatible with e, and of AZ is not. By our assumption,
each of them has modulus larger than

√
r, where r = 10−|e|. By Proposition 4.1.3,

there exist good analytic coordinates t and s on the annuli such that ωY |AY
=

(αtn +ℜ(e))dtt and ωZ |AZ
= (βs−n +ℜ(eop))dss , where n is minus the slope of the

level function along e, and α = β = 0 if n = 0. Choose an open annulus A of
modulus r with coordinate τ and a form ωA = (ατn + ℜ(e))dττ and glue it to AY

and AZ via τ = t and τ = s−1(−β/α)1/n.
Once all these gluings are done, we obtain a nice curve X with a skeleton Γ ⊂ X

such that the associated metrized curve complex is C. In addition, the local forms
glue to a regular form ω on X , such that ℓ(ω) = ℓγ , the graded reduction at each
vertex y ∈ V (Γ) is η̃gry , and the residue along each edge e ∈ E(Γ) is ℜ(e). Thus,
γ(X,Γ, ω) = γ, as required.

5. The stacky tropical reduction

Although in the proof of the main results we did not need it, there is a natural
stacky reduction datum that one may wish to take into account. In a sense, the
situation is similar to the proof of the correspondence theorem in [Tyo12]. Starting
with a regular tropical reduction of a curve with a map to a toric variety, one can
prove a lifting result, but in order to have a one-to-one correspondence between
tropical reductions and algebraic objects satisfying appropriate constraints, one
has to consider richer reductions: either stacky reductions or the reductions in the
category of log schemes.

5.1. Good formal coordinates. Let us describe the type of a stacky structure
that appears naturally in the setting of curves with differentials. Let C be a smooth
curve over the residue field k̃, ωC a non-zero meromorphic differential form on C,
and p ∈ C a closed point. Set n := ordp(ωC) + 1 ∈ Z to be the logarithmic

order of ωC at p. We say that a formal coordinate t ∈ ÔC,p is good if ωC =

(cnt
n + resp(ωC))

dt
t for some cn ∈ k. Similarly to Proposition 4.1.3, one can prove

that good formal coordinates exist. In the complex case they are even holomorphic,
see [BCG+19, Thorem 4.1]. For any n, set Gn := Gm⋉nGa, where Gm acts on Ga

by λ(µ) := λ−nµ.

Proposition 5.1.1. The set of good formal coordinates admits a natural transitive

action of the group Gn(k̃). If n < 0 then the action is free. Otherwise, it factors

through the free action of Gm(k̃) = Gn(k̃)/Ga(k̃).

Proof. The case n ≥ 0 is easy. Indeed, in this case Gn(k̃) acts on the set of formal

coordinates via its quotient Gm(k̃) by the multiplication. Let t, s be two good
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formal coordinates. If n = 0 then dt
t = ds

s , which implies t = cs for some c ∈ k̃×.

If n > 0 then Resp(ωC) = 0, and hence tn−1dt = csn−1ds for some c ∈ k̃×. Thus,

tn = csn, and again, t belongs to the k̃×-orbit of s.
Assume now that n = −l < 0, and set r := resp(ωC). Pick a good formal

coordinate s. Then ωC = (esn + r)dss for some e 6= 0. In order to explain how the

group Gn(k̃) acts on s we shall analyze the set of good formal coordinates. Let
t =

∑
i≥1 ais

i, a1 6= 0, be the expansion of a good formal coordinate t. Set u := t
s .

There exists c ∈ k̃× such that ωC = (ctn + r)dtt = (esn + r)dss , and hence

(5.1) (c+ rtl)
dt

ds
= ul+1(e+ rsl).

Let us expand this equation, and for all k ≥ 1, compare the first contribution of
ak, which happens on the level of the coefficients of sk−1:

(5.2) (c+ r(a1s+ a2s
2 + . . . )l)(a1 + 2a2s+ . . . ) = (a1 + a2s+ . . . )l+1(e+ rsl).

If k = 1 we get ca1 = eal+1
1 , or equivalently, eal1 = c. If 2 ≤ k ≤ l we get

(5.3) ckak = e(l + 1)al1ak + fk = (l + 1)cak + fk,

where fk belongs to the ideal generated by a2, . . . , ak−1 in k̃[a1, a2, . . . ]. In partic-
ular, for k = 2, (5.3) is equivalent to 2ca2 = (l + 1)ca2, and since c 6= 0, we get
a2 = 0. Similarly, ak = 0 for all 2 ≤ k ≤ l. For k = l + 1, we get

ckak + rak1 = e(l + 1)al1al+1 + fk + ral+1
1 = (l + 1)cal+1 + fk + ral+1

1 ,

and since a2 = · · · = al = 0, the latter equation is trivial.
Finally, for any k > l + 1, comparing the coefficients of sk−1 in (5.2) gives rise

to an equation

ckak + gk = e(l + 1)al1ak + hk = (l + 1)cak + hk,

where gk and hk are explicit polynomials in a1, . . . ak−1. Since k 6= l+1 and c 6= 0,
the coefficient ak is uniquely determined by a1 and al+1 for all k.

We are ready to describe the action of Gn(k̃) on the set of good formal coordi-

nates. An element σ = (λ, µ) ∈ (k̃×)⋉n k̃ associates to the good formal coordinate s
the unique good formal coordinate σ(s) =

∑
i≥1 ais

i for which (a1, al+1) = (λ, λµ).

It remains to show that the formula above respects the group law on Gn(k̃). Pick

σ′ = (λ′, µ′) ∈ (k̃×) ⋉n k̃, and let a′i be such that σ′(s) =
∑

i≥1 a
′
is

i. Then,

(a′1, a
′
l+1) = (λ′, λ′µ′), and ak = a′k = 0 for all 2 ≤ k ≤ l. Therefore,

σ′(σ(s)) =
∑

i≥1

a′i(σ(s))
i ≡ a′1a1s+ (a′1al+1 + a′l+1a

l+1
1 )sl+1 mod sl+2.

By definition, σσ′ = (λλ′, µ+ λlµ′), and hence

(σσ′)(s) ≡ λλ′s+ (λ′λµ+ λl+1λ′µ′)sl+1 ≡ σ′(σ(s)) mod sl+2.

However, a good formal coordinate is determined by its (l+ 1)-jet in s. Therefore,
σ′(σ(s)) = (σσ′)(s), which completes the proof. �

In the case of good coordinates on analytic annuli we have the following:
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Proposition 5.1.2. Let A = {x ∈ M(k{s, ρs−1}) | ρ−1 < |s|x < 1} be an open
annulus, and ω a differential form on A having neither zeros nor poles. Let n be
the slope of the level function associated to ω. Then the set of good coordinates
on A compatible with the orientation admits a natural transitive action on Gn(k

◦),
which is free if and only if n 6= 0. If n = 0, the action factors through the natural
free action of the quotient Gm(k◦).

Proof. If n = 0, and t, s are good formal coordinates compatible with the orientation
then there exists a unit u = u(s) such that t = su(s). Since dt

t = ds
s , it follows that

du
u = 0, and hence u ∈ (k◦)×. Thus, the natural action of Gm(k◦) on the set of good
formal coordinates compatible with the orientation is free and transitive as asserted.
Assume now that n 6= 0. Since for any c ∈ k such that |c| = ρ the map s 7→ cs−1

induces a bijection between the sets of good formal coordinates compatible with
the orientation and not compatible with the orientation, it is sufficient to consider
the case n < 0. Set l := −n.

Let s, t =
∑

i∈Z
ais

i be good formal coordinates compatible with the orientation.

Then |a1| = 1, and |aksk|x < |a1s|x for all x ∈ A. In particular, |ak| ≤ |a1| for all
k. It is sufficient to show that ai = 0 for all i ≤ 0. Indeed, in this case, the formal
computation we did in the proof of Proposition 5.1.1 shows that

∑
i∈Z

ais
i belongs

to the Gn(k) orbit of s. Furthermore, since |a1| = 1 and |al+1| ≤ 1, it follows
that

∑
i∈Z

ais
i belongs to the Gn(k

◦) orbit of s. Vice versa, for any σ ∈ Gn(k
◦),

let σ(s) be the formal power series as in the proof of Proposition 5.1.1. It is easy
to verify that all the coefficients of σ(s) have absolute value at most 1, and the
coefficient of s1 has absolute value 1. Thus, σ(s) converges on A and has unique
dominating monomial of degree 1, i.e., it is a good coordinate on A compatible with
the orientation.

Let us show that ai = 0 for all i ≤ 0. Assume to the contrary that there exists
i ≤ 0 such that ai 6= 0. After shrinking A if needed we may assume that there
exists p ≤ 0 such that |ap| > |ak| for all p 6= k ≤ 0. Since t and s are good,

there exist c 6= 0, e 6= 0, and r in k such that ω = (ctn + r)dtt = (esn + r)dss ,
and |r| ≤ |c| = |e|. After shrinking A further we may assume that |r| < |c| = |e|.
Finally, after replacing t, s, and ω with appropriate multiples, we may assume that
c = e = 1. Thus, (1 + rtl) dtds = ul+1(1 + rsl), where u(s) = t

s =
∑

i∈Z
iais

i−1.
Equivalently,

(5.4)
dt

ds
− ul+1 = rslul

[
u− dt

ds

]
.

Comparing the absolute value of the free coefficients in (5.4), we conclude that

|a1 − al+1
1 |, and hence

(5.5) |al1 − 1| < 1.

Let us now compare the coefficient of sp−1 in (5.4). Since p−1 < 0, |a1| = 1 ≥ |ak|
for all k, and |ap| > |ak| for all p 6= k ≤ 0, it follows that the absolute value of the
coefficient of sp−1 on the left hand side of (5.4) is |pap − (l + 1)al1ap + ǫ|, where
|ǫ| < |ap|. Thus, by (5.5), the absolute value of the coefficient of sp−1 on the left
hand side of (5.4) is

|(p− l − 1)ap| = |ap|.
Similarly, the absolute value of the coefficient of sp−1−l in ul(u− dt

ds ) is at most |ap|,
since p− 1− l < 0, |a1| = 1 is maximal, and ap has maximal absolute value among
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the coefficients of the negative powers of s in u and dt
ds . Therefore, the absolute

value of the coefficient of sp−1 on the right hand side of (5.4) is at most

|rap| < |ap|,

which is a contradiction. �

Using good coordinates on an annulus Ae with skeleton e, we can relate good
formal coordinates at pe and peop . This is based on the following reduction con-
struction assigning to a coordinate t on Ae compatible with the orientation a formal
graded reduction t̃x at x = t(e). Choose a function f defined in a neighborhood

of x such that |f |x = 1 and f̃ has a simple zero at pe. Then f is a coordinate on
the part of A close enough to x and t =

∑∞
−∞ aif

i, where |a1| = maxi |ai| and
|ai| < |a1| for i < 1. Set bi := ai/a1. Then it is easy to see that the reduction

t̃x :=

(
∞∑

i=1

b̃if̃
i

)
⊗ ã1 ∈ ÔCx,pe

⊗k̃ k
gr

is independent of the choice of f .
Let now X be a nice k-analytic curve equipped with a differential form ω, and

Γ a skeleton of X containing all zeros and poles of ω. Let e ∈ E(Γ) be a bounded
oriented edge, and x := t(e), y := h(e) the corresponding points of type 2. Set n
to be minus the slope of the level function along e. Consider the quotient Te of the
torsor of good formal coordinates on Cx at pe by the normal unipotent subgroup

Un(k̃)✁ Gn(k̃). If n ≥ 0 then Un(k̃) = 0, and otherwise Un(k̃) = k̃. Then for any

oriented edge e, the set Te is a k̃×-torsor.
For any r ∈ |k×|, let kr ⊂ k is the subset of elements of norm r. The kr is a torsor

under the natural action of the multiplicative subgroup k1 ⊂ k×, and we define T r
e

to be the quotient of kr × Te by the anti-diagonal action g(x, y) := (gx, g−1y) of
k1. Set T gr

e to be the disjoint union of T r
e . Then T gr

e is a graded torsor under the
action of (k×)gr. We claim that the differential form ω induces an isomorphism

φe : T gr
e → T gr

eop

of graded (k×)gr-torsor with respect to the involution (k×)gr → (k×)gr given by
λ 7→ λ−1, i.e., φe(λt) = λ−1φe(t). Furthermore, φe (multiplicatively) shifts the

grading by
‖ω‖y

‖ω‖x
, and φeop = φ−1

e . This is the stacky reduction datum that should

be added to the tropical reduction datum of (X,ω). It seems to be the algebraic
analog of prong matching of [BCG+19].

To describe φe, consider the open annulus Ae, whose skeleton is supported on e,
and pick a coordinate s on Ae compatible with the orientation of e. By Proposi-
tion 4.1.3, there exists a good coordinate t on Ae, and its graded reduction belongs
to T gr

e . Furthermore, since k× acts on the set of good coordinates on Ae, any
graded element in T gr

e is the graded reduction of a good coordinate on Ae. The
map φe is then defined as follows: take a graded element tx ∈ T gr

e and lift it to
a good coordinate t on Ae. Then, t−1 is a good coordinate on the oriented open
annulus Aeop , and φe(tx) is defined to be the graded reduction t̃y of t at y. Since
the set of good coordinates compatible with the orientation on A admits a natural
transitive action of Gn(k

◦), it follows that φe(tx) is well-defined. It is also clear
from the construction that φe satisfies all the properties mentioned above.
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