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NON-ARCHIMEDEAN PINCHINGS

MICHAEL TEMKIN

Abstract. We develop the theory of pinchings for non-archimedean analytic
spaces. In particular, we show that although pinchings of affinoid spaces do
not have to be affinoid, pinchings of Hausdorff analytic spaces always exist in
the category of analytic spaces.

1. Introduction

1.1. Pinchings of schemes. Pushouts in algebraic geometry are subtle construc-
tions which rarely exist. A classical pushout construction in algebraic geometry

called pinching corresponds to the case of a diagram X
i
←֓ Y

h
→ Y ′, where i is a

closed immersion and h is finite. In particular, it is often used to obtain a non-
normal scheme by pinching its normalization X along a finite morphism h from one
of its closed subschemes Y . Moreover, Ferrand studied such pushouts even when h
is an arbitrary affine morphism with the following simple result serving as a starting
point, see [Fer03, Lemme 1.3]:

Lemma 1.1.1. Let φ : A → B and ψ : B′ → B be two ring homomorphisms with
A′ = A ×B B′, and assume that φ is surjective. Then φ′ : A′ → B′ is surjective,
Ker(φ′) = Ker(φ) and A ⊗A′ B′ = B. In addition, if ψ is finite, then ψ′ : A′ → A
is finite.

Furthermore, this construction is compatible with flat base changes and it follows
easily, that passing to the spectra X = Spec(A), Y = Spec(B), X ′ = Spec(A′) and
Y ′ = Spec(B′) one has X ′ = X

∐
Y Y

′ in the category of all schemes (or even
stacks). More generally, a Ferrand’s pushout datum consists of a closed immersion
i : Y →֒ X and an affine morphism h : Y → Y ′ of schemes, and it is called a pinching
datum if h is finite. Existence of Ferrand’s pushout is very subtle and requires some
assumptions. Ferrand described in [Fer03, Théorème 7.1] a necessary condition for
existence of the pushout in the category of schemes, and gave examples, when a
pinching of projective varieties is not projective or even does not exist. It was shown
in [TT16] that usage of étale topology improves the situation: Ferrand’s pushouts
of schemes exist as algebraic spaces in a wide range of cases (conjecturally always),
in particular, pinchings of schemes always exist. If the pushout exists, one has
that Y ′ →֒ X ′ is a closed immersion, Y = X ×X′ Y ′, and in the case of pinchings
X → X ′ is finite.
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2 MICHAEL TEMKIN

In general, Ferrand’s pushout of varieties can be non-noetherian, but pinchings
behave much better: by Artin-Tate lemma if X is of finite type over a noetherian
base S (for example, a k-variety), then the same is true for X ′.

1.2. Liu’s example. Let now k be a complete non-archimedean field. In general,
the theory of k-affinoid algebras and k-analytic (or rigid) spaces is quite analogous
to the theory of affine algebras and algebraic varieties over a field. However, Liu
showed in [Liu88] that a whole cluster of classical results does not extend to the k-
analytic setting. Originally, all this was based on an example of an affinoid pinching
datum M(A) ←֓ M(B) → M(B′) whose pinching X ′ exists as an analytic space
but is not affinoid. In particular, A′ = A ×B B′ is a non-affinoid subalgebra of A
such that A′ →֒ A is finite, and the non-affinoid space X ′ has an affinoid (partial)
normalizationX =M(A). Note also that an even simpler example of a non-affinoid
pinching was constructed in [CT, Example 5.4].

Liu’s example implies that naive affinoid/analytic analogues of the following re-
sults fail: Artin-Tate lemma, affinoidness of fiber products for pinching type of
data, the Serre’s criterion of affineness with vanishing of cohomology. In a sub-
sequent work [Liu90] Liu constructed a non-affinoid compact Stein domain in a
two-dimensional disc, showing that Serre’s criterion may fail even for analytic sub-
domains in a polydisc.

1.3. Overview of the paper. Recently a particular type of pinchings of analytic
spaces was used in [PY20] by Porta and Yue Yu in their work on cotangent complex
of derived analytic spaces. The result really used in their application is correct, but
the argument about existence of pinchings was flawed because of a use of affinoid
Artin-Tate lemma. The goal of this paper is to clarify the situation with pinchings in
the k-affinoid and k-analytic categories. Section 2 is devoted to a necessary material
on affinoid algebras. We start with an affinoid version of Artin-Tate lemma and
deduce a criterion when a fiber product A′ = A ×B B′ of affinoid algebras with a
surjective φ : A → B and a finite B′ → B is affinoid, see Theorem 2.2.1. It was
observed in [CT] that the constructions of non-affinoid products by Liu and in

loc.cit. essentially use that the homomorphism φ◦ (or φ̃) is not surjective. Our
result shows that this is not an accident: if the algebras are strict, B is reduced and
φ◦ is surjective, then A′ is necessarily affinoid. However, the theorem is formulated
more generally to also cover the important pinching case, when B is not reduced.
Finally, using this result and a descent argument, we show in Theorem 2.5.1 that
localizing X =M(A) enough around Y =M(B) one can achieve that the pushout
is affinoid.

Remark 1.3.1. Geometrically this can be interpreted as follows: although i : Y →֒
X is a closed immersion of affinoid spaces, its affine formal model i : Spf(A◦) →
Spf(B◦) does not have to be a closed immersion in general. However, shrinking X
we can achieve that i becomes a closed immersion, and then an affinoid pinching
exists.

In Section 3 we deal with the geometric pinching data. In fact, using the results
of Section 2 the arguments are very close to the usual theory of pinchings of schemes.
Moreover, analytic topology is fine enough, so it works as well as the étale topology.
Thus, although the local theory is more pathological than in the case of schemes,
the global theory is even nicer: a Hausdorff pinching data always possesses an
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analytic pushout and the construction is flat-local, see Theorem 3.4.1 for the main
result about pinchings.

Studying the failure of Serre’s criterion belongs to the theory of Stein spaces
and is not a goal of this paper, so we only briefly discuss it in Section 4. In the
first version of this paper we suggested a conjecture that conceptually explains the
differences between the categories of affine varieties and affinoid spaces. Soon after
it was indeed proved by M. Xia in a work [Xia21] on Liu’s spaces. In brief, the
main new feature of the analytic category is that there exist non-affinoid Banach
k-algebras which are locally affinoid, let us call them Liu algebras. Their spectra
are precisely the compact Stein spaces, also called Liu spaces, i.e. the compact
separated spaces that satisfy Serre’s criterion. In other words, there exist ”non-
classical” affinoid objects in the k-analytic category whose algebras of functions are
not of topologically finite type over k. In particular, examples of such objects can
be obtained by pinching classical affinoids and first time they were discovered in
this way.

1.4. Conventiones. By an analytic field we mean a field K provided with a non-
archimedean real valuation | | : K → R≥0 and with respect to which K is complete.
Throughout this paper k is an analytic ground field and we work with k-analytic
spaces as defined in [Ber93, §1]. If l/k is an extension of analytic fields, A is a
Banach k-algebra and X is a k-analytic space we will use notation Al = A⊗̂kl and
Xl = X ×k l.

Acknowledgments. The author is grateful to Jérôme Poineau, Antoine Ducros
and Tony Yu Yue for useful discussions. Also, he is very grateful for the referee for
careful reading of the first version of the paper and pointing out various inaccuracies.

2. Affinoid algebras

2.1. An affinoid version of Artin-Tate lemma. A simple proof of the classical
Artin-Tate lemma can be found in [Sta, Tag 00IS]. A similar argument with homo-
geneous elements proves the following graded version, see [Poi13, Théorème 2.7] for
details.

Lemma 2.1.1. Assume that k is a noetherian graded ring and A is a finitely
generated graded k-algebra, which is finite over a graded k-subalgebra B ⊆ A. Then
B is finitely generated over k.

Now, we can deal with the affinoid case – see the converse implications below.
A naive version of such a result fails due to Liu’s example, so one has to add an
assumption on the reductions (or something analogous). We formulate the result
for general affinoid algebras; in the non-strict case this requires to work with the
graded reduction

⊕r>0{a ∈ A| ρA(a) ≤ r}/{a ∈ A| ρA(a) < r}

introduced in [Tem04] and denoted Ãgr below to distinguish it from the usual
reduction, which is the homogeneous component of weight 1.

Theorem 2.1.2. Assume that A is a k-affinoid algebra, which is finite over one
of its k-subalgebras B, and provide B with the norm induced from A. Then

(i) B is k-affinoid if and only if Ãgr is finite over B̃gr.
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(ii) If A is strictly k-affinoid, then B is k-affinoid if and only if Ã is finite over

B̃.

Proof. The direct implications in (i) and (ii) follow from [Tem04, Proposition 3.1(iii)]
and [BGR84, 6.3.5/1], respectively.

Conversely, consider the embedding φ : B →֒ A and assume that φ̃gr is finite.
Since B →֒ A is an isometry, it is also an isometry with respect to the spectral

seminorms, and hence φ̃gr is injective. So, B̃gr is finitely generated over k̃gr by the

graded Artin-Tate lemma 2.1.1. Choose generators b̃1, . . . ,̃bn of B̃gr and lift them to

B. Set ri = ρB(bi) and consider the homomorphism ψ : C = k{r−1
1 T1, . . . ,r

−1
n Tn} →

A taking Ti to bi. Clearly, ψ factors through B and the map C̃gr → B̃gr is onto.

Thus, Ãgr is finite over C̃gr, and by [Tem04, Proposition 3.1(iii)] ψ is finite. Since
C is noetherian, the C-submodule B of A is finite and hence k-affinoid by [Ber90,
Proposition 2.1.12]. This proves the inverse implication in (i).

The inverse implication in (ii) is proved similarly, but one works with the usual

reduction φ̃ instead, uses the usual Artin-Tate and refers to [BGR84, 6.3.5/1] in-
stead of [Tem04, 3.1(iii)]. �

2.2. Fiber product. Now, we give a criterion when a fiber product of affinoid
algebras is affinoid.

Theorem 2.2.1. Assume that k is non-trivially valued and let ψ : B′ → B and
φ : A ։ B be homomorphisms of strictly k-affinoid algebras such that ψ is finite
admissible, φ is surjective and ψ◦(B′◦) ⊆ φ◦(A◦). Then the algebra A′ = A ×B B′

with the norm induced from A× B′ is k-affinoid.

Proof. By the usual theory of pinchings, ψ′ : A′ → A is finite and φ′ : A′ → B′

is surjective. Therefore the embedding λ : A′ →֒ A × B′ is finite and in view of

Theorem 2.1.2, it suffices to prove that λ̃ is finite. Thus, we should prove that the

homomorphisms ψ̃′ and φ̃′ are finite.
Note that A′◦ = A◦ ×B B′◦ = A◦ ×C B′◦, where C = φ◦(A◦) ⊆ B◦. The

homomorphism A′◦ → B′◦ is surjective by Lemma 1.1.1, hence φ̃′ is surjective. The
homomorphism B′◦ → C is integral by [BGR84, Theorem 6.3.5/1], hence C is a
filtered union of finite B′◦-subalgebras Ci. Let Ai ⊆ A◦ be the preimage of Ci.
Then A′◦ is the filtered union of subalgebras Ai ×Ci

B′◦ and the homomorphisms
Ai×Ci

B′◦ → Ai is finite by the usual theory of pinchings. Therefore A′◦ is integral

over A◦. Passing to the reductions we obtain that the homomorphism of k̃-algebras

Ã′ → Ã is integral, and since Ã is finitely generated over k̃, it is, in fact, finite. �

2.3. Relative maximal modulus principle. The usual maximum modulus prin-
ciple states that for a k-affinoid space X =M(A) and an element f ∈ A one has
that ρ(f) = maxx∈X |f(x)|. We will need the following relative version:

Lemma 2.3.1. Assume that X =M(A) is an affinoid space with a Zariski closed
affinoid subspace Y =M(B) and f ∈ A is a function on X. Set r = ρB(f |Y ), then

(i) If r > 0, then there exists a neighborhood W of Y such that maxx∈W |f(x)| =
r.

(ii) If r = 0, then for any ε > 0 there exists a neighborhood W of Y such that
maxx∈W |f(x)| < ε.
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Proof. Claim (ii) follows from the compactness of Y . To prove (i) it suffices to
show that the affinoid domain X ′ = X{r−1f} is a neighborhood of Y in X . Since
Y → X is finite, Y = Int(Y/X) and by [Ber90, Proposition 2.5.8(iii)] applied
to the composition Y →֒ X ′ →֒ X we obtain that Y ⊂ Int(X ′/X). By [Ber90,
Corollary 2.5.13(ii)], Int(X ′/X) is the topological interior of X ′ inside X , hence X ′

is a neighborhood of Y . �

2.4. Descent. For a tuple r = (r1, . . . ,rn) of positive numbers let Kr be the
completed fraction field of k(t1, . . . ,tn) with the generalized Gauss norm given by
|ti| = ri. Also, we call an extension of analytic fields l/k topgebraic if it can be

embedded into k̂a/k. The following result seems to be well-known to experts, but
it is not easy to find a precise reference, so we provide a proof.

Lemma 2.4.1. Let l be a topgebraic extension of some Kr with r1, . . . ,rn linearly
independent over

√
|k×|. Then a Banach k-algebra A is k-affinoid if and only if

Al = A⊗̂kl is l-affinoid.

Proof. Only the descent result needs a proof. We can assume that l is not trivially
valued, as otherwise we can replace it by any lr with r 6= 1. We will prove in
two steps that Ar = A⊗̂kKr and A are affinoid. The latter follows from [Ber90,
Corollary 2.1.8] by induction on n, hence it suffices to consider the case when l/k

is topgebraic and k is non-trivially valued. Set K = k̂a, then AK = Al⊗̂lK is
K-affinoid, and it suffices to establish the descent from K. Note, that ks is dense
in K because the valuation is non-trivial.

Choose affinoid generators f1, . . . ,fn ∈ AK , that is, fix a surjective homomor-
phism ψ : K{r−1

1 t1, . . . ,r
−1
n tn} → AK sending ti to fi. Recall that by [Ber90,

Proposition 2.1.7] a small perturbation of this system is still a family of generators,
hence we can assume that f ⊂ AF for a finite Galois extension F/k. Then ψ is the
base change of the homomorphism F{r−1t} → AF , which is surjective since ⊗̂FK
is exact. So, AF is F -affinoid and then A = (AF )

G for G = Gal(F/k) is k-affinoid
by [BGR84, Proposition 6.3.3/3]. �

The lemma covers our needs, so we do not pursue the generality and only discuss
it without proof.

Remark 2.4.2. (i) One can remove any assumption on r in the lemma. In par-
ticular, one does not even have to assume that the tuple is finite. However, it is
important for the proof that Kr/k has an orthogonal Schauder basis.

(ii) The lemma does not hold for an arbitrary extension l/k of analytic fields.
For example, if x ∈ A1

k is of type 4 and radius r, then l = H(x) is not k-affinoid,

while l⊗̂kl→̃k{r−1t} is l-affinoid.

2.5. Local pinchings. Now we can prove the main result of Section 2: after shrink-
ing an affinoid pinching data around the closed subspace, one can achieve that the
fiber product is affinoid.

Theorem 2.5.1. Assume that φ : A ։ B and ψ : B′
։ B are finite admissible

homomorphisms of k-affinoid algebras and ψ is even surjective, and let f1, . . . ,fn
a family of generators Ker(φ). For any ε > 0 set Aε = A{ε−1f1, . . . ,ε

−1fn} and
consider the natural homomorphism φε : Aε → B. Then there exists ε0 > 0 such
that the fiber product A′

ε = Aε ×B B
′ is k-affinoid for ε ≤ ε0.
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Proof. Choose r = (r1, . . . ,rm) such that r1, . . . ,rm are linearly independent over
|k×|, Kr is non-trivially valued and the algebras A⊗̂Kr and B⊗̂Kr are strictly

Kr-affinoid. Set l = K̂a
r . Since the functor ⊗̂kl is exact, A′

l = Al ×Bl
Cl. Thus,

in view of Lemma 2.4.1 it suffices to prove that A′
l is l-affinoid. This reduces the

claim to the following case: k is non-trivially valued and algebraically closed and
the algebras are strictly k-affinoid.

Next, choose a surjective homomorphism of strictly affinoid algebras B′′
։ B′

with a reduced B′′ and set A′′
ε = Aε ×B B′′. Then the squares in the following

diagram are cartesian

A′′
ε

//

φ′′

��

A′
ε

//

φ′

��

Aε

φ

��

B′′ // B′ // B

and hence A′
ε is a quotient ring of A′′

ε . Therefore, it suffices to prove that A′′
ε is

affinoid for a small ε, and replacing B′ by B′′ we can assume that B′ is reduced. In
particular, by [BGR84, Theorem 6.4.3/1] B′◦ is generated by finitely many elements
b′1, . . . ,b

′
m as an adic k◦-algebra.

For each i choose a lift ai ∈ A of bi = ψ(b′i). Since ρ(bi) ≤ 1 and the closed
subset M(B) of M(A) is the intersection of the subdomains M(Aε), we obtain
from Lemma 2.3.1 that taking ε small enough one can achieve that ρAε

(ai) ≤ 1.
This implies that ψ(B′◦) ⊆ φ(A◦

ε) and hence A′
ε is affinoid by Theorem 2.2.1. �

3. Pinchings

3.1. Pinching data. By a pinching datum in the k-analytic category we mean
a diagram consisting of a closed immersion i : Y →֒ X and a finite morphism
h : Y → Y ′. Usually we will denote pinching datum using notations like P =
(Y ;X,Y ′), Pi = (Yi;Xi, Y

′
i ), etc. A morphism of pinching data f : P1 → P consists

of morphisms fX : X1 → X , fY : Y1 → Y , fY ′ : Y ′
1 → Y ′ such that i1 and h1 are

pullbacks of i and h, respectively. A morphism is flat, smooth, embedding of a
subdomain, etc., if it is so componentwise. In particular, a subdomain P0 ⊆ P is a
compatible family of subdomains in X,Y and Y ′. A covering of P by some of its
subdomains is admissible if it is so componentwise.

3.2. Affinoid pushouts. A pinching datum is affinoid if all its components are
affinoid, say X =M(A), Y =M(B) and Y ′ =M(B′), and it is strongly affinoid if,
in addition, the algebra A′ = A ×B B′ is affinoid. Similarly, for an affinoid datum
Pi we will denote the algebras Bi;Ai,B′

i, etc. In the above situation X ′ =M(A′)
is the pushout in the category of k-affinoid spaces, so we will use the notation

X ′ =
∐aff P .

The notion of flat morphisms we will use in the sequel was introduced by Ducros
in [Duc18, §4.1]. Recall, that f : M(A) → M(B) is naively flat if B → A is flat,
and by [Duc18, Theorem 8.3.6] f is flat if and only if fK is naively flat for any
analytic extension K/k.

Lemma 3.2.1. Assume that P = (Y ;X,Y ′) is a strongly affinoid pinching datum

and X ′ =
∐aff P, then

(i) X → X ′ is a finite morphism, Y ′ →֒ X ′ is a closed immersion, Y = X×X′Y ′,
and |X ′| = |X |

∐
|Y | |Y

′| as topological spaces.
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(ii) Pulling back an affinoid space X ′
0 over X ′ to the pinching datum

P ×X′ X ′
0 = (Y ×X′ X ′

0;X ×X′ X ′
0, Y

′ ×X′ X ′
0)

yields an equivalence between the categories of affinoid X-flat spaces and strongly
affinoid P-flat pinching data over P. An opposite equivalence is given by the affinoid
pushout construction.

Proof. The homomorphisms of rings A ։ B, A′
։ B′, A′ → A and B′ → B

in (i) are finite, hence all completed tensor products in (i) and (ii) coincide with
the usual tensor products, and everything in (i) and (ii) follows from the usual
theory of pinchings of affine schemes, except the following two issues: (a) on the
nose one obtains equivalence of naively flat data, (b) the classical theory deals
with the topological spaces of affine spectra, so one has to show separately that
|X ′| = |X |

∐
|Y | |Y

′|.

(a) The claim about flatness easily reduces to the naive flatness once we prove
that for any analytic extension K/k one has A′

K = AK ×BK
B′
K . But this is so

because the functor ⊗̂kK preserves exactness of the sequence of finite A′-modules

0→ A′ → A×B′ → B → 0.

(b) Applying (ii) to an affinoid domain X ′
0 ⊂ X

′ \Y ′ we obtain that the pushout
of P ×X′ X ′

0 = (∅;X×X′ X ′
0, ∅) is isomorphic to X ′

0, that is, X ×X′ X ′
0 = X ′

0. This
implies that U = X \ Y = X ′ \ Y ′ and we obtain that set-theoretically

|X |
∐

|Y |

|Y ′| =
(
|Y |

∐
|U |

)∐

|Y |

|Y ′| = |Y ′|
∐
|U | = |X ′|.

It remains to show that a subset V ⊆ X ′ is open whenever its preimages in X
and Y ′ are open, and this follows from the fact that X

∐
Y ′ → X ′ is a surjective

continuous map of compact spaces. �

3.3. Strongly affinoid covers. The main technical result about pinchings is ex-
istence of strongly affinoid covers.

Lemma 3.3.1. Any Hausdorff pinching datum P = (Y ;X,Y ′) possesses an ad-
missible strongly affinoid covering P = ∪iPi.

Proof. Step 1. It suffices to prove the result for a subdomain P ′ = (Y ;W,Y ′), where
W is a subdomain of X, which is a neighborhood of Y . Indeed, assume that P ′

possesses a strongly affinoid covering P ′ = ∪iPi, find an admissible affinoid covering
X \Y = ∪j∈JXj and set Pj = (∅;Xj, ∅). Then it is easy to see that ∪l∈I∪JXl is an
admissible covering of X and hence P = ∪l∈I∪JPl is an admissible strongly affinoid
covering.

Step 2. The case of an affinoid P. If Y =M(B), X =M(A) and Y ′ =M(B′)
are affinoid then by Theorem 2.5.1 there exists an affinoid neighborhood Xε =
M(Aε) of Y in X such that (Y ;Xε, Y

′) is strongly affinoid. It remains to use Step
1.

Step 3. The case of affinoid Y and Y ′. Fix for a while a point y′ ∈ Y ′ and
consider the fiber h−1(y′) = {y1, . . . ,yn}. Since X is Hausdorff, there exists pairwise
disjoint neighborhoods Wi of yi. Since Y →֒ X is a closed immersion, the map of

germ reductions Ỹyi
→֒ X̃yi

is an isomorphism for each i. By [Tem04, Theorem 5.1]

X̃yi
is affine andXyi

is good, so shrinkingWi’s we can assume that they are affinoid.
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Note that for a small enough Laurent neighborhood Y ′
0 of y′ in Y ′, its preimage

Y0 = Y ′
0×Y ′Y splits as Y0 =

∐n

i=1 Yi, where each Yi is an affinoid domain containing
yi. Furthermore, shrinking Y ′

0 if necessary we can achieve that Yi ⊆Wi. Each Yi is
a Weierstrass domain of the Laurent domain Y0 of Y , hence Yi is a rational domain
in Y . It follows that Yi is also a rational domain in Wi ×X Y given by the same
inequalities |f1| ≤ r1|g|, . . . ,|fm| ≤ rm|g| with fj, g ∈ B. Lifting fj|Wi×XY and

g|Wi×XY to functions Fj , G on Wi we obtain a rational domain Xi = Wi{r−1 F
G
}

such that Xi ×X Y = Yi. Setting X0 =
∐n

i=1Xi we obtain an affinoid subdomain
P0 = (Y0;X0, Y

′
0) of P such that Y ′

0 is a neighborhood of y′.
Since Y ′ is compact, varying y′ we can find a finite set of affinoid subdata

P1, . . . ,Pm of P such that Y ′ = ∪mj=1Y
′
j and hence also Yj = ∪mj=1Yj . Note also

that the domain X0 = ∪mj=1Xj is a neighborhood of Y in X . By step 2 each Pj

possesses a strongly affinoid covering, hence P0 = (Y ;X0, Y
′) possesses such a cover

too, and it remains to use step 1.
Step 4. The general case. Choose an admissible affinoid covering Y ′ = ∪i∈IY

′
i .

Then Yi = Y ×Y ′Y ′
i form an admissible affinoid covering of Y . Lift Yi to an analytic

compact domain Xi ⊆ X , then X0 = ∪iXi is a neighborhood of Y in X . If W is a
sufficiently small neighborhood of Y in W , then Wi = Xi ∩W form an admissible
covering ofW . Each Pi = (Yi;Wi, Y

′
i ) possesses a strongly affinoid covering by step

3, hence the lemma follows by applying step 1 to the datum P ′ = (Y ;W,Y ′). �

Remark 3.3.2. The assumption that X is Hausdorff is necessary. For example,
the lemma fails for the datum (Y ;X,Y ′), where X is the unit disc with the doubled
origin, Y =M(k)

∐
M(k) is the doubled origin and Y ′ =M(k).

3.4. Existence of pinchings. If a pushout X ′ = X
∐

Y Y
′ exists we will use the

notation X ′ =
∐
P and denote the induced morphisms i′ : Y ′ → X ′ and h′ : X ′ →

X . Any X ′-space X ′
0 induces the pullback pushout P0 = P ×X′ X ′

0. Here is our
main result about pinchings. We follow the terminology of [MP21] where a compact
Stein space is called a Liu space.

Theorem 3.4.1. (i) Existence: any Hausdorff pinching datum P = (Y ;X,Y ′)
possesses a pushout X ′ =

∐
P.

(ii) Compatibility with topologies and structure sheaves: X ′ = X
∐

Y Y
′, V ⊆ X ′

is an analytic domain if and only if its preimages in X and Y ′ are analytic domains
and

OX′

G
= i′∗OY ′

G
×i∗h′

∗
OYG

h′∗OXG
.

(iii) Bicartesianity: i′ is a closed immersion, h′ is finite and Y = X ×X′ Y ′.
(iv) The affinoid and Liu cases: X ′ is a Liu space if and only if P is a Liu space,

and X ′ is affinoid if and only if P is strongly affinoid.
(v) Flat sites and uniformity: the pushout and pullback functors P0 7→

∐
P0 and

X ′
0 7→ P ×X′ X ′

0 are inverse equivalences between the categories of P-flat Hausdorff
P-data P0 and X ′-flat Hausdorff X ′-spaces X ′

0.
(vi) The equivalence from (v) respects the following properties: smooth, embed-

ding of a subdomain and the properties (i)–(xx) from [CT, Theorem 1.2], including
quasi-smooth, quasi-étale, étale, finite, proper, etc., (flatness and topological sep-
aratedness are automatically assumed on both sides, so the claim in their case is
vacuous).
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Proof. First, let us construct a space accordingly to (ii). Consider the topological
pushout X ′ = X

∐
Y Y

′, provide it with the pushout G-topology: V ⊆ X ′ is an an-
alytic subdomain if and only if its preimages in X and Y ′ are analytic subdomains,
declare V affinoid if its preimage PV = (YV ;XV , Y

′
V ) in P is strongly affinoid and

use the homeomorphism V =M(AV ×BV
B′
V ) from Lemma 3.2.1. It follows from

Lemma 3.3.1 that strongly affinoid covers of P form a net, therefore the so-defined
affinoid domains form a net in X ′, and it is now a routine check that X ′ with this
net of affinoid domains is an analytic space.

Now, let us check that X ′ is the pushout in the category of k-analytic spaces.
Assume that X → T and Y ′ → T are morphisms that agree on Y , and let us prove
that they factor through X ′ uniquely. Choose an admissible affinoid covering T =
∪iTi. By Lemma 3.3.1 its preimage to P possesses a strongly affinoid refinement
P = ∪jPj with each Pj = (Yj ;Xj , Y

′
j ) mapping to some Ti(j). The corresponding

affinoid domain X ′
j ⊆ X ′ is the pushout of Pj in the category of k-affinoid spaces,

hence the morphism Pj → Ti(j) factors uniquely through X ′
j . Working with affinoid

covers of intersections it is easy to see that the induced morphisms X ′
j → T are

compatible, hence we obtain a unique morphism X ′ → T through which P → T
factors. This finishes the proof of (i) and (ii).

The affinoid case of (v) was proved in Lemma 3.2.1(ii) and the general case
follows because both the pushout and the pullback are constructed locally – one
glues pushouts (resp. pullbacks) of strongly affinoid data (resp. affinoid spaces).
Similarly, (iii) follows from Lemma 3.2.1(i).

Since the morphism X → X ′ is finite, X ′ is a Liu space if and only if X is
a Liu space, and then also the closed subspaces Y and Y ′ are Liu. Similarly, if
X ′ is affinoid, then P is affinoid, and it is strongly affinoid because OX′(X ′) =
OX(X) ×OY (Y ) OY ′(Y ′) by the pushout property. Conversely, if P is strongly
affinoid then the pushout is affinoid due to the construction in the first paragraph.

Finally, the properties in (vi) are stable under base change, hence only descent
should be established. A subdomain is a flat monomorphism and a smooth mor-
phism is a boundaryless quasi-smooth one, so we should only deal with properties
(i)–(xx). Properties (i)–(iv) follow from the fact that f : Y

∐
X ′ → X is surjective,

see [CT, Theorem 3.4], and properties (v)–(xiv) follow from the fact that f is also
finite, and hence G-surjective and properly surjective, see [CT, Theorems 3.8 and
3.12]. It remains to recall that the descent of flatness is provided by claim (v), and
as in the proof of [CT, Theorem 4.7] the remaining properties are combinations of
flatness with the properties whose descent was already established. �

4. Liu algebras and spaces

4.1. Liu algebras. Affinoid algebras are Banach-theoretic analogues of finitely
generated k-algebras. A foundational result in algebraic geometry states that A is
finitely generated over k whenever it is locally finitely generated over k: there exist
elements f1, . . . ,fn ∈ A generating the unit ideal and such that the localizations Afi

are finitely generated over k. By a localization of a Banach k-algebra A we mean
an algebra of the form A′ = A{r−1 f

g
}, where f = (f1, . . . ,fn) and g generate the

unit ideal. Then X ′ =M(A′) is a subset of X =M(A) called a rational subset.

Definition 4.1.1. A Banach k-algebra A is called locally k-affinoid algebra if there
exist localizations Ai of A such that each Ai is k-affinoid, the spaces Xi =M(Ai)



10 MICHAEL TEMKIN

coverX =M(A) and the map φ : A →
∏

iAi is universally injective in the following

sense: for any localization A′ = A{r−1 f
g
} the base change map φ ⊗̂AA′ is injective.

Remark 4.1.2. (i) Unlike the usual commutative algebra, the injectivity of φ is not
automatic and there might exist exotic nilpotent elements killed in all localizations.
This is one of mechanisms in which the structure presheaf on X can fail to be a
sheaf. It is not clear if universal injectivity is equivalent to injectivity, so one has
to use the universal version of φ in the definition.

(ii) Similarly to [BGR84, Lemma 8.2.2/2] it is easy to see that any cover by
rational subsets possesses a refinement of a very special form, called a rational
cover: it is determined by elements f1, . . . ,fn generating the unit ideal and numbers
r1, . . . ,rn by Ai = A{

ri
r1

f1
fi
, . . . , ri

rn

fn
fi
}.

(iii) Using Theorem 2.5.1 it is easy to see that for any affinoid pinching datum
(B;A,B′) the fiber product A′ is a locally affinoid algebra. Liu’s example, shows
that it does not has to be affinoid.

Note that the spectrum of a Liu algebra possesses a natural structure of a
k-analytic space glued from affinoid rational domains. Following the method of
[BGR84, §8.2] M. Xia has recently obtained the following generalization of Tate’s
acyclicity for these spaces (see the proof of [Xia21, Theorem B.4]):

Theorem 4.1.3 (Xia). Given a locally affinoid algebra A provide X = M(A)
with the natural structure of the k-analytic space. Then for any rational subset
X ′ =M(A′) in X one has that OX(X ′) = A′ and for any finite covering of X by
rational domains the Čech complex is acyclic.

Also, it seems plausible that using the methods of [BGR84, §6.4] one can prove
that, similarly to some results of Section 2, finiteness of reduction should provide
a criterion for Liu algebra to be affinoid:

Conjecture 4.1.4. Assume that k is stable and A is a Liu algebra over k, then

(i) A is affinoid if and only if Ãgr is a finitely generated k̃gr-algebra.

(ii) IfM(A) is strictly k-analytic, then A is affinoid if and only if Ã is finitely

generated over k̃.

4.2. Liu spaces. Liu studied compact Stein spaces (in rigid-theoretic setting), and
his results were extended to general analytic spaces by Maculan and Poineau. In
[MP21, Theorem 1.11] they proved that a compact space X has trivial higher
coherent cohomology if and only if it is separated, has enough global functions to
separate elements and the structure sheaf has trivial higher cohomology, and coined
the term Liu space for such spaces X . The algebra A = OX(X) is then called a
Liu algebra. By [MP21, Proposition 3.12] any Liu space X possesses a cover by
rational domains, which are affinoid, and by [MP21, Corollary 3.17] X = M(A),
where A = OX(X). Therefore, A is locally affinoid and X is its spectrum.

Conversely, Theorem 4.1.3 implies that for any locally affinoid algebra A the
spectrum X =M(A) has an acyclic structure sheaf and hence is a Liu space. This
yields [Xia21, Theorem B.4]: a k-Banach algebra is locally affinoid if and only if
it is Liu. In particular, Serre’s criterion works once one replaces affinoid spaces by
Liu spaces. From this point of view, the analogy with the category of varieties is
much more complete, and the main difference is that any variety, which is an affine
scheme Spec(A), is an affine variety (that is A is finitely generated), while Liu’s
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spaces are generalized affinoid objects, whose algebra is not topologically finitely
generated.
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(2013), no. 2, 267–297. MR 3081557
[PY20] Mauro Porta and Tony Yue Yu, Representability theorem in derived analytic geometry,

J. Eur. Math. Soc. (JEMS) 22 (2020), no. 12, 3867–3951. MR 4176782
[Sta] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.
[Tem04] Michael Temkin, On local properties of non-Archimedean analytic spaces. II, Israel J.

Math. 140 (2004), 1–27. MR 2054837 (2005c:14030)
[TT16] Michael Temkin and Ilya Tyomkin, Ferrand pushouts for algebraic spaces, Eur. J. Math.

2 (2016), no. 4, 960–983. MR 3572553
[Xia21] M. Xia, On Liu morphisms in non-archimedean geometry, June 2021,

https://arxiv.org/abs/2106.08032 .

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J.

Safra Campus, Giv’at Ram, Jerusalem, 91904, Israel

Email address: michael.temkin@mail.huji.ac.il

http://stacks.math.columbia.edu
https://arxiv.org/abs/2106.08032

	1. Introduction
	1.1. Pinchings of schemes
	1.2. Liu's example
	1.3. Overview of the paper
	1.4. Conventiones
	Acknowledgments

	2. Affinoid algebras
	2.1. An affinoid version of Artin-Tate lemma
	2.2. Fiber product
	2.3. Relative maximal modulus principle
	2.4. Descent
	2.5. Local pinchings

	3. Pinchings
	3.1. Pinching data
	3.2. Affinoid pushouts
	3.3. Strongly affinoid covers
	3.4. Existence of pinchings

	4. Liu algebras and spaces
	4.1. Liu algebras
	4.2. Liu spaces

	References

