FORCING EXERCISES DAY 3

Problem 1. Given an example of a poset for which the antichains are exactly the almost disjoint families of subsets of ω .

Problem 2. Recall the definition of open in a poset. Show that $MA(\kappa)$ is equivalent to the same statement where the word 'dense' is replaced with the words 'dense open'.

Problem 3. An antichain is maximal if it is maximal under containment. Show that $MA(\kappa)$ is equivalent to the formulation where 'dense sets' is replaced with 'maximal antichains'.

Definition 1. Let \mathbb{P} be a poset.

- (1) \mathbb{P} is σ -centered if there is a partition of into set P_i for $i < \omega$ such the for all i and all $p, q \in P_i$, p and q are compatible.
- (2) \mathbb{P} is \aleph_1 -Knaster if for every sequence $\langle p_\alpha \mid \alpha < \omega_1 \rangle$ of elements of \mathbb{P} , there is an unbounded $I \subseteq \omega_1$ such that for all $\alpha, \beta \in I$, p_α is compatible with p_β .

Problem 4. Show that for a poset \mathbb{P} , σ -centered implies \aleph_1 -Knaster implies ccc.

Definition 2. Given a poset \mathbb{P} , $cc(\mathbb{P})$ is the least cardinal κ such that \mathbb{P} has no antichains of size κ .

Problem 5 (*). Suppose that \mathbb{P} is a poset such that $cc(\mathbb{P}) > n$ for all $n < \omega$. Show that $cc(\mathbb{P}) > \omega$, ie show that \mathbb{P} has an infinite antichain.

Problem 6 (**). Let \mathbb{P} be a fixed poset. Show that $cc(\mathbb{P})$ is a regular cardinal.