
ITERATING ALONG A PRIKRY SEQUENCE

SPENCER UNGER

Abstract. In this paper we introduce a new method which combines Prikry
forcing with an iteration between the Prikry points. Using our method we

prove from large cardinals that it is consistent that the tree property holds at

ℵn for n ≥ 2, ℵω is strong limit and 2ℵω = ℵω+2.

The typical method for interleaving collapses with a Prikry sequence is to use
a product of collapses. The original paper using this method is Magidor’s paper
[8] where he obtains the failure of the Singular Cardinals Hypothesis (SCH) at ℵω.
There are many generalizations and variations on this method, examples include
[9, 5, 6, 3]. In this paper we introduce a method for replacing the usual product
with an iteration.

Broadly speaking Prikry forcing is a poset of finite approximations to a witness
that some large cardinal κ (and perhaps some cardinals above κ) is singular of
cofinality ω. The finite approximations are often called the stem of a condition.
To avoid collapsing κ, the growth of the stem is controlled by measure one sets
from some appropriate measure. The key lemma which allows us to prove that κ
is preserved is called the Prikry Lemma. The result of the forcing is a singular
cardinal κ which is still large in the sense that it is a limit of inaccessible cardinals.

Collapses can be added to Prikry forcing in order to make κ in to a small cardinal
like ℵω. In particular we add collapses between the ordinals in the stem. We cannot
only use a finite support product of collapses, since this would collapse κ. The
solution is to constrain the values of future collapse conditions. For this we define
constraining functions whose domains are measure one sets and whose values are
elements of collapsing posets. To extend a condition, we select an element x from a
measure one set which we add to the stem and we select a collapse condition which
is below the value of the constraining function at x. This allows us to recover a
version of the Prikry Lemma and show that again κ is preserved and the collapses
have their desired effect.

The usual method of adding collapses to a Prikry forcing uses a product of posets
which collapse between elements of the stem. A trivial but important observation
is that in the usual scenario the values of the constraining functions do not depend
on the stem. In particular the collapses are defined in a uniform way and each
condition only has one constraining function. When we seek to iterate between
the elements of the stem, the value of a given constraining function must depend
on the stem, because the stem determines the space from which the name for a
constrained collapse condition is taken.

To deal with this our technique has a complex system of constraining functions
rather than just a single constraining function. One could think of our forcing as
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resembling a tree Prikry forcing with interleaved collapses where associated with
each stem we have a measure one set and a constraining function. However in-
stead of doing this we have integrated functions and measure one sets into a single
sequence which has a function of n variables for each n.

The motivation for this technique comes from an old question of Magidor, “Is
it consistent that every regular cardinal greater than ℵ1 has the tree property?”
The question was formulated in light of Mitchell’s result [11] and progress was
made by Abraham [1] and Cummings and Foreman [4]. The current longest known
intervals of regular cardinals which can consistently have the tree property are
due to Neeman [12] and the author [14]. Neeman showed from countably many
supercompact cardinals it is consistent to have the tree property at every regular
cardinal on the interval [ℵ2,ℵω+1]. In Neeman’s model, ℵω is strong limit. In [14]
by forcing ℵω not to be strong limit, we showed that the interval can be extended
to [ℵ2,ℵω·2). The argument uses Neeman’s work in an essential way.

There is an important distinction between models where ℵω is strong limit
and models where it is not. We note that by an old theorem of Specker [13] if
2ℵω = ℵω+1, then there is a special ℵω+2-tree. So a model for a positive answer
to Magidor’s question where ℵω is strong limit must also have the failure of the
Singular Cardinals Hypothesis at ℵω. In search of a positive answer, we return to
the method of Prikry forcing with interleaved collapses, but we wish to use collapses
that will enforce the tree property at each ℵn.

The known methods for getting the tree property at each ℵn for n ≥ 2 are due to
Cummings and Foreman [4] and Neeman [12]. Cummings and Foreman define a full
support iteration with countably many stages and Neeman revises the Cummings
and Foreman iteration to make it act somewhat like a product. Both methods
either explicitly or implicitly require an iteration. A recent paper of Friedman and
Honzik [7] obtains the tree property at each ℵ2n for n ≥ 1 and the failure of the
Singular Cardinals Hypothesis at ℵω. Their method uses a product of collapses
between the Prikry points, which as discussed above must look quite different from
an iteration between the Prikry points.

So it appears that a model which gives a positive answer to Magidor’s question
with ℵω strong limit must combine Prikry forcing with an iteration of some kind.
In this paper we develop such a method and prove the following theorem.

Theorem 0.1. Suppose there is a cardinal κ with an elementary embedding j :

V → M witnessing that κ is huge with target λ and λ++

M ⊆ M . There is a
generic extension in which for all n ≥ 2, the tree property holds at ℵn, ℵω is strong
limit and 2ℵω = ℵω+2.

We use Cummings and Foreman’s iteration for obtaining the tree property at
each ℵn. For practical purposes, very little knowledge of the specifics of this iter-
ation is required. Where we need a specific property of the iteration we cite the
relevant lemma from the original paper. For completeness we recall that the iter-
ates are posets of the form R(τ, κ, V,W, F ), which are κ-cc and designed to force
2τ = κ = τ++ while preserving τ+. Moreover if κ is supercompact and F is a Laver
function for κ, then the tree property holds at κ in an indestructible way in the
extension.

Barbanel [2] proved that from our large cardinal hypothesis one can obtain 2κ =
κ++ preserving the hugeness of κ. Working in this model we extract a measure
which will be used in the definition of our Prikry forcing. Let j : V → M witness
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that κ is huge with target λ and assume that 2κ = κ++. Let µ < j(κ) be a
regular cardinal. It follows that the collection Uµ = {A ⊆ Pκ(µ) | j“µ ∈ j(A)} is a
supercompactness measure on Pκ(µ). Moreover by the closure of M , Uµ ∈ M . So
in M we have for all µ < j(κ), κ is µ-supercompact. We define U to be Uκ+ and
we note that the projection of U to a normal measure on κ concentrates on a set
of cardinals which are < κ-supercompact.

1. Definition of the forcing

In this section we define the main forcing. Our Prikry forcing without the col-
lapses will be the usual supercompact Prikry forcing from [8] defined with respect
to the measure U .

Let Z = {x ∈ Pκ(κ+) | x ∩ κ ∈ κ is < κ-supercompact and o.t.(x) = (x ∩
κ)+}. Combining standard arguments with the argument at the end of the previous
section, we have Z ∈ U . For x ∈ Z we define κx = x ∩ κ. Fix a class Laver
function as in [10], that is a function F : On→ V such that if θ is a supercompact
cardinal, then F � θ is a Laver function for θ. We begin by defining a class of
initial segments of Cummings-Foreman iterations. Let P(∅) be the trivial forcing.
Let ~x = 〈xi | i < n〉 be a supercompact Prikry stem from Z of length n, that is,
a sequence of elements of Z which are increasing in the sense that if i < j, then
xi ⊆ xj and |xi| < xj∩κ. Let P(~x) be the first n−1 stages of a Cummings-Foreman
iteration using the supercompact cardinals κx0

, . . . κxn−1
and the Laver function F

(see definitions 3.1 and 4.1 of [4]). Next we define a P(~x)-name for a poset Q̇(~x).
There a few cases.

Case 1. n = 0

Then ~x is the empty stem and P(~x) is the trivial forcing. In this case let Q(∅)
be R(ℵ0, κ, V, V, F ).

Case 2. n = 1

Let Q̇(~x) be the canonical P(~x)-name for R(ℵV1 , κ, V, V [P(~x)], F~x) where F~x is a
function whose value at some α is the interpretation of F (α) if F (α) is a P(~x)-name
and is 0 otherwise.

Case 3. n ≥ 2

Let Q̇(~x) be the canonical P(~x)-term for the poset R(κxn−2
, κ, V [P(~x � n −

1)], V [P(~x)], F~x) where F~x is a function defined as in Case 2.
This finishes the definition of the iteration part of the forcing. We prove a lemma

which shows that the definition of the Prikry forcing is possible.

Lemma 1.1. For every supercompact Prikry stem ~x, for every ~p ∈ P(~x) and for

every q̇ such that 
P(~x) q̇ ∈ Q̇(~x), there is an α < κ such that for all y ∈ Z with
κy > α, ~p_〈q̇〉 ∈ P(~x_y).

Proof. Fix ~x, ~p, q̇ as in the lemma. Note that in V [P(~x)] the interpretation of q̇ is a
triple with each coordinate occupied by partial functions and that the union of the
domains has size less than κ. Let τ be a P(~x)-name for the union of the domains. If
~x = 〈x0, . . . xn−1〉, then P(~x) has the κxn−1

-cc. It follows that in the ground model
we can find α inaccessible so that ~p 
P(~x) α > sup τ . The claim follows from the
uniformity of the definition of the forcings. We need to work through the cases of
the definition of Q̇(~x).
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Case 1. n = 0

In V for all y ∈ Z, we have R(ℵ0, κy, V, V, F ) ⊆ Q(∅) = R(ℵ0, κ, V, V, F ). Now
when κy > α we have that ~p_〈q̇〉 ∈ P(〈y〉).

Case 2. n = 1

In this case ~x = 〈x〉. In V [P(~x)] for all y ∈ Z with κy > κx, we have
R(ℵV1 , κy, V, V [P(~x)], F~x) ⊆ Q(~x) = R(ℵV1 , κ, V, V [P(~x)], F~x). So if α < κy, then
p_〈q̇〉 ∈ P(〈x, y〉).

Case 3. n ≥ 2

In V [P(~x)] for all y ∈ Z with κy > κxn−1
, we have R(κxn−2

, κy, V [P(~x) � n −
1], V [P(~x)], F~x) ⊆ Q(~x) = R(κxn−2

, κ, V [P(~x) � n− 1], V [P(~x)], F~x).
Note that in each case the forcing which we claim is a subset of Q(~x) is exactly

the top forcing in P(~x_〈y〉). Combining this with the choice of α finishes the
proof. �

We are now ready to define the conditions of the main forcing. A condition is of
the form

〈x0, p0, x1, p1, . . . xn−1, pn−1, Fn, Fn+1, . . . 〉
where ~x = 〈x0 . . . xn−1〉 is a stem from the supercompact Prikry forcing, 〈p0, . . . pn−2〉 ∈
P(~x) and 
P(~x) pn−1 ∈ Q(~x). There is an X ∈ U whose powers form the domains
of the functions Fn+i for i < ω. In particular Fn+i is a function of i + 1 variables
and has domain [X]i+1 and for each ~y ∈ [X]i+1, Fn+i(~y) is a P(~x_~y) name for a

condition in Q̇(~x_~y). This finishes the definition of the conditions.

We will refer to conditions as 〈~s, ~F 〉 where

~s =def 〈x0, p0, . . . xn−1, pn−1〉
~F =def 〈Fn, Fn+1, . . . 〉.

We define operators cp,pp so that cp(~s) = 〈p0, . . . pn−1〉 and pp(~s) = 〈x0, . . . xn−1.

cp,pp stand for collapse part and Prikry part respectively. We write dom ~F for the
measure one set whose powers form the domains of the functions. We also call n

the length of the condition 〈~s, ~F 〉 and sometimes denote it `(~s) or `(~x).
We move to the definition of the ordering.

〈x0, p0, . . . xn−1, pn−1, Fn, Fn+1, . . . 〉 ≥
〈x0, q0, . . . , xn−1, qn−1, xn, qn, . . . xm−1, qm−1, Gm, . . . 〉

if and only if all of the following hold:

(1) For all n ≤ i < m, xi ∈ dom ~F and dom ~G ⊆ dom ~F .
(2) 〈p0, p1, . . . pn−1, Fn(xn), . . . Fm−1(〈xn, . . . xm−1〉)〉 ≥ 〈q0, . . . qm−1〉

in P(〈x0, . . . xm−1〉) ∗Q(〈x0, . . . xm−1〉).
(3) For all i < ω, and for all Prikry stems ~y ∈ [dom ~G]i,

~q_〈1〉 
P(~x_~y) Fm+i−1(〈xn, . . . xm−1〉_~y) ≥ Gm+i−1(~y)

where 〈1〉 is the sequence of top elements of a final segment of the coordi-
nates in P(~x_~y).
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We define a direct extension to be an extension that preserves the length of a
condition. We will often need to refer the minimal possible constraints available

for a given stem. Suppose ~t is the stem of some extension of 〈~s, ~F 〉, then we define
~F � ~t as follows. Let ~x = pp(~t)\pp(~s) and suppose that `(~x) = n. For Prikry stems

~y of length i from dom(~F ), we set (~F � ~t)i(~y) = Fn+i(~x
_~y). It is not hard to check

that 〈~t, ~F � ~t〉 ≤ 〈~s, ~F 〉.
It is straightforward to check that the ordering as defined is transitive. Suppose

that we have

〈x0, p0, . . . xn−1, pn−1, Fn, Fn+1 . . . 〉 ≥
〈x0, q0, . . . xn−1, qn−1, xn, qn, . . . xm−1, qm−1, Gm, Gm+1, . . . 〉 ≥
〈x0, r0, . . . xn−1, rn−1, xn, rn, . . . xm−1, rm−1, xm, rm, . . . xl−1, rl−1, Hl, Hl+1 . . . 〉

For convenience we let ~x = 〈x0, x1, . . . xl−1〉. (1) is obvious, since this is exactly
the condition that we have in the usual supercompact Prikry forcing. For (2), we
want to see that

〈p0, p1, . . . pn−1, Fn(xn), . . . Fl−1(~x � [n, l))〉 ≥ 〈r0, r1, . . . rl−1〉

in the poset P(~x) ∗ Q(~x). To do this we insert a collapse condition given by the
second condition. It is enough to show

〈p0, p1, . . . pn−1, Fn(xn), . . . Fl−1(~x � [n, l))〉 ≥
〈q0, q1, . . . , qm−1, Gm(xm), . . . Gl−1(~x � [m, l))〉 ≥
〈r0, r1, . . . rl−1〉

For the first ≥ we use both (2) and (3) from the definition. By (2) the first ≥
holds between the conditions restricted to m and by (3) and an easy induction it
holds for the rest. The second ≥ is exactly (2) from the definition of the ordering.
So we have shown (2) for the desired conditions.

For (3) we have that for all ~y ∈ [dom(~G)]i+1,

~q_〈1〉 
 Fm+i(〈xn, . . . xm−1〉_~y) ≥ Gm+i(~y)

and for all ~z ∈ [dom( ~H)]k+1,

~r_〈1〉 
 Gl+k(〈xm, . . . xl−1〉_~z) ≥ Hl+k(~z)

We fix ~z ∈ [dom( ~H)]k+1. We set ~y =def 〈xm, . . . xl−1〉_~z. We apply the above
inequalities for our fixed ~z, ~y. Note that 〈xn, . . . xm−1〉_~y = 〈xn, . . . xl−1〉_~z and
that ~r_〈1〉 ≤ ~q_〈1〉. (In each we adjoin a different number of 1’s.) It follows from

the transitivity of Q̇(~x_~z) in V [P(~x_~z)] that

~r_〈1〉 
 Fl+k(〈xn, . . . xl−1〉_~z) ≥ Hl+k(~z)

which is what we wanted.
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2. The Prikry Lemma

In this section we prove a version of the Prikry Lemma for our poset. Typical
proofs of the Prikry lemma for forcing with interleaved collapses use closure (or at
least distributivity) of the collapses to diagonalize over possible stems. This method
is not possible for us, since our collapses are not closed enough. We get around this
by carefully constructing names in our iteration between the Prikry points.

Lemma 2.1. Fix a condition in the forcing 〈~s, ~F 〉 and a statement in the forcing

language ϕ. There is a direct extension of 〈~s, ~F 〉 that decides ϕ.

Proof. Fix 〈~s, ~F 〉 and ϕ as in the lemma. We let pp(~s) = ~x and cp(~s) = ~p. The
argument proceeds in three rounds. For each round we have a claim that provides a
direct extension. Fix an enumeration of supercompact Prikry stems 〈~xα | α < κ+〉
with the property that for all α if ~xα is a stem of length n then for all m < n there
is a β < α such that ~xα � m = ~xβ .

Claim 2.2. There is 〈~s, ~G〉 ≤ 〈~s, ~F 〉 such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 decides ϕ then

there is a ~u such that `(~u) = `(~t), pp(~u) = pp(~t), cp(~u) ≤ cp(~t) and 〈~u, ~G � ~u〉
decides ϕ in the same way as 〈~t, ~G′〉.

We build a sequence of constraints 〈~Fα | α < κ+〉 which are suitable for ~s and

so that 〈〈~s, ~Fα〉 | α < κ+〉 is a decreasing sequence in the forcing. We also record
measure one sets Xα in order to take a diagonal intersection at the end.

We go by induction on α < κ+. Define ~F 0 = ~F . Assume that we have con-

structed ~Fα for some α < κ+. Consider the set

Bα =def{~p ∈ P(~xα) ∗ Q̇(~xα) | there is a stem ~t~p with pp(~t~p) = ~xα,

cp(~t~p) = ~p and there is a system of constraints ~F~p such that

〈~t~p, ~F~p〉 ≤ 〈~s, ~Fα〉 decides ϕ}

Choose an antichain A′α that is contained in Bα and is maximal. Extend A′α to a

maximal antichain Aα in P(~xα) ∗ Q̇(~xα). By the κ-cc of this forcing, |Aα| < κ. For

each ~p ∈ Aα fix a system of constraints ~F~p witnessing that ~p ∈ Bα if possible and

otherwise let ~F~p = ~Fα � ~t~p where ~t~p is determined by pp(~t~p) = ~xα and cp(~t~p) = ~p.
Now that the reader has a feel for the forcing we make a small, but helpful

notational change. From here on we will write things like ~F (~y) to denote the

constraint value for stem ~y when plugged into the appropriate function from ~F .
There is no risk of confusion and we alleviate the clutter of subscripts. We define

the constraint functions ~Fα+1 as follows. We leave the domain unchanged, but

record the set Xα =def

⋂
~p∈Aα dom(~F~p) which is in U by κ-completeness. For every

~y from Xα we define the term ~Fα+1((~xαr~x)_~y) as follows (recall that ~x is pp(~s)).
For each ~p ∈ Aα

~p_〈1〉 
 ~Fα+1((~xα r ~x)_~y) = ~F~p(~y)

For all other ~z we let ~Fα+1(~z) = ~Fα(~z). In order to show that 〈~s, ~Fα+1〉 ≤ 〈~s, ~Fα〉,
we need to show that for all relevant ~z, cp(~s) 
 ~Fα+1(~z) ≤ ~Fα(~z). The nontrivial
case is when ~z = (~xα r ~x)_~y for some ~y from Xα. Choose a P(~x_α ~y)-generic G so
that cp(~s) ∈ G � n. Now Aα is a maximal antichain so we have ~p ∈ G � `(~xα)∩Aα
and hence in V [G], ~Fα+1(~z) = ~F~p(~y). Now there are two cases. If ~p /∈ Bα, then
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in V [G] ~F~p(~y) = ~Fα((~xα r ~x)_~y), which is certainly enough. If ~p ∈ Bα, then in

V [G] we have ~F~p(~y) ≤ ~Fα((~xα r ~x)_~y) by the choice of ~F~p. So in either case we
are done. This completes the successor step of the construction.

Suppose that γ is a limit ordinal and we have constructed ~Fα for all α < γ. By
construction all of the domains of functions remain the same. So for every ~y from

the common domain we have that ~s forces that 〈~Fα(~y) | α < γ〉 is a decreasing
sequence. We claim that we can find a lower bound, because the sequence only
decreases finitely many times. At stage α + 1 we only decreased the constraint
values for stems extending ~xα r ~x. So if we decreased the constraint value at stage
α + 1, then we must have had ~xα r ~x is an initial segment of ~y. Hence for each ~y

we can find a term ~F γ(~y) that cp(~s) forces to be a lower bound for the sequence

〈~Fα(~y) | α < γ〉.
By a similar argument can find a lower bound for 〈〈~s, ~Fα〉 | α < κ+〉 with stem

~s. We restrict the resulting constraint to domains formed from the set

X =def {x ∈ Pκ(κ+) | for all α < κ+ if ~x_α x is a stem, then x ∈ Xα}

We call this constraint ~G and note that 〈~s, ~G〉 is a condition. We are ready to finish

the proof of the claim. Suppose that 〈~t, ~G′〉 ≤ 〈~s, ~G〉 decides ϕ. Then we have
pp(~t) = ~xα for some α < κ+. We claim that cp(~t) ∈ Bα as witnessed by ~t and
~G′. In particular we need to show that 〈~t, ~G′〉 ≤ 〈~s, ~Fα〉. This is clear from the

transitivity of the ordering, since 〈~s, ~G〉 is between them. It follows that there is
~p ∈ A′α such that ~p is compatible with cp(~t). Let ~r be a common extension and let

~u be the stem obtained from combining ~xα and ~r. We claim that 〈~u, ~G � ~u〉 decides

ϕ in the same way that 〈~t, ~G′〉 does.

By construction we have that there is a stem ~t~p and a system of constraints ~F~p
chosen at the inductive step with pp(~t~p) = ~xα and cp(~t~p) = ~p, such that 〈~t~p, ~F~p〉 ≤
〈~s, ~Fα〉 decides ϕ. We claim that 〈~u, ~G � ~u〉 ≤ 〈~t~p, ~F~p〉. We check conditions 1 − 3
in the definition of the ordering. The conditions have the same length, so for (1) it

suffices to check that dom(~G � ~u) ⊆ dom(~F~p). Suppose that x ∈ dom(~G � ~u). We
have that x ∈ X. Since in the definition of a condition we have that ~x_α x is a stem,

it follows that x ∈ Xα. We are done since dom(~F~p) ⊇ Xα. For condition (2), we

have that cp(~t~p) = ~p ≥ ~r = cp(~u) and this is enough since the conditions have the

same length. For condition (3) we need that for all ~y from the dom(~G � ~u), cp(~u)

forces (~G � ~u)(~y) ≤ ~F~p(~y). This follows from collected facts about the construction

of ~G.

(~G � ~u)(~y) = ~G((~xα r ~x)_~y)

~p 
 ~F~p(~y) = ~Fα+1((~xα r ~x)_~y)

cp(~s) 
 ~Fα+1((~xα r ~x)_~y) ≥ ~G((~xα r ~x)_~y)

To finish the proof we note that ~p ≤ cp(~s)_〈1〉 and ~r ≤ ~p. It follows that

〈~u, ~G � ~u〉 decides ϕ. We would like to see that 〈~u, ~G � ~u〉 and 〈~t, ~G′〉 give the same

decision. To do this we note that they are compatible, since 〈~u, ~G′ � ~u〉 is below
both. Running through the definition of the ordering is routine. This finishes the
first round of the construction.
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Remark 2.3. Every direct extension of 〈~s, ~G〉 retains the same universal property.

We turn to the second round of the construction, for which we have the following
claim.

Claim 2.4. There is a direct extension 〈~s, ~H〉 ≤ 〈~s, ~G〉 such that if an extension

〈~t, ~H ′〉 ≤ 〈~s, ~H〉 decides ϕ, then there is a stem ~v such that

(1) pp(~t) = pp(~v),
(2) cp(~v) � (`(~v)− 1) ≤ cp(~t) � (`(~t)− 1),

(3) cp(~v)(`(~v)− 1) = ~H(pp(~v) r pp(~s)) and

(4) 〈~v, ~H � ~v〉 decides ϕ in the same way as 〈~t, ~H ′〉.

Recall that we enumerated the Prikry stems extending pp(~s) = ~x as 〈~xα | α <
κ+〉. Our approach is similar to the previous claim. We construct a decreasing

sequence of conditions 〈〈~s, ~Gα〉 | α < κ+〉. To begin we fix ~G0 = ~G.

Suppose that we have constructed ~Gα for some α < κ+. Let

Bα =def {~p ∈ P(~xα) | there are ~u, q̇ such that cp(~u) = ~p_〈q̇〉,

pp(~u) = ~xα, ~p 
 q̇ ≤ ~Gα(~xα r ~x) and 〈~u, ~Gα � ~u〉 decides ϕ}

Again we pick a maximal antichain A′α ⊆ Bα and then extend it to a maximal
antichain Aα ⊆ P(~xα). Note that this time we have |Aα| < κx where x is the
top element of ~xα. For each ~p ∈ Aα, if ~p ∈ Bα, then we let q̇~p witness this.

Otherwise we define q̇~p = ~Gα(~xα r ~x). Define ~Gα+1 as follows. Let ~Gα+1(~xα r ~x)

to be a P(~xα)-term such that for all ~p ∈ Aα, ~p 
 ~Gα+1(~xα r ~x) = q̇~p. For all

other ~y we let ~Gα+1(~y) = ~Gα(~y). We need to check that 〈~s, ~Gα+1〉 ≤ 〈~s, ~Gα〉.
Conditions (1) and (2) are obvious. For (3) notice that the only interesting case
is when ~y = ~xα r ~x. In this case we have a maximal antichain Aα such that

for each ~p ∈ Aα, ~p 
 ~Gα+1(~y) ≤ ~Gα(~y). So in fact for all ~y it is forced that
~Gα+1(~y) ≤ ~Gα(~y). Therefore ~s_〈1〉 forces this.

Assume that γ is a limit ordinal. We can take a lower bound for the construction

so far since for all ~y the sequence 〈~Gα(~y) | α < κ+〉 only decreases at stage α where
~y = ~xα r ~x. We can assume that all of our functions have the same domain and so

we have a sequence of constraint functions defined on measure one sets, ~Gγ .

A similar argument allows us to find a lower bound 〈~s, ~H〉 for the whole con-

struction. We will show that 〈~s, ~H〉 is as required for the claim. Suppose that

〈~t, ~H ′〉 ≤ 〈~s, ~H〉 decides ϕ. Then by the first claim we have that there is a ~u so

that `(~u) = `(~t), cp(~u) ≤ cp(~t) and 〈~u, ~G � ~u〉 decides ϕ in the same way as 〈~t, ~H ′〉.
Then there is an α < κ+ such that pp(~u) = ~xα. Let cp(~u) =def 〈q0, . . . qk−1〉.
We claim that 〈q0, . . . qk−2〉 ∈ Bα and that this is witnessed by ~u, qk−1 in place
of ~u, q̇ respectively. Clearly we have that cp(~u) = 〈q0, . . . qk−2〉_〈qk−1〉. From the
definition of the ordering we have

〈q0, . . . qk−2〉 
 qk−1 ≤ H(~xα r ~x)

cp(~s)_〈1〉 
 ~H(~xα r ~x) ≤ ~Gα(~xα r ~x)

It follows that 〈q0, . . . qk−2〉 
 qk−1 ≤ ~Gα(~xαr~x). To finish we recall that 〈~u, ~G �
~u〉 decides ϕ. So by the choice of A′α, there is a ~p ∈ A′α, such that ~p is compatible
with 〈q0, . . . qk−2〉. Let ~u~p, q̇~p be the witnesses to the fact that ~p ∈ Bα. Choose ~r
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below both 〈q0, . . . qk−2〉 and ~p. Let ~v be the stem determined by ~r_〈H(~xα r ~x)〉
and ~xα. It is clear that parts 1− 3 of the claim are satisfied.

To complete the proof of the claim, we need to show that 〈~v, ~H � ~v〉 decides ϕ

in the same way as 〈~u, ~G � ~u〉. We show that the above condition decides ϕ by

showing that it is below 〈~u~p, ~Gα � ~u~p〉. Note that the first part of condition (1) is
trivial since pp(~u~p) = pp(~v). We leave the second part of condition (1) until after
we have proved condition (2). Let k = `(~v). Then by the choice of ~v we have that
cp(~v) � k−1 = ~r ≤ ~p = cp(~u~p) � k−1. To finish with condition (2) we need to show

that ~r 
 ~H(~xα r ~x) ≤ q̇~p. To do this we collect some facts about the construction

of ~Gα+1.

~p 
 ~Gα+1(~xα r ~x) = q̇~p

cp(~s)_〈1〉 
 ~H(~xα r ~x) ≤ ~Gα+1(~xα r ~x)

This finishes condition (2), since ~r is below both ~s_〈1〉 and ~p. It follows that

dom( ~H � ~v) ⊆ dom(~Gα) � ~u~p, since dom( ~H) = dom(~Gα) and if ~v_y is a stem, then

~u_~p y is a stem. Condition (3) follows from the fact that 〈~s, ~H〉 ≤ 〈~s, ~Gα〉.
To see that 〈~v, ~H � ~v〉 gives the same decision as 〈~u, ~G � ~u〉 we show that they

are compatible. To show this we need to see that ~r 
 qk−1 ≤ ~H(~xα r ~x). Recall
that in fact 〈q0, . . . qk−2〉 forces this and ~r is below it. So we can take the stem

determined by ~xα and ~r_〈qk−1〉 together with ~H restricted to this stem and this
is below both conditions. This finishes the second claim.

In the third round we restrict the measure one set to obtain the same decision.
This will be enough to finish the proof of the Prikry Lemma. For the third and
final round we actually need an enumeration of all stems 〈~sα | α < κ+〉 not just
Prikry stems. For each α < κ+ we partition the set of x ∈ Z such that ~s_α x is a

stem into three sets. For ease of notation we write p(x) for ~H((pp(~sα)_x \ ~x).

Y 0
α ={x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H � (~s_α 〈x, p(x)〉)〉 
 ϕ}

Y 1
α ={x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H � (~s_α 〈x, p(x)〉)〉 
 ¬ϕ}

Y 2
α ={x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H � (~s_α 〈x, p(x)〉)〉 ∦ ϕ}

For each α there is mα ∈ 3 such that Y mαα ∈ U . Let Y = {x ∈ Z | ∀α < κ+ if

~s_α x is a stem, then x ∈ Y mαα }. We have Y ∈ U and we let ~I be the restriction of
~H to Y . Clearly 〈~s, ~I〉 ≤ 〈~s, ~H〉. We present a claim that finishes the proof.

Claim 2.5. There is a direct extension of 〈~s, ~I〉 that decides ϕ.

We argue by contradiction. Suppose that no direct extension of 〈~s, ~I〉 decides
ϕ. Then any extension which decides ϕ must add at least one Prikry point. Let

〈~t, ~I ′〉 be an extension of minimal length that decides ϕ without loss of generality
we assume that it forces ϕ. By the second round there is a stem ~v satisfying 1−4 of
the claim. There is an α < κ+ such that ~v � (`(~v)− 1) = ~sα. From the definition of
Y , we have that the top element of pp(~v) is in Y mαα . It follows from the conditions
of the Claim 2.4 that mα = 0. Now we can define a condition of shorter length

that forces ϕ, a contradiction. We claim that 〈~sα, ~I � ~sα〉 forces ϕ. Every one step
extension is below a condition of the form

〈~s_α x_ ~H((pp(~sα)_x) r ~x), ~H � (~s_α x
_ ~H((pp(~sα)_x) r ~x))〉
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for some x ∈ Y 0
α . Hence there is a dense set of conditions below 〈~sα, ~I � ~sα〉 which

force ϕ. This finishes the claim and with it the proof of the Prikry Lemma. �

We need an additional argument to show that bounded subsets of κ come from
initial segments of the generic. We recall a part of Lemma 4.3 from Cummings-
Foreman that has been modified to fit our new context.

Lemma 2.6. For all n ≥ 3 if ~x is a Prikry stem of length n, then V [P(~x)] � Q̇(~x)
is ℵn−1-closed.

For a stem of length n ≥ 2, P(~x) preserves ℵ0,ℵ1 and for 0 ≤ i ≤ n − 1 makes
κxi into ℵi+2. The following lemma is clear from the above facts.

Lemma 2.7. Fix a Prikry stem ~x of length n ≥ 3. Given a sequence of fewer than
κ~x(n−3) many P(~x)-terms for conditions in Q̇(~x), if ~p ∈ P(~x) forces that they are a
decreasing sequence, then there is a P(~x)-term that ~p forces to be a lower bound.

From this we have the following lemma which is used in our lemma about
bounded subsets.

Lemma 2.8. Given a µ < κ and a condition 〈~s, ~F 〉. Then there is an extension

〈~s, ~G〉 of 〈~s, ~F 〉 such that every extension of 〈~s, ~G〉 which adds at least two Prikry
points has the property that the term forcing in the constraints is µ+-closed.

Proof. To show this it suffices to shrink the measure one set of the condition 〈~s, ~F 〉.
We restrict the domains of the ~F so that for all x in the restriction κx > µ+. This

defines 〈~s, ~G〉. Suppose that 〈~t, ~H ′〉 ≤ 〈~s, ~H〉 is an extension that adds at least two

Prikry points say they are xn, xn+1. By the choice of ~G we have µ+ < κxn < κxn+1
.

By the previous lemma we have that all of the term forcings in the constraints are
at least κxn -closed in the ground model. �

Lemma 2.9. Suppose that ḃ is a name in the main forcing for a subset of some
µ < κ, then it is forced that there is an n such that ḃ in V [P(~̇x � n)].

Note that we used ~̇x for the canonical name for the Prikry sequence.

Proof. By the previous lemma there is a dense set of conditions so that the forcing

in the constraint is µ+-closed. Suppose that 〈~s, ~F 〉 is a condition in this dense set.

Let `(~s) = k, pp(~s) = ~x and cp(~s) = ~p. We construct an extension 〈~s, ~G〉, which

forces that ḃ ∈ V [P(~̇x) � k + 1]. We construct a decreasing sequence of µ many

conditions 〈〈~s, ~Fα〉 | α < µ〉. We let ~F 0 = ~F . At stage α + 1 of the construction

we repeatedly apply the Prikry lemma to the condition 〈~s, ~Fα〉 and the statement

“α ∈ ḃ” to obtain ~Fα+1 such that there are a maximal antichain of elements ~q of

P(~x) ∗ Q(~x) below ~p where if ~t is obtained from ~x and ~q, then 〈~t, ~Fα+1〉 decides

“α ∈ ḃ”. As in the proof of Claim 2.2 we amalgamate different extensions of ~Fα

over the maximal antichain in P(~x) ∗Q(~x) to obtain ~Fα+1.
The closure of the forcing in the constraining functions allows us to take a lower-

bound at limit stages of the construction and also for the whole sequence of condi-

tions. We call this lowerbound 〈~s, ~G〉. Clearly this condition forces that ḃ is in the

extension V [P(~̇x � k + 1)]. �

Corollary 2.10. In the extension κ = ℵω and for all n ≥ 2, the tree property holds
at ℵn.
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This follows easily from facts about the original Cummings-Foreman model and
the previous lemma.

3. Cardinals above κ

In this section we seek to show that the technique from Magidor’s paper [8] is
enough to give us the failure of SCH at ℵω with our forcing. In particular we show
that an inner model of the full extension preserves cardinals above κ.

We need the following variation of Claim 2.2. Fix a condition 〈~s, ~F 〉 and suppose

that γ̇ is a name for an ordinal. We claim that there is a direct extension 〈~s, ~G〉
such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 forces the value of γ̇ to be γ, then so does 〈~t, ~G � ~t〉.
To see this we repeat the proof of Claim 2.2, but instead of deciding ϕ, we decide

the value of γ̇ if possible. The proof goes through because 〈~t, ~G′〉 and 〈~t, ~G � ~t〉 are
compatible and so must force the same value for γ̇.

Let G be generic for our forcing. We are interested in the inner model of V [G]
corresponding to the measurable Prikry sequence and the generics generated by the
Cummings-Foreman iteration. In particular if 〈xn | n < ω〉 is the Prikry sequence
and gω is the sequence of generics such that gω � n is generic for P(~x � n + 1)
obtained from G, then we are interested in V0 =def V [〈κxn | n < ω〉, gω]. Note that
Lemma 2.9 gives that in V0, κ = ℵω and for all n ≥ 2, the tree property holds at
ℵn.

We prove the following theorem.

Theorem 3.1. The cardinals κ+ and κ++ are preserved in V0.

We will do this by analyzing automorphisms of our forcing. Suppose that Γ is

an permutation of κ+ that fixes κ. Then we can apply Γ to a condition 〈~s, ~F 〉 =def

〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1 . . . 〉, as follows.

Γ(〈~s, ~F 〉) = 〈Γ“x0, p0, . . .Γ“xn−1, pn−1, Fn ◦ Γ−1, . . . Fn+m ◦ ⊕i<mΓ−1 . . . 〉

Note that Γ(〈~s, ~F 〉) is a condition since Γ fixes κ. It is easy to see that Γ is an
automorphism of the forcing and that any name for 〈κn | n < ω〉 and gω is fixed by
Γ.

Straight from [8] we have the following lemma.

Lemma 3.2. Let Γ be a permutation of α and U be a normal fine measure on
Pκ(α), then {x | Γ“x = x} ∈ U .

Lemma 3.3. Let

〈~s, ~F 〉 = 〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1 . . . 〉

〈~t, ~G〉 = 〈y0, p0, . . . , yn−1, pn−1, Gn, Gn+1 . . . 〉

where κxi = κyi for all i < n and the constraint functions agree on the intersection
of their domains. Then there is a permutation Γ of κ+ which fixes κ such that

Γ(〈~s, ~F 〉) is compatible with 〈~t, ~G〉.

Proof. Recall that for all x ∈ Z, |x| = (x ∩ κ)+. An easy inductive construction
works to find Γ such that Γ � xi : xi → yi is a bijection for all i < n. This Γ works
using Lemma 3.2. �



12 SPENCER UNGER

We are now ready to prove Theorem 3.1. Suppose that κ+i+1 is collapsed in Vi
where i ∈ 2 and V1 = V [G]. Let µ be the cofinality of κ+i+1 in Vi. Fix a condition

〈~s, ~F 〉 as above. Suppose that ḃ is a name for a function from µ cofinally into κ+i+1

such that iG(ḃ) ∈ Vi. We may assume as in Lemma 2.9 that the forcing in the

upper part of 〈~s, ~F 〉 is µ+-closed. Note that for all Γ if Γ is a permutation of κ+

fixing κ+i then Γ fixes ḃ.
Applying the variation of the Prikry Lemma from the beginning of the section,

we can obtain 〈~s, ~G〉 ≤ 〈~s, ~F 〉 such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 forces that ḃ(λ) = α then

〈~t, ~G � ~t〉 forces ḃ(λ) = α.

Define Aλ = {α | there is 〈~t, ~G′〉 ≤ 〈~s, ~G〉 such that 〈~t, ~G′〉 
 ḃ(λ) = α}.

Claim 3.4. |Aλ| ≤ κ+i.

This claim is enough since the union of the Aλ has size ≤ κ+i and therefore ḃ
cannot collapse κ+i+1, a contradiction. Suppose the claim is false. Then |Aλ| > κ+i.

Then for each α ∈ Aλ there is 〈~tα, ~Fα〉 ≤ 〈~s, ~G〉 which forces ḃ(λ) = α. We may

assume that ~Fα = ~G � ~tα. First find a set unbounded in κ+i+1 such that all the
conditions have the same length. Then if i = 1 there are only κ+ many stems

of a given length and it follows that there are α, β such that 〈~tα, ~Fα〉 = 〈~tβ , ~F β〉,
contradicting the choice of 〈~tα, ~Fα〉 and 〈~tβ , ~F β〉. If i = 0, then there are only κ
many possibilities for the projected stems where we intersect each x with κ. It

follows that there are α, β such that 〈~tα, ~Fα〉 and 〈~tβ , ~F β〉 satisfy the hypotheses of

the Lemma 3.3. Hence there is an automorphism Γ such that Γ(〈~tα, ~Fα〉) ‖ 〈~tβ , ~F β〉
but Γ fixes ḃ, again contradicting the choice of 〈~tα, ~Fα〉 and 〈~tβ , ~F β〉. This completes
the proof of the claim and with it the proof of Theorem 3.1.
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