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1. Introduction

In this expository note, we seek to clarify work of Gitik [1]. In particular we give
a proof of the following theorem.

Theorem 1.1. Let κ be a singular cardinal of cofinality ω and 〈κn | n < ω〉 be an
increasing and cofinal sequence of cardinals where each κn is κ+n+2

n -strong. There
is a cardinal preserving forcing extension in which no bounded subsets of κ are
added and κω = κ++.

In an Appalachian Set Theory Workshop [3], Gitik presented some of the de-
tails of a simplified version of the poset from his original paper. The discussion
there motivates the definition of the forcing by modifying a poset which requires
a stronger large cardinal assumption which is sometimes called the long extender
forcing. However, the discussion recorded in the Appalachian Set Theory (AST)
notes falls short of giving a complete account of this simplified forcing. The pur-
pose of this paper is to fill in the gaps from the AST notes and so give a complete
account of this simplified forcing. In particular we focus the proof that the final
forcing has the κ++-cc. Since the motivation for the poset is nicely outlined in the
AST notes we jump straight into the technical details.

One note on convention is in order. We depart from previous presentations of
this poset by using p ≤ q to mean that p is stronger than q.

2. Extenders

For the remainder of the paper we fix jn : V →Mn witnessing that κn is κ+n+2
n -

strong and derive an extender 〈Enα | α < κ+n+2
n 〉 where Enα =def {X ⊆ κ | α ∈

j(X)}.

Definition 2.1. Let n < ω. For α, β < κ+n+2
n , α ≤En β if there is f : κn → κn

such that jn(f)(β) = α.

For n < ω and α < β < κ+n+2
n with α ≤En β we fix a witnessing projection πβα

as in the previous definition. These projections depend on n, but whenever we use
them it will be clear which n is relevant. For use later we record three standard
lemmas about extenders.

Lemma 2.2. If x ∈ [κ+n+2
n ]<κn , then there are unboundedly many α < κ+n+2

n such
that for all β ∈ x, β ≤En α.
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Lemma 2.3. Let γ < β ≤ α < κ+n+2
n . If γ ≤En β and β ≤En α, then the

set {ν < κn | παβ(ν) > παγ(ν)} ∈ Enα. In particular for a set x ∈ [κ+n+2
n ]<κn

with a ≤En-maximal element α, there is a measure one set A ∈ Enα satisfying the
conclusion of the lemma for any γ, β ∈ x.

Lemma 2.4. Let x ∈ [κ+n+2
n ]<κn with a ≤En-maximal element α. There is a set

A ∈ Enα such that for all γ < β from x with γ ≤En β and all ν ∈ A, παγ(ν) =
πβγ(παβ(ν)).

3. Coding

We also need a notion of coding subsets of κ+n+2
n of size less than κn for each

n. So using GCH we fix a bijection Coden : κ+n+2
n → [κ+n+2

n ]<κn such that for all
ordinals γ of cofinality at least κ+n , the restriction of Coden to γ is a bijection from
γ to [γ]<κn . This coding is different from the one used by Gitik, but will serve the
same purpose.

4. Good ordinals

A natural modification of the long extender forcing to the setting of short exten-
ders collapses κ++. The key technical difficulty is revise the forcing so that it has
the κ++-cc. For this Gitik uses the notion of a good ordinal.

For each n < ω and k ≤ n we consider the structure

An,k = 〈H(λ+k),∈, <, λ,En, 〈0, 1, . . . τ · · · | τ ≤ κ+kn 〉〉

where λ is a large regular cardinal, < is a well-order of H(λ+k) and each other
parameter is a constant with the obvious interpretation. We write tpn,k(β) for the
collection of formulas in the language of An,k which β satisfies in An,k. When n is
implicit we refer to this type as ‘the k-type of β.’ For γ < λ, we expand An,k to
Aγn,k by adding a constant symbol and interpreting it as γ. We let tpn,k(γ, β) be

the collection of formulas in the language of Aγn,k which are satisfied by β in Aγn,k.

Remark 4.1. A key feature of the above models is that for k < k′ ≤ n, An,k ∈ An,k′
using GCH. This will allow the model An,k′ to make correct statements about the
realization of types in An,k. Moreover, by coding types as ordinals we may assume
that there is a constant for each Aγn,k-type in the structure An,k.

Remark 4.2. Another key feature is that by GCH there are atmost κ++
n many

measures on κn. In particular, by coding these measures as ordinals we may assume
that the structure An,k has a constant for each measure.

Lemma 4.3 (Lemma 2.3 of [1]). Let n < ω. The set {β < κ+n+2
n | ∀γ <

β tpn,n(γ, β) is realized stationarily often below κ+n+2
n } contains a club.

Definition 4.4. Let k ≤ n < ω and β < κ+n+2
n . We say that β is k-good if

cf(β) ≥ κ++
n and for all γ < β, tpn,k(γ, β) is realized stationarily often below

κ+n+2
n .

Note that the previous lemma shows that there are many good ordinals. Good
ordinals will be used to introduce some indiscernibility required for the chain con-
dition argument. The indiscernibility required is captured by the next two lemmas.
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Lemma 4.5 (Lemma 2.4 of [1]). Let 0 < k, l ≤ n, γ < ρ < κ+n+2
n and t be a

type in the language of Aγn,l realized by an ordinal above γ. If tpn,k(γ, ρ) is realized

stationarily often below κ+n+2
n , then there is η with γ < η < ρ such that η realizes

t � min(k − 1, l) in Aγn,min(k−1,l).

Lemma 4.6 (Lemma 2.0 of [1]). Let k ≤ n < ω. If ζ, ζ ′ < κ+n+2
n realize the same

type in Aγn,k for some γ < min(ζ, ζ ′), then for every ξ with ζ ≤ ξ < κ+n+2
n there is

a ξ′ with ζ ′ ≤ ξ′ < κ+n+2
n such that tpn,k−1(ζ, ξ) = tpn,k−1(ζ ′, ξ′).

The proofs of both lemmas use Remark 4.1 in a crucial way.

Remark 4.7. We can assume that the function Coden is definable in the structure
An,k by taking the <-least such coding function.

Remark 4.8. Coden restricted to a good ordinal γ is a bijection from γ to [γ]<κn .

5. The poset

In this section we give the definition of the main forcing with all of the details.
We begin with the definition of the cells Qn0 and Qn1 for n < ω.

Definition 5.1. Let Qn1 = {f | f is a partial function from κ++ to κn with
|f | ≤ κ} ordered by reverse inclusion.

Definition 5.2. Let (a,A, f) ∈ Qn0 if

(1) f ∈ Qn1,
(2) a is a partial order preserving function from κ++ to κ+n+2

n with |a| < κn
such that
(a) dom(a) has a largest element,
(b) dom(a) ∩ dom(f) = ∅,
(c) for all β ∈ rng(a), β ≤En mc(a) where mc(a) = a(max(dom(a))) and
(d) for all β ∈ rng(a), β is atleast 2-good,

(3) A ∈ Enmc(a) and
(4) A is contained in the sets given by Lemmas 2.3 and 2.4 applied to rng(a).

Define (a,A, f) ≤ (b, B, g) if

(1) f ≤ g in Qn1,
(2) b ⊆ a and
(3) πmc(a)mc(b)“A ⊆ B.

We are now ready to define the main poset with a Prikry type ordering.

Definition 5.3. Let p = 〈pn | n < ω〉 be in P if there is l = lh(p) such that for all
n < l, pn ∈ Qn1 and all n ≥ l, pn ∈ Qn0 where if we write pn = (an, An, fn), then
the following properties hold:

(1) if m ≥ n ≥ l, then dom(am) ⊇ dom(an) and
(2) if α ∈ dom(an) for some n, then there is a nondecreasing sequence 〈km |

n ≤ m < ω〉 such that km → ∞ as m → ∞ and for all m ≥ n, am(α) is
km-good.

For conditions p = 〈pn | n < ω〉 we adopt the convention that pn = fpn for n < lh(p)
and pn = (apn, A

p
n, f

p
n) for n ≥ lh(p). For the ordering, we let p ≤ q if

(1) lh(p) ≥ lh(q),
(2) for all n < lh(q), fpn ≤ fqn in Qn1,
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(3) for all n with lh(q) ≤ n < lh(p), there is ν ∈ Aqn such that fpn ≤ fqn ∪
{(ξ, πmc(aqn)a

q
n(ξ)(ν)) | ξ ∈ dom(aqn)} and

(4) for n ≥ lh(p), (apn, A
p
n, f

p
n) ≤ (aqn, A

q
n, f

q
n) in Qn0.

For notational convenience we denote the minimal extension of a condition p by a
sequence ~ν by p _ ~ν where ~ν is a sequence of ordinals chosen from relevant measure
one sets. Finally we define direct extension by p ≤∗ q if lh(p) = lh(q) and p ≤ q.

This poset is not quite the poset that we want, but there is a projection from
it to the final forcing. The reason for isolating this poset with the ‘wrong’ order is
that it is of Prikry-type and we can prove the Prikry lemma.

Lemma 5.4. If D is a dense open set in P and p ∈ P , then there are a q ≤∗ p
and n < ω such that for all 〈ν0, . . . νn−1〉 ∈

∏
lh(q)≤i<lh(q)+nA

q
i , q _ ~ν ∈ D.

The proof is a straighforward adaptation of a similar proof for the long extender
forcing. For a careful proof of this lemma for the long extender forcing we refer the
reader to Lemma 2.18 of [2]. The Prikry lemma has the following corollaries.

Corollary 5.5. Forcing with (P,≤) does not add any bounded subsets of κ.

Corollary 5.6. Forcing with (P,≤) preserves κ+.

Next we seek to define a projection of (P,≤) which will be the final forcing.

Definition 5.7. Let 1 < k ≤ n and (a,A, f), (b, B, g) ∈ Qn0. We define (a,A, f)↔n,k

(b, B, g) if

(1) f = g,
(2) A = B,
(3) dom(a) = dom(b) and
(4) Code−1n (rng(a)) and Code−1n (rng(b)) realize the same k-type.

It is not obvious that we can satisfy clause (2). It could be that mc(a) 6= mc(b).
In which case it is not obvious that we can have A = B, since perhaps Enmc(a) 6=
Enmc(b). However by Remark 4.2, clause (4) implies that the two measures are

equal, since we can express “Enmc(a) is the δth measure in some enumeration of

measures on κn” as a sentence about Code−1n (rng(a)) in An,k.

Definition 5.8. Let p, q ∈ P . We define p↔ q if

(1) lh(p) = lh(q),
(2) for all n < lh(p), pn = qn and
(3) there is a nondecreasing sequence 〈km | lh(p) ≤ m < ω〉 such that km →∞

as m→∞ and for all m ≥ lh(p), pm ↔m,km qm.

Using this notion we can define the restricted ordering on P .

Definition 5.9. Let p, q ∈ P . We define p → q if there is a sequence of elements
〈ri | i < m〉 such that r0 = p, rm−1 = q and for all i < m either ri+1 ≤ ri or
ri+1 ↔ ri.

Note that p→ q means q is stronger than p, which is the same as the convention
used by Gitik. The proofs of the following facts are straightforward.

Lemma 5.10. The identity map is a projection from (P,≤) to (P,→).

Corollary 5.11. Forcing with (P,→) preserves cardinals below κ++.
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Lemma 5.12. (P,→) adds κ++ cofinal ω-sequences in κ.

So to finish the proof it is enough to prove that κ++ is preserved.

Lemma 5.13. (P,→) has the κ++-cc

We break the argument into two claims. First if two conditions are similar enough
then they can be extended to equivalent conditions in the sense of Definition 5.8.
Second a ∆-system argument to show that a κ++ sequence of conditions can be
refined to have many similar pairs of conditions. For ease of notation we define
Xp =

⋃
n≥lh(p)(dom(apn) ∪ dom(fpn)).

Lemma 5.14. If p, q ∈ P with the following properties

(1) lh(p) = lh(q),
(2) for n < ω, fpn is compatible with fqn and
(3) there is an ordinal β such that

(a) β ∩Xp = β ∩Xq,
(b) for all n ≥ lh(p), apn � (Xp ∩ β) = aqn � (Xp ∩ β),
(c) every element of Xp \ β is above every element of Xq \ β,
(d) for all n ≥ lh(p), otp(dom(apn) \β) = otp(dom(aqn) \β) and if δ is this

common ordertype then for all i < δ, apn(α) = aqn(α′) where α and α′

are the ith elements of dom(apn) \ β and dom(aqn) \ β respectively and
(e) If ρp = min(Xp \ β) and ρq = min(Xq \ β), then ρp ∈ dom(aplh(p)),

ρq ∈ dom(aqlh(q)) and aplh(p)(ρp) = aqlh(q)(ρq) is atleast 5-good,

then there are conditions p′ ≤ p and q′ ≤ q such that p′ ↔ q′.

Proof. The constructions of p′ and q′ are different so we take them each in turn.
Before we begin the construction, we let 〈km | lh(p) ≤ m < ω〉 witness clause (2) for
ρp and ρq in Definition 5.3. We also choose β∗ greater than all ordinals appearing
in the domains of apn, fpn, aqn and fqn for n < ω.

First we construct p′. By assumption for all n < ω, fp
′

n = fpn∪fqn is a condition in

Qn1. The issue is to add dom(aqn)\β to the domain of dom(apn) to obtain ap
′

n . To do
this we let n ≥ lh(p) and k = kn and apply Lemma 4.5 with γ = Code−1n (rng(apn �
β)), ρ = aplh(p)(ρp), t = tpn,k−1(rng(apn � (dom(apn) \β))) and l = k− 1. The output

of the lemma is an ordinal η such that Coden(η) is strictly between apn“(dom(apn)∩β)
and aplh(p)(ρp) and has the same ordertype as apn“(dom(apn)\β). If δ is this common

order type, i < δ and the ith element of apn“(dom(apn) \ β) is k′-good for some k′,
then the ith element of Coden(η) is min(k − 1, k′)-good. It is not hard to see now

that we can obtain an order preserving function ap
′

n by adding dom(aqn) \ β to the
domain of apn and mapping its ith element to the ith element of Coden(η). To make

ap
′

n a candidate for being a condition we add β∗ to the domain and map it to an
n − 2-good ordinal which becomes the maximal (in both the ordinal sense and in

≤En ) element of rng(ap
′

n ). We leave off the construction of Ap
′

n until the end.

Next we construct q′. Again we set fq
′

n = fpn ∪ fqn for all n < ω. This time the

issue is to add dom(apn) \ β to dom(aqn) to obtain aq
′

n . To do this we let n ≥ lh(q)
and k = kn. Now we apply Lemma 4.6 with

• k − 1 in place of k,
• γ = 0,
• ζ = Code−1n (rng(apn � β) ∪ Coden(η)) (for η as above),
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• ζ ′ = Code−1n (rng(apn)) and

• ξ = Code−1n ({ap′n (β∗)} ∪ rng(aqn � dom(aqn) \ β)).

For the hypothesis of Lemma 4.6, we need to check that ζ and ζ ′ realize the same
k-type. This follows from the fact that Coden(η) and rng(apn � (dom(apn)\β)) realize
the same k− 1-type over Code−1n (rng(apn � β)) which comes from our application of
Lemma 4.5 above. The conclusion of Lemma 4.6 gives an ordinal ξ′ realizing the
same k−2-type over ζ ′ as ξ does over ζ. Similar to before we add {β∗}∪dom(apn)\β
to dom(aqn) and map it to Coden(ξ′) in the natural way. Note that the maximum

(in the ordinal sense) element of Coden(ξ′) is ≤En -above every element of rng(aq
′

n ),

since ap
′

n (β∗) is ≤En-above every element of rng(ap
′

n ) and this is expressable as

a formula in tpn,k−2(ζ, ξ). It follows that rng(ap
′

n ) and rng(aq
′

n ) realize the same
k − 2-type.

Finally, we define Ap
′

n = Aq
′

n using the fact that E
nmc(ap

′
n )

= E
nmc(aq

′
n )

from

the remarks following Definition 5.7. We choose this common measure one set so
that its projections via π

mc(ap
′
n )mc(apn)

and π
mc(aq

′
n )mc(aqn)

are contained in Apn and

Aqn respectively. It is not hard to see that both p′ and q′ are conditions and that
p′ ↔ q′ as witnessed by the sequence 〈km − 2 | m ≥ lh(p)〉. �

We are left with proving the following lemma.

Lemma 5.15. Given 〈pα | α < κ++〉 there is a set I ⊆ κ++ of size κ++ such that
for all α, β in I, pα and pβ satisfy the hypotheses of the previous lemma.

Proof. For ease of notation we let apαn = aαn for n < ω and α < κ++ and similarly
for fpαn . The set I is a result of many refinements, but for ease of notation we just
reindex after each step.

We begin by fixing the length of the conditions on a set of size κ++. Let l be
the common length. Next we form a ∆-system out of {

⋃
n≥l(dom(fαn )∪dom(aαn)) |

α < κ++}. The typical pressing down phase of the ∆-system argument gives the
ordinal β required with a little more work.

For n ≥ l we can assume that the following are fixed

(1) the root r of the delta system,
(2) aαn � r and fαn � r,
(3) the ordertype of dom(aαn) \ r,
(4) aαn“(dom(aαn) \ r),
(5) the sequence 〈km | m ≥ l〉 witnessing clause (2) of Definition 5.3 for aαn(ρα)

where ρα = min(
⋃
n≥l(dom(aαn) \ r)) and

(6) the minimum k such that ρα ∈ dom(aαk ).

Let l∗ ≥ k be large enough so that kl∗ ≥ 5. Extend each condition in a minimal
way to have length l∗. Finally an easy ∆-system argument involving the conditions
fαn for n < l∗ finishes the proof. �

Remark 5.16. We actually proved that (P,→) has the κ++-Knaster property.
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