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Abstract
The elliptic curve Ek : y2 = x3 +k admits a natural 3-isogeny φk : Ek → E−27k. We compute

the average size of the φk-Selmer group as k varies over the integers. Unlike previous results of
Bhargava and Shankar on n-Selmer groups of elliptic curves, we show that this average can be
very sensitive to congruence conditions on k; this sensitivity can be precisely controlled by the
Tamagawa numbers of Ek and E−27k. As consequences, we prove that the average rank of the
curves Ek, k ∈ Z, is less than 1.21 and over 23% (resp. 41%) of the curves in this family have
rank 0 (resp. 3-Selmer rank 1).

1 Introduction

Let F be a field of characteristic not 2 or 3, and let k ∈ F be nonzero. The elliptic curve

Ek : y2 = x3 + k (1)

has j-invariant 0, and every elliptic curve E/F with j(E) = 0 is isomorphic to Ek for some k ∈ F .
The curves Ek and Ek′ are isomorphic if and only if k′ = km6 for some m ∈ F×.

Over a separable closure F , each Ek has complex multiplication by the Eisenstein integers Z[ζ3],
and hence admits an endomorphism

√
−3 of degree 3. This endomorphism is not generally defined

over F , but its kernel is, and consequently there is a 3-isogeny φ = φk : Ek → Ek′ for some k′ ∈ F .
By duality, there is a 3-isogeny φ̂ = φ̂k : Ek′ → Ek in the reverse direction. In fact, we may take
k′ = −27k, and then these isogenies are given explicitly by:

φk : (x, y) 7→
(
x3 + 4k

x2
,
y(x3 − 8k)

x3

)
, (2)

φ̂k : (x, y) 7→
(
x3 − 108k

9x2
,
y(x3 + 216k)

27x3

)
. (3)

After identifying E36k and Ek, we have φ̂k = φ−27k.
If F is a number field, then the φ-Selmer group

Selφ(Ek) ⊂ H1(GF , Ek[φ])

associated to the isogeny φ consists of all “locally soluble” cohomology classes, i.e., those that are
locally in the image of the connecting map

∂v : E−27k(Fv)−→H1(GFv , Ek[φ])

for every place v of F ; here, GF = Gal(F/F ).
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In this paper, we take first F = Q, and study the average size of the φ-Selmer group for the
elliptic curves Ek as k varies. Let

r =
103 · 229

2 · 32 · 72 · 13

∏
p≡ 5 (mod 6)

(1− p−1)(1 + p−1 + 5
3p
−2 + p−3 + 5

3p
−4 + p−5)

1− p−6
. (4)

Then we prove:

Theorem 1. When the elliptic curves Ek : y2 = x3 + k, k ∈ Z, are ordered by the absolute value
of k, the average size of the φk-Selmer group associated to the 3-isogeny φk : Ek → E−27k is 1 + r if
k is negative, and 1 + r/3 if k is positive.

We note that, in this theorem, we may take k to range over all integers or, if desired, only
the sixth-power-free ones (so that we obtain each isomorphism class of elliptic curve over Q of
j-invariant 0 exactly once). We can calculate the product in (4) efficiently by approximating it by a
product of powers of the values at s = 2, 3, 4, . . . of (1−2−s)(1−3−s)ζ(s) and (1 + 2−s)L(χ, s) where
χ is the Legendre symbol mod 3; we find that the product is numerically 1.033735512017364858 . . .,
so r = 2.1265 . . ., making 1 + r = 3.1265 . . . and 1 + r/3 = 1.7088 . . ..

In fact, we are able to determine the average size of the φk-Selmer group of Ek : y2 = x3 + k
where k varies in any subset S of Z defined by finitely many—or, in suitable cases, infinitely
many—congruence conditions. Let S ⊂ Z be any subset of integers defined by sign conditions and
congruence conditions modulo a power of each prime, such that for all sufficiently large primes p, the
closure Sp of S in Zp contains all elements of Zp not divisible by p2. We call such a set acceptable.
For example, the set of all sixth-power-free integers is acceptable. The set of all positive squarefree
integers congruent to 1 (mod 3) is also acceptable.

For any isogeny φ : A→ A′ of abelian varieties over a number field F , and for any place p of F ,
we define the local Selmer ratio of φ at p to be

cp(φ) :=
|A′(Fp)/φ(A(Fp))|
|A[φ](Fp)|

(5)

where Fp is the p-adic completion of F . The following theorem gives the average size of the φk-Selmer
group as k varies over the integers in S ⊂ Z:

Theorem 2. Let S be any acceptable set of integers. When the elliptic curves Ek : y2 = x3 + k,
k ∈ S, are ordered by the absolute value of k, the average size of the φ-Selmer group associated to
the 3-isogeny φ : Ek → E−27k is

1 +
∏
p≤∞

∫
k∈Sp

cp(φk)dk∫
k∈Sp

dk

, (6)

where for p <∞, Sp denotes the p-adic closure of S in Zp and dk denotes the usual Haar measure
on Zp, and for p =∞, Sp denotes the image of S in R∗/R∗2 and dk denotes the uniform measure.

Remark 3. The group H1(GF , Ek[φ]) parametrizes isomorphism classes of φ-coverings, i.e., maps
f : C → E−27k of curves that become isomorphic to φ over F . We can interpret the local Selmer
ratio cp(φ) as the number of soluble φ-coverings f over Qp, where each f is weighted by the inverse
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of the size of its automorphism group. Theorem 2 can thus be interpreted as saying that the
expected (weighted) number of nontrivial locally soluble φ-coverings over Q is simply the product
of the (weighted) number of soluble φ-coverings over Qp. This suggests a Selmer-group analogue of
Bhargava’s conjectures for number fields [4], which would include as a special case the conjecture of
Bhargava and Shankar that the average size of Seln(E) over any congruence family of elliptic curves
over Q is

∑
d|n d.

For any given set S, the p-adic integrals in Theorem 2 can be evaluated explicitly using Propo-
sition 34 in §4.1. In particular, when S = Z, we recover Theorem 1.

We note that unlike the results of [7, 8, 9, 10] for the 2-, 3-, 4-, and 5-Selmer groups, respectively,
the average size of the φ-Selmer group in Theorem 2 can depend very much on the congruences
defining the set S. However, we show that we may partition the set of nonzero integers into a
countable union ∪∞m=−∞Tm of sets Tm, where each Tm is itself the union of countably many sets
defined by congruence conditions, such that if S ⊂ Tm is an acceptable set, then the average size of
the φ-Selmer group of Ek : y2 = x3 + k, as k varies in S, depends only on m.

More precisely, we define the global Selmer ratio

c(φk) :=
∏
p

cp(φk) (7)

to be the product of the local Selmer ratios. If φ is an `-isogeny, for some prime `, then the global
Selmer ratio c(φ) is evidently a power of `.

The importance of the global Selmer ratio in the study of the Selmer groups Selφ(Ek) is clearly
seen in the following theorem.

Theorem 4. For each m ∈ Z, let Tm := {k ∈ Z : c(φk) = 3m}. Then:

(i) Each Tm has positive density;

(ii) If Ek(Q) and E−27k(Q) have trivial 3-torsion, then

c(φk) =
|Selφ(Ek)|
|Selφ̂(E−27k)|

;

hence if k ∈ Tm, then −27k ∈ T−m.

(ii) If S = Tm, or if S is any acceptable set contained in Tm, then the average size of Selφ(Ek)
over k ∈ S equals 1 + 3m, and the average size of Selφ̂(E−27k) over k ∈ S equals 1 + 3−m.

Thus the average size of Selφ(Ek) over k ∈ S is independent of congruence conditions if we also
fix the global Selmer ratio. The densities of the sets Tm, to three decimal places, are tabulated in
Table 1, along with the densities of the subsets T+

m (respectively, T−m) of Tm consisting of its positive
(respectively, negative) elements. We describe the sets Tm via explicit congruence conditions in §6.4.

Using Theorem 4 and the rigorous computation of the densities µ(Tm), we may obtain bounds
on the limsup of the average 3-ranks of the φ- and φ̂-Selmer groups. These immediately imply a
bound on the limsup of the average 3-rank of the 3-Selmer group Sel3(Ek), and hence a bound on
the limsup of the average rank of Ek(Q) as k varies in Z ordered by absolute value. We prove the
following theorem:
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m µ(Tm) µ(T+
m) µ(T−m)

−4 .000 .000 .000

−3 .004 .004 .000

−2 .067 .063 .004

−1 .295 .231 .063

0 .399 .167 .231

1 .199 .031 .167

2 .032 .000 .031

3 .000 .000 .000

4 .000 .000 .000

Table 1: Densities of the sets Tm, T+
m , and T−m for |m| ≤ 4.

Theorem 5. The (limsup of the) average rank of the elliptic curves Ek : y2 = x3 + k over k ∈ Z is
less than 1.29.

Theorem 5 immediately implies that a positive proportion of elliptic curves Ek : y2 = x3 + k
have rank 0 or 1. To produce positive proportions of curves having the individual ranks 0 or 1, we
may make use of the fact in Theorem 4(ii) that for 100% of k ∈ Tm, the 3-rank of the φ-Selmer
group of Ek is m more than that of its φ̂-Selmer group. This means, in particular, that 100% of the
curves in T0 have even 3-Selmer rank (Proposition 49(ii)). Since the average sizes of both the φ-
and φ̂-Selmer groups are equal to 2, we conclude that at least 1/2 of all curves in T0 must in fact
have 3-Selmer rank 0. Hence we obtain the following theorem.

Theorem 6. At least 19.9% of all elliptic curves Ek : y2 = x3 + k with k ∈ Z have rank 0.

Conditionally on the finiteness of the 3-primary part of the Shafarevich–Tate group, we may
obtain a similar result for rank 1 elliptic curves by using instead the set T1 ∪ T−1, for which the
3-Selmer parity is always odd.

Theorem 7. Assume for all k ∈ T1∪T−1 that the 3-primary part of X(Ek) is finite. Then at least
41.1% of all elliptic curves Ek : y2 = x3 + k with k ∈ Z have rank 1.

Combining Theorems 6 and 7, we obtain:

Corollary 8. At least 61% of all elliptic curves Ek : y2 = x3 + k with k ∈ Z have rank 0 or 1.

Thus the majority of curves Ek : y2 = x3 + k have rank 0 or 1.

Remark 9. Theorems 5, 6, and 7 and Corollary 8 can be improved slightly if we combine our results
with those in Alpoge’s thesis [1], where it is shown that the average size of Sel2(Ek) over k ∈ S is
at most 3 (generalizing and streamlining earlier results of Ruth [37]). Indeed, this gives an average
rank bound of 4/3 on any Tm, giving a better bound than ours for m > 1. The improvements are
small since even T2 has very small density: incorporating Alpoge’s result, we can show that the
average rank of Ek is at most 1.21, and the proportion of rank 0 curves is at least 23.2%.

Theorem 4 implies the following result concerning curves with fixed 3-Selmer rank:
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Theorem 10. For each m ≥ 0, a positive proportion of elliptic curves Ek : y2 = x3 + k with k ∈ Z
have 3-Selmer rank m.

Indeed, the average size of Selφ̂(Ek) is 1 + 3−m for k ∈ Tm and, therefore, a positive proportion
of k ∈ Tm satisfy |Selφ̂(Ek)| = 1. By Theorem 4(ii), we then have |Selφ(Ek)| = 3m and thus
|Sel3(Ek)| = 3m for most of these k. Taking into account Remark 9 and Selmer parity [21] we see
that, for even m, Theorem 10 holds not just for Sel3(Ek), but for X(Ek)[3] as well.

Finally, using the methods of [12, 13], we can extend Theorem 2 to the case where the ground
field is any number field F . To order the curves Ek, we think of k as an element of F ∗/F ∗6. There is
a natural height function on F ∗/F ∗6 defined as follows: if k̃ ∈ F ∗ is a representative for k ∈ F ∗/F ∗6,
and I(k̃) denotes the OF -ideal

I(k̃) = {a ∈ F : a6k̃ ∈ OF },

then the height H(k) of k is defined by

H(k) := N(I(k̃))6
∏

p∈M∞

|k̃|p

whereM∞ denotes the set of infinite places of F ; this definition is evidently independent of the lift k̃
of k. Alternatively, H(k) gives the norm of the unique sixth-power-free integral ideal representative
of kOF in the group of fractional OF -ideals modulo sixth powers. Then we have the following
analogue of Theorem 2 over a general number field F :

Theorem 11. When the elliptic curves Ek, k ∈ F ∗/F ∗6, are ordered by the height H(k) of k, the
average size of Selφk(Ek) is

1 +
∏
p

∫
k∈Op(6)

cp(φk)dk∫
k∈Op(6)

dk

,

where if p is a finite place of F , then Op(6) = {k ∈ Op : vp(k) < 6} and dk denotes the Haar measure
on Op, normalized so that Op has volume 1, and if p is an infinite place, then Op(6) = F ∗p /F

∗6
p and

dk is the uniform measure.

As over Q, we actually prove a more general result (Theorem 51) that allows for subfamilies
of sextic twists defined by finite (and indeed suitable infinite) sets of congruence conditions. In
particular, this lets us prove the analogue of Theorem 4 over a general number field. To state the
result, we define again the global Selmer ratio c(φk) of the isogeny φk by c(φk) =

∏
p cp(φk), where

the product is over all places p of F .

Theorem 12. Let F be a number field, and for m ∈ Z, let Tm(F ) := {k ∈ F ∗/F ∗6 : c(φk) = 3m}.
Then:

(i) If k ∈ Tm(F ), and Ek(F ) and E−27k(F ) have trivial 3-torsion, then |Selφ(Ek)| = 3m|Selφ̂(E−27k)|;

(ii) If Tm(F ) is nonempty, then the average size of Selφ(Ek) over k ∈ Tm(F ) equals 1 + 3m, and
the average size of Selφ̂(E−27k) over k ∈ Tm(F ) equals 1 + 3−m.

If
√
−3 /∈ F , then each Tm(F ) has positive density. However, if

√
−3 ∈ F , then F ∗/F ∗6 = T0(F ),

and Tm(F ) is empty for each m 6= 0.
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Thus, if
√
−3 /∈ F , then the exact analogue of Theorem 4 holds over F . However, if

√
−3 ∈ F ,

then each of Selφ(Ek) and Selφ̂(E−27k) has average size 2 as k varies over F ∗/F ∗6.
The dichotomy in Theorem 12 comes from the fact that the CM curve Ek obtains extra endo-

morphisms over F when
√
−3 ∈ F . In fact, in this case, Ek ' E−27k and φ is multiplication by√

−3, up to an automorphism. As corollaries of Theorem 12, we prove the following results on the
ranks of the elliptic curves Ek over F :

Theorem 13. Suppose F is a number field with
√
−3 /∈ F , and let the elliptic curves Ek, k ∈

F ∗/F ∗6, be ordered by the height of k. Then the average rank of the elliptic curves Ek over F is
bounded. Moreover, a positive proportion of curves Ek have 3-Selmer rank 0 over F , and thus also
Mordell-Weil rank 0; and a positive proportion of curves Ek have 3-Selmer rank 1 over F .

Theorem 14. Suppose F is a number field with
√
−3 ∈ F , and let the elliptic curves Ek, k ∈

F ∗/F ∗6, be ordered by the height of k. Then each of the Selmer groups Selφk(Ek) and Selφ̂(E−27k)
over F has average size 2. Furthermore, the average rank of the elliptic curves Ek is at most 1, and
at least 50% of Ek have rank 0 over F .

Remark 15. If
√
−3 ∈ F , then Z[

√
−3] acts faithfully on each Ek(F ), and hence the ranks of the

elliptic curves Ek over F are all even. It might thus be natural to expect that, in this case, the true
proportion of elliptic curves Ek having rank 0 over F is 100%.

Theorems 13 and 14 give the first example (to our knowledge) of an algebraic family of elliptic
curves with a positive proportion of rank 0 members, over a general number field F :

Corollary 16. Over any number field F , there exists a non-trivial algebraic family of elliptic curves
with a positive proportion of specializations having rank 0.

Our methods in obtaining the above results involve the connection between φ-Selmer groups
and binary cubic forms. This connection was first studied by Selmer himself [41], and later by
Cassels [17]. The rational theory was thoroughly treated by Satgé [38], where he studied the φ-
Selmer group from the point of view of cubic fields. Later, Liverance [30] studied these Selmer
groups using the classical invariant theory of binary cubics.

The boundedness of the average size of the φ- and φ̂-Selmer groups—and thus the rank—of the
elliptic curves Ek : y2 = x3+k over Q was first demonstrated by Fouvry [25], who used Satgé’s results
to reduce the boundedness of the average rank to the theorem of Davenport and Heilbronn [20] on
the boundedness of the average size of the 3-torsion subgroups of the class groups of quadratic fields.
Fouvry’s method thus implicitly used binary cubic forms, as Davenport and Heilbronn’s proof on the
mean size of the 3-torsion of the class groups of quadratic fields used a count of integral binary cubic
forms to count cubic fields of bounded discriminant, together with class field theory to transform
this count to one about 3-torsion elements in class groups of quadratic fields.

Recently, in [15] a more direct proof of Davenport and Heilbronn’s theorem on 3-torsion elements
in class groups of quadratic fields was given. This proof used a count of integer-matrix binary cubic
forms ax3 + 3bx2y + 3cxy2 + dy3 (a, b, c, d ∈ Z), together with a direct correspondence between
3-torsion ideal classes in quadratic fields and integer-matrix binary cubic forms as studied in [24, 3]
(see Section 2 for a description of this correspondence over any Dedekind domain). This suggested
to us that perhaps a direct and natural discriminant-preserving map from φ-Selmer groups Selφ(Ek)
over Q to orbits of integer-matrix binary cubic forms could be constructed.
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We say a binary cubic form f(x, y) over Q is locally soluble if the curve Cf : z3 = f(x, y) has a
solution over Qp for every prime p. The curve Cf has Jacobian Ek, where 4k = Disc(f), and there
is a degree 3 map Cf → E−27k which is a twist of φk : Ek → E−27k. This correspondence between
φ-coverings and binary cubic forms is the key to our method, and is the subject of Sections 3–6.

Theorem 17. For any non-zero k ∈ Z, the elements of Selφ(Ek) correspond bijectively to the orbits
of SL2(Q) on locally soluble binary cubic forms over Q of discriminant 4k. If 81 | k, then every
such orbit has an integral representative.

With this direct map in hand, the problem of determining the average size of the φ-Selmer
group is reduced to counting the appropriate set of integer-matrix binary cubic forms of bounded
discriminant. For this, the counting method of Davenport [19] and a suitable adaptation of the
sieve methods of [20] and [7] may be applied to obtain the optimal upper and lower bounds, and
this is carried out in Section 6. This sieve renders the final answer as a product of local densities,
and we prove that the density at the p-adic place for a given elliptic curve Ek : y2 = x3 + k is given
precisely by the local Selmer ratio cp(φ) as defined by (5). For k varying over an acceptable set S,
this yields Theorem 2 (see §6.3).

We evaluate the local Selmer ratios by relating them to Tamagawa numbers and using Tate’s
algorithm (Proposition 34). Setting S = Z then yields Theorem 1, while setting S = Tm, and
applying a formula of Cassels [16] on the global Selmer ratio, yields Theorem 4 (see §§6.3–6.4). The
results on average rank and on positive proportions of rank 0 and 3-Selmer rank 1 curves, as in
Theorems 5–7 and Corollary 8, are then deduced in Section 7. Finally, we use the work of [13] to
extend these results to any number field, as in Theorems 11–14, in Section 8.

We note that the connection between binary cubic forms and Selmer groups also has an inter-
pretation in terms of Lie groups. In the language of Vinberg theory, the representation of SL2 on
binary cubic forms arises from a Z/3Z-grading of the Lie algebra of G2. This paper is one example of
recent work connecting representations arising from Vinberg’s theory to Selmer groups of Jacobians
of algebraic curves. In this context, we believe that our theorems above give the first results for the
exact and finite average size of a Selmer group associated to an isogeny that is not the multiplication-
by-n isogeny. For results and conjectures about the latter see, e.g., [5, 44, 45, 7, 27, 31, 33, 36, 42].
A beautiful treatment of the connection between algebraic curves and Vinberg theory, using versal
deformations, has been given by Thorne [44].

The parametrization and methods introduced here have a number of other applications as well.
For example, they can be used to obtain an improved upper bound on the average number of integral
points on the curves Ek [2]. The finiteness of the number of integral points on such curves was first
proven by Mordell [29], which is why these curves are sometimes called Mordell curves. Another
application of our parameterization and methods is the existence of rational points on cubic surfaces:
Tim Browning [14] has recently used our results, along with [35], to prove that a positive proportion
of cubic surfaces of the form f(x, y) = g(z, w) have a rational point.

One may ask about the φ-Selmer group in families of quadratic twists Ekm3 : y2 = x3 + km3,
for fixed k and m varying, as well as in families of cubic twists Ekm2 : y2 = x3 + km2. These are
very sparse subsets of all curves Ek, and so our results in Theorem 2 do not apply. Nevertheless,
in a forthcoming paper [6], it is shown that the analogue of Theorem 2 continues to hold even
in these families of quadratic twists; in fact, the formula (6) for the average size of the φ-Selmer
group holds more generally in any family of quadratic twists of an abelian variety having a rational
3-isogeny. When the abelian variety is an elliptic curve, this leads to a proof of the boundedness
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of the average rank in such quadratic twist families, over any number field. The analogue of the
formula in Theorem 2 is expected to hold also for the above cubic twist families, although in most
such cases the product in (6) goes to infinity and the average φ-Selmer group sizes for curves in
these families will correspondingly be infinite. The exception is when k is a square, in which case
the Euler product (6) goes to 0, and we expect that the average size of the φ-Selmer group is equal
to 1 in that case.

Finally, in recent work, Kriz and Li [35] prove that (over Q) at least 10% of the curves y2 = x3+k
have rank 0 (resp. 1). Their p-adic methods are completely different from ours, and while their rank
0 and 1 proportions are lower, their rank 1 results over Q are unconditional.

2 Integer-matrix binary cubic forms over a Dedekind domain

Let V ∗(Z) = Sym3Z2 be the lattice of integer-coefficient binary cubic forms, i.e., forms f(u, v) =
au3 + bv2y + cuv2 + dv3 with a, b, c, d ∈ Z. To ease notation, we write f(u, v) = [a, b, c, d]. The
group GL2(Z) acts naturally on V ∗(Z) by linear change of variable, and the discriminant

Disc(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

is SL2(Z)-invariant.
In this paper, the more fundamental object will be the dual lattice V (Z) = Sym3Z2 consisting

of integer-matrix binary cubic forms, i.e., forms f(u, v) = [a, 3b, 3c, d] with a, b, c, d ∈ Z. The lattice
V (Z) has its own (reduced) discriminant

disc(f) = − 1

27
Disc(f).

We note that the action of GL2(F ) on the space V (F ) := V (Z) ⊗ F of binary cubic forms with
coefficients in F satisfies

disc(g · f) = det(g)6disc(f)

for all g ∈ GL2(F ) and f ∈ V (F ). For any ring R and d ∈ R, we write V (R)d for the set of
f ∈ V (R) := V (Z)⊗R with disc(f) = d.

In this section, we classify the orbits of V (D), under the action of SL2(D), for an arbitrary
Dedekind domain D of characteristic not 2 or 3. In later sections we will apply our classification
to the case where D is a field, Zp, or Z. Our result is a generalization of [3, Theorem 13], and is
proved in the same way.

Theorem 18. Let D be a Dedekind domain of characteristic not 2 or 3, and let k ∈ D be any
nonzero element. Let F be the fraction field of D, and let S := D[z]/(z2−k) and K := F [z]/(z2−k).
Then there is a bijection between the orbits of SL2(D) on V (D)4k and equivalence classes of triples
(I, δ, s), where I is a fractional S-ideal, δ ∈ K∗, and s ∈ F ∗, satisfying the relations I3 ⊂ δS, N(I)
is the principal fractional ideal sD in F , and N(δ) = s3 in F ∗. Two triples (I, δ, s) and (I ′, δ′, s′)
are equivalent if there exists κ ∈ K∗ such that I ′ = κI, δ′ = κ3δ, and s′ = N(κ)s. Under this
correspondence, the stabilizer in SL2(D) of f ∈ V (D)4k is isomorphic to S(I)∗[3]N=1, where S(I)
is the ring of endomorphisms of I.

Remark 19. We call triples (I, δ, s) satisfying the relations above valid triples.
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Proof. We describe here the explicit bijection, but refer readers to [3] for the details of the proof.
First, note that S = D + Dτ , with τ the image of x in S. Given a valid triple (I, δ, s), since
N(I) is the principal D-ideal sD, the projective D-module I of rank 2 is free, and so we may write
I = Dα+Dβ for some α, β ∈ I. Because I3 ⊂ δS, we have

α3 = δ(e0 + τa)
α2β = δ(e1 + τb)
αβ2 = δ(e2 + τc)
β3 = δ(e3 + τd),

(8)

for some a, b, c, d, ei ∈ D. Then corresponding to (I, δ, s) is the binary cubic form f = [a, 3b, 3c, d],
which has discriminant disc(f) = 4k. In more coordinate-free terms, f is the symmetric trilinear
form

1

δ
× : I × I × I → S/D ∼= Dτ. (9)

We obtain an SL2(D)-orbit of symmetric trilinear forms (integer-matrix binary cubic forms) over D
by taking the symmetric 2 × 2 × 2 matrix representation of this form with respect to any ordered
basis 〈α, β〉 of I that gives rise to the basis element s(1 ∧ τ) of the top exterior power of I over D.
This normalization deals with the difference between SL2(D)- and GL2(D)-orbits. The stabilizer
statement follows because elements in S(I)∗[3]N=1 are precisely the elements of K∗N=1 that preserve
the map (9).

When D is a field, so that D = F , the previous result simplifies quite a bit. Let us write
(K∗/K∗3)N=1 to denote the kernel of the norm map K∗/K∗3 → F ∗/F ∗3, and (ResKF µ3)N=1 for the
kernel of the norm map ResKF µ3 → µ3.

Corollary 20. There is a natural bijection between the set of SL2(F )-orbits on V (F )4k and the
group

(
K∗/K∗3

)
N=1

. Moreover, the stabilizer of any f ∈ V (F )4k in SL2(F ) is isomorphic to
(ResKF µ3)N=1.

Proof. Both statements follow from taking D = F in the previous theorem. The bijection sends
δ ∈ (K∗/K∗3)N=1 to the orbit of binary cubic forms corresponding to the triple (K, δ, s), where s
is any choice of cube root of N(δ).

Remark 21. Explicitly, if δ = a+bτ ∈ K∗, then the corresponding cubic form is f = [ak, 3bk, 3a, b].
In particular, δ = 1 corresponds to the form kx3 + 3xy2, the Kostant section in Vinberg’s theory.

Another case of interest is when D = Zp and S is the maximal order in K:

Proposition 22. Let p be a prime and assume S = Zp[z]/(z2 − k) is the maximal order in K =
Qp[z]/(z

2 − k). Then the set of SL2(Zp)-orbits on V (Zp)4k is in bijection with the unit subgroup
(S∗/S∗3)N=1 ⊂ (K∗/K∗3)N=1. Every rational SL2(Qp)-orbit of discriminant 4k whose class lies in
this unit subgroup contains a unique integral SL2(Zp)-orbit. The stabilizer in SL2(Qp) of an element
in V (Zp)4k is equal to its stabilizer in SL2(Zp).

Proof. Indeed, every S-ideal I is principal in this case. From the Zp-version of Theorem 18, it
follows that any integral orbit corresponds to a triple (S, δ, s) with δ ∈ S∗. The stabilizer statement
follows because K∗[3]N=1 = S∗[3]N=1 when S is the maximal order in K.
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Finally, we will need the following result on stabilizers of integer-matrix binary cubic forms over
Z. Let G = SL2 and for any ring R and f ∈ V (R), write AutR(f) for StabG(R)(f).

Proposition 23. Suppose f ∈ V (Z)4k is an integer-matrix binary cubic form of discriminant 4k.
Then

|AutQ(f)|
∑

f ′∈O(f)

|AutZ(f ′)|−1 =
∏
p

|AutQp(f)|
∑

f ′p∈Op(f)

|AutZp(f
′
p)|−1,

where O(f) is a set of representatives for the G(Z)-orbits on V (Z)4k contained in the G(Q)-orbit
of f , and similarly Op(f) is a set of representatives for the G(Zp)-orbits on V (Zp)4k contained in
the G(Qp)-orbit of f .

Proof. We follow the proof of [5, Proposition 8.9]. Let K = Q[z]/(z2 − k), and fix a representative
δ ∈ K∗ of the class in (K∗/K∗3)N=1 corresponding to f . Let m(δ) be the number of ideals I of
S = Z[z]/(z2 − k) satisfying I3 ⊂ δS and the ideal equality N(I)3 = N(δ). Similarly, let mp(δ) be
the number of ideals Ip of Sp := S ⊗ Zp with I3

p ⊂ δSp and N(Ip)
3 = N(δ). Note that for all but

finitely many p, Sp is the maximal order and δ is a unit, so mp(δ) = 1 for all but finitely many p.
Since a lattice is determined by its local completions, and since a collection of local ideals

produces a global ideal with the desired properties, we have

m(δ) =
∏
p

mp(δ). (10)

Let s be any cube root of N(δ). Then the triple (I, δ, s) is valid and hence corresponds to an integer-
matrix binary cubic form fI ∈ V (Z)4k mapping to the rational orbit of δ. If s′ is another choice
of cube root, then s′ = sζ3 and (I, δ, s) is equivalent to (I, δ, s′). A triple (I, α, s) is in the same
integral orbit as (cI, α, s), for some c ∈ K×, exactly when c3 = 1 and N(c) = 1. On the other hand,
the ideals I and cI are equal if c is a unit in the ring of endomorphisms S(I) of I. Thus, the number
of distinct ideals giving the same integral orbit is the size of the group K∗[3]N=1/S(I)∗[3]N=1.

We have K∗[3]N=1
∼= AutQ(f) and S(I)∗[3]N=1

∼= AutZ(fI) by Theorem 18. Thus, the number
of distinct ideals associated to the integral orbit of fI is |AutQ(f)|/|AutZ(fI)|. We conclude that

m(δ) =
∑

fI∈O(f)

|AutQ(f)|/|AutZ(fI)|.

The same reasoning implies an analogous formula for mp(δ), with global stabilizers replaced by local
stabilizers. The proposition now follows from (10).

3 The elliptic curves Ek and orbits of binary cubic forms over a
field

Let F be a field of characteristic not 2 or 3, and let k ∈ F be nonzero. Recall that the elliptic curve

Ek : y2 = x3 + k (11)

admits a 3-isogeny φ : Ek → E−27k defined over F , and a dual 3-isogeny φ̂ : E−27k → Ek.
In this section, we describe the connection between the isogenies φ and φ̂ and binary cubic forms

(i.e., symmetric trilinear forms) over F .
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3.1 Galois cohomology of the 3-isogeny kernel and field arithmetic

Important in the study of φ- and φ̂-descents on the curves Ek and E−27k is the pair of “mirror”
quadratic étale F -algebras

K = F [z]/(z2 − k) and K̂ = F [z]/(z2 + 27k).

The following result connects the arithmetic of the elliptic curves E−27k and Ek to the arithmetic
of K and K̂:

Proposition 24. There is an isomorphism of group schemes

E−27k[φ̂] ∼= ker
(
ResKF µ3 → µ3

)
,

and an induced isomorphism

H1(GF , E−27k[φ̂]) ∼=
(
K∗/K∗3

)
N=1

,

where
(
K∗/K∗3

)
N=1

denotes the kernel of the norm N : K∗/K∗3 → F ∗/F ∗3.

Proof. Duality gives a non-degenerate pairing

〈 , 〉 : E−27k[φ̂]× Ek[φ]→ µ3.

Since Ek[φ](F ) becomes a trivial Galois module when restricted to GK , this induces an injective
homomorphism of group schemes ι : E−27k[φ̂]→ ResKF µ3, given on points by

P 7→ (〈P,Q1〉, 〈P,Q2〉),

where Q1 and Q2 are the non-trivial points of Ek[φ]. The image of ι is precisely the kernel of the
norm map ResKF µ3 → µ3, giving the desired isomorphism.

From Kummer theory and the long exact sequence attached to

0→ E−27k[φ̂]→ ResKF µ3 → µ3 → 0,

we obtain the isomorphism H1(GF , E−27k[φ̂]) ∼=
(
K∗/K∗3

)
N=1

.

Remark 25. The sequence 0→ E−27k[φ̂]→ E−27k → Ek → 0 induces a Kummer map

∂ : Ek(F )→ H1(GF , E−27k[φ̂]) ∼=
(
K∗/K∗3

)
N=1

,

which can be described explicitly as follows. If (x, y) /∈ Ek[φ](F ), then ∂((x, y)) = y− τ , where τ is
the image of x in K = F [z]/(z2 − k). If P = (0,±

√
k) ∈ Ek[φ], then ∂(P ) = ±1/2τ . See [16, §15].

Remark 26. Of course, the analogues of all these results hold also when φ̂ is replaced with φ and
K is replaced with K̂; these analogues are obtained simply via the change of variable k 7→ −27k.
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3.2 Connection to binary cubic forms

We may now compare Corollary 20 and Proposition 24. This immediately yields the following
canonical bijection:

Theorem 27. There is a bijection between H1(GF , E−27k[φ̂]) and the SL2(F )-orbits on V (F )4k.
Moroever, the stabilizer in SL2(F ) of any f ∈ V (F )4k is isomorphic to E−27k[φ̂](F ).

Let V (F )sol denote the set of binary cubic forms f(x, y) ∈ V (F ) that correspond under the
bijection of Theorem 27 to classes in the image of the Kummer map ∂ : Ek(F )→ H1(GF , E−27k[φ̂])
for some k ∈ F . If f ∈ V (F )sol, then we also say that f is soluble. We write V (F )sol

D for the elements
of V (F )sol having discriminant D.

Corollary 28. There is a natural bijection between the SL2(F )-orbits on V (F )sol
4k and the elements

of the group Ek(F )/φ̂(E−27k(F )). Under this bijection, the identity element of Ek(F )/φ̂(E−27k(F ))
corresponds to the unique SL2(F )-orbit of reducible binary cubic forms in V (F )sol

4k , namely the orbit
of f = [k, 0, 3, 0].

Proof. The second part follows from Remark 21, by taking δ = 1. Indeed, if the cubic form
corresponding to δ is reducible, then Tr(x3

√
kδ−1) = 0, for some x ∈ K; hence x3 = δt for some

t ∈ F×. As N(δ) is a cube, we see that t is a cube in F×, and hence δ is a cube in K×. So we may
as well take δ = 1.

The use of the term “soluble” comes from the following fact:

Proposition 29. A binary cubic form f(x, y) ∈ V (F )4k corresponds to an element δ in the image
of ∂ : Ek(F ) → H1(GF , E−27k[φ̂]) ∼=

(
K/K∗3

)
N=1

if and only if the curve Cf : z3 = f(x, y) in P2

has an F -rational point.

Proof. Suppose f ∈ V (F )4k, and let δ ∈ K∗ be a representative element in
(
K/K∗3

)
N=1

corre-
sponding to the SL2(F )-orbit of f under the bijection of Corollary 20.

If δ represents the image of a point (x, y) ∈ Ek(F ) under ∂, then, by Remarks 21 and 25, the
form f is SL2(F )-equivalent to [1, 3y, 3k, yk], which represents a cube (namely, 1).

Conversely, if there exist u, v, z ∈ F such that z3 = f(u, v), then by scaling u and v if necessary
we may assume that z = 1. Therefore, we have by (8) or (9) that

(u+ vτ)3 = δ(g(u, v) + f(u, v)τ) = δ(g(u, v) + τ) (12)

where g is a binary cubic form over F , and so g(u, v) ∈ F . Writing N(δ) = s3, and then taking
norms of both sides of (12), we obtain N(u + vτ)3 = s3(g(u, v)2 − k). Thus the point (x, y) =
(N(u+ vτ)/s, g(u, v)) lies on Ek, and this point (x, y) then maps to the class of δ in

(
K/K∗3

)
N=1

under ∂.

Remark 30. Recall that a φ̂-covering is a map of curves C → Ek over F which is a twist of φ̂.
By descent, the group H1(GF , E−27k[φ̂]) is in bijection with isomorphism classes of φ̂-coverings. To
construct the φ̂-covering corresponding to δ ∈

(
K/K∗3

)
N=1

, take any s ∈ F ∗ such that N(δ) = s3,
and let f be the corresponding binary cubic form over F under the bijection of Corollary 20. Then
we take Cf to be the curve z3 = f(x, y) in P2 (whose Jacobian is easily computed to be Ek), and
the φ̂-covering map Cf → Ek corresponding to the class δ is given explicitly by

(u : v : z) 7→ ((u2 − kv2)/s, g(u, v)),

where g(u, v) is the cubic polynomial in the preceding proof.
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Remark 31. One can also construct the φ̂-covering using the invariant theory of binary cubics. If
f = [a, 3b, 3c, d] ∈ V (F ), then the covariants of f are generated by the discriminant disc, the scaled
Hessian

h(x, y) =
1

36
(fxxfyy − f2

xy) = (ac− b2)x2 + (ad− bc)xy + (bd− c2), (13)

and the Jacobian derivative of f and h,

g(x, y) =
∂(f, h)

∂(x, y)
= fxhy − fyhx, (14)

which is a cubic polynomial in x, y whose coefficients are cubic polynomials in a, b, c, d. The cubic
f and its covariants g, h are related by the syzygy1

(g/3)2 − disc(f)f2 + 4h3 = 0. (15)

This gives us a degree-3 map from the genus-1 curve

Cf : z3 = f(x, y)

to Ek with k = disc/4: divide both sides of (15) by 4z6 and solve for (g/2z3)2 to obtain(
1

6

g

z3

)2

=

(
− h

z2

)3

+
disc(f)

4
. (16)

Our curve E−27k is the special case of Cf where f(x, y) = kx3 +3xy2; we then see that disc(f) = 4k,
and the map (z, y/x) 7→ (−h/z2, g/6z3) to Ek recovers our formula (3) for the 3-isogeny φ̂.

4 Soluble orbits over local and global fields

When F is a local field, we can give explicit formulas for the number of soluble SL2(F )-orbits
of binary cubic forms of discriminant 4k, i.e., the size of the group Ek(F )/φ̂(E−27k(F )). Since
|E−27k[φ̂](F )| is 3 or 1 depending on whether −3k is a square in F , it is equivalent to give formulas
for the (local) Selmer ratios

c(φ̂k) =
|coker(E−27k(F )→ Ek(F ))|
| ker(E−27k(F )→ Ek(F ))|

.

We do this below for the local fields Qp, R, and C, though there are similar formulas for any finite
extension of Qp and for equicharacteristic local fields such as Fp((t)). If F = Qp, R, or C, we use
the notation cp(φ̂k), with p ≤ ∞, to match with the introduction. We state the result for cp(φk),
the Selmer ratio of the original isogeny φk : Ek → E−27k.

1These results are classical, at least for F = C, and they go back at least to Hilbert [28, pp.68–69]; see also Schur’s
treatment [40, II, §8, Satz 2.24 on p. 77]. The syzygy (15) can be verified by direct computation, though it is easier
to check it for one choice of f without repeated factors and then use the fact that SL2(F ) acts transitively on such f .
For example, f = x3 − y3 gives disc = 1, h = −xy and g = −3(x3 + y3), reducing the syzygy (15) to the identity
(x3 + y3)2 − (x3 − y3)2 = 4(xy)3.
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4.1 Orbits over Qp

Suppose F = Qp. We first determine when Ek/Qp has good reduction.

Lemma 32. Assume k ∈ Zp is sixth-power-free. If p > 3, then Ek/Qp has good reduction if and
only if p - k. If p = 3, then Ek/Q3 has bad reduction. If p = 2, then Ek/Q2 has good reduction if
and only if k ≡ 16 (mod 64).

Proof. This follows from Tate’s algorithm. If k ≡ 16 (mod 64), a model with good reduction at 2
is y′2 + y′ = x′3 + a6 where k = 64a6 + 16 and (x, y) = (4x′, 8y′ + 4).

Next, we express cp(φk) in terms of the Tamagawa numbers ofEk andE−27k (cf. [39, Lemma 3.8]).

Proposition 33. If k ∈ Zp is sixth-power-free, then

cp(φk) =
cp(E−27k)

cp(Ek)
×

{
3 if p = 3 and 27 | k; and
1 otherwise,

where cp(E) = |E(Qp)/E0(Qp)| denotes the Tamagawa number of E.

Proof. Let ωk and ω−27k denote Néron differentials on Ek and E−27k, respectively. Then for some
b, b′ ∈ Q, we have ω = b · dxy and ω−27k = b′ · dXY on Ek : y2 = x3 + k and E−27k : Y 2 = X3 − 27k,
respectively. The model y2 = x3 +k is minimal except if k ≡ 16 (mod 64), in which case the model
given in the proof of Lemma 32 is minimal. In either case, we compute that b = b′ when 27 - k and
b′ = 3b when 27 | k. Since

φ∗
(
b · dX

Y

)
=

b · d
(
x3 + 4k

x2

)
y(x3 − 8k)

x3

=

b ·
(

1− 8k

x3

)
dx

y(x3 − 8k)

x3

= b · dx
y
,

we have φ∗ω−27k = aωk, where a = 1 if 27 - k and a = 3 if 27 | k.
We then compute∫
φ̂(Ek(Qp))

|ω−27k|p =
1

|Ek[φ](Qp)|
·
∫
Ek(Qp)

|φ∗ω−27k|p =
1

|Ek[φ](Qp)|
· |a|p ·

∫
Ek(Qp)

|ωk|p.

Therefore,

cp(φk) =
|(E−27k(Qp)/φ(Ek(Qp)))|

|Ek[φ](Qp)|
=

∫
E−27k(Qp) |ω−27k|p
|a|p

∫
Ek(Qp) |ωk|p

=
1

|a|p
· cp(E−27k)

cp(Ek)

as desired.

We use Tate’s algorithm [43] to compute the ratios of Tamagawa numbers in Proposition 33,
and hence the local Selmer ratios cp(φk). In particular, we find that the cp(φk) are determined by
congruence conditions on k:
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Proposition 34. Let k ∈ Z be sixth-power-free, and let χK denote the quadratic character attached
to K = Q(

√
k). If p 6= 3, then

cp(φk) =

{
3−χK(p) if p ≡ 2 (mod 3) and vp(4k) ∈ {2, 4};
1 otherwise.

If p = 3, write k = 3v3(k)k3. Then

cp(φk) =



9 if v3(k) = 5, and k3 ≡ 2 (mod 3);

3 if v3(k) = 0, and k3 ≡ 5 or 7 (mod 9); or
v3(k) ∈ {1, 4}, and k3 ≡ 2 (mod 3); or
v3(k) = 3, and k3 6≡ 2 or 4 (mod 9); or
v3(k) = 5, and k3 ≡ 1 (mod 3);

1
3 if v3(k) = 2, and k3 ≡ 1 (mod 3);

1 otherwise.

(17)

From Proposition 34, we may easily deduce explicit formulas for the number of soluble SL2(Qp)-
orbits on V (Qp)4k (see also Corollary 37 below). One may go further and describe the soluble classes
as a subgroup of (K∗/K∗3)N=1. We describe this below in the cases where p 6= 3.

Proposition 35. If k ∈ Zp and Ek has good reduction, then the Kummer map induces an isomor-
phism

Ek(Qp)/φ̂(E−27k(Qp)) ∼= (S∗0/S
∗3
0 )N=1,

where S0 is the ring of integers of K = Qp[x]/(x2 − k).

Proof. See [18, Lemma 4.1] or [26, Lemma 6].

Proposition 36. Assume p 6= 3 and that Ek/Qp has bad reduction. Then the natural map

j : Ek[φ](Qp)→ Ek(Qp)/φ̂(E−27k(Qp))

is an isomorphism.

Proof. We first claim that Ek[3](Qp) = Ek[φ](Qp). Indeed, the six other 3-torsion points on Ek(Q̄p)
are ( 3

√
−4k,

√
−3k), for the six possible choices of roots in this expression. It follows from the bad

reduction of Ek and Lemma 32 that these points are defined over ramified extensions of Qp, so they
do not lie in Ek(Qp), proving the claim.

Next we show that j is injective. Indeed, if P ∈ Ek[φ](Qp) and Q ∈ E−27k(Qp) satisfy φ̂(Q) = P ,
then Q ∈ E−27k[3](Qp) = E−27k[φ̂](Qp), where the equality follows from the above claim applied to
E−27k. Thus, P = 0 and j is injective.

Finally, it suffices to show that |Ek(Qp)/φ̂(E−27k(Qp))| ≤ |Ek[φ](Qp)|. Note that the group
Ek(Qp)/3Ek(Qp) surjects onto Ek(Qp)/φ̂(E−27k(Qp)). Since p 6= 3, an argument using the for-
mal group [5, Lemma 12.3] shows that Ek(Qp)/3Ek(Qp) has size |Ek[3](Qp)|, which is equal to
|Ek[φ](Qp)|, again by our claim above. Therefore, we indeed have

|Ek(Qp)/φ̂(E−27k(Qp))| ≤ |Ek[3](Qp)| = |Ek[φ](Qp)|,

as desired.
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Corollary 37. If p 6= 3, then the number of soluble orbits in V (Qp) of discriminant 4k is equal to{
|E−27k[φ̂](Qp)| if Ek/Qp has good reduction,
|Ek[φ](Qp)| if Ek/Qp has bad reduction.

Remark 38. At the start of the proof of Proposition 36, we noted that Ek[3] consists of the three
points of Ek[φ] together with the six points (x, y) with x3 = −4k and y2 = −3k. If such a point is
rational then (k, x, y) = (−432m6, 12m2, 36m3) for some nonzero m. In this case our elliptic curve
Ek ∼= E−432 is isomorphic with the Fermat cubic X3 + Y 3 = Z3 (which is also isomorphic with the
modular curve X0(27)), and the isogenous curve E27k

∼= E16 is isomorphic with XY (X + Y ) = Z3.
These curves have good reduction at primes other than 3; in particular, they satisfy the condition
of Lemma 32 for good reduction at 2, with minimal models y′2 + y′ = x′3 − 7 and y′2 + y′ = x′3

respectively.

4.2 Orbits over R or C

If F = R or C, then every binary cubic form f ∈ V (F ) is reducible, so by Corollary 28, there is
a unique SL2(F )-orbit of binary cubic forms of discriminant 4k. This agrees with the fact that
Ek(F )/φ̂(E−27k(F )) is always trivial. We conclude:

Proposition 39. If F = C, then c∞(φk) = 1/3 if F = C. If F = R, then

c∞(φk) =

{
1
3 if k > 0;

1 if k < 0.

4.3 φ-Selmer groups and locally soluble orbits over a global field

We let F now be a global field of characteristic not 2 or 3. If ϕ : A → A′ is an isogeny of abelian
varieties over F , then the ϕ-Selmer group

Selϕ(A) ⊂ H1(GF , A[ϕ])

is the subgroup consisting of classes that are locally in the image of the Kummer map

∂v : A′(Fv)−→H1(GFv , A[ϕ])

for every place v of F . Equivalently, these are the classes locally in the kernel of the map

H1(GFv , A[ϕ])→ H1(GFv , A)[ϕ],

for every place v of F , i.e., the classes corresponding to φ-coverings having a rational point over Fv
for every place v.

Now let V (F )loc. sol. ⊂ V (F ) denote the set of locally soluble binary cubic forms, i.e. those
f(u, v) ∈ V (F ) such that the equation z3 = f(u, v) has a nonzero solution over Fv for every place
v of F . Then the following result follows immediately from Corollary 28.

Theorem 40. Let k ∈ F ∗. Then there is a bijection between the SL2(F )-orbits on V (F )loc. sol. having
discriminant 4k and the elements of Selφ̂(E−27k) corresponding to the isogeny φ̂k : E−27k → Ek.

Under this bijection, the identity element of Selφ̂(E−27k) corresponds to the unique SL2(F )-orbit of
reducible binary cubic forms of discriminant 4k, namely the orbit of f(x, y) = kx3 +3xy2. Moroever,
the stabilizer in SL2(F ) of any f ∈ V (F )loc. sol.

4k is isomorphic to E−27k[φ̂](F ).
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5 Existence of integral orbits

We now specialize to the case where F = Q. The main goal of this section is to prove the following
theorem.

Theorem 41. Let k ∈ 3Z. Then every locally soluble orbit for the action of SL2(Q) on V (Q)4k has
an integral representative, i.e., contains an element of V (Z)4k.

Proof. By Theorem 18 applied to the cases D = Z and D = Zp, it suffices to find a representative in
V (Zp)4k for every soluble orbit of cubic forms f ∈ V (Qp)4k, for each prime p. Indeed, such integral
representatives would correspond to valid triples over Zp, which together determine a valid triple
over Z.

Let S = Zp[z]/(z2 − k) and K = Qp[z]/(z
2 − k) as before, and assume for now that p 6= 3. The

binary cubic form f ∈ V (Qp)
sol
4k corresponds to an element δ ∈ (K∗/K∗3)N=1 in the image of the

Kummer map. Let P = (x, y) ∈ Ek(Qp) be a rational point mapping to δ. By Remark 25, we have
δ = y− τ , where τ is the image of z in K = Qp[z]/(z

2−k). If x and y have negative valuation, then
P lies in the subgroup Ek,1(Qp) ⊂ Ek(Qp) isomorphic to the formal group of Ek. Since the formal
group is pro-p and p 6= 3, it follows that there is a point Q ∈ Ek,1(Qp) such that 3Q = P ; hence
P is in φ̂(E−27k(Qp)) and δ = ∂(P ) = 1. Thus, the valid triple (S, 1, 1) corresponds to an integral
representative in the orbit of f under the bijection of Theorem 18.

We may thus assume that x and y are in Zp. Define I = Zpx+ Zpδ ⊂ K. Then

τI = Zpxτ + Zpδτ = Zp(xy − xδ) + Zp(x3 − yδ) ⊂ I,

and therefore I is an S-ideal. Furthermore, we haveN(I) = xZp, andN(δ) = N(y−τ) = y2−k = x3.
Finally, we note that the elements

δ−1(x3) = y + τ

δ−1(x2δ) = x2

δ−1(xδ2) = xy − xτ
δ−1(δ3) = y2 + k − 2yτ,

are each contained in S = Zp + Zpτ , implying that I3 ⊂ δS. Thus (I, δ, x) is a valid triple for S in
the sense of Theorem 18 and Remark 19, and yields the desired integral representative in V (Zp)4k.

Remark 42. One can even characterize the integral classes in terms of solubility conditions, at least
if p 6= 3. Specifically, if k ∈ Zp is sixth-power-free, then an SL2(Qp)-orbit of forms f ∈ V (Qp)4k

contains an integral form f0 ∈ V (Zp)4k if and only if f is soluble over Qur
p , the maximal unramified

extension of Qp.

Before considering the case p = 3, we state a general lemma. For any prime p, and for any i ≥ 0,
let Si be the order of index pi in the maximal order S0 of K = Qp[z]/(z

2 − k).

Lemma 43. If (I, δ, s) is a valid triple for the ring Si, with i ≥ 1, then there exists an Si+1-ideal
J such that (J, δ, s) is a valid triple for the ring Si+1. If p = 3, then this is true even if i = 0.

Proof. This follows from the explicit bijection given in the proof of Theorem 18. If f = [a, 3b, 3c, d]
is a binary cubic form corresponding to the valid triple (I, δ, s), then f has a root over Fp, since

Disc(f) = −27disc(f) = −27 ·Disc(Si)
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is divisible by p. So via a change of variables we may assume that p | d. If αZp + βZp is the
corresponding basis of I, then [p2a, 3pb, 3c, d/p] is an integer-matrix binary cubic form corresponding
to the triple (pαZp + βZp, δ, s) for the ring Si+1. If p = 3, then Disc(f) = −27disc(f) is divisible
by p, even if i = 0.

Now let p = 3 and let f ∈ V (Q3)sol
4k correspond to δ ∈ (K∗/K∗3)N=1, with K and S as before. If

the class of δ lies in the unit subgroup (S∗0/S
∗3
0 )N=1, then (S0, δ, s) is a valid triple for the ring S0,

and so by Lemma 43, there exists J such that (J, δ, s) is valid for the ring S. This triple corresponds
to the desired f ∈ V (Z3)4k in the orbit corresponding to δ.

If δ is not represented by a unit, then we must be in the case K = Q3 ×Q3, as this is the only
étale Q3-algebra where there exist δ’s not represented by units. Since k ∈ 3Z, we must have S = Si
for some i ≥ 1. We may choose δ to be of the form (3π, 3u), for some uniformizer π ∈ 3Z3 and unit
u ∈ Z∗3. Then the triple (3S0, δ, s) is valid for the ring S1, so by Lemma 43, there exist valid triples
(J, δ, s) for Si, for all i ≥ 1, and in particular for S. This gives the desired f ∈ V (Z3)4k in the orbit
corresponding to δ, and completes the proof of Theorem 41.

6 The average size of Selφ(Ek)

In this section, for acceptable subsets S ⊂ Z, we asymptotically count the number of SL2(Q)-classes
of locally soluble integer-matrix binary cubic forms f ∈ V (Z) of discriminant 364k for |k| < X,
k ∈ S, as X →∞. By the work of Section 5, this will then allow us to deduce Theorems 1, 2, and 4.

6.1 The asymptotic number of binary cubic forms of bounded discriminant with
weighted congruence conditions

Let V (R) denote the vector space of binary cubic forms over R. Let V (0)(R) denote the subset of
elements in V (R) having positive discriminant, and V (1)(R) the subset of elements having negative
discriminant. We use V (i)(Z) to denote V (Z) ∩ V (i)(R).

Now let T be any set of integral binary cubic forms that is invariant under the action of SL2(Z).
Let N(T ;X) denote the number of irreducible binary cubic forms contained in T , up to SL2(Z)-
equivalence, having absolute discriminant at most X. Then we have the following theorem counting
SL2(Z)-classes of integer-matrix binary cubic forms of bounded reduced discriminant, which easily
follows from the work of Davenport [19] and Davenport–Heilbronn [20] (see [15, Theorem 19] for
this deduction):

Theorem 44. Let T be any set of integer-matrix binary cubic forms that is defined by finitely many
congruence conditions modulo prime powers and that is invariant under the action of SL2(Z). For
each prime p, let µp(T ) denote the p-adic density of the p-adic closure of T in V (Zp), where V (Zp)
is equipped with the usual additive p-adic measure normalized so that µp(V (Zp)) = 1. Then

(a) N(T ∩ V (0)(Z);X) =
π2

12
·
∏
p

µp(T ) ·X + o(X);

(b) N(T ∩ V (1)(Z);X) =
π2

4
·
∏
p

µp(T ) ·X + o(X).
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For our particular application, we require a more general congruence version of our counting
theorem for binary cubic forms, namely, one which not only allows appropriate infinite sets of
congruence conditions to be imposed but which also permits weighted counts of lattice points
(where weights are also assigned by congruence conditions). More precisely, we say that a function
φ : V (Z) → [0, 1] ⊂ R is defined by congruence conditions if, for all primes p, there exist functions
φp : V (Zp)→ [0, 1] such that:

(1) For all f ∈ V (Z), we have φ(f) =
∏
p φp(f).

(2) For each prime p, the function φp is locally constant outside some set Zp ⊂ V (Zp) of measure
zero.

Such a function φ is called acceptable if it is SL2(Z)-invariant and, for sufficiently large primes p,
we have φp(f) = 1 whenever p2 - disc(f). For such an acceptable function φ, we let Nφ(V (i)(Z);X)
denote the number of SL2(Z)-equivalence classes of elements in V (i)(Z) having absolute discriminant
at most X, where the equivalence class of f ∈ V (i)(Z) is weighted by φ(f).

We then have the following generalization of Theorem 44:

Theorem 45. Let φ : V (Z) → [0, 1] be an acceptable function that is defined by congruence condi-
tions via the local functions φp : V (Zp)→ [0, 1]. Then

Nφ(V (i)(Z);X) = N(V (i)(Z);X)
∏
p

∫
f∈VZp

φp(f) df + o(X). (18)

Proof. The proof is exactly as in [7, Theorem 2.21], though we use the uniformity estimate

N(Zp;X) = O(X/p2)

of [11, Proposition 29] in place of the uniformity estimate [7, Theorem 2.13]. Here, Zp is the set of
integral cubic forms of non-fundamental discriminant at p.

6.2 Weighted counts of binary cubic forms corresponding to Selmer elements

We wish to apply Theorem 45 to the set T of all integral binary cubic forms that lie in the corre-
spondence of Theorems 40 and 41, with appropriately assigned weights. Namely, we need to count
each SL2(Z) orbit, SL2(Z) · f , weighted by 1/n(f), where n(f) is number of SL2(Z)-orbits inside
the SL2(Q)-equivalence class of f in V (Z). For this purpose, it suffices to count the number of
SL2(Z)-orbits of locally soluble integral binary cubic forms having bounded discriminant and no
rational linear factor with each orbit SL2(Z) · f weighted by 1/m(f), where

m(f) :=
∑

f ′∈O(f)

|AutQ(f ′)|
|AutZ(f ′)|

=
∑

f ′∈O(f)

|AutQ(f)|
|AutZ(f ′)|

;

here O(f) is a set of representatives for the action of SL2(Z) on the SL2(Q)-equivalence class of f
in V (Z) and AutQ(f) (resp. AutZ(f)) denotes the stabilizer of f in SL2(Q) (resp. SL2(Z)). The
reason it suffices to weight by 1/m(f) instead of 1/n(f) is that, by the proof of [11, Lemma 22], all
but a negligible number of SL2(Z)-orbits of integral irreducible binary cubic forms with bounded
discriminant have trivial stabilizer in SL2(Q); thus all but a negligible number of SL2(Z)-equivalence
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classes of integral binary cubic forms of bounded discriminant satisfym(f) = n(f). In the remainder
of this subsection, we compute this weighted p-adic density of locally soluble integral binary cubic
forms.

For a prime p and a binary cubic form f ∈ V (Zp), define mp(f) by

mp(f) :=
∑

f ′∈Op(f)

|AutQp(f
′)|

|AutZp(f
′)|

=
∑

f ′∈Op(f)

|AutQp(f)|
|AutZp(f

′)|
,

where Op(f) is a set of representatives for the action of SL2(Zp) on the SL2(Qp)-equivalence class of
f in V (Zp) and AutQp(f) (resp. AutZp(f)) denotes the stabilizer of f in SL2(Qp) (resp. SL2(Zp)).
By Proposition 23, we have the factorization

m(f) =
∏
p

mp(f),

and so we have put ourselves in position to use Theorem 45.
Let S be an acceptable subset of Z, and for each prime p, let Sp denote the closure of S in Zp.

Let B(S) denote the set of all locally soluble integral binary cubic forms having discriminant 364k
for k ∈ S, and let Bp(S) denote the p-adic closure of B(S) in V (Zp).

We now determine the p-adic density of Bp(S), where each element f ∈ Bp(S) is weighted by
1/mp(f), in terms of the p-adic integral over Sp of the local Selmer ratio and the volume Vol(SL2(Zp))
of the group SL2(Zp), which is computed with respect to a fixed generator ω of the rank 1 module
of top-degree differentials of SL2 over Z, so that ω is well-determined up to sign.

Proposition 46. There is a rational number J ∈ Q×, independent of S and p, such that∫
Bp(S)

1

mp(f)
df = |J |p ·Vol(SL2(Zp)) ·

∫
k∈S

|Ek(Qp)/φ̂(E−27k(Qp))|
|E−27k(Qp)[φ̂]|

dk.

Proof. We make use of the facts that the number of SL2(Qp)-orbits of soluble binary cubic forms
of discriminant 4k is equal to the cardinality of E−27k(Qp)/φ̂(Ek(Qp)) (by Theorem 40), and the
cardinality of AutQp(f) is equal to the cardinality of Ek(Qp)[φ̂] (by Corollary 27); otherwise, the
proof is identical to [7, Proposition 3.9].

We note that the rational number J also shows up in the archimedean factor of Theorem 45,
since

N(V
(i)
Z ;X) =

Vol(SL2(Z)\SL2(R))|J |∞
ni

X + o(X), (19)

where n0 = 3 and n1 = 1; see [7, Proposition 3.11, Remark 3.14]. (In fact, it turns out that J = 3/2,
although we shall not need this fact.)

6.3 Proof of Theorems 1 and 2

Theorem 47. Let S ⊂ Z be any acceptable subset of integers. Then when all elliptic curves
Ek : y2 = x3 + k, k ∈ S, are ordered by the absolute value of k, the average size of the φ̂-Selmer
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group associated to the 3-isogeny φ̂ : E−27k → Ek is

1 +
∏
p≤∞

∫
k∈Sp

cp(φ̂k)dk∫
k∈Sp

dk

, (20)

where Sp denotes the p-adic closure of S in Zp for p <∞, and S∞ is the image of S in R∗/R∗2.

Proof. Let X = 364Y , and G = SL2 and define E′k = E−27k. By the discussion in §6.2, to count
the total number of non-identity elements in the groups Selφ̂k(E′k) with k < Y , it suffices to count
the number of locally soluble irreducible SL2(Z)-orbits of binary cubic forms f ∈ V (Z) having
discriminant in the set 364S and also bounded by X, and where each orbit is weighed by 1/m(f).
This weighting function is acceptable by Proposition 22. Thus, by Theorem 45, Propositions 46 and
39, and (19), the number of such weighted orbits divided by the total number of k ∈ S with k < Y
approaches

Vol(G(Z)\G(R))|J |∞

∑
k∈S
|k|<Y

1

|E′k[φ̂](R)|∑
k∈S
|k|<Y

1

∏
p

|J |pVol(G(Zp))

∏
p

∫
k∈Sp

|Ek(Qp)/φ̂(E′k(Qp))|
|E′k[φ̂](Qp)|

dk

∏
p

∫
k∈Sp

dk

=

∑
k∈S
|k|<Y

1

|E′k[φ̂](R)|∑
k∈S
|k|<Y

1

∏
p

∫
k∈Sp

|Ek(Qp)/φ̂(E′k(Qp))|
|E′k[φ̂](Qp)|

dk∫
k∈Sp

dk

=
∏
p≤∞

∫
k∈Sp

cp(φ̂k)dk∫
k∈Sp

dk

as Y → ∞. The first equality is due to the product formula
∏
p≤∞ |J |p = 1, and the fact that

the Tamagawa number Vol(G(Z)\G(R))
∏
p Vol(G(Zp)) of G equals 1. This proves formula (20) of

Theorem 47, after taking into account the identity element of each φ̂-Selmer group.

Proof of Theorem 2. The formula comes from the change of variables k 7→ −27k in the result of
Theorem 47, and the fact that φ̂k = φ−27k.

Proof of Theorem 1. We use Proposition 34 to compute the p-adic integrals in Theorem 2 for
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the set S = Z. The result is that the product of the local densities at finite primes equals

r =

[
(1− 2−1)(4

3 + 2−1 + 4
32−2 + 2−3 + 2−4 + 2−5)

1− 2−6

]

·

[
(1− 3−1)(5

3 + 2 · 3−1 + 2
3 · 3

−2 + 7
3 · 3

−3 + 2 · 3−4 + 6 · 3−5)

1− 3−6

]

·
∏

p≡ 5 (mod 6)

[
(1− p−1)(1 + p−1 + 5

3p
−2 + p−3 + 5

3p
−4 + p−5)

1− p−6

]
.

In each Euler factor, the six-term sum records the weighted average value of cp(φ) on piZp− pi+1Zp
for i = 0, . . . , 5. Since Ekm6

∼= Ek, these averages cyclically repeat themselves for i ≥ 6, which
explains the factor 1− p−6 in the denominator.

6.4 Proof of Theorem 4

Claim (i) follows immediately from Proposition 34. Claim (ii) follows from Cassels’ formula [18],

c(φ) =
|E−27k(Q)[φ̂]| · |Selφ(Ek)|
|Ek(Q)[φ]| · |Selφ̂(E−27k)|

. (21)

To prove (iii), we use Proposition 34 to express Tm as a disjoint union

Tm =
⋃
n∈Z

Tm,n,

where Tm,n is the set of all k ∈ Tm for which there are exactly m+ n primes p (possibly including
p =∞) satisfying cp(φk) ≥ 3, with the caveat that if c3(φk) = 9 then p = 3 is counted twice. Each
Tm,n can itself be expressed as a disjoint union

Tm,n =
⋃

(Π1,Π2)

TΠ1,Π2 ,

where the union is over all pairs (Π1,Π2), where Π1 is a multiset of m+ n primes, with each prime
having multiplicity at most 1, except for p = 3 which may have multiplicity at most 2, and Π2 is
a set of n primes, disjoint from Π1. The set TΠ1,Π2 consists of those integers k ∈ Tm such that
cp(φk) ≥ 3 if and only if p ∈ Π1 (and having multiplicity 2 if and only if p = 3 and c3(φk) = 9), and
such that cp(φk) = 1/3 if and only if p ∈ Π2.

Note that each set TΠ1,Π2 ⊂ Z is acceptable, by the explicit congruence conditions of Proposi-
tion 34. Moreover, for each prime p, the function cp(φk) is constant on TΠ1,Π2 . Thus by Theorem 2,
for any acceptable set S ⊂ TΠ1,Π2 , the average size of Selφ(Ek) for k ∈ S is

1 +
∏
p

cp(φk) = 1 + c(φk) = 1 + 3m.

Since c(φ̂) = c(φ)−1, a similar argument shows that the average size of Selφ̂(E−27k) for k ∈ S is
1 + 3−m. Note that any acceptable set S contained in Tm is necessarily contained in some TΠ1,Π2 ,
so this proves Theorem 4(iii) in the case that S ⊂ Tm is an acceptable set.
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If S = Tm, then since
Tm =

⋃
n

⋃
(Π1,Π2)

TΠ1,Π2 ,

we may write Tm as an ascending union Tm =
⋃
i≥1 Si, where each Si is the union of all TΠ1,Π2

such that each prime p ∈ Π1 ∪ Π2 is less than the i-th prime number pi. Thus, each Si is a finite
union of acceptable sets, and so the average size of Selφ(Ek) for k ∈ Si is 1 + 3m. Moreover, by
Proposition 34, the binary cubic forms f ∈ V (Z) having discriminant in the complement Tm − Si
have discriminant divisible by p2

j for some j ≥ i. By the uniformity estimate in [11, Proposition 29],
we have

∑
k∈Tm\S;|k|<X Selφ(Ek) is

∑
j≥iO(X/p2

j ) = O(X/pi), where the implied constant is inde-
pendent of i. That is, the total number of Selmer elements of Ek over all k ∈ Tm \ Si, |k| < X,
is O(X/pi), while the total number of Selmer elements of Ek over all |k| < X is of course � X.
Letting i tend to infinity, we conclude that the average size of Selφ(Ek) for k ∈ Tm is also equal to
1 + 3m. The same argument shows that the average size of Selφ̂(Ek) for k ∈ Tm is again equal to
1 + 3−m. This completes the proof of Theorem 4.

Remark 48. If S ⊂ Z is any acceptable set, then the average size of Selφ(Ek) for k ∈ S equals∑
m∈Z µ(S ∩ Tm)(1 + 3m), and the average size of Selφ̂(E−27k) equals

∑
m∈Z µ(S ∩ Tm)(1 + 3−m).

Indeed, even though the sets S ∩ Tm are not in general acceptable, the sets of the form S ∩ TΠ1,Π2

are, so we can argue as above.

7 Ranks of elliptic curves

In the previous section, we computed the average size of the φ-Selmer and φ̂-Selmer groups in any
acceptable family of elliptic curves with j-invariant 0. In this section, we deduce an upper bound
on the average rank of E(Q) in such families. We also deduce a lower bound on the density of
curves Ek having rank 0 or (3-Selmer) rank 1, respectively.

7.1 An upper bound on the average rank of elliptic curves with vanishing j-
invariant

For any elliptic curve E/Q with j-invariant 0, we write r(E), r3(E), rφ(E), and rφ̂(E) for the ranks
of the groups E(Q), Sel3(E), Selφ(E), and Selφ̂(E′) respectively, where E′ = E/ kerφ.

Proposition 49. For φ : E → E′ as above, we have

(a) r(E) ≤ r3(E) ≤ rφ(E) + rφ̂(E).

(b) If c(φ) = 3m, then m ≡ r3(E)− dimF3 E[3](Q) (mod 2).

Proof. Claim (a) follows from the exact sequence [34, Corollary 1],

0→ E′(Q)[φ̂]

φ(E(Q)[3])
→ Selφ(E)→ Sel3(E)→ Selφ̂(E′)→ X(E′)[φ̂]

φ(X(E)[3])
→ 0. (22)

As φ is adjoint with respect to the Cassels–Tate pairing [18, Theorem 1.2], there is an induced
non-degenerate alternating pairing on the F3-vector space

X(E′)[φ̂]
φ(X(E)[3]) . The latter therefore has even

F3-dimension, and (b) now follows from (21) and (22).
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Theorem 50. Let m ∈ Z, and suppose S ⊂ Tm is an acceptable set. Then the (limsup of the)
average rank of Ek, for k ∈ S ordered by absolute value, is at most |m|+ 3−|m|.

Proof. First assume that m ≥ 0. Then one has the general inequality

2rφ(E) + 1− 2m ≤ 3rφ(E)−m, (23)

so that
rφ(E) ≤ m− 1

2
+
|Selφ(E)|

2 · 3m
.

By Theorem 4, the average size of Selφ(Ek) for k ∈ S ⊂ Tm is 1 + 3m, so we conclude that the
limsup of the average of rφ(Ek) is at most m+ 1

23−m. Similarly, the average size of Selφ̂(E−27k) is
1 + 3−m, so we conclude from the case m = 0 of inequality (23) that the limsup of the average of
rφ̂(Ek) is at most 1

23−m. Combining these bounds with Proposition 49(i), the limsup of the average
rank of Ek for k ∈ S is seen to be at most m+ 3−m. For m < 0, the roles of φ and φ̂ are reversed,
so the average rank bounds that we obtain for m and −m are the same.

Proof of Theorem 5. We observe that, by the explicit congruence description of Tm in §6.4, any
k ∈ Tm (for |m| > 1) must satisfy p2

j | k for some j ≥ |m| − 1, where we again use pi to denote the
i-th prime. Hence, by the uniformity estimate [11, Proposition 29], we have that∑

|m|>M

∑
k∈Tm
k<X

Selφ(Ek) =
∑
j≥M

O(X/p2
j ) = O(X/pM ),

where the implied constant is independent of M . Theorem 50 therefore gives the following bound
on the (limsup of the) average rank of the elliptic curves Ek for nonzero k ∈ Z:

lim sup avgk∈Zr(Ek) ≤ lim
M→∞

M∑
m=−M

µ(Tm)(|m|+ 3−|m|) +O(1/pM ) =

∞∑
m=−∞

µ(Tm)(|m|+ 3−|m|),

where µ(Tm) denotes the density of integers in the set Tm. Using Proposition 34 and the explicit
description given in §6.4 of Tm as the disjoint union

Tm =
⋃
n

⋃
TΠ1,Π2 ,

we can estimate the densities µ(Tm) to arbitrary precision. One may also prove, e.g., that∑
|m|>5

µ(Tm)(|m|+ 3−|m|) < 0.001.

A computation in Mathematica produces the table of densities in the introduction, and it follows
that the average rank of Ek is less than 1.29.

We obtain a better bound on the average rank if we combine with the recent work of Alpoge
[1], who proves that the average size of the 2-Selmer group of Ek, k ∈ S, is 3. Since the 3-Selmer
ranks—and therefore (due to the work of [21]) the 2-Selmer parity—is constant for 100% of Ek for
k ∈ Tm by Theorems 4(ii) and 49(ii), this implies that the average rank of Ek, k ∈ S, is less than
4/3 on any Tm, giving the bound:

avgk∈Zr(E) ≤
1∑

m=−1

µ(Tm)(|m|+ 3−|m|) +
4

3
(1− µ(S1 ∪ S0 ∪ S1)) < 1.21.
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7.2 A lower bound on the proportion of elliptic curves with vanishing j-invariant
having 3-Selmer rank 0 or 1

Proof of Theorem 6. Let s0 denote the liminf of the natural density of k ∈ T0 for which rφ(Ek) =
0. Then by Theorem 4(iii), s0 is also the liminf of the natural density of k ∈ T0 for which rφ̂(Ek) = 0.
Since the average size of |Selφ(Ek)|, k ∈ Z, is 2, we must have

s0 · 1 + (1− s0) · 3 ≤ 2,

implying s0 ≥ 1/2. It follows that a lower density of at least 1/2 of the curves Ek, k ∈ T0, satisfy
rφ(Ek) = rφ̂(Ek) = r3(Ek) = 0, and thus r(Ek) = 0. Theorem 6 follows, since the density of T0 is
at least .399, and (1/2)(.399) > .199.

Proof of Theorem 7. Let s1 denote the liminf of the natural density of k ∈ T1 for which rφ(Ek) =
1. Then by Theorem 4(iii), s1 is also the liminf of the natural density of k ∈ T1 for which rφ̂(Ek) = 0.
Since the average size of |Selφ(Ek)|, k ∈ T1, is 4, we see that

s1 · 3 + (1− s1) · 9 ≤ 4,

implying s1 ≥ 5/6. In conjunction with the exact sequence (22), this implies that a lower density
of at least 5/6 of the curves Ek, k ∈ T1, satisfy rφ̂(Ek) = 0 and rφ(Ek) = r3(Ek) = 1 (and under
the assumption that X(Ek)[3

∞] is finite, that r(Ek) = 1 as well). The identical argument with
T−1 in place of T1 shows that a lower density of at least 5/6 of the curves Ek, k ∈ T−1, satisfy
rφ(Ek) = 0 and rφ̂(Ek) = 1. By (22) and the fact that X(E′)[φ̂]

φ(X(E)[3]) has even rank, these curves
also satisfy r3(Ek) = 1 (and again r(Ek) = 1 under the assumption that X(E−27k)[3] is trivial).
Theorem 7 now follows, because the density of T1∪T−1 is at least .494, and (5/6)(.494) > .411.

Since .199 + .411 = .61, we conclude that at least 61% of all Ek have rank 0 or 1, which is
Corollary 8.

8 The average size of the φ-Selmer group over a number field

In this section, we generalize Theorem 2 to the case where the ground field is an arbitrary number
field F , and from this generalization we deduce Theorems 11–14. The main tool is [13, Thm. 13],
which gives a general framework for geometry-of-numbers methods over arbitrary global fields. We
recall the setup and the notation.

First, recall that the elliptic curves Ek of j-invariant 0 over F (and the associated isogenies
φk : Ek → E−27k) are classified up to isomorphism by the value of k, where we view k as an element
of F ∗/F ∗6. To order the elliptic curves Ek over F up to isomorphism, we use a natural height
function on F ∗/F ∗6, defined as follows: if k̃ ∈ F ∗ is a representative for k ∈ F ∗/F ∗6, and I(k̃) is
the ideal

I(k̃) := {a ∈ F : a6k̃ ∈ OF },

then
H(k) := N(I(k̃))6

∏
p∈M∞

|k̃|p,
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where M∞ denotes the set of infinite places of F . There is also a natural height function on the set
F∞ :=

∏
p∈M∞ Fp, defined by

H((kp)p∈M∞) =
∏

p∈M∞

|kp|p.

In order to take averages over subsets of Ek defined by local (congruence) conditions on k,
we require a notion of functions on F that are defined by local conditions. We say a function
ψ : F → [0, 1] is defined by local congruence conditions if there exist local functions ψp : Fp → [0, 1]
for every finite place p of F , and a function ψ∞ : F∞ → [0, 1], such that the following two conditions
hold:

(1) For all w ∈ F , the product ψ∞(w)
∏

p/∈M∞ ψp(w) converges to ψ(w).

(2) For each finite place p, and for p =∞, the function ψp is nonzero on some open set and locally
constant outside some closed subset of Fp of measure 0.

A subset of F is said to be defined by local congruence conditions if its characteristic function is
defined by local congruence conditions.

Let Σ0 be the fundamental domain for the action of F ∗ on F as constructed in [13, §3.4], where
α ∈ F ∗ acts on β ∈ F by α.β = α6β. Then it is shown in [13, §3.4] that Σ0 is defined by local
congruence conditions. For any X > 0, let FX denote the set of k ∈ F ∗ such that H(k) < X. Then
Σ0 ∩FX is finite [13, §3.4]. We will think of the elliptic curves Ek as elements of Σ0, so that the set
of all Ek, with k ∈ F ∗/F ∗6 and H(k) < X, is naturally in bijection with the finite set Σ0 ∩ FX .

A family {Ek} of sextic twists defined by local congruence conditions is then a subset Σ1 ⊂ Σ0

defined by local congruence conditions. In that case, the characteristic function χΣ1
of Σ1 factors

as
χΣ1

= χΣ1,∞
∏

p/∈M∞

χΣ1,p.

For each finite place p of F , let Σ1,p be the subset of Fp whose characteristic function is χΣ1,p
, and

let Σ1,∞ be the subset of F∞ whose characteristic function is χΣ1,∞. Let Op denote the completion
of the ring of integers OF at p, and vp the p-adic valuation normalized so that the valuation of a
uniformizer is 1. We say that the family of elliptic curves Ek defined by Σ1 is large if Σ1,p contains
the set Op(2) = {k ∈ Op : vp(k) < 2} for all but finitely many finite places p, and if Σ1,∞ is a
non-empty union of cosets in F ∗∞/F ∗6∞ . Recall that Σ0,p = Op(6) ⊃ Op(2) for all finite p, so Σ0 is
itself large.

To state the analogue of Theorem 2 over F , we define

c∞(φk) :=
∏

p∈M∞

cp(φkp)

for any k = (kp) ∈ F ∗∞, and also let F∞,X be the set of k ∈ F∞ with height less than X.

Theorem 51. Let Σ1 be a large family of elliptic curves Ek. When the elliptic curves Ek, k ∈ Σ1,
are ordered by the height H(k) of k, the average size of Selφk(Ek) is

1 +

∫
k∈Σ1,∞∩F∞,1

c∞(φk) dµ
∗
∞(k)∫

k∈Σ1,∞∩F∞,1
dµ∗∞(k)

∏
p/∈M∞

∫
k∈Σ1,p

cp(φk)dk∫
k∈Σ1,p

dk

.

26



Here, dk denotes the Haar measure on Op, normalized so that Op has volume 1, and dµ∗∞(k) is the
Haar measure on F∞ normalized so that the covolume of OF in F∞ is 1.

Proof. By duality, we may replace φ by φ̂ and Ek by E′k. Then by Corollary 40, it suffices to count
the number of irreducible locally soluble SL2(F )-orbits on V (F ) with discriminant in Σ1 and with
height less than X. Theorem 51 then follows from the very general counting result [13, Thm. 13].
To apply that result to our situation, we take G = SL2 and V = Sym3 2, the space of binary cubic
forms. The GIT quotient S is the affine line A1 and the map inv : V → S is the discriminant
f 7→ disc(f). We take V (F )irr to be the subset of irreducible cubic forms, and the weight function
m0 is the characteristic function of V (F )loc. sol. ∩ inv−1(κ.Σ1) ⊂ V (F ), for some nonzero κ ∈ OF ,
which we will choose momentarily. The p-adic integrals in Theorem 51 coincide with those in [13,
Thm. 13] by Theorems 27 and 28. Finally, we note that the Tamagawa number τSL2,F equals 1.
Thus, it remains to verify the six axioms in [13, Thm. 13].

Axiom - (G,V) is satisfied since the unique invariant disc is a degree four polynomial and SL2

is semisimple. To guarantee that Axiom - Local Condition is satisfied, it is enough to let κ = 3.
Indeed, this follows from the proof of Theorem 41, which works over any finite extension of Qp.
Axiom - Local Spreading is satisfied since there is a section of inv : V → S defined over OF [1/2]
given by k 7→ 3x2y+(k/4)y3. Axiom - Counting at Infinity I and II is verified exactly as in the case
of PGL2 acting on binary quartic forms [13, §4.1]. Finally, to verify Axiom - Uniformity Estimate in
our situation, note that by Propositions 22 and 35, the set inv−1(Σ1,p) ⊂ V (Op) contains all cubic
forms with discriminant not divisible by p2, for all but finitely many primes p of F . The uniformity
estimate therefore follows from [12, Thm. 17].

Proof of Theorem 11. We take Σ1 = Σ0 in Theorem 51 and use Proposition 39 to compute the
archimedean factor.

Proof of Theorem 12. The proofs of parts (i) and (ii) are identical to the case F = Q, where for
part (ii) we use Theorem 51 in place of Theorem 2.

To prove the final statements of the theorem, we need to compute cp(φk) for k ∈ OF and for
sufficiently many primes p of F . If p is any finite prime of F above p /∈ {2, 3,∞}, then we have
the following generalization of Proposition 34: if k ∈ Op is sixth-power-free, and χK denotes the
quadratic character attached to K = Fp(

√
k), then

cp(φk) =

{
3−χK(p) if

√
−3 /∈ Fp and vp(k) ∈ {2, 4};

1 otherwise.
(24)

This follows from Table 1 in [22] and Tate’s algorithm, which shows that the condition vp(k) ∈ {2, 4}
is equivalent to Ek having reduction type IV or IV*.

As F does not contain
√
−3, there are infinitely many places p of F for which Fp does not contain√

−3. It then follows from (24) that for any m ∈ Z, the set of k ∈ F ∗/F ∗6 for which c(φk) = 3m

has positive density.
On the other hand, if F contains

√
−3, then c(φk) = 1 for all k ∈ F ∗/F ∗6, by Proposition 52

below. In other words, F ∗/F ∗6 = T0(F ).

Proposition 52. Let F be a number field containing
√
−3. Then c(φk) = 1 for any k ∈ F ∗.
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Proof. For any finite place p of F , we have cp(φk) = α · cp(E−27k)/cp(Ek), where α =
∣∣∣φ∗kω′ω

∣∣∣−1

p
;

this result is due to Schaefer [39, Lem. 3.8] (see also [22, Lem. 4.2]). Here, ω′ and ω denote Néron
differentials for E−27k and Ek, and | · |p is the normalized p-adic absolute value. Since F contains√
−3, we have E−27k ' Ek. Thus, φ is an endomorphism of degree 3, and hence must be

√
−3, up to

a unit. It follows that cp(φk) = 1 if p is not above 3 or∞. If p is above 3, then cp(φk) = α = |
√
−3|−1

p .
If p is an infinite place, then p is complex and cp(φk) = 1/3 = |

√
−3|−1

p , by Proposition 39. By the
product formula, we conclude

c(φk) =
∏
p|∞

|
√
−3|−1

p

∏
p|3

|
√
−3|−1

p = 1,

as desired.

It now follows from Theorem 51 and Proposition 52 that when F contains
√
−3, the average

size of both the φ- and φ̂-Selmer groups is 2. By the arguments in Section 7, we conclude that the
average rank of Ek, for k ∈ F ∗/F ∗6 ordered by height, is at most 1, and that 50% of the Ek have
rank 0. This proves Theorem 14.

On the other hand, if F does not contain
√
−3, then we proceed as in the proof of Theorem 5,

to show that the average rank of Ek, for k ∈ F ∗/F ∗6, is bounded. Since T0(F ) and T1(F ) each
have positive density, the same arguments as in Section 7 then show that a positive proportion of
Ek have 3-Selmer rank 0 and thus also Mordell-Weil rank 0, and a positive proportion of Ek have
3-Selmer rank 1. This proves Theorem 13.
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