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Sums of two cubes

Q: Which integers can be written as a sum x2 + y2 of two integer/rational squares?

A: Those whose prime factorizations have all primes p ≡ 3 (mod 4) appearing with
even exponent (Girard/Fermat/Euler).

Q: Which integers can be written as a sum x3 + y3 of two cubes?

It matters now whether we allow x and y to be rational

▸ e.g. 6 = ( 17
21

)3 + ( 37
21

)3.

The first few are 1,2,6,7,8,9,12,13,15,16,17,19,20,22,26,27,28, . . .

There seems to be no precise rule!

New question: how many integers are a sum of two rational cubes?

Easy to see that 0% of integers are a sum of two integer cubes.
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Main theorem

Theorem (Alpöge-Bhargava-S)

When ordered by their absolute values, a positive proportion of integers are the sum of
two rational cubes, and a positive proportion of integers are not.

More precisely, we prove that

lim inf
X→∞

#{n ∈ Z ∶ ∣n∣ <X and n is the sum of two rational cubes}
#{n ∈ Z∶ ∣n∣ <X}

≥ 2

21

and

lim inf
X→∞

#{n ∈ Z ∶ ∣n∣ <X and n is not the sum of two rational cubes}
#{n ∈ Z∶ ∣n∣ <X}

≥ 1

6

Conjecture: One half of all integers are a sum of two cubes.
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Ranks in cubic twists families of elliptic curves

The equation x3 + y3 = n is an affine model of the elliptic curve x3 + y3 = nz3.

The elliptic curves vary through the cubic twists of the Fermat cubic x3 + y3 = z3.

How many of these cubic twists have a (non-trivial) rational point? We prove:

Theorem (Alpöge-Bhargava-S)

Fix d ≠ 0 and consider the cubic twist family Ed,n ∶ y2 = x3 + dn2 as n→∞. Then:

1 At least 1/6 of the elliptic curves Ed,n have rank 0,

2 At least 1/6 of the elliptic curves Ed,n with good reduction at 2 have rank 1.

Note: the curve x3 + y3 = n is isomorphic to y2 = x3 − 432n2 (the case d = −432).
Easy fact: for 100% of n, the torsion subgroup of Ed,n(Q) is trivial.
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Average size of the 2-Selmer group

A key ingredient is the determination of the average size of Sel2(Ed,n).

Theorem (Alpöge-Bhargava-S)

Fix d ≠ 0 and let n range over integers satisfying any finite set (or even “acceptable”
infinite sets) of congruences conditions. Then avgn#Sel2(Ed,n) = 3.

Corollary: In any cubic twist family of elliptic curves, we have avgn rkEd,n(Q) ≤ 4
3 .

Corollary: The average rank is bounded in (almost) any twist family of elliptic curves:

quadratic twist families:
▸ Smith (generic case)
▸ Bhargava-Klagsbrun-Lemke Oliver-S (in the presence of a 3-isogeny)

cubic twists: Alpöge-Bhargava-S

quartic twists: Kane-Thorne

sextic twists: Bhargava-Elkies-S
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Plan for rest of talk

1 I’ll explain how to deduce our main results from avgn#Sel2(Ed,n) = 3

2 I’ll sketch a proof that avgn#Sel2(Ed,n) = 3.
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From Selmer groups to sums of two squares

Fix d and let En = Ed,n ∶ y2 = x3 + dn2. We have

0→ En(Q)/2En(Q) → Sel2(En) →X(En)[2] → 0

Our result that avgn#Sel2(En) = 3 immediately implies that avgn rkEn(Q) ≤ 1.5.

(Use the inequality r ≤ 1
2 ⋅ 2

r, valid for all integers r ≥ 0.)

But this is not enough to conclude that a positive proportion of twists have rank 0 and
a positive proportion have rank 1!

For example, it could be that 50% have rank 1 and 50% have rank 2.
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Root number and parity

Let wn ∈ {±1} be the root number of En, so that

L(En, s) = wnL(En,2 − s)

It follows from BSD that (−1)rkEn = wn, but the parity conjecture is open.

We use instead the p-parity theorem:

Theorem (Dokchitser-Dokchitser and Neková̌r)

Let E/Q be an elliptic curve and let w(E) be its root number. Then for every prime p,

w(E) = (−1)dimFp Selp(E)+dimFp E[p](Q).

Thus, for 100% of integers n, we have

wn = (−1)dimF2 Sel2(En)
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Root number equidistribution
We prove that the root number is equidistributed in cubic twist families and (crucially)
even if we restrict to appropriate congruence sub-families:

Theorem (Alpöge-Bhargava-S)

Fix d and let S ⊂ Z+ defined by finitely many prime-to-3 congruence conditions. Then
the root number wn is equidistributed: we have wn = +1 (resp. −1) for 50% of n ∈ S.

On the other hand, we show:

Theorem

Fix d and let S be an acceptable subset of Z+. The set S+ ⊂ S (resp., S−) of n ∈ S
such that Ed,n has root number +1 (resp., −1) is a countable union of acceptable sets.

We use explicit formulas of Rohrlich/Varilly-Alvarado. Up to local factors at p ∣ 6d,

wn ≐ (−1)ω2,3(n)

where ω2,3(n) is the number of primes p dividing n with 3 ∤ vp(n) and p ≡ 2 (mod 3).
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Proof that at least 1
6 of twists En have rank 0

Consider the subset S ⊂ Z of n such that wn = 1.

We have avgn∈S #Sel2(En) = 3.

By 2-parity, the integer dimF2 Sel2(En) is even for n ∈ S.

Thus, at least 1
3 of En (for n ∈ S) have #Sel2(En) = 1 (solve 1q + 4(1 − q) ≤ 3).

Since 1
2 ⋅

1
3 =

1
6 , we get at least 1

6 of curves with rank 0.
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Proof that at least 5
12 of twists En have 2-Selmer rank 1

Consider the subset S ⊂ Z of n such that wn = −1.

We have avgn∈S #Sel2(En) = 3.

By 2-parity, the integer dimF2 Sel2(En) is odd for n ∈ S.

Thus, at least 5
6 of En (for n ∈ S) have #Sel2(En) = 2 (solve 2q + 8(1 − q) ≤ 3)

Since 1
2 ⋅

5
6 =

5
12 , we get at least 5

12 of curves with #Sel2(En) = 2.

Question: If #Sel2(En) = 2, then is the rank of En equal to 1?

If we assume the finiteness of X(En) then yes, but this is not known in general.
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A p-converse theorem

However, we can use the following recent p-converse result of Burungale-Skinner.

Theorem (Burungale-Skinner)

Let E/Q be a CM elliptic curve with supersingular reduction at p. If #Selp(E) = p and
the map Selp(E) → E(Qp)/pE(Qp) is injective, then rkE(Q) = 1.

Notice the good reduction hypothesis.

When d = −432, exactly 4
7 of the curves En (with n ∈ S) have good reduction at 2.

We show at least 1
3 of those satisfy #Sel2(E) = 2 and Sel2(E) ↪ E(Q2)/2E(Q2).

So the total proportion of rank 1 twists we can guarantee is 1
2
1
3
4
7 =

2
21 .

Note: not all cubic twist families have curves with good reduction at 2.
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Proof that avgn#Sel2(En) = 3

Let E be an elliptic curve over Q.

The Selmer group Sel2(E) parameterizes isomorphism classes of pairs (C,D) where

C/Q is a genus one curve with Pic0(C) ≃ E,

D is a degree two divisor on C (up to linear equivalence), and

C(Qp) ≠ ∅ for all p ≤ ∞.

Cohomologically:

Sel2(E) = ker
⎛
⎝
H1(Q,E[2]) →∏

p

H1(Qp,E)
⎞
⎠
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A parameterization of Bhargava-Ho
Let G = SL2

2 and V = Sym3(2)⊗ (2), the space of pairs (f1, f2) of binary cubic forms.

Invariants: we have C[V ]G = C[A1,A3], where A1 and A3 have degrees 2 and 6.

Given (f1, f2) ∈ V (Q), we can construct a genus one hyperelliptic curve

C ∶ z2 = Discx,y(f1x1 + f2x2)

We say (f1, f2) is locally soluble if C(Qp) ≠ ∅ for all p ≤ ∞.

Theorem (Bhargava-Ho)

Let E = E(a1, a3)∶ y2 + a1xy + a3y = x3. Then there is a bijection

Sel2(E) ←→ G(Q)/V (Z)loc. sol.a1,a3

between Sel2(E) and the locally soluble orbits with invariants A1 = a1 and A3 = a3.

Fact: E(a1, a3) is the universal family of elliptic curves with a point of order 3.
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2-Selmer elements for E16,n

Let Y ⊂ V be the G-invariant quadric defined by A1 = 0.
For y ∈ Y (Q), we let Disc(y) = A3(y) be its discriminant.

Theorem (Bhargava-Ho)

Let En ∶ y2 + ny = x3. Then there is a bijection

Sel2(En) ←→ G(Q)/Y (Z)loc. sol.n

between Sel2(En) and the locally soluble orbits on Y (Z) of discriminant n.

One checks that En is isomorphic to the curve E16,n ∶ y2 = x3 + 16n2 from earlier.
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2-Selmer elements for Ed,n

What about for general twist families Ed,n? These don’t have a 3-torsion point.

However, Ed,n[2] ≃ E2d2n[2] and hence H1(Q,Ed,n[2]) ≃H1(Q,E2d2n[2]).

(compare y2 = x3 + dn2 with y2 = x3 + 64d4n2)

We say (f1, f2) ∈ V (Q) is d-locally soluble if dz2 = Disc(f1x1 + f2x2) is locally soluble.

Theorem (Alpöge-Bhargava-S)

Fix d ≠ 0 and let Ed,n ∶ y2 = x3 + dn2. Then there is a bijection

Sel2(Ed,n) ←→ G(Q)/Y (Z)d−loc. sol.2d2n

between Sel2(Ed,n) and d-locally soluble orbits on Y (Z) of discriminant 2d2n.
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The number of integral G(Q)-orbits in a quadric of bounded invariant

We’ve reduced the computation of avgn#Sel2(Ed,n) to counting G(Z)-orbits on
Y (Z) with bounded discriminant and satisfying certain congruence conditions.

Theorem (Alpöge-Bhargava-S)

Let S ⊂ Z be defined by congruence conditions. The number of irreducible G(Z)-orbits
on Y (Z) with A3(y) <X and with A3(y) ∈ S is

N(S;X) =X ⋅ ∫y∈G(Z)/Y (R)

∣A3(y)∣<1

dy ⋅∏
p
∫
y∈Sp

dy + o(X), (1)

where dy is the measure on Y (R) or Y (Zp) given by dr2 dr3⋯dr8/(∂A1/∂r1), and
r1, . . . , r8 are the coordinates on V . The measure dy on Y (R) (resp. on Y (Zp)) is a
G(R)-invariant (resp. G(Zp)-invariant) measure.
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Remarks on the counting-in-a-quadric result

The main tools are Bhargava’s averaging method in geometry-of-numbers and the
circle method (following Heath-Brown).

The basic idea goes back to the Alpöge’s and Sam Ruth’s theses, which we push a
bit further (see recent talks of Alpöge and Bhargava for more details).

Irreducible means that Disc(f1x1 + f2x2) has no linear factor. Such orbits always
correspond to the identity element of the Selmer group.

For the Selmer group application, we need (and prove) a more general version of
this theorem allowing congruence conditions and weighted counts.

With these weights and congruence conditions, a “standard” argument shows that
the Euler product is 2. Since 1 + 2 = 3, we find that avgn#Sel2(Ed,n) = 3.

This finishes a sketch of the proof of the “sum of two cubes” result.

Ari Shnidman ICTS–ECL 2022 18 / 25



Proof of Selmer parameterization

In the remaining time, let’s sketch a proof of:

Theorem (Alpöge-Bhargava-S)

Fix d ≠ 0 and let Ed,n ∶ y2 = x3 + dn2. Then there is a bijection

Sel2(Ed,n) ←→ G(Q)/Y (Z)d−loc. sol.2d2n

between Sel2(Ed,n) and d-locally soluble orbits on Y (Z) of discriminant 2d2n.

The main question is: why do all elements of Sel2(Ed,n) have the form
dz2 = Disc(f1x1 + f2x2), for some (f1, f2) ∈ Y (Z)?
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Let G̃ = GL2
2. Under the bijection of Bhargava-Ho:

Sel2(En) ←→ G(Q)/Y (Z)loc. sol.n

we have StabG̃(f1, f2) ≃ Θ(Ln), where Ln is the line bundle OEn(2∞) and Θ(Ln) is
the automorphism group of Ln over En. We have:

0→ Gm → Θ(Ln) → En[2] → 0

Lemma (“Arithmetic Invariant Theory”)

The G(Q)-orbits on Y (Q) of discriminant n are in bijection with H1(Q,Θ(Ln)).

We also have
Sel2(En) ⊂H1(Q,Θ(Ln)) ⊂H1(Q,En[2])
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Isomorphism of Theta groups

Now let A = Ed,1. We saw η∶A[2] ≃ Em[2], where m = 2d2.

Theorem

Let LA = OA(2∞). Then Θ(LA) ≃ Θ(Lm) as central extensions.

Proof idea.

Consider M = LA ⊠Lm on A ×Em, which is the pullback of a principal polarization
from B = (A ×Em)/Γη. Now consider Θ(M ) and use the theory of Theta groups and
descent of line bundles [Mumford, §23].

It follows that H1(Q,Θ(LA)) ≃H1(Q,Θ(Lm)), and moreover this is compatible
with the inclusion of Selmer groups. We can therefore realize every element of Sel2(A)
as coming from a G(Q)-orbit of V . We then need to show integrality...
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Generalization to higher dimensional cubic twist families

Theorem

Let A be an abelian variety over Q with a degree 4 polarization λ ∶ A→ Â induced by a
symmetric line bundle L ∈ Pic(A). Suppose (A,L ) admits a µ3-action, and for each
non-zero n ∈ Z, let λn ∶ An → Ân be the cubic twist of λ. Then avgn#Selλn(An) = 3.

Example: Let C ∶ y3 = x4 + ax2 + b, a genus three curve.

C admits a double cover to the elliptic curve E ∶ y3 + x2 + ax + b.
Let A = ker(Jac(C) → E) be the corresponding Prym variety.

Then A is an abelian surface satisfying all the conditions above.
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Ranks of cubic twists of abelian surfaces

Corollary

Fix a, b ∈ Q and let An be the Prym variety of ny3 = x4 + ax2 + b. Then the average
rank of An(Q) is at most 3.

Proof.

The polarization λ ∶ A→ Â is not multiplication by 2.

But Â is the Prym of the dual curve y3 = x4 + 8ax2 + 16(a2 − 4b).

The polarization λ̃ ∶ Â→ A composes to multiplication by 2 on A.

Our result gives avgn Selλn(An) = 3 and avgn Selλ̃n(Â) = 3.

It follows that the average rank of Sel2(An) is at most 3.

The abelian surfaces A all have quaternionic multiplication by the quaternion order of
discriminant 6. What can one say about the root numbers of such abelian surfaces?
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Thank you!
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Proof details
There is a short exact sequence

1→ Gm Ð→ Θ(M )
p
Ð→ A[λ] ×E[2] Ð→ 1.

Let π∶A ×E → B be the quotient map. The subgroup Γη ⊂ A[λ] ×E[2] is maximal
isotropic with respect to the skew-symmetric Weil pairing induced by M , since

⟨(P, η(P )), (Q,η(Q))⟩M = ⟨P,Q⟩LA
⟨η(P ), η(Q)⟩LE

= ⟨P,Q⟩2LA
= 1.

Let π∶A×E → B be the quotient map. There is therefore a line bundle LB on B such
that π∗LB ≃ M . The existence of LB implies that there is a subgroup H ⊂ Θ(M )
and an isomorphism ψ∶Γη ≃H such that p ○ ψ = id.
This data determines an isomorphism η̃∶Θ(LA) → Θ(Ln) of theta groups. Explicitly,
if ψ(P, η(P )) = (P, s0, η(P ), r0) ∈H ⊂ Θ(M ), then

η̃(P, s) = (η(P ), (s−10 s)r0)

where we view s−10 s as a scalar in Aut(LA) ≃ Gm ≃ Aut(LE).
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