Sums of two cubes

Ari Shnidman (joint work with Levent Alpöge and Manjul Bhargava)

Hebrew University of Jerusalem ICTS-ECL 2022

August 15, 2022

Sums of two cubes

Q: Which integers can be written as a sum $x^2 + y^2$ of two integer/rational squares?

A: Those whose prime factorizations have all primes $p \equiv 3 \pmod{4}$ appearing with even exponent (Girard/Fermat/Euler).

Q: Which integers can be written as a sum $x^3 + y^3$ of two cubes?

 $\bullet\,$ It matters now whether we allow x and y to be rational

• e.g.
$$6 = \left(\frac{17}{21}\right)^3 + \left(\frac{37}{21}\right)^3$$
.

- The first few are $1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, \ldots$
- There seems to be no precise rule!

New question: how many integers are a sum of two rational cubes?

Easy to see that 0% of integers are a sum of two *integer* cubes.

Main theorem

Theorem (Alpöge-Bhargava-S)

When ordered by their absolute values, a positive proportion of integers are the sum of two rational cubes, and a positive proportion of integers are not.

More precisely, we prove that

$$\liminf_{X \to \infty} \frac{\# \{ n \in \mathbb{Z} : |n| < X \text{ and } n \text{ is the sum of two rational cubes} \}}{\# \{ n \in \mathbb{Z} : |n| < X \}} \ge \frac{2}{21}$$

and

$$\liminf_{X \to \infty} \frac{\# \left\{ n \in \mathbb{Z} : |n| < X \text{ and } n \text{ is not the sum of two rational cubes} \right\}}{\# \left\{ n \in \mathbb{Z} : |n| < X \right\}} \ge \frac{1}{6}$$

Conjecture: One half of all integers are a sum of two cubes.

	<u> </u>			
Art	Sh	nud	maa	n
		шu	i i a	

Ranks in cubic twists families of elliptic curves

The equation $x^3 + y^3 = n$ is an affine model of the elliptic curve $x^3 + y^3 = nz^3$.

The elliptic curves vary through the cubic twists of the Fermat cubic $x^3 + y^3 = z^3$.

How many of these cubic twists have a (non-trivial) rational point? We prove:

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and consider the cubic twist family $E_{d,n}: y^2 = x^3 + dn^2$ as $n \rightarrow \infty$. Then:

- At least 1/6 of the elliptic curves $E_{d,n}$ have rank 0,
- 2 At least 1/6 of the elliptic curves $E_{d,n}$ with good reduction at 2 have rank 1.

Note: the curve $x^3 + y^3 = n$ is isomorphic to $y^2 = x^3 - 432n^2$ (the case d = -432). Easy fact: for 100% of n, the torsion subgroup of $E_{d,n}(\mathbb{Q})$ is trivial.

Average size of the 2-Selmer group

A key ingredient is the determination of the average size of $Sel_2(E_{d,n})$.

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let n range over integers satisfying any finite set (or even "acceptable" infinite sets) of congruences conditions. Then $\operatorname{avg}_n \#\operatorname{Sel}_2(E_{d,n}) = 3$.

Corollary: In any cubic twist family of elliptic curves, we have $\operatorname{avg}_n \operatorname{rk} E_{d,n}(\mathbb{Q}) \leq \frac{4}{3}$.

Corollary: The average rank is bounded in (almost) any twist family of elliptic curves:

- quadratic twist families:
 - Smith (generic case)
 - Bhargava-Klagsbrun-Lemke Oliver-S (in the presence of a 3-isogeny)
- cubic twists: Alpöge-Bhargava-S
- quartic twists: Kane-Thorne
- sextic twists: Bhargava-Elkies-S

I'll explain how to deduce our main results from avg_n#Sel₂(E_{d,n}) = 3
I'll sketch a proof that avg_n#Sel₂(E_{d,n}) = 3.

From Selmer groups to sums of two squares

Fix d and let $E_n = E_{d,n} : y^2 = x^3 + dn^2$. We have

$$0 \to E_n(\mathbb{Q})/2E_n(\mathbb{Q}) \to \operatorname{Sel}_2(E_n) \to \operatorname{III}(E_n)[2] \to 0$$

Our result that $\operatorname{avg}_n \#\operatorname{Sel}_2(E_n) = 3$ immediately implies that $\operatorname{avg}_n \operatorname{rk} E_n(\mathbb{Q}) \leq 1.5$.

(Use the inequality $r \leq \frac{1}{2} \cdot 2^r$, valid for all integers $r \geq 0$.)

But this is not enough to conclude that a positive proportion of twists have rank 0 and a positive proportion have rank 1!

For example, it could be that 50% have rank 1 and 50% have rank 2.

Root number and parity

Let $w_n \in \{\pm 1\}$ be the root number of E_n , so that

$$L(E_n,s) = w_n L(E_n,2-s)$$

It follows from BSD that $(-1)^{\operatorname{rk} E_n} = w_n$, but the parity conjecture is open.

We use instead the *p*-parity theorem:

Theorem (Dokchitser-Dokchitser and Nekovář)

Let E/\mathbb{Q} be an elliptic curve and let w(E) be its root number. Then for every prime p,

$$w(E) = (-1)^{\dim_{\mathbb{F}_p} \operatorname{Sel}_p(E) + \dim_{\mathbb{F}_p} E[p](\mathbb{Q})}.$$

Thus, for 100% of integers n, we have

$$w_n = (-1)^{\dim_{\mathbb{F}_2} \operatorname{Sel}_2(E_n)}$$

Root number equidistribution

We prove that the root number is equidistributed in cubic twist families and (crucially) even if we restrict to appropriate congruence sub-families:

Theorem (Alpöge-Bhargava-S)

Fix d and let $S \subset \mathbb{Z}^+$ defined by finitely many prime-to-3 congruence conditions. Then the root number w_n is equidistributed: we have $w_n = +1$ (resp. -1) for 50% of $n \in S$.

On the other hand, we show:

Theorem

Fix d and let S be an acceptable subset of \mathbb{Z}^+ . The set $S_+ \subset S$ (resp., S_-) of $n \in S$ such that $E_{d,n}$ has root number +1 (resp., -1) is a countable union of acceptable sets.

We use explicit formulas of Rohrlich/Varilly-Alvarado. Up to local factors at $p \mid 6d$,

$$w_n \doteq (-1)^{\omega_{2,3}(n)}$$

where $\omega_{2,3}(n)$ is the number of primes p dividing n with $3 \neq v_p(n)$ and $p \equiv 2 \pmod{3}$.

Proof that at least $\frac{1}{6}$ of twists E_n have rank 0

- Consider the subset $S \subset \mathbb{Z}$ of n such that $w_n = 1$.
- We have $\operatorname{avg}_{n \in S} \# \operatorname{Sel}_2(E_n) = 3$.
- By 2-parity, the integer $\dim_{\mathbb{F}_2} \operatorname{Sel}_2(E_n)$ is even for $n \in S$.
- Thus, at least $\frac{1}{3}$ of E_n (for $n \in S$) have $\#\text{Sel}_2(E_n) = 1$ (solve $1q + 4(1-q) \leq 3$).
- Since $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$, we get at least $\frac{1}{6}$ of curves with rank 0.

Proof that at least $\frac{5}{12}$ of twists E_n have 2-Selmer rank 1

- Consider the subset $S \subset \mathbb{Z}$ of n such that $w_n = -1$.
- We have $\operatorname{avg}_{n \in S} \# \operatorname{Sel}_2(E_n) = 3$.
- By 2-parity, the integer $\dim_{\mathbb{F}_2} \operatorname{Sel}_2(E_n)$ is odd for $n \in S$.
- Thus, at least $\frac{5}{6}$ of E_n (for $n \in S$) have $\#\operatorname{Sel}_2(E_n) = 2$ (solve $2q + 8(1-q) \leq 3$)
- Since $\frac{1}{2} \cdot \frac{5}{6} = \frac{5}{12}$, we get at least $\frac{5}{12}$ of curves with #Sel₂(E_n) = 2.

Question: If #Sel₂(E_n) = 2, then is the rank of E_n equal to 1?

If we assume the finiteness of $III(E_n)$ then yes, but this is not known in general.

A p-converse theorem

However, we can use the following recent p-converse result of Burungale-Skinner.

Theorem (Burungale-Skinner)

Let E/\mathbb{Q} be a CM elliptic curve with supersingular reduction at p. If $\#Sel_p(E) = p$ and the map $Sel_p(E) \to E(\mathbb{Q}_p)/pE(\mathbb{Q}_p)$ is injective, then $\operatorname{rk} E(\mathbb{Q}) = 1$.

- Notice the good reduction hypothesis.
- When d = -432, exactly $\frac{4}{7}$ of the curves E_n (with $n \in S$) have good reduction at 2.
- We show at least $\frac{1}{3}$ of those satisfy $\#Sel_2(E) = 2$ and $Sel_2(E) \hookrightarrow E(\mathbb{Q}_2)/2E(\mathbb{Q}_2)$.
- So the total proportion of rank 1 twists we can guarantee is $\frac{1}{2}\frac{1}{3}\frac{4}{7} = \frac{2}{21}$.

Note: not all cubic twist families have curves with good reduction at 2.

Proof that $\operatorname{avg}_n \#\operatorname{Sel}_2(E_n) = 3$

Let E be an elliptic curve over \mathbb{Q} .

The Selmer group $Sel_2(E)$ parameterizes isomorphism classes of pairs (C, D) where

- C/\mathbb{Q} is a genus one curve with $\operatorname{Pic}^0(C) \simeq E$,
- D is a degree two divisor on C (up to linear equivalence), and
- $C(\mathbb{Q}_p) \neq \emptyset$ for all $p \leq \infty$.

Cohomologically:

$$\operatorname{Sel}_2(E) = \ker \left(H^1(\mathbb{Q}, E[2]) \to \prod_p H^1(\mathbb{Q}_p, E) \right)$$

A parameterization of Bhargava-Ho

Let $G = SL_2^2$ and $V = Sym^3(2) \otimes (2)$, the space of pairs (f_1, f_2) of binary cubic forms. Invariants: we have $\mathbb{C}[V]^G = \mathbb{C}[A_1, A_3]$, where A_1 and A_3 have degrees 2 and 6. Given $(f_1, f_2) \in V(\mathbb{Q})$, we can construct a genus one hyperelliptic curve

$$C: z^2 = \operatorname{Disc}_{x,y}(f_1x_1 + f_2x_2)$$

We say (f_1, f_2) is *locally soluble* if $C(\mathbb{Q}_p) \neq \emptyset$ for all $p \leq \infty$.

Theorem (Bhargava-Ho)

Let $E = E(a_1, a_3)$: $y^2 + a_1xy + a_3y = x^3$. Then there is a bijection

 $\operatorname{Sel}_2(E) \longleftrightarrow G(\mathbb{Q}) \setminus V(\mathbb{Z})_{a_1,a_3}^{\operatorname{loc. sol.}}$

between $Sel_2(E)$ and the locally soluble orbits with invariants $A_1 = a_1$ and $A_3 = a_3$.

Fact: $E(a_1, a_3)$ is the universal family of elliptic curves with a point of order 3.

2-Selmer elements for $E_{16,n}$

Let $Y \subset V$ be the *G*-invariant quadric defined by $A_1 = 0$. For $y \in Y(\mathbb{Q})$, we let $\text{Disc}(y) = A_3(y)$ be its *discriminant*.

Theorem (Bhargava-Ho) Let $E^n: y^2 + ny = x^3$. Then there is a bijection $\operatorname{Sel}_2(E^n) \longleftrightarrow G(\mathbb{Q}) \setminus Y(\mathbb{Z})_n^{\operatorname{loc. sol.}}$

between $\operatorname{Sel}_2(E^n)$ and the locally soluble orbits on $Y(\mathbb{Z})$ of discriminant n.

One checks that E^n is isomorphic to the curve $E_{16,n}: y^2 = x^3 + 16n^2$ from earlier.

2-Selmer elements for $E_{d,n}$

What about for general twist families $E_{d,n}$? These don't have a 3-torsion point.

However,
$$E_{d,n}[2] \simeq E^{2d^2n}[2]$$
 and hence $H^1(\mathbb{Q}, E_{d,n}[2]) \simeq H^1(\mathbb{Q}, E^{2d^2n}[2])$.
(compare $y^2 = x^3 + dn^2$ with $y^2 = x^3 + 64d^4n^2$)

We say $(f_1, f_2) \in V(\mathbb{Q})$ is *d*-locally soluble if $dz^2 = \text{Disc}(f_1x_1 + f_2x_2)$ is locally soluble.

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let $E_{d,n}$: $y^2 = x^3 + dn^2$. Then there is a bijection

 $\operatorname{Sel}_2(E_{d,n}) \longleftrightarrow G(\mathbb{Q}) \setminus Y(\mathbb{Z})_{2d^2n}^{\mathrm{d-loc. sol.}}$

between $\operatorname{Sel}_2(E_{d,n})$ and *d*-locally soluble orbits on $Y(\mathbb{Z})$ of discriminant $2d^2n$.

The number of integral $G(\mathbb{Q})$ -orbits in a quadric of bounded invariant

We've reduced the computation of $\operatorname{avg}_n \#\operatorname{Sel}_2(E_{d,n})$ to counting $G(\mathbb{Z})$ -orbits on $Y(\mathbb{Z})$ with bounded discriminant and satisfying certain congruence conditions.

Theorem (Alpöge-Bhargava-S)

Let $S \subset \mathbb{Z}$ be defined by congruence conditions. The number of irreducible $G(\mathbb{Z})$ -orbits on $Y(\mathbb{Z})$ with $A_3(y) < X$ and with $A_3(y) \in S$ is

$$N(S;X) = X \cdot \int_{\substack{y \in G(\mathbb{Z}) \setminus Y(\mathbb{R}) \\ |A_3(y)| < 1}} dy \cdot \prod_p \int_{y \in S_p} dy + o(X), \tag{1}$$

where dy is the measure on $Y(\mathbb{R})$ or $Y(\mathbb{Z}_p)$ given by $dr_2 dr_3 \cdots dr_8 / (\partial A_1 / \partial r_1)$, and r_1, \ldots, r_8 are the coordinates on V. The measure dy on $Y(\mathbb{R})$ (resp. on $Y(\mathbb{Z}_p)$) is a $G(\mathbb{R})$ -invariant (resp. $G(\mathbb{Z}_p)$ -invariant) measure.

Remarks on the counting-in-a-quadric result

- The main tools are Bhargava's averaging method in geometry-of-numbers and the circle method (following Heath-Brown).
- The basic idea goes back to the Alpöge's and Sam Ruth's theses, which we push a bit further (see recent talks of Alpöge and Bhargava for more details).
- Irreducible means that $Disc(f_1x_1 + f_2x_2)$ has no linear factor. Such orbits always correspond to the identity element of the Selmer group.
- For the Selmer group application, we need (and prove) a more general version of this theorem allowing congruence conditions and weighted counts.
- With these weights and congruence conditions, a "standard" argument shows that the Euler product is 2. Since 1 + 2 = 3, we find that $avg_n #Sel_2(E_{d,n}) = 3$.
- This finishes a sketch of the proof of the "sum of two cubes" result.

Proof of Selmer parameterization

In the remaining time, let's sketch a proof of:

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let $E_{d,n}$: $y^2 = x^3 + dn^2$. Then there is a bijection

 $\operatorname{Sel}_2(E_{d,n}) \longleftrightarrow G(\mathbb{Q}) \setminus Y(\mathbb{Z})_{2d^2n}^{\mathrm{d-loc. sol.}}$

between $\operatorname{Sel}_2(E_{d,n})$ and *d*-locally soluble orbits on $Y(\mathbb{Z})$ of discriminant $2d^2n$.

The main question is: why do all elements of $Sel_2(E_{d,n})$ have the form $dz^2 = Disc(f_1x_1 + f_2x_2)$, for some $(f_1, f_2) \in Y(\mathbb{Z})$?

Let $\tilde{G} = \operatorname{GL}_2^2$. Under the bijection of Bhargava-Ho:

 $\operatorname{Sel}_2(E^n) \longleftrightarrow G(\mathbb{Q}) \backslash Y(\mathbb{Z})_n^{\operatorname{loc. sol.}}$

we have $\operatorname{Stab}_{\tilde{G}}(f_1, f_2) \simeq \Theta(\mathscr{L}_n)$, where \mathscr{L}_n is the line bundle $\mathcal{O}_{E^n}(2\infty)$ and $\Theta(\mathscr{L}_n)$ is the automorphism group of \mathscr{L}_n over E^n . We have:

$$0 \to \mathbb{G}_m \to \Theta(\mathscr{L}_n) \to E^n[2] \to 0$$

Lemma ("Arithmetic Invariant Theory")

The $G(\mathbb{Q})$ -orbits on $Y(\mathbb{Q})$ of discriminant n are in bijection with $H^1(\mathbb{Q}, \Theta(\mathscr{L}_n))$.

We also have

$$\operatorname{Sel}_2(E^n) \subset H^1(\mathbb{Q}, \Theta(\mathscr{L}_n)) \subset H^1(\mathbb{Q}, E^n[2])$$

Isomorphism of Theta groups

Now let
$$A = E_{d,1}$$
. We saw $\eta: A[2] \simeq E^m[2]$, where $m = 2d^2$.

Theorem

Let $\mathscr{L}_A = \mathcal{O}_A(2\infty)$. Then $\Theta(\mathscr{L}_A) \simeq \Theta(\mathscr{L}_m)$ as central extensions.

Proof idea.

Consider $\mathcal{M} = \mathcal{L}_A \boxtimes \mathcal{L}_m$ on $A \times E^m$, which is the pullback of a principal polarization from $B = (A \times E^m)/\Gamma_\eta$. Now consider $\Theta(\mathcal{M})$ and use the theory of Theta groups and descent of line bundles [Mumford, §23].

It follows that $H^1(\mathbb{Q}, \Theta(\mathscr{L}_A)) \simeq H^1(\mathbb{Q}, \Theta(\mathscr{L}_m))$, and moreover this is compatible with the inclusion of Selmer groups. We can therefore realize every element of $Sel_2(A)$ as coming from a $G(\mathbb{Q})$ -orbit of V. We then need to show integrality...

Generalization to higher dimensional cubic twist families

Theorem

Let A be an abelian variety over \mathbb{Q} with a degree 4 polarization $\lambda: A \to \widehat{A}$ induced by a symmetric line bundle $\mathscr{L} \in \operatorname{Pic}(A)$. Suppose (A, \mathscr{L}) admits a μ_3 -action, and for each non-zero $n \in \mathbb{Z}$, let $\lambda_n: A_n \to \widehat{A}_n$ be the cubic twist of λ . Then $\operatorname{avg}_n \#\operatorname{Sel}_{\lambda_n}(A_n) = 3$.

Example: Let $C: y^3 = x^4 + ax^2 + b$, a genus three curve.

- C admits a double cover to the elliptic curve $E : y^3 + x^2 + ax + b$.
- Let $A = \ker(\operatorname{Jac}(C) \to E)$ be the corresponding Prym variety.
- Then A is an abelian surface satisfying all the conditions above.

Ranks of cubic twists of abelian surfaces

Corollary

Fix $a, b \in \mathbb{Q}$ and let A_n be the Prym variety of $ny^3 = x^4 + ax^2 + b$. Then the average rank of $A_n(\mathbb{Q})$ is at most 3.

Proof.

- The polarization $\lambda \colon A \to \widehat{A}$ is not multiplication by 2.
- But \widehat{A} is the Prym of the dual curve $y^3 = x^4 + 8ax^2 + 16(a^2 4b)$.
- The polarization $\tilde{\lambda} \colon \widehat{A} \to A$ composes to multiplication by 2 on A.
- Our result gives $\operatorname{avg}_n \operatorname{Sel}_{\lambda_n}(A_n) = 3$ and $\operatorname{avg}_n \operatorname{Sel}_{\tilde{\lambda}_n}(\widehat{A}) = 3$.
- It follows that the average rank of $Sel_2(A_n)$ is at most 3.

The abelian surfaces A all have quaternionic multiplication by the quaternion order of discriminant 6. What can one say about the root numbers of such abelian surfaces?

Ari Shnidman

Thank you!

Proof details

There is a short exact sequence

$$1 \to \mathbb{G}_m \longrightarrow \Theta(\mathscr{M}) \xrightarrow{p} A[\lambda] \times E[2] \longrightarrow 1.$$

Let $\pi: A \times E \to B$ be the quotient map. The subgroup $\Gamma_{\eta} \subset A[\lambda] \times E[2]$ is maximal isotropic with respect to the skew-symmetric Weil pairing induced by \mathcal{M} , since

$$\langle (P,\eta(P)), (Q,\eta(Q)) \rangle_{\mathscr{M}} = \langle P,Q \rangle_{\mathscr{L}_{A}} \langle \eta(P),\eta(Q) \rangle_{\mathscr{L}_{E}} = \langle P,Q \rangle_{\mathscr{L}_{A}}^{2} = 1.$$

Let $\pi: A \times E \to B$ be the quotient map. There is therefore a line bundle \mathscr{L}_B on B such that $\pi^*\mathscr{L}_B \simeq \mathscr{M}$. The existence of \mathscr{L}_B implies that there is a subgroup $H \subset \Theta(\mathscr{M})$ and an isomorphism $\psi: \Gamma_\eta \simeq H$ such that $p \circ \psi = \mathrm{id}$. This data determines an isomorphism $\tilde{\eta}: \Theta(\mathscr{L}_A) \to \Theta(\mathscr{L}_n)$ of theta groups. Explicitly, if $\psi(P, \eta(P)) = (P, s_0, \eta(P), r_0) \in H \subset \Theta(\mathscr{M})$, then

$$\tilde{\eta}(P,s) = (\eta(P), (s_0^{-1}s)r_0)$$

where we view $s_0^{-1}s$ as a scalar in $\operatorname{Aut}(\mathscr{L}_A) \simeq \mathbb{G}_m \simeq \operatorname{Aut}(\mathscr{L}_E)$.