Sums of two cubes

Ari Shnidman
(joint work with Levent Alpöge and Manjul Bhargava)

Hebrew University of Jerusalem
ICTS-ECL 2022

August 15, 2022

Sums of two cubes

Q: Which integers can be written as a sum $x^{2}+y^{2}$ of two integer/rational squares?
A: Those whose prime factorizations have all primes $p \equiv 3(\bmod 4)$ appearing with even exponent (Girard/Fermat/Euler).

Q: Which integers can be written as a sum $x^{3}+y^{3}$ of two cubes?

- It matters now whether we allow x and y to be rational
- e.g. $6=\left(\frac{17}{21}\right)^{3}+\left(\frac{37}{21}\right)^{3}$.
- The first few are $1,2,6,7,8,9,12,13,15,16,17,19,20,22,26,27,28, \ldots$
- There seems to be no precise rule!

New question: how many integers are a sum of two rational cubes?
Easy to see that 0% of integers are a sum of two integer cubes.

Main theorem

Theorem (Alpöge-Bhargava-S)

When ordered by their absolute values, a positive proportion of integers are the sum of two rational cubes, and a positive proportion of integers are not.

More precisely, we prove that

$$
\liminf _{X \rightarrow \infty} \frac{\#\{n \in \mathbb{Z}:|n|<X \text { and } n \text { is the sum of two rational cubes }\}}{\#\{n \in \mathbb{Z}:|n|<X\}} \geq \frac{2}{21}
$$

and

$$
\liminf _{X \rightarrow \infty} \frac{\#\{n \in \mathbb{Z}:|n|<X \text { and } n \text { is not the sum of two rational cubes }\}}{\#\{n \in \mathbb{Z}:|n|<X\}} \geq \frac{1}{6}
$$

Conjecture: One half of all integers are a sum of two cubes.

Ranks in cubic twists families of elliptic curves

The equation $x^{3}+y^{3}=n$ is an affine model of the elliptic curve $x^{3}+y^{3}=n z^{3}$.
The elliptic curves vary through the cubic twists of the Fermat cubic $x^{3}+y^{3}=z^{3}$.
How many of these cubic twists have a (non-trivial) rational point? We prove:

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and consider the cubic twist family $E_{d, n}: y^{2}=x^{3}+d n^{2}$ as $n \rightarrow \infty$. Then:
(1) At least $1 / 6$ of the elliptic curves $E_{d, n}$ have rank 0 ,
(2) At least $1 / 6$ of the elliptic curves $E_{d, n}$ with good reduction at 2 have rank 1 .

Note: the curve $x^{3}+y^{3}=n$ is isomorphic to $y^{2}=x^{3}-432 n^{2}$ (the case $d=-432$). Easy fact: for 100% of n, the torsion subgroup of $E_{d, n}(\mathbb{Q})$ is trivial.

Average size of the 2-Selmer group

A key ingredient is the determination of the average size of $\operatorname{Sel}_{2}\left(E_{d, n}\right)$.

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let n range over integers satisfying any finite set (or even "acceptable" infinite sets) of congruences conditions. Then $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{d, n}\right)=3$.

Corollary: In any cubic twist family of elliptic curves, we have $\operatorname{avg}_{n} \operatorname{rk} E_{d, n}(\mathbb{Q}) \leq \frac{4}{3}$.
Corollary: The average rank is bounded in (almost) any twist family of elliptic curves:

- quadratic twist families:
- Smith (generic case)
- Bhargava-Klagsbrun-Lemke Oliver-S (in the presence of a 3-isogeny)
- cubic twists: Alpöge-Bhargava-S
- quartic twists: Kane-Thorne
- sextic twists: Bhargava-Elkies-S

Plan for rest of talk

(1) I'll explain how to deduce our main results from $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{d, n}\right)=3$
(2) I'll sketch a proof that $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{d, n}\right)=3$.

From Selmer groups to sums of two squares

Fix d and let $E_{n}=E_{d, n}: y^{2}=x^{3}+d n^{2}$. We have

$$
0 \rightarrow E_{n}(\mathbb{Q}) / 2 E_{n}(\mathbb{Q}) \rightarrow \operatorname{Sel}_{2}\left(E_{n}\right) \rightarrow \amalg\left(E_{n}\right)[2] \rightarrow 0
$$

Our result that $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{n}\right)=3$ immediately implies that $\operatorname{avg}_{n} \operatorname{rk} E_{n}(\mathbb{Q}) \leq 1.5$.
(Use the inequality $r \leq \frac{1}{2} \cdot 2^{r}$, valid for all integers $r \geq 0$.)
But this is not enough to conclude that a positive proportion of twists have rank 0 and a positive proportion have rank 1!

For example, it could be that 50% have rank 1 and 50% have rank 2 .

Root number and parity

Let $w_{n} \in\{ \pm 1\}$ be the root number of E_{n}, so that

$$
L\left(E_{n}, s\right)=w_{n} L\left(E_{n}, 2-s\right)
$$

It follows from BSD that $(-1)^{\mathrm{rk} E_{n}}=w_{n}$, but the parity conjecture is open.
We use instead the p-parity theorem:
Theorem (Dokchitser-Dokchitser and Nekovář)
Let E / \mathbb{Q} be an elliptic curve and let $w(E)$ be its root number. Then for every prime p,

$$
w(E)=(-1)^{\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Sel}_{p}(E)+\operatorname{dim}_{\mathbb{F}_{p}} E[p](\mathbb{Q})}
$$

Thus, for 100% of integers n, we have

$$
w_{n}=(-1)^{\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E_{n}\right)}
$$

Root number equidistribution

We prove that the root number is equidistributed in cubic twist families and (crucially) even if we restrict to appropriate congruence sub-families:

Theorem (Alpöge-Bhargava-S)

Fix d and let $S \subset \mathbb{Z}^{+}$defined by finitely many prime-to-3 congruence conditions. Then the root number w_{n} is equidistributed: we have $w_{n}=+1$ (resp. -1) for 50% of $n \in S$.

On the other hand, we show:

Theorem

Fix d and let S be an acceptable subset of \mathbb{Z}^{+}. The set $S_{+} \subset S$ (resp., S_{-}) of $n \in S$ such that $E_{d, n}$ has root number +1 (resp., -1) is a countable union of acceptable sets.

We use explicit formulas of Rohrlich/Varilly-Alvarado. Up to local factors at $p \mid 6 d$,

$$
w_{n} \doteq(-1)^{\omega_{2,3}(n)}
$$

where $\omega_{2,3}(n)$ is the number of primes p dividing n with $3+v_{p}(n)$ and $p \equiv 2(\bmod 3)$.

Proof that at least $\frac{1}{6}$ of twists E_{n} have rank 0

- Consider the subset $S \subset \mathbb{Z}$ of n such that $w_{n}=1$.
- We have $\operatorname{avg}_{n \in S} \# \operatorname{Sel}_{2}\left(E_{n}\right)=3$.
- By 2-parity, the integer $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E_{n}\right)$ is even for $n \in S$.
- Thus, at least $\frac{1}{3}$ of $E_{n}\left(\right.$ for $n \in S$) have $\# \operatorname{Sel}_{2}\left(E_{n}\right)=1$ (solve $1 q+4(1-q) \leq 3$).
- Since $\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$, we get at least $\frac{1}{6}$ of curves with rank 0 .

Proof that at least $\frac{5}{12}$ of twists E_{n} have 2-Selmer rank 1

- Consider the subset $S \subset \mathbb{Z}$ of n such that $w_{n}=-1$.
- We have $\operatorname{avg}_{n \in S} \# \operatorname{Sel}_{2}\left(E_{n}\right)=3$.
- By 2-parity, the integer $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E_{n}\right)$ is odd for $n \in S$.
- Thus, at least $\frac{5}{6}$ of $E_{n}($ for $n \in S)$ have $\# \operatorname{Sel}_{2}\left(E_{n}\right)=2$ (solve $2 q+8(1-q) \leq 3$)
- Since $\frac{1}{2} \cdot \frac{5}{6}=\frac{5}{12}$, we get at least $\frac{5}{12}$ of curves with $\# \operatorname{Sel}_{2}\left(E_{n}\right)=2$.

Question: If $\# \operatorname{Sel}_{2}\left(E_{n}\right)=2$, then is the rank of E_{n} equal to 1 ?
If we assume the finiteness of $\amalg\left(E_{n}\right)$ then yes, but this is not known in general.

A p-converse theorem

However, we can use the following recent p-converse result of Burungale-Skinner.

Theorem (Burungale-Skinner)

Let E / \mathbb{Q} be a $C M$ elliptic curve with supersingular reduction at p. If $\# \operatorname{Sel}_{p}(E)=p$ and the map $\operatorname{Sel}_{p}(E) \rightarrow E\left(\mathbb{Q}_{p}\right) / p E\left(\mathbb{Q}_{p}\right)$ is injective, then $\operatorname{rk} E(\mathbb{Q})=1$.

- Notice the good reduction hypothesis.
- When $d=-432$, exactly $\frac{4}{7}$ of the curves E_{n} (with $n \in S$) have good reduction at 2 .
- We show at least $\frac{1}{3}$ of those satisfy $\# \operatorname{Sel}_{2}(E)=2$ and $\operatorname{Sel}_{2}(E) \hookrightarrow E\left(\mathbb{Q}_{2}\right) / 2 E\left(\mathbb{Q}_{2}\right)$.
- So the total proportion of rank 1 twists we can guarantee is $\frac{1}{2} \frac{1}{3} \frac{4}{7}=\frac{2}{21}$.

Note: not all cubic twist families have curves with good reduction at 2 .

Proof that $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{n}\right)=3$

Let E be an elliptic curve over \mathbb{Q}.
The Selmer group $\operatorname{Sel}_{2}(E)$ parameterizes isomorphism classes of pairs (C, D) where

- C / \mathbb{Q} is a genus one curve with $\operatorname{Pic}^{0}(C) \simeq E$,
- D is a degree two divisor on C (up to linear equivalence), and - $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all $p \leq \infty$.

Cohomologically:

$$
\operatorname{Sel}_{2}(E)=\operatorname{ker}\left(H^{1}(\mathbb{Q}, E[2]) \rightarrow \prod_{p} H^{1}\left(\mathbb{Q}_{p}, E\right)\right)
$$

A parameterization of Bhargava-Ho

Let $G=\mathrm{SL}_{2}^{2}$ and $V=\operatorname{Sym}^{3}(2) \otimes(2)$, the space of pairs $\left(f_{1}, f_{2}\right)$ of binary cubic forms. Invariants: we have $\mathbb{C}[V]^{G}=\mathbb{C}\left[A_{1}, A_{3}\right]$, where A_{1} and A_{3} have degrees 2 and 6 .
Given $\left(f_{1}, f_{2}\right) \in V(\mathbb{Q})$, we can construct a genus one hyperelliptic curve

$$
C: z^{2}=\operatorname{Disc}_{x, y}\left(f_{1} x_{1}+f_{2} x_{2}\right)
$$

We say $\left(f_{1}, f_{2}\right)$ is locally soluble if $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all $p \leq \infty$.

Theorem (Bhargava-Ho)

Let $E=E\left(a_{1}, a_{3}\right): y^{2}+a_{1} x y+a_{3} y=x^{3}$. Then there is a bijection

$$
\operatorname{Sel}_{2}(E) \longleftrightarrow G(\mathbb{Q}) \backslash V(\mathbb{Z})_{a_{1}, a_{3}}^{\text {loc. sol. }}
$$

between $\operatorname{Sel}_{2}(E)$ and the locally soluble orbits with invariants $A_{1}=a_{1}$ and $A_{3}=a_{3}$.
Fact: $E\left(a_{1}, a_{3}\right)$ is the universal family of elliptic curves with a point of order 3 .

2-Selmer elements for $E_{16, n}$

Let $Y \subset V$ be the G-invariant quadric defined by $A_{1}=0$.
For $y \in Y(\mathbb{Q})$, we let $\operatorname{Disc}(y)=A_{3}(y)$ be its discriminant.

Theorem (Bhargava-Ho)

Let $E^{n}: y^{2}+n y=x^{3}$. Then there is a bijection

$$
\operatorname{Sel}_{2}\left(E^{n}\right) \longleftrightarrow G(\mathbb{Q}) \backslash Y(\mathbb{Z})_{n}^{\text {loc. sol. }}
$$

between $\operatorname{Sel}_{2}\left(E^{n}\right)$ and the locally soluble orbits on $Y(\mathbb{Z})$ of discriminant n.

One checks that E^{n} is isomorphic to the curve $E_{16, n}: y^{2}=x^{3}+16 n^{2}$ from earlier.

2-Selmer elements for $E_{d, n}$

What about for general twist families $E_{d, n}$? These don't have a 3 -torsion point.
However, $E_{d, n}[2] \simeq E^{2 d^{2} n}[2]$ and hence $H^{1}\left(\mathbb{Q}, E_{d, n}[2]\right) \simeq H^{1}\left(\mathbb{Q}, E^{2 d^{2} n}[2]\right)$.
(compare $y^{2}=x^{3}+d n^{2}$ with $y^{2}=x^{3}+64 d^{4} n^{2}$)
We say $\left(f_{1}, f_{2}\right) \in V(\mathbb{Q})$ is d-locally soluble if $d z^{2}=\operatorname{Disc}\left(f_{1} x_{1}+f_{2} x_{2}\right)$ is locally soluble.

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let $E_{d, n}: y^{2}=x^{3}+d n^{2}$. Then there is a bijection

$$
\operatorname{Sel}_{2}\left(E_{d, n}\right) \longleftrightarrow G(\mathbb{Q}) \backslash Y(\mathbb{Z})_{2 d^{2} n}^{\text {d-loc. sol. }}
$$

between $\operatorname{Sel}_{2}\left(E_{d, n}\right)$ and d-locally soluble orbits on $Y(\mathbb{Z})$ of discriminant $2 d^{2} n$.

The number of integral $G(\mathbb{Q})$-orbits in a quadric of bounded invariant

We've reduced the computation of $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{d, n}\right)$ to counting $G(\mathbb{Z})$-orbits on $Y(\mathbb{Z})$ with bounded discriminant and satisfying certain congruence conditions.

Theorem (Alpöge-Bhargava-S)

Let $S \subset \mathbb{Z}$ be defined by congruence conditions. The number of irreducible $G(\mathbb{Z})$-orbits on $Y(\mathbb{Z})$ with $A_{3}(y)<X$ and with $A_{3}(y) \in S$ is

$$
\begin{equation*}
N(S ; X)=X \cdot \int_{\substack{y \in G(\mathbb{Z}) \backslash Y(\mathbb{R}) \\\left|A_{3}(y)\right|<1}} d y \cdot \prod_{p} \int_{y \in S_{p}} d y+o(X), \tag{1}
\end{equation*}
$$

where $d y$ is the measure on $Y(\mathbb{R})$ or $Y\left(\mathbb{Z}_{p}\right)$ given by $d r_{2} d r_{3} \cdots d r_{8} /\left(\partial A_{1} / \partial r_{1}\right)$, and r_{1}, \ldots, r_{8} are the coordinates on V. The measure $d y$ on $Y(\mathbb{R})\left(r e s p\right.$. on $\left.Y\left(\mathbb{Z}_{p}\right)\right)$ is a $G(\mathbb{R})$-invariant (resp. $G\left(\mathbb{Z}_{p}\right)$-invariant) measure.

Remarks on the counting-in-a-quadric result

- The main tools are Bhargava's averaging method in geometry-of-numbers and the circle method (following Heath-Brown).
- The basic idea goes back to the Alpöge's and Sam Ruth's theses, which we push a bit further (see recent talks of Alpöge and Bhargava for more details).
- Irreducible means that $\operatorname{Disc}\left(f_{1} x_{1}+f_{2} x_{2}\right)$ has no linear factor. Such orbits always correspond to the identity element of the Selmer group.
- For the Selmer group application, we need (and prove) a more general version of this theorem allowing congruence conditions and weighted counts.
- With these weights and congruence conditions, a "standard" argument shows that the Euler product is 2 . Since $1+2=3$, we find that $\operatorname{avg}_{n} \# \operatorname{Sel}_{2}\left(E_{d, n}\right)=3$.
- This finishes a sketch of the proof of the "sum of two cubes" result.

Proof of Selmer parameterization

In the remaining time, let's sketch a proof of:

Theorem (Alpöge-Bhargava-S)

Fix $d \neq 0$ and let $E_{d, n}: y^{2}=x^{3}+d n^{2}$. Then there is a bijection

$$
\operatorname{Sel}_{2}\left(E_{d, n}\right) \longleftrightarrow G(\mathbb{Q}) \backslash Y(\mathbb{Z})_{2 d^{2} n}^{\text {d-loc. sol. }}
$$

between $\operatorname{Sel}_{2}\left(E_{d, n}\right)$ and d-locally soluble orbits on $Y(\mathbb{Z})$ of discriminant $2 d^{2} n$.
The main question is: why do all elements of $\operatorname{Sel}_{2}\left(E_{d, n}\right)$ have the form $d z^{2}=\operatorname{Disc}\left(f_{1} x_{1}+f_{2} x_{2}\right)$, for some $\left(f_{1}, f_{2}\right) \in Y(\mathbb{Z})$?

Let $\tilde{G}=\mathrm{GL}_{2}^{2}$. Under the bijection of Bhargava-Ho:

$$
\operatorname{Sel}_{2}\left(E^{n}\right) \longleftrightarrow G(\mathbb{Q}) \backslash Y(\mathbb{Z})_{n}^{\text {loc. sol. }}
$$

we have $\operatorname{Stab}_{\tilde{G}}\left(f_{1}, f_{2}\right) \simeq \Theta\left(\mathscr{L}_{n}\right)$, where \mathscr{L}_{n} is the line bundle $\mathcal{O}_{E^{n}}(2 \infty)$ and $\Theta\left(\mathscr{L}_{n}\right)$ is the automorphism group of \mathscr{L}_{n} over E^{n}. We have:

$$
0 \rightarrow \mathbb{G}_{m} \rightarrow \Theta\left(\mathscr{L}_{n}\right) \rightarrow E^{n}[2] \rightarrow 0
$$

Lemma ("Arithmetic Invariant Theory")

The $G(\mathbb{Q})$-orbits on $Y(\mathbb{Q})$ of discriminant n are in bijection with $H^{1}\left(\mathbb{Q}, \Theta\left(\mathscr{L}_{n}\right)\right)$.
We also have

$$
\operatorname{Sel}_{2}\left(E^{n}\right) \subset H^{1}\left(\mathbb{Q}, \Theta\left(\mathscr{L}_{n}\right)\right) \subset H^{1}\left(\mathbb{Q}, E^{n}[2]\right)
$$

Isomorphism of Theta groups

Now let $A=E_{d, 1}$. We saw $\eta: A[2] \simeq E^{m}[2]$, where $m=2 d^{2}$.

Theorem

Let $\mathscr{L}_{A}=\mathcal{O}_{A}(2 \infty)$. Then $\Theta\left(\mathscr{L}_{A}\right) \simeq \Theta\left(\mathscr{L}_{m}\right)$ as central extensions.

Proof idea.

Consider $\mathscr{M}=\mathscr{L}_{A} \boxtimes \mathscr{L}_{m}$ on $A \times E^{m}$, which is the pullback of a principal polarization from $B=\left(A \times E^{m}\right) / \Gamma_{\eta}$. Now consider $\Theta(\mathscr{M})$ and use the theory of Theta groups and descent of line bundles [Mumford, §23].

It follows that $H^{1}\left(\mathbb{Q}, \Theta\left(\mathscr{L}_{A}\right)\right) \simeq H^{1}\left(\mathbb{Q}, \Theta\left(\mathscr{L}_{m}\right)\right)$, and moreover this is compatible with the inclusion of Selmer groups. We can therefore realize every element of $\operatorname{Sel}_{2}(A)$ as coming from a $G(\mathbb{Q})$-orbit of V. We then need to show integrality...

Generalization to higher dimensional cubic twist families

Theorem

Let A be an abelian variety over \mathbb{Q} with a degree 4 polarization $\lambda: A \rightarrow \widehat{A}$ induced by a symmetric line bundle $\mathscr{L} \in \operatorname{Pic}(A)$. Suppose (A, \mathscr{L}) admits a μ_{3}-action, and for each non-zero $n \in \mathbb{Z}$, let $\lambda_{n}: A_{n} \rightarrow \widehat{A}_{n}$ be the cubic twist of λ. Then $\operatorname{avg}_{n} \# \operatorname{Sel}_{\lambda_{n}}\left(A_{n}\right)=3$.

Example: Let $C: y^{3}=x^{4}+a x^{2}+b$, a genus three curve.

- C admits a double cover to the elliptic curve $E: y^{3}+x^{2}+a x+b$.
- Let $A=\operatorname{ker}(\operatorname{Jac}(C) \rightarrow E)$ be the corresponding Prym variety.
- Then A is an abelian surface satisfying all the conditions above.

Ranks of cubic twists of abelian surfaces

Corollary

Fix $a, b \in \mathbb{Q}$ and let A_{n} be the Prym variety of $n y^{3}=x^{4}+a x^{2}+b$. Then the average rank of $A_{n}(\mathbb{Q})$ is at most 3 .

Proof.

- The polarization $\lambda: A \rightarrow \widehat{A}$ is not multiplication by 2 .
- But \widehat{A} is the Prym of the dual curve $y^{3}=x^{4}+8 a x^{2}+16\left(a^{2}-4 b\right)$.
- The polarization $\tilde{\lambda}: \widehat{A} \rightarrow A$ composes to multiplication by 2 on A.
- Our result gives $\operatorname{avg}_{n} \operatorname{Sel}_{\lambda_{n}}\left(A_{n}\right)=3$ and $\operatorname{avg}_{n} \operatorname{Sel}_{\tilde{\lambda}_{n}}(\widehat{A})=3$.
- It follows that the average rank of $\operatorname{Sel}_{2}\left(A_{n}\right)$ is at most 3 .

The abelian surfaces A all have quaternionic multiplication by the quaternion order of discriminant 6 . What can one say about the root numbers of such abelian surfaces?

Thank you!

Proof details

There is a short exact sequence

$$
1 \rightarrow \mathbb{G}_{m} \longrightarrow \Theta(\mathscr{M}) \xrightarrow{p} A[\lambda] \times E[2] \longrightarrow 1
$$

Let $\pi: A \times E \rightarrow B$ be the quotient map. The subgroup $\Gamma_{\eta} \subset A[\lambda] \times E[2]$ is maximal isotropic with respect to the skew-symmetric Weil pairing induced by \mathscr{M}, since

$$
\langle(P, \eta(P)),(Q, \eta(Q))\rangle_{\mathscr{M}}=\langle P, Q\rangle_{\mathscr{L}_{A}}\langle\eta(P), \eta(Q)\rangle_{\mathscr{L}_{E}}=\langle P, Q\rangle_{\mathscr{L}_{A}}^{2}=1
$$

Let $\pi: A \times E \rightarrow B$ be the quotient map. There is therefore a line bundle \mathscr{L}_{B} on B such that $\pi^{*} \mathscr{L}_{B} \simeq \mathscr{M}$. The existence of \mathscr{L}_{B} implies that there is a subgroup $H \subset \Theta(\mathscr{M})$ and an isomorphism $\psi: \Gamma_{\eta} \simeq H$ such that $p \circ \psi=\mathrm{id}$.
This data determines an isomorphism $\tilde{\eta}: \Theta\left(\mathscr{L}_{A}\right) \rightarrow \Theta\left(\mathscr{L}_{n}\right)$ of theta groups. Explicitly, if $\psi(P, \eta(P))=\left(P, s_{0}, \eta(P), r_{0}\right) \in H \subset \Theta(\mathscr{M})$, then

$$
\tilde{\eta}(P, s)=\left(\eta(P),\left(s_{0}^{-1} s\right) r_{0}\right)
$$

where we view $s_{0}^{-1} s$ as a scalar in $\operatorname{Aut}\left(\mathscr{L}_{A}\right) \simeq \mathbb{G}_{m} \simeq \operatorname{Aut}\left(\mathscr{L}_{E}\right)$.

