VANISHING CRITERIA FOR CERESA CYCLES

JEF LAGA AND ARI SHNIDMAN

ABSTRACT. Let C be a smooth projective curve, and let J be its Jacobian. We prove vanishing
criteria for the Ceresa cycle k(C) € CH1(J) ® Q in the Chow group of 1-cycles on J. Namely,

(A) TIf H3(J)A"(©) = 0, then x(C) vanishes;

(B) If H(J,Q3)2"() = 0, then x(C) vanishes modulo algebraic equivalence,
with criterion (B) conditional on the Hodge conjecture.

We then study the first interesting case where (B) holds but (A) does not, namely the case of
Picard curves C: y* = z* + ax® + bz + ¢. Using work of Schoen on the Hodge conjecture, we show
that the Ceresa cycle of a Picard curve is torsion in the Griffiths group. Moreover, we determine
exactly when it is torsion in the Chow group. As a byproduct, we show that there are infinitely
many plane quartic curves over Q with torsion Ceresa cycle (in fact, there is a one parameter
family of such curves). Finally, we determine which automorphism group strata are contained in
the vanishing locus of the universal Ceresa cycle over Ms.

1. INTRODUCTION

Let k be an algebraically closed field and C' a smooth, projective, and connected curve over k of
genus g > 2 with Jacobian variety J. Let e be a degree-1 divisor of C' and let ¢.: C' < J be the
Abel-Jacobi map based at e. We study the torsion behaviour of the Ceresa cycle

(1.1) ke = [te(C)] — (=1)"[te(C)] € CH1(J)

in the Chow group modulo rational equivalence. If k¢ is torsion, then (29 —2)e = K¢ in CHy(C)®
Q, where K¢ is the canonical divisor class. Moreover if (29 — 2)e is canonical, then the image of
kce in CH(J) ® Q is independent of e and we denote it by x(C'), see §2.4 for these claims. The
class x(C') vanishes if and only if k¢ is torsion for some degree-1 divisor e.

We also consider the image £(C') of x(C) in the Griffiths group Gr;(J) ® Q of homologically trivial
1-cycles modulo algebraic equivalence. When g = 2, or more generally when C' is hyperelliptic, it
is easy to see that x(C) = 0. On the other hand, Ceresa famously showed that £(C) # 0 for a very
general curve C over C of genus g > 3 [13].

The vanishing of the Ceresa cycle is interesting for various reasons. For example, x(C) = 0
if and only if the Chow motive h(C) has a multiplicative Chow-Kiinneth decomposition (by [18,
Proposition 3.1] and Proposition 2.7). Moreover #(C') = 0 if and only if the tautological subring
modulo algebraic equivalence is generated by a theta divisor (by [5, Corollary 3.4]), in which case
Poincaré’s formula [C] = % holds modulo algebraic equivalence. More generally, the Ceresa
cycle over M, serves as a testing ground for the study of homologically trivial algebraic cycles in
codimension greater than 1.

1.1. Vanishing criteria. We prove cohomological vanishing criteria for Ceresa cycles of curves with
nontrivial automorphisms. Let H*(—) be a Weil cohomology functor, such as ¢-adic cohomology
with ¢ # char (k) or singular cohomology when k& = C. Note that the finite group Aut(C') acts on
H*(J), by functoriality.

Theorem A. If H?(J)A"(C) = 0, then (C) = 0.
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This improves on a recent result of Qiu and Zhang stating that if (H!(C)®3)A(C) = 0, then
k(C) = 0 [34]." By contrast, Theorem A requires only the weaker condition that the subrepresen-
tation H3(.J) ~ A* HY(C) ¢ H'(C)®? has no nontrivial Aut(C)-fixed points.

Our analogous vanishing criterion for £(C) is valid only in characteristic 0 and is conditional on
the Hodge conjecture:

Theorem B. Suppose char(k) = 0 and assume the Hodge conjecture for abelian varieties. If
HO(7,Q3)20(C) = 0, then &(C) = 0.

More precisely, we require the Hodge conjecture for J x A, for a specific abelian variety A described
in Proposition 3.3. Note that HY(J,Q3) ~ N HO(C, Q%), so the condition of Theorem B depends
only on the abstract representation (G, V) = (Aut(C), H(C,QL)).

The proofs of Theorems A and B are quite direct, using the rich structure of motives of abelian
varieties. Ingredients include the Beauville decomposition, the canonical Chow—Kiinneth decompo-
sition of Deninger and Murre, and the Kimura finite-dimensionality of abelian varieties.

1.2. Picard curves. The condition H3(J)A‘“(C) = 0 in Theorem A is only rarely satisfied, e.g. it
holds for exactly two plane quartic curves over C (see Theorem D below). However, one can use
Theorem B to study the vanishing behavior of £(C) in families C — B of smooth projective curves
over a complex base B with fixed automorphism group. The interesting case is where k(Cp) is not
identically zero but H°(7, Q?%)Aut(cb) = 0 for all b € B(C). Using the Hodge conjecture, one can
show that the vanishing of k(Cp) is equivalent to the vanishing of o (b), where o is a section of a certain
abelian scheme A — B. The analytification of ¢ is the normal function associated to the universal
Ceresa cycle. One can try to identify o and hence determine the exact vanishing locus of (Cp) in the
entire family. We work out the details for the family of Picard curves y? = 2 + ax? + bx + ¢, where
the relevant case of the Hodge conjecture is due to Schoen [36], who proved that Weil classes on
abelian fourfolds with endomorphism algebra containing Q(1/—3) and signature (2, 2) are algebraic.

Our main result in this direction is:

Theorem C. Suppose char(k) = 0 and let Cy be a smooth projective Picard curve with model

(1.2) Cr:y? = f(z) =2 +az® + bz +c

for some a,b,c € k. Consider the point Py = (a% + 12¢, 72ac — 2a® — 27b%) on the elliptic curve
Ep:y* = 42® — 27 - disc(f).

Then R(Cy) =0, and k(Cy) = 0 if and only if Py € E¢(k) is torsion.

Here, disc(f) is the discriminant of f and the coordinates of Py are the usual I- and J-invariants
of the binary quartic form z*f(x/z); see §4.1. The fact that Py defines a point on E; follows
from a classical relation between the invariants of a binary quartic. See also §4.2 for a more
precise version of Theorem C, which relates order of x(Cy) to the order of P. This generalizes
the results of [25] concerning bielliptic Picard curves, i.e. those with b = 0 in (1.2). As a corollary
of Theorem C, there exist one-parameter families of plane quartic curves with vanishing x(C),
corresponding to components of the torsion locus of P;. Such families exist even over Q, e.g. the
family y3 = 2% — 1222 + tz — 12.

In §3, we give two examples of genus 4 families of curves for which Theorem B applies. It would
be interesting to try to completely characterize the vanishing of x(C) in these families as well, and
to find more such families.

IThis formulation is equivalent to theirs, using [41, Theorem 1.5.5].
2



1.3. Vanishing loci in genus 3. Let VgraLt C M, be the subset consisting of all (geometric)
isomorphism classes of curves with vanishing x(C). Let V;]alg C M, be the analogous subset for
7(C). One can show (Lemma 5.1) that V" and Vgalg are both countable unions of closed algebraic
subvarieties. Moreover V' C Vgalg and Ceresa’s result shows that Vg8L1g # Mg for all g > 3. What

can be said about the irreducible components of Vgmt and Vg8ng and their dimensions? Collino and
Pirola have shown that V3rat does not contain subvarieties of dimension > 4 that are not themselves
contained in the hyperelliptic locus [15, Corollary 4.3.4]. Theorem C shows that V})alg contains the

2-dimensional Picard locus and that Vi?® contains infinitely many 1-dimensional components.

Recall that there is a stratification of the non-hyperelliptic locus of M3 by locally closed sub-
varieties X, indexed by certain finite groups G, with the property that a non-hyperelliptic curve
[C] € M3(C) lies in X if and only if Aut(C) ~ G. It turns out that the isomorphism class of the
Aut(C)-representation H°(C, QL) does not depend on the choice of curve [C] in X¢(C). Our final
theorem determines exactly which X¢ are contained in Vi?* or V;lg.

Theorem D. Let G be a finite group isomorphic to the automorphism group of a plane quartic.
Then Xg C V32 if and only if G = Cy or Gug, and Xg C V;lg if and only if X is contained in
the Picard locus, in other words if and only if G = Cs,Cg, Cy or Gas.

Here, Gug is the group with GAP label (48, 33). The strata X¢, and Xq,, are single closed points,
represented by the curves y? = 2% — 2 and y3 = 2* + 1 respectively.

Theorem D shows that Xg C Vit if and only if H3(J)¢ = 0 for every (equivalently, some) curve
in X¢g, and that Xg C Vgalg if and only if H°(.J, Q%)G = 0 for every curve in Xg. Thus, for g = 3,
the criteria of Theorems A and B exactly single out the strata X where x(C) or £(C) identically
vanishes.

1.4. Structure of paper. In §2 we collect some standard results on Chow groups, Chow motives
and Ceresa cycles. In §3 we prove the cohomological vanishing criteria (Theorems A and B) and give
some examples. In §4 we study the family of Picard curves in detail and prove Theorem C. Finally,
in §5 we introduce the Ceresa vanishing loci Vgrat, V;leg C M, and determine which automorphism
strata they contain in genus 3, proving Theorem D.

1.5. Acknowledgements. We thank Ben Moonen and Congling Qiu for helpful conversations.
This research was carried out while the first author was a Research Fellow at St John’s College,
University of Cambridge, which he thanks for providing excellent working conditions. The second
author was funded by the European Research Council (ERC, CurveArithmetic, 101078157).

2. NOTATION AND BACKGROUND

2.1. Chow groups. Let k£ be field. A variety is by definition a separated scheme of finite type
over k. We say a variety is nice if it is smooth, projective and geometrically integral. If X is a
smooth and geometrically integral variety and p € {0,...,dim X}, let CH?(X) denote the Chow
group (with Z-coefficients) of codimension p cycles modulo rational equivalence. If Z C X is a
closed integral subscheme of codimension p (or a union of such subschemes), we denote its class in
CHP(X) by [Z]. If X is additionally projective, then CHP(X) has a filtration by subgroups

CHP (X )ag € CHP(X )pom C CHP(X),

where CHP (X ), is the subgroup of algebraically trivial cycles (see |2, §3.1] for a definition over an

arbitrary ground field) and CHP(X )pom the subgroup of homologically trivial cycles (with respect

to a fixed Weil cohomology theory for nice varieties over k). The Griffiths group is by definition

the quotient Gr?(X) = CHP(X )pom/CHP(X)ag. We occasionally write CH,(X) = CHI™X-P(X)
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and Gr,(X) = GrimX=P(X). If R is a ring, we write CH?(X)p = CHP(X) ®z R and Gr?(X)p =
GrP(X) ®z R.

2.2. Specialization, base change and families. Let R be a discrete valuation ring with fraction
field K and residue field k. Let X — Spec(R) be a smooth, projective morphism with geomet-
rically integral fibers, so the generic and special fibers Xx and X} are nice varieties over K and
k respectively. In this setting (in fact, in a much more general setting that will not concern us
here), Fulton has defined [19, §20.3| a specialization morphism sp: CHP(X ) — CHP(X}) for every
0 < p < dim(Xkg). It has the property that if Z C X is a closed integral subscheme of codimension
p, smooth over R, then sp([Zk]) = [Z].

Lemma 2.1. In the above notation, sp sends CHP (X )ag to CHP (X})alg-

Lemma 2.2. Let X/k be a nice variety and K/k a (not necessarily finite) extension of fields.
(1) The base change maps CHP(X)g — CHP(Xk)q and GrP(X)g — G1P(Xk)q are injective.
(2) If in addition k is algebraically closed, the base change maps CHP(X) — CHP(Xk) and
GrP(X) — GrP(Xk) are injective.

Proof. The proof is a standard adaptation of [11, Lemma 1A.3, p. 22]. We first prove (2) for
CHP(X) — CHP(Xk). Suppose o € CHP(X) has trivial image in CH?(X ). Then « already has
trivial image in CHP(X ), where K’ C K is a subfield that is finitely generated over k, since
the data witnessing triviality in CHP(X ) can be defined over such a subfield. By spreading out,
we can find a smooth integral variety U/k with function field K’ such that a has trivial image in
CHP(X xj U). Since k is algebraically closed, there exists a k-point w € U(k). Pulling back along
u defines a left-inverse CHP(X x; U) — CHP(X) to the map CHP(X) — CHP(X xj U). It follows
that « is trivial in CHP(X), as desired. The argument for Gr”(X) is identical and omitted.

We now prove (1) for CHP(X)g — CHP(Xk)g. There exists a field L containing both K and
an algebraic closure k of k. It therefore suffices to prove the two base change maps CHP(X)g —
CHP(Xj)o — CHP(X1)q are both injective. The first one follows from the fact that for a finite
extension k’/k the pushforward map CH?(X}) — CHP(X), when precomposed with the base change
map, is multiplication by [k’ : k]. The second follows from Part (2). The case of Gr?(X)q is again
analogous. O

Lemma 2.3. Let X — S be a smooth proper morphism of smooth varieties over a field k. Let o be
a codimension p cycle on X. Then the locus of points s € S such that the fiber ag € CHP(Xj)gq is
zero (resp. lies in CHP(X)alg,0) s a countable union of closed algebraic subvarieties of S.

Proof. We sketch the proof of this standard fact due to lack of reference. There exists a countable
subfield ky C k, a smooth proper morphism Xy — Sy of varieties over kg and a cycle ag on Xy
whose base change to k are X — S and «a respectively. Since kg is countable, Sy has only countably
many closed subschemes. Let F be the collection of integral closed subschemes Z C Sy such that
ap is zero in CHP(Xq (7))@, where 1(Z) € Sp denotes the generic point of Z. Then we claim that
the locus of s € S for which oy € CHP(X)q is zero is exactly the union (J,. Zy C S. This follows
from Lemmas 2.1 and 2.2; we omit the details, and the similar argument for algebraic triviality. [

2.3. Chow motives. We recall a few relevant facts about the category Mot(k) of (pure, contravari-
ant) Chow motives M over k with Q-coefficients; see [37] or [33, §2] for basic definitions.

Denote the Lefschetz motive by L, its nth tensor power by L™ and write M (n) = M ®L™. Following
[33, §2.5], the Chow group in codimension p of M is by definition CHP (M) = Hompee() (L7, M). If
M = bh(X) where X is smooth projective over k, then CHP (M) = CHP(X)q. (Beware that we need

to take Q-coefficients on the right hand side.) If C is a nice curve over k and ¢: hH(C) - M(p—1) a
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morphism in Mot(k), we obtain a homomorphism of abelian groups CH'(¢): CH!(C)q — CHP(M).
We define CHP (M ) a1 to be the union of the images of CH'(¢) ranging over all pairs (C, ¢) as above.
This coincides with CHP(X)a, ® Q when M = h(X), see |2, Corollary 3.13].

Let A/k be a g-dimensional abelian variety. Deninger and Murre [17, §3] have constructed a
canonical Chow—Kiinneth decomposition

(2.1) h(A) = EPbi(A),
=0

uniquely characterized by the following property: if (n): A — A denotes the multiplication-by-n,
then (n)* acts on h*(A) via n* for every integer n. On the other hand, Beauville [4] has shown that
there exists a direct sum decomposition CHP(A)g = @Y CHI(DS) (A), where

s=p—g
(2.2) CH’;S) (A) = {a € CHP(A)g: (n)*a =n*"*a VncZ}.

The two decompositions are linked by the formula CHP(h(A)) = CHI(OQP_Z.) (A). Beauville has
conjectured that CH’()S)(A) = 0 when s < 0, and proved it when p € {0,1,9 — 2,9 — 1,9}, see

[4, Proposition 3(a)].
Lemma 2.4. If A/k is an abelian variety, then CHP(h'(A))ae = CHP(h'(A)) for all p > 0.

Proof. By Lemma 2.2(1), we may assume k is algebraically closed. The only nonzero Chow group of
hl(A) is CHY(h'(A)) = CH%D(A), the set of anti-symmetric elements of CH'(A4)g. The lemma fol-
lows from the fact that CH%U (A) = CH'(A)pom ® Q and that homological and algebraic equivalence
coincide for codimension-1 cycles. ([l

Finally, we define motives of fixed points. If G is a finite group acting on a motive M, write M for
the submotive cut out by the idempotent ﬁ >_gec 9« € End(M). We have CHP(M®) = CHP(M)C.

If G acts on a nice variety X, then G acts on h(X) and CHP(X), and CHP(h(X)%) = CHP(X)“ ®Q.

2.4. Ceresa cycles. Let C'/k be a nice curve with Jacobian J. Let e be a degree-1 divisor on C
and let t.: C — J be the Abel-Jacobi map based at e, sending x € C to the divisor class of x — e.
We define k¢ € CHi(J) using the formula (1.1) from the introduction. Let K¢ € CHo(C') denote
the canonical divisor class.

Lemma 2.5. If ko is torsion, then (29 — 2)e — K¢ is torsion.

Proof. If k¢ e is torsion, then [te(C)] = (—1)4[te(C)] in CH(J)q. Taking the (¢g—1)-fold Pontryagin
product of this equality and dividing by (g — 1)!, we get [O(y_1)e] = (=1)«[O(y—1)e] in CH1(J)q,
where for a degree g — 1 divisor class D we write ©p for the image of the map Sym9~1(C) — J
defined by = ~ [z] — D. By Riemann-Roch, (=1)«[0y_1)e] = [Ox,—(g-1)e]- Since O(y_1). defines
a principal polarization, the map ¢: J(k) — CH'(J)pom defined by @ — [0y 1)eta] — [O(g—1)e] i
an isomorphism. Since (K¢ — (29 — 2)e) = [Ok,—(g-1)e] = [Og—1)e] = (=1)«[Og—1)e] — [O(9—1)e]
is torsion in CH!(J)pom, the divisor class K¢ — (2 — 2)e is torsion. O

Lemma 2.6. Ife, e’ € CHy(C) are degree-1 divisors such that e—e’ is torsion, then [1.(C)] = [ter (C)]
and kce = ko i CHi(J)g.

Proof. Suppose e—e’ has order n in CH(C'). Then (n)ote = (n)ote, hence (n)([te(C)]—[te (C)]) =

0 in CH;(J). On the other hand, the Beauville decomposition of §2.3 shows that (n),: CHi(J)gp —

CHi(J)q is an isomorphism. Therefore [1(C)] — [ter(C)] is torsion. Hence ko — ke e is torsion

too. t
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Let x(C) be the image of k¢, in CHy(J)g for any choice of degree-1 divisor e on C such that
(29 —2)e = K¢ in CHy(C')g. Lemma 2.6 shows that this class is independent of the choice of e. (If
k is not algebraically closed and no such e exists over k, there exists a unique class x(C) € CH;(J)g
such that k(C); = (Cf) in CH;(J;)q, since Chow groups with Q-coefficients satisfy Galois descent.)
We let £(C) be the image of £(C') in Gri(J)g. Since all degree-1 divisors e on C' are algebraically
equivalent, £(C) is also the image of k(C') in Grq(J)g for any degree-1 divisor, not necessarily with
the property that (2g — 2)e = K¢ in CHy(C)g.

Now suppose (2g — 2)e = K¢ in CHy(C)g and use the Beauville decomposition (2.2) to write

[te(C)] = Zg;é [C]s with [C]s € CH?;;(J). Since [t.(C)] € CHy(J)q is independent of the choice

of e, the same is true for the classes [C]s. We have x(C) = 2[C]; +2[C]|3+ -+ 2[0]2L3;2J+1-

2
Proposition 2.7. In the above notation, k(C) = 0 in CH;(J)q if and only if [C]y = 0 in CH;(J)q
if and only if [Cls =0 for all s > 1. Moreover k(C) = 0 in Gri(J)q if and only if [C]; € Gri(J)g
if and only if [Cls =0 in Gri(J)g for all s > 1.

Proof. To prove the claims in the first sentence, it suffices to prove [C]; = 0 implies [C]; = 0 for all
s > 1. This follows from the third centered equation of [41, Theorem 1.5.5]. The proof for (C) is
identical. 0

3. VANISHING CRITERIA IN THE CHOW AND GRIFFITHS GROUP

The proof of Theorem A is quite short, but uses in a crucial way Kimura’s notion of finite dimen-
sional Chow motives [24].”

Proof of Theorem A. We use the definitions and notations of §2.3 and §2.4. Choose a degree-
1 divisor e such that (29 — 2)e = K¢ in CHy(C)g and decompose [..(C)] = St 0], with

s=—1

[Cs € CH“(SI(J). The finite group G = Aut(C) acts on J and hence on the motive h(J). Since
the G-action on J commutes with (n) for every n, we obtain an induced G-action on h29=3(.J).
Since the class [C]; is independent of the choice of e (by Lemma 2.6), it is G-invariant. Therefore

[Ch € CH{ ' ()E = CHY ! (h2073(J))¢ = CHY ! (52073())%).

By the hypothesis and the Lefschetz isomorphism, H*(§2973(J)%) = H2973(J)¢ = 0. Since any
summand of the motive of an abelian variety is finite-dimensional in the sense of Kimura [24,
Example 9.1], it follows from Kimura’s [24, Corollary 7.3] that h2973(J)¢ = 0 and hence [C]; = 0
in CHY"!(J)g. By Proposition 2.7, we conclude that x(C) = 0. O

Example 3.1. There is exactly one non-hyperelliptic genus 3 curve over C for which the criterion
of [34] applies, namely the curve y = 2* 4+ 1. The curve y = z* + z satisfies the weaker hypothesis
of Theorem A (as was observed in [6]), so we deduce that x(C') = 0 for this curve as well. Beauville
and Schoen studied the specific geometry of this curve and showed that £(C) = 0 |7].

Example 3.2. The genus 4 curve 33 = ° + 1 satisfies H?(J)A""(C) = 0 [27, proof of Theorem 3.3|,
so k(C) = 0.

Theorem B will follow from the next proposition. In that proposition and its proof, if X is a nice
variety over C we write H*(X) for the singular cohomology of X (C) with Q-coefficients, seen as an
object in the category of Hodge structures.

Proposition 3.3. Let C' be a smooth, projective, integral curve over C with Jacobian J and let
G C Aut(C) be a subgroup with H°(J,Q3)% = 0. Then there exists an abelian variety A/C such

2Congling Qiu and Wei Zhang have found a very similar proof (personal communication).
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that H3(J)¢ ~ HY(A)(—1). If the Hodge conjecture holds for J x A, then h>(J)¢ ~ h'(A)(~1) and
k(C) = 0.

Proof. Let N'H3(J) be the largest sub-Hodge structure of H3(.J) of type (1,2) + (2,1). The po-
larization on H!(J) induces a polarization on N'H3(J) and so N'H3(J) ~ HY(B)(—1) for some
abelian variety B/C. The assumptions and the Hodge decomposition imply that H3(J )G is a Hodge
structure of type (1,2) + (2,1). It follows that H*(J)¢ C N'H3(J), so there exists an abelian
subvariety A C B with H3(J)¢ ~ H(A)(-1).

We now show that the Hodge conjecture for J x A implies the claims of the final sentence. Fix
mutually inverse isomorphisms of Hodge structures ¢: H3(J)¢ — HY(A)(—1) and v: HY(A)(~1) —
H3(J). By the Hodge conjecture, there exist morphisms of motives ®: h3(J)¢ — ph'(A)(—1) and
U: hi(A)(—1) — b3(J)Y (in other words, cycles on J x A with certain properties) with H*(®) = ¢
and H*(¥) = +. Since h'(A)(—1) and h*(J)¢ are Kimura finite-dimensional [24, Example 9.1] and
H*(®) o H*(¥) and H*(¥) o H*(®) are the identity, it follows from [24, Proposition 7.2(ii)] (see
also [3, Corollaire 3.16]) that ¥ o ® and ® o ¥ are themselves isomorphisms. Hence ® and ¥ are
isomorphisms too and we conclude that h3(J)¢ ~ h(A)(—1).

Using the Lefschetz isomorphism §2973(.J) ~ h3(J)(—g + 3) of [37, Theorem 5.2(iii)], we obtain
an isomorphism h2973(J)¢ ~ hl(A)(—g + 2). Similarly to the proof of Theorem A, we decompose
[te(C)] = g;é [C]s with [C]s € CH?;;(J) and observe that the class [C]; lies in CH?BI(J)G =
CHI71(p2973(J)%). Lemma 2.4 combined with the isomorphism §2973(J)¢ ~ h1(A)(—g + 2)

shows that CHY ' (§2973(J)¢) = CHIY ! (h2973(J)%)ay, hence every element of CH“(’l_)l(J)G lies
in CHY (J)agq- Therefore [C]; € CHY !(J)a1g,q, hence the image of [C]; in Gri(J)q vanishes.

Proposition 2.7 then implies that £(C') vanishes too. O

Proof of Theorem B. Since C can be defined over a countable field and since such a field can be
embedded in C, Lemma 2.2 shows that we may assume k = C. We conclude by Proposition 3.3
applied to G = Aut(C). O

Example 3.4. Let C: y® = 2% + a2® + bz + ¢ be a Picard curve. Then HY(C, QL) ~xexdx? as
Cs-representations, where y is a character of order 3. It follows that H°(.J, Q?})Am(c) = 0, so that
the condition of Theorem B is satisfied. We consider these curves in detail in the next section.

We exhibit two families of examples of Theorem B in genus 4. It would be interesting to study
these families in more detail (along the lines of what we do in the next section for Picard curves).

Example 3.5. Consider for every t € C\ {0, 1, —1} the us-cover of P! with equation

C:yP =zt z+ 13z -1z —1t).
By [29, Lemma 2.7], the ps-representation H(C, Q) is the direct sum of the four nontrivial char-
acters. It follows that HY(J,Q3)#5 = 0 and H?(J)#5 is isomorphic to H'(A)(—1), for some abelian
surface A (using Proposition 3.3). We have D5 C Aut(C') by [21, Corollary 1]. By the Kani-Rosen
formula [22, Theorem B|, the Jacobian J is isogenous to a product of abelian surfaces of the form

Jac(C/7), for some involution 7. The Hodge conjecture in any codimension is known for products
of abelian surfaces [35, Theorem 3.15|, so £(C') = 0 by Proposition 3.3.

Example 3.6. The general p3-cover of P! with equation

y? = (22 — 1)*(2® + a2® + bz + ¢),
has genus 4 and there is an isomorphism of us-representations HO(C7 Qo) =xexex?ox: It
follows that H%(.J,Q3)#3 = 0, and the abelian variety A from Proposition 3.3 is 4-dimensional. If

the Hodge conjecture holds for the 8-dimensional J x A, then (C) = 0.
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4. PICARD CURVES

4.1. Generalities. Let k be a field of characteristic zero. A Picard curve over k is by definition a
nice curve with an affine model 43 = f(x) = 2* + ax? + bx + ¢ for some a, b, c € k. Conversely, given
such a polynomial f(x) € k[z] of nonzero discriminant, the projective closure of y> = f(z) in P is
a nice curve denoted by Cy. It has a unique point at infinity P, which is k-rational.

For every third root of unity w € k, the map (z,y) ~ (x,wy) defines an automorphism of Crr
We view us as a subgroup of Aut(ijc) in this way. Then pu3 also acts on the Jacobian J; by
taking images of divisors.

The discriminant of f has the following expression:
(4.1) disc(f) = —4a’b* — 270 + 16a'c + 144ab®c — 128ac? + 256¢°.

We view f as the dehomogenization F(x, 1) of the quartic form F(X, Z) = X*+a X222 +bX Z3+cZ*,
and we define I(f) and J(f) to be the usual I- and J-invariants attached to F', as in [9, §2]. Their
explicit formulae in our case are:

I(f) = a® + 12c,
J(f) = 72ac — 2a® — 27b°.

The 19th century invariant theorists observed the identity J(f)? = 4I(f)3 — 27 - disc(f), which can
be verified by direct computation. Therefore Py := (I(f), J(f)) is a k-point on the elliptic curve

Ep:y? = 4% — 27 - disc(f).

4.2. Ceresa vanishing criteria. Since (2g — 2)Ps, = 4P is canonical, we may use Py, to embed
Cy in its Jacobian Jy and define the Ceresa cycle k¢, p,, € CHi(Jy) as in the introduction; we
denote it by xy for simplicity. Recall that x(C) denotes the image of k¢ in CH;(Jy)g and &(CYy) its
image in Gry(Jy)g. Theorem C follows from the following slightly stronger theorems, whose proofs
will take up the rest of this section.

Theorem 4.1. There exists an integer N > 1 (depending neither on f nor k) such that N - ks €
CHQ(Jf)alg for every Picard curve Cy over every algebraically closed field k of characteristic zero.

Theorem 4.2. The Ceresa cycle ky € CHy(J) is torsion if and only if Py € E¢(k) is torsion.
Moreover, if k is algebraically closed, there exists an integer M > 1 with the following property:
if Cy is a Picard curve and Ky is torsion, then ord(ky) divides M - ord(Py) and ord(Py) divides
M -ord(ky).

Theorem 4.1 will be proven in §4.4, and Theorem 4.2 will be proven in §4.7. A standard argument
using Lemma 2.2 shows that we may assume k = C. So in the remainder of §4, all varieties will be
over C, and cohomology will be singular cohomology.

Remark 4.3. Theorem 4.2 generalizes [25, Theorem 5.16|, which considered the special case
where b = 0. There, we exploited the bielliptic cover to show that the Ceresa cycle maps via
a correspondence to a multiple of the point Qf = (a® — 4c,a(a® — 4c)) on the elliptic curve
E}: y? = 23 + 16 - disc(f). This is compatible with the general case since there is a 3-isogeny
bf: E} — Ey, and one checks using the explicit formula for ¢ |8, Equation (2)| that ¢(Qf) = Pr.

Remark 4.4. Is it always the case that ky # 07 (Recall that ss lies in the Chow group with
Z-coefficients.) We cannot conclude this from our proof of Theorem 4.2 below since we have worked

with Q-coefficients, and we make use of various isogenies whose degrees we do not control.
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4.3. Multilinear algebra. Our first goal (Proposition 4.7) is to explicitly identify the abelian
variety A of Proposition 3.3 for Picard curves.

Write O = Z[w] for the ring of Eisenstein integers with w? +w+1 = 0 and let K = Q(y/—3) be its
fraction field. Let C' be a Picard curve over C with Jacobian variety J. The pus-action on C' extends
to an embedding O C End(J). Using this action, the singular cohomology group H!(.J;Z) is a free
O-module of rank 3, and Hl(J ;Q) is a 3-dimensional K-vector space. The next lemma says that
the criterion of Theorem B is always satisfied for Picard curves.

Lemma 4.5. H%(J,Q3)# = 0 and the Hodge structure H3(J; Q)" is of type (1,2) + (2,1).

Proof. Since HY(.J,Q3) ~ N> HO(C, QF), the first claim follows from a calculation with differentials
(Example 3.4). The second claim follows from the Hodge decomposition for H3(.J; Q). O

We may view H!(.J;Q) either as a K-vector space or Q-vector space; when we perform tensor
operations, we will add the subscript K when we view it as a K-vector space, and add no subscript
otherwise. For example, cup product induces an isomorphism /\3 HY(J; Q) ~ H*(J; Q), and we will
use this identification without further mention.

The universal property of exterior powers induces a canonical Q-linear surjection /\3 Hl(J ;Q) —
A% HY(J;Q). Tt is well known (see [30, Lemma 12(i)] or [16, Lemma 4.3]) that this map admits a
canonical splitting, which we use to view /\% H!(J;Q) as a direct summand of H3(.J; Q).

Lemma 4.6. We have H3(J; Q)#3 = N3 H(J; Q) inside H3(J; Q). Moreover dimg H3(.J; Q)3 = 2.

Proof. Tt suffices to prove the statements after tensoring with C. Let g € us C Aut(C') be a nontrivial
element. The action of g on H(J; Q) has eigenvalues (with multiplicity) w,w,w,w?, w?, w? so we
can write HI(J; C) = Vi @V, where V; is the w'-eigenspace. Since a three element subset of these
eigenvalues have product 1 if and only if they are all equal, H3(J; C)# = (A* V1) & (A* V2). On the
other hand, an argument similar to the proof of [16, Proposition 4.4] shows (A% H'(J;Q)) @k C =
/\§<®(C H'(J;C) = (A* Vi) @ (A* Va), proving the equality. The explicit description of this subspace
shows that it is 2-dimensional over Q. ]

Let E be the elliptic curve with Weierstrass equation y? = 2% + 1.
Proposition 4.7. There is an isomorphism of Hodge structures H3(.J;Q)*3 ~ HY(E, Q)(—1).

Proof. Since there exists a unique elliptic curve up to isogeny with endomorphism algebra K, there
exists a unique Hodge structure of dimension 2, type (0,1) + (1,0) and carrying an action of K.
Since both H3(J; Q)#3 and H!(E; Q) have these properties (the former by Lemma 4.6), they must
be isomorphic, and we conclude using Lemma 4.6. O

4.4. Weil classes and Schoen’s theorem. Our next goal is to upgrade the isomorphism of
Proposition 4.7 to an isomorphism in the category of Chow motives, and hence deduce (using
Proposition 3.3) the vanishing of £(C) in the Griffiths group. We use the following special case of
a result of Schoen, which crucially uses the assumption that the endomorphism algebra of J x FE
contains K = Q(w):

Theorem 4.8 (Schoen). The Hodge conjecture holds for J x E.

Proof. Since J x E is four-dimensional, it suffices to prove Hodge classes in H*(J x E;Q) are

algebraic. By [31, Theorem (0.1), Part (i) and (iv)], such Hodge classes are sums of products of

divisor classes (which are algebraic) and Weil classes Wy = /\}1{ HY(J x E;Q) c HYJ x E;Q).

Since K = Q(w) and the embedding K C End(J x E) ® Q can be chosen to have signature (2,2),
9



Schoen has shown in [36] that the classes in Wi are algebraic, concluding that all Hodge classes of
H%(J x E;Q) are algebraic. O

Recall from §2.3 our conventions on motives, the canonical Chow-Kiinneth components hi(J) and
h7(E), and the motive of fixed points of a finite group action.

Corollary 4.9. There is an isomorphism h3(J)*2 ~ h1(E)(—1).
Proof. This follows from Proposition 3.3, using Proposition 4.7 and Theorem 4.8. ([l
Corollary 4.10. If C is a Picard curve over C, then &(C) = 0.
Proof. This follows from Proposition 3.3, using Proposition 4.7 and Theorem 4.8. ([l

Proof of Theorem 4.1. Consider the parameter space Sop = {(a,b,c) | disc(f) # 0} C A% of Picard
curves. Let ) be the generic point of Sy with function field k(n) = Q(a, b, ¢), let C,, be the generic
Picard curve over k(n) with Jacobian J,, and let k¢, € CHi(J,) be the Ceresa cycle of C;, based
at the point at infinity. Fix an embedding j: k(n) — C. By Corollary 4.10, the base change of k¢,
along j is torsion in the Griffiths group. By Lemma 2.2, this implies ¢, is itself torsion in Gry(J,).
Let N be the finite order of r¢, in Gri(J,). A specialization argument (using Lemmas 2.1 and
2.2 and [39, Tag 054F]) shows that N - k¢ is algebraically trivial for every Picard curve over every
algebraically closed field of characteristic zero, as required. ([l

The remainder of the section is devoted to proving Theorem 4.2. To this end, we will analyze the
Abel-Jacobi image of k¢ (the “normal function” associated to £¢) in the next two subsections.

4.5. The Abel-Jacobi map. If X is a smooth variety over C, we will use the notion of an integral
(respectively rational) variation of (pure) Hodge structures over the complex manifold X (C), called
a Z-VHS (respectively Q-VHS) for short; see [40, §5.3.1] for definitions. If V' is a Hodge structure
of odd weight 2k — 1, its intermediate Jacobian J(V') is the complex torus

(V @z C)/(F* + V),

where F¥ € V ®7 C is a part of the descending Hodge filtration and V; denotes the quotient of
V by its torsion subgroup. More generally, if V is a Z-VHS of weight 2k — 1 over X(C), we can
define its intermediate Jacobian J(V) — X(C), a relative complex torus whose fibers over points
x € X(C) are the classical intermediate Jacobians J(V,), see [40, §7.1.1]. If V,W are two Z-VHS
of odd weight, then J(V(p)) = J(V) for all p € Z and a morphism V — W of Z-VHS induces a
homomorphism of (relative) complex tori J(V) — J(W).

If X/C is a nice variety and 0 < p < dim(X), we write JP(X) = J(H*"1(X(C);Z)). In this
situation there is an Abel-Jacobi map

(4.2) AJP - CHP (X )pom — JP(X),

defined in [40, §7.2.1]. Moreover, if S/C is a smooth variety, 7: X — S a smooth projective
morphism with geometrically integral fibres and p € Z>¢, then RPm,Z (pushforward of the constant
sheaf in the analytic topology) has the structure of a Z-VHS over S(C). If Z is a codimension p
cycle on X all of whose components are flat over S, and such that Z; € CHP(X;)pom for every
s € S(C), then Griffiths has shown that there exists a holomorphic section AJ(Z) of the relative
complex torus J(RPT,Z) — S(C) with the property that AJ(Z), = AJ%(Z,) for all s € S(C); this
is called the normal function associated to Z.

We record the fact that Abel-Jacobi maps are compatible with correspondences. Let X,Y be nice
varieties over C and let v € CH" +dim(X) (X xY) be a correspondence of degree r. This induces for
every p > 0 a homomorphism ~,: CHP(X) — CHP™"(Y) via the formula o — 7y . (7% (a) -7), where
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mx: X XY — X and my: X XY — Y denote the projections. The same formula defines morphism
of Hodge structures HP(X;Z) — HP?"(Y)(r) for every p, hence a homomorphism of complex tori
Y JP(X) — JPTT(Y).

Lemma 4.11. In the above notation, v sends CHP (X )pom to CHPT"(Y)pom. Moreover for every
0 € CHY (X )uom, 7+(AT% (@) = AF (7. ().

Proof. The first sentence follows from the compatibility of the cycle class map with correspondences
[40, Proposition 9.21]. To prove the compatibility of the Abel-Jacobi map with correspondences, it
suffices to prove the compatibility with pullbacks, pushforwards and intersection product. The case
of pullback is elementary, using the definition of AJ% in terms of extensions of Hodge structures,
see [14, §2.2]. The case of pushforward follows from that of pullback and Poincare duality. Finally,
compatibility with intersection product follows from [40, Proposition 9.23]. O

Let S = {(a,b,c) | disc(f) # 0} C AJ be the parameter space of Picard curves over C. We will
identify C-valued points of S with polynomials f = z*+4ax?+bz +c € Clx] of nonzero discriminant.
Let C — S be the universal Picard curve, and let w: J — S its relative Jacobian variety. The point
at infinity defines a section Py, of C. Let k¢ € CH1(J) be the universal Ceresa cycle with respect
to this section. (Comparing with our earlier notation, we have C; = Cy and k¢ y = kf for every
fe5(C).)

Let V = R3m,Z be the Z-VHS on S(C) interpolating the cohomology groups H3(jf; Z) for f €
S(C). Then the normal function AJ(k¢) is a section of J(V) — S(C) interpolating AJ 3,: (ks) for all

feS(C).
Proposition 4.12. If f € S(C), then kf € CH?*(J¢)nom is torsion if and only if AJ%f (kg) € J2(Jy)

is torsion. The torsion order of Ky, if finite, equals the torsion order of AJ?]f(Iif).

Proof. Let E be the elliptic curve y? = 23+1. Corollary 4.9 shows that there exists a correspondence
v € CH?(E x J) such that 7, induces isomorphisms CH*(E)g — CHZ(J)é3 and H(F;Q) —
H3(J;Q)#3(1). By Lemma 4.11 these form a commutative diagram:

CHY(E)pom,g0 —=2— JYE) ® Q

CH2(Jpfmo — P2(J)" 2 Q

All arrows except the horizontal bottom one are isomorphisms of abelian groups. The same is
therefore true for the bottom one AJ: CH?(J;)1? 0~ J2(Jr) ® Q. Since ry € CH*(Jp)I2 | we

hom

conclude that k is torsion if and only if AJ 2 ; (ks) is. The last claim follows from the fact that AJ 2 ;
is injective on torsion subgroups by a result of Murre |32, Theorem 10.3]. (|

4.6. Identifying the complex torus J(V#3). The pus-action on C induces, via functoriality, a
us-action on J, V and J(V). The subsheaf of fixed points V#3 has the structure of a Z-VHS.
The connected component of the identity J(V)#3:° of J(V)#? is a relative complex torus over S(C).
Moreover, the natural homomorphism J(V#3) — J(V) induces an isomorphism onto J(V)#3:°.

Lemma 4.13. The multiple 3 - AJ(kc¢) lands in J(V)H3:°.

Proof. Since the Ceresa cycle k¢ is ps-invariant, AJ(k¢) lands in J(V)#3. The norm map N: J(V) —

J(V), defined by z + = +w -z + w? - 2, lands in J(V)#3:°, since the image must be connected and

ps-invariant. We conclude that N(AJ(k¢)) = 3 - AJ(ke) lands in J(V)H3:°, O
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Therefore 3- AJ(k¢) defines a section of J(V)#3:°, hence we may view it as a section of the complex
torus J(V#3) — S(C) in what follows. We study this relative complex torus (up to isogeny) in the
next two propositions.

Let £ — S be the relative elliptic curve with Weierstrass equation y? = 423 — 27 - disc(f). Recall
that we write O = Z[w] and K = Q(w).

Proposition 4.14. The relative complex torus J(V#3) — S is isogenous to the relative complex
torus £(C) — S(C).

Proof. The Z-VHS R'7,Z interpolating the cohomology groups Hl(jf; Z) comes equipped with an
action of @, and cup product induces an isomorphism /\3 R'n,7Z ~ R31,Z =V. Let W = /\?(’9 R'7.7Z
(the third exterior product of R'7,.Z, viewed as a sheaf of O-modules), a Z-VHS with an O-action.
Lemma 4.6 shows that W ® Q ~ V3 ® Q, so J(W) and J(V#3) are isogenous.

To analyze J(W), we analyze the Z-VHS W(1) more closely. It has an O-action by construction,
Lemma 4.6 shows that it has constant rank 2, and Lemma 4.5 shows that it has type (1,0) + (0, 1).
Since O has class number 1, there exists a unique Z-Hodge structure with these properties, hence
We(1) ~ HY(E;Z) for every f € S(C), where E is the elliptic curve with Weierstrass equation
=23+ 1.

Therefore J(W) — S(C) is an isotrivial family of elliptic curves: analytically locally on S(C), it is
isomorphic to E(C) x S(C) — S(C). It follows that the sheaf of local isomorphisms between J(W)
and E(C) x S(C) is an Aut(E)-torsor in the analytic topology on S(C). Since Aut(FE) ~ pg is finite,
this torsor is the analytification of an étale pg-torsor on S.

To analyze étale ug-torsors on .S, consider the following exact sequence induced by the Kummer
exact sequence in étale cohomology:

6
G (S) 55 Go(S) — HL (S, j6) — Pic(S)[6] — 0.

The Picard group Pic(S) vanishes, being a quotient of Pic(A2), hence the outer term in the sequence
vanishes. We claim that G,,(S) = H(S, 0g)* = {c-disc" | ¢ € CX, n € Z}. Indeed, every c - disc"
is clearly a unit in H°(S, Og). Conversely, given a unit f € H(S, Og), seen as a rational function
on A%, its divisor div(f) of zeros and poles must be supported on the zero locus of disc. Since
disc € Cla, b, ¢] is irreducible (a general fact about discriminant polynomials), div(f) = n - [{disc =
0}] for some n € Z. Then div(f/disc™) = 0 as a rational function on A}, hence f/disc™ is a unit in
Cla, b, c], hence f/disc™ € C*, proving the claim. We conclude using the exact sequence that the
group HY (S, ue) classifying pg-torsors is generated by the image of disc.

Let & — S be the relative elliptic curve with equation y? = 23 +disc(f)’. The previous paragraph
shows that J(W) is isomorphic to &;(C) for some i € {0,1,2,3,4,5}. We show that ¢ = 1, using
our previous results on bielliptic Picard curves in [25]. Let T'C S be the closed subscheme where
b = 0, parametrizing even quartic polynomials f = z* + ax? + ¢. If f € T(C), the ps-action on
Cy extends to a pg-action. A calculation shows disc|r = 16¢(—a® + 4c)?. By applying the singular
cohomology realization functor to [25, Theorem 5.1], the relative complex torus J((V|r(c))"¢) —
T'(C) is isogenous to &1(C)|pcy) — T(C). Since J((V|p(c))*®) is a subtorus of J((V|rc))#?) of the
same dimension, they must be equal, hence J(W)|(c) is isogenous to &1 (C)|p () over T(C). On the
other hand, let i € {0,1,2,3,4,5} be such that J(W) =~ &(C). Then J(W)|p(c) = &(C)|r(), hence
E1(C)lr(c) is isogenous to &(C)|r ).

We show that the latter can happen only if i = 1. Indeed, let : & (C)|pc) — &i(C)|r(c) be an
isogeny. Since the domain and target of ¢ are isotrivial relative elliptic curves with O-multiplication,
¢ factors as 1) o v, where v is an endomorphism of & (C)|p) and ¢ an isomorphism. Therefore

E1(C)lr(c) and &(C)|p(c) are isomorphic. Since the monodromy representations of &1 (C)|7(c) and
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&i(C)|r(c) are non-isomorphic when i # 1, we conclude that i = 1 and that J(W) is isogenous to
&1(C) over S(C).

In summary, we have shown that J(V#3), J(W) and & (C) are isogenous. Since &;(C) is isomorphic
to £(C), we conclude the proof. O

Proposition 4.15. The group of (algebraic) sections of €& — S is free of rank 1 over O = Z[w],
and contains the O-span of P := (a® + 12¢, 72ac — 2a> — 27b?) as a finite index subgroup.

Proof. Given s = (a,b,c) € S(C), consider the closed subscheme T = {(at,bt,ct?): t € AL} NS of
S and the restriction w: £|p — T'. The variety £|r is an open subscheme of an elliptic surface with
Weierstrass equation y? = 23 + t1g(¢), where g(t) € C[t] has degree < 2, using the formula (4.1).
There exists a dense open U C S such that for all s € U(C), g(¢) has two distinct nonzero roots. Let
s € U(C). Using Tate’s algorithm, we see that the elliptic surface has a singular fiber above ¢t = 0
with Kodaira type IV*, singular fibers above the roots of g(¢) with Kodaira type II, and is smooth
above t = co. The presence of a fiber of type II implies that |7 — 1" has no torsion sections [38,
Lemma 7.8]. Moreover the Shioda-Tate formula [38, Theorem 6.3, Proposition 6.6 and §8.8] shows
that the group of sections of |7 — T is free of rank 2. Since &|r receives an O-action, its group of
sections is free of rank 1 over O. We will now show that these facts can be used to prove the claims
of the proposition by varying s in U(C).

We first show that £(9) is torsion-free. Suppose Q € £(S) is a torsion section. Then N -@Q =0
for some N > 1. Hence N - Q|7 = 0 for every s € U(C). Since the group of sections of |7 — T
is torsion-free, Q|r = 0 for every s € U(C). Hence Q|y = 0. Since U is dense in S, we must have
@ = 0, as desired.

The fact that P defines a section of & — S can be verified by direct computation (see §4.1). Let
L = Z(P,w- P) be the O-span of P, which is a subgroup of the group of sections £(S) of £ — S. The
previous paragraph shows that L is free of rank 1 over O. It remains to show that it has finite index
in £(S). Suppose for the sake of contradiction that there exists a third section @ € £(S) which is
not in L ® Q. Then the locus Sqep of s € S(C) where Ps,w - Ps and @ are linearly dependent is a
countable union of closed proper algebraic subvarieties. For every s € U(C), the group of sections
of &|p — T is free of rank 1 over O. There exists a possibly smaller dense open V' C U such that
if s € V(C) then P is nonzero, hence (Ps,w - Ps) is a finite index subgroup of £(T"). Therefore
Qt, P1t, Poy are linearly dependent for all s € V(C). Since V(C) \ Sqep is nonempty, we obtain a
contradiction. g

4.7. Proof of the vanishing criterion in the Chow group.

Proof of Theorem j.2. We may assume (using Lemma 2.2) that k = C. Recall that 3-AJ(k¢) defines
a holomorphic section of J(V#3) — S(C). Choose an isogeny of complex tori J(V#3) — £(C) using
Proposition 4.14 and let o be the image of 3 - AJ(k¢) under this isogeny. This is a holomorphic
section of £(C) — S(C).

We claim that o is not a torsion section. If it were torsion, then AJ(k¢) would be a torsion section
of J(V#3), hence, by Proposition 4.12, k would be torsion for every f € S(C). This is not the case,
since Ky is of infinite order if f = 2* + 22 + 1 by [25, Corollary 2.9]. We conclude that o is not a
torsion section.

Next we claim that o is the analytification of an algebraic section of £ — S. Let N > 1 be an
integer such that N -« is algebraically trivial for every Picard curve f € S(C) (such an integer exists
by Theorem 4.1). By the algebraicity of the Abel-Jacobi map for algebraically trivial cycles (|1,
Theorem 1]), there exists a relative algebraic subtorus J,(V) C J(V) with the following property:
the section AJ(3N - k¢) lands in J,(V) and the corresponding holomorphic map S(C) — J,(V)
is algebraic. On the other hand, AJ(3N - k¢) also lands in J(V#3), is not a torsion section by the
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previous paragraph, and J(V#3) has relative dimension 1 over S(C). Therefore J(V#3) is the smallest
relative subtorus of J(V) containing the image of AJ(3N - k¢). Hence J(VH3) C J,(V). We conclude
that AJ(BN - ke): S(C) — J(VH3) is algebraic, so AJ(3 - k¢) is algebraic, so o is algebraic.

Since ¢ is an algebraic section of £ — S, Proposition 4.15 shows that there exists an integer
M > 1 and an element v € O such that M - o =~ - P. Since o is not a torsion section, v # 0.

Putting everything together, we have for f € S(C): kg is torsion if and only if AJ%f (k¢) torsion
(by Proposition 4.12), if and only if AJ(kc)s € J(V#3); torsion, if and only if o5 € £f(C) torsion,
if and only if Py torsion. Tracing through the equivalences, the quotient of the torsion orders
ord(ky)/ord(Py) (if defined) takes only finitely many values as f ranges in S(C). O

4.8. Families of Picard curves with torsion Ceresa cycle of arbitrarily large order. The-
orem 4.2 shows that there are infinitely many plane quartic curves over Q with torsion Ceresa cycle,
since we may take a = ¢ = —12. In fact, we can find explicit families of torsion Ceresa cycles of
arbitrarily large order by analyzing the function f +— (I(f),J(f)).

Let C¢ be a Picard curve defined by the polynomial f(z) = z* + ax® + bx + ¢ over a field k with
homogenization F(z,2) = z* + az?2? + bxz3 + cz*. Associated to Cy is the genus 1 curve Dy with
equation y* = F(z,z). Viewing Dy as an elliptic curve with origin (1 : 1 : 0), it is isomorphic to the
elliptic curve y? = 23 — I(f)z/3 — J(f)/27. The point (1: —1:0) is sent to (—2a/3,b) in this new
model. Conversely, given a nonzero k-point (a, 3) on the elliptic curve Ey j: y? = 2% — Ix/3— J /27,
the quartic

(4.3) f(z) = 2* — 3ax?/2 + Bz + (I/12 — 302 /16)

has the property that (I(f),JJ(f)) = (I,J). It follows that if (I,J) € k is such that 4J3 — J2 # 0,
then f +— (—2a/3,b) induces a bijection between the set of polynomials f = z* 4 ax? +bx +c € k[z]
satisfying (I(f),J(f)) = (I,J), and the set of nonzero elements of Er ;(k).

Using this description, it is not hard to cook up explicit 1-parameter families of torsion Ceresa
cycles of arbitrarily large order, as in the following corollary of Theorem 4.2:

Corollary 4.16. For every integer N, there exists a number field k = k(N) such that there exists
infinitely many Q-isomorphism classes Picard curves Cy defined over k with Ceresa cycle kg of
order at least N in CHz(Jf@).

Proof. Let M be an integer satisfying the conclusion of Theorem 4.2. Fix a nonzero D € QQ and let
(I,J) € Q? be a torsion point of order M - N on the elliptic curve y> = 23+ D. Let k be the field of
definition of (I, J). For t € k, define \(t) = t3—It/3— J/27, (a4, B) = (tA(t), A\(t)?) and the quartic
fr(z) = 2* — 3042 /2 + Bz + (I/12 — 307 /16) using Formula (4.3). Since (v, B;) defines a point on
the elliptic curve Ey )25 x(1)3s, the quartic f has the property that (I(f:), J(ft)) = AL A(®)3T).
If t € k is such that A(t) # 0, then (A(t)2I,\(t)3J) is an N-torsion point on the elliptic curve
y*> = 23 + \JD. By Theorem 4.2, Ky, is torsion in CHQ(th,-C) and its torsion order ord(sy,) is
divisible by N. When varying over ¢ € k such that A(t) # 0, the Picard curves CYy, cover infinitely
many Q-isomorphism classes, using [12, Lemma 1.21(b)] and the fact that 82 /a3 = A(t)/t3 is not a
constant function of ¢. O

Conversely, for any number field k, the order of a torsion Ceresa cycle (C), with Cy defined over
k, is bounded, with the bound depending only on the degree of k over Q:

Corollary 4.17. For every d > 1, there exists N = N(d) > 1 such that for every Picard curve Cf
over a number field k of degree d, the order of Ky in CHl(va,;) is either infinite or less than N.
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Proof. This follows from Theorem 4.2 and the uniform bound (depending only on d) on the order of
a k-rational torsion point on an elliptic curve y? = 22 + D over any number field k of degree d. O

5. AUTOMORPHISM STRATA AND CERESA VANISHING LOCI IN GENUS 3

Fix g > 3 and let M, be the (coarse) moduli space of genus-g curves, seen as a variety over Q. Let
V2t C My be the subset of curves [C] for which £(C) vanishes in CH; (Jac(C'))q, in the notation of
§2.4. Since the vanishing of £(C') only depends on the geometric isomorphism class of C' (by Lemma
2.2), this locus is well defined. Similarly define the locus Vgalg C Mg where (C) € Gri(Jac(C))g
vanishes.

Lemma 5.1. The subsets Vgrat, ‘@alg C My are countable unions of proper closed algebraic subvari-
eties.

Proof. Let M, be the fine moduli space parametrizing genus-g curves C' with full symplectic level-5
structure and a degree-1 divisor class e € CHy(C') such that (2g — 2)e is canonical. Considering the
universal curve over it together with its degree-1 divisor, we can define a universal Ceresa cycle on
the universal Jacobian over Mg, Lemma 2.3 then implies that the locus in /\/l where this Ceresa
cycle vanishes (with Q-coefficients) is a countable union of closed algebraic subvarletles Since the
forgetful map //\>l/g — My is proper, the same is true for the image of this locus, which is exactly

V;at. The proof for Vgang is identical. ([l

These vanishing loci have the following basic properties: Vgrat cV, alg C My; the hyperelliptic locus
is contained in V]rat and Vadg # M, by Ceresa’s famous result [13]. It would be interesting to obtain
further information about the components of Vgrat and %alg. We end our paper by determining the
automorphism group strata in M3 that are contained in Vi?' or V;ﬂg.

So let ¢ = 3 and consider the open subscheme M3® C Msj of non-hyperelliptic curves. There
is a stratification /\/lgh = LUX¢ into locally closed subvarieties such that a non-hyperelliptic curve
C over C belongs to X if and only if Aut(C) ~ G. It turns out that X¢ is irreducible and the
closure of X is a union of other strata. We refer to [28, §2.2| and references therein for a complete
description of the loci Xg and the closure relations between them. We reproduce here a diagram
capturing these closure relations:

(1d} dim = 6
|
Cy dim =14
\
C? dim = 3
\
Cs Dy S3 dim = 2
| SN S
Cs Gie S dim =1
NN
Cy G Gos GL3(F2) dim =0

For n € {16,48,96}, the symbol G,, the group of order n and GAP label (16,13), (48,33), and

(96, 64) respectively [20]. See [28, Table 2| for models for a generic plane quartic in Xg. We make

explicit the strata that are relevant for us: X¢; is the locus of Picard curves studied in §4; X¢, is
15



the locus of bielliptic Picard curves studied in [26]; and the zero-dimensional strata each consist of
a single automorphism-maximal curve with equation

Y3z =2t 4 228 if G = Cy,

Yz =at 4+ 24 it G = Gy,

4yt +24 =0 if G = G,

Py +ydz+ 2B if G = GL3(Fa).
If C' is a non-hyperelliptic genus 3 curve over a field k, we say C is a generic curve for X if the
classifying map Spec(k) — M3 maps to the generic point of Xq. If X is an integral variety over

C, we say a property hold for a very general z € X (C) if it holds true outside a countable union of
proper closed subvarieties of X.

Lemma 5.2. For a group G in the above diagram, the following are equivalent:
(1) k(C) # 0 for some generic curve C for Xq.
(2) k(C) # 0 for a very general C in Xg(C).
(8) k(C) # 0 for some C in Xg.
(1) Xa ¢ Vi,
(5) Xa ¢ V™.
Moreover, the analogous equivalences hold for &(C) € Gri(J)g and V;lg.

Proof. Follows immediately from Lemma 5.1. O
We end with the proof of Theorem D, which we restate for convenience:

Proposition 5.3. Let G be a group in the diagram. Then
(1) X¢ C V{8 if and only if G = Cs3, Cs, Co, Gus.
(2) X C V3 if and only if G = Cy, Gaus;

Proof. (1) The equivalence between (4) and (5) of Lemma 5.2 implies that if Xy C Xg and
Xg C V})alg , then Xy C VJ2'; we will use this observation in the remainder of the proof.
Our analysis of Picard curves (Theorem C) shows that X¢o, C Vi*', so Xg C V3t for
G = Cg, (g and Gyug as well. On the other hand, the Ceresa cycle of the Fermat quartic and
Klein quartic are known to be of infinite order in the Griffiths group; see [10, Theorem (4.1)]
for the former and [23, §4] for the latter. By our observation, this means that X¢ ¢ Vi?* for
every stratum whose closure contains one of these curves. Since every stratum not contained
in X, has this property, we conclude the proof.

(2) Since Vi C V})alg, Part (1) implies that X C Vi only if G = C3,Cq,Cy or Gag. The
criterion of Theorem A applies to the curves in X¢, and X¢,, (see Example 3.1), so VJat
contains these strata. On the other hand, there exist curves in X¢, with nonvanishing x(C),
by |25, Corollary 1.2]. So X¢, ¢ V&' and X¢, ¢ V32t

O

Remark 5.4. Not every irreducible component of Vi?' is of the form X¢ for some G. The proof
of Corollary 4.16 shows that Vi N X, is a union of countably many (open, possibly singular)
rational curves.
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