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Abstract. Let C be a smooth projective curve, and let J be its Jacobian. We prove vanishing
criteria for the Ceresa cycle κ(C) ∈ CH1(J)⊗Q in the Chow group of 1-cycles on J . Namely,
(A) If H3(J)Aut(C) = 0, then κ(C) vanishes;
(B) If H0(J,Ω3

J)
Aut(C) = 0, then κ(C) vanishes modulo algebraic equivalence,

with criterion (B) conditional on the Hodge conjecture.
We then study the first interesting case where (B) holds but (A) does not, namely the case of

Picard curves C : y3 = x4 + ax2 + bx+ c. Using work of Schoen on the Hodge conjecture, we show
that the Ceresa cycle of a Picard curve is torsion in the Griffiths group. Moreover, we determine
exactly when it is torsion in the Chow group. As a byproduct, we show that there are infinitely
many plane quartic curves over Q with torsion Ceresa cycle (in fact, there is a one parameter
family of such curves). Finally, we determine which automorphism group strata are contained in
the vanishing locus of the universal Ceresa cycle over M3.

1. Introduction

Let k be an algebraically closed field and C a smooth, projective, and connected curve over k of
genus g ≥ 2 with Jacobian variety J . Let e be a degree-1 divisor of C and let ιe : C ↪→ J be the
Abel-Jacobi map based at e. We study the torsion behaviour of the Ceresa cycle

κC,e := [ιe(C)]− (−1)∗[ιe(C)] ∈ CH1(J)(1.1)

in the Chow group modulo rational equivalence. If κC,e is torsion, then (2g−2)e = KC in CH0(C)⊗
Q, where KC is the canonical divisor class. Moreover if (2g − 2)e is canonical, then the image of
κC,e in CH1(J) ⊗ Q is independent of e and we denote it by κ(C), see §2.7 for these claims. The
class κ(C) vanishes if and only if κC,e is torsion for some degree-1 divisor e.

We also consider the image κ̄(C) of κ(C) in the Griffiths group Gr1(J)⊗Q of homologically trivial
1-cycles modulo algebraic equivalence. When g = 2, or more generally when C is hyperelliptic, it
is easy to see that κ(C) = 0. On the other hand, Ceresa famously showed that κ̄(C) ̸= 0 for a very
general curve C over C of genus g ≥ 3 [13].

The vanishing of the Ceresa cycle is interesting for various reasons. For example, κ(C) = 0
if and only if the Chow motive h(C) has a multiplicative Chow-Künneth decomposition (by [18,
Proposition 3.1] and Proposition 2.11). Moreover κ̄(C) = 0 if and only if the tautological subring
modulo algebraic equivalence is generated by a theta divisor (by [5, Corollary 3.4]), in which case
Poincaré’s formula [C] = Θg−1

(g−1)! holds modulo algebraic equivalence. More generally, the Ceresa
cycle over Mg serves as a testing ground for the study of homologically trivial algebraic cycles in
codimension greater than 1.

1.1. Vanishing criteria. We prove cohomological vanishing criteria for Ceresa cycles of curves with
nontrivial automorphisms. Let H∗(−) be a Weil cohomology functor, such as ℓ-adic cohomology with
ℓ ̸= char (k) or singular cohomology when k = C. Note that the finite group Aut(C) acts on H∗(J),
by functoriality. Cupping with the principal polarization gives an injection H1(J)(−1) ↪→ H3(J),
allowing us to define the primitive cohomology H3(J)prim := H3(J)/H1(J)(−1).

Theorem A. If H3(J)
Aut(C)
prim = 0, then κ(C) = 0.
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This improves on a recent result of Qiu and Zhang stating that if (H1(C)⊗3)Aut(C) = 0, then
κ(C) = 0 [37].1 By contrast, Theorem A requires only the weaker condition that the subrepresenta-
tion H3(J)prim ⊂ H3(J) ≃

∧3H1(C) ⊂ H1(C)⊗3 has no nontrivial Aut(C)-fixed points. Note that
if the quotient C/Aut(C) has genus 0, then our hypothesis is equivalent to H3(J)Aut(C) = 0.

Our proof of Theorem A is inspired by Beauville’s proof that for the curve y3 = x4 + x, the
image of κ(C) under the complex Abel-Jacobi map vanishes [6]. To achieve a vanishing result in
the Chow group, we work directly with the rational Chow motive h3(J) and make crucial use of the
finite-dimensionality results of Kimura [24].

Our second result is a vanishing criterion for κ(C), however our proof works only in characteristic
0 and is conditional on the Hodge conjecture:

Theorem B. Suppose char(k) = 0 and assume the Hodge conjecture for abelian varieties. If
H0(J,Ω3

J)
Aut(C) = 0, then κ̄(C) = 0.

More precisely, we require the Hodge conjecture for J×A, for a specific abelian variety A described
in Proposition 3.3. Note that H0(J,Ω3

J) ≃
∧3H0(C,Ω1

C), so the conditions of Theorems A and B
both depend only on the abstract representation (G,V ) = (Aut(C),H0(C,Ω1

C)).
The proof of Theorem B is in the same spirit as that of Theorem A. The Hodge conjecture is used

to show that the motive h3(J)Aut(C) is isomorphic to h1(A)(−1), from which the algebraic triviality
of κ(C) follows.

1.2. Picard curves. The condition H3(J)
Aut(C)
prim = 0 in Theorem A is only rarely satisfied, e.g. it

holds for exactly two plane quartic curves over C (see Theorem D below). However, the condition
H0(J,Ω3

J)
Aut(C) = 0 of Theorem B is satisfied for all Picard curves y3 = x4+ ax2+ bx+ c. For such

curves it turns out that we require a nontrivial case of the Hodge conjecture to apply Theorem B,
namely that a certain Weil class on an abelian fourfold is algebraic. Fortunately, Schoen has proved
the Hodge conjecture in our specific situation [39]. (See also recent work of Markman [30].) This
leads to an unconditional proof of the vanishing of κ̄(C). By further analyzing κ(C) we prove the
following precise characterization of the vanishing of κ(C) in the Picard family:

Theorem C. Suppose char(k) = 0 and let Cf be a smooth projective Picard curve with model

Cf : y
3 = f(x) = x4 + ax2 + bx+ c(1.2)

for some a, b, c ∈ k. Consider the point Pf = (a2 + 12c, 72ac− 2a3 − 27b2) on the elliptic curve

Ef : y
2 = 4x3 − 27 · disc(f).

Then κ̄(Cf ) = 0, and κ(Cf ) = 0 if and only if Pf ∈ Ef (k) is torsion.

Here, disc(f) is the discriminant of f and the coordinates of Pf are the usual I- and J-invariants
of the binary quartic form z4f(x/z); see §4.1. The fact that Pf defines a point on Ef follows from a
classical relation between the invariants of a binary quartic. See also §4.2 for a more precise version
of Theorem C, which relates order of κCf ,∞ to the order of Pf , and in particular shows that κCf ,∞
can have arbitrarily large (finite) order in this family. This generalizes the results of [26] concerning
bielliptic Picard curves, i.e. those with b = 0 in (1.2). Theorem C also gives one-parameter families
of plane quartic curves with vanishing κ(C), corresponding to components of the torsion locus of
Pf . Such families exist even over Q, e.g. the family y3 = x4 − 12x2 + tx− 12.

In §3, we give two examples of genus 4 families of curves for which Theorem B applies. It would
be interesting to try to completely characterize the vanishing of κ(C) in these families as well, and

1This formulation is equivalent to theirs, using [44, Theorem 1.5.5].
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to find more such families. The general strategy is as follows. Using the Hodge conjecture, one
shows that the vanishing of κ(Cb) is equivalent to the vanishing of σ(b), where σ is a section of a
certain abelian scheme A → B. (The analytification of σ is the normal function associated to the
Ceresa cycle over B.) By computing the group of sections A(B), one can try to identify σ up to
multiple and hence determine the exact vanishing locus of κ(Cb) in the entire family.

1.3. Vanishing loci in genus 3. Let V rat
g ⊂ Mg be the subset consisting of all (geometric)

isomorphism classes of curves with vanishing κ(C). Let V alg
g ⊂ Mg be the analogous subset for

κ̄(C). The sets V rat
g and V alg

g are both countable unions of closed algebraic subvarieties (Lemma
5.1). Moreover V rat

g ⊂ V alg
g and Ceresa’s result shows that V alg

g ̸= Mg for all g ≥ 3. What can
be said about the irreducible components of V rat

g and V alg
g and their dimensions? Collino and

Pirola have shown that V rat
3 does not contain subvarieties of dimension ≥ 4 that are not themselves

contained in the hyperelliptic locus [15, Corollary 4.3.4]. Theorem C shows that V alg
3 contains the

2-dimensional Picard locus and that V rat
3 contains infinitely many 1-dimensional components.

Recall that there is a stratification of the non-hyperelliptic locus of M3 by locally closed sub-
varieties XG, indexed by certain finite groups G, with the property that a non-hyperelliptic curve
[C] ∈ M3(C) lies in XG if and only if Aut(C) ≃ G. It turns out that the isomorphism class of the
Aut(C)-representation H0(C,Ω1

C) does not depend on the choice of curve [C] in XG(C). Our final
theorem determines exactly which XG are contained in V rat

3 or V alg
3 .

Theorem D. Let G be a finite group isomorphic to the automorphism group of a plane quartic.
Then XG ⊂ V rat

3 if and only if G = C9 or G48, and XG ⊂ V alg
3 if and only if XG is contained in

the Picard locus, in other words if and only if G = C3, C6, C9 or G48.

Here, G48 is the group with GAP label (48, 33). The strata XC9 and XG48 are single closed points,
represented by the curves y3 = x4 − x and y3 = x4 + 1 respectively.

Theorem D shows that XG ⊂ V rat
3 if and only if H3(J)G = 0 for every (equivalently, some) curve

in XG, and that XG ⊂ V alg
3 if and only if H0(J,Ω3

J)
G = 0 for every curve in XG. Thus, for g = 3,

the criteria of Theorems A and B exactly single out the strata XG where κ(C) or κ̄(C) identically
vanishes.

Finally, Shou-wu Zhang has recently announced a proof of a Northcott property for the Beilinson-
Bloch height of the modified diagonal cycle ∆GKS on C3. More precisely, for each g ≥ 3, there
exists an open dense subset Ug ⊂ Mg such that for any X ∈ R and d ∈ N, the number of C ∈ Ug(Q̄)
defined over a number field of degree at most d and with ⟨∆GKS ,∆GKS⟩ < X is finite. In order to
better understand Ceresa vanishing loci in families of curves, it would be of great interest to try to
identify the largest such open dense set Ug, or equivalently, its complement Zg := Mg \ Ug. The
Northcott property implies that any positive dimensional component of V rat

g is contained in Zg,
but there may be other components of Zg as well. Indeed, Theorem C shows that XC3 ⊂ Z3, even
though XC3 ̸⊂ V rat

3 ; see Remark 5.4.

1.4. Structure of paper. In §2 we collect some standard results on Chow groups, Chow motives
and Ceresa cycles. In §3 we prove the cohomological vanishing criteria (Theorems A and B) and give
some examples. In §4 we study the family of Picard curves in detail and prove Theorem C. Finally,
in §5 we introduce the Ceresa vanishing loci V rat

g , V alg
g ⊂ Mg and determine which automorphism

strata they contain in genus 3, proving Theorem D.
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2. Notation and background

2.1. Chow groups. Let k be field. A variety is by definition a separated scheme of finite type
over k. We say a variety is nice if it is smooth, projective and geometrically integral. If X is a
smooth and geometrically integral variety and p ∈ {0, . . . ,dimX}, let CHp(X) denote the Chow
group (with Z-coefficients) of codimension p cycles modulo rational equivalence. If Z ⊂ X is a
closed subscheme of codimension p, we denote its class in CHp(X) by [Z] (using [42, Tag 02QS] if
Z is not integral).

If X is additionally projective, then CHp(X) has a filtration by subgroups

CHp(X)alg ⊂ CHp(X)hom ⊂ CHp(X),

where CHp(X)alg is the subgroup of algebraically trivial cycles (in the sense of [2, §3.1]) and
CHp(X)hom the subgroup of homologically trivial cycles (with respect to a fixed Weil cohomology
theory for nice varieties over k). The Griffiths group is by definition Grp(X) = CHp(X)hom/CH

p(X)alg.
We occasionally write CHp(X) = CHdimX−p(X) and Grp(X) = GrdimX−p(X). If R is a ring, we
write CHp(X)R = CHp(X)⊗Z R and Grp(X)R = Grp(X)⊗Z R.

2.2. Base change, specialization and families. We state three lemmas concerning operations
on cycles. These seem to be well known, so we only sketch the proof in each case.

Lemma 2.1. Let X/k be a nice variety and K/k a (not necessarily finite) extension of fields.
(1) The base change maps CHp(X)Q → CHp(XK)Q and Grp(X)Q → Grp(XK)Q are injective.
(2) If in addition k is algebraically closed, the base change maps CHp(X) → CHp(XK) and

Grp(X) → Grp(XK) are injective.

Proof. The proof is a standard adaptation of [11, Lemma 1A.3, p. 22]. We first prove (2) for
CHp(X) → CHp(XK). Suppose α ∈ CHp(X) has trivial image in CHp(XK). Then α already has
trivial image in CHp(XK′), where K ′ ⊂ K is a subfield that is finitely generated over k, since
the data witnessing triviality in CHp(XK) can be defined over such a subfield. By spreading out,
we can find a smooth integral variety U/k with function field K ′ such that α has trivial image in
CHp(X ×k U). Since k is algebraically closed, there exists a k-point u ∈ U(k). Pulling back along
u defines a left-inverse CHp(X ×k U) → CHp(X) to the map CHp(X) → CHp(X ×k U). It follows
that α is trivial in CHp(X), as desired. The argument for Grp(X) is identical and omitted.

We now prove (1) for CHp(X)Q → CHp(XK)Q. There exists a field L containing both K and
an algebraic closure k̄ of k. It therefore suffices to prove the two base change maps CHp(X)Q →
CHp(Xk̄)Q → CHp(XL)Q are both injective. The first one follows from the fact that for a finite
extension k′/k the pushforward map CHp(Xk′) → CHp(X), when precomposed with the base change
map, is multiplication by [k′ : k]. The second follows from Part (2). The case of Grp(X)Q is again
analogous. □

We now discuss specialization, so let R be a discrete valuation ring with fraction field K and
residue field k. Let X → Spec(R) be a smooth, projective morphism with geometrically integral
fibers, so the generic and special fibers XK and Xk are nice varieties over K and k respectively.
In this setting, Fulton has defined [19, §20.3] a specialization morphism sp: CHp(XK) → CHp(Xk)
for every 0 ≤ p ≤ dim(XK). It has the property that if Z ⊂ X is a closed integral subscheme of
codimension p, flat over R, then sp([ZK ]) = [Zk].

Lemma 2.2. In the above notation, sp sends CHp(XK)alg ⊗Q to CHp(Xk)alg ⊗Q.
4
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Proof. Let C/K be a nice curve with K-points t0, t1 ∈ C(K) and let Z ⊂ (XK)×K C be an integral
closed subscheme of codimension p, flat over C. By [2, Theorem 1] and the remarks thereafter,
it suffices to prove that sp([Zt0 ] − [Zt1 ]) ∈ CHp(Xk)alg ⊗ Q for each such tuple (C, t0, t1, Z). To
this end, we will use the notions of cycles and specializations for (not necessarily smooth) schemes
over a regular base in the sense of [19, §20.1]. Using the semistable reduction theorem [42, Tag
0CDN] and after possibly replacing K by a finite extension, there exists a regular flat proper model
C → Spec(R) of C with semistable special fiber. Then ti extends to a morphism t̃i : Spec(R) → C
with reduction t̄i ∈ Ck(k) landing in the smooth locus of Ck. Let Z be the Zariski closure of Z in
X ×R C, so sp([Z]) = [Zk]. Then sp([Zt0 ]− [Zt1 ]) = sp(Z)t̄0 − sp(Z)t̄1 by [19, Proposition 20.3(b)].
By the Zariski connectedness theorem, the special fiber Ck is connected. Consequently, by resolving
irreducible components of Ck, we can connect t̄0 to t̄1 by a sequence of smooth connected curves:
there exists a finite extension k′/k, a collection of nice curves D1, . . . , Dn over k′, and for each
1 ≤ i ≤ n a pair of points si,1, si,2 ∈ Di(k

′) and a morphism φi : Di → Ck′ such that φ1(s1,1) = t̄1,
φi(si,2) = φi+1(si+1,1) for all 1 ≤ i ≤ n − 1 and φn(sn,2) = t̄2. Consequently, letting W (i) be the
pullback of Zk along φi, we have

sp([Zt0 ]− [Zt1 ])k′ = ([W (1)
s1,1 ]− [W (1)

s1,2 ]) + · · ·+ ([W (n)
sn,1

]− [W (n)
sn,2

]).

Since each term ([W
(i)
si,1 ]−[W

(i)
si,2 ]) lies in CHp(Xk′)alg⊗Q by definition of algebraic triviality, the same

is true for their sum. Taking the pushforward along Xk′ → Xk, we see that [k′ : k]·sp([Zt0 ]−[Zt1 ]) ∈
CHp(Xk)alg, as desired. □

Lemma 2.3. Let X → S be a smooth proper morphism of smooth varieties over a field k of
characteristic zero. Let α be a codimension p cycle on X. Then the locus of points s ∈ S such that
the fiber αs ∈ CHp(Xs)Q is zero (resp. lies in CHp(Xs)alg,Q) is a countable union of closed algebraic
subvarieties of S.

Proof. There exists a countable subfield k0 ⊂ k, a smooth proper morphism X0 → S0 of varieties
over k0 and a cycle α0 on X0 whose base change to k are X → S and α respectively. Since k0 is
countable, S0 has only countably many closed subschemes. Let F be the collection of integral closed
subschemes Z ⊂ S0 such that α0 is zero in CHp(X0,η(Z))Q, where η(Z) ∈ S0 denotes the generic
point of Z. Then we claim that the locus of s ∈ S for which αs ∈ CHp(Xs)Q is zero is exactly the
union

⋃
Z∈F Zk ⊂ S. This follows from Lemmas 2.2 and 2.1; we omit the details, and the similar

argument for algebraic triviality. □

2.3. Chow motives. We recall a few relevant facts about the category Mot(k) of (pure, contravari-
ant) Chow motives M over k with Q-coefficients; see [40] or [36, §2] for basic definitions.

Denote the Lefschetz motive by L, its nth tensor power by Ln and writeM(n) =M⊗Ln. Following
[36, §2.5], the Chow group in codimension p of M is by definition CHp(M) = HomMot(k)(Lp,M). If
M = h(X) where X is smooth projective over k, then CHp(M) = CHp(X)Q. (Beware that we need
to take Q-coefficients on the right hand side.) If C is a nice curve over k and φ : h(C) →M(p−1) a
morphism in Mot(k), we obtain a homomorphism of abelian groups CH1(φ) : CH1(C)Q → CHp(M).
We define CHp(M)alg to be the union of the images of CH1(φ) ranging over all pairs (C,φ) as above.
This coincides with CHp(X)alg ⊗Q when M = h(X), see [2, Corollary 3.13].

Finally, we define motives of fixed points. If G is a finite group acting on a motive M , write MG for
the submotive cut out by the idempotent 1

#G

∑
g∈G g∗ ∈ End(M). We have CHp(MG) = CHp(M)G.

If G acts on a nice variety X, then G acts on h(X) and CHp(X), and CHp(h(X)G) = CHp(X)G⊗Q.
5
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2.4. Chow–Künneth decomposition for abelian varieties. LetA/k be a g-dimensional abelian
variety. Deninger and Murre [17, §3] have constructed a canonical Chow–Künneth decomposition

h(A) =

2g⊕
i=0

hi(A),(2.1)

uniquely characterized by the following property: if (n) : A → A denotes the multiplication-by-n,
then (n)∗ acts on hi(A) via ni for every integer n. On the other hand, Beauville [4] has shown that
there exists a direct sum decomposition CHp(A)Q =

⊕p
s=p−g CH

p
(s)(A), where

CHp
(s)(A) = {α ∈ CHp(A)Q : (n)∗α = n2p−sα ∀n ∈ Z}.(2.2)

The two decompositions are linked by the formula CHp(hi(A)) = CHp
(2p−i)(A). Beauville conjectured

that CHp
(s)(A) = 0 when s < 0, and he proved it when p ∈ {0, 1, g−2, g−1, g} [4, Proposition 3(a)].

Example 2.4. For p = 1, the Beauville decomposition CH1(A)Q = CH1
(0)(A) ⊕ CH1

(1)(A) is the
decomposition of a divisor class into symmetric and anti-symmetric classes.

Lemma 2.5. If A/k is an abelian variety, then CHp(h1(A))alg = CHp(h1(A)) for all p ≥ 0.

Proof. By Lemma 2.1(1), we may assume k is algebraically closed. The only nonzero Chow group of
h1(A) is CH1(h1(A)) = CH1

(1)(A), the set of anti-symmetric elements of CH1(A)Q. The lemma fol-
lows from the fact that CH1

(1)(A) = CH1(A)hom⊗Q and that homological and algebraic equivalence
coincide for codimension-1 cycles. □

2.5. The Lefschetz decomposition for abelian varieties. Let A/k be an abelian variety with
polarization λ : A → A∨. Let ℓ ∈ CH1

(0)(A) be the unique element such that 2ℓ = (1, λ)∗P,
where P ∈ Pic(A × A∨) is the Poincaré bundle. Künnemann has shown [25, Theorem 5.2] that
intersecting with ℓg−i induces an isomorphism hi(A) → h2g−i(A)(g − i) for all 0 ≤ i ≤ g. This
induces a Lefschetz decomposition of the Chow–Künneth components hi(A), see [25, Theorem 5.1].
We are chiefly interested in the components h3(A) and h2g−3(A) when g ≥ 2; in that case the
Lefschetz decomposition has the form h3(A) = h3prim(A)⊕ℓ ·h1(A) and h2g−3(A) = h2g−3

prim (A)⊕ℓg−2 ·
h1(A). It has the property that the isomorphism ℓg−3 : h3(A) → h2g−3(A)(g − 3) is a direct sum
of isomorphisms h3prim(A) → h2g−3

prim (A) and ℓ · h1(A) → ℓg−2h1(A). Taking Chow groups, we get a
decomposition CHg−1(h2g−3(A)) = CHg−1(h2g−3

prim (A))⊕ CHg−1(ℓg−2 · h1(A)).

2.6. Beauville components of C. Consider a nice curve C of genus g ≥ 2 over k with Jacobian J .
Let e be a degree-1 divisor on C and embed C in J using the Abel–Jacobi map based at e, sending
x ∈ C to the divisor class of x− e. Decompose [C] = [C]0 + · · ·+ [C]g−1 with [C]s ∈ CHg−1

(s) (J). In
this subsection we analyze the component [C]1 more closely, whose vanishing is equivalent to the
vanishing of κ(C).

For α ∈ CHp(J) and β ∈ CHq(J), the Pontryagin product α⋆β is the pushforward of α×β under
the addition map J × J → J . If n is a positive integer let α⋆n be the n-fold Pontryagin product of
α with itself. Let KC ∈ CH0(C) denote the canonical divisor class and let xe ∈ J(k) be the point
corresponding to the degree-0 divisor class [(2g − 2)e]−KC .

Proposition 2.6. We have an equality in CH1
(1)(J):

(2g − 2) · [C]⋆(g−2)
0 ⋆ [C]1 = [C]⋆(g−1) ⋆ ([0]− [xe]).(2.3)

Here we view [0]− [xe] as an element of CH0(J).
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Proof. If D is a degree g − 1 divisor class on C, let ΘD be the image of the map Symg−1(C) → J

defined by x 7→ [x]−D. Then [C]⋆(g−1) = (g − 1)![Θ(g−1)e]. By Riemann–Roch,

(−1)∗[Θ(g−1)e] = [ΘKC−(g−1)e] = [Θ(g−1)e] ⋆ [xe].

Combining the last two sentences shows that (−1)∗([C]
⋆(g−1)) = [xe] ⋆ [C]

⋆(g−1).
Since Pontryagin product sends CHg−p

(s) (J)× CHg−q
(t) (J) to CHg−p−q

(s+t) (J) and since CH1
(s) ̸= 0 only

if s = 0, 1, we calculate that [C]⋆(g−1) = [C]
⋆(g−1)
0 + (g − 1) · [C]⋆(g−2)

0 ⋆ [C]1. Applying (−1)∗ and
[xe]⋆ to the previous identity, we obtain

(−1)∗[C]
⋆(g−1) = [C]

⋆(g−1)
0 − (g − 1) · [C]⋆(g−2)

0 ⋆ [C]1,

[xe] ⋆ [C]
⋆(g−1) = [xe] ⋆ [C]

⋆(g−1)
0 + (g − 1) · [C]⋆(g−2)

0 ⋆ [C]1.

Note that [x]⋆ acts trivially on CH1
(1)(J) since ([x]− [0]) ∈ ⊕s≥1CH

g
(s)(J) by the explicit description

of the Beauville decomposition for zero-cycles [4, bottom of p. 649]. Equating the right hand sides
of the two centered equations proves that (2g − 2) · [C]⋆(g−2)

0 ⋆ [C]1 = [C]
⋆(g−1)
0 ⋆ ([0]− [xe]). Since

[C]
⋆(g−1)
s ⋆ ([0]− [xe]) ∈ ⊕t≥s+1CH

1
(t)(J) = {0} for all s ≥ 1, it follows that [C]⋆(g−1)

0 ⋆ ([0]− [xe]) =

[C]⋆(g−1) ⋆ ([0]− [xe]), concluding the proof. □

Corollary 2.7. Suppose that [C]1 = 0 in CH1(J)Q. Then (2g − 2)e = KC in CH0(C)Q.

Proof. If [C]1 = 0, then [C]⋆(g−1) ⋆ ([0] − [xe]) = 0 by (2.3). On the other hand, [C]⋆(g−1) =
(g − 1)![Θ(g−1)e] is multiple of a theta divisor, in the notation of Proposition 2.6. Since Θ(g−1)e

defines a principal polarization, the map x 7→ [Θ(g−1)e+x] − [Θ(g−1)e] = [Θ(g−1)e] ⋆ ([x] − [0]) is
an isomorphism φ : J(k) → CH1(J)hom. Since φ(xe) is torsion, it follows that xe ∈ J(k) is itself
torsion, as desired. □

The principal polarization defines an ample class ℓ ∈ CH1
(1)(J), which induces a Lefschetz decom-

position h2g−3(J) = h2g−3
prim (J)⊕ ℓg−2 · h1(J) as in §2.5.

Corollary 2.8. Suppose that (2g − 2)e = KC in CH0(C)Q. Then [C]1 ∈ CHg−1(h2g−3
prim (J)).

Proof. By definition and the discussion in §2.4, [C]1 ∈ CHg−1
(1) (J) = CHg−1(h2g−3(J)). Since xe

is torsion, (n)∗([0] − [xe]) = 0 for some integer n ≥ 1. The Beauville decomposition implies that
[0] = [xe] in CH0(J)Q. Therefore (2.3) shows that [C]

⋆(g−2)
0 ⋆ [C]1 = 0. Using properties of the sl2-

action on CH∗(J)Q (in the sense of [31, §1.3]), this implies that ℓ · [C]1 = 0. Since CHg−1(h2g−3
prim (J))

equals the kernel of ℓ · (−) : CHg−1(h2g−3(J)) → CHg−1(h2g−1(J)(1)), the corollary follows. □

2.7. Ceresa cycles. Let C/k be a nice curve of genus g ≥ 2 with Jacobian J . Let e be a degree-1
divisor on C and let ιe : C → J be the Abel–Jacobi map based at e. We define κC,e ∈ CH1(J)
using the formula (1.1) from the introduction. Using the Beauville decomposition (2.2) to write
[C] = [ιe(C)] =

∑g−1
s=0[C]s with [C]s ∈ CHg−1

(s) (J), we calculate that

κC,e = κ(C) = 2[C]1 + 2[C]3 + · · ·+ 2[C]2⌊ g−2
2

⌋+1(2.4)

in CH1(J)Q.

Lemma 2.9. If κC,e is torsion, then (2g − 2)e−KC is torsion.

Proof. If κC,e is torsion, then [C]1 = 0 by (2.4). We conclude using Corollary 2.7. □
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Lemma 2.10. If e, e′ ∈ CH0(C) are degree-1 divisors such that e − e′ is torsion, then [ιe(C)] =
[ιe′(C)] and κC,e = κC,e′ in CH1(J)Q.

Proof. Suppose e−e′ has order n in CH0(C). Then (n)◦ιe = (n)◦ιe′ , hence (n)∗([ιe(C)]−[ιe′(C)]) =
0 in CH1(J). On the other hand, the Beauville decomposition of §2.3 shows that (n)∗ : CH1(J)Q →
CH1(J)Q is an isomorphism. Therefore [ιe(C)] − [ιe′(C)] is torsion. Hence κC,e − κC,e′ is torsion
too. □

Let κ(C) be the image of κC,e in CH1(J)Q for any choice of degree-1 divisor e on C such that
(2g−2)e = KC in CH0(C)Q. Lemma 2.10 shows that this class is independent of the choice of e. (If
k is not algebraically closed and no such e exists over k, there exists a unique class κ(C) ∈ CH1(J)Q
such that κ(C)k̄ = κ(Ck̄) in CH1(Jk̄)Q, since Chow groups with Q-coefficients satisfy Galois descent.)
We let κ̄(C) be the image of κ(C) in Gr1(J)Q. Since all degree-1 divisors e on C are algebraically
equivalent, κ̄(C) is also the image of κe(C) in Gr1(J)Q for any degree-1 divisor, not necessarily with
the property that (2g − 2)e = KC in CH0(C)Q.

Suppose now that (2g − 2)e = KC in CH0(C)Q. Since [ιe(C)] ∈ CH1(J)Q is independent of the
choice of e, the same is true for the classes [C]s. In particular, they are Aut(C)-invariant.

Proposition 2.11. In the above notation, κ(C) = 0 in CH1(J)Q if and only if [C]1 = 0 in CH1(J)Q
if and only if [C]s = 0 for all s ≥ 1. Moreover κ̄(C) = 0 in Gr1(J)Q if and only if [C]1 ∈ Gr1(J)Q
if and only if [C]s = 0 in Gr1(J)Q for all s ≥ 1.

Proof. To prove the claims in the first sentence, it suffices to prove [C]1 = 0 implies [C]s = 0 for all
s ≥ 1. This follows from the third centered equation of [44, Theorem 1.5.5]. The proof for κ̄(C) is
identical. □

Proposition 2.11 shows that the vanishing of κ(C) is equivalent to the vanishing of [C]1. The
next lemma isolates a summand of the Chow group that contains [C]1. Recall that if M is a direct
summand of h(J), then CHp(M) is naturally a summand of CHp(h(J)) = CHp(J)Q.

Lemma 2.12. In the above notation, [C]1 ∈ CHg−1(h2g−3
prim (J)Aut(C)) ⊂ CH1(J)Q.

Proof. Combine Corollary 2.8 and the fact that [C]1 is Aut(C)-invariant. □

3. Vanishing criteria in the Chow and Griffiths groups

The proof of Theorem A is quite short, but uses in a crucial way Kimura’s notion of finite dimen-
sional Chow motives [24].2

Proof of Theorem A. We use the definitions and notations of §2.3 and §2.7. Choose a degree-
1 divisor e such that (2g − 2)e = KC in CH0(C)Q and decompose [ιe(C)] =

∑g−1
s=−1[C]s with

[C]s ∈ CHg−1
(s) (J). Let G = Aut(C). Lemma 2.12 shows that [C]1 ∈ CHg−1(h2g−3

prim (J)G).

By the hypothesis and the Lefschetz isomorphism, H∗(h2g−3
prim (J)G) = H2g−3

prim (J)G = 0. Since any
summand of the motive of an abelian variety is finite-dimensional in the sense of Kimura [24,
Example 9.1], it follows from Kimura’s [24, Corollary 7.3] that h2g−3

prim (J)G = 0 and hence [C]1 = 0

in CHg−1(J)Q. By Proposition 2.11, we conclude that κ(C) = 0. □

Example 3.1. There is exactly one non-hyperelliptic genus 3 curve over C for which the criterion
of [37] applies, namely the curve y3 = x4+1. The curve y3 = x4+x satisfies the weaker hypothesis
of Theorem A (as was observed in [6]), so we deduce that κ(C) = 0 for this curve as well. Beauville
and Schoen studied the specific geometry of this curve and showed that κ̄(C) = 0 [7].

2Congling Qiu and Wei Zhang have found a very similar proof (personal communication).
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Example 3.2. The genus 4 curve y3 = x5 +1 satisfies H3(J)Aut(C) = 0 [28, proof of Theorem 3.3],
so κ(C) = 0.

Theorem B will follow from the next proposition. In that proposition and its proof, if X is a nice
variety over C we write H∗(X) for the singular cohomology of X(C) with Q-coefficients, seen as an
object in the category of Hodge structures.

Proposition 3.3. Let C be a smooth, projective, integral curve over C with Jacobian J and let
G ⊂ Aut(C) be a subgroup with H0(J,Ω3

J)
G = 0. Then there exists an abelian variety A/C such

that H3(J)G ≃ H1(A)(−1). If the Hodge conjecture holds for J ×A, then h3(J)G ≃ h1(A)(−1) and
κ̄(C) = 0.

Proof. Let N1H3(J) be the largest sub-Hodge structure of H3(J) of type (1, 2) + (2, 1). The po-
larization on H1(J) induces a polarization on N1H3(J) and so N1H3(J) ≃ H1(B)(−1) for some
abelian variety B/C. The assumptions and the Hodge decomposition imply that H3(J)G is a Hodge
structure of type (1, 2) + (2, 1). It follows that H3(J)G ⊂ N1H3(J), so there exists an abelian
subvariety A ⊂ B with H3(J)G ≃ H1(A)(−1).

We now show that the Hodge conjecture for J × A implies the claims of the final sentence. Fix
mutually inverse isomorphisms of Hodge structures ϕ : H3(J)G → H1(A)(−1) and ψ : H1(A)(−1) →
H3(J). By the Hodge conjecture, there exist morphisms of motives Φ: h3(J)G → h1(A)(−1) and
Ψ: h1(A)(−1) → h3(J)G (in other words, cycles on J ×A with certain properties) with H∗(Φ) = ϕ
and H∗(Ψ) = ψ. Since h1(A)(−1) and h3(J)G are Kimura finite-dimensional [24, Example 9.1] and
H∗(Φ) ◦ H∗(Ψ) and H∗(Ψ) ◦ H∗(Φ) are the identity, it follows from [24, Proposition 7.2(ii)] (see
also [3, Corollaire 3.16]) that Ψ ◦ Φ and Φ ◦ Ψ are themselves isomorphisms. Hence Φ and Ψ are
isomorphisms too and we conclude that h3(J)G ≃ h1(A)(−1).

Using the Lefschetz isomorphism h2g−3(J) ≃ h3(J)(−g + 3) of [25, Theorem 5.2], we obtain an
isomorphism h2g−3(J)G ≃ h1(A)(−g + 2). Similarly to the proof of Theorem A, we decompose
[ιe(C)] =

∑g−1
s=0[C]s with [C]s ∈ CHg−1

(s) (J) and observe that the class [C]1 lies in CHg−1
(1) (J)G =

CHg−1(h2g−3(J)G). Lemma 2.5 combined with the isomorphism h2g−3(J)G ≃ h1(A)(−g + 2)

shows that CHg−1(h2g−3(J)G) = CHg−1(h2g−3(J)G)alg, hence every element of CHg−1
(1) (J)G lies

in CHg−1(J)alg,Q. Therefore [C]1 ∈ CHg−1(J)alg,Q, hence the image of [C]1 in Gr1(J)Q vanishes.
Proposition 2.11 then implies that κ̄(C) vanishes too. □

Proof of Theorem B. Since C can be defined over a countable field and since such a field can be
embedded in C, Lemma 2.1 shows that we may assume k = C. We conclude by Proposition 3.3
applied to G = Aut(C). □

Example 3.4. Let C : y3 = x4 + ax2 + bx+ c be a Picard curve. Then H0(C,Ω1
C) ≃ χ⊕ χ⊕ χ2 as

C3-representations, where χ is a character of order 3. It follows that H0(J,Ω3
J)

Aut(C) = 0, so that
the condition of Theorem B is satisfied. We consider these curves in detail in the next section.

We exhibit two families of examples of Theorem B in genus 4. It would be interesting to study
these families in more detail (along the lines of what we do in the next section for Picard curves).

Example 3.5. Consider for every t ∈ C \ {0, 1,−1} the µ5-cover of P1 with equation

C : y5 = x3(x− 1)2(x− t).

By [32, Lemma 2.7], the µ5-representation H0(C,ΩC) is the direct sum of the four nontrivial char-
acters. It follows that H0(J,Ω3

J)
µ5 = 0 and H3(J)µ5 is isomorphic to H1(A)(−1), for some abelian

surface A (using Proposition 3.3). We have D5 ⊂ Aut(C) by [21, Corollary 1]. By the Kani-Rosen
formula [22, Theorem B], the Jacobian J is isogenous to a product of abelian surfaces of the form
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Jac(C/τ), for some involution τ . The Hodge conjecture in any codimension is known for products
of abelian surfaces [38, Theorem 3.15], so κ̄(C) = 0 by Proposition 3.3.

Example 3.6. The general µ3-cover of P1 with equation

y3 = x2(x− 1)2(x3 + ax2 + bx+ c),

has genus 4 and there is an isomorphism of µ3-representations H0(C,ΩC) ≃ χ ⊕ χ ⊕ χ2 ⊕ χ2. It
follows that H0(J,Ω3

J)
µ3 = 0, and the abelian variety A from Proposition 3.3 is 4-dimensional. If

the Hodge conjecture holds for the 8-dimensional J ×A, then κ̄(C) = 0.

4. Picard curves

4.1. Generalities. Let k be a field of characteristic zero. A Picard curve over k is by definition a
nice curve with an affine model y3 = f(x) = x4+ax2+ bx+ c for some a, b, c ∈ k. Conversely, given
such a polynomial f(x) ∈ k[x] of nonzero discriminant, the projective closure of y3 = f(x) in P2

k is
a nice curve denoted by Cf . It has a unique point at infinity P∞, which is k-rational.

For every third root of unity ω ∈ k̄, the map (x, y) 7→ (x, ωy) defines an automorphism of Cf,k̄.
We view µ3 as a subgroup of Aut(Cf,k̄) in this way. Then µ3 also acts on the Jacobian Jf,k̄ by
taking images of divisors.

The discriminant of f has the following expression:

disc(f) = −4a3b2 − 27b4 + 16a4c+ 144ab2c− 128a2c2 + 256c3.(4.1)

We view f as the dehomogenization F (x, 1) of the quartic form F (X,Z) = X4+aX2Z2+bXZ3+cZ4,
and we define I(f) and J(f) to be the usual I- and J-invariants attached to F , as in [9, §2]. Their
explicit formulae in our case are:

I(f) = a2 + 12c,

J(f) = 72ac− 2a3 − 27b2.

The 19th century invariant theorists observed the identity J(f)2 = 4I(f)3 − 27 · disc(f), which can
be verified by direct computation. Therefore Pf := (I(f), J(f)) is a k-point on the elliptic curve

Ef : y
2 = 4x3 − 27 · disc(f).

4.2. Ceresa vanishing criteria. Since (2g− 2)P∞ = 4P∞ is canonical, we may use P∞ to embed
Cf in its Jacobian Jf and define the Ceresa cycle κCf ,P∞ ∈ CH1(Jf ) as in the introduction; we
denote it by κf for simplicity. Recall that κ(Cf ) denotes the image of κf in CH1(Jf )Q and κ̄(Cf ) its
image in Gr1(Jf )Q. Theorem C follows from the following slightly stronger theorems, whose proofs
will take up the rest of this section.

Theorem 4.1. There exists an integer N ≥ 1 (depending neither on f nor k) such that N · κf ∈
CH2(Jf )alg for every Picard curve Cf over every algebraically closed field k of characteristic zero.

Theorem 4.2. The Ceresa cycle κf ∈ CH1(J) is torsion if and only if Pf ∈ Ef (k) is torsion.
Moreover, if k is algebraically closed, there exists an integer M ≥ 1 with the following property:
if Cf is a Picard curve and κf is torsion, then ord(κf ) divides M · ord(Pf ) and ord(Pf ) divides
M · ord(κf ).

Theorem 4.1 will be proven in §4.4, and Theorem 4.2 will be proven in §4.7. A standard argument
using Lemma 2.1 shows that we may assume k = C. So in the remainder of §4, all varieties will be
over C, and cohomology will be singular cohomology.
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Remark 4.3. Theorem 4.2 generalizes [26, Theorem 5.16], which considered the special case
where b = 0. There, we exploited the bielliptic cover to show that the Ceresa cycle maps via
a correspondence to a multiple of the point Qf = (a2 − 4c, a(a2 − 4c)) on the elliptic curve
E′

f : y
2 = x3 + 16 · disc(f). This is compatible with the general case since there is a 3-isogeny

ϕf : E
′
f → Ef , and one checks using the explicit formula for ϕf [8, Equation (2)] that ϕf (Qf ) = Pf .

Remark 4.4. Is it always the case that κf ̸= 0? (Recall that κf lies in the Chow group with
Z-coefficients.) We cannot conclude this from our proof of Theorem 4.2 below since we have worked
with Q-coefficients, and we make use of various isogenies whose degrees we do not control.

4.3. Multilinear algebra. Our first goal (Proposition 4.7) is to explicitly identify the abelian
variety A of Proposition 3.3 for Picard curves.

Write O = Z[ω] for the ring of Eisenstein integers with ω2+ω+1 = 0 and let K = Q(
√
−3) be its

fraction field. Let C be a Picard curve over C with Jacobian variety J . The µ3-action on C extends
to an embedding O ⊂ End(J). Using this action, the singular cohomology group H1(J ;Z) is a free
O-module of rank 3, and H1(J ;Q) is a 3-dimensional K-vector space. The next lemma says that
the criterion of Theorem B is always satisfied for Picard curves.

Lemma 4.5. H0(J,Ω3
J)

µ3 = 0 and the Hodge structure H3(J ;Q)µ3 is of type (1, 2) + (2, 1).

Proof. Since H0(J,Ω3
J) ≃

∧3H0(C,Ω1
C), the first claim follows from a calculation with differentials

(Example 3.4). The second claim follows from the Hodge decomposition for H3(J ;Q). □

We may view H1(J ;Q) either as a K-vector space or Q-vector space; when we perform tensor
operations, we will add the subscript K when we view it as a K-vector space, and add no subscript
otherwise. For example, cup product induces an isomorphism

∧3H1(J ;Q) ≃ H3(J ;Q), and we will
use this identification without further mention.

The universal property of exterior powers induces a canonical Q-linear surjection
∧3H1(J ;Q) →∧3

K H1(J ;Q). It is well known (see [33, Lemma 12(i)] or [16, Lemma 4.3]) that this map admits a
canonical splitting, which we use to view

∧3
K H1(J ;Q) as a direct summand of H3(J ;Q).

Lemma 4.6. We have H3(J ;Q)µ3 =
∧3

K H1(J ;Q) inside H3(J ;Q). Moreover dimQH3(J ;Q)µ3 = 2.

Proof. It suffices to prove the statements after tensoring with C. Let g ∈ µ3 ⊂ Aut(C) be a nontrivial
element. The action of g on H1(J ;Q) has eigenvalues (with multiplicity) ω, ω, ω, ω2, ω2, ω2 so we
can write H1(J ;C) = V1 ⊕ V2 where Vi is the ωi-eigenspace. Since a three element subset of these
eigenvalues have product 1 if and only if they are all equal, H3(J ;C)µ3 = (

∧3 V1)⊕ (
∧3 V2). On the

other hand, an argument similar to the proof of [16, Proposition 4.4] shows (
∧3

K H1(J ;Q))⊗K C =∧3
K⊗CH1(J ;C) = (

∧3 V1)⊕ (
∧3 V2), proving the equality. The explicit description of this subspace

shows that it is 2-dimensional over Q. □

Let E be the elliptic curve with Weierstrass equation y2 = x3 + 1.

Proposition 4.7. There is an isomorphism of Hodge structures H3(J ;Q)µ3 ≃ H1(E,Q)(−1).

Proof. Since there exists a unique elliptic curve up to isogeny with endomorphism algebra K, there
exists a unique Hodge structure of dimension 2, type (0, 1) + (1, 0) and carrying an action of K.
Since both H3(J ;Q)µ3 and H1(E;Q) have these properties (the former by Lemma 4.6), they must
be isomorphic, and we conclude using Lemma 4.6. □
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4.4. Weil classes and Schoen’s theorem. Our next goal is to upgrade the isomorphism of
Proposition 4.7 to an isomorphism in the category of Chow motives, and hence deduce (using
Proposition 3.3) the vanishing of κ̄(C) in the Griffiths group. We use the following special case of
a result of Schoen, which crucially uses the assumption that the endomorphism algebra of J × E
contains K = Q(ω):

Theorem 4.8 (Schoen). The Hodge conjecture holds for J × E.

Proof. Since J × E is four-dimensional, it suffices to prove Hodge classes in H4(J × E;Q) are
algebraic. By [34, Theorem (0.1), Part (i) and (iv)], such Hodge classes are sums of products of
divisor classes (which are algebraic) and Weil classes WK :=

∧4
K H4(J × E;Q) ⊂ H4(J × E;Q).

Since K = Q(ω) and the embedding K ⊂ End(J × E)⊗Q can be chosen to have signature (2, 2),
Schoen has shown in [39] that the classes in WK are algebraic, concluding that all Hodge classes of
H4(J × E;Q) are algebraic. □

Recall from §2.3 our conventions on motives, the canonical Chow–Künneth components hi(J) and
hj(E), and the motive of fixed points of a finite group action.

Corollary 4.9. There is an isomorphism h3(J)µ3 ≃ h1(E)(−1).

Proof. This follows from Proposition 3.3, using Proposition 4.7 and Theorem 4.8. □

Corollary 4.10. If C is a Picard curve over C, then κ̄(C) = 0.

Proof. This follows from Proposition 3.3, using Proposition 4.7 and Theorem 4.8. □

Proof of Theorem 4.1. Consider the parameter space S0 = {(a, b, c) | disc(f) ̸= 0} ⊂ A3
Q of Picard

curves. Let η be the generic point of S0 with function field k(η) = Q(a, b, c), let Cη be the generic
Picard curve over k(η) with Jacobian Jη, and let κCη ∈ CH1(Jη) be the Ceresa cycle of Cη based
at the point at infinity. Fix an embedding j : k(η) → C. By Corollary 4.10, the base change of κCη

along j is torsion in the Griffiths group. By Lemma 2.1, this implies κCη is itself torsion in Gr1(Jη).
Let N0 be the finite order of κCη in Gr1(Jη). By spreading out, it follows that κCf

is N0-torsion in
Gr1(Jf ) for all f in an open dense subset U0 ⊂ S0. By applying the same argument to the generic
points of the irreducible components of S0 \ U0, there exists an open dense U1 ⊂ S0 such that κCf

is N1-torsion in Gr1(Jf ) for all f in U1. Repeating this process, we obtain a sequence of open
subsets U0 ⊂ U1 ⊂ · · · ⊂ S0 whose complements have strictly decreasing codimension. Therefore
this sequence must terminate after finitely many steps hence there exists an integer N such that
κCf

is N -torsion in Gr1(Jf ) for all f ∈ S0(k) over every algebraically closed field of characteristic
zero. □

The remainder of the section is devoted to proving Theorem 4.2. To this end, we will analyze the
Abel–Jacobi image of κf (the “normal function” associated to κf ) in the next two subsections.

4.5. The Abel–Jacobi map. If X is a smooth variety over C, we will use the notion of an integral
(respectively rational) variation of (pure) Hodge structures over the complex manifold X(C), called
a Z-VHS (respectively Q-VHS) for short; see [43, §5.3.1] for definitions. If V is a Hodge structure
of odd weight 2k − 1, its intermediate Jacobian J(V ) is the complex torus

(V ⊗Z C)/(F k + Vτ ),

where F k ⊂ V ⊗Z C is a part of the descending Hodge filtration and Vτ denotes the quotient of
V by its torsion subgroup. More generally, if V is a Z-VHS of weight 2k − 1 over X(C), we can
define its intermediate Jacobian J(V) → X(C), a relative complex torus whose fibers over points
x ∈ X(C) are the classical intermediate Jacobians J(Vx), see [43, §7.1.1]. If V,W are two Z-VHS
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of odd weight, then J(V(p)) = J(V) for all p ∈ Z and a morphism V → W of Z-VHS induces a
homomorphism of (relative) complex tori J(V) → J(W).

If X/C is a nice variety and 0 ≤ p ≤ dim(X), we write Jp(X) = J(H2p−1(X(C);Z)). In this
situation there is an Abel–Jacobi map

AJpX : CHp(X)hom → Jp(X),(4.2)

defined in [43, §7.2.1]. Moreover, if S/C is a smooth variety, π : X → S a smooth projective
morphism with geometrically integral fibres and p ∈ Z≥0, then Rpπ∗Z (pushforward of the constant
sheaf in the analytic topology) has the structure of a Z-VHS over S(C). If Z is a codimension p
cycle on X all of whose components are flat over S, and such that Zs ∈ CHp(Xs)hom for every
s ∈ S(C), then Griffiths has shown that there exists a holomorphic section AJ(Z) of the relative
complex torus J(Rpπ∗Z) → S(C) with the property that AJ(Z)s = AJpX(Zs) for all s ∈ S(C); this
is called the normal function associated to Z.

We record the fact that Abel–Jacobi maps are compatible with correspondences. Let X,Y be nice
varieties over C and let γ ∈ CHr+dim(X)(X × Y ) be a correspondence of degree r. This induces for
every p ≥ 0 a homomorphism γ∗ : CH

p(X) → CHp+r(Y ) via the formula α 7→ πY,∗(π
∗
X(α) ·γ), where

πX : X ×Y → X and πY : X ×Y → Y denote the projections. The same formula defines morphism
of Hodge structures Hp(X;Z) → Hp+2r(Y )(r) for every p, hence a homomorphism of complex tori
γ∗ : J

p(X) → Jp+r(Y ).

Lemma 4.11. In the above notation, γ∗ sends CHp(X)hom to CHp+r(Y )hom. Moreover for every
α ∈ CHp(X)hom, γ∗(AJ

p
X(α)) = AJp+r

Y (γ∗(α)).

Proof. The first sentence follows from the compatibility of the cycle class map with correspondences
[43, Proposition 9.21]. To prove the compatibility of the Abel–Jacobi map with correspondences, it
suffices to prove the compatibility with pullbacks, pushforwards and intersection product. The case
of pullback is elementary, using the definition of AJpX in terms of extensions of Hodge structures,
see [14, §2.2]. The case of pushforward follows from that of pullback and Poincare duality. Finally,
compatibility with intersection product follows from [43, Proposition 9.23]. □

Let S = {(a, b, c) | disc(f) ̸= 0} ⊂ A3
C be the parameter space of Picard curves over C. We will

identify C-valued points of S with polynomials f = x4+ax2+bx+c ∈ C[x] of nonzero discriminant.
Let C → S be the universal Picard curve, and let π : J → S its relative Jacobian variety. The point
at infinity defines a section P∞ of C. Let κC ∈ CH1(J ) be the universal Ceresa cycle with respect
to this section. (Comparing with our earlier notation, we have Cf = Cf and κC,f = κf for every
f ∈ S(C).)

Let V = R3π∗Z be the Z-VHS on S(C) interpolating the cohomology groups H3(Jf ;Z) for f ∈
S(C). Then the normal function AJ(κC) is a section of J(V) → S(C) interpolating AJ2Jf (κf ) for all
f ∈ S(C).

Proposition 4.12. If f ∈ S(C), then κf ∈ CH2(Jf )hom is torsion if and only if AJ2Jf (κf ) ∈ J2(Jf )

is torsion. The torsion order of κf , if finite, equals the torsion order of AJ2Jf (κf ).

Proof. Let E be the elliptic curve y2 = x3+1. Corollary 4.9 shows that there exists a correspondence
γ ∈ CH2(E × J) such that γ∗ induces isomorphisms CH1(E)Q → CH2(J)µ3

Q and H1(E;Q) →
13



H3(J ;Q)µ3(1). By Lemma 4.11 these form a commutative diagram:

CH1(E)hom,Q J1(E)⊗Q

CH2(Jf )
µ3

hom,Q J2(Jf )
µ3 ⊗Q

AJ

γ∗ γ∗

AJ

All arrows except the horizontal bottom one are isomorphisms of abelian groups. The same is
therefore true for the bottom one AJ: CH2(Jf )

µ3

hom,Q → J2(Jf ) ⊗ Q. Since κf ∈ CH2(Jf )
µ3

hom, we
conclude that κf is torsion if and only if AJ2Jf (κf ) is. The last claim follows from the fact that AJ2Jf
is injective on torsion subgroups by a result of Murre [35, Theorem 10.3]. □

4.6. Identifying the complex torus J(Vµ3). The µ3-action on C induces, via functoriality, a
µ3-action on J , V and J(V). The subsheaf of fixed points Vµ3 has the structure of a Z-VHS.
The connected component of the identity J(V)µ3,◦ of J(V)µ3 is a relative complex torus over S(C).
Moreover, the natural homomorphism J(Vµ3) → J(V) induces an isomorphism onto J(V)µ3,◦.

Lemma 4.13. The multiple 3 ·AJ(κC) lands in J(V)µ3,◦.

Proof. Since the Ceresa cycle κC is µ3-invariant, AJ(κC) lands in J(V)µ3 . The norm map N: J(V) →
J(V), defined by x 7→ x + ω · x + ω2 · x, lands in J(V)µ3,◦, since the image must be connected and
µ3-invariant. We conclude that N(AJ(κC)) = 3 ·AJ(κC) lands in J(V)µ3,◦. □

Therefore 3 ·AJ(κC) defines a section of J(V)µ3,◦, hence we may view it as a section of the complex
torus J(Vµ3) → S(C) in what follows. We study this relative complex torus (up to isogeny) in the
next two propositions.

Let E → S be the relative elliptic curve with Weierstrass equation y2 = 4x3 − 27 · disc(f). Recall
that we write O = Z[ω] and K = Q(ω).

Proposition 4.14. The relative complex torus J(Vµ3) → S is isogenous to the relative complex
torus E(C) → S(C).

Proof. The Z-VHS R1π∗Z interpolating the cohomology groups H1(Jf ;Z) comes equipped with an
action of O, and cup product induces an isomorphism

∧3R1π∗Z ≃ R3π∗Z = V. Let W =
∧3

O R
1π∗Z

(the third exterior product of R1π∗Z, viewed as a sheaf of O-modules), a Z-VHS with an O-action.
Lemma 4.6 shows that W⊗Q ≃ Vµ3 ⊗Q, so J(W) and J(Vµ3) are isogenous.

To analyze J(W), we analyze the Z-VHS W(1) more closely. It has an O-action by construction,
Lemma 4.6 shows that it has constant rank 2, and Lemma 4.5 shows that it has type (1, 0)+ (0, 1).
Since O has class number 1, there exists a unique Z-Hodge structure with these properties, hence
Wf (1) ≃ H1(E;Z) for every f ∈ S(C), where E is the elliptic curve with Weierstrass equation
y2 = x3 + 1.

Therefore J(W) → S(C) is an isotrivial family of elliptic curves: analytically locally on S(C), it is
isomorphic to E(C)× S(C) → S(C). It follows that the sheaf of local isomorphisms between J(W)
and E(C)×S(C) is an Aut(E)-torsor in the analytic topology on S(C). Since Aut(E) ≃ µ6 is finite,
this torsor is the analytification of an étale µ6-torsor on S.

To analyze étale µ6-torsors on S, consider the following exact sequence induced by the Kummer
exact sequence in étale cohomology:

Gm(S)
(−)6−−−→ Gm(S) → H1

et(S, µ6) → Pic(S)[6] → 0.

14



The Picard group Pic(S) vanishes, being a quotient of Pic(A3
C), hence the outer term in the sequence

vanishes. We claim that Gm(S) = H0(S,OS)
× = {c · discn | c ∈ C×, n ∈ Z}. Indeed, every c · discn

is clearly a unit in H0(S,OS). Conversely, given a unit f ∈ H0(S,OS), seen as a rational function
on A3

C, its divisor div(f) of zeros and poles must be supported on the zero locus of disc. Since
disc ∈ C[a, b, c] is irreducible, div(f) = n · [{disc = 0}] for some n ∈ Z. Then div(f/discn) = 0 as a
rational function on A3

C, hence f/discn is a unit in C[a, b, c], hence f/discn ∈ C×, proving the claim.
We conclude that the group H1

et(S, µ6) classifying µ6-torsors is generated by the image of disc.
Let Ei → S be the relative elliptic curve with equation y2 = x3+disc(f)i. The previous paragraph

shows that J(W) is isomorphic to Ei(C) for some i ∈ {0, 1, 2, 3, 4, 5}. We show that i = 1, using
our previous results on bielliptic Picard curves in [26]. Let T ⊂ S be the closed subscheme where
b = 0, parametrizing even quartic polynomials f = x4 + ax2 + c. If f ∈ T (C), the µ3-action on
Cf extends to a µ6-action. A calculation shows disc|T = 16c(−a2 + 4c)2. By applying the singular
cohomology realization functor to [26, Theorem 5.1], the relative complex torus J((V|T (C))

µ6) →
T (C) is isogenous to E1(C)|T (C) → T (C). Since J((V|T (C))

µ6) is a subtorus of J((V|T (C))
µ3) of the

same dimension, they must be equal, hence J(W)|T (C) is isogenous to E1(C)|T (C) over T (C). On the
other hand, let i ∈ {0, 1, 2, 3, 4, 5} be such that J(W) ≃ Ei(C). Then J(W)|T (C) ≃ Ei(C)|T (C), hence
E1(C)|T (C) is isogenous to Ei(C)|T (C).

We show that the latter can happen only if i = 1. Indeed, let φ : E1(C)|T (C) → Ei(C)|T (C) be an
isogeny. Since the domain and target of φ are isotrivial relative elliptic curves with O-multiplication,
φ factors as ψ ◦ γ, where γ is an endomorphism of E1(C)|T (C) and ψ an isomorphism. Therefore
E1(C)|T (C) and Ei(C)|T (C) are isomorphic. Since the monodromy representations of E1(C)|T (C) and
Ei(C)|T (C) are non-isomorphic when i ̸= 1, we conclude that i = 1 and that J(W) is isogenous to
E1(C) over S(C).

In summary, we have shown that J(Vµ3), J(W) and E1(C) are isogenous. Since E1(C) is isomorphic
to E(C), we conclude the proof. □

Proposition 4.15. The group of (algebraic) sections of E → S is free of rank 1 over O = Z[ω],
and contains the O-span of P := (a2 + 12c, 72ac− 2a3 − 27b2) as a finite index subgroup.

Proof. Given s = (a, b, c) ∈ S(C), consider the closed subscheme T = {(at, bt, ct2) : t ∈ A1
C} ∩ S of

S and the restriction π : E|T → T . The variety E|T is an open subscheme of an elliptic surface with
Weierstrass equation y2 = x3 + t4g(t), where g(t) ∈ C[t] has degree ≤ 2, using the formula (4.1).
There exists a dense open U ⊂ S such that for all s ∈ U(C), g(t) has two distinct nonzero roots. Let
s ∈ U(C). Using Tate’s algorithm, we see that the elliptic surface has a singular fiber above t = 0
with Kodaira type IV∗, singular fibers above the roots of g(t) with Kodaira type II, and is smooth
above t = ∞. The presence of a fiber of type II implies that E|T → T has no torsion sections [41,
Lemma 7.8]. Moreover the Shioda–Tate formula [41, Theorem 6.3, Proposition 6.6 and §8.8] shows
that the group of sections of E|T → T is free of rank 2. Since E|T receives an O-action, its group of
sections is free of rank 1 over O. We will now show that these facts can be used to prove the claims
of the proposition by varying s in U(C).

We first show that E(S) is torsion-free. Suppose Q ∈ E(S) is a torsion section. Then N · Q = 0
for some N ≥ 1. Hence N · Q|T = 0 for every s ∈ U(C). Since the group of sections of E|T → T
is torsion-free, Q|T = 0 for every s ∈ U(C). Hence Q|U = 0. Since U is dense in S, we must have
Q = 0, as desired.

The fact that P defines a section of E → S can be verified by direct computation (see §4.1). Let
L = Z⟨P, ω ·P ⟩ be the O-span of P , which is a subgroup of the group of sections E(S) of E → S. The
previous paragraph shows that L is free of rank 1 over O. It remains to show that it has finite index
in E(S). Suppose for the sake of contradiction that there exists a third section Q ∈ E(S) which is
not in L⊗Q. Then the locus Sdep of s ∈ S(C) where Ps, ω · Ps and Qs are linearly dependent is a
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countable union of closed proper algebraic subvarieties. For every s ∈ U(C), the group of sections
of E|T → T is free of rank 1 over O. There exists a possibly smaller dense open V ⊂ U such that
if s ∈ V (C) then Ps is nonzero, hence ⟨Ps, ω · Ps⟩ is a finite index subgroup of E(T ). Therefore
Qt, P1,t, P2,t are linearly dependent for all s ∈ V (C). Since V (C) \ Sdep is nonempty, we obtain a
contradiction. □

4.7. Proof of the vanishing criterion in the Chow group.

Proof of Theorem 4.2. We may assume (using Lemma 2.1) that k = C. Recall that 3·AJ(κC) defines
a holomorphic section of J(Vµ3) → S(C). Choose an isogeny of complex tori J(Vµ3) → E(C) using
Proposition 4.14 and let σ be the image of 3 · AJ(κC) under this isogeny. This is a holomorphic
section of E(C) → S(C).

We claim that σ is not a torsion section. If it were torsion, then AJ(κC) would be a torsion section
of J(Vµ3), hence, by Proposition 4.12, κf would be torsion for every f ∈ S(C). This is not the case,
since κf is of infinite order if f = x4 + x2 + 1 by [26, Corollary 2.9]. We conclude that σ is not a
torsion section.

Next we claim that σ is the analytification of an algebraic section of E → S. Let N ≥ 1 be an
integer such that N ·κf is algebraically trivial for every Picard curve f ∈ S(C) (such an integer exists
by Theorem 4.1). By the algebraicity of the Abel–Jacobi map for algebraically trivial cycles ([1,
Theorem 1]), there exists a relative algebraic subtorus Ja(V) ⊂ J(V) with the following property:
the section AJ(3N · κC) lands in Ja(V) and the corresponding holomorphic map S(C) → Ja(V)
is algebraic. On the other hand, AJ(3N · κC) also lands in J(Vµ3), is not a torsion section by the
previous paragraph, and J(Vµ3) has relative dimension 1 over S(C). Therefore J(Vµ3) is the smallest
relative subtorus of J(V) containing the image of AJ(3N ·κC). Hence J(Vµ3) ⊂ Ja(V). We conclude
that AJ(3N · κC) : S(C) → J(Vµ3) is algebraic, so AJ(3 · κC) is algebraic, so σ is algebraic.

Since σ is an algebraic section of E → S, Proposition 4.15 shows that there exists an integer
M ≥ 1 and an element γ ∈ O such that M · σ = γ · P . Since σ is not a torsion section, γ ̸= 0.

Putting everything together, we have for f ∈ S(C): κf is torsion if and only if AJ2Jf (κf ) torsion
(by Proposition 4.12), if and only if AJ(κC)f ∈ J(Vµ3)f torsion, if and only if σf ∈ Ef (C) torsion,
if and only if Pf torsion. Tracing through the equivalences, the quotient of the torsion orders
ord(κf )/ ord(Pf ) (if defined) takes only finitely many values as f ranges in S(C). □

4.8. Families of Picard curves with torsion Ceresa cycle of arbitrarily large order. The-
orem 4.2 shows that there are infinitely many plane quartic curves over Q with torsion Ceresa cycle,
since we may take a = c = −12. In fact, we can find explicit families of torsion Ceresa cycles of
arbitrarily large order by analyzing the function f 7→ (I(f), J(f)).

Let Cf be a Picard curve defined by the polynomial f(x) = x4 + ax2 + bx+ c over a field k with
homogenization F (x, z) = x4 + ax2z2 + bxz3 + cz4. Associated to Cf is the genus 1 curve Df with
equation y2 = F (x, z). Viewing Df as an elliptic curve with origin (1 : 1 : 0), it is isomorphic to the
elliptic curve y2 = x3 − I(f)x/3− J(f)/27. The point (1 : −1 : 0) is sent to (−2a/3, b) in this new
model. Conversely, given a nonzero k-point (α, β) on the elliptic curve EI,J : y

2 = x3−Ix/3−J/27,
the quartic

f(x) = x4 − 3αx2/2 + βx+ (I/12− 3α2/16)(4.3)

has the property that (I(f), J(f)) = (I, J). It follows that if (I, J) ∈ k is such that 4J3 − J2 ̸= 0,
then f 7→ (−2a/3, b) induces a bijection between the set of polynomials f = x4+ax2+ bx+ c ∈ k[x]
satisfying (I(f), J(f)) = (I, J), and the set of nonzero elements of EI,J(k).

Using this description, it is not hard to cook up explicit 1-parameter families of torsion Ceresa
cycles of arbitrarily large order, as in the following corollary of Theorem 4.2:
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Corollary 4.16. For every integer N , there exists a number field k = k(N) such that there exists
infinitely many Q̄-isomorphism classes Picard curves Cf defined over k with Ceresa cycle κf of
order at least N in CH2(Jf,Q̄).

Proof. Let M be an integer satisfying the conclusion of Theorem 4.2. Fix a nonzero D ∈ Q and let
(I, J) ∈ Q̄2 be a torsion point of order M ·N on the elliptic curve y2 = x3+D. Let k be the field of
definition of (I, J). For t ∈ k, define λ(t) = t3−It/3−J/27, (αt, βt) = (tλ(t), λ(t)2) and the quartic
ft(x) = x4− 3αtx

2/2+βtx+(I/12− 3α2
t /16) using Formula (4.3). Since (αt, βt) defines a point on

the elliptic curve Eλ(t)2I,λ(t)3J , the quartic f has the property that (I(ft), J(ft)) = (λ(t)2I, λ(t)3J).
If t ∈ k is such that λ(t) ̸= 0, then (λ(t)2I, λ(t)3J) is an N -torsion point on the elliptic curve
y2 = x3 + λ6tD. By Theorem 4.2, κft is torsion in CH2(Jft,k̄) and its torsion order ord(κft) is
divisible by N . When varying over t ∈ k such that λ(t) ̸= 0, the Picard curves Cft cover infinitely
many Q̄-isomorphism classes, using [12, Lemma 1.21(b)] and the fact that β2t /α3

t = λ(t)/t3 is not a
constant function of t. □

Conversely, for any number field k, the order of a torsion Ceresa cycle κ(Cf ), with Cf defined over
k, is bounded, with the bound depending only on the degree of k over Q:

Corollary 4.17. For every d ≥ 1, there exists N = N(d) ≥ 1 such that for every Picard curve Cf

over a number field k of degree d, the order of κf in CH1(Jf,k̄) is either infinite or less than N .

Proof. This follows from Theorem 4.2 and the uniform bound (depending only on d) on the order of
a k-rational torsion point on an elliptic curve y2 = x3 +D over any number field k of degree d. □

5. Automorphism strata and Ceresa vanishing loci in genus 3

Fix g ≥ 3 and let Mg be the (coarse) moduli space of genus-g curves, seen as a variety over Q. Let
V rat
g ⊂ Mg be the subset of curves [C] for which κ(C) vanishes in CH1(Jac(C))Q, in the notation of

§2.7. Since the vanishing of κ(C) only depends on the geometric isomorphism class of C (by Lemma
2.1), this locus is well defined. Similarly define the locus V alg

g ⊂ Mg where κ̄(C) ∈ Gr1(Jac(C))Q
vanishes.

Lemma 5.1. The subsets V rat
g , V alg

g ⊂ Mg are countable unions of proper closed algebraic subvari-
eties.

Proof. Let M̃g be the fine moduli space parametrizing genus-g curves C with full symplectic level-5
structure and a degree-1 divisor class e ∈ CH0(C) such that (2g− 2)e is canonical. Considering the
universal curve over it together with its degree-1 divisor, we can define a universal Ceresa cycle on
the universal Jacobian over M̃g; Lemma 2.3 then implies that the locus in M̃g where this Ceresa
cycle vanishes (with Q-coefficients) is a countable union of closed algebraic subvarieties. Since the
forgetful map M̃g → Mg is proper, the same is true for the image of this locus, which is exactly
V rat
g . The proof for V alg

g is identical. □

These vanishing loci have the following basic properties: V rat
g ⊂ V alg

g ⊂ Mg; the hyperelliptic locus
is contained in V rat

g ; and V alg
g ̸= Mg by Ceresa’s famous result [13]. It would be interesting to obtain

further information about the components of V rat
g and V alg

g . We end our paper by determining the
automorphism group strata in M3 that are contained in V rat

3 or V alg
3 .

So let g = 3 and consider the open subscheme Mnh
3 ⊂ M3 of non-hyperelliptic curves. There

is a stratification Mnh
3 = ⊔XG into locally closed subvarieties such that a non-hyperelliptic curve

C over C belongs to XG if and only if Aut(C) ≃ G. It turns out that XG is irreducible and the
17



closure of XG is a union of other strata. We refer to [29, §2.2] and references therein for a complete
description of the loci XG and the closure relations between them. We reproduce here a diagram
capturing these closure relations:

{Id}

C2

C2
2

C3 D4 S3

C6 G16 S4

C9 G48 G96 GL3(F2)

dim = 6

dim = 4

dim = 3

dim = 2

dim = 1

dim = 0

For n ∈ {16, 48, 96}, the symbol Gn the group of order n and GAP label (16, 13), (48, 33), and
(96, 64) respectively [20]. See [29, Table 2] for models for a generic plane quartic in XG. We make
explicit the strata that are relevant for us: XC3 is the locus of Picard curves studied in §4; XC6 is
the locus of bielliptic Picard curves studied in [27]; and the zero-dimensional strata each consist of
a single automorphism-maximal curve with equation

y3z = x4 + xz3 if G = C9,

y3z = x4 + z4 if G = G48,

x4 + y4 + z4 = 0 if G = G96,

x3y + y3z + z3x if G = GL3(F2).

If C is a non-hyperelliptic genus 3 curve over a field k, we say C is a generic curve for XG if the
classifying map Spec(k) → M3 maps to the generic point of XG. If X is an integral variety over
C, we say a property hold for a very general x ∈ X(C) if it holds true outside a countable union of
proper closed subvarieties of X.

Lemma 5.2. For a group G in the above diagram, the following are equivalent:
(1) κ(C) ̸= 0 for some generic curve C for XG.
(2) κ(C) ̸= 0 for a very general C in XG(C).
(3) κ(C) ̸= 0 for some C in XG.
(4) XG ̸⊂ V rat

3 .
(5) XG ̸⊂ V rat

3 .
Moreover, the analogous equivalences hold for κ̄(C) ∈ Gr1(J)Q and V alg

3 .

Proof. Follows immediately from Lemma 5.1. □

We end with the proof of Theorem D, which we restate for convenience:

Proposition 5.3. Let G be a group in the diagram. Then
(1) XG ⊂ V alg

3 if and only if G = C3, C6, C9, G48.
(2) XG ⊂ V rat

3 if and only if G = C9, G48;

Proof. (1) The equivalence between (4) and (5) of Lemma 5.2 implies that if XH ⊂ XG and
XG ⊂ V alg

3 , then XH ⊂ V rat
3 ; we will use this observation in the remainder of the proof.
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Our analysis of Picard curves (Theorem C) shows that XC3 ⊂ V rat
3 , so XG ⊂ V rat

3 for
G = C6, C9 and G48 as well. On the other hand, the Ceresa cycle of the Fermat quartic and
Klein quartic are known to be of infinite order in the Griffiths group; see [10, Theorem (4.1)]
for the former and [23, §4] for the latter. By our observation, this means that XG ̸⊂ V rat

3 for
every stratum whose closure contains one of these curves. Since every stratum not contained
in XC3 has this property, we conclude the proof.

(2) Since V rat
3 ⊂ V alg

3 , Part (1) implies that XG ⊂ V rat
3 only if G = C3, C6, C9 or G48. The

criterion of Theorem A applies to the curves in XC9 and XG48 (see Example 3.1), so V rat
3

contains these strata. On the other hand, there exist curves in XC6 with nonvanishing κ(C),
by [26, Corollary 1.2]. So XC6 ̸⊂ V rat

3 and XC3 ̸⊂ V rat
3 .

□

Remark 5.4. Not every irreducible component of V rat
3 is of the form XG for some G. The proof

of Corollary 4.16 shows that V rat
3 ∩ XC3 is a union of countably many (open, possibly singular)

rational curves.
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