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specjalność: matematyka teoretyczna

Tomasz Rzepecki
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Streszczenie w j ↪ezyku polskim

Tematyka pracy. Tematem pracy s ↪a ograniczone, niezmiennicze, borelowskie rela-
cje równoważności. Dok ladniej, badamy zależność mi ↪edzy typow ↪a definiowalności ↪a
i g ladkości ↪a takich relacji – typowo definiowalna relacja równoważności zawsze jest
g ladka, ale odwrotna implikacja na ogó l nie zachodzi.

G lowne wyniki. G lówne wyniki pracy s ↪a nast ↪epuj ↪ace:

(1) Theorem 4.6, techniczne twierdzenie pokazuj ↪ace, że pewne niezmiennicze
relacje równoważności nie s ↪a g ladkie, udowodnione przez prost ↪a modyfika-
cj ↪e dowodu g lównego twierdzenia z [KMS13] (podobne wyniki zosta ly w
mi ↪edzyczasie uzyskane w [KM13] innymi metodami, ale warto wspomnieć,
że dowód omawianego twierdzenia zosta l znaleziony przez autora zanim ten
drugi preprint zosta l upubliczniony). Jest ono przedstawione również w
nieco prostszej formie w nast ↪epuj ↪acych wnioskach.

(2) Theorem 5.8, w którym staramy si ↪e przeanalizować powi ↪azania mi ↪edzy
g ladkości ↪a, typow ↪a definiowalności ↪a i pewnymi innymi w lasnościami ograni-
czonych, niezmienniczych relacji równoważności przy pewnych dodatkowych
za lożeniach; dowód wykorzystuje wniosek Theorem 4.6 aby pokazać że nie-
które z w lasności s ↪a silniejsze od innych, a zestaw (oryginalnych) przyk ladów
pokazuje, że nie ma implikacji odwrotnych.

(3) Theorem 6.2, w którym stosujemy wniosek Theorem 4.6 dla grup definiowal-
nych (dok ladniej, Corollary 4.10) wraz z pewnymi pomys lami z [GK13] oraz
[KPS13] w kontekście definiowalnych rozszerzeń grup, aby podać kryterium
typowej definiowalności podgrup takich rozszerzeń, co daje w efekcie dowód
ważnej hipotezy z [GK13] w przypadku przeliczalnym.

Struktura pracy. W cz ↪eści pierwszej omawiamy tematyk ↪e pracy i jej struktur ↪e,
wprowadzamy konwencje obowi ↪azuj ↪ace w dalszej cz ↪eści.

W drugiej cz ↪eści przypominamy bez dowodów znane i podstawowe fakty stano-
wi ↪ace t lo dla reszty pracy.

W trzeciej cz ↪eści rozwijamy j ↪ezyk ponad to, co mieści si ↪e w opublikowanych
pracach, tak by zapewnić podstawy formalne dla g lównych wyników. Niektóre z
wprowadzonych poj ↪eć i udowodnionych wyników stanowi ↪a folklor, s ↪a znane wśród
specjalistów, lub by ly sugerowane we wcześniejszych pracach, ale niektóre s ↪a nowe
(np. relacje orbitalne na typach).

W czwartej cz ↪eści wprowadzamy narz ↪edzia potrzebne konkretnie do dowodu
Theorem 4.6, zaczerpni ↪ete z [KMS13], przedstawiamy sam dowód (wykorzystuj ↪ac
j ↪ezyk i niektóre fakty z trzeciej cz ↪eści), a także wyci ↪agamy zeń wnioski, które
stosujemy bezpośrednio w dalszej cz ↪eści pracy.

W pi ↪atej cz ↪eści pokazujemy szereg przyk ladów ilustruj ↪acych powi ↪azania mi ↪edzy
rozmaitymi w lasnościami niezmienniczych relacji równoważności, a także dowodzimy
Theorem 5.8. Interpretujemy to twierdzenie jako cz ↪eściowy wynik w ramach odpo-
wiedzi na uogólnienie hipotezy z [KPS13] na temat z lożoności relacji należenia do
tego samego typu Lascara.

W szóstej cz ↪eści korzystaj ↪ac z wniosku z Theorem 4.6 dowodzimy Theorem 6.2:
pokazujemy, że pewne podgrupy definiowalnych rozszerzeń grup s ↪a typowo definio-
walne.
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1. Introduction

1.1. Preface. This paper will concern the Borel cardinalities of bounded, invariant
equivalence relations. More precisely, the main theme is the connection between
type-definability and smoothness of these relations – type-definable equivalence
relations are always smooth, as we will see in Fact 3.7; the converse is not true in
general.

We establish solid ground for this kind of inquiry, providing proofs of various
statements (some of which are folklore) that allow us to express the problem in
concrete terms (in particular, we interpret some invariant sets as Borel subsets
of type spaces in a consistent manner). The concept of Borel cardinality and
smoothness is classical and will be introduced abstractly in section 2., whereas for
bounded equivalence relations, we will provide it in section 3., extending the notions
introduced in [Cas+01] and [KPS13].

There are three main results:



6

(1) Theorem 4.6, a technical statement showing that some invariant equivalence
relations are not smooth, which is proved by a simple modification of the
proof of the main result of [KMS13] (very similar results have been since
shown in [KM13] using different – though not unrelated – methods, although
it should be noted that the latter preprint was circulated after the proof of
Theorem 4.6 presented here was found by the author); it is also presented
in a more distilled form in the following corollaries;

(2) Theorem 5.8, which attempts to analyse in detail the connection between
smoothness, type-definability and some other properties of bounded and
invariant equivalence relations, under some additional assumptions; it uses a
corollary of Theorem 4.6 to show that some of these properties are stronger
than others, and several (original) examples to show that they are not
equivalent.

(3) Theorem 6.2, which applies a corollary of Theorem 4.6 for definable groups
(more precisely, Corollary 4.10) along with some ideas from [GK13] and
[KPS13] in the context of definable group extensions, in order to give a
criterion for type-definability of subgroups of such extensions, resulting in
a proof of (the countable case of) an important conjecture from [GK13] in
Corollary 6.9.

The motivation for this investigation comes from two directions: on one hand,
it allows us to use Borel cardinality criteria to show that some objects are type-
definable (as shown in Theorem 6.2). On the other hand, we consider an extension of
a conjecture posed in [KPS13] about the possible Borel cardinalities of Lascar strong
types – as explained in subsection 5.4 – which is in part inspired by Theorem 3.17
from [New03] (which we strengthen in a special case in Corollary 4.8).

It is assumed that the reader is familiar with basic concepts of model theory
(e.g. compactness, definable sets, type-definable sets, type spaces, saturated models,
indiscernible sequences) and descriptive set theory (e.g. Polish spaces, standard
Borel spaces, Borel classes). Less elementary concepts will be introduced.

1.2. Structure of the paper. This (first) section contains the preface outlining
the goals and motivations of this paper, this subsection detailing the structure of
the paper, and an exposition of conventions used later on.

The second section will contain preliminaries, basic, classical facts – providing
context for the sequel – divided into theme-based subsections. All it contains are
all either well-established facts, or simple observations based upon them. If the
reader is familiar with the subject matter, it can be safely skipped and only used
as reference for facts used later.

The third section will develop the necessary framework upon which we will base
the part that comes after it – the language in which we express the sequel. Many of
the concepts introduced there were present or alluded to in some way before (and
we will attempt to give credit where it is due in those cases), but some are original
(e.g. the concept of orbital and orbital on types invariant equivalence relations).
Similarly, most facts are folklore and/or motivated by previous work (which, again,
will be attributed when necessary), but in many cases significantly expanded beyond
their original form.

The fourth section will contain some lemmas needed for the proof of Theorem 4.6,
the proof itself (mimicking the main result of [KMS13], as stated before, adapted to
the more general case using the ideas from third section), as well as its immediate
corollaries (which are original).

The fifth section will interpret the results of the fourth as a statement that allows
us to tell if some equivalence relations are type-definable (esp. in Theorem 5.8), and
as a lower bound in a general question of possible Borel cardinalities (cf. Question 7).
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It will also discuss the possible extensions of this and showcase, in concrete examples,
its limitations. The contents of the fifth section are, for the most part, original
research.

Finally, the sixth section will apply Theorem 4.6 (in the flavour of Corollary 4.10)
to the context of definable group extensions, obtaining as a corollary the proof of a
conjecture from [GK13] (a paper which is also the inspiration for many of the ideas
used throughout the section, which will be marked as appropriate).

1.3. Conventions. In the following, unless otherwise stated, we assume that we
have a fixed complete, countable theory T with infinite models. (The theory may
be multi-sorted, and it will, of course, vary in some specific examples.)

We also fix a monster model C |= T , that is, a model which is κ-saturated
and (strongly) κ-homogeneous for κ a regular and sufficiently large cardinal (and
whenever we say “small” we mean smaller than this κ). If we assume that there
is a sufficiently large and strongly inaccessible cardinal κ, we can take for C the
saturated model of cardinality κ.

We assume that all parameter sets are contained in C, every model we consider
is an elementary substructure of C, and every tuple is countable.

Often, we will denote by M an arbitrary, but fixed small (and usually countable)
model.

For a small set A ⊆ C, by A-invariant we mean Aut(C/A)-invariant.
For simplicity, whenever we mention definable, type-definable or invariant sets, we

mean that they are (unless otherwise stated) ∅-definable, type-definable or invariant,
respectively.

When talking about tuples of elements of C, we will often say that they are in C
(as opposed to some product of various sorts of C), without specifying the length,
when it does not matter, or otherwise there is no risk of confusion. Likewise, we
will often write X ⊆ C when X is a subset of some product of sorts of C.

If X is some A-invariant set (esp. type-definable over A), we will denote by SX(A)
the set of complete A-types of elements of X, and similarly we will sometimes omit
X (or names of sorts in multi-sorted context) in SX(A), and write simply S(A)
instead.

Throughout the paper, formulas and types will be routinely identified with the
corresponding subsets of C, as well as the corresponding subsets of type spaces (or
points, in case of complete types). Similarly, invariant sets will be identified with
subsets of type spaces and equivalent L∞,ω formulas. For example, if X ⊆ C is an
A-invariant set, then we will identify X with

∨
i∈I
∧
j∈J ϕi,j(x,A) (where I, J are

possibly infinite index sets and ϕi,j are first order formulas) if we have

x ∈ X ⇐⇒ C |=
∨
i

∧
j

ϕi,j(x,A)

In this case we also associate with X the subset XA = {tp(a/A) | a ∈ X} of S(A);
when A = ∅, and there is no risk of confusion, we will sometimes simply write X
instead of X∅.

When metrics are mentioned, they are binary functions into [0,∞] = R≥0 ∪{∞}
satisfying the usual axioms (coincidence axiom, symmetry and triangle inequality),
but in particular, they are allowed to (and usually will) assume ∞.

2. Preliminaries

2.1. Borel cardinalities of abstract Borel equivalence relations. In this sub-
section, we introduce the concept and basic facts about the Borel cardinality in
the abstract case, which is a way of expressing the complexity, or the difficulty of
classification of some equivalence relations.
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Theorem 3.17 will show that some equivalence relations with complicated (not
type-definable) classes must necessarily have many classes, whereas Corollary 4.8 will
say that with some additional assumptions, they have complicated quotients, which
is expressed by the Borel cardinality. For a more comprehensive introduction to the
interpretation and occurences of Borel cardinality in various fields of mathematics
(as a complexity measure of moduli spaces), see e.g. the survey [Kec99] by Kechris.

Recall the notion of a standard Borel space:

Definition. A measure space (X,Σ) is called a standard Borel space if it is isomor-
phic (as a measure space) to (P,Bor(P )) for some Polish space P , or equivalently,
if it is isomorphic (as a measure space) to (B,Bor(B)) for a Borel subset B of some
Polish space (cf. Corollary 13.4 in [Kec95]).

Let us introduce the basic notions of the theory of Borel cardinality.

Definition (Borel reduction, Borel reducibility). Suppose X,Y are standard Borel
spaces and E,F are Borel equivalence relations on X,Y , respectively. We say that
a Borel function f : X → Y is a Borel reduction of E to F if for all x, x′ ∈ X we
have

x E x′ ⇐⇒ f(x) F f(x′)

If such f exists, we say that E is Borel reducible to F , and denote it by E ≤B F .

Remarks.

• If f : X → Y is a Borel reduction of E to F , and g : Y → X is a Borel
section (i.e. f ◦ g = idY ), then g is a Borel reduction of F to E (this is
because the condition for Borel reducibility is of the “if and only if” form).

• If E is a Borel equivalence relation on X, and Y ⊆ X is Borel, then the
inclusion yields a reduction of E�Y to E (in particular, E�Y ≤B E).

Definition (Borel equivalence, Borel cardinality). If E ≤B F and F ≤B E, we say
that E,F are bireducible or Borel equivalent and denote it by E ∼B F . (Note that
it does not, in general, imply that there is a Borel isomorphism taking E to F .) The
Borel cardinality of a Borel equivalence relation E is its ∼B-class.

Definition (Smooth equivalence relation). A Borel equivalence relation E is called
smooth if it is Borel equivalent to equality on a standard Borel space.

The classification of Borel cardinalities of smooth equivalence relations is rather
simple, thanks to the classification of standard Borel spaces.

Remark. The Borel cardinality of a smooth equivalence relation is determined by
the number of classes, in particular the Borel cardinalities of smooth equivalence
relations are exactly those of

• ∆(n) with n a positive natural number,
• ∆(N),
• ∆(2N),

where ∆(X) denotes the relation of equality on X (i.e. the diagonal in X2).

The following is an important equivalence relation for the purpose of telling apart
smooth and non-smooth equivalence relations.

Definition. E0 is defined as the relation on 2N of eventual equality. That is,

(an)n E0 (bn)n ⇐⇒ (∃N)(∀n > N) an = bn

⇐⇒ {n ∈ N | an 6= bn} is finite

The latter condition can also be stated as E0 = ∆(2)N/Fin (i.e. E0 is the countable
power of the relation of equality on a two-element set modulo the ideal of finite
sets).
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Remark. The relation E0 is in an important class of Borel equivalence relations
induced by Borel ideals on 2N: for each Borel I E 2N, we have a Borel equivalence
relation EI on 2N:

(xn)n EI (yn)n ⇐⇒ (xn)n − (yn)n ∈ I ⇐⇒ {n | xn 6= yn} ∈ I

E0 is obtained by taking for I the ideal of finite sets.

The following facts illustrate some important properties of the partial order ≤B
as well as the distinction between smooth and non-smooth equivalence relations.

Fact 2.1 ([Kan08](Theorems 5.5.1, 5.7.1, 5.7.2),[BK96](Theorem 3.4.3)).

• Smooth equivalence relations form an initial segment of Borel cardinalities,
i.e. if E is smooth and F is not, then E ≤B F (Silver dichotomy). (Note
that it implies that any non-smooth equivalence relation has at least c = 2ℵ0

classes.)
• E0 is the ≤B-least non-smooth equivalence relation, that is, E is not smooth

if and only if E0 ≤B E (Harrington-Kechris-Louveau dichotomy).
• Borel reducibility ≤B is not a total order, that is, there are equivalence

relations E,F such that E 6≤B F and F 6≤B E. (In fact, there are continuum
many pairwise incomparable relations, even among those with countable
classes.)
• If X is a Polish space and E ⊆ X2 is a Gδ equivalence relation on X, then
E is smooth.

2.2. Strong types. There are several notions of strong type in model theory. By
a strong type we usually mean some canonical choice of equivalence relation on
(tuples of elements of) C refining the familiar ≡ (i.e. the relation a ≡ b ⇐⇒
tp(a/∅) = tp(b/∅)), and invariant, or a single class of such a relation. The most
often considered (in order of decreasing coarseness) are the Shelah, Kim-Pillay and
Lascar strong types. We will be mostly concerned with the last one. For a general
introduction to the three strong types, consult [Cas+01].

The main focus of this paper will be the equivalence relations which are bounded
and invariant.

Definition. An invariant equivalence relation E on (an invariant set of tuples in)
C is said to be bounded if it has a small number of classes, i.e. smaller than the
degree of saturation of C.

Remarks.

• In cases considered here – that is, for countable tuples and countable theories
– a bounded invariant equivalence relation can have no more than c classes.
(This can be seen as a consequence of Proposition 3.3.)
• An invariant equivalence E relation is bounded if and only if there is a

(small) cardinal κ such that for any model M , the number of classes of E
restricted to M is no greater than κ.

• A definable equivalence relation is bounded if and only if it has finitely many
classes (by compactness).

The most important – in this paper – notion of strong type is the following,
essentially introduced by Lascar in [Las82].

Definition (Lascar strong type). Suppose a, b are tuples in the same small product
of sorts of C. We say that a and b have the same Lascar strong type, or are
Lascar equivalent (which we denote by a EL b or a ≡L b), if one of the (equivalent)
conditions listed below is satisfied.
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(1) there is a sequence a = a0, . . . , an = b such that for each i < n there is an
infinite indiscernible sequence starting with ai, ai+1;

(2) there is a sequence of small models M1, . . . ,Mm and automorphisms σi ∈
Aut(C/Mi) such that σm ◦ · · · ◦ σ1(a) = b;

(3) for every bounded, invariant equivalence relation E we have a E b (in fact,
Lascar strong type is bounded and invariant, so this means just that it is
the finest bounded and invariant equivalence relation).

For the equivalence of the three definitions of Lascar strong type, see for instance
[Cas+01](Definition 1.1, Facts 1.9, 1.11, 1.12 and 1.13).

Lascar equivalence can also be seen as the relation of lying in the same metric
component with respect to the Lascar distance.

Definition (Lascar distance). The minimal n for a sequence ai as in the first item
above, or ∞ if such a sequence does not exist, is called the Lascar distance of a and
b and denoted by dL(a, b) (and this is no greater than twice the m for sequence of
automorphisms as in the second item by the next fact).

Remarks.

• It is not hard to see that dL is an Aut(C)-invariant metric (with values in
N ∪ {∞}).

• If we consider a graph (simple, unweighted) whose vertices are elements of C
(or, more generally, tuples in a fixed product of sorts) and two of them are
connected by an edge if and only if they are terms in an infinite indiscernible
sequence, then Lascar distance is the distance in this graph, and Lascar
strong types are the connected components.

• For each n, dL(a, b) ≤ n is a type-definable condition on a, b. (In particular,
the (relation of having the same) Lascar strong type is Fσ, in a sense which
will be explained later, in Section 3.)

Fact 2.2 ([Cas+01](Fact 1.12)). If a, b have the same type over a model M , then
dL(a, b) ≤ 2. In particular, any two elements of the same type over a model M have
the same Lascar strong type.

Kim-Pillay types will also be used, and the definition is quite similar to that of
Lascar strong types (more specifically, the third of the equivalent definitions).

Definition (Kim-Pillay strong type). Suppose a, b are tuples in the same small
product of sorts. We say that a and b have the same Kim-Pillay strong type (denoted
by a EKP b or a ≡KP b) if for any type-definable, bounded equivalence relation E
we have a E b.

(Much like in the case of Lascar strong type, Kim-Pillay strong type is bounded
and type-definable, so it is the finest bounded, type-definable (over ∅) equivalence
relation.)

Remark. Often, we will say“Lascar strong type”when referring to Lascar equivalence
≡L (the equivalence relation of having the same Lascar strong type). Similarly, with
the relation ≡ of having the same type and the relation ≡KP of having the same Kim-
Pillay strong type, we will say “type”, meaning ≡ and “Kim-Pillay type”, meaning
≡KP .

In many cases, the two strong types coincide. If they do coincide on all tuples
of small length (or, equivalently, the Lascar strong type is type-definable), we say
that the theory is G-compact. In particular, it is well-known that every stable (and
even every simple) theory is G-compact (see [Kim98], Proposition 13.).
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Definition (Strong automorphism groups). We define the Kim-Pillay strong auto-
morphism group

Aut fKP (C) = {σ ∈ Aut(C) | σ preserves each Kim-Pillay strong type setwise}
and the Lascar strong automorphism group

Aut fL(C) = {σ ∈ Aut(C) | σ preserves each Lascar strong type setwise}
Fact 2.3 ([Cas+01], Facts 1.4, 1.9). Both strong automorphism groups are normal
in the full automorphism group and each one acts transitively on each class of the
respective equivalence relation, so in fact the strong types are their orbit equivalence
relations.

In addition, the latter group is generated by automorphisms over small models.

We will often be dealing with relations defined on sets smaller than an entire
sort, so we will need the next fact.

Fact 2.4 ([Cas+01](Fact 1.4 and Corollary 1.5)). The restriction of ≡L to an
invariant set is the finest among bounded, invariant equivalence relations on this
set.

Similarly, restriction of ≡KP to a type-definable set in a sort (or product of
sorts) S is the finest bounded, type-definable equivalence relation on this set. As a
consequence, any bounded type-definable relation E (on a type-definable set) extends
to a bounded type-definable relation on the entire S (given by E ∪ ≡KP ).

2.3. Connected group components. Mirroring the strong types are the strong
connected components of groups, defined as follows.

Definition. Let B be a small set. Suppose G is a B-type-definable group. Then
G00
B is the smallest B-type-definable subgroup of G of bounded (small) index, and

G00 = G00
∅ .

Definition. Let B be a small set. Suppose G is a B-invariant group. Then G000
B is

the smallest B-invariant subgroup of G of bounded (small) index, and G000 = G000
∅ .

(The group G000
B is sometimes denoted by G∞B , since it may be equivalently defined

as the smallest subgroup of bounded index which is L∞,ω(B)-definable.)

Remarks.

• It is not hard to show that these groups always exist. In some cases, both
groups G00

B and G000
B remain the same, irrespective of the chosen small set

B over which G is invariant.
Interestingly, it is actually rather common: it is always the case for G

definable in NIP theories (see [Gis11]).
• Some authors reserve the names G00, G000 for absolute connected compo-

nents (in the sense that they do not depend on the small parameter set
B), but they are beyond the scope of this paper, so instead we will omit
the ∅ to simplify notation, just like we omit ∅ when talking about e.g.
∅-type-definable sets.

Fact 2.2 also has an analogue in strong component setting.

Fact 2.5 ([GN08], Proposition 3.4, point 1.). Suppose that G is a definable group.
Then the group G000 is generated by the set:

{gh−1 | g, h ∈ G and g ≡L h}
In particular, G000 is generated by a countable family of type-definable sets of the
form (with varying n ∈ N)

{gh−1 | g, h ∈ G and dL(g, h) ≤ n}.
and it is the countable union of their compositions (which are type-definable).
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The theorem below shows that the relationship between connected components
and strong types is not merely superficial, and in fact the connected components
are, in a way, a special case of strong types. This idea will be extended later in
Proposition 3.27.

Theorem 2.6 (see [GN08](Section 3, in particular Propositions 3.3 and 3.4)).
If G is a definable group, and we adjoin to C a left principal homogeneous space X
of G(C) (as a new sort; we might think of it as an “affine copy of G”), along with
a binary function symbol for the left action of G on X, then the Kim-Pillay and
Lascar strong types correspond exactly to the orbit equivalence relations of G00 and
G000 acting on X. Moreover, we have isomorphisms:

Aut((C,X, ·)) ∼= G(C) o Aut(C)

Aut fKP ((C,X, ·)) ∼= G00(C) o Aut fKP (C)

Aut fL((C,X, ·)) ∼= G000(C) o Aut fL(C)

Where:

(1) the semidirect product is induced by the natural action of Aut(C) on G(C),
(2) on C, the action of Aut(C) is natural, and that of G is trivial,
(3) on X we define the action by fixing some x0 and putting – for g ∈ G(C) and

σ ∈ Aut(C) – σg(h · x0) = (hg−1)x0 and σ(h · x0) = σ(h) · x0.

Remark. The isomorphisms are not canonical in general: they depend on the choice
of the base point x0. Since the strong automorphism groups are normal, the resulting
subgroups of Aut((C,X, ·)) do not depend on the choice of x0.

2.4. Logic topology. Logic topology is a useful tool for studying bounded type-
definable equivalence relations, though unfortunately it ceases to be effective in
more general context of arbitrary bounded invariant equivalence relations. Still,
it provides some insight, and we will use it later (in the final section) to prove
an important corollary of the main result. It also offers an alternative view on
Borel cardinality of some equivalence relations, see Corollary 3.12. For now, we will
only introduce the logic topology and cite the fact that it is a compact, Hausdorff
topology, and postpone further analysis until later.

Definition. (Logic topology) Whenever we have a bounded type-definable equiv-
alence relation E on a (type-definable) set X, we put on X/E a topology (called
logic topology), by declaring the closed sets to be exactly the sets whose preimages
are type-definable over some small set.

Fact 2.7 ([Pil04](Lemma 2.5)). If E is a bounded type-definable equivalence relation
on a type-definable set X, then X/E is a compact Hausdorff space when given the
logic topology.

Remark. There is a theorem that in o-minimal theories (e.g. o-minimal extensions
of real closed fields), if G is a definable group, then the group G/G00, equipped with
the logic topology, is actually (isomorphic as a topological group to) a real compact
Lie group. For more information, see for instance [Pil04],[Pet07].

3. Framework

3.1. Bounded invariant equivalence relations. In this chapter, we extend the
theory of Borel cardinality of Lascar strong types as considered in [KPS13] to general
invariant and bounded equivalence relations, to provide a uniform way of viewing
bounded, invariant equivalence relations as relations on a Polish space. From now
on, all bounded equivalence relations are only defined on invariant sets of tuples of
at most countable length (within some product of sorts of C).
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Definition (Borel invariant set, Borel class of an invariant set). For any invariant
set X, we say that X is Borel if the corresponding subset of S(∅) is, and in this case
by Borel class of X we mean the Borel class of the corresponding subset of S(∅) (e.g.
we say that X is Fσ if the corresponding set in S(∅) is Fσ, and we might say that
X is clopen if the corresponding subset of S(∅) is clopen, i.e. if X is definable).

Similarly if X is A-invariant, we say that it is Borel over A if the corresponding
subset of S(A) is (and Borel class is understood analogously).

More generally, if we want to say that a set X is Borel or is in some specific Borel
class over a small set without specifying the parameters, we attach a pseudo- prefix,
so e.g. we say that X is pseudo-Gδ if X is Gδ over a small set.

Remarks.

• All of the above definitions can be relativised, so e.g. Y ⊆ X is relatively
Fσ over A if it is the intersection of a relatively Fσ set with X.

• Notice that if A is countable and X is Borel over A, then SX(A) – endowed
with the σ-algebra generated by formulas over A – is a standard Borel space.
• Since we will use adjective “Borel” and others to refer to subsets of a model,

we may confuse it with Borel subsets of a standard Borel space (or just a
Polish space). When such a confusion is likely to appear, we may the latter
“abstract Borel sets” (though we will only actually use the term “abstract
Borel equivalence relation”).

We will use this descriptive-set-theoretic lemma several times.

Lemma 3.1 ([Kec95](Exercise 24.20)). Suppose X,Y are compact, Polish spaces
and f : X → Y is a continuous, surjective map. Then f has a Borel section, so in
particular for any B ⊆ Y , f−1[B] is Borel if and only if B is. Moreover, if they are
Borel, then the two are of the same Borel class.

This corollary says that when X is invariant over a small set, we need not specify
the parameter set in order to talk about the Borel class of X. It is a generalisation
of a well-known fact for sets which are definable or type-definable with parameters.

Corollary 3.2. Let A,B be any countable sets. Suppose X is A-invariant and
B-invariant. Then the Borel class of X over A is the same as the Borel class of X
over B (in particular, X is Borel over A if and only if it is Borel over B).

Proof. Without loss of generality, we can assume that A ⊆ B. Then f : S(B) →
S(A) is a continuous surjection, and f−1[XA] = XB, so by Lemma 3.1 we get the
result. �

Remark. We can show in the same way that if ∆,Λ are countable sets of formulas
with parameters, and X is ∆-invariant (that is, invariant under automorphisms
preserving all formulas in ∆) and Λ-invariant, then X∆ ⊆ S(∆) and XΛ ⊆ S(Λ)
have the same Borel class, where S(∆) and S(Λ) are the Stone spaces of the boolean
algebras of formulas generated by ∆ and Λ, respectively, while X∆, XΛ are defined
in the natural manner.

This definition is somewhat self-explanatory, but since we are going to use it
quite often, it should be stated explicitly.

Definition. We say that an invariant equivalence relation E on X refines type if
for any a, b ∈ X whenever a E b, then a ≡ b (i.e. tp(a/∅) = tp(b/∅)). Equivalently,
E refines type if E ⊆ ≡�X .

Similarly, we say that E refines Kim-Pillay strong type ≡KP if E ⊆ ≡KP �X and
likewise we say that Kim-Pillay type refines E if ≡KP �X ⊆ E.
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The next definition is very important; it will be used to interpret a bounded,
invariant equivalence relation E as an abstract equivalence relation on a Polish
space. It is a mild generalisation of EML and EMKP as introduced in [KPS13].

Definition. Suppose E is a bounded, invariant equivalence relation on an invariant
set X, while M is a model.

Then we define EM ⊆ SX(M)2 ⊆ S(M)2 as the relation

p EM q ⇐⇒ there are some a |= p and b |= q such that a E b

(And the next fact tells us that E-classes are M -invariant, so this is equivalent
to saying that for all a |= p, b |= q we have a E b, which implies that EM is an
equivalence relation.)

The next fact shows thatEM is well-behaved in the sense explained in parentheses,
and the Borel classes of EM and E are the same (which justifies the definition of
Borel class of E at the beginning of this subsection).

Proposition 3.3 (generalisation of Remark 2.2(i) in [KPS13]). Consider a model
M , and some bounded, invariant equivalence relation E on an invariant subset X
of a product of sorts P .

Consider the natural restriction map π : SP 2(M)→ SP (M)2 (i.e.
π(tp(a, b/M)) = (tp(a/M), tp(b/M))). Then we have the following facts:

• Each E-class is M -invariant, in particular

a E b ⇐⇒ tp(a, b/M) ∈ EM ⇐⇒ tp(a/M) EM tp(b/M)

and π−1[EM ] = EM .
• If M is countable, the the Borel class of EM is the same as that of EM and

the same as that of E (considered as a subset of SP 2(∅)).
• If M is countable and Y ⊆ X is Borel over M , then the Borel class of the

restriction EM �YM
is the same as that of EM ∩ (Y 2)M (and therefore, by

Lemma 3.1, independent of the choice of the countable model M over which
Y is invariant).

Proof. For the first bullet, notice that, by Fact 2.4, E is refined by Lascar strong
type, which in turn is refined by equivalence over M (by Fact 2.2), and therefore
any points equivalent over M are also Lascar equivalent, and therefore E-equivalent.

For the second bullet we use Lemma 3.1:

• SP (M)2, SP 2(M) are compact Polish spaces, so we apply the lemma to
f = π and B = EM (which we can do by the first bullet).

• Secondly, SP 2(M) and SP 2(∅) are Polish, so we apply the lemma with
f = π∅ : SP 2(M)→ SP 2(∅) and B = E (which we can do, since by definition
EM = π−1

∅ [E]).

The last part follows analogously from Lemma 3.1, as π−1[EM �YM
] = EM ∩

(Y 2)M . �

The next two facts will be frequently used in conjunction with Corollary 3.2 to
estimate the Borel class of various sets over a model M .

Corollary 3.4. If E is a bounded, invariant equivalence relation on X and Y ⊆ X
is E-saturated (i.e. containing any E-class intersecting it), then for any model M ,
Y is M -invariant.

Proof. Since Y is E-saturated, it is a union of E-classes, each of which is setwise
M -invariant (and therefore so is any union of E-classes). �
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Corollary 3.5. If G is an invariant group and H is a subgroup of G containing
some invariant subgroup of bounded index (equivalently, we may say that H contains
G000), H is invariant over any model M .

Proof. Immediate from previous corollary with E being the relation of being in the
same coset of G000. �

The next proposition establishes a notion of Borel cardinality.

Proposition 3.6 (generalisation of Proposition 2.3 in [KPS13]). For any E which is
a bounded, (invariant) Borel equivalence relation on some X invariant in a product
P of sorts, and if Y ⊆ X is pseudo-Borel and E-saturated, then the Borel cardinality
of restriction of EM to YM does not depend on the choice of the countable model M .
(In particular, if X = Y is type-definable without parameters, the Borel cardinality
of EM does not depend on the choice of a countable model M .)

Proof. Analogous to [KPS13](Proposition 2.3): it is enough to show that if M � N
are countable models, then the Borel cardinalities of EM and EN coincide. To
that end, consider the restriction map π : SP (N) → SP (M), and a Borel section
s : SP (M)→ SP (N) of π (which we have by Lemma 3.1).

Since Y is Borel over M (by Corollary 3.4 and Corollary 3.2), π and s restrict
to Borel maps π : SY (N)→ SY (M) and s : SY (M)→ SY (N). On the other hand,
by Proposition 3.3 (since E-classes are M -invariant), π is a reduction of EN �YN

to

EM �YM
, and because s is a section of π, it is a reduction of EM �YM

to EN�YN
. �

We have thus justified the following definition.

Definition. If E is as in the previous proposition, then by Borel cardinality of E
we mean the Borel cardinality of EM for a countable model M . Likewise, we say
that E is smooth if EM is smooth for a countable model M .

In the same manner, if Y is pseudo-Borel and E-saturated, the Borel cardinality
of E�Y is the Borel cardinality of EM �YM

for some countable model M .

Remarks.

• By similar methods, we could show that Borel cardinality (and Borel class)
of an invariant equivalence relation is well-defined in an even stronger sense:
if we have an extension of f.o. (countable) languages L ⊆ L′, C is a monster
model in both L and L′, and E is a bounded, Borel equivalence relation on
C in the smaller language L, then its Borel cardinality is the same in both
signatures.

• We could analogously define projective class for sets invariant over small
parameter sets, and it would be similarly independent of the parameters
(and would most likely allow an application theory of Borel cardinality for
analytic and other projective equivalence relations to bounded and invariant
equivalence relations in first order theories).

Fact 3.7. A bounded, type-definable equivalence relation is smooth. Similarly, if
a restriction of a bounded, invariant equivalence relation to a saturated, pseudo-Gδ
set Y is relatively type-definable, then the restriction is smooth.

Proof. If E is type-definable, then so is its domain, and the corresponding subset
of S(M)2 is closed (by Proposition 3.3), and in particular Gδ, so by the last point
of Fact 2.1 E is smooth. The proof of the second part is analogous: the Borel
cardinality of E to Y is the Borel cardinality of EM ∩ (YM )2, which is closed in
(YM )2‘, and thus smooth. �

This last fact (or at least the first part of it) can also be proved in a slightly
different way, using the logic topology, which we will do in the following subsection.
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3.2. Remarks on logic topology. In this subsection, we will find an alterna-
tive (and equivalent) definition of Borel cardinality for some bounded equivalence
relations.

Proposition 3.8. Suppose E is a type-definable, bounded equivalence relation on
a type-definable set X. Then the quotient map X → X/E factors through SX(M),
yielding a map tp(a/M)→ [a]E (for any model M), which is continuous when X/E
is given logic topology.

Proof. That the quotient map factors is an immediate consequence of the fact that
E-classes are M -invariant by Proposition 3.3. Continuity follows from Corollary 3.4
and Corollary 3.2: a closed set F ⊆ X/E corresponds to a pseudo-closed subset of
X, which is closed over M because it is E-saturated. �

We will need a topological lemma.

Lemma 3.9. Suppose X is a compact, zero-dimensional Hausdorff space, Y is a
Hausdorff space, while f : X → Y is a continuous, surjective mapping. Then Y has
a basis of closed sets consisting of the f [B] for B ⊆ X clopen.

Proof. If B is clopen, it is compact, so f [B] is closed too, as a compact subset of a
Hausdorff space. It remains to show that any closed D ⊆ Y is the intersection of a
family of f [B] for varying clopen B.

Choose arbitrary y ∈ Y \D. We intend to find some clopen B such that f [B]
contains D but not y. Since Y is Hausdorff, we can find an open set U ⊇ D such
that y /∈ U (e.g. Y \ {y}).

Now, f−1[U ] is an open set, so it is the union of basic clopen sets. But f−1[D] is
compact, so it is covered by some finitely many of these, and – since a finite union of
clopen sets is clopen – in fact there is a single clopen B with f−1[D] ⊆ B ⊆ f−1[U ].

But then – owing to the fact that f is onto –D = f [f−1[D]] ⊆ f [B] ⊆ f [f−1[U ]] =
U , and in particular f [B] is closed and doesn’t contain y. �

The above proposition and lemma gives us a somewhat concrete choice of a small
basis for logic topology, and shows that it is actually Polish in cases that interest
us (this is well-known: see [KN02], Fact 1.3).

Corollary 3.10. Suppose E is a type-definable, bounded equivalence relation on a
type-definable set X.

Then for any model M , the logic topology on X/E has a basis of closed sets
consisting of the quotients of M -definable sets. (In particular if X is contained in
some countable product of sorts and M is a countable model, it implies that it is
compact, Hausdorff and second-countable, and therefore Polish.)

Proof. Consider the map Ψ: SX(M) → X/E as in Proposition 3.8. This is a
continuous surjection, and X/E is Hausdorff by Fact 2.7, so we can apply the
previous lemma and the result follows immediately. �

As a special case, we get the following statement about groups.

Corollary 3.11. If G is a type-definable group and H ≤ G is a type-definable
subgroup, then the Logic topology on G/H is compact Polish topology. If H is
normal, then G/H is a compact Polish group.

Proof. Since H is type-definable, the relation of lying in the same coset of H is type-
definable, so we can apply the previous fact. It is easy to see that if operations on G
are type-definable, then for normal H, the operations on G/H are continuous. �

Finally, the previous discussion allows us to describe the Borel cardinality of
some bounded and invariant equivalence relations in a slightly different way.
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Corollary 3.12. If E is a bounded, Borel equivalence relation on a type-definable
set X, while F is a type-definable, bounded equivalence relation on X refining E,
then E induces naturally a Borel equivalence relation E′ on X/F , given by

[x]F E
′ [y]F ⇐⇒ x E y

which is bireducible with EM via the natural map Ψ: SX(M)→ X/F .
(In particular, the Borel cardinality of E is the same as the Borel cardinality of

E′, and if we have E = F , E is smooth.)

Proof. X/E is a standard Borel space because it is Polish, by Corollary 3.10.
That E′ is a well-defined equivalence relation follows immediately from the fact

that F refines E.
By Proposition 3.8 we have Ψ: SX(M) → X/F , which induces a continuous

surjection Ψ2 : SX(M)2 → (X/F )2, and because E-classes are M -invariant and
F -saturated, we have EM = (Ψ2)−1[E′], so by Lemma 3.1, E′ is Borel. It also
follows that Ψ is a reduction of EM to E′, and the Borel section of Ψ (obtained via
Lemma 3.1) is a reduction in the other direction. �

Remarks.

• The preceding corollary gives us another way to represent as abstract Borel
equivalence relations those E which are defined on a type-definable set X
and are refined by ≡KP �X , namely as induced relation E′ on X/≡KP .

This approach has the added benefit of being independent of any addi-
tional variables, like the choice of model M . On the other hand, sometimes
we want to deal with E finer than ≡KP , and then it is not applicable.
• Similarly, we can show that if Y ⊆ X is pseudo-closed and E-saturated,
EM �Y is naturally bireducible with E′�Y/F .

3.3. Orbital equivalence relations and normal forms. In this subsection, we
introduce some more specific kinds of invariant equivalence relations, which naturally
arise when we interpret the main result.

Definition (Normal form). If Φn(x, y) is a sequence of (partial) types such that
Φ0(x, y) = {x = y} and which is increasing (i.e. for all n, Φn(x, y) ` Φn+1(x, y)),
then we say that

∨
n∈N Φn(x, y) is a normal form for an invariant equivalence

relation E on an an (invariant) set X if we have for any a, b ∈ X an equivalence
a E b ⇐⇒ C |=

∨
n∈N Φn(a, b), and if the binary function d = dΦ : C2 → N ∪ {∞}

defined as
d(a, b) = min{n ∈ N | C |= Φn(a, b)}

(where min ∅ = ∞) is an invariant metric with possibly infinite values, that is, it
satisfies the axioms of coincidence, symmetry and triangle inequality. In this case
we say that d induces E on X.

Remark. When talking about normal forms, we will sometimes implicitly assume
that Φ0(x, y) = {x = y} without stating it outright, as it will never be anything
else.

Example 3.13. The prototypical example of a normal form is
∨
n dL(x, y) ≤ n,

inducing ≡L, and dL is the associated metric.

Remark. The Lascar distance, by its very definition, has the nice property that it
is “geodesic” in the sense that if two points a, b are at distance n, then there is a
sequence of points a = a0, a1, . . . , an = b such that each pair of successive points is
at distance 1. The metrics obtained from normal forms usually will not have this
property (notice that existence of such a “geodesic” metric for E is equivalent to E
being the transitive closure of a type-definable relation).
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Example 3.14. If Φn(x, y) is an increasing sequence of type-definable equivalence
relations, then

∨
n Φn(x, y) is trivially a normal form. In particular, if E = Φ(x, y)

is type-definable, then we can put – for all n > 0 – Φn(x, y) = Φ(x, y), yielding a
somewhat degenerate normal form for E.

Definition. If we have an invariant equivalence relation E on a set X with a normal
form

∨
n∈N Φn(x, y), corresponding to a metric d, and Y ⊆ X is some set, then the

diameter of Y is the supremum of d-distances between points in Y .

Fact 3.15. If E is as above, and X is (the set of realisations of) a single complete
type, then all E-classes have the same diameter (because the Aut(C) acts transitively
on X in this case, and the diameter is invariant under automorphisms).

The following proposition is the essential step in adapting the techniques of
[KMS13] to prove Theorem 4.6.

Proposition 3.16. Suppose E is a relatively Fσ (over ∅), bounded equivalence
relation on an invariant (over ∅) set X. Then E has a normal form

∨
n Φn such

that Φ1(x, y) holds for any x, y which are terms of an infinite indiscernible sequence.
(This implies that for any a, b, if dL(a, b) ≤ n, then |= Φn(a, b), so that d ≤ dL. It
also shows that every relatively Fσ equivalence relation has a normal form.)

Proof. Because E is bounded, the Lascar strong type restricted to X is a refinement
of E (by Fact 2.4), and hence E ∪ (≡L�X) = E. In addition, since E is relatively
Fσ, we can find types Φn(x, y) such that x E y ⇐⇒

∨
n Φn(x, y).

Consider the sequence Φ′n(x, y) of types, defined recursively:

(1) Φ′0(x, y) = {x = y}
(2) Φ′1(x, y) = Φ1(x, y) ∨ Φ1(y, x) ∨ x = y ∨ dL(x, y) ≤ 1
(3) Φ′n+1(x, y) = Φn+1(x, y) ∨ Φn+1(y, x) ∨ (∃z)(Φ′n(x, z) ∧ Φ′n(z, y))

It is easy to see that
∨

Φ′n is a normal form and represents the smallest equivalence
relation containing E and ≡L (as a set of pairs), which is just E, and dL(x, y) ≤ 1
(i.e. the statement that x, y are in an infinite indiscernible sequence) implies Φ′1(x, y)
by the definition.

The statement in the parentheses follows from the fact that dL(a, b) ≤ n is defined
as the n-fold composition of dL(a, b) ≤ 1. �

The theorem of Newelski we will see shortly is a motivating example for the study
of Borel cardinality: it can be interpreted as saying that some equivalence relations
have Borel cardinality of at least ∆(2N). We will see later in Corollary 4.8 that
for E which are orbital (a concept which we will define soon), we can strengthen
this result to replace ∆(2N) with E0, and this is optimal in the sense explained in
a remark after Corollary 4.8.

Theorem 3.17 ([New03](Corollary 1.12)). Assume x E y is an equivalence relation
refining ≡, with normal form

∨
n∈N Φn. Assume p ∈ S(∅) and Y ⊆ p(C) is pseudo-

closed and E-saturated. Then either E is equivalent on Y to some Φn(x, y) (and
therefore E is relatively type-definable on Y ), or |Y/E| ≥ 2ℵ0 .

Remark. Newelski uses a slightly more stringent definition of a normal form (which
we may enforce in all interesting cases without any significant loss of generality), i.e.
that d satisfies not only triangle inequality, but also

d(a, b), d(b, c) ≤ n =⇒ d(a, c) ≤ n+ 1

but the definition used here is sufficient for the previous theorem, and in addition,
it has the added benefit of being satisfied by the Lascar distance dL, and the author
feels that it is more natural in general.
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The following corollary allows us some freedom with regards to the normal form,
allowing us to replace – in some cases – any normal form with one chosen as in
Proposition 3.16, without loss of generality.

Corollary 3.18. Suppose E is an relatively Fσ equivalence relation finer than ≡.
Then for any class C of E, the following are equivalent:

(1) C is pseudo-closed,
(2) C has finite diameter with respect to each normal form of E (i.e. it has

finite diameter with respect to the metric induced by each normal form, as
introduced previously),

(3) C has finite diameter with respect to some normal form of E.

Proof. Assume that C is pseudo-closed. Setting Y = C in Theorem 3.17 we im-
mediately get that C has finite diameter with respect to any normal form of E.
Implication from the second condition to third follows from the fact that E has a
normal form by the previous proposition, and the implication from third to first is
trivial. �

Example 3.19. The above is no longer true if we allow E to be refined by ≡.
For example, consider the theory T = Th(R,+, ·, 0, 1, <) of real closed fields, and
the total relation on the entire model (field). Clearly, it has a normal form {x =
y} ∨

∨
n>0(x = x), and the induced metric is just the discrete 0-1 metric, and in

particular its only class (the entire model) has diameter 1. On the other hand, we
might give it a normal form {x = y} ∨

∨
n>0(

∧
m≥n(x = m ↔ y = m)) (where m

ranges over natural numbers). With respect to this normal form, any two distinct
positive natural numbers k, l are at distance max(k, l)+1. In particular, the diameter
of the only class is infinite.

From Corollary 3.18, we deduce the following description of relatively Fσ equiva-
lence relations with pseudo-closed classes.

Corollary 3.20. Suppose E is a relatively Fσ equivalence relation refining ≡. Then
the following are equivalent:

(1) each class of E is pseudo-closed,
(2) each class of E has finite diameter with respect to any normal form of E,
(3) each class of E has finite diameter with respect to some normal form of E.

In addition, they imply that E is refined by ≡KP (restricted to the domain of E).
(And we will see later in Example 5.5 that the converse does not hold.)

Proof. The first part follows immediately from the previous corollary.
“In addition” can be obtained thus: E refines ≡, so it is enough to show that

the restriction of E to any p ∈ S(∅) is refined by the restriction of ≡KP to p. But
any class in the restriction has finite diameter with respect to some normal form,
and they all have the same diameter (by Fact 3.15), so in fact the restriction is
type-definable and as such refined by ≡KP (by Fact 2.4). �

Remark. If E is a type-definable equivalence relation, then its classes are trivially
pseudo-closed, so by the above, if E is refined by ≡, then for any normal form of E,
all E-classes have finite diameter.

For technical reasons, later on we will rely on the action of an automorphism
group, so we introduce the following definition.

Definition (Orbital equivalence relation, orbital on types equivalence relation).
Suppose E is an invariant equivalence relation on a set X.

• We say that E is orbital if there is a group Γ ≤ Aut(C) such that Γ preserves
classes of E setwise and acts transitively on each class.
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• We say that E is orbital on types if it refines type and the restriction of E
to any complete ∅-type is orbital.

Remarks.

• An orbital equivalence relation always refines type. (So every orbital equiv-
alence relation is orbital on types.)

• The relations ≡L,≡KP are orbital (as witnessed by Aut fL(C),Aut fKP (C)).
• The group witnessing that a given relation is orbital can always be chosen

as a normal subgroup of Aut(C).

The following proposition shows that the definition of a orbital on types equiva-
lence relation is, in a way, the weakest possible for the proof of Theorem 4.6.

Proposition 3.21. An invariant equivalence relation E is orbital on types if and
only if for any class C of E there is a group Γ such that Γ preserves E classes within
the (complete ∅-)type p containing C and Γ acts transitively on C.

Proof. First, notice that both conditions imply that E is refined by ≡, so we can
assume that.

The implication (⇒) is just a weakening; for (⇐), observe that Aut(C) acts
transitively on X := p(C), so for any class C ′ ∈ X/E we have an automorphism
σ which takes C to C ′. It is easy to see that then σΓσ−1 acts transitively on C ′

and preserves all E-classes in X setwise. From that we conclude that the normal
closure of Γ in Aut(C) witnesses that E restricted to X is orbital. �

The following simple corollary allows us to easily recognise some relations as
orbital on types.

Corollary 3.22. If E is an invariant equivalence relation on an invariant set X,
refining ≡, and the restriction of E to any complete type in X has at most two
classes, then E is orbital on types.

Proof. Without loss of generality we may assume that X is a single complete type,
so Aut(C) acts transitively on X. In particular, for any element a ∈ X, we have a
set S ⊆ Aut(C) such that S · a = [a]E . Since E is invariant, elements of S preserve
[a]E and so does the group Γ = 〈S〉.

Of course Γ preserves X, so it also preserves the complement X \ [a]E . But since
E has at most two classes, this means that Γ preserves all classes, so by the previous
proposition E is orbital on types. �

At a glance, it is not obvious whether the condition that E is orbital on types is
any stronger than the condition that it refines type. The following examples show
that it is indeed the case.

Example 3.23. Consider the permutation group

G = 〈(1, 2)(3, 5)(4, 6), (1, 3, 6)(2, 4, 5)〉
= {(), (1, 2)(3, 5)(4, 6), (1, 3, 6)(2, 4, 5),

(1, 4)(2, 3)(5, 6), (1, 5)(2, 6)(3, 4), (1, 6, 3)(2, 5, 4)}

acting naturally on a 6-element set. Then the equivalence relation ∼ such that
1 ∼ 2, 3 ∼ 4, 5 ∼ 6 (and no other nontrivial relations) is preserved by G, but it
is not the orbital equivalence relation of any subgroup (in fact, the subgroup of G
preserving all ∼-classes setwise is trivial).

Let M0 be a structure with base set {1, 2, 3, 4, 5, 6}, with a relation symbol E for
∼, and such that G is the automorphism group of M0 (which we can obtain, for
instance, by adding a predicate for the set of all orbits of G on M6

0 to the language).
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Then E is an invariant (even definable) equivalence relation which refines ≡ and
is not orbital on types.

We can extend Example 3.23 to an infinite model in a number of simple ways,
for instance as follows.

Example 3.24. Let M0 be as in the previous example, and let M1 be a structure
which is just a large set (larger than the desired saturation degree) with no non-
logical symbols, and consider the structure C = (M0 ×M1,Mi, πi)i∈{0,1} (with all
the structure of M0), where πi is the projection M0 ×M1 →Mi .

Then C is saturated (it is clearly categorical in every cardinality), and the auto-
morphism group is just the product of G from the previous example and the full
permutation group of M1. In particular, there is only one 1-type on the product
sort of C, and the relation on it induced by E is not orbital, although it trivially
refines type.

We finish with a little less artificial example.

Example 3.25. Consider a large algebraically closed field K of characteristic p >
0, and choose some t ∈ K, transcendental over the finite field Fp, and consider
T = Th(K,+, ·, t).

Let n > 3 be a natural number which is not divisible p, and X be the set of n-th
roots of t in K (i.e., the roots of xn− t). Notice that X generates a definable, finite
additive group 〈X〉. Put

G = ({a = (a1, a2) ∈ K2 | a1 + a2 ∈ 〈X〉},+)

G is a definable group (definably isomorphic to K×〈X〉). Consider the equivalence
relation on G defined by

a E b ⇐⇒ (a ≡ b ∧ a1 + a2 = b1 + b2)

We will show thatE is not orbital on types, even though it is type-definable, bounded
and refines ≡. (Nb. this E is the conjunction of ≡ and the relation of lying in
the same coset of G000, which in this case is equal to the classical model-theoretic
connected component G0.)

Let ξ be some primitive nth root of unity. Notice that for any x1, x2 ∈ X, the
pairs (x1, ξ) and (x2, ξ

−1) have the same type:

• Consider the field extension Falg
p ⊆ Falg

p (x1).

• There is an automorphism of Falg
p which takes ξ to ξ−1, and since the ex-

tension is purely transcendental, it extends to an automorphism of Falg
p (x1)

fixing x1.
• x1 and x2 are transcendental over Falg

p and they generate Falg
p (x1) (be-

cause their quotient is some root of unity), so they are conjugate by some
automorphism of Falg

p (x1) over Falg
p .

• The composition of the two automorphisms is an automorphism of Falg
p (x1)

which takes (x1, ξ) to (x2, ξ
−1), and therefore fixes xn1 = xn2 = t, so it

extends to an automorphism of K which fixes t.

From that it follows that all a ∈ G of the form (x, ξ±1x), where x ∈ X have the
same type, say p0 ∈ SG(∅).

But then in particular for any x ∈ X we have (x, ξx) E (ξx, x). If E was orbital
on types, there would be some automorphism f ∈ Aut(K/t) which takes x to ξx
and ξx to x – therefore taking ξ to ξ−1 – which preserves setwise the E-classes
within p0. But then

b = f((ξx, ξ2x)) = (x, ξ−1x) 6E (ξx, ξ2x) = a |= p0
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because a1 + a2 − b1 − b2 = x(ξ + ξ2 − 1− ξ−1) = ξ−1x(ξ3 + ξ2 − ξ1 − 1) and ξ is
algebraic of degree n > 3.

We have seen that the E-class of (ξx, ξ2x) is not preserved by any f which takes
(x, ξx) to (ξx, x), and because (ξx, ξ2x) |= p0, it follows that E is not orbital on
types.

3.4. Invariant subgroups as invariant equivalence relations. We have seen
before that strong connected components of definable groups are, in a way, a special
case of strong types. In this section, we will show that the correspondence is more
general, and invariant subgroups are a special case of invariant equivalence relations.

Definition. Suppose G is a type-definable group and H ≤ G is invariant. We
define EH as the relation on G of lying in the same right coset of H:

g1 EH g2 ⇐⇒ Hg1 = Hg2

⇐⇒ (∃h1, h2 ∈ H)h1g1 = h2g2

⇐⇒ g1g
−1
2 ∈ H

Remark. Clearly, EH is invariant, and it has [G : H] classes, so H has bounded
index if and only if EH is a bounded equivalence relation.

It is not hard to see that invariant subgroups of type-definable groups correspond
to invariant equivalence relations as shown in the following proposition.

Lemma 3.26. Suppose G is a type-definable group and H ≤ G is Borel. Then EH
is Borel and its Borel class is the same as that of H.

Proof. Consider the mapping f : SG2(∅)→ SG(∅) given by tp(a, b/∅) 7→ tp(ab−1/∅).
Since the operations in G are type-definable, this map is a well-defined and contin-
uous surjection.

It is easy to see that EH = f−1[H], and since SG2(∅), SG(∅) are compact and
Polish, by Lemma 3.1, EH has the same Borel class as H. �

Remarks.

• The previous proposition would remain true if we had taken for EH the
relation of lying in the same left coset, but right cosets will be technically
more convenient in a short while.

• Equivalence relations EH do not refine type, and in particular are not orbital
on types, which is a desirable property. We will resolve this issue shortly
by choosing a different equivalence relation to represent H, which will be
Borel bireducible with EH and orbital on types for normal H.

Until the end of this subsection, we fix a definable group G and recall from The-
orem 2.6 the structure (C,X, ·) where X is a sort for a (left) principal homogeneous
space for a group G definable in C, and · is the symbol for the left action.

Definition. Let H be an invariant subgroup of G. Then EH,X is the relation on
X of being in the same H-orbit.

Proposition 3.27. The mapping Φ: H 7→ EH,X is a bijection between invariant
subgroups of G and invariant equivalence relations on X.

Proof. We fix some x0 ∈ X, so as to apply the description of the automorphism
group of (C,X, ·) from Theorem 2.6.

First, choose some invariant H ≤ G. We will show that EH,X is invariant.
Choose arbitrary h ∈ H, an original automorphism σ of C and some g, k ∈ G, and

denote by σg the automorphism of (C,X) induced by g. Since every pair of two EH,X -
related elements is of the form (kx0, hkx0), and the automorphism group of (C,X, ·)
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is generated by automorphisms induced by some σ and automorphisms induced
by some g (as in Theorem 2.6), it is enough to show that σ(kx0) EH,X σ(hkx0)
and kgx0 EH,X hkgx0. The latter is immediate by the definition of EH,X . For the
former, just see that

σ(kx0) = σ(k)x0 EH,X σ(h)σ(k)x0 = σ(hkx0)

because σ(h) ∈ H (by invariance of H).
To see that Φ is a bijection, choose an arbitrary invariant equivalence relation

E on X, and let H be the setwise stabiliser of [x0]E . Choose arbitrary h ∈ H,
σ ∈ Aut(C). Then:

x0 E hx0 =⇒ x0 = σ(x0) E σ(hx0) = σ(h)x0

therefore σ(h) ∈ H and since h and σ were arbitrary, H is invariant. To see that
E = EH,X , notice that for any x1 = k1x0 and x2 = k2x0 we have

k1x0 E k2x0 ⇐⇒ x0 E k2k
−1
1 x0 ⇐⇒ k2k

−1
1 ∈ H ⇐⇒ (∃h ∈ H)hk1x0 = k2x0

(The first equivalence is obtained by applying the automorphism σk1 induced by
k1.)

�

Remark. An invariant subgroup H ≤ G has bounded index if and only if EH,X is a
bounded equivalence relation.

Proposition 3.28. Suppose H ≤ G is invariant and of bounded index, H ≤ K ≤ G
and K is pseudo-Borel.

Then EH,X is Borel if and only if H is, and it has the same Borel class as H.
Moreover, if H is Borel, EH�K and EH,X�K·x0

have the same Borel cardinality
(in particular, EH and EH,X have the same Borel cardinality).

Proof. Suppose H is Borel and bounded and fix an arbitrary K according to the
assumptions (e.g. K = G) and a countable model N � (C,X, ·) containing x0 – so
that N = (M,G(M) · x0).

Then K is Borel over M (by Corollary 3.5) and the map f : SG(N) → SX(N)
defined by f(tp(g/N)) = tp(g · x0/N) is a homeomorphism (because it is induced
by an N -definable bijection), and f takes KN to (K · x0)N and ENH to ENH,X .

In a similar fashion, the restriction map g : SG(N)→ SG(M) (with the latter con-
sidered in the original structure C) is also a homeomorphism – it is clearly continuous
and surjective, and it follows from Theorem 2.6 that it is injective (automorphisms
of (C,X, ·) fixing (M,G(M) · x0) pointwise are the same as those which fix M and
x0 pointwise, and they have the same orbits in C as the automorphisms of C fixing
M pointwise). It also takes ENH to EMH and KN to KM .

These two facts, along with Lemma 3.26 complete the proof:

(1) The Borel class of H is the same as that of EH (by Lemma 3.26).
(2) By the (composition of) aforementioned homeomorphisms, EMH has the

same Borel class as ENH,X , and the two have the same Borel classes as EH
and EH,X , respectively (by Proposition 3.3).

(3) Similarly, EMH �KM
is taken by a homeomorphism to ENH,X�(K·x0)N , so they

have the same Borel cardinalities, which are by definition the Borel cardi-
nalities of EH�K and EH,X�K·x0

, respectively.

�

We finish with an observation that allows us to easily see that some EH,X are
orbital.

Proposition 3.29. Suppose H is a normal, invariant subgroup of G. Then EH,X
is orbital.
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Proof. Consider the action ∗ of H on (C,X, ·) by automorphisms (using Theorem 2.6,
viewing H as a subgroup of Go Aut(C)). Then – because H is a normal subgroup
of G – we have for any x = g · x0 ∈ X that

H ∗ (g · x0) = (gH−1) · x0 = (gH) · x0 = (Hg) · x0 = H · (g · x0) = [x]EH,X

So H ≤ Go Aut(C) = Aut((C,X, ·)) witnesses that EH,X is orbital. �

Remark. The converse of the previous proposition is not true: if we have G = S3,
H = 〈(1, 2)〉 and Aut(C) acting on G in such a way that any σ ∈ Aut(C) acts on G
either trivially or by conjugation by (1, 2), then although H is not normal, EH,X is
orbital: for σ ∈ Aut(C) acting nontrivially on G we have

((1, 2), σ)(g · x0) = ((1, 2) · g · (1, 2)−1) · (1, 2)−1 · x0 = (1, 2) · (g · x0)

4. The technical theorem

4.1. Descriptive-set-theoretic observations. The following theorem is the core
of the descriptive-set-theoretic part of the argument for Theorem 4.6. The next
corollary will imply the latter, as soon as we show that its assumptions are satisfied.

Theorem 4.1 ([KMS13](Theorem 2.2)). Suppose that P is a Polish space, Rn is a
sequence of Fσ subsets of P 2, Γ is a group of homeomorphisms of P and O ⊆ P is
an orbit of Γ such that for each n and open U ⊆ P intersecting O, there are distinct
x, y ∈ O ∩ U with O ∩ (Rn)x ∩ (Rn)y = ∅. Then there is a continuous, injective
homomorphism

(2N, E0,¬E0)→ (O, EPΓ ,¬
⋃
n

Rn)

(where EPΓ is the orbit equivalence relation of Γ on P ).

As before, when E is an invariant, bounded equivalence relation, we denote
by EM the induced equivalence relation on S(M). For the statement of the next
corollary, we need to extend the notion of distance to the type spaces.

Definition. If E is a relatively Fσ equivalence relation induced by a metric d
(coming from some normal form), then we also denote by dM the induced distance
on S(M), i.e.

dM (p1, p2) = min
a1|=p1,a2|=p2

d(a1, a2)

Remark. The classes of EM are precisely the “metric components” of dM , i.e. the
maximal sets of types which are pairwise in finite distance of one another in the
sense of dM , though dM might not satisfy the triangle inequality, so it is not in
general a metric.

We link Theorem 4.1 to our context (bounded and invariant equivalence relations)
by means of the following corollary.

Corollary 4.2 (based on [KMS13](Corollary 2.3)). Suppose we have:

• a countable theory T with monster model C,
• a countable model M � C,
• an invariant subset X of a countable product of sorts of C,
• a bounded, relatively Fσ equivalence relation E on X, with normal form∨

n Φn, inducing metric d,
• a pseudo-Gδ and E-saturated Y ⊆ X.

Assume in addition that there is some p ∈ YM ⊆ SX(M) such that for every formula
ϕ ∈ p with parameters in M , and for all N ∈ N, there is some σ ∈ Aut(C) such
that:

(1) σ fixes M and all E-classes in Y setwise (and therefore Y itself as well),
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(2) ϕ ∈ σ(p) and N < dM (σ(p), p).

Then there is a continuous, injective homomorphism

(2N, E0,¬E0)→ (YM , E
M �YM

,¬(EM �YM
))

In particular, EM �YM
is not smooth.

Proof. Let Γ < Aut(C) be the group of all automorphisms fixing M and all classes
of E in Y setwise, acting naturally on YM by homeomorphisms. For each n, put
Rn = {(p, q) ∈ (YM )2 | dM (p, q) ≤ n}, and O = Γ · p.

Denote by P the sort (or a product of sorts) containing X (the domain of E).
Rn are Fσ because they are closed – they are intersections of (YM )2 with R′n =

{(p, q) ∈ SP (M)2 | dM (p, q) ≤ n}, which are compact, as continuous images of
compact [Φn(x, y)] ⊆ SP 2(M)).

Choose an arbitrary natural n and a basic open set [ψ] intersecting O. Then
for some γ ∈ Γ we have ψ ∈ γ(p). Let ϕ = γ−1(ψ). Then for some σ ∈ Γ
we have ϕ ∈ σ(p) and 2n < dM (σ(p), p). Let x = γ(p) and y = γσ(p). So
dM (x, y) = dM (p, σ(p)) > 2n and so x, y are distinct elements of [ψ] ∩ O and
O ∩ (Rn)x ∩ (Rn)y = ∅.

Now we can apply the previous theorem with P = YM (which is Polish because it
is Gδ in S(M), by Corollary 3.2 and Corollary 3.4) and Γ,O, Rn as before, so as to

obtain a continuous, injective homomorphism (2N, E0,¬E0)→ (O, EYM

Γ ,¬
⋃
nRn)

(with O being the closure in YM ), while inclusion gives a continuous, injective ho-

momorphism from (O, EYM

Γ ,¬
⋃
nRn) to (YM , E

M �YM
,¬(EM �YM

)), since ¬
⋃
nRn

is just ¬(EM �YM
), and EYM

Γ ⊆ EM (because Γ preserves E-classes intersecting Y ),
so by composing the two maps we complete the proof. �

4.2. Generic formulas and proper types. Throughout this subsection, Γ ≤
Aut(C) is an arbitrary group of automorphisms, while C is an arbitrary orbit of Γ
(in some product of sorts of C). The facts will be cited from [KMS13], where Γ is
Aut fL(C) (and so C is a Lascar strong type), but the proofs are exactly the same
in the general case.

Definition.

• if ϕ,ψ are formulas, we say that ϕ `C ψ if for all c ∈ C, if |= ϕ(c), then
|= ψ(c) (i.e. ϕ(C) ∩ C ⊆ ψ(C)); likewise for one or both of ϕ,ψ replaced
with types;
• we say that a formula (with parameters) ϕ is generic if there is a finite

sequence τ0, . . . , τn−1 of elements of Γ such that
∨
i<n τi(ϕ) covers C; we

say that a type is generic if every conjunction of its formulas is generic;
• for any (possibly incomplete, usually with parameters) type p, we say that
p is proper if there is a non-generic formula ψ such that if ϕ is a conjunction
of formulas in p, then the formula ϕ ∨ ψ is generic, or equivalently, p ∨ ψ is
generic.

Remark. Considering C is Γ-invariant, whenever ϕ `C ψ and ϕ is generic, so is ψ.

This fact allows us to extend a proper type to a proper complete type.

Fact 4.3 ([KMS13](Lemma 4.9)). Let p be any proper type. Then for any formula
ϕ (with parameters), one of p ∪ {ϕ}, p ∪ {¬ϕ} is proper.

This fact will, in turn, help with extending a proper type to make it satisfy the
assumptions of Corollary 4.2.

Fact 4.4 ([KMS13](Proposition 4.10)). Suppose p is a proper type and ϕ ∈ p.
Then there are τ0, . . . , τm−1 ∈ Γ such that for any σ ∈ Γ there is i < m such that
p ∪ {σ(τi(ϕ))} is proper.
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This lemma will be used for the base case for the recursion in Theorem 4.6.

Lemma 4.5 (Based on [KMS13](Proposition 4.11)). Let a ∈ C. Then the type
q = (dL(x, a) ≤ 1) (where dL is the Lascar distance; i.e. q is the type of an element
of an infinite indiscernible sequence containing a – not to be confused with the type
of any particular such element, as q is usually incomplete) is generic (and hence
proper).

4.3. Proof of the technical theorem. As mentioned in the introduction, a similar
theorem has been proved, independently, in [KM13] using different methods. The
proof we list here is a generalization of the main result of [KMS13], where the
relation in question is the Lascar strong type.

Remark. The statement of Theorem 4.6 is somewhat technical, attempting to be
almost as general as the proof allows. For variants which may be easier to digest,
see Corollary 4.7 and Corollary 4.8.

Theorem 4.6 (based on [KMS13](Theorem 4.12)). Suppose we have:

• an invariant set X ( in a countable product of sorts of C),
• a bounded, relatively Fσ equivalence relation E on X, refining ≡,
• a pseudo-Gδ and E-saturated set Y ⊆ X,
• an E-class C ⊆ Y with infinite diameter with respect to some normal form

of E,
• a group Γ ≤ Aut(C) preserving all E-classes setwise and acting transitively

on C.

Then E�Y is not smooth.

Proof. By Proposition 3.16, we can choose a normal form
∨
n Φn for E such that

dL(x, y) ≤ 1 ` Φ1(x, y), where dL is the Lascar distance. Denote the invariant
metric associated to this normal form by d, so that for any x, y ∈ X we have
d(x, y) ≤ n ⇐⇒ |= Φn(x, y) (and d ≤ dL). Recall that d induces the distance on
types dM (p1, p2) = min(d(a1, a2)) with min ranging over a1 |= p1, a2 |= p2.

By Corollary 3.18, C has infinite diameter with respect to d. We will apply the
lemmas of subsection 4.2 with C, Γ as in the statement of the theorem.

Ultimately, the goal is to apply Corollary 4.2. To that end, we will construct
a pair (M,p) such that M is a countable model of T and p ∈ YM satisfies the
hypotheses of Corollary 4.2.

Choose arbitrary a ∈ C and let q(x) = Φ1(x, a). We construct recursively three
sequences σi, pi,Mi with i ∈ N such that

(1) each Mi is a finite set containing a, each pi is a finite type over Mi, and
each σi is in Γ,

(2) Mi and pi are both monotone with respect to ⊆,
(3) pi ∪ q is proper for each i (in particular, it is consistent),
(4) for every i,N ∈ N and ϕ ∈ pi, there are some j, j′ such that d(σj(a), a) > N

and σ−1
j (ϕ) ∈ pj′ ,

(5) for each i and ϕ ∈ L(Mi) consistent with the sorts of X, there is some j
such that pj contains one of ϕ,¬ϕ,

(6) for each Mi, if some formula ϕ ∈ L1(Mi) has a realisation, it has one in
some Mj (Tarski-Vaught condition),

(7) for every i, i′, there is some j ∈ N such that Mj ⊇ σi′ [Mi] ∪ σ−1
i′ [Mi].

Claim. If we take M =
⋃
iMi and p =

⋃
i pi as above, then they satisfy the

assumptions Corollary 4.2, as witnessed by the σi.

Proof.
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• M =
⋃
iMi will be an elementary submodel of C by (2), (6) along with

Tarski-Vaught criterion, countable by (1);
• By (2) and (1), p =

⋃
i pi is a type, by (5), p ∈ S(M) (is a complete

M -type),
• a ∈M and by (2) and (3), p∪ q is consistent, so (considering p is complete)

in fact p extends q, and in particular p ∈ CM ⊆ YM ,
• for any ϕ ∈ p and any N ∈ N, the automorphism σj witnessing (4) for ϕ

and (N + 6) fixes M setwise (by (7)) as well as E-classes (because it comes
from Γ), and Y (because it is an union of E-classes); it also takes p to a
point σj(p) 3 ϕ (directly by (4)). Furthermore, if we take any c |= p, then

dM (p, σj(p)) ≥ d(c, σj(c))− 4

(By triangle inequality, the fact that two elements realizing the same com-
plete M -type are at Lascar distance at most two (Fact 2.2), and the inequal-
ity d ≤ dL.) On the other hand (by the previous bullet), c |= q, therefore
d(c, a) ≤ 1, and

d(c, σj(c)) ≥ d(a, σj(a))− d(σj(a), σj(c))− d(a, c) ≥ d(a, σj(a))− 2

so dM (p, σj(p)) > (N + 6)− 2− 4 = N and the claim is proved.

�(claim)

It remains to show

Claim. The recursive construction can be accomplished as announced.

Proof. For the base case, we take M0 = {a}, p0 = ∅, σ0 = id. The relevant assump-
tions are satisfied: the only non-trivial one is (3), but it follows from Lemma 4.5
because (dL(x, a) ≤ 1) ` q(x) and we assume that Γ acts transitively on C. Now,
suppose we have pi,Mi, σi up to i = n. We need to do the following:

• for each natural number N and formula ϕ ∈ pn, we need to find σ ∈ Γ as in
(4), such that pn can be extended by σ−1(ϕ) while remaining proper. For
specific N,ϕ we can do it by taking the τ0, . . . , τm−1 as in Fact 4.4 for pn∪q
and ϕ, and a τ ∈ Γ such that d(τ(a), a) > N+maxi d(τi(a), a) (which exists
because C = Γ · a has infinite diameter). Then by triangle inequality and
invariance of d, for each i we have

d((τ ◦ τi)−1(a), a) = d(a, τ(τi(a)) ≥
≥ d(a, τ(a))− d(τ(a), τ(τi(a))) = d(a, τ(a))− d(a, τi(a)) > N.

Then we choose i such that pn+1 := pn ∪ q ∪ {τ(τi(ϕ))} is proper and put
σn+1 := (τ ◦τi)−1. For all N,ϕ we use a book-keeping argument (scheduling
for all pairs (N,ϕ) in advance);

• for each formula ϕ ∈ Lα(Mn), we need to extend pn to include one of ϕ,¬ϕ
while keeping it proper; for a single formula, we can do it by Fact 4.3,
whereas for all formulas, it can be done by a simple book-keeping argument
(in a manner consistent with the previous point);
• extend Mn to satisfy the Tarski-Vaught condition (6); we cannot do it in one

step for all ϕ, but it can also be easily done using the standard book-keeping
argument;

• extend Mn to include its images and preimages by σ0, . . . , σn – we can do
it in a single step.

�(claim)

�

Remarks.
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• We can always take for Γ the group of all automorphisms preserving E-
classes setwise. (In which case ΓEAut(C).)

• The methods of [KMS13] – with adjustments akin to those made here –
could likely also be employed to prove a weak analogue of Theorem 4.6
in case of uncountable language and/or relations E on X in uncountable
products of sorts, but this is beyond the scope of this paper.

4.4. Variants of Theorem 4.6. In this subsection, we consider some alternate
forms of Theorem 4.6.

We obtain the following immediate corollary (a partial contrapositive) of Theo-
rem 4.6. We will use it in the next section as one of the main tools for characterisation
of smooth equivalence relations (Theorem 5.8).

Corollary 4.7. Suppose E is a bounded, relatively Fσ and orbital on types equiv-
alence relation on an invariant set X. Then if Y ⊆ X is E-saturated, pseudo Gδ
and E�Y is smooth, then all E-classes contained in Y have finite diameter.

Proof. The proof is by contraposition. Choose any E-class C ⊆ Y of infinite
diameter and some a ∈ C.

Then C ⊆ [a]≡, so also C ⊆ [a]≡ ∩ Y . The restriction of E to [a]≡ is orbital,
which is witnessed by some Γ ≤ Aut(C). Since C has infinite diameter, we may
apply Theorem 4.6 to the relation E�[a]≡ , the set Y ∩ [a]≡ and the group Γ, deducing

that E�Y ∩[a]≡ is not smooth. But that trivially implies that E�Y is not smooth (by

inclusion mapping). �

We may simplify a little more if Y is contained in a single complete type. The
next corollary can be seen as a strengthening of Theorem 3.17 in case of E which
are orbital on types (because a relation with countably many classes is smooth).

Corollary 4.8. Suppose E is a bounded, Fσ and orbital on types equivalence relation
on an invariant set X. Let a ∈ X be arbitrary, and assume that Y ⊆ [a]≡ is E-
saturated, pseudo-Gδ with a ∈ Y . Fix any normal form

∨
n Φn for E. Then the

following are equivalent:

(1) E�Y is smooth,
(2) E�[a]≡ is type-definable,

(3) all E-classes in [a]≡ have finite diameter with respect to
∨
n Φn,

(4) all E-classes in [a]≡ are pseudo-closed,
(5) [a]E has finite diameter with respect to

∨
n Φn,

(6) [a]E is pseudo-closed.

Proof. We may assume without loss of generality that X = [a]≡. Then E is orbital.
If E�Y is smooth, we can apply Corollary 4.7 to deduce that all E-subclasses of

Y have finite diameter. But then by Fact 3.15, all E-classes in X = [a]≡ have the
same, finite diameter N ∈ N, so E is type-definable by ΦN , and by Corollary 3.18,
all other conditions immediately follow.

On the other hand, if [a]E is pseudo-closed, then again by Corollary 3.18, it
means that it has finite diameter N ∈ N. But then by Fact 3.15, all classes have
diameter N , so E is type-definable by ΦN , and by Fact 3.7, E�Y is smooth.

It is clear that all conditions imply that [a]E is pseudo-closed, and since this
implies that E�Y is smooth – which in turn implies all the other conditions – they
are all equivalent. �

Remark. Note that Corollary 4.8 is, in a way, a strongest possible result. This is
to say, there are examples of bounded, Fσ and orbital equivalence relations whose
Borel cardinality is exactly that of E0 (cf. [KPS13], Example 3.3), so we cannot
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replace the condition that E�Y is smooth with some weaker upper bound on Borel
cardinality.

For relations refining ≡KP , we may be even more specific.

Corollary 4.9. Suppose E is bounded, relatively Fσ and orbital on types. Suppose
in addition that it refines ≡KP . Then for any a in the domain of E, we have that
E�[a]≡KP

is trivial (i.e. total on [a]≡KP
) if and only if it is smooth. (In particular,

if E is defined on a Borel set X and it is smooth, then it is equal to ≡KP �X.)

Proof. The implication from left to right is trivial. To prove the converse, choose
any a in domain of E.

The set [a]≡KP
is E-saturated (because E refines ≡KP ), type-definable over a

and contained in [a]≡, so we can assume without loss of generality that E is defined
on [a]≡. Then we can apply Corollary 4.8, which tells us that if E�[a]≡KP

is smooth,

then E is type-definable. But in this case E is refined by ≡KP (by Fact 2.4), and
therefore equal to ≡KP restricted to [a]≡ and so E�[a]≡KP

is trivial. �

Remark. In Theorem 4.6 and the above corollaries, we do not really need to assume
that E is relatively Fσ, only that it is Fσ on types (i.e. that its restrictions to
complete types are Fσ, or even just types intersecting Y ). This is because the
proofs all of those only really work with the restrictions of E to a specific complete
type intersecting Y . (And in fact whenever we show non-smoothness in those, we
show that the restriction to some complete type (or its subset) is non-smooth.)

We infer an analogous result for invariant subgroups of bounded index of definable
groups, which we will employ later in the context of definable group extensions, in
the final section (specifically in Theorem 6.2).

Corollary 4.10. Suppose that G is a definable group and H EG is an invariant,
normal subgroup of bounded index, which is Fσ (equivalently, generated by a countable
family of type-definable sets). Suppose in addition that K ≥ H is a pseudo-Gδ
subgroup of G. Then EH�K is smooth if and only if H is type-definable.

Proof. IfH is type-definable, then by Lemma 3.26 EH is a type-definable equivalence
relation (on a type-definable set), and as such it is immediately smooth by Fact 3.7,
and so is its restriction to K.

The proof in the other direction will proceed by contraposition: assume that
H is not type-definable. Recall Proposition 3.27: consider, once again, the sorted
structure (C,X, ·).

By Proposition 3.28, H corresponds to a bounded Fσ equivalence relation EH,X
on X (which is not type-definable, since H is not), which is only defined on a single
type, and – owing to the assumption that H is normal and Proposition 3.29 – orbital.

Evidently K ·x0 is EH,X -saturated and pseudo-Gδ, so we can apply Corollary 4.8
to E = EH,X and Y = K ·x0, deducing that EH,X�K·x0

is not smooth, and therefore
(by Proposition 3.28) neither is EH�K . �

5. Characterisation of smooth equivalence relations and Borel
cardinalities

In this section, we will attempt to characterise the bounded, orbital on types and
(relatively) Fσ equivalence relations which are smooth, and in particular compare
smoothness and type-definability. Firstly, we analyse several examples showing us
some of the limitations of this attempt.
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5.1. Counterexamples.

Proposition 5.1. Suppose E is a type-definable equivalence relation on a type-
definable set X, and that there are countably many complete ∅-types on X, and
infinitely many of them are not covered by singleton E-classes. Then E has a
normal form such that the classes of E have unbounded diameter (that is, there is
no uniform bound on the diameter).

Proof. Let pn with n > 0 be some enumeration of complete ∅-types on X. Then
put (for n > 0)

Φn(x, y) = (x = y) ∨

E ∧ ∨
m1,m2≤n

pm1
(x) ∧ pm2

(x)


It is easy to see that for each n, Φn(x, y) is a type-definable equivalence relation
and Φn is increasing, so

∨
n Φn(x, y) is trivially a normal form. In addition, any

non-singleton E-class intersecting pn has diameter at least n+ 1.
There are infinitely many pn which intersect an E class which is not a singleton, so

in particular, the non-singleton classes have no (finite) uniform bound on diameter.
�

Example 5.2. Let T = ACF0 be the theory of algebraically closed fields of charac-
teristic 0. Consider E = ≡KP as a relation on C2. The space S2(Qalg) is countable,
because T is ω-stable, and since Qalg is a model, we know (due to Proposition 3.3)
that ≡KP has only countably many classes (on the set of pairs). It is also, of course,
smooth, orbital and even type-definable.

Despite being rather well-behaved, E still has a normal form with respect to
which the classes have arbitrarily large diameter, by the preceding proposition:

(1) (The set of realisations of) each type of the form tp(q, t/∅) with q ∈ Q
and t transcendental is a single, infinite ≡KP -class (because it is the set of
realisations of a single type over Qalg), and in particular, it is not covered
by singleton classes.

(2) Furthermore, S2(∅) is countable (because T is ω-stable), so by Proposi-
tion 5.1, E has a normal form with respect to which its classes have arbi-
trarily large diameter.

Proposition 5.3. Suppose there is a non-isolated complete ∅-type p0 such that
p0(C) is not contained in a single class of some definable, bounded (equivalently,
with finitely many classes) equivalence relation E. Then the relation

E′(x, y) = (E(x, y) ∨ ¬p0(x)) ∧ (x ≡ y)

is Fσ and smooth, but not type-definable.
Furthermore, if E ∩ ≡ is orbital on types, then so is E′.

Proof. A definable and bounded equivalence relation has only finitely many classes,
so E′ differs from ≡ only in that one class is divided into finitely many pieces. Fix a
countable model M and a Borel reduction f : S(M)→ X of ≡M as an equivalence
relation on S(M) to ∆(X), equality on a Polish space X (which exists because ≡
is smooth, being type-definable).

Let [p0]≡/E = {A1, . . . , An}. Then define f̃ : S(M)→ X t {1, . . . , n} (where t
is the disjoint union and {1, . . . , n} has discrete topology) by

f̃(tp(x/M)) =

{
f(tp(x/M)) x 6|= p0

j x ∈ Aj

Then clearly f̃ is Borel and witnesses that E′ is smooth.



31

E′ is easily seen to be Fσ, as it is the intersection of the open (and therefore Fσ,
as the language is countable) set (E(x, y) ∨ ¬p0(x)) and the closed set (x ≡ y).

It remains to show that E′ is not type-definable. For that, we need the following

Claim. For any formula (without parameters) ψ ∈ p0, there is some x |= p0 and
x′ 6|= p0, such that x′ |= ψ and E(x, x′). In fact, we can find such x′ for any x |= p0.

Proof. The proof is by contraposition: we assume that there are no such x, x′ for
ψ, and we will show that p0 is isolated. Let

E′′(x, y) = (E(x, y) ∧ ψ(x) ∧ ψ(y)) ∨ (¬ψ(x) ∧ ¬ψ(y))

Then E′′ is a definable equivalence relation which has finitely many classes (at most
1 more than E) and (by the assumption), p0(C) is a union of E′′-classes, of which
there are only finitely many, so p0(C) is definable with some parameters. But since
it is invariant, it implies that it is definable without parameters, and therefore p0 is
isolated.

Once we have some x′ for an x |= p0, we may obtain one for each of them simply
by applying automorphisms. �(claim)

Now we choose a sequence ϕn of formulas such that
∧
n ϕn ` p0 and ϕn+1 ` ϕn.

Let x0, y0 |= p0 be such that ¬E(x0, y0) (which we can find because p0 is not
contained in a single E-class), and let xn be a sequence of elements satisfying ϕn
but not p0, and simultaneously satisfying E(xn, x0) (this sequence exists by the
claim), and let yn be a sequence such that each (x0, xn) is conjugate to (y0, yn) (so
that xn ≡ yn and yn |= ϕn and E(y0, yn)).

Then any limit point of the sequence tp(xn, yn/∅) in S2(∅) is not in E′, even
though each tp(xn, yn/∅) is in E′, so E′ is not type-definable.

The “furthermore” part is obvious, since E′ agrees with E ∩≡ on p0 and is total
when restricted to any other type. �

Example 5.4. Consider T = Th(Z,+) (the theory of additive group of integers)
and the type p0 = tp(1/∅) (the type of an element not divisible by any natural
number).

The type p0 is not isolated, and it is not contained in a single class of the definable
relation E of equivalence modulo 3, while E ∩ ≡ has at most two classes in each
complete type, so it is orbital on types due to Corollary 3.22.

In particular – by the preceding proposition – the relation E′(x, y) which says
that x ≡ y and they either have the same residue modulo 3 or else they are both
divisible by some natural number (i.e. they are not of the same type as 1), is Fσ,
orbital on types and smooth, but not type-definable.

Example 5.5. Suppose there is some a ∈ C such that ≡KP has two classes on
[a]≡ (like a =

√
2 for C |= ACF0), so that ≡KP �[a]≡ ∼B ∆(2). Consider the infinite

disjoint union of copies of C, i.e. the multi-sorted structure (Cn)n∈N where each
Cn is a distinct sort isomorphic to C (without any relations between elements of
Cn and Cm for n 6= m). Then consider a = (an)n∈N where an is the element of Cn
corresponding to a. Then [a]≡ =

∏
n[an]≡ and similarly

(bn)n ≡KP (cn)n ⇐⇒
∧
n

bn ≡KP cn

(by [Cas+01], Lemma 3.7(iii)). Now consider the following relation E on [a]≡:

(bn)n E (cn)n ⇐⇒ {n | bn 6≡KP cn} is finite

Then E is refined by ≡KP , but on the other hand

E ∼B (≡KP �[a]≡)N/Fin ∼B ∆(2)N/Fin = E0
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(This can be seen either directly or by considering E as an equivalence relation on
[a]≡/≡KP , as in Corollary 3.12.)

In particular, E is not smooth, it is easy to see that E is Fσ (because ≡KP is
type-definable and there are countably many finite subsets of N), and it is also
orbital, as its classes are just the orbits of the group{

(σn)n ∈
∏
n∈N

Aut(Cn)

∣∣∣∣∣ for all but finitely many n, σn ∈ Aut fKP (Cn)

}
Additionally, E is only defined on a single type and is not type-definable, so by
Corollary 4.8, all its classes have infinite diameter.

Example 5.6. Consider a saturated model K of the theory T = Th(R,+, ·, 0, 1, <)
of real closed fields. For each n ∈ N+ we have a ∅-type-definable equivalence
relation Φn(x, y) =

∧
k≥n(x < k ↔ y < k). Consider the relation E =

∨
n Φn (with

Φ0(x, y) = {x = y}, as before):

• E is an Fσ equivalence relation (and since Φn is an increasing sequence of
equivalence relations, it is easy to see that

∨
n Φn is its normal form).

• E has two classes: the class Cfin of elements bounded from above by some
natural number, and its complement C∞. Therefore, it is bounded and
smooth.

• Cfin is a class which is not pseudo-closed (otherwise, by compactness, it
would intersect

∧
n x > n = C∞).

This combination of features is possible because E does not refine ≡ (and therefore
it is not orbital on types), so we cannot apply Corollary 4.7 to it.

Example 5.7 (Example 3.39 in [KM13]). Let T be the theory of an infinite dimen-
sional vector space over F2 in the language (+, 0, Un)n∈N (i.e. an infinite abelian
group of exponent 2), where Un are predicates for independent subspaces of codi-
mension 1 (i.e. subgroups of index 2).

Consider G = C |= T as a definable (additive) group, and let H ≤ G be the
intersection of all Un. Then [G : H] = c, and cosets of H are exactly the types
Xη =

⋂
n U

ηn
n , where η : N→ {0, 1}, while U0

n = Un and U1
n = C \ Un.

Consider the subspaces Wθ ≤ G defined as Wθ = π−1[ker(θ)], where π : G →
G/H is the quotient map, and θ is a nonzero functional G/H → F2. Each θ is
uniquely determined by Wθ (since its value is 0 on π[Wθ] and 1 elsewhere and kerπ
is contained in all Wθ), so there are |(G/H)∗| = c > ℵ0 distinct Wθ, in particular
some W = Wθ is not definable.

On the other hand, W is invariant, as it is the union of some Xη which are
type-definable, and [G : W ] = 2 (because W has codimension 1), so W is not type-
definable (if it was, its complement would also be type-definable, as it is invariant
and a coset of W ).

Now, recall Proposition 3.27. Let us extend C to (C,X, ·), where X is a principal
homogeneous space for G. Then W induces an invariant equivalence relation EW,X
on X which has two classes, is orbital by Proposition 3.29 (or Corollary 3.22) and
not type-definable by Proposition 3.28.

Remark. The equivalence relation in the previous example is not type-definable,
and it is unlikely to even be Borel, as the subspace W is the kernel of an almost
arbitrary linear functional, which can be very “wild”. It does show, however, that we
need some “definability” hypotheses beyond invariance for the likes of Theorem 3.17.

5.2. Main characterisation theorem.
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Theorem 5.8. Let E be an Fσ, bounded, orbital on types equivalence relation on
a type-definable set X, and d be the invariant metric induced by a normal form of
E. Then consider the four conditions:

(1) E classes have uniformly bounded diameter with respect to d.
(2) E is type-definable.
(3) E is smooth.
(4) E classes have finite diameter with respect to d (but possibly unbounded).

These conditions are related as follows:

• (1) implies (2),(3),(4),
• (2) implies (3) and (4), but not (1)
• (3) implies (4), but not (2) or (1).
• (4) does not imply (2) or (1).

If we assume, in addition, that E refines ≡KP (on X), then conditions (2),(3),(4)
are equivalent (and equivalent to simply E = ≡KP �X) and are implied by, but do
not imply (1).

If we assume instead that E is only defined on a single complete ∅-type, then all
conditions are equivalent.

Proof. For the first part:

• (1) trivially implies (2)
• That (2) implies (3) follows from Fact 3.7.
• That (3) implies (4) follows immediately from Corollary 4.7 with Y = X.
• That (2) does not imply (1) follows from Example 5.2.
• That (3) does not imply (2) is demonstrated by Example 5.4.
• Other listed implications (or lack thereof) are logical consequences of the

ones above.

To show that the last three conditions are equivalent if E refines KP -type, it is
enough to show that (4) implies (2). But it follows easily from Corollary 3.20. That
it does not imply (1) can be seen in Example 5.2.

To show that all four are equivalent if E is defined on a single type, it is enough
to notice that (4) implies (1). But this is immediate from the fact that all classes
have the same diameter (by Fact 3.15).

�

Remarks.

• The most significant in the previous corollary are the conditions (2) and (3),
as they are inherent to E, whereas the two others depend on the choice of
the metric inducing E. In particular, for bounded E which are Fσ, orbital
on types and either defined on a single complete type, or refining ≡KP , we
have that E is type-definable if and only if it is smooth.

• The property that E has only countably many classes implies (2),(3),(4),
but not (1) (and is not implied by any of the conditions). (2) follows
immediately from Theorem 3.17, while the others follow as a consequence
of Theorem 5.8. That having countably many classes does not imply (1),
we have seen in Example 5.2. That none of the conditions imply that there
is only a countable number of classes can be seen by examining ≡ in a
non-small theory.

• Example 5.5 along with Corollary 3.20 show that the condition that E is
refined by ≡KP is strictly weaker than all the conditions in Theorem 5.8,
even with the added assumption that E is only defined on a single type. (Of
course, it is not strictly weaker if we assume that E refines ≡KP , although
trivially so.)



34

5.3. Possible extensions of Theorem 5.8 and related questions. The picture
of logical relations between the four conditions in Theorem 5.8 is almost complete,
except for a single implication, raising the question.

Question 1. In Theorem 5.8, is (3) equivalent to (4)?

A counterexample, if it exists, would be an equivalence relation that is smooth
when restricted to any single complete type is smooth, but is not on the entirety of
its domain.

If, in the first part of Theorem 5.8, we drop the assumption that E is orbital on
types (so we allow E to not refine type), then (2) does not imply (4) – as witnessed
by Example 3.19 (though (1) certainly still implies the other conditions and (2)
implies (3)).

We can, however, replace instead the assumption that E is orbital on types by
the assumption that it refines type. In this case, it is unknown whether (2) (or (3))
implies (4), but otherwise the implications hold (even if we assume that E refines
≡KP or is defined on a single type).

Question 2. In Theorem 5.8, can we replace “orbital on types” by “refines type”?
(Recall that by Example 3.23 and Example 3.25, this is not a trivial replacement.)

This is closely related to a more specific question.

Question 3. In Corollary 4.8, can we replace “orbital on types” by “refines type”?
(Note that in this case Theorem 3.17 holds, as it has no orbitalness assumptions, so
a counterexample would have Borel cardinality of exactly ∆(2N))

It is conceivable that this question (or the previous one) could be answered in the
positive by showing that, given an invariant equivalence relation, we can find some
different first order language such that the relation in question remains invariant,
but becomes orbital on types (with some care taken so as to ensure that all the
relevant assumptions and conclusions are preserved when we change the language).

If we drop the requirement that E is Fσ, points (1) and (4) do not have a clear
interpretation (though we could imagine that a relation E could be induced by
some invariant metric for which d(x, y) ≤ n is not type-definable, but satisfies some
weaker conditions). However, the other two do make sense, so another question that
arises naturally is the following.

Question 4. Suppose E is a Borel equivalence relation on a type-definable set.
Under what conditions does smoothness of E imply that it is type-definable?

Notice that while we do know that an Fσ equivalence relation defined on a
single type and with countably many classes is automatically type-definable (by
Theorem 3.17). Which brings us to another, more concrete (and perhaps easy)
question.

Question 5. Suppose E is a bounded, invariant equivalence relation on a single
complete type with two classes (and therefore orbital by Corollary 3.22). If E is
Borel, then is it necessarily type-definable?

Note that this is no longer true without at least some weak “definability” assump-
tions, as illustrated by Example 5.7. On the other hand, it is conceivable that some
weaker assumptions than Borelness would suffice.

5.4. Possible Borel cardinalities. In this subsection, we will explore the problem
of possible Borel cardinalities. We will not prove much, as the specifics are beyond
the scope of this paper, but we will state some related questions and conjectures
and see how they relate to the main results we have seen before.

In [KPS13], the authors suggest the following conjecture.
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Conjecture 6 (Conjecture 2 in [KPS13]). Any non-smooth Kσ equivalence relation
can be represented [in the sense of Borel cardinality] by some ≡L�[a]≡KP

(in some

theory T ).

Because≡L is Fσ (and therefore for a countable modelM , its realisation≡ML isKσ

when restricted to a compact set such as ([a]≡KP
)M ), we know that ≡L�[a]≡KP

has

the Borel cardinality of a Kσ equivalence relation, and it follows from Corollary 4.9
that if the relation is non-trivial, it is non-smooth (because ≡L is orbital and refines
≡KP ), so this is the strongest result of this kind we can hope for.

In this context, Theorem 3.17, Corollary 4.8 and Theorem 5.8 can be interpreted
as providing a lower bound on the Borel cardinality in some cases. The above
conjecture is a part of a bigger question.

Question 7. Suppose E is a Borel, bounded equivalence relation on a type-definable
set X, while Y ⊆ X is E-saturated and pseudo-closed. Consider the following
conditions:

(1) E is Fσ,
(2) E is orbital on types,
(3) E refines ≡,
(4) E refines ≡KP ,
(5) etcetera.

For a given conjunction of the above conditions, what are the possible Borel cardi-
nalities of E,E�Y ? What if Y is a single ≡KP -class?

The author has found some other partial results in this vein, but they are beyond
the scope of this paper.

6. Applications to definable group extensions

6.1. Introduction to extensions by abelian groups. This section will show
an application of the main result (more precisely, of Corollary 4.10) to definable
extensions by abelian groups. More specifically, we deal with short exact sequences
of groups of the form

(†) 0→ A→ G̃→ G→ 0

where A is an abelian group. In this case, there is a full algebraic description of G̃

in terms of an action of G on A by automorphisms (induced by conjugation in G̃)
and a (2-)cocycle h : G2 → A (to be defined shortly). We define multiplication on
A×G by the formula

(††) (a1, g1) · (a2, g2) = (a1 + g1 · a2 + h(g1, g2), g1g2)

And a cocycle is defined thus.

Definition. Let G be a group acting on an abelian group A. A function h : G2 → A
is a 2-cocycle if it satisfies, for all g, g1, g2, g3 ∈ G, the following equations:

h(g1, g2) + h(g1g2, g3) = h(g1, g2g3) + g1 · h(g2, g3)

h(g, e) = h(e, g) = e

The equation (††) endows A×G with group structure – with inverse (a, g)−1 =
(−g−1 · a− h(g−1, g), g−1) – which is compatible with the exact sequence (†), and

any G̃ in such a short exact sequence has this form. In this language, the properties
of the action and of h reflect the properties of the extension, e.g. central extensions
correspond to trivial actions of G on A. More information about this subject
(in abstract algebraic terms) can be found in e.g. [Rot02] (section 10.3., and in
particular the part up to and including Theorem 10.14).
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Definition. A definable extension of a definable group G by a definable abelian
group A is a tuple (G,A, ∗, h) where ∗ is a definable action of G on A by automor-
phisms and h : G2 → H is a definable cocycle. We will also call that the group

G̃ = A×G with multiplication defined as in (††).

Remark. The group G̃ defined as above is definable.

In [GK13], the authors have shown that such extensions can, under some addi-
tional assumptions, give new examples of definable groups withG00 6= G000, building
upon and extending the intuitions from the original example of model-theoretic uni-
versal cover of SL2(R), published in [CP12]. They also pose some questions and
conjectures, one of which will be proved at the end of this section. To state their
main result, we need the following definition.

Definition. A 2-cocycle h : G2 → A is split via f : G → A if for all g1, g2 ∈ G we
have

h(g1, g2) = df(g1, g2) := f(g1) + g1 · f(g2)− f(g1g2)

f(e) = 0

Below is Theorem 2.2 of [GK13], one of its main results, which (along with
the conjectures we will recall later this section) draws attention to definable group
extensions.

Theorem 6.1. Let G be a group acting by automorphisms on an abelian group
A, where G, A and the action of G on A are ∅-definable in a structure G, and let
h : G×G→ A be a 2-cocycle which is B-definable in G and with finite range rng(h)
contained in dcl(B) (the definable closure of B) for some finite parameter set B ⊂ G.
By A0 we denote the subgroup of A generated by rng(h). Additionally, let A1 be a
bounded index subgroup of A which is type-definable over B and which is invariant
under the action of G. Finally, suppose that:

(i) the induced 2-cocycle h|G00
B ×G00

B
: G00

B × G00
B → A0/ (A1 ∩A0) is non-split

via B-invariant functions (i.e. there is no B-invariant function f : G00
B →

A0/(A1 ∩A0) such that h�G00
B

is split via f),

(ii) A0/ (A1 ∩A0) is torsion free (and so isomorphic with Zn for some natural
n).

Then G̃000
B 6= G̃00

B (where G̃ is G×A with the group structure defined according to
(††)).

6.2. Main theorem for definable group extensions. In this subsection, we
will fix some (arbitrary) definable extension of a definable group G by an abelian

definable group A, the group G̃ = A×G with cocycle h and the corresponding short
exact sequence

0→ A→ G̃
π→ G→ 0

We denote the quotient map G̃→ G by π.
We intend to prove this theorem, and to that end, we need Corollary 4.10 and

two lemmas.

Theorem 6.2. Suppose H̃ E G̃ is invariant and of bounded index, generated by a

countable family of type-definable sets, contained in a type-definable group H ≤ G̃.
Put AH := H ∩A and H = π[H] (both of these are naturally type-definable groups).

Assume that H = π[H̃] and that it acts trivially on AH/H̃ ∩ A, and H̃ ∩ A is

type-definable. Then H̃ is type definable.

In the following, until the end of the proof of Theorem 6.2, we will assume that
we have everything as in its assumptions. We also fix a countable model M .
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Lemma 6.3 (generalization of a part of the proof of [GK13](Proposition 2.14)).

Given an assignment g 7→ ag such that for g ∈ H we have (ag, g) ∈ H̃, the formula

Φ((a, g) · H̃) = a − ag + (H̃ ∩ A) yields a well-defined, injective function H/H̃ →
AH/(H̃ ∩A).

Proof. Consider any (a1, g1), (a2, g2) ∈ H.

Since (ag1 , g1), (ag2 , g2) ∈ H̃, we have

(1) (ag1 − g1g
−1
2 · ag2 − g1 · h(g−1

2 , g2) + h(g1, g
−1
2 ), g1g

−1
2 ) =

= (ag1 , g1)(−g−1
2 ag2 − h(g−1

2 , g2), g−1
2 ) = (ag1 , g1)(ag2 , g2)−1 ∈ H̃

we also have, by simple calculation – for arbitrary g ∈ G and a, a′ ∈ A –

(2) (a, g)−1(a′, g) = (0, g)−1(−a, e)(a′, e)(0, g) = (g−1 · (a′ − a), e)

We want to show that (a1, g1)(a2, g2)−1 ∈ H̃ if and only if (a1−ag1)−(a2−ag2) ∈
H̃ ∩A. The first condition says that

(a1 − g1g
−1
2 · a2 − g1 · h(g−1

2 , g2) + h(g1, g
−1
2 ), g1g

−1
2 ) = (a1, g1)(a2, g2)−1 ∈ H̃

Multiplying it on the left by the inverse of the LHS of (1), and applying (2), we
infer that it is equivalent to

(g1g
−1
2 )−1

(
(a1 − ag1)− g1g

−1
2 · (a2 − ag2)

)
∈ H̃ ∩A

On the other hand, because the action of H on the cosets of H̃ ∩A is trivial, and
g1, g2 ∈ H, so we can cancel both g1g

−1
2 , and in conclusion the first condition is

equivalent to

(a1 − ag1)− (a2 − ag2) ∈ H̃ ∩A
which is just the second condition. �

For any topological space X, by F (X) we denote the Effros Borel space of closed
subsets of X, with the σ-algebra generated by sets of the form BU := {F ∈ F (X) |
F ∩ U 6= ∅} for open (or equivalently just basic open, if X is second-countable)
U ⊆ X. We have the following theorem ([Kec95], Theorem 12.13).

Theorem 6.4 (Kuratowski–Ryll-Nardzewski selection theorem). For any Polish
space X, there is a Borel function d : F (X)→ X, such that for any nonempty closed
F ⊆ X we have d(F ) ∈ F . (In fact, there is a sequence of such functions, picking
out a dense subset of each nonempty closed set.)

We apply this to prove the second lemma.

Lemma 6.5 (generalization of [KPS13](Proposition 4.4)). Let A1 ⊆ H̃ be a type-
definable subgroup of AH of bounded index. Let F be the relation on the compact,

Polish (by Corollary 3.11) group AH/A1 of lying in the same coset of (H̃ ∩A)/A1.
Then EH̃�H ≤B F , where EH̃ is the equivalence relation of lying in the same coset

of H̃ on G̃ (note that right cosets are the same as left cosets, as H̃ is normal).

Proof. As the first step, we need to show this.

Claim. There is a Borel function Ψ: SH(M)→ SH̃(M) such that Ψ(tp(g/M)) =
tp(ag, g/M).

Proof. Each p ∈ SH(M) defines naturally a closed [p] ⊆ SH(M). Since H̃ is
generated by a countable family of type-definable sets, we can write SH̃(M) =⋃
i∈NDi for closed Di ⊆ SH(M). Then, we put

D′i = {p ∈ SH(M) | [p] ∩Di 6= ∅ ∧ (∀j < i)[p] ∩Dj = ∅}
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(Putting it differently, each D′i is the projection of Di onto SH(M) minus the
projections of all Dj for j < i.)

Each D′i is a Borel set in SH(M) (as a difference of two compact sets), and

π[H̃] = H, so in fact SH(M) =
∐
iD
′
i (where

∐
is the disjoint union).

Consider F (SH(M)). We can now put Φ: SH(M) → F (SH(M)) defined by
Φ(p) = [p] ∩Di if p ∈ D′i. We need Φ to be Borel. To show that, it is enough to
show that its restriction to any D′i is Borel (because they form a countable, Borel
cover of SH(M)). But for each restriction Φi = Φ�D′i and open U

Φ−1
i [BU ] = D′i ∩ {p ∈ SH | [p] ∩Di ∩ U 6= ∅}

which is Borel because Di ∩ U is Fσ, so Φi is Borel and so is Φ.
Then the function Ψ = d ◦ Φ, where d : F (SH(M)) → SH(M) is given by

the Kuratowski–Ryll-Nardzewski theorem (which we can apply because H is type-
definable, so SH(M) is a compact Polish space) is Borel as a composition of two
Borel maps.

It is easy to see that Ψ is into SH̃(M), as each Di is a subset of SH̃(M), and
since Ψ(p) ∈ [p], we immediately get the claim. �(claim)

Next, we define a function f : SH(M)→ AH/A1 by

f(tp((a, g)/M)) = (a− ag) +A1

where ag is such that Ψ(tp((a, g)/M)) = tp((ag, g)/M). We need to show that:

(1) f is a well-defined, Borel function

(2) tp((a1, g1)/M)EH̃ tp((a2, g2)/M) ⇐⇒ (a1 − ag1)− (a2 − ag2) ∈ H̃ ∩A
For the first point, we can see that f = f3 ◦ f2 ◦ f1, where

f1 : SH(M)→ SAH
(M)× SH(M)

tp(a, g/M) 7→ (tp(a/M), tp(g/M))

f2 : SAH
(M)× SH(M)→ SAH

(M)× SH̃(M)

(tp(a/M), tp(g/M)) 7→ (tp(a/M),Ψ(tp(g/M)))

f3 : SAH
(M)× SH̃(M)→ AH/A1

(tp(a/M), tp(b, g)/M) 7→ (a− b)/A1

f1, f2 are clearly Borel and well-defined, so it remains to show that so is f3.
Suppose a ≡M a′ and (b, g) ≡M (b′, g′). Then also b ≡M b′, so a− a′ ∈ (AH)000

and b−b′ ∈ (AH)000 (by Proposition 3.3, because lying in the same coset of (AH)000

is clearly a bounded and invariant equivalence relation), and hence

(a− a′)− (b− b′) = (a− b)− (a′ − b′) ∈ (AH)000

But A1 is invariant of bounded index, so (AH)000 ⊆ A1 and so f3 is well defined. It
is not hard to see that it is continuous: the preimage of a closed set in AH/A1 is the
set of pairs tp(a/M), tp(b, g/M) with a− b belonging to some type-definable (over
M , e.g. by Corollary 3.10) set. This is clearly a type-definable (over M) condition
about a, b, so the preimage is closed.

The second point follows immediately from the previous lemma. �

Having proved all the necessary lemmas, we have all but finished the proof of the
main theorem.

Proof of Theorem 6.2. Put A1 = H̃ ∩ A. Then A1 satisfies the hypotheses of the
previous lemma, and in this case F is simply equality on A/A1 (a Polish space by
Corollary 3.11) and hence smooth, so EH̃�H is smooth. On the other hand, by

virtue of Corollary 4.10, this implies that H̃ is type-definable. �
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6.3. Corollaries of Theorem 6.2. In [GK13], the authors state the following two
(equivalent, as we will see shortly) conjectures.

Conjecture 8 (Conjecture 2.11. in [GK13]). Suppose we have a definable extension
of a definable group G by a definable abelian group A, corresponding to the short
exact sequence

0→ A→ G̃→ G→ 0

with the 2-cocycle h : G2 → A. Assume that h has finite range and that G00 = G000.

Then the conjecture is that for any invariant H̃ ≤ G̃ of bounded index, and such

that H̃ ∩A is type-definable, we have

G̃00 ∩A ⊆ H̃ ∩A

Conjecture 9 (Conjecture 2.10 in [GK13]). Assume we have G,A, h as in the
first paragraph of the previous conjecture. Additionally let A1 be a type-definable
subgroup of A of bounded index and invariant under the action of G.

Then the conjecture is that

G̃00 ∩A ⊆ A1 ⇐⇒ G̃000 ∩A ⊆ A1

Remark. The preceding conjectures are important mostly for two reasons:

(1) If proven in general (without assumptions of countability), it would imply
that Corollary 2.8 in [GK13] holds in general, i.e. that in Theorem 6.1, if
G00
B = G000

B , then the assumption (i) (about non-splitting of the modified
2-cocycle, with other assumptions notwithstanding) not only implies, but

is equivalent to G̃00 6= G̃000 (this explained in more detail in [GK13], but
omitted here, as we only prove the countable case of the conjecture).

(2) It implies that, in a rather general context, the quotient G̃00/G̃000 is iso-
morphic (algebraically) to the quotient of a compact group by a finitely
generated dense subgroup (this will be revisited at the end of this section).

The next fact tells us that the two conjectures are equivalent, and more.

Fact 6.6. Suppose G̃ is a definable extension of a definable group G by a definable
abelian group A (so the cocycle might have infinite range, but it must be definable).
Then the following are equivalent:

(1) For any invariant H̃ ≤ G̃ of bounded index, such that H̃∩A is type-definable,

we have G̃00 ∩A ⊆ H̃.
(2) For any A1 ≤ A type-definable, G-invariant, such that G̃000 ∩ A ⊆ A1 we

also have G̃00 ∩A ⊆ A1.

In particular, Conjecture 8 and Conjecture 9 are equivalent.

Proof. To see that the (1) implies (2), take an A1 as in the assumptions of (2). G̃000

is normal in G̃, so H = A1G̃
000 is a subgroup of G̃. Furthermore, it is invariant (as

a product of two invariant sets) and of bounded index (because it contains G̃000),

and its intersection with A is just A1 (because A1 contains G̃000 ∩ A), which is

type-definable, so by (1) it contains G̃00 ∩A.

To see the opposite implication, notice that if we have H̃ as in (1), then A1 =

CoreG̃(H̃ ∩A) (where CoreK(L) is the largest normal subgroup of K contained in
L) satisfies the assumptions of (2):

• it is type-definable because H̃ ∩A is type-definable, and A1 is an invariant
intersection of its conjugates (which are pseudo-closed),

• it contains G̃000 ∩ A (and in particular has bounded index in A), because

H̃ contains G̃000 and G̃000 ∩A is normal in G̃, and
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• it is G-invariant because it is normal in G̃ (by the definition).

Therefore, A1 contains G̃00∩A. ButA1 is contained in H̃, so H̃ contains G̃00∩A. �

Remark. The authors of [GK13] actually allow a finite parameter set B over which
the cocycle h is definable, they calculate the connected components over this set,
and they assume that H is B-invariant in Conjecture 8 and A1 is type-definable
over B in Conjecture 9. But since B is finite, we may add constants for its elements
to the language, and it remains countable, while none of the properties relevant
to the previous conjectures change, so we assume without loss of generality that
B = ∅.

We will also drop the requirement that h has finite range, as it is not needed for
the subsequent discussion, which leaves us in the general context of Theorem 6.2,
only with the additional assumption that G00 = G000.

The assumption that G00 = G000 allows us to make the following observation.

Fact 6.7 ([GK13](Remark 2.1(iii))). If A1 is a type-definable, bounded index sub-

group of A, invariant under the action of G (i.e. normal in G̃), then G00 acts
trivially on A/A1.

Proof. A1 is G-invariant, so G acts naturally on A/A1, yielding an abstract homo-
morphism f : G → S(A/A1) (where S(A/A1) is the abstract permutation group).
Notice that

ker(f) = {g ∈ G | (∀a) g · a− a ∈ A1}
is a type-definable subgroup of G, and it has bounded index, because S(A/A1) is
small. Therefore, it contains G00. �

This leads us to the next corollary.

Corollary 6.8. Suppose H̃EG̃ is an invariant subgroup of bounded index, contained

in G̃00 and Fσ (i.e. generated by a countable family of type-definable sets).

Then H̃ is type definable (and therefore equal to G̃00) if and only if H̃ ∩ A is

type-definable and π[H̃] ≤ G is type-definable.

Proof. ⇒ is clear. For ⇐ notice that π[H̃] being type-definable implies that it is,

in fact, equal to G00, and by the previous fact it acts trivially on A/(H̃ ∩A), so the

result follows immediately from Theorem 6.2 with H = G̃00. �

And finally we obtain a proof of Conjecture 8.

Corollary 6.9. Suppose H̃ ≤ G̃ is an invariant subgroup of bounded index, and

that G00 = G000. Suppose in addition that H̃ ∩A ∩ G̃00 is type-definable.

Then H̃ ∩A ⊇ G̃00 ∩A. (In particular, the countable case of Conjecture 8 holds,
without any assumptions on h beyond definability.)

Proof. We intend to apply the preceding corollary, so we need to modify H to satisfy
its assumptions.

(1) We can assume without loss of generality that H̃ is normal, because we

can replace it with Core(H̃) =
⋂
g∈G̃ gH̃g

−1: the latter is obviously normal

and invariant, it has bounded index, because it contains G000, and because

A, G̃00 are normal, we have the identity

Core(H̃) ∩A ∩ G̃00 = Core(H̃ ∩A ∩ G̃00)

so in particular, the left hand side is type-definable, and hence Core(H̃)

satisfies the assumptions of this corollary and it is contained in H̃.
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(2) Secondly, can assume without loss of generality that H̃ ≤ G̃00, by replacing

H̃ with H̃ ∩ G̃00.
(3) Thirdly, we can also assume that H̃ is generated by a countable family of

type-definable sets by replacing it with (H̃ ∩ A) · G̃000 This is a subgroup

because G̃000 is normal and it is generated by H̃∩A and the countable family

of type-definable sets generating G̃000, which exists by Fact 2.5. Moreover,

G̃000 ≤ H̃, so (H̃ ∩A) · G̃000 ≤ H̃.

(4) Then we can apply the previous corollary to deduce that H = G̃00, so

trivially H ∩A ⊇ G̃00 ∩A.

�

Corollary 6.10 (As suggested by Remark 2.16 in [GK13]). Suppose that G̃ is a
definable extension of a definable group G by an abelian group A, and that G00 =
G000.

Let A1 ≤ G̃000 ∩ A be a G-invariant, type-definable subgroup of A of bounded

index contained in G̃000. Then
(
G̃000 ∩A

)
/A1 is dense in

(
G̃00 ∩A

)
/A1 (with

logic topology).

Proof. Let A2 be the preimage of the closure of (G̃000 ∩ A)/A1 by the quotient
map π : A→ A/A1. Then A2 is a type-definable, G-invariant subgroup of A, which

contains G̃000 ∩A.
Since A2 is G-invariant, H̃ = A2 ·G̃000 is an invariant subgroup of G̃, and H̃∩A =

A2 is type-definable, as is H̃ ∩A∩ G̃00, so by Corollary 6.9, A2 = H̃ ∩A ⊇ G̃00 ∩A,

and therefore A2/A1 – the closure of (G̃000∩A)/A1 in A/A1 – contains (G̃00∩A)/A1,
which was to be shown. �

This corollary, along with the comments following [GK13](Proposition 2.14),

implies that in a somewhat general setting, the group G̃00/G̃000 is (abstractly)
isomorphic to the quotient of a compact abelian group by a dense subgroup (which
is finitely generated if the range of h is finite) – which is analogous of the fact that for
G definable in o-minimal expansions of a real closed field (e.g. those considered in
[CP12]), G00/G000 is abstractly isomorphic to the quotient of a compact, abelian Lie
group by a dense, finitely generated subgroup. This furthers the analogy between
[GK13] and [CP12].

Remark. As stated in the introduction, the facts we have shown apply in the
countable case. It is likely that similar (though more elaborate) methods could yield
a proof of Conjecture 9 (or equivalently Conjecture 8) in general, but this is beyond
the scope of this paper.
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