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In this lecture we will study the examples of irrational toruses,
quotients of toruses Tn by irrational hyperplanes.

The irrational torus is the first example in diffeology that made
the difference with the other generalisations differential geometry.
It appears for the first time in our paper “Exemples de groupes
difféologiques: flots irrationnels sur le tore” [PDPI83], at the very
beginning of the theory of diffeologies in 1983. This is this example
that has motivated the subsequent development of that theory.
The irrational torus is a quotient space that is topologically trivial
but, as it has been proven, absolutely not trivial for the quotient
diffeology. We shall see in these example how its diffeology capture
the maximum possible of its construction. It is also an example
how diffeology can be sensible to arithmetics when it is involved
in some way.

What is a Torus?

The story begins with the ordinary multidimension torus Tn, which
is the n-power of the 1-dimensional torus

T = S1 = {(x, y) ∈ R2
| x2 + y2 = 1} ' U(1).

We have seen that this space, equipped with the subset diffeology
of R2 in the previous lecture.
We recall that we have also seen that the map

π : R → R2 with π(t) = (cos(2πt), sin(2πt))
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is a subduction from R to S1 ⊂ R2 that identifies smoothly the
quotient space R/Z with S1, T ' R/Z. The preimage of a point
z = (cos(2πt), sin(2πt)) is the orbit of t by Z, that is

π
–1(z) = {t+ k | k ∈ Z}.

The torus T is naturally a group, quotient of the additive R by
the subgroup Z. It is a diffeological group (actually, a Lie group).
Moreover, the projection π is the universal covering of T, which
exists and is unique up to an isomorphism for any connected dif-
feological space. These words will be defined precisely later. Now,
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Figure 1. Covering of the Circle.

the 2-torus
T2 = T × T ⊂ R2

× R2

is the product of the torus T by itself, its square. It is equipped
with the product diffeology we have seen in the previous lecture.
A plot of in T2 is a parametrization

r → (z1(r), z2(r)) =
((

x1(r), y1(r)
)
,
(
x2(r), y2(r)

))
such that the xi and yi are smooth parametrizations such that
xi(r)1 + yi(r)2 = 1 for all r.

Next, we can consider the square of the projection π, let us denote
it just by π2

π2 : R2
→ T2

with

π2(t1, t2) =
((

cos(t1), sin(t1)
)
,
(
cos(t2), sin(t2)

))
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Since the projection π on each factor is a subduction from R onto
its image T ⊂ R2, the product π2 is a subduction from R2 onto
its image T2 ⊂ (R2)2. Therefore the square T2 identifies with the
quotient

T2 ' (R/Z)2 = R2/Z2,

where Z2
⊂ R2 is the subset of points with integer coordinates.
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Figure 2. The 2-torus.

More generally, a n-dimensional torus Tn is the n-th power of the
1-dimensional torus T

Tn = {(z1, . . . , zn) | ∀i, zi ∈ T}.

And also equivalent to the quotient

Tn ' (R/Z)n = Rn/Zn.

where Zn
⊂ Rn is the subgroup of points with integer coordinates.

Again, Tn is a diffeological group (a Lie group more precisely), an
Abelian one.

Remark Consider a lattice in Rn, that is, a subgroup like

L =
{

n
∑
i=1

nivi | ni ∈ Z
}
,

where the (vi)ni=1 are a basis of Rn. Then the quotient space Rn/L
is naturally diffÃľomorphic to Tn. Indeed, let M: Rn

→ Rn be the
linear isomorphism M(x) = ∑

n
i=1 xivi, with x = (x1, . . . , xn). The

map
m = class(x) 7→ classL(x)

is well defined and defines a smooth group isomorphism from Tn =
Rn/Zn to Rn/L.
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Rn

Rn/Zn Rn/L

class classL

m

So, diffeologically speaking there is only one torus Tn: all lattices
are equivalent.

The various toruses are often described as the power of the unitary
group

U(1) = {z ∈ C | z̄z = 1},

where z̄ denotes z conjugate. Thus,

Tn ' U(1)n = {(z1, . . . , zn) | ∀i, zi ∈ U(1)}

There, the group law if just the pointwise multiplication:

(z1, . . . , zn) · (z ′1, . . . , z ′n) = (z1z ′1, . . . , znz
′
n).

We remark that the multiplication is smooth, that means that
for two plots r 7→ (z1(r), . . . , zn(r)) and r 7→ (z ′1(r), . . . , z

′
n(r)),

defined on the same domain, the resulting parametrization r 7→
(z1(r)z ′1(r), . . . , zn(r)z

′
n(r)) is again a plot in Tn. The inversion r 7→

(z̄1(r), . . . , z̄n(r)) also is smooth. We say that Tn is a diffeological
group. We shall develop later a little bit about diffeological group,
especially when it will come to the moment map and symplectic
diffeology. But for now, that is all we need.

The Irrational Torus Tα

The object irrational torus has been motivated by physics, by
a question related to the behavior of a particle submited to a
quasiperiodic potential. These quasiperiodic potential describe the
phenomenom of a quasiperiodic pattern in cristals. For example
the Figure 3 representing the diffraction figure of an aluminium-
palladium-manganese (Al-Pd-Mn) quasicrystal surface.

For this type of material, the diffraction pattern is not periodic as
it is usually for a crystal, i.e. it does not draw a periodic tiling of
the plane, but something close without quite so.

The physicists and the mathematicians who were involved in these
researchs decided that, that phenonenom could be described by a
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Figure 3. A Diffraction Figure of a Quasicristal.

quasiperiodic potential. I will try to outline their approach without
being able to be too precise.

In classical physics, the motion of a particle in a medium is de-
scribed by a force which is the gradient of a real function called
the potential.

So, let us consider the simplest example, a toy model: a particle
moving on a line submited to a force that is the derivative of a real
function V : R → R, which is assumed to be smooth. Physicists are
interested in the spectrum of the so-called (quantum) Hamiltonian:

Ĥ = –
h̄
2m

∂2

∂x2
+V(x)

which is an operator on some Hilbert space of functions. Two main
special cases are illustrated by figure 4.

(1) The periodic case is described by the potential

V1 : x 7→ U1
(
e2iπx

)
where U1 is define on the circle S1.

(2) The quasiperiodic case is described by the potential

V2 : x 7→ U2 ◦ jα(x),

where U2 is a function defined on the 2-torus and jα : R →

T2 is the map

α : x 7→
(
e2iπx, e2iπαx

)
with α ∈ R – Q.
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Figure 4. Periodic and Quasiperiodic Potential.

So, the quasiperiodic property is encoded in the irrational solenoid

Sα =
{(
e2iπx, e2iπαx

)
| x ∈ R

}
.

We remark first that S ⊂ T2 is a subgroup.
Our intention now is not to solve the general question of the spec-
trum of the Hamiltonian in presence of quasiperiodic potential,
but to delve deeper into issues surrounding these context. In par-
ticular:
1. Definition We call irrational torus Tα the quotient space

Tα = T2/Sα,

equipped with the quotient diffeolgy.
2. Proposition The map α : x 7→

(
e2iπx, e2iπαx

)
is an induction

from R into T2, with image the solenoid Sα.
Note. We shall see further on, Sα ⊂ T2 is a submanifold in the sense
of diffeological manifolds, but not exactly in the usual sens because
it is not embedded. In ordinary differential geometry textbooks,
submanifolds are defined only embedded.
JProof. Let us begin to check that the map π2 : (x, y) 7→ (π(x), π(y)),
where π(t) = (cos(2πt), sin(2πt)), from R × R to R2

× R2 is strict.
First of all, the map π2 is smooth. Then, according to the defini-
tion, π2 is strict if and only if

class(x, y) 7→
((

cos(2πx), sin(2πx)
)
,
(
cos(2πy), sin(2πy)

))
is an induction, from R2/Z2 to R2

× R2, with class : R2
→ R2/Z2.

We have already seen that π : t 7→ (cos(2πt), sin(2πt)) is strict, and
π
2 is just the squareof π. Thus, a plot Φ : U → S1 × S1 ⊂ R2

× R2 is
just a pair of plots P and Q from U to S1, which can be individually
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smoothly lifted locally along π, and give a local lift of π2 itself.
Therefore, π2 is strict.

Now, let Δα be the line in R × R with splope α, the subset of
points (x, αx) ∈ R2. Since α is irrational, π2α = π2 � Δα is in-
jective. Indeed, π2(t, αt) = π2(t′, αt′) means, on the one hand,
(cos(2πt′), sin(2πt′)) = (cos(2πt), sin(2πt)), and on the other hand,
(cos(2παt′), sin(2παt′)) = (cos(2παt), sin(2παt)). That is, t′ = t+k
and αt′ = αt+k ′ with k, k ′ ∈ Z, which gives αk–k ′ = 0, but α 6= Q,
thus k = k ′ = 0 and t′ = t.

Let Φ : U → Sα ⊂ S1 × S1 ⊂ R2
× R2 be a plot, with Φ(r) =

(P(r),Q(r)). Since π2 is strict, for all r ∈ U, there exists lo-
cally a smooth lift r ′ 7→ (x(r ′), y(r ′)) in R2, defined on a neigh-
borhood V of r, such that π2(x(r ′), y(r ′)) = (P(r ′),Q(r ′)) Thus,
π
2(x(r ′), y(r ′)) ∈ Sα for all r ′ ∈ V. But, r ′ 7→ (x(r ′), αx(r ′)) ∈ Δα ⊂

R2 is smooth, and π2(x(r ′), αx(r ′)) belongs to Sα too. Therefore,
there exists r ′ 7→ k(r ′) ∈ Z such that y(r ′) = αx(r ′)+k(r ′), that is,
k(r ′) = y(r ′) – x(r ′). Thus, r ′ 7→ k(r ′) is smooth and takes its val-
ues in Z, hence k(r ′) = k constant. Then, r ′ 7→ (x(r ′), y(r ′)–k) is a
plot of Sα with π2(x(r ′), y(r ′)–k) = (P(r ′),Q(r ′)), thus π2α : Δα → Sα
is an injective subduction, that is, a diffeomorphism from Δα to Sα,
and therefore an induction. I

3. Proposition The quotient space Tα = T2/Sα is diffeomorphic
to the quotient R/(Z + αZ), and isomorphic as a group.

Note 1. It is clear now that Tα, as a quotient topological space, is
trivial since Z + αZ ⊂ R is dense.

Note 2. Tα is also isomorphic to the intermediate quotient R2/Z2(Δα),
where Z2(Δα) is the image of the line Δα by Z2, that is, the set of
points (x + n, αx +m) with x ∈ R and (n,m) ∈ Z2.

JProof. We begin to prove that with α 6= Q, Z+ αZ is dense in R.
We remark first that Z+αZ is a subgroup of (R, +) Let Γ ⊂ R be a
subgroup not reduced to {0}. It is relatively obvious that: either
there exists a smallest element a ∈ Γ and Γ = aZ, or Γ is dense.
Now, if Z + αZ = aZ, then α = ka and 1 = `a with k, ` ∈ Z, that
would mean that α = k/` which is not the case. Thus, Z + αZ is
dense.

Let φ : R2/Z2
→ S1 × S1 be the identification given by the factor-

ization of the strict map π2 : R2
→ S1 × S1. Then, the quotient
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(S1 × S1)/Sα = φ(R2/Z2)/Sα, is equivalent to R2/[Z2(Δα)] where
the equivalence relation is defined by the action of the subgroup
Z2(Δα). Let ρ : R2

→ R2 be defined by ρ(x, y) = (0, y – αx), it
is obviously a projector, ρ ◦ ρ = ρ, and clearly class ◦ ρ = class,
with class : R2

→ R2/[Z2(Δα)]. Now, let X′ = Val(ρ), that is,
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Figure 5. Tα as quotients.

X′ = {0} × R. The restriction to X′ of the equivalence relation
defined by the action of Z2(Δα) on R2, is given by the following
action of Z2, (n,m) : (0, y) 7→ (0, y +m – αn). Therefore, the quo-
tient (S1 × S1)/Sα is equivalent to X′/(Z + αZ), that is, equivalent
to R/(Z + αZ) = Tα. I

4. Proposition [Smooth Maps from Tα to Tβ] Let α and β be two
irrational numbers. The set C∞(Tα, Tβ) does not reduce to the
constant maps if and only if there exists a,b, c,d ∈ Z such that

α =
c + dβ
a+ bβ

.

Note that, since α and β are irrational, the relation above has an
inverse β = (aα – c)/(d – bα).

JProof. Let f : Tα → Tβ be a smooth map. Consider the commu-
tative diagram
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R R

Tα Tβ

F

classα classβ

f
Since classα is a plot in Tα, f ◦classα is a plot of Tβ. Hence, for every
real x0 there exist an open interval V centered at x0, and a smooth
parametrization F : V → R such that classβ ◦F = (f ◦ classα) � V.
For all real numbers x and all pairs (n,m) of integers such that
x + n+ αm ∈ V, there exist two integers n′ and m′ such that

F(x + n+ αm) = F(x) + n′ + βm′. (♠)

Since β is irrational, for every such x, n and m, the pair (n ′,m ′)
is unique.
Now, there exists an interval J ⊂ V centered at x0 and an interval
O centered at 0 such that: for every x ∈ J and for every n+ αm ∈

O, x + n + αm ∈ V. Since F is continuous and since Z + αZ is

^ \

\^

W

P K

y1

\^

1

.u ,u

Figure 6. Intervals V,O, J.

diffeologically discrete, n′+βm′ = F(x+n+αm)–F(x) is constant as
function of x. But F is smooth, the derivative of the identity (♠),
with respect to x, at the point x0, gives F′(x0+ n+ αm) = F′(x0).
Then, since α is irrational, Z + αZ ∩ O is dense in O, and since F′

is continuous, F′(x) = F′(x0), for all x ∈ J. Hence, F restricted to
J is affine, there exist two numbers λ and μ such that

F(x) = λx + μ for all x ∈ J. (♣)

Note that, by density of Z + αZ, classα(J) = Tα. Hence F defines
completely the function f .
Now, applying (♠) to the expression (♣) of F, we get for all n +
αm ∈ O: λ(x + n+ αm) + μ = λx + μ+ n′ + βm′, that is:

λ × (n+ αm) ∈ Z + βZ, that is: λ(Z + αZ) ⊂ Z + βZ. (♦)

Let us show that actually (♦) is satisfied for all n+ αm in Z + αZ.
Let O =] – t, t[, and let us take t not in Z+ αZ, even if we have to
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shorten O a little. Let x ∈ Z + αZ, and x > t. There exists N ∈ N
such that

0 < (N – 1)t < x < Nt, and then 0 <
x
N

< t.

Now, by density of Z + αZ in R,

∀η > 0, ∃y > 0 such that y ∈ Z + αZ and 0 <
x
N

– y < η.

Choosing η < t/N we have

η <
t
N

⇒ 0 < x – Ny < Nη < t and 0 < y <
x
N

< t.

Hence,
x, y ∈ Z + αZ ⇒ x – Ny ∈ Z + αZ,

and
x – Ny < t ⇒ x – Ny ∈ Z + αZ ∩ O.

Thus,
λ × (x – Ny) = λx – N × (λy) ∈ Z + βZ.

But,

y ∈ Z + αZ ∩ O ⇒ λy ∈ Z + βZ ⇒ N × (λy) ∈ Z + βZ,
therefore, λx – N × (λy) ∈ Z+ βZ, together with N × (λy) ∈ Z+ βZ,
implies

∀x ∈ Z + αZ, λx ∈ Z + βZ.
Now, applying successively (♦) to x = 1 and x = α, we get

λ ∈ Z + βZ and λα ∈ Z + βZ
Let

λ = a+ bβ. and λα = c + dβ.

If λ 6= 0, then

α =
c + dβ
a+ bβ

.

Let us remark that, since classα(J) = Tα, the map F, extended to
the whole R, still satisfies classβ ◦F = f ◦ classα. I
5. Proposition [Diffeomorphisms between Tα and Tβ] Let α and β
be two irrational numbers. The toruses Tα and Tβ are difeomor-
phic if and only if there exists a,b, c,d ∈ Z such that

α =
c + dβ
a+ bβ

with ad – bc = ±1.

We say α and β are conjugated modulo GL(2,Z) [PDPI83].
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JProof. The map f is surjective is equivalent to λ 6= 0. Let us
express that f is injective: let τ = classα(x) and τ′ = classα(x ′).
The map f is injective if f (τ) = f (τ′) implies τ = τ′, that is,
x ′ = x + n + αm, for some relative integers n and m. Using the
lifting F, this is equivalent to:

If there exist two integers n′ and m′ such that F(x ′) =
F(x)+n′+βm′, then there exist two integers n and m such
that x ′ = x + n+ αm.

But F(x) = λx+μ, with λ×(Z+αZ) ⊂ Z+βZ. Hence, the injectivity
writes:

If λx ′ + μ = λx + μ+ n′ + βm′, then x ′ = x + n+ αm.

Which is equivalent to:
If λy ∈ Z + βZ, then y ∈ Z + αZ.

Finally equivalent to:
1
λ

× (Z + βZ) ⊂ Z + αZ.
Now, let us consider the multiplication by λ, as a Z-linear map,
from the Z-module Z+ αZ to the Z-module Z+ βZ, defined in the
respective basis (1, α) and (1, β), by

λ × 1 = a+ b × β and λ × α = c + d × β.

The two modules being identified, by their basis, to Z × Z, the
multiplication by λ and the multiplication by 1/λ are represented
by the matrices

λ ' L =
(
a b
c d

)
and

1
λ
' L–1 =

1
ad – bc

(
d –b
–c a

)
.

The matrix L is then invertible as a matrix with coefficients in Z,
that is, ad – bc = ±1 and L = GL(2,Z). I
6. Remark [The space C∞(Tα, Tβ)] Every matrix M ∈ L(2,Z) maps
the lattice Z2 into itself, and the line y = αx is mapped into a line
y = βx, that is,

M
(
1
α

)
∝
(
1
β

)
, that is MΔα = Δβ.

Let

M =
(
d –b
–c a

)
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and α and β will be related by the same relation as above:

β =
aα – c
d – bα

, that is α =
c + dβ
a+ bβ

Now, since M preserves the lattice Z2 and maps the line Δα to
the line Δβ, it defines by projection a morphism Φ of T2, mapping
the solenoid Sα to the solenoid Sβ. That defines a morphism fM
from the quotient Tα = T2/Sα to Tβ = T2/Sβ. Composed with a

民白!

民皮!

U3!

S3! S3!

U3!

U白! U﹚!

Y!⟼!NY!

甲!

qs! qs!

╮﹚!╮白!

gN!

Figure 7. Linear morphism from Tα to Tβ

constant map we obtain all the smooth maps from Tα to Tβ, in
additive notation:

f : τ 7→ fM(τ) + ν.

In other words,

Proposition. Every smooth map f : Tα → Tβ is the projection of
an affine map

F: X → MX+N with M ∈ L(2,Z) and N ∈ R2.

In particular, the congruence modulo GL(2,Z) between α and β,
in case of diffeomorphism, is the optimum condition we can hope
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for good a theory of quotients. What is remarkable here is that
this is the sufficient and necessary condition in the framework of
diffeology. Diffeology discriminates optimaly the irrational toruses.

Now, consider the set of lines in R2, denoted usually by P2(R).
Each line Δα defines a torus Tα.

Proposition The class of equivalent irrational toruses are in bijec-
tion with the orbits of the irrational lines by GL(2,Z).
Note that this proposition extends to any quotients Tα = T2/Sα,
even if α ∈ Q, in that case Tα is diffeomorphic to the circle S1.
The rationnal lines are one orbit under GL(2,Z).
7. Remark [C∞(Tα, Tβ) as Bimodule] Let us come back to the lift-
ing on R of the smooth maps from Tα to Tβ,

x λx + μ

classα(x) classβ(λx) + classβ(μ)

F

classα classβ

f

Since
Tβ is a group, the set C∞(Tα, Tβ) is a group for the addition. The
mapping

j : f 7→ (λ, ρ) with ρ = classβ(μ),

is a group homomorphism. The map j is injective and identifies

C∞(Tα, Tβ) ' Λαβ × Tβ,

with
Λαβ = {λ | λ(Z + αZ) ⊂ Z + βZ}.

We can note here that the linear smooth maps on Tα act on the
left on C∞(Tα, Tβ), and the linear smooth maps on Tβ act on the
right. We can denote that by

Λαα · Λαβ · Λββ ⊂ Λαβ.

That would correspond to

x 7→ νx 7→ λ(νx) + ρ 7→ ε(λ(νx)) + ρ,

where ν(Z+αZ) ⊂ Z+αZ and ε(Z+βZ) ⊂ Z+βZ. These actions are
commutative and make C∞(Tα, Tβ) a bimodule. But this bimodule
is not trivial only if α or β are quadratic numbers, or both. Indeed,
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ν(Z + αZ) ⊂ Z + αZ implies there exists four integers a,b, c,d ∈ Z
such that

α =
a+ bα
c + dα

⇒ dα2 + (c – b)α – a = 0.

Yet, still much need to be clarified here.

JProof. We just prove that the map j is injective. Let classβ(λx)+
ρ = classβ(λ′x) + ρ′, for x = 0 we get ρ = ρ′, and then classβ

(
(λ –

λ
′)x
)
= 0 for all x ∈ R. That is, (λ – λ′)x ∈ Z + βZ for all x ∈ R,

and thus λ = λ′. I

8. Remark [Component of C∞(Tα, Tβ)] We have seen that C∞(Tα, Tβ)
is isomorphic to Λαβ × Tβ, Equiped with the functional diffeology
the subgroup Λαβ×{0} is discrete, it represents the connected com-
ponents, what we shall denote later by

π0
(
C∞(Tα, Tβ)

)
= Λαβ.

What we know better is the group of components of the group
Diff(Tα). That is, the set of numbers λ ∈ R such that:

λ(Z + αZ) ⊂ Z + αZ and
1
λ
(Z + αZ) ⊂ Z + αZ

Considering the basis (1, α) of the Z-module Z + αZ, we define
a,b, c,d by:

λ × 1 = a+ bα and λ × α = c + dα.

The map F lifting f associated with λ for ρ = 0 is repesented by
the matrix

M =
(
a b
c d

)
∈ GL(2,Z),

and it satiesfies:

F(x) = (a+ bα)x with α =
c + dα
a+ bα

and ad – bc = ±1. (♣)

As we said, except for the obvious solution λ = 1 which correspond
to the inversion x 7→ –x, there are no other solutions except in the
case of α is quadratic.

Let us remark now that if two matrices M and M′ representing λ
in GL(2,Z), then they are equal. Indeed,

λ = λ′ ⇒ a+ bα = a′ + b′α ⇒ a = a′ and b = b′.
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Then,

α =
c + dα
a+ bα

=
c ′ + d′α
a′ + b′α

⇒ c + dα = c ′ + d′α

⇒ c = c ′ and d = d′.

Hence M = M′.

Proposition. The set of components of Diff(Tα) is isomorphic to
the stabilizer, in GL(2,Z), of the line Δα:

π0(Diff(Tα)) =
{(

a b
c d

)
|

(
a b
c d

)(
1
α

)
= λ

(
1
α

)}
According to a Dirichlet famous theorem, that we shall see in full
generality in the next section, we have: Theorem.The group of
components of Diff(Tα) is isomorphic to {±1}× Z if α is quadratic,
otherwise it is reduced to {±1}.

The General codimensional 1 Case

The case presented here of an irrational hyperplane in the torus
Tn is the result of a joint work with Gilles Lachaud, published in
1990 [PIGL90]. The arithmetic material for this part can be found
in [BorCha67].

We consider a torus Tn = Rn/Zn equipped with its standard dif-
feology.

9. Definition We call irrational hyperplane in Rn an hyperplane H
that does not contain any integer points except 0

H ∩ Zn = {0}.

An hyperplane is directed by a linear 1-form that is in our case
normalized as follow:

H = ker(w = (1w2 . . .wn)) = {x ∈ Rn
| w(x) =

n∑
i=1

wixi = 0}.

The fact that the hyperplane is irrational is equivalent to the prop-
erty of the coefficients wi to be independent over Q:

∀qi ∈ Q,
n∑

i=1
wiqi = 0 ⇒ qi = 0,∀i.
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Let us denote by SH ⊂ Tn the image of H by the canonical projec-
tion π : Rn

→ Tn. Here again the map π � H is an induction.

We define the irrational torus associated with H as the quotient
space

TH = Tn/SH,

which is also an Abelian group.

10. Proposition The space TH is diffeomorphic to the quotient:

TH ' R/w(Zn).

where

w(Zn) = {n1 +
n∑

i=2
wini | ni ∈ Z}

is a subgroup of (R, +).

11. Proposition [The group Diff(TH)] The group of diffeomorphisms
of the irrational torus TH is given by

Diff(TH) ' Λw × TH.

with Λw its group of components π0(Diff(TH)):

Λw = {λ ∈ R | λMw = Mw} with Mw = w(Zn).

JProof. The situation for the diffeomorphisms of the torus TH is
identical to the case of Tα. They are the projections f of the affine
maps

F: x 7→ λx + μ,

such that, for all k ∈ Zn there exists a unique k ′ ∈ Zn with
F(w(k)) = w(k ′). In other words,

λw(Zn) ⊂ w(Zn).

The map f ∈ Diff(TH) is the defined by

f ◦ classw(x) = classw(F(x)).

On TH, f is the composite of the linear part

λ : classw(x) 7→ classw(λx)

by some translation

tρ : class(x) 7→ classw(x) + ρ with ρ = classw(μ).
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We can focus on the linear parts of the diffeomorphisms of TH,
which makes the discrete part of Diff(TH).
Consider now the inverse diffeomorphism (λ)–1, it can be lifted to
Rn by λ′, with

λ ◦ classw = classw ◦λ and classw ◦λ′ = (λ)–1 ◦ classw ,

where λ on R is just the multiplication by λ. We get

classw ◦λ′ ◦ λ = classw ,

which gives first λ′λx = x+w(k), with k ∈ Zn, and then k = 0 for
x = 0. Therefore

λ
′ =

1
λ
.

Thus,
1
λ
w(Zn) ⊂ w(Zn) ⇒ λ ×

1
λ
w(Zn) ⊂ λw(Zn).

Therefore, λw(Zn) ⊂ w(Zn) and w(Zn) ⊂ λw(Zn), that is,

λw(Zn) = w(Zn).

We get then the discrete part of Diff(TH)

Λw = {λ ∈ R | λMw = Mw},

such that Diff(TH) ' Λw × TH. I
In order to understand the group of components Λw we will intro-
duce the Q-vector space:

Ew = w(Qn) =
{
q1 +

n∑
i=2

qiwi | qi ∈ Q
}
.

12. Proposition [The Algebraic Field Kw ] The set of numbers

Kw = {λ ∈ R | λEw ⊂ Ew}

is an algebraic number field, a finite extension of Q, whose dimen-
sion d on Q divides n, and Ew is a Kw-vector space of dimension
n/d. That is, Kw is a field Q(θ) where θ is a solution of some
polynomial with integer coefficients.
JProof. It is enough to prove that if k ∈ Kw and k 6= 0, then
1/k ∈ K. The multiplication by k is a linear map in Ew whose
kernel is {0}, then it is injective. Since Ew is finite dimensional, it
is surjective: for all y ∈ Ew there exists x ∈ E such that kx = y,
that is, x = y/k. the number 1/k stabizes Ew . On the other hand,
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Kw is a subalgebra of L(E), hence of finite dimension on Q. Since
Q ⊂ Kw , Kw is a finite extension of Q. Moreover, the space Ew is
naturally a Kw-module, it is then a Kw-vector space. we get then
dimQ Ew = dimQ Kw × dimKw Ew . I

Let us consider now a lattice Mw ⊂ Ew , that is, an additive sub-
group of Ew such that Mw ⊗ Q = Ew . Its ring of stabilizers:

Aw = {λ ∈ R | λMw ⊂ Mw} (1)

is clearly a sub-ring of the field Kw .

Let us recall what is an order1 in the sense of ring theory

13. Definition [Order of a Ring] LetK be a ring that is a finite-dimensional
algebra over the field Q. Let A ⊂ K be a subring. We say that A
is an order of K is

(1) A is a Z-lattice in K,
(2) A spans K over Q.

Then,

14. Proposition [The Order Mw ] Let E be a finite dimensional Q-
vector sub-space of R and M ⊂ E be a Z-lattice. The ring A of the
stabilizers of M in R

A = {λ ∈ R | λM ⊂ M},

is an order of the ring K of the stabilizer of E in R

K = {λ ∈ R | λE ⊂ E}.

In other words:

E = M ⊗ Q ⇒ K = A ⊗ Q.

JProof. We want to prove that K = A ⊗ Q. Let w = (w1, . . . ,wn)
be a Z-basis of M, i.e. a Q-basis of E = M ⊗ Q such that w(Zn) =
M. Let λ ∈ K and Λ be the matrix representing λ, the multipli-
cation by λ ∈ K, in the basis w. The matrix Λ can be written
Λ = Λ′/`, where ` ∈ Z is the least common multiple of the denom-
inators of the elements of Λ, and Λ′ ∈ L(Zn). For all m ∈ M we
have then `λm ∈ M, that is, (`λ)M ⊂ M. Therefore, `λ ∈ A, or
again λ ∈ A ⊗ Q. I

1https://en.wikipedia.org/wiki/Order_(ring_theory)
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So, coming back to Aw and Kw , Aw is an order of Kw . Now we
are not just interested in Aw but in its invertible elements. That
is,

Λw = {λ ∈ R | λM ⊂ M and
1
λ
M ⊂ M},

= {λ ∈ Aw | λ
–1

∈ Aw}.

15. Proposition [The Group Λw The group Λw of components of
Diff(TH)) is the group of invertible elements of the ring Aw , that
is, its group of units.2 Since Aw is an order of the algebraic field
Kw , its group of units is given by the Dirichlet’s unit theorem.3

In our case:
Λw ' ±1 × Zr+s–1,

where r is the number of real places of the field Kw and 2s the
number of complex places. In other words, Kw = Q(θ) where θ is
a solution of a polynomial P with integer coefficients. The degree
d of Kw divides n, thus d = r + 2s and n = `d.
Note. In particular, for n = 2 there are two cases, either d = 0
and Λw = {±1}, or d = 2 and Λw = {±1} × Z.
16. Example
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