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In this lecture we show how local diffeology builds a new branch
of diffeology with the modeling process.

Local Diffeology

1. Definition [Local Smooth Maps] We have seen what is a local
smooth map

f : X ⊃ A → X′,

where X and X′ are two diffeological spaces. The map f is local
smooth if for all plot P: U → X, the composite

f ◦ P: P–1(A) → X′

is a plot.

Proposition The composition of local smooth maps is a local smooth
maps.

Note that the composite of two local smooth map may be empty,
the empty map is assumed to be smooth.

2. Definition [D-Topology] We have seen that, if f : X ⊃ A → X′

is a local smooth map, then for all plot P ∈ D (the diffeology of
X) the preimage P–1(A) is open (an open subset of dom(P)). We
then defined the D-topology as the finest topology on X such that
the plots are continuous, that is,

• A subset O ⊂ X is D-open if P–1(O) is open for all plots in X.
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Thus, the local smooth maps from X to X′ are the maps f defined
on D-open subsets A of X such that restricted to A, f � A is smooth
for the subset diffeology.

3. Definition [Embedded subsets] What is interesting with the
D-topology, which is a perfect byproduct of the diffeology, is the
defintion of embedding subsets that result immediately, without
the introduction of anything else.

Consider a subset A ⊂ X, and j : A → X be the inclusion. We have
on A the subset diffeology of X, let us denote it by DA = j∗(D),
with D the diffeology of X.

We have also on X the D-topology T, and on A the D-topology
TA of DA.

But we have also the pullback j∗(T) of the D-topology of X on A.

Definition We say that a subset A ⊂ X is embedded in the diffeo-
logical space X, if the D-topology TA of the subspace A coincides
with the pullback j∗(T) of the D-topology of X on A.

TA = j∗(T) ⇔ A is embedded in X.

In other words,

Criterion The subset A ⊂ X is embedded if and only if for any
D-open subset ω ⊂ A, equipped with the subset diffeology, there
exists an open subset Ω ⊂ X, of the D-topology of X, such that
ω = Ω∩ A.

4. Example [The rational numbers] The rational numbers Q ⊂ R
is discrete but not embedded. What is interesting here is that
from a pure topological point of view, only embedded subgroups
of R are regarded as discrete. The are all of the form aZ, for any
number a.

In diffeology it is more precise, we can have subgroups discrete
and embedded, they coincide with the discrete subgroups from
the topology point of view, and the discrete sugroup which are
just induced but not embedded.

JProof. We now that Q is discrete, that is, the plots are locally
constant. Thus, any point q ∈ Q is open of the D-topology of the
induced diffeology, since the pullback of q by a plot is a component
of the domain of the plot, then open. I recall that to be locally
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constant for a plot means that to be constant on the connected
componenents of the domain of the plot. Therefore,

Proposition The D-topology of a discrete diffeological space is dis-
crete.

Now, the intersection of an open subset of R with Q is always
infinite, since Q is dense. Therefore, Q is not embedded. And we
can conclude also that a strict subgroup Γ ⊂ R, which is discrete, is
embedded if and only if, for any element γ ∈ Γ there is an interval
]γ – ε, γ+ ε[ such that ]γ – ε, γ+ ε[ ∩ Γ = {γ}. Hence there exists a
smallest element 0 < a in Γ, and therefore Γ = aZ. I
5. Definition [Embeddings] Let A and X be two diffeological spaces
and j : A → X be a map. We say that j is an embedding if

(1) j is an induction.
(2) j(A) ⊂ X is embedded.

6. Example [Group GL(n,R)] Consider the group of linear iso-
morphisms GL(n,R) ⊂ Diff(Rn). The group of diffeomorphisms
is equipped with the functional diffeology of group of diffeomor-
phisms, that is, a parametrization r 7→ fr in Diff(Rn), defined on
U, is smooth if and only if:

(1) (r, x) 7→ fr(x), defined on U × Rn is a plot in Rn.
(2) (r, x) 7→ (fr)–1(x), defined on U × Rn is a plot in Rn.

As a subset of Diff(Rn), GL(n,R) inherits the functional diffeology.
On the other hand, the group GL(n,R) is the open subset of Rn1:

GL(n,R) = {(mij)ni,j=1 | mij ∈ R and det((mij)ni,j=1) 6= 0}.

Proposition The injection j : GL(n,R) → Diff(Rn) is an embed-
ding.

JProof. First of all, j is injective.

Let us prove that j is an induction. Let r 7→ fr be a plot in
Diff(Rn) with values in GL(n,R). Let ei be the canonical basis of
Rn and e∗i the dual basis. Then, the coefficient of fr are given by
mij(r) = e∗i (fr(ej). They are obviously smooth, by definition of the
functional diffeology.

Now, let us prove that j is an embedding. Consider the open ball
B(1n, ε), centered at the identity and of radius ε. Let Ωε be the
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set of all diffeomorphisms defined by

Ωε = {f ∈ Diff(Rn) | D(f )(0) ∈ B(1n, ε)},

where D(f )(0) is the tangent linear map of f at the point 0. Now,
let us prove the following:

(a) The set Ωε is open for the D-topology of Diff(Rn).

Let P : U → Diff(Rn) be a plot, that is, [(r, x) 7→ P(r)(x)] ∈

C∞(U × Rn,Rn). The pullback of Ωε by P is the set of r ∈ U such
that the tangent map D(P(r))(0) is in the ball B(1n, ε), formally,

P–1(Ωε) = {r ∈ U | D(P(r))(0) ∈ B(1n, ε)}.

Considering P as a smooth map defined on U × Rn, D(P(r))(0) is
the partial derivative of P, with respect to the second variable,
computed at the point x = 0. The map [r 7→ D(P(r))(0)] is then
continuous, by definition of smoothness. Hence, the pullback of
Ωε by this map is open. Because the imprint of this open set on
GL(n,R) is exactly the ball B(1n, ε), we deduce that any open
ball of GL(n,R) centered at 1n is the imprint of a D-open set of
Diff(Rn).

(b) Every open of GL(n,R) is the imprint of a D-open set of
Diff(Rn).

By using the group operation on GL(n,R) and since any open
set of GL(n,R) is a union of open balls, every open subset of
GL(n,R) is the imprint of some D-open subset of Diff(Rn). There-
fore, GL(n,R) is embedded in Diff(Rn). I

7. Definition [Functional Diffeology on Local Smooth Maps] Let
X and X′ be two diffeological spaces. Let C∞loc(X,X′) be the set of
local smooth maps from X to X′. The evaluation map is defined
on

F = {(f , x) | f ∈ C∞loc(X,X′) and x ∈ dom(f )}

The evaluation map is, as usual,

ev: C∞loc(X,X′) × X ⊃ F → X′ with ev(f , x) = f (x).

Proposition There exists a coarsest diffeology on C∞loc(X,X′) such
that the evaluation map is local smooth.

That is, F is a D-open subset of C∞loc(X,X′) ×X, and the map ev is
smooth with F equipped with the subset diffeology.
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A parametrization r 7→ fr in C∞loc(X,X′), defined on U, is a plot iff
the map

ψ : (r, x) 7→ fr(x)

defined on

P∗(F) = {(r, f , x) ∈ U × X | f = fr and x ∈ dom(f )}

' {(r, x) ∈ U × X | x ∈ dom(fr)}

with value in X′, is local smooth.

Note that (r, x) 7→ fr(x) is the composite ev ◦φ, where φ(r, x) =
(fr , x).

U × X ⊃ P∗(F) F X

U C∞loc(X,X′)
pr1

φ ev

pr1
P

8. Example [Functional Diffeology on D-open Sets] Let X be a
diffeological space. We get a diffeology on the set of D-open subsets
of X as follow: consider a family of D-open subsets defined on some
Euclidean domain U:

r 7→ O(r),

we can decide that the family is a plot in the set of D-open subsets
of X if the map

r 7→ 1O(r)

is a plot in the space of local smooth map. That is, if the subset

U = {(r, x) ∈ U × X | x ∈ O(r)}

is a D-open subset on U × X.

For example, let r 7→ Ir be a parametrization of open intervals in
R. This family is smooth if for all r0 and x0 ∈ R such that x0 ∈ Ir0,
there exists a small ball B centered at r0 and ε > 0 such that for
all r ∈ B, ]x0 – ε, x0 + ε[ ⊂ Ir .
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Manifolds

We shall present now the classical definition of manifolds, and then
the diffeology way.

9. Definition [Manifolds, the Classic way] We summarize the ba-
sic definitions, according to Bourbaki [Bou82], but we make the
inverse convention, made also by some other authors, to regard
charts defined from real domains to a manifold M, rather than
from subsets of M into real domains.

(♣) Let M be a nonempty set. A chart of M is a bijection F defined
on an n-domain U to a subset of M. The dimension n is a part of
the data. Let F : U → M and F′ : U′ → M be two charts of M.
The charts F and F′ are said to be compatible if and only if the
following conditions are fulfilled:

a) The sets F–1(F′(U′)) and F′–1(F(U)) are open.
b) The two maps F′–1 ◦ F : F–1(F′(U′)) → F′–1(F(U)) and

F–1 ◦ F′ : F′–1(F(U)) → F–1(F′(U′)), each one the inverse
of the other, are either empty or smooth. They are called
transition maps.

An atlas is a set of charts, compatible two-by-two, such that the
union of the values is the whole M. Two atlases are said to be
compatible if their union is still an atlas. This relation is an equiv-
alence relation. A structure of manifold on M is the choice of an
equivalence class of atlases or, which is equivalent, the choice of
a saturated atlas. Once a structure of manifold is chosen for M,
every compatible chart is called a chart of the manifold.

10. Definition [Manifolds, the Diffeology Way] Let X be a diffeo-
logical space, we say that X is a n-manifold if it is locally diffeo-
morphic to Rn at all points. Such local diffeomorphisms from Rn

to X are called charts. A generating family of charts is called an
atlas.

The Euclidean domains are the first examples of manifolds.

11. Remark [Where is the Difference?] The difference between
the two defintion gives an advantage to diffeology. The difference
comes from that in diffeology, the set X is a priori equipped with
a diffeology, that is a smooth structure. Then, the point is to test
if the diffeology gives the space a structure of manifold.
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A contrario, with the classical approach, the smooth structure is
defined a popsteriori. A parametrization P in a manifold M is
smooth if the composite by the inverse of the charts is a smooth
parametrization of Rn.

Note that the same set equipped with two different diffeologies
may give two different structures of manifolds with different di-
mensions. For example R2 can be equipped with its standard
diffeology that gives it a structure of a 2-manifold. It can also
be equipped with the sum diffeolgy X = ∑x∈R R which gives it a
structure of 1-manifold.

12. Proposition [Why These Definitions Give the same Category?]
As we say previously, given a n-manifold M defined by the classic
way, smooth parametrizations P in M are parametrizations such
that F–1 ◦ P are smooth parametrizations in Rn. We consider the
empty parametrization as admissible. It is not difficult then to
check that the set of these smooth parametrizations define a diffe-
ology for which the charts are local diffeomorphisms. Conversely,
local diffeomorphism from Rn to a diffeological manifold X define
on X a structure of manifold, the classic way. And these two op-
erations are inverse one from each other.

13. Example [We Know Already Some Examples] Consider the
sphere S2 ⊂ R3. Consider the tangent plane at N = (0, 0, 1),
identified with R2, made of points

X =

x
y
1


Consider the projection

F: X 7→ m with m =
1√

x2 + y2 + 1

x
y
1

 .

The map F is clearly injective from R2 into S2, and smooth since
x2 + y2 + 1 never vanishes. Its inverse is given by

F–1 : m 7→ X with X =

x = x ′/z ′

y = y ′/z ′

z = 1

 and m =

x ′

y ′

z ′

 .
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We see here that necessarily z ′ 6= 0 and then F–1 is smooth. So, we
got a local diffeomorphism F, around the North Pole N. Then, we
use the transitive action of SO(3,R) to get a local diffeomorphism
at all points in S2.
To this example we have already seen the various tori Tn = Rn/Zn.

14. Definition [Diffeological Manifolds] In diffeology we extend the
definition of manifolds. A diffeological manifolds is a diffeological
space locally diffeomorphic to a diffeological vector space at all
points.
A diffeology of vector space is a diffeology on a vector space for
which the addition and the multiplication by a scalar are smooth.
15. Example [The Infinite Complex Projective Space] We recall
some set-theoretic constructions, today classic. Let us introduce

C? = C – {0} and H?
C = HC – {0},

where HC is the Hilbert space of infinite square-summable se-
quences of complex numbers. We equip that space with the fine
diffeology of vector space. The plots are the parametrizations that
write locally as

P: r 7→
∑
α∈A
λα(r)ζα,

where A is a finite set of indices, the λ are smooth parametrizations
in C, and the ζα are fixed vector in HC
Then, let us consider the multiplicative action of the group C? on
H?

C, defined by

(z, Z) 7→ zZ ∈ H?
C, for all (z, Z) ∈ C?

× H?
C.

Definition The quotient of H?
C by this action of C? is called the

infinite complex projective space, or simply the infinite projective
space. We will denote it by

PC = H?
C/C?.

Now, HC is equipped with the fine diffeology and H?
C with the

subset diffeology. The infinite projective space PC is equipped
with the quotient diffeology. Let us denote by

class : H?
C → PC
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the canonical projection. Next, for every k = 1, . . . ,∞, let us
define the injection

jk : HC → H?
C

by

j1(Z) = (1, Z) and jk(Z) = (Z1, . . . , Zk–1, 1, Zk, . . .), for k > 1.

Let Fk be the map defined by

Fk : HC → PC with Fk = class ◦jk, k = 1, . . . ,∞.

That is,
F1(Z) = class(1, Z)

and
Fk(Z) = class(Z1, . . . , Zk–1, 1, Zk, . . .), for k > 1.

Then:
(1) For every k = 1, . . . ,∞, jk is an induction from HC into H?

C.
(2) For every k = 1, . . . ,∞, Fk is a local diffeomorphism from HC
to PC. Moreover, their values cover PC,∞⋃

k=1
Values(Fk) = PC.

Thus,
Proposition PC is a diffeological manifold modeled on HC, for
which the family {Fk}∞k=1 is an atlas.
(3) The pullback class–1(Values(Fk)) ⊂ H?

C is isomorphic to the
product HC × C?, where the action of C? on H?

C is transmuted into
the trivial action on the factor HC, and the multiplicative action
on the factor C?. We say that the projection class is a locally
trivial C?-principal fibration.

Manifolds With Boundary

16. Definition [Half-Spaces] We denote by

Hn = Rn–1
× [0,∞[

the standard half-space of Rn.
We denote by x = (r, t) its points with r ∈ Rn–1 and t ∈ [0,+∞[.
We denote by ∂Hn its boundary Rn–1

×{0}. The subset diffeology of
Hn, inherited from Rn, is made of all the smooth parametrizations
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DIFFERENTIABLE EVEN FUNCTIONS 

By HASSLER WHITNEY 

An even functionf(x) = f( -x) (defined in a neighborhood of the origin) can 
be expressed as a function g(x2); g(u) is determined for u 0, but not for u < o. 
We wish to show that g may be defined for u < 0 also, so that it has roughly 
half as many derivatives as f. A similar result for odd functions is given. 

THEOREM 1. An evenfunctionf(x) may be written as g(x2). Iff is analytic, of 
class COO or of class C2., g may be made analytic, of class COO or of class C·, respectively. 

If f(x) = L: aixi is even and analytic, then ai = 0 for i odd, and we may set 
g(u) = L:a2iu\ which is analytic. 

Suppose f is even and of class C2 •• Then Taylor's formula gives 

(1) f(x) = ao + a l x2 + ... + a._ I x2.-2 + X28¢(X). 

By Theorem 1 of [3], ¢ is even and continuous, and of class C2 • for x ;t. 0, and 

(2) lim Xk¢(k) (x) = 0 (k = 1, ... ,2s). 

Set ¥r(u) = ¥r( -u) = ¢(u!), and 

(3) 

Then g(x2) = f(x). To show that g is of class C·, it is sufficient to show, by 
Theorem 2 of [3], that 

(4) (k = 0, ... ,s) 

exists. 
If we differentiate ¥r(x2) = ¢(x) (x > 0), a simple proof by induction shows 

that, for some constants aki , 

(5) ¢(k)(X) = L akixk-2'¥r(k-')(x2) + 2kXk¥r(k) (x2). 

IS isik 

Solving these equations in succession gives, for some (3ki , 

(6) 

Hence, 

2kXk¥r(k)(X2) = ¢(k)(X) + L: (3kiX-i¢(k-il(X). 

X2k ¥r(k)(X2) = L (3Lxk-,¢(k-il(X), 
OSiSk-1 

and (4) for x > 0 follows from (2). Since ¥r( -u) = ¥r(u), the theorem is proved 
for this case. 

Received July 28, 1942; presented to the American Mathematical Society September 8, 1942. 

Figure 1. Whitney Theorem 1.

P : U → Rn such that Pn(r) ≥ 0 for all r ∈ U, Pn(r) being the n-th
coordinate of P(r). The D-topology of Hn is the usual topology
defined by its inclusion into Rn.

17. Proposition [Smooth real maps from half-spaces] A map f : Hn →

Rp is smooth for the subset diffeology of Hn if and only if there
exists an ordinary smooth map F, defined on an open neighbor-
hood of Hn, such that f = F � Hn. Actually, there exists such an
F defined on the whole Rn.

Note As an immediate corollary, any map f defined on C × [0, ε[ to
Rp, where C is an open cube of ∂Hn, centered at some point (r, 0),
smooth for the subset diffeology, is the restriction of a smooth map
F : C×] – ε, +ε[→ Rp.

JProof. First of all, if f is the restriction of a smooth map F: Rn
→

Rp, it is obvious that for every smooth parametrization P : U →

Hn, f ◦P = F◦P is smooth. Conversely, let fi be a coordinate of f .
Let x = (r, t) ∈ Rn–1

× R. If fi is smooth for the subset diffeology,
then φi : (r, t) 7→ fi(r, t2), defined on Rn, is smooth. Now, φi is
even in the variable t, φi(r, t) = φi(r, –t). Thus, according to
Hassler Whitney [Whi43, Theorem 1 and final remark] there exists
a smooth map Fi : Rn

→ R such that: φi(r, t) = Fi(r, t2). Hence,
fi(r, t) = Fi(r, t) for all r ∈ Rn–1 and all t ∈ [0,+∞[. I
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160 HASSLER WHITNEY 

Suppose finally that f is even and of class C"'. Then, for each s, there is a 
function g.(u) of class C' such that f(x) = g.(x2). Since g(u) = g.(u) is inde-
pendent of s for u 0, g(u) is of class C'" for u O. Hence [1], [2; Theorem I] 
it may be extended so as to be of class C'" for all u. 

Example 1. Let f(x) = 1 x 128+1+1. Then f is of class C20 +1, while g(u) = 
U·+ 3 / 4 for u > 0, and g cannot be of class C·+ 1• 

Example 2. Let f(x) be Cauchy's function exp (-I/x2). Then g exists, of 
class C"'; for u > 0, g(u) = exp (-I/u). Of course we cannot define g by this 
formula for u < 0; but we may set g(u) = exp (-1/1 u I) for u ¢ O. 

THEOREM 2. An odd function f(x) may be written as xg(x2). Iff is analytic, of 
class C'" or of class C20 +\ g may be made analytic, of class C'" or of class C', respec-
tively. 

Again the analytic case is trivial. If f is odd and of class C2 8+ \ then expanding 
gives 

f(x) = aox + ... + aB_1x20-1 + X2B +1q,(X) = xF(x); 

applying the proof of the last theorem to the even function F(x) gives the state-
ment. (That F is of class C2 • follows from Corollary 1 of the preceding paper.) 
The case that f is of class C'" goes as before. 

Remark. Since g is constructed in a definite fashion, the theorems hold for 
functions of several variables which are even in one of them. (The case that f 
is of class C'" offers no further difficulty.) The reference above to [2] is to take 
care of this case. 
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Figure 2. Whitney Last Remark.

18. Proposition [Local Diffeomorphisms of Half-Spaces] A map
f : A → Hn, with A ⊂ Hn, is a local diffeomorphism for the subset
diffeology of Rn if and only if

(1) A is open in Hn,
(2) f is injective,
(3) f (A ∩ ∂Hn) ⊂ ∂Hn,
(4) and for all x ∈ A there exist an open ball B ⊂ Rn centered

at x, and a local diffeomorphism F: B → Rn such that f
and F coincide on B ∩ Hn.

Note. This implies in particular, that there exist an open neigh-
borhood U of A and an étale application g : U → Rn such that f
and g coincide on A.
JProof. See [PIZ13, §4.14]. I
19. Definition [Classical Manifolds With Boundary] Smooth man-
ifolds with boundary have been precisely defined for exemple in
[GuPo74] or in [?]. . .We use here Lee’s definition except that, for
our subject, the direction of charts have been reversed.
Definition A smooth n-manifold with boundary is a topological
space M, together with a family of local homeomorphisms Fi de-
fined on some open sets Ui of the half-space Hn to M, such that
the values of the Fi cover M and, for any two elements Fi and
Fj of the family, the transition homeomorphism F–1i ◦ Fj, defined
on F–1i (Fi(Ui) ∩ Fj(Uj)) to F–1j (Fi(Ui) ∩ Fj(Uj)), is the restric-
tion of some smooth map defined on an open neighborhood of
F–1i (Fi(Ui)∩Fj(Uj)). The boundary ∂M is the union of the Fi(Ui∩

∂Hn). Such a family F of homeomorphisms is called an atlas of M,
and its elements are called charts. There exists a maximal atlas A
containing F, made with all the local homeomorphisms from Hn to
M, such that the transition homeomorphisms with every element
of F satisfy the condition given just above. We say that A gives
to M its structure of manifold with boundary.
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20. Definition [Manifolds with boundary, the Diffeology Way] Let
X be a diffeological space. We say that X is a n-manifold with
boundary if it is locally diffeomorphic to the half-space Hn at all
points. Such local diffeomorphisms are called charts of X and a
set of charts that covers X is calles en atlas.

Proposition This definition is completely equivalent to the classic
way above.

Note 1. Here again we shall note that the main difference is that
the set X is a priori equipped with a diffeology, and we just check
if its diffeology is a diffeology of manifold with boundary.

Note 2. The diffeology of a classic manifold with boundary M is
defined by parametrizations in M such that, the composite with
the inverse of all charts is smooth. That definition creates an
equivalence between the classic and the diffeology categories.

Manifolds With Corners

21. Definition [Corners] We denote by

Kn = [0,∞[n

the standard corner of Rn. That is, the subset

Kn = {(x1, . . . , xn) | xi ≥ 0,∀i = 1 . . .n}.

. The corner Kn is equipped with the subset diffeology inherited
from Rn, which coincide with the nth-power of [0,∞[. The plots
are just the smooth parametrizations in P in Rn such that, for all
i = 1 . . .n Pi(r) ≥ O. The D-topology of Kn is the usual topology
defined by its inclusion into Rn.

22. Proposition [Local Smooth Maps of Corners] A map f : Kn →

Rk is smooth for the subset diffeology if and only if, it is the
restriction of a smooth map defined on an open neighborhood of
Kn.

What does that mean pecisely?

Let f : Kn → R be a map such that: for every smooth parametriza-
tion P: U → Rn taking its values in Kn, f ◦ P is smooth. Then, f
is the restriction of a smooth map F defined on some open neigh-
borhood of Kn.

What doest that say?
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That says that an heuristic consisting to define a smooth map from
the corner Kn to R, as the restriction of a smooth map defined on
an open neighborhood of Kn, can be avoided by using the diffeology
framework. Assuminf f to be smooth for the subset diffeology do
the work, and moreover conceptually.
JProof. The proof is a recurence on the same theorem above for
half-spaces. I
23. Proposition [Local Diffeomorphisms of Corners] A local dif-
feomorphism f from Kn into itself is the restriction of an étale map
defined on some open neighborhood of its domain of definition.
24. Proposition [Classic Manifolds with Corners] Let M be a para-
compact Hausdorff topological space. A n-chart with corners for
M is a pair (U, φ), where U is an open subset of Kn, and φ is a
homeomorphism from U to an open subset of M. Two charts with
corners (U, φ) and (V, ψ) are said to be smoothly compatible if the
composite map ψ–1◦φ : φ–1(ψ(V)) → ψ–1(φ(U)) is a diffeomorphism,
in the sense that it admits a smooth extension to an open set in
Rn. An n-atlas with corners for M is a pairwise compatible family
of n-charts with corners covering M. A maximal atlas is an atlas
which is not a proper subset of any other atlas. An n-manifold with
corners is a paracompact Hausdorff topological space M equipped
with a maximal n-atlas with corners.
25. Proposition [Diffeology Manifolds with Corners] A diffeological
space X is a n-manifold with corners if and only if it is locally
diffeomorphic to Kn at all points.
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