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In this lecture we show how we can build a bridge between some
diffeological spaces and noncommutative geometry, such that dif-
feomorphic spaces give Morita equivalent C∗-algebras. These spaces
are orbifolds, generalized by quasifolds, but regarded as diffeolog-
ical spaces.

This lecture is based on two papers: “Noncommutative Geometry
and Diffeology: The Case of Orbifolds” [IZL17], and “Quasifolds,
Diffeology and Noncommutative Geometry” [IZP20]. The basic
concepts have been introduced in the first paper and its results
extended in the second one.

The second paper is a generalization of the first one. The concept
of orbifold has been introduced by Ishiro Stake [IS56, IS57], the
notion of quasifold is a generalization introduced by Elisa Prato. In
the paper “Orbifolds as Diffeologies" [IKZ10] we include the Satake
original definition of V-manifold in the category {Diffeology}. In
the second paper we give a diffeological definition of “Quasifolds”
that fits correctly the E. Prato original definition [EP01]. Thus,
quasifolds are included also in the category {Diffeology}. By this
inclusive diffeological approach it is obvious that the Elisa Prato
quasifolds are a generalization of the Satake V-Manifolds, renamed
by Thurston as Orbifolds, which is not necessarily obvious with
the specific definitions. We have then this particular series of full
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subcategories:

{Manifolds} � {Orbifolds} � {Quasifolds} � {Diffeology}

Then, we associate a C∗-algebra to the orbifold, or quasifold, such
that diffeomorphic spaces give Morita equivalent C∗-algebra, which
is the minimum required.

I insist on the fact that the process of associating a C∗-algebra to
these categories of spaces is not tautological, as it can be with a
direct algebraic approach which contains already in the definition
of the category, by groupoids or stacks, this particular fact that
equivalent structures (groupoids or stacks) give Morita equivalent
C∗-algebras. We start here a floor below, with the geometry of the
space, that is, its diffeology.

Now, the plan of the talk:

(1) We define orbifolds and quasifolds as subcategories of dif-
feological spaces.

(2) We introduce charts and atlases that define the structure.
(3) We associate to every atlas a strict generating family and

its nebula.
(4) We associate a groupoid over the space with the nebula of

each atlas, that captures the local structure point by point.
(5) We show that two different atlases give to equivalent groupoids,

in the algebraic sense, which is the minimum required: the
groupoid [its class] is a diffeological invariant of the space.

(6) We show that theses groupoids are etale and Hausdorff.
(7) According to Jean Renault’s construction, we associate a
∗-algebra, and a C∗-algebra by completion, to each of these
groupoids.

(8) Using a central theorem from Muhly-Renault-Willian, we
show that two different atlases give Morita equivalent C∗-
algebras, which is the minimum expected.

(9) And finally we give two examples: the C∗-algebra associ-
ated with the irrational torus Tα, and the C∗-algebra asso-
ciated with the quotient R/Q.

I would like to finish this introduction by recalling that the devel-
opment of diffeology, starting in 1983 with the example of the irra-
tional torus [PDPI83], was deeply motivated by the introduction of
noncommutative geometry and the treatment of the quasiperiodic
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potential in quantum mechanics. It was time to close the loop, at
least for now.

What are Orbifolds and Quasifolds

1. Definition [The Orbifolds] An orbifold is a diffeological space
that is locally diffeomorphic to some quotient Rn/Γ, at each point,
where Γ is a finite subgroup of GL(n,R). The group Γ may change
from point to point.

Example 1. The quotient space Qm = C/Um, with the group
of roots of unity Um = {exp(2iπk/m) | k = 1 . . .m}, is a cone-
orbifold.

Example 2. The product [R/{±1}]n is a corner-orbifold.

Example 3. The waterdrop is the sphere S2 ⊂ R3 ' C×R, equipped
with the following diffeology:

Let N = (0, 1) be the North pole. The following set of parametriza-
tions ζ defines an orbifold diffeology on S2 with all points regular,
except the north pole whose structure group is the cyclic group
Um. This construction is summarized by the Figure 1.

Let U be an Euclidean domain,

ζ : U → S2 with ζ(r) =
(
z(r)
t(r)

)
, and |z(r)|2 + t(r)2 = 1,

such that, for all r0 ∈ U,

(1) if ζ(r0) 6= N, then there exists a small ball B centered at r0
such that ζ � B is smooth.

(2) If ζ(r0) = N, then there exist a small ball B centered at
r0 and a smooth parametrization z in C defined on B such
that, for all r ∈ B,

ζ(r) =
1√

1 + |z(r)|2m

(
z(r)m

1

)
.

2. Definition [The Quasifolds] A quasifold is a diffeological space
that is locally diffeomorphic to Rn/Γ, where Γ is a countable sub-
group of the affine group Aff(Rn), x 7→ Ax+B, with A ∈ GL(n,R)
and B ∈ Rn. We see clearly that diffeological quasifolds are a
generalization of orbifolds.
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C

Figure 1. The Waterdrop as a diffeological orbifold.

Example 1. The first example of quasifold is the irrational torus,
the first special diffeological space studied for itself in 1983 [PDPI83],
which is at the source of the development of diffeology:

Tα = T2/Δα ' R/Z + αZ,

where α ∈ R –Q, Δα ⊂ T2 is the projecttion of the line y = αx, and
T2 = [R/Z]2.
Example 2. The second example G (for Geodesics) is inspired by
the first one. The lines of slope α are the geodesic trajectories on
the torus T2 of slope α. The set of all geodesic trajectories of the
torus T2 are bundled over S1, they are the projections on T2 of all
the affine lines in R2 directed by a unit vector u ∈ S1. Over the
vector u we have Gu, the torus Tu which is rational or irrational
depending if the line Ru cut or not the lattice Z2 elsewhere than
in 0.

The set G of the geodesic trajectories of the torus T2 is the quotient
of the space of geodesic trajectories of the plane R2 by the action
of Z2. The space of geodesic trajectories of the plane is equivalent
to the cylinder

TS1 = {(u, r) ∈ S1 × R2
| 〈u, r〉 = 0}.

The mapping

(u, r) 7→
(
u, ρ = 〈r, Ju〉

)
with J =

(
0 –1
1 0

)
identifies

TS1 ' S1 × R.
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The action of Z2 on TS1 is given by(
m
n

)
: (u, r) 7→

(
u, r + [1 – uū]

(
m
n

))
.

Translated on (u, ρ) that gives:(
m
n

)
: (u, ρ) 7→

(
u, ρ+

〈(
m
n

)
, Ju
〉)

.

That is,(
m
n

)
: (u, ρ) 7→ (u, ρ+ nux –muy) with u =

(
ux
uy

)
.

In other words, G is diffeomorphic to the quotient of R × R by the
relation

(t, ρ) ∼
(
t+ `, ρ+ n cos(2πt) –m sin(2πt)

)
with `,n,m ∈ Z.

3. Definitions [Charts, Atlases and Strict Generating Families]
Since orbifolds are a full subcategory of quasifolds in diffeology,
what is defined for orbifolds in the following applies immediately
for quasifolds. So, paraphrasing the definition, a diffeological space
X is a quasifold if, for all x ∈ X, there exist a countable subgroup
Γ ⊂ Aff(Rn), and a local diffeomorphism φ from Rn/Γ to X, defined
on some open subset U ⊂ Rn/Γ, such that x ∈ φ(U). The subset
U is open for the D-topology, that is in this case, the quotient
topology by the projection map class : Rn

→ Rn/Γ.

Definition: Any such diffeomorphism is called a chart. A set of
charts A, covering X, is called an atlas.

Let f : U → X be a chart, then U is an open subset of some Rn/Γ
for the D-Topology. Thus Ũ = class–1(U) is a Γ-invariant open
subset in Rn. Hence, F = f ◦ class is a plot of X. We shall call it
the strict lifting of f .

Definition: Let F be the set of strict liftings F = f ◦ class, where
f : U → X runs over the charts in A. Then, F is a generating family
of X. We shall say that F is the strict generating family associated
with A.
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Structure Groupoids

4. Lemma [Lifting the identity] Let Q = Rn/Γ where Γ is a count-
able subgroup of Aff(Rn). Consider a local smooth map F from
Rn to itself, such that

class ◦F = class .

In other words, F is a local lifting of the identity on Q. Then,

Theorem. F is locally equal to some group action

F(r) =loc γ · r = Ar + b,

where γ = (A,b) ∈ Γ, for some A ∈ GL(Rn) and b ∈ Rn.

Proof. Let us assume first that F is defined on an open ball B.
Then, for all r in the ball, there exists a γ ∈ Γ such that F(r) = γ·r.
Next, for every γ ∈ Γ, let

Fγ : B → Rn
× Rn with Fγ(r) = (F(r), γ · r).

Let Δ ⊂ Rn
× Rn be the diagonal and let us consider

Δγ = F–1γ (Δ) = {r ∈ B | F(r) = γ · r}.

Lemma 1. There exist at least one γ ∈ Γ such that the interior Δ̊γ
is non-empty.

J Indeed, since Fγ is smooth (thus continuous), the preimage Δγ
by Fγ of the diagonal is closed in B. However, the union of all the
preimages F–1γ (Δ) — when γ runs over Γ— is the ball B. Then, B is
a countable union of closed subsets. According to Baire’s theorem,
there is at least one γ such that the interior Δ̊γ is not empty. I

Lemma 2. The union Δ̊Γ = ∪γ∈Γ̊Δγ is an open dense subset of B.

J Indeed, let B′ ⊂ B be an open ball. Let us denote with a prime
the sets defined above but for B′. Then, Δ′γ = (Fγ � B′)–1(Δ) = Δγ∩

B′, and then Δ̊′γ = Δ̊γ∩B′. Thus, B′∩Δ̊Γ = B′∩(∪γ∈Γ̊Δγ) = ∪γ∈Γ̊Δ
′
γ,

which is not empty for the same reason that ∪γ∈Γ̊Δγ is not empty.
Therefore, Δ̊Γ is dense. I

Hence, there exists a subset of Γ, indexed by a family I, for which
Oi = Δ̊γi ⊂ B is open and non-empty, ∪i∈IOi is an open dense
subset of B, and F � Oi : r 7→ Air + bi, where (Ai,bi) ∈ Aff(Rn).
Since F is smooth, the first derivative D(F) restricted to Oi is equal
to Ai, and then the second derivative D2(F) � Oi = 0, for all i ∈ I.
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Then, since D2(F) = 0 on an open dense subset of B, D2(F) = 0
on B, that is D(F)(r) = A for all r ∈ B, with A ∈ GL(n,R).
Now, the map r 7→ F(r) – Ar, defined on B, is smooth. But,
restricted on Oi it is equal to bi. Its derivative vanishes on the
open dense subset ∪i∈IOi and thus vanishes on B. Therefore,
F(r) – Ar = b on the whole B, for b ∈ Rn and F(r) = Ar + b on
B, with γ = (A,b) ∈ Γ. �

5. Construction [Building the groupoid of a quasifold.] Let X be
a quasifold, let A be an atlas and let F be the strict generating
family over A. We denote by N the nebula of F, that is, the sum
of the domains of its elements:

N =
∐
F∈F

dom(F) = {(F, r) | F ∈ F and r ∈ dom(F)}.

The evaluation map is the natural subduction

ev: N → X with ev(F, r) = F(r).

The structure groupoid of the quasifold X, associated with the
atlas A, is defined as the subgroupoid G of germs of local diffeo-
morphisms of N that project to the identity of X along ev. That
is,{

Obj(G) = N,

Mor(G) = { germ(Φ)ν | Φ ∈ Diffloc(N) and ev ◦Φ = ev � dom(Φ)}.

The set Mor(G) is equipped with the functional diffeology inher-
ited by the full groupoid of germs of local diffeomorphisms.1 Note
that, given Φ ∈ Diffloc(N) and ν ∈ dom(Φ), there exist always two
plots F and F′ in F such that ν = (F, r), with r ∈ dom(F), and
a local diffeomorphism φ of Rn, defined on an open ball centered
in r, such that dom(φ) ⊂ dom(F), φ = Φ � {F} × dom(F) and
F′ ◦ φ = F � dom(φ). That is summarized by the diagram:

dom(F) ⊃ dom(φ) dom(F′)

X
F

φ

F′

1That is defined precisely in the paper on Orbifolds and C∗-algebras [IZL17,
§2 & 3]
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Figure 2. The three levels of a quasifold.

Note. According to the theorem in §4, the local diffeomorphisms,
defined on the domain of a generating plot, and lifting the iden-
tity of the quasifold, are just the elements of the structure group
associated with the plot.

We can legitimately wonder what is the point of involving general
germs of local diffeomorphisms, if we merely end up with the
structure group we could have began with? The reason is that:
The structure groups connect the points of the nebula that project
on a same point of the quasifold, only when they are inside the
same domain. They cannot connect the points of the nebula
that project on the same point of the quasifold but belonging to
different domains, with maybe different structure groups. This is
the reason why we cannot avoid the use of germs of local diffeomor-
phisms in the nebula, to begin with. That situation is illustrated
in Figure 2.
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6. Theorem [Lifting local diffeomorphisms] Let Q = Rn/Γ and
Q′ = Rn′/Γ′, where Γ ⊂ Aff(Rn) and Γ′ ⊂ Aff(Rn′) are countable
subgroups. Then,
Theorem.Every local smooth lifting f̃ of any local diffeomorphism
f of Q is necessarily a local diffeomorphism. In particular n = n′.
Moreover, let x ∈ dom(f ), x ′ = f (x), r, r ′ ∈ Rn be such that
class(r) = x and class(r ′) = x ′. Then, the local lifting f̃ can be
chosen such that f̃ (r) = r ′.
Note that n is also the diffeological dimension of Rn/Γ.
Proof. This theorem is a consequence of the previous theorem on
the lifting of the identity �

7. Theorem [Equivalence of structure groupoids] Let us recall that
a functor S: A → C is an equivalence of categories if and only if,
S is full and faithful, and each object c in C is isomorphic to S(a)
for some object a in A [SML78, Chap. 4 § 4 Thm. 1]. If A and C
are groupoids, the last condition means that, for each object c of
C, there exist an object a of A and an arrow from S(a) to c.
In other words: let the transitivity-components of a groupoid be
the maximal full subgroupoids such that each object is connected
to any other object by an arrow.
Thus: The functor S is an equivalence of groupoids if it is full
and faithful, and surjectively projected on the set of transitivity-
components.
Now, consider an n-quasifold X. Let A be an atlas, let F be the
associated strict generating family, let N be the nebula of F and
let G the associated structure groupoid. Let us first describe the
morphology of the groupoid.
Proposition. The fibers of the subduction ev: Obj(G) → X are
exactly the transitivity-components of G. In other words, the
space of transitivity components of the groupoid G associated with
any atlas of the quasifold X, equipped with the quotient diffeology,
is the quasifold itself.
Theorem.Different atlases of X give equivalent structure groupoids.
The structure groupoids associated with diffeomorphic quasifolds
are equivalent.
In other words, the equivalence class of the structure groupoids of
a quasifold is a diffeological invariant.



10 PATRICK IGLESIAS-ZEMMOUR

Proof. The idea is to consider the groupoids G and G′ associated
to the atlases A and A′, then the groupoid G′′ associated to the
atlas A′′ = A

∐
A′. Then the groupoids G and G′ are two full sub-

groupoids of G′′ and to show that, thanks to the theorem on lifting
local diffeomorphisms, all three have the same space of transitivity
components, that is X. �

The C∗-Algebra

We use the construction of the C∗-Algebra associated with an ar-
bitrary locally compact groupoid G, equipped with a Haar system,
introduced and described by Jean Renault in [JR80, Part II, §1].
Note that, for this construction, only the topology of the groupoid
is involved, and diffeological groupoids, when regarded as topolog-
ical groupoids, are equipped with the D-topology2.
We will denote by C(G) the completion of the compactly supported
continuous complex functions on Mor(G), for the uniform norm.
And we still consider, as is done for orbifolds, the particular case
where the Haar system is given by the counting measure. Let f and
g be two compactly supported complex functions, the convolution
and the involution are defined by

f ∗ g(γ) =
∑
β∈Gx

f (β · γ)g(β–1) and f ∗(γ) = f (γ–1)∗.

The sums involved are supposed to converge. Here, γ ∈ Mor(G),
x = src(γ) and Gx = trg–1(x) is the subset of arrows with target
x. The star in z∗ denotes the conjugate of the complex number
z. By definition, the vector space C(G), equipped with these two
operations, is the C∗-algebra associated with the groupoid G.
8. Theorem [The structure groupoid is étale and Hausdorff.] Let A
be an atlas of a quasifold X. The structure groupoid G associated
with the generating family of the atlas A is étale, namely: the
projection src: Mor(G) → Obj(G) is an étale smooth map, that is,
a local diffeomorphism at each point [PIZ13, §2.5].
Proposition 1. For all g ∈ Mor(G), there exists a D-open superset
O of g such that src restricted to O is a local diffeomorphism.
Proposition 2. The groupoid G is locally compact and Hausdorff.

2Since smooth maps are D-continuous and diffeomorphism are D-
homeomorphisms.
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Note. Since the atlas A is assumed to be locally finite, the preim-
ages of the objects of G by the source map, or the target map, are
countable.

9. Theorem [MRW-equivalence of structure groupoids.] We con-
sider a quasifold X and two atlases A and A′, with associated
strict generating families F and F′. We shall show in this sec-
tion that the associated groupoids are equivalent in the sense of
Muhly-Renault-Williams [MRW87, 2.1]; this will later give Morita-
equivalent C∗-algebras.

This section follows [IZL17, §8]; we just check that the fact that
the structure groups are countable and not just finite, does not
change the result.

Let us recall what is an MRW-equivalence of groupoids. Let G
and G′ be two locally compact groupoids. We say that a locally
compact space Z is a (G,G′)-equivalence if

(i) Z is a left principal G-space.
(ii) Z is a right principal G′-space.
(iii) The G and G′ actions commute.
(iv) The action of G on Z induces a bijection of Z/G onto

Obj(G′).
(v) The action of G′ on Z induces a bijection of Z/G′ onto

Obj(G).

Let src : Z → Obj(G) and trg : Z → Obj(G′) be the maps defining
the composable pairs associated with the actions of G and G′.
That is, a pair (g, z) is composable if trg(g) = src(z), and the
composite is denoted by g ·z. Moreover, a pair (g ′, z) is composable
if src(g ′) = trg(z), and the composite is denoted by z · g ′.

Let us also recall that an action is principal in the sense of Muhly-
Renault-Williams, if it is free: g · z = z only if g is a unit, and the
action map (g, z) 7→ (g · z, z), defined on the composable pairs, is
proper [MRW87, §2].

Now, using the hypothesis and notations of the previous pragraphs,
let us define Z to be the space of germs of local diffeomorphisms,
from the nebula of the family F to the nebula of the family F′,
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that project on the identity by the evaluation map. That is,

Z =

{
germ(f )r

∣∣∣ f ∈ Diffloc(dom(F), dom(F′), r ∈ dom(F),
F ∈ F, F′ ∈ F′ and F′ ◦ f = F � dom(f ).

}
.

Let3

src(germ(f )r) = r and trg(germ(f )r) = f (r).

Then, the action of g ∈ Mor(G) on germ(f )r is defined by com-
position if trg(g) = r, that is, g · germ(f )r = germ(f ◦ ϕ)s, where
g = germ(ϕ)s, ϕ ∈ Diffloc(N) and ϕ(s) = r. Symmetrically, the
action of g ′ ∈ Mor(G′) on germ(f )r is defined if src(g ′) = f (r) by
z · g ′ = germ(ϕ′ ◦ f )r , where g ′ = germ(ϕ′)f (r). Then, we have:
Theorem. The actions of G and G′ on Z are principal, and Z is a
(G,G′)-equivalence in the sense of Muhly-Renault-Williams.
Proof. First of all, let us point out that Z is a subspace of the
morphisms of the groupoid G′′ built previously by adjunction of
G and G′, and is equipped with the subset diffeology. All these
groupoids are locally compact and Hausdorff as we seen previously.
Let us check that the action of G on Z is free. In our case,
z = germ(f )r and g = germ(ϕ)s, where f and ϕ are local dif-
feomorphisms. If g · z = z, then obviously g = germ(1)r .
Next, let us denote by ρ the action of G on Z, defined on

G?Z = {(g, z) ∈ Mor(G)×Z | trg(g) = src(z)} by ρ(g, z) = g ·z.

This action is smooth because the composition of local diffeomor-
phisms is smooth, and passes onto the quotient groupoid in a
smooth operation, see [IZL17, §3]. Moreover, this action is in-
vertible, its inverse being defined on

Z ? Z = {(z ′, z) ∈ Z × Z | trg(z ′) = trg(z)}

by
ρ
–1(z ′, z) = (g = z ′ · z–1, z).

In detail, ρ–1(germ(h)s, germ(f )r) = (germ(f –1 ◦ h)s, germ(f )r),
with f (r) = h(s). Now, the inverse is also smooth, when Z?Z ⊂ Z×Z
is equipped with the subset diffeology. In other words, ρ is an in-
duction, that is, a diffeomorphism from G ? Z to Z ? Z. However,

3For the sake of simplicity, we make an abuse of notation: in reality one
should write, more precisely, src(germ(f )r) = (F, r) and trg(germ(f )r) =
(F′, f (r)).
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since G ? Z and Z ? Z are defined by closed relations, and G and Z
are Hausdorff, G ?Z and Z ?Z are closed into their ambient spaces.
Thus, the intersection of a compact subset in Z × Z with Z ? Z is
compact, and its preimage by the induction ρ is compact. There-
fore, ρ is proper. We notice that the fact that the structure groups
are no longer finite but just countable does not play a role here.

It remains to check that the action of G on Z induces a bijection
of Z/G onto Obj(G′). Let us consider the map class : Z → Obj(G′)
defined by class(germ(f )r) = f (r). Then, let class(z) = class(z ′),
with z = germ(f )r and z ′ = germ(f ′)r ′, that is, f (r) = f ′(r ′).
However, since f and f ′ are local diffeomorphisms, ϕ = f ′–1 ◦ f is
a local diffeomorphism with ϕ(r ′) = r. Let g = germ(ϕ)r ′, then
g ∈ Mor(G) and z ′ = g · z. Hence, the map class projects onto an
injection from Z/G to Obj(G′). Now, let (F′, r ′) ∈ Obj(G′), and let
x = F′(r ′) ∈ X. Since F is a generating family, there exist (F, r) ∈

Obj(G) such that F(r) = x. Let ψ and ψ′ be the charts of X defined
by factorization: F = ψ◦class and F′ = ψ′◦class′, where class : Rn

→

Rn/Γ and class′ : Rn
→ Rn/Γ′. Let ξ = class(r) and ξ′ = class′(r ′).

Since ψ(ξ) = ψ′(ξ′) = x, Ψ =loc ψ
′–1 ◦ ψ is a local diffeomorphism

from Rn/Γ to Rn/Γ′ mapping ξ to ξ′. Hence, according to the lifting
of local diffeomorphisms, there exists a local diffeomorphism f from
dom(F) to dom(F′), such that class′ ◦f = Ψ ◦ class and f (r) = r ′.
Thus, z = germ(f )r belongs to Z and class(z) = r ′ (precisely the
element (F′, r ′) of the nebula of F′). Therefore, the injective map
class from Z/G to Obj(G′) is also surjective, and identifies the
two spaces. Obviously, what has been said for the side G can be
translated to the side G′; the construction is completely symmetric.
In conclusion, Z satisfies the conditions of a (G,G′)-equivalence, in
the sense of Muhly-Renault-Williams. �

10. Theorem [The C∗-algebra of a quasifold.] Let X be a quasifold,
let A be an atlas and let G be the structure groupoid associated
with A. Since the atlas A is locally finite, the convolution defined
above is well defined. Indeed, in this case:

Proposition. For every compactly supported complex function f
on G, for all ν = (F, r) ∈ N = Obj(G), the set of arrows g ∈ Gν
such that f (g) 6= 0 is finite. That is, # Supp(f � Gν) < ∞. The
convolution is then well defined on C(G).
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Then, for each atlas A of the quasifold X, we get the C∗-algebra
A = (C(G), ∗). The dependence of the C∗-algebra on the atlas is
given by the following theorem, which is a generalization of [IZL17,
§9].

Theorem.Different atlases give Morita-equivalent C∗-algebras. Dif-
feomorphic quasifolds have Morita-equivalent C∗-algebras.
In other words, we have defined a functor from the subcategory of
isomorphic {Quasifolds} in diffeology, to the category of Morita-
equivalent {C∗-Algebras}.
11. Example [The C∗-Algebra of the irrational torus.] The first
and most famous example is the so-called Denjoy-Poincaré torus,
or irrational torus, or noncommutative torus, or, more recently,
quasitorus. It is, according to its first definition, the quotient set
of the 2-torus T2 by the irrational flow of slope α ∈ R – Q. We
denote it by Tα = T2/Δα, where Δα is the image of the line y = αx
by the projection R2

→ T2 = R2/Z2. This space has been the first
example studied with the tools of diffeology, in [PDPI83], where
many non trivial properties have been highlighted.4 Diffeologically
speaking,

Tα ' R/(Z + αZ).
The composite

R R/(Z + αZ) Tα,
class f with F = f ◦ class,

summarizes the situation where A = {f : R/(Z + αZ) → Tα} is
the canonical atlas of Tα, containing the only chart f , and F =
{F = f ◦ class} is the associated canonical strict generating family.
According to lifting the identity, the groupoid Gα associated with
the atlas A is simply

Obj(Gα) = R and Mor(Gα) = {(x, tn+αm) | x ∈ R and n,m ∈ Z}.

However, we can also identify Tα with (R/Z)/[(Z+ αZ)/Z], that is

Tα ' S1/Z, with m(z) = e2iπαmz,

for all m ∈ Z and z ∈ S1. Moreover, the groupoid S of this action
of Z on S1 ⊂ C is simply

Obj(Sα) = S1 and Mor(Sα) = {(z, e2iπαm) | z ∈ S1 and m ∈ Z}.
4See for example Exercise 4 and §8.39 in [PIZ13].
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The groupoids Gα and Sα are equivalent, thanks to the functor Φ
from the first to the second:

ΦObj(x) = e2iπx and ΦMor(x, tn+αm) = (e2iπx, e2iπαm).

Moreover, they are also MRW-equivalent, by considering the set
of germs of local diffeomorphisms x 7→ e2iπx, everywhere from R
to S1. Therefore, their associated C∗-algebras are Morita equiva-
lent. The algebra associated with Sα has been computed numerous
times and it is called irrational rotation algebra [MR81]. It is the
universal C∗-algebra generated by two unitary elements U and V,
satisfying the relation

VU = e2iπαUV.

Remark 1. Thanks to the theorem on equivalence of diffeomorphic
qusifolds, and because two irrational tori Tα and Tβ are diffeo-
morphic if and only if α and β are conjugate modulo GL(2,Z)
[PDPI83], we get the corollary that, if α and β are conjugate mod-
ulo GL(2,Z), then Aα and Aβ are Morita equivalent. Which is the
direct sense of Rieffel’s theorem [MR81, Thm 4].

Remark 2. The converse of Rieffel’s theorem is a different matter
altogether. We should recover a diffeological groupoid Gα from the
algebra Aα. Then, the space of transitive components would be the
required quasifold, as stated by the proposition on equivalence of
structure groupoids. In the case of the irrational torus, it is not
very difficult. The spectrum of the unitary operator V is the circle
S1 and the adjoint action by the operator U gives UVU–1 = e2iπαV,
which translates on the spectrum by the irrational rotation of angle
α. In that way, we recover the groupoid of the irrational rotations
on the circle, which gives Tα as quasifold.

Remark 3. Of course, the situation of the irrational torus is simple
and we do not exactly know how it can be reproduced for an
arbitrary quasifold. However, this certainly is the way to follow
to recover the quasifold from its algebra: find the groupoid made
with the Morita invariant of the algebra, which will give the space
of transitivity components as the requested quasifold.

12. Example [The example of R/Q.] The diffeological space R/Q
is a legitimate quasifold. This is a simple example with a groupoid
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G given by

Obj(G) = R and Mor(G) = {(x, tr) | x ∈ R and r ∈ Q}.

The algebra that is associated with G is the set A of complex com-
pact supported functions on Mor(G). Let us identify C0(Mor(G),C)
with Maps(Q,C0(R,C)) by

f = (fr)r∈Q with fr(x) = f (x, tr), and let Supp(f ) = {r | fr 6= 0}.

Then,

A =
{
f ∈ Maps(Q,C0(R,C)) | # Supp(f ) < ∞}.

The convolution product and the algebra conjugation are, thus,
given by:

(f ∗ g)r(x) =
∑
s

fr–s(x + s)gs(x), and f ∗r (x) = f–r(x + r)∗.

Now, the quotient R/Q is also diffeomorphic to the Q-circle

SQ = S1/UQ, where UQ = {e2iπr}r∈Q

is the subgroup of rational roots of unity. As a diffeological sub-
group of S1, UQ is discrete. The groupoid S of the action of UQ
on S1 is given by:

Obj(S) = S1 and Mor(S) =
{
(z, τ)

∣∣∣ z ∈ S1 and τ ∈ UQ
}
.

The exponential x 7→ z = e2iπx realizes a MRW-equivalence be-
tween the two groupoids G and S. Their associated algebras are
Morita-equivalent. The algebra S associated with S is made of
families of continuous complex functions indexed by rational roots
of unity, in the same way as before:

S =
{
(fτ)τ∈UQ

∣∣ fτ ∈ C0(S1,C) and # Supp(f ) < ∞}.
The convolution product and the algebra conjugation are, then,
given by:

(f ∗ g)τ(z) =
∑
σ

fσ̄τ(σz)gσ(z) and f ∗τ (z) = fτ̄(τz)∗,

where τ̄ = 1/τ = τ∗, the complex conjugate.

Now, consider f and let Up be the subgroup in UQ generated by
Supp(f ); this is the group of some root of unity ε of some order p.
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Let Mp(C) be the space of p×p matrices with complex coefficients.
Define f 7→ M, from S to Mp(C) ⊗ C0(S1,C), by

M(z)στ = fσ̄τ(σz), for all z ∈ S1 and σ, τ ∈ Up.

That gives a representation of S in the tensor product of the
space of endomorphisms of the infinite-dimensional C-vector space
Maps(UQ,C) by C0(S1,C), with finite support.
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