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Preamble

In his famous article Modèle de particule à spin dans le champ

électromagnétique et gravitationnel published in 1974, J.-M.

Souriau explains the principle of general relativity as a general

covariance principle, involving the (infinite dimensional) space

of all pseudo-Riemannian metrics on space-time modulo the

action of the (infinite dimensional) group of compactly

supported diffeomorphisms. Specifically: how to find the

equations of passive matter in all its forms (particle, continuous

medium, fluid, string, with spin or without etc.) in general

relativity using a unique covariance principle. In this first talk,

I will follow his paper in its heuristic approach. In a second

talk, later in the year, I will show how this heuristic

construction can be given a rigorous diffeological foundation.
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General Relativity

The basic framework of General Relativity is defined by:

1. The space-time: a 4-dimensional manifold M. A point x is

identified by its coordinates (xµ)4µ=1 in a chart.

2. A Poincaré-Lorentz pseudo-metric g, with components

(gµν)
4
µ,ν=1, of signature (+ − − −).

It is also traditional to write the coordinates (t, x, y, z) and the

pseudo-metric ds2 = c2dt2 − dx2 − dy2 − dz2.
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Fields Equations

The theory of general relativity is most often considered as a

theory of gravitation. The fields equations (Einstein’s

equations), describe the relationship between the gravitational

field g and the distribution of matter characterized by a

4-Stress Tensor T ,

Rµν −
1

2
Rgµν +Λgµν = Tµν.

Where Rµν is the Ricci curvature tensor, R is the scalar

curvature and Λ is a (cosmological) constant.

The tensor T take various form depending on the nature of the

matter: dust, fluid of continuous medium.
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Passive Matter

In contrast to active matter that satisfies Einstein’s equation,

we have the passive matter evolving in a gravitational field,

submitted to it without interfering with it.

It can be, for examples:

• A particle.

• A string.

• A veil.

• A continuous medium.

Their motions in the space-time is described by specific

equations. We shall see a few examples.
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Continuous Medium

A 3-dimensional continuous medium is described by a

continuous symmetric covariant 2-tensor Tµν.

The evolution of the 3-dimensional continuous medium,

submitted to the gravitational field gµν, is discribed by the

Euler’s continuity equations, for all ν = 1 . . . 4 and covariant

derivatives:

d̂iv T = 0, that is,

4∑
µ=1

∂̂Tµν

∂xµ
= 0 or ∂̂µT

µν = 0,

with Einstein’s conventions.1

1For some reason, I use the symbol ∂̂ for the covariant derivative, in

general denoted by ∇.
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Particles

A particle submitted to the gravitational fields g satisfies the

so-called Geodesic Principle: its motion is a geodesic trajectory

in space-time. It satisfies the geodesic equations:

dx

dt
= v and

d̂v

dt
= 0.

That is,

vµ =
dxµ

dt
and

d̂vµ

dt
=

dvµ

dt
+ Γµσρv

σdx
ρ

dt
= 0,

with Einstein summation notations.
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Strings I

The evolution of a string (rubber band) in space-time is

described by a surface V ⊂ M, normal-hyperbolic for the

induced pseudo-Riemmanian metric. The material structure of

the string is characterized by a symmetric covariant 2-tensor Θ,

defined on the surface with (normed) orthogonal proper vectors:

• A timelike vector I with proper value ρ, the specific mass.

• A space-like vector J with proper value θ, the tension.

We denote the associated derivation by δI and δJ
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Strings II

The evolution of the string satisfies the system:
δIρ− [ρ− θ]⟨I, C⟩ = 0

δJθ− [ρ− θ]⟨J, Γ⟩ = 0

ρΓ − θC tangent to V

θ = 0 at ∂V.

With

Γ = δ̂II and C = δ̂JJ

The integral curves of the vector I are the worldlines of the

molecules of the string, Γ is the geodesic acceleration of the

molecules. The integral curves of the vector J are successives

spacelike sections (positions) of the string.
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The Dispute

Einstein presented a principle of general relativity as the

(vague) statement that “The shape of the equation of physics

are invariant by change of coordinates”. As we have seen in the

previous examples, the “shape of an equation” is not easy to

define, to say the least, in a concise statement.

Rather than trying to resolve this difficulty, many physicists,

like Vladimir Fock, for example, prefer to abandon the principle

of general relativity and reduce the theory to a relativistic

theory of gravitation, of which we have seen an example of the

essential equations: field and passive matter.

On the contrary, Jean-Marie Souriau has produced a precise

geometric statement that embodies the Einstein intention. He

called it, the Principle of General Covariance.
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The Principle of General Covariance I

M

Φ

g

γ = class(g)

Diff(M)*(g)

δLg

δg

δγ

class

• M is the space of all pseudo-Riemannian metrics on M.

• Φ is the Physis: the quotient of M by Diffc(M), acting by

pushforward φ : g 7→ φ∗(g).

• g is a metric, γ is its class modulo Diffc(M).

• δg is a variation of g, δγ is its projection on Φ.

• δLg is a vertical variation of g, the kernel of D(class).
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The Principle of General Covariance II

J.-M. Souriau proposed the following replacement of the too

vague principle of general relativity:

Principle of General Covariance (J.M. Souriau) Any

passive matter, in presence of a gravitational field g ∈
M, is represented by covector at γ = class(g) ∈ Φ.

That is, a passive matter will be represented by a tensor

distribution T, in the algebraic dual of the space of compact

supported variations δg. Coming from Φ, it must satisfy the

Eulerian condition, and conversely.

T(δLg) = 0 for all vertical variation δLg.

Let’s recall that “vertical variations” are Lie derivatives.
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Application to Continuous Medium

A continuous medium is defined wih a continuous symmetric

tensor Tµν by:

T(δg) =
1

2

∫
M
Tµνδgµνvol

For all compact supported vector fied δx = ξ:

T(δLg) = 0 ⇔ 1

2

∫
M
Tµν(∂̂µξν + ∂̂νξµ)vol =

∫
M
Tµν∂̂µξνvol = 0

i.e.

∫
M
∂̂µ(T

µνξν)vol−

∫
M
(∂̂µT

µν)ξνvol = 0.

But ∂̂µ(T
µνξν) = d̂iv(θ), with θ a compact supported vector

field. Thus
∫
M ∂̂µ(T

µνξν)vol = 0 and therefore for all compact

supported vector field ξ∫
M
(∂̂µT

µν)ξνvol = 0 ⇒ ∂̂µT
µν = 0.
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Application to Geodesics I

Consider the worldline c of a particle and a symmetric tensor

Tµν with support the line c emerging from any compact.

T(δg) =
1

2

∫
c

Tµνδgµν ds

We multiply ξ by a function α equal to 0 on c.

0 =

∫
c

Tµν∂̂µ(αξν)ds =

∫
c

Tµνξν∂µαds

+

∫
c

Tµν α︸︷︷︸
= 0

∂̂µξν ds =

∫
c

Tν
µN

µξν ds with Nµ = gµν∂να.
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Application to Geodesics II

Then,

Tµ
νN

ν = 0 for all N ⊥ dx

ds
.

Thus, there is a vector P at each point of the curve such that

Tµν = Pµdx
ν

ds
.

And by symmetry of the tensor T

P ∝ dx

ds
.

Thus,

0 =

∫
c

Pνdx
µ

ds
∂̂µξµ ds =

∫
c

Pν ∂̂ξµ

∂xν
dxµ

ds
ds =

∫
c

Pν d̂ξν

ds
ds

=

∫
c

d

ds
(Pνξν)ds︸ ︷︷ ︸
= 0

−

∫
c

d̂Pν

ds
ξν ds
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Application to Geodesics III

We get finally
d̂P

ds
= 0,

and therefore, with the arc length of the curve for s,

d(PµP
µ)

ds
= 0 ⇒ P = m

dx

ds
with


m = cst

d̂

ds

(
dx

ds

)
= 0.

We recognize the equation of a geodesic of “mass” m.

Conclusion Geodesics are also covectors on the Physis, as well

as continuous medium.
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Srings, Veils etc

The evolution of strings in a gravitational field described by the

equations above can be obtained also by considering the

Eulerian distributions of the form

T(δg) =

∫
V
Tµνδgµν surf,

where T is a symmetric covariant 2-tensor with support the

world-surface V, leaving any compact. And then, make the

strings objects of the same type as continuous medium or

geodesics, that is, covectors on the Physis.

The veils can be described the same way even if that has sill not

be written down specifically.
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Charged particles I

The principle of general covariance applies also to the case of

charged particles. The geometry is then described by the pair

(g,A) ∈ M ′, where A is the vector potential of the

electromagnetic field.

The group of invariance must be changed to the semi-direct

product of compact supported diffeomorphisms of space-time

Diffc(M) by the compact supported gauge transformations

C∞
c (M,R), with the action law:

φ : (g,A) 7→ (φ∗(g), φ∗(A)) and f : (g,A) 7→ (g,A+ df).
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Charged particles II

A charged continuous medium is described by a continuous

tensor field on M ′, where J is the electrical current.

T(δg, δA) =

∫
M

(
1

2
Tµνδgµν + JρδAρ

)
vol.

The Eulerian distribution are defined by the infinitesimal

covariant condition

T(δLg, δLA+ df) = 0.

That is,∫
M
[Tµν∂̂µξν + Jρ(ξµ∂̂µAρ +Aµ∂̂ρξ

µ︸ ︷︷ ︸
(δLA)ρ

+∂ρf)]vol = 0.

The solution of this equation is then:

a) ∂̂µJ
µ = 0 b) ∂̂µT

µ
ν + FµνJ

µ = 0 with F = dA.
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Condensed States I

A charged particle in presence of gravitation and an

electro-magnetic field is described by a tensor distribution

supported by a line in M.

T(δg, δA) =

∫
c

(
1

2
Tµνδgµν + JρδAρ

)
ds.

The Eulerian condition above reduces to,

T(δg, δA) =

∫
c

{
1

2
Pµδgµν + qδAν

}
dxν

ds
ds,

where q ∈ R is the electric charge.
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Condensed States II

The vector P and the charge q satisfy then the system:
Pµ dxν

ds − Pν dxµ

ds = 0 (P is tangent to c)

dq
ds = 0 (q is constant)

d̂
dsP

µ + qFµν
dxν

ds = 0

These are the equations of motion of an electrical charged

particle in presence of gravitation and electromagnetic field, in

general relativity. Once again, it is an object of the “cotangent

space” of the Physis, quotient of the space of geometries

modulo diffeomorphisms and gauge transformations.
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Spin and Dipole Moments I

Until now we have just considered measure tensors, depending

only on the values of the fields. The spin of the particles

appears when we consider the dipole moments, that is, when we

consider not only the values of the fields but also their first

derivatives.

T(δg, δA) =

∫
c

{
1

2
Tµνδgµν +

1

2
Φρµν∂̂ρδgµν

+JµδAµ +Ωµν∂̂µAν

}
ds

The Eulerian condition introduces first: the spin tensor S, the

magnetic field B and the magnetic moment M

Φµνρ =
dxν

ds
Aνρ +

1

2

[
Sµν

dxρ

ds
+ Sµρ

dxν

ds

]
& Ωµν =

dxµ

ds
Bν +Mµν
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Spin and Dipole Moments II

Reintroducing these decomposition into the Eulerian condition,

we get the equations of motions of the spin electric particle in

presence of ravitation and electromagnetic field.
d̂Pσ
ds = qFσρ

dxρ

ds + 1
2M

µν∂̂σFµν −
1
2Rµν,ρσS

µν dxρ

ds

d̂Sµν

ds = Pµ dxν

ds − Pν dxµ

ds −MµρFν
ρ +MνρFµ

ρ .

,

where Rµν,ρσ is the Riemann curvature tensor of the metric g.

J.-M. Souriau writes: The model we have just constructed by

purely mathematical means is a candidate for describing all

“point particle systems”: an electron, a molecule or a star —

insofar as we can neglect the quadrupole moments.

I understand that Thibault Damour has used this model to

study recently discovered gravitational waves.
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Behind the scene I

Let C be a space, we shall call the space of fields. Let M be a

space, we shall call the space of geometries. Here C and M are

manifolds. Let G be a Lie group acting on the fields and the

geometries. Let c ∈ C, g ∈ M and ϕ ∈ G. Let ϕ∗(c) and ϕ∗(g)

be the action of ϕ on c and g. Assume that the action of G on

C is transitive. Let A : C×M → R be a smooth map we call the

action function. Assume that the action is invariant under the

diagonal action of G on C×M. That is

A(ϕ∗(c), ϕ∗(g)) = A(c, g) for all ϕ ∈ G.

Consider a 1-parameter subgroup s 7→ ϕs in G and put

δLc =
∂ϕs∗(c)

∂s

∣∣∣∣
s=0

and δLg =
∂ϕ∗

s(g)

∂s

∣∣∣∣
s=0

.
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Behind the scene II

Now, taking the derivative of the above invariance identity of

the action, we get that, for all infinitesimal action δL of the

group G:

J(δLc) − T(δLg) = 0 with J =
∂A

∂c
and T =

∂A

∂g
.

Thus,

T(δLg) = 0︸ ︷︷ ︸
Eulerian condition

⇔ J(δLc) = 0︸ ︷︷ ︸
Critical point

,

1. If c is a critical point for Ag : c 7→ A(c, g), then T(δLg) = 0

for all δLg. That is, T is Eulerian.

2. If T is Eulerian, then J(δLc) = 0 for all δLc. But since G is

transitive on C, we get J(δc) = 0 for any variation δc.

Thus, c is a critical point.
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Behind the scene II

In conclusion, The Principle of General Covariance is a (semi)

generalisation of Maupertuis’ Principle of Least Action. The

philosophical Principle of Finality embodied by the principle of

least action is advantageously replaced by a principle of

covariance, also known as the Principle of General Relativity,

stating that things do not depend on their representations,

which is satisfactory.

Note A semi-generalisation because if we do not need anymore

to find, or invent, a Lagrangian function for the system we

study: Not all Lagrangian system have its equivalents Eulerian

distribution. Indeed, an irrational geodesic of the 2-torus T2

has no equivalent because the stress-tensor T do not converge:

the geodesic “fills” any compact.
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