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Abstract. We embed the category of manifolds with corners into the category
{Diffeology} by the process of modeling, and we prove a theorem of extension for
differential forms on corners and on manifolds with boundary.

Introduction

Half-spaces Hn = [0,∞[×Rn−1, corners Kn = [0,∞[n , and all intermediate sec-
tors Sn

k = [0,∞[k×Rn−k , own a natural subset diffeology inherited from the standard
smooth diffeology of Rn . They are natural models for the unified procedure of mod-
eling spaces [PIZ13, Chap. 4]. Half-spaces are the models for the category of mani-
folds with boundary [PIZ13, §4.7 & 4.16]. Corners are the models for the category of
manifold with corners. Precisely,

Definition. — A n-manifold with corners is a diffeological space diffeomorphic to the
corner Kn at each point.

A natural question is then to compare that definition with the traditional approach
introduced originally in [Cer61, Dou62], and then used or developed by many au-
thors, for example [ADLH73, GP74, Lee06, Joy10, etc.]. In this approach, smooth
maps from corners into the real line are — by definition — the restrictions of smooth
maps on some open neighborhood of the corner [Cer61] [Dou62] etc. In Diffeology,
this heuristic becomes a theorem, where the corners are equipped with the subset
diffeology. More precisely:

Theorem. — Every map from Kn to R which is smooth when composed with a smooth
parametrization1 P: U → Rn taking values in Kn is the restriction of a smooth map
defined on some open neighborhood of Kn .
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1We recall that a parametrization is just a map defined on an open subset of an Euclidean space.
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Thanks to this theorem [PIZ13, §4.16], we show in (§4) that the two aproaches define
the same objects, and then the same category. Hence, as a subcategory of {Diffeol-
ogy}, manifolds with corners inherit automatically all the diffeological constructions:
smooth maps, fiber bundles, homotopy, differential calculus, homology, cohomol-
ogy, etc.

It is always progress when a convention, based onmathematicians’ intuition, becomes
a theorem in a well defined axiomatics. Here the axiomatics is the theory of Diffeol-
ogy.

Now, noticing thatC∞(Kn ,R) is the space of differential 0-formsΩ0(Kn), it is natural
to ask about the behavior of differential k -forms on Kn , that is, Ωk (Kn) as it is defined
in [PIZ13, §6.28]. Next, it has already been proved that differential forms on a half-
space can be extended on a neighborhood of the half-space [GIZ16]. In (§7) we show
that this property is also satisfied by manifolds with boundary. Precisely,

Theorem. — Let M be a manifold with boundary imbedded in some manifold N as a
pièce à bord [Dou62]. If ∂M is compact, then every differential k -form on M extends
on a neighborhood of M in N.
For the purpose of this question, we had to establish in (§5) a diffeological version
of Taylor’s series for real functions depending smoothly on parameters running in
a diffeological space, and in (§6), a version of Whitney’s theorem on extension of
smooth real even functions.

Considering corners, we prove in (§9) the extension theorem:

Theorem. Every differential form on the corner Kn is the restriction of a smooth form
on an open neighborhood of Kn in Rn . Precisely, the pullback j ∗ : Ωk (Rn)→Ωk (Kn) is
surjective, where j denotes the inclusion from Kn into Rn .
In (§10) we give a variation of this theorem for other corners, made with powers of
various half-lines [PIZ07]. In (§11) we show an application of these considerations
to the construction of SO(2)n -invariant parasymplectic forms on R2n .

Smooth Structure on Corners

Let us recall the notions of local smoothmap and local diffeomorphism in diffeology. Let
X andX′ be two diffeological spaces and let f be amap defined from a subsetA ofX to
X′, we denote f : X⊃A→X′. We say that f is a local smooth if A is a D-open subset
of X, and f is smooth for the induced diffeology on A, see2 [PIZ13, §2.1]. Then, we
say that f is a local diffeomorphism if it is an injective and if f −1 : X′ ⊃ f (A)→X is
also local smooth. That is, f (A) is a D-open subset of X′ and f −1 � f (A) is smooth
for the induced diffeology. The set of local smooth maps and diffeomorphisms from
X to X′ are denoted by C∞loc(X,X′) and Diffloc(X,X′).

2Actually f is local smooth if and only if, for all plot P in X, the composite f ◦P: P−1(A)→X′ is
a plot. That implies in particular that A is D-open, by definition of the D-topology.
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1. Corners as Diffeologies. We denote by Kn the corner

Kn = {(xi )
n
i=1 ∈Rn | xi ≥ 0, i = 1, . . . , n},

and we equip it with the subset diffeology. A plot in Kn is just a smooth parametriza-
tion to Rn but taking its values in Kn .

(A) The corner Kn is the diffeological n-power of the half-line K= [0,∞[⊂R,
equipped with the subset diffeology.

(B) The corner Kn is embedded in Rn , and closed. That is, the D-topology of the
induction Kn ⊂Rn coincides with the induced topology3 of Rn , see [PIZ13,
§2.13].

(C) Let X0 = {0} ⊂ X1 ⊂ · · · ⊂ Xn = Kn be the natural filtration of Kn , where
the levels X j are defined by

X j = {(xi )
n
i=1 ∈Kn | there exist i1 < · · ·< in− j such that xi`

= 0}.

Then, the stratum
S j =X j −X j−1

is the subset of points in Rn that have j , and only j , coordinates strictly posi-
tive and the rest zero. The strata S j are equipped with the subset diffeology4,

S j =
§

(xi )
n
i=1 ∈Rn

�

�

�

�

There exist i1 < · · ·< i j such that xi`
> 0,

and xm = 0 for all m /∈ {i1, . . . , i j }

ª

.

Then, S j is D-open in X j , j ≥ 1. As a subset of X j , S j is the (diffeological)
sum of

�n
j

�

connected components indexed by a string of j ones and n − j
zeros.

Proof. The point (A) is immediate, by definition. Consider (B), for any subset U ⊂
Kn open for the induced topology, there exists (by definition) an open subsetO ∈Rn

such that U = O ∩ Kn . Then, for all plots P in Kn , P−1(U) = P−1(O ) is open,
because plots are continuous. On the other hand, let U ⊂ Kn be D-open. Then,
sq−1(U) ⊂ Rn is open, where sq : Rn → Kn is the map sq (xi )

n
i=1 = (x

2
i )

n
i=1. And

sq−1(U) �Kn is open for the induced topology of Rn . Now, the map sq restricted to
Kn is a homeomorphism for the induced topology. Hence, since U= sq (sq−1(U) �
Kn), U is open for the induced topology of Rn . Therefore the D-topology of the
induction coincides with the induced topology, as we claimed.

For the point (C): let x ∈ X j , then the number ν of coordinates of x that are 0 is
at least n − j , i.e. ν ≥ n − j . Next, if x ∈ X j and x /∈ X j−1, then ν ≥ n − j and
ν < n− j + 1, thus, ν = n− j . Therefore, X j −X j−1 is the subset of points in Rn

that have exactly n− j coordinates equal to 0 and the other j strictly positive:

3The standard topology of Rn is the D-topology of its standard smooth structure.
4Recall that, by transitivity of subset diffeology, to be a subspace of S` or Kn or of Rn is identical.
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Consider now a point x = (x1, . . . , xn) ∈ S j −S j−1. Since the j non-zero coordinates
of x are strictly positive, there exists ε > 0 such that xi − ε > 0, for all non-zero
coordinate of x . The open n-parallelepipedCx =]x1−ε, x1+ε[×· · ·×]xn−ε, xn+
ε[⊂Rn contains x , and Cx ∩ S j ⊂ S j − S j−1. Thus,

S j − S j−1 =
⋃

x∈S j−S j−1

Cx ∩ S j .

Now, let P : U → S j be a plot for the subset diffeology. Then, P−1(S j − S j−1) =
∪x∈S j−S j−1

P−1(Cx ∩S j ), but P−1(Cx ∩S j ) = P−1(Cx ) since val(P)⊂ S j . Next, since

P is smooth as amap intoRn andCx is open, P
−1(Cx ) is open and thenP−1(S j−S j−1)

is open. Therefore, S j − S j−1 is D-open in S j . �

2. Smooth Maps on Corners. It has been proved that a map f : Kn → Rk is
smooth in the sense of diffeology if and only if it is the restriction of a smooth map
F defined on some open neighborhood O of Kn into Rk [PIZ13, §4.16]. That is,
f ∈C∞(Kn ,Rk ) if and only if, f = F �Kn and F ∈C∞(O ,Rk ).

Note. — It is worth noticing that this is not just a rephrasing of the usual approach
which defines the real smooth maps from corners in Rk , as restrictions of smooth
maps defined on open neighborhoods, see for example [Cer61], [Dou62] and after
[GP74] [Lee06] [Joy10] etc. In diffeology this property is a theorem which can be
stated in a developed version:

Theorem. Let f : Kn → Rk be some map. If for all smooth parametrizations P: U→
Rn such that P(U) ⊂ Kn , f ◦ P ∈ C∞(U,Rk ), then there exists an open neighborhood
O of Kn and F ∈ C∞(O ,Rk ) such that f = F �Kn .

3. Smooth Diffeomorphisms on Corners. We consider the corner Kn ⊂ Rn ,
equipped with the subset diffeology. For a smooth parametrization f of an Euclidean
domain, we denote by rk( f )x the rank of f at the point x , that is, the dimension of
the image of the tangent linear map D( f )(x). Let us recall that an étale map is a
smooth map which is a local diffeomorphism at each point. Then:

Lemma. Let P: U→Kn be a plot. If P(r ) ∈ S j , then rk(P)r ≤ j .

Theorem. Let f ∈Diff(Kn). Then, f respects the natural stratification, i.e. if x ∈ S j ,
then f (x) ∈ S j . Moreover, f and f −1 are the restrictions of two étale maps defined
on some open neighborhoods of Kn .

This theorem holds also if f is a local diffeomorphism.

Proof. Let us prove first the Lemma. Let P: U → Kn be a plot and P(r ′) ∈ S j .
Then, P(r ′) = (P1(r

′),P2(r
′), . . . ,Pn(r

′)) where there exist exactly i1 < · · · < in− j
indices such that Pik

(r ′) = 0. Since Pik
(r ) ≥ 0 for all r ∈ U and Pik

(r ′) = 0, then
D(Pik

)(r ′) = 0. That is, rk(P)r ≤ j .
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Now, let us prove the first theorem. Let x ∈ S j . Let us assume that x ′ = f (x) ∈ Sk
and k 6= j . We can choose k > j . There exists a smooth map F defined on an open
neighborhood O ⊃ Kn , such that f and F coincide on Kn , f = F � Kn . And also,
there exists a smooth map G defined on an open neighborhood O ′ ⊃ Kn , such that
f −1 and G coincide on Kn , f −1 = G � Kn , [PIZ13, §4.16]. The restriction of G
on Sk is a plot of Kn , and G � Sk : x ′ 7→ x ∈ S j . By the lemma, rk(G � Sk )x ′ ≤ j .
But G � Sk =G ◦ jk , where jk : Sk ,→ Kn is identified with a plot. And we know
that (F ◦G � Sk )(t ) = F ◦G ◦ jk (t ) = F ◦G( jk (t )). But jk takes values in ∂ Kn

(the border of Kn ). Now, since f is a homeomorphism of Kn for the D-topology,
it maps the border into the border, and G and f −1 coincide on the border. So we
have F ◦G( jk (t )) = F ◦ f −1( jk (t )). As well, F and f coincide on the border, and
F ◦G( jk (t )) = f ◦ f −1( jk (t )) = jk (t ). Thus, rk(F ◦G � Sk )x ′ = rk( jk )x ′ = k ≤
rk(G � Sk )x ′ ≤ j . But, we assumed that k > j which is a contradiction, and k = j .

Now, consider the smooth parametrization G ◦ F:U → Rn , with U = F−1(O ′).
Then, U ⊃ Kn and G ◦ F � Kn = 1Kn . Hence, for all x ∈ �Kn , D(G ◦ F)(x) =
D( f −1 ◦ f )(x) = D(1�Kn ) = 1Rn , and by continuity, for all x ∈ Kn , D(G ◦ F)(x) =
1Rn . Therefore, for all x ∈Kn , rk(F)x is maximum and equal to n. Hence, F is étale
at each point of Kn . And obviously, the same for G. �

4. Manifolds with Corners, the diffeological way. Manifolds with corners
have been introduced long ago in the usual framework of differential geometry, for
example as variétés à bord généralisées by Cerf [Cer61, Chap. 1 §1.2], and then as
variétés à bords anguleux by Douady [Dou62, §4]. Over time the various descriptions
of manifolds with boundary or corners evolved to a commonly accepted definition,
based on the heuristic that a real smooth map defined on a corner should be defined
as the restriction of a smooth map defined on an open neighborhood of the corner.
See for example Lee in [Lee06, pp. 251-252] or more recently Joyce in [Joy10, Chap.
2], from which we extract the following definition.

Usual Definition. — Let M be a paracompact Hausdorff topological space. A n-chart
with corners forM is a pair (U,φ), whereU is an open subset ofKn , and φ is a homeomor-
phism from U in M. Two charts with corners (U,φ) and (V,ψ) are said to be smoothly
compatible if the composite map ψ−1 ◦φ : φ−1(ψ(V))→ ψ−1(φ(U)) is a diffeomorphism
in the sense that it admits a smooth extension to an open set in Rn . An n-atlas with
corners for M is a pairwise compatible family of n-charts with corners covering M. A
maximal atlas is an atlas which is not a proper subset of any other atlas. An n-manifold
with corners is a paracompact Hausdorff topological space M equipped with a maximal
n-atlas with corners.

Now, following the general procedure of modeling diffeologies [PIZ13, Chap. 4], one
can define what we understand asmanifolds with corners in the category {Diffeology}
[PIZ13, §4.16, Note]. We get:
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Diffeological Definition. — A n-manifold with corners is a diffeological space X
which is locally diffeomorphic to the corner Kn at each point.

In detail, that means that, for every point x ∈X there exists a local diffeomorphism
F: Kn ⊃ U → X such that x ∈ F(U). Such local diffeomorphisms will be called
charts of X. Any covering family of charts will be called an atlas of X. The maximal
atlas of X is Diffloc(K

n ,X) itself.
The manifolds with corners form a subcategory of {Diffeology} we denote {Mani-
folds with corners}, or simply {K-Manifolds}. The smooth maps between manifolds
with corners are just the smooth maps between diffeological spaces. There exists an
obvious hierarchy of manifolds categories:

{Manifolds}⊂ {H-Manifolds}⊂ {K-Manifolds}⊂ {Diffeology},

where {H-Manifolds} is the category of manifolds with boundary [PIZ13, §4.16] and
{Manifolds} the ordinary category of manifolds. Obviously, between {H-Manifolds}
and {K-Manifolds} there exists also a hierarchy of subcategories of manifolds with
corners, according to the maximum depth of their strata.

The first remark we can do, before entering in the detail of comparing the two defi-
nitions, is the difference of length of the two definitions: in one and a half line only
diffeology defines a manifold with corners, instead of the many lines of the usual def-
inition. The reason is that manifolds with corners are a priori diffeological spaces.
That is, their smooth structure is already specified. To be a manifold with corners is
just then a characteristic of that diffeology, to be generated by corners. In the usual
approach, starting with a topological space needs to define at the same time its smooth
structure and its special property of being a manifold with corners, which needs more
words. The second remark we can do at this level is that corners in diffeology have
already their own smooth structure, as diffeological subspaces of standard Euclidean
spaces. And this is this diffeology which is in play in the definition. There is no need
to add any extra consideration, everything needed is embedded in the theory from
step one.

Let us compare now the two approaches.

Proposition.— Let (M,A ) be a n-manifold with corners according to the usual frame-
work,A denoting the maximal atlas of M. The finest diffeology D on M such that the
chartsF ∈A are smooth is a diffeology ofmanifoldwith corners forwhichDiffloc(K

n ,M) =
A , the D-topology of (M,D) coinciding with the given topology of (M,A ). We shall
denote Φ : (M,A ) 7→ (M,D) this association. Conversely, let (M,D) be a diffeologi-
cal n-manifold with corners. Equip M with its D-topology, thenA = Diffloc(K

n ,M)
is a maximal atlas equipping M with a usual structure of manifold with corners. Let
Ψ : (M,D) 7→ (M,A ) be this association. Then Φ and Ψ are inverse of each other.

Note 1.— As ordinary manifolds, the category {K-Manifolds} is closed for products
and sums but is not closed for the other usual set theoretic constructions. On another
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note, as members of the category {Diffeology}, manifolds with corners inherits nat-
urally smooth maps between them. There is no need of a specific definition. They
inherit of course of all the diffeological constructions: fiber bundles, homotopy, dif-
ferential calculus, homology, cohomology, etc.

Note 2. — The diffeology framework gives a new perspective on the definition of
strata of a n-manifold with corners M, according to the Klein structure and singular-
ities of a diffeological space [PIZ13, §1.42]. Indeed, thanks to (§3) one can define the
different strata of M as the connected components5 of the orbits of the pseudo group
of local diffeomorphisms Diffloc(M). That is,

Strat(M) = {Oi ∈ π0(O ) | O ∈M/Diffloc(M)}.

Moreover, Strat(M) does not capture only the decomposition of M is strata, but
equipped with the quotient diffeology of M, it captures also its (transversal) smooth
structure. Note also that the regular partMreg ⊂M— the principal orbit ofDiffloc(M)—
is the union of strata of dimension n, it is a regular n-submanifold and an open dense
subset of M.

Proof. Let us begin by a manifold with corners, according to the usual definition. The
finest diffeology D making the charts F ∈ A smooth is the set of parametrizations
P: U→M that satify the following: there is a covering of U by a family of open sets
Ui , and for each index i a chart Fi ∈A and a smooth maps Qi : Ui →Kn such that
P �Ui = Fi ◦Qi . We write P= supFi ◦Qi .

Now, the charts F ∈ A are smooth, by construction, and injective. Their domains
are open for the induced topology of Kn , which is also the D-topology of Kn , accord-
ing to above statement (B).

Let us show now that the topology ofM and its D-topology coincide. Let firstO ⊂M
be an open subset of M. Let P be a plot of M, then P= supi Fi ◦Qi for some family
of indices, with the Fi in A and the Qi smooth parametrizations in Kn . Then,
P−1(O ) = (supFi ◦Qi )

−1(O ) = ∪iQ
−1
i (F

−1
i (O )). And since the Fi and the Qi are

continuous, P−1(O ) is open. Thus, O is open for the D-topology. Conversely, let O
be open for theD-topology. For all x ∈ O , there existsFx ∈A such that x ∈ val(Fx ).
SinceFx is a plot forD, F−1

x (O ) is open inKn , and sinceFx is a local homeomorphism
from Kn to M, Fx � F−1

x (O ) is still a local homeomophism. Then, val(Fx � F−1
x (O ))

is open in M. But val(Fx � F−1
x (O )) = O ∩ val(Fx ), thus O = ∪xO ∩ val(Fx ) is a

union of open subsets, then open in M. Therefore the topologies coincide.

5We choose this precise definition of strata by naturality and not by consideration of dimension.
That is also coherent with the elementary exemples. Pick a square, its pseudo group of local diffeomor-
phism has three orbits, decomposed as follow: the principal orbit (the regular part) of dimension 2, the
1-dimensional orbit made of four edges (the 1-dimensional strata), and the 0- dimension orbit made of
the four corners (the 0-dimensional strata).
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Let us prove now that Diffloc(K
n ,M) =A . Let Φ ∈ Diffloc(K

n ,M). Since the two
topologies coincide, we know already that Φ is a local homeomorphism from Kn to
M. Now let F ∈A , thus F−1 ◦Φ = F−1 ◦ (supFi ◦Qi ), where Φ = supFi ◦Qi , as
previously. Hence, F−1 ◦Φ = sup(F−1 ◦ Fi ) ◦Qi . But the F−1 ◦ Fi and the Qi are
smooth, andmoreover local diffeomorphisms, thus F−1◦Φ is a local diffeomorphism,
and then also Φ−1 ◦ F. Hence, since A is maximal, Diffloc(K

n ,M) ⊂ A . Next
let F ∈ A . We now already that F is smooth, and a local homeomorphism for
both topologies. Let us show that F−1 : val(F)→ Kn is smooth. Let P be a plot in
val(F)⊂M, then P= supFi ◦Qi . Hence, F−1 ◦P= sup(F−1 ◦Fi ) ◦Qi . Thus, F−1

is smooth and F is a local diffeomorphism. Therefore,A ⊂Diffloc(K
n ,M), and then

(M,D) is a diffeological manifold with corners such that Diffloc(K
n ,M) =A .

Conversely, let (M,D) be a diffeological manifold with corners. Equip M with its D-
topology. Since local diffeomorphisms are local homeomorphisms for theD-topology,
and since local diffeomorphisms of Kn admit smooth extensions on Rn , thenA =
Diffloc(K

n ,M) gives M a structure of manifold with corners in the usual sense. The
atlasA is obviously maximal.

Now, because in the two directionsA = Diffloc(K
n ,M), the fact that Φ and Ψ are

inverse of each other is pretty obvious. �

Extension of Differential Forms on Manifolds with Boundary

We already showed that any k -forms on half-spaces Hn can be extended to a neighbor-
hood of Hn ⊂Rn [GIZ16]. Here we extend this result to manifolds with boundary.

Let us just recall that a differential k -form on a diffeological space X is a mapping α
that associates with each plot P in X, a smooth k -form α(P) on dom(P), such that
the smooth compatibility condition α(F ◦ P) = F∗(α(P)) is satisfied, where F is any
smooth parametrization in dom(P).

5. Taylor’s Series with Parameters. Let [x 7→ fx] ∈C∞(X,C∞(R,R)), with X
any diffeological space and C∞(R,R) equipped with the functional diffeology. Then,
for all positive integer n there exists an ∈ C∞(X,R) and there exists [x 7→ φn,x] ∈
C∞(X,C∞(R,R)), such that:

fx (t ) = a0(x)+ t a1(x)+ · · ·+ t n−1an−1(x)+ t nφn,x (t ).

This is the Taylor’s series of smooth real functions, with parameters in a diffeological
space. It is based on a parameter version of Hadamard’s Lemma, which is the order
1 of the series.

Proof. For all x ∈X and all t ∈R, one has

fx (t ) = fx (0)+ t gx (t ) with gx (t ) =
∫ 1

0
f ′x (s t ) ds .
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Since (x, t ) 7→
∫ 1

0 f ′x (s t ) ds is smooth, [x 7→ gx] belongs to C∞(X,C∞(R,R)). The
Taylor’s series is then built by iteration. �

6. Whitney Theorem on Even Functions with Parameters. Let X be a diffe-
ological space, let [x 7→ fx] ∈ C∞(X,C∞(R,R)). If, for all t ∈ R and all x ∈ X,
fx (t ) = fx (−t ), then there exists [x 7→ gx] ∈ C∞(X,C∞(R,R)) such that fx (t ) =
gx (t

2).

Proof. This is a direct adaptation of Whitney’s original proof in [Whi43], a game
of substitution. Thanks to Taylor’s Series with Parameters (§5) we have fx (t ) =
a0(x) + t a1(x) + · · ·+ t n−1an−1(x) + t nφn,x (t ). But because fx is even, the odd
terms vanish, and we rewrite

fx (t ) = a0(x)+ t 2a1(x)+ · · ·+ t 2n−2an−1(x)+ t 2nφ2n,x (t ).

Following Whitney, we put ψn,x (u) = ψn,x (−u) = φ2n,x (
p

u) and

gx (u) = a0(x)+ ua1(x)+ · · ·+ un−1an−1(x)+ unψn,x (u).

According to Whitney, for every x ∈ X, the function gx is smooth. Let us check
that [x 7→ gx] is smooth. That is, for all plot r 7→ xr in X, the parametrization
(r, t ) 7→ gxr

(t ) is smooth. Let then (r, t ) 7→ F(r, t ) = fxr
(t ). The function F is

even in t . According to Whitney [Whi43, Remark p.160], F(r, t ) =G(r, t 2), with
(r, u) 7→G(r, u) smooth. Let us check then thatG(r, u) = gxr

(u). On the one hand,
we have:

F(r, t ) = α0(r )+ t 2α1(r )+ · · ·+ t 2nΦ2n(r, t ).

We put Ψn(r, u) =Ψn(r,−u) = Φ2n(r,
p

u) and, according to Whithney, we have:

G(r, u) = α0(r )+ uα1(r )+ · · ·+ unΨn(r, u).

On the other hand, we have:

gxr
(u) = a0(xr )+ ua1(xr )+ · · ·+ unψn,xr

(u).

Now, since F(r, t ) = fxr
(t ) and ∂ k[F(r, t )− fxr

(t )]/∂ t k |t=0= 0 for all k < 2n,
ai (xr ) = αi (r ) for all i and r , and φ2n,xr

(t ) = Φ2n(r, t ). But φ2n,xr
(
p

u) = ψn,xr
(u)

and Φ2n(r,
p

u) = Ψn(r, u), hence ψn,xr
(u) = Ψn(r, u). Thus, gxr

(u) = G(r, u).
Therefore (r, u) 7→ gxr

(u)] is smooth, that is, [x 7→ gx] ∈ C∞(X,C∞(R,R)) and
fx (t ) = gx (t

2). �

7. Differential Forms on Manifolds with Boundary. Let M be a n-manifold,
and consider the (n+1)-manifold with boundary M×[0,1[. Let α ∈Ωk (M×[0,1[),
be a differential k -form [PIZ13, §6.28]. Then α extends to a k -form α on an open
neighborhood of M× [0,1[ in M× ]−1,+1[.
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Corollary. — Let M be a manifold with boundary. and M ,→N be an embedding
as a pièce à bord [ADLH73]. If the boundary ∂M is compact6, then every differential
k -form on M extends to an open neighborhood of M in N.

Proof. First of all, consider α �M×]0,1[. Then, there exist two smooth parametriza-
tions t 7→ at ∈ Ωk−1(M) and t 7→ bt ∈ Ωk (M), defined on ]0,1[, with the space of
forms equipped with the functional diffeology [PIZ13, §6.29], such that:

α �M× ]0,1[ = dt ∧ at + bt ,

with

dt ∧ at ,x

�

δ1x
δ1 t

�

· · ·
�

δk x
δk t

�

=
k
∑

i=1

(−1)i−1δi t × at ,x (δ1x, . . . ,Óδi x, . . . ,δk x),

where δi x ∈ Tx (M), δi t ∈ R, and Óδi x means the vector δi x is omitted. And with
an abuse of notation:

bt ,x

�

δ1x
δ1 t

�

· · ·
�

δk x
δk t

�

= bt ,x (δ1x) · · · (δk x).

Now, let

sq : M× ]−1,+1[→M× [0,+1[ defined by sq (x, t ) = (x, t 2).

Then, there exist two smooth parametrizations t 7→ At ∈ Ωk−1(M) and t 7→ Bt ∈
Ωk (M), defined on ]−1,+1[, such that

sq ∗(α) = dt ∧At +Bt .

Consider ε : (x, t ) 7→ (x,−t ). Then, sq ◦ ε= sq , thus sq ∗(α) = ε∗(sq ∗(α)), that is,

dt ∧At +Bt =−dt ∧A−t +B−t .

Hence, t 7→At is odd, A−t =−At . Thus A0 = 0, and thanks to (§5)7 there exists a
smooth parametrization t 7→At , defined on ]−1,+1[ into Ωk−1(M), such that:

At = 2t ×At .

Hence,
sq ∗(α) = 2t × dt ∧At +Bt .

But,
sq ∗(α �M× ]0,1[) = sq ∗(α) �M× ]−1,0[∪M× ]0,+1[.

That is,
2t × dt ∧ at 2 + bt 2 = 2t × dt ∧At +Bt .

6The non-compact case seems to need more work, see for example [Bro62] [Con71].
7We apply the Hadamard’s Lemma with parameters to the map y 7→ [t 7→ fy (t )], from Tk M to

C∞(R,R), with y = (x, v1, . . . , vk ) and fy (t ) =At (x)(v1, . . . , vk ).
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Hence,

for all t 6= 0 at 2 =At and bt 2 = Bt .

Thus, t 7→At and t 7→ Bt , defined on ]−1,+1[ are even. Then, according to (§6)8,
there exist two smooth parametrizations t 7→ a t and t 7→ b t , defined on ]−1,+1[,
such that

At = a t 2 and Bt = b t 2 .

Let us now define α ∈Ωk (M× ]−1,+1[)

α= dt ∧ a t + b t .

Then,

2t × dt ∧At +Bt = 2t × dt ∧ a t 2 + b t 2 ,

that is,

sq ∗(α) = sq ∗(α) i.e. sq ∗(α−α �M× [0,1[) = 0.

Consider now this version of the lemma (§8):

Lemma. — Let β ∈Ωk (M× [0,1[). If sq ∗(β) = 0, then β= 0.

Ê Proof of the Lemma. — Let P: U → M× [0,1[ be a plot and let us show that
β(P) = 0. Let U′ = P−1(M× ]0,1[) and P′ = P � U′. Since sq � M× (]−1,0[ ∪
[0,+1[)→M× ]0,1[ is a covering of manifolds, i.e. a local diffeomorphims every-
where, sq ∗(β)(P) � U′ = 0 implies β(P) � U′ = 0. By continuity β(P) � U′ = 0.
Then, let U′′ =U−U′ and P′′ = P �U′′. But then sq ◦P′′ = P′′, hence β(P) �U′′ =
β(P′′) = β(sq ◦P′′) = sq ∗(β)(P′′) = 0. Now β(P) �U′ = 0 and β(P) �U′′ = 0, with
U=U′ ∪U′′, implies β(P) = 0. Therefore β= 0. É

Then, sq ∗(α−α �M× [0,1[) = 0 implies α= α �M× [0,1[.

The corollary is a particular application of Douady’s theorem [ADLH73, Proposi-
tion 3.1] that embeds any manifold with corners into itself, as a pièce à coins9, in
our case as a pièce à bord. Since the two categories (usual and diffeological) of mani-
folds with corners (or boundary) coincide (§4), this embedding is also a embedding10

as diffeological manifold with corners (boundary). Then, if the border is compact,
then there is an open neighborhood of the boundary ∂M in N, diffeomorphic to
∂M×]−1,+1[ such that, restricted to ∂M×[0,1[, it is a diffeomorphim on a neigh-
borhood of ∂M in M. And the propostion above applies. �

8As above, we consider y 7→ [t 7→ fy (t )], from Tk M to C∞(R,R), with y = (x, v1, . . . , vk ) and
fy (t ) =At (x)(v1, . . . , vk ).

9Piece with corners.
10See embeddings in diffeology in [PIZ13, §2.13].
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Extension of Differential Forms on Corners

In the previous section we extended the differential forms on manifolds with bound-
ary, on open neighborhoods, after having pushed the manifolds as a pièces à bords
[Dou62]. Next, we prove an extension theorem for corners (§9). The general case of
manifolds with corners as pièces à coins is a work in progress.

8. The Square Function Lemma. Let sq : Rn → Kn be the smooth parametriza-
tion:

sq (x1, . . . , xn) = (x
2
1 , . . . , x2

n).

Then sq ∗ : Ωk (Kn)→Ωk (Rn) is injective. That is, for all α ∈Ωk (Kn), if sq ∗(α) = 0,
then α= 0.

Proof. Note that each component of S j − S j−1 is diffeomorphic to R j . Hence, if
sq ∗(α) = 0, since sq � sq−1(S j − S j−1) is a 2-fold covering over S j − S j−1, α � S j −
S j−1 = 0. That is, for all plot Q in S j − S j−1, α(Q) = 0. Let then, for some j ≥ 1,
P j : U j → S j be a plot. In view of what precedes, the subset O j = P−1

j (S j − S j−1)

is open, and α(P j � O j ) = α(P j ) � O j = 0. By continuity, α(P j ) � O j = 0, where

O j is the closure of O j . Let then U j−1 = U j −O j and P j−1 = P j � U j−1. Then,
U j−1 is open and P j−1 : U j−1→ S j−1 is a plot. This construction gives a descending
recursion, starting with any plot P: U→ Kn , by initializing Pn = P, Un = U and
Sn =Kn . One has P j = P �U j , U j−1 ⊂U j , the recursion ends with a plot P0 with
values in S0 = {0}, and α(P0) = 0 since P0 is constant. Therefore α= 0. �

9. Differential Forms On Corners. The section (§2) above deals with smooth
real functions on corners, that is, Ω0(Kn). It is a particular case of the following
theorem on differential forms of any degree:

Theorem. Any differential k -form on the corner Kn , equipped with the subset diffeology
of Rn , is the restriction of a smooth differential k -formdefined on some open neighborhood
of the corner. Precisely, the pullback : j ∗ : Ωk (Rn)→ Ωk (Kn) is surjective, where j
denotes the inclusion from Kn to Rn .

Proof. Let ω∈Ωk (Kn) and �Kn = {(xi )
n
i=1 | xi > 0, i = 1, . . . , n}. One has

ω ��Kn =
∑

i1<···<ik

ai1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik
,

with i j = 1, . . . , n and ai1...ik
∈C∞(�Kn ,R). Recall that sq : (xi )

n
i=1 7→ (x

2
i )

n
i=1, then

sq ∗(ω) =
∑

i1<···<ik

Ai1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik
,

where Ai1...ik
∈ C∞(Rn ,R). Let ε j : (x1, . . . , x j , . . . , xn) 7→ (x1, . . . ,−x j , . . . , xn),

then sq ◦ ε j = sq and (sq ◦ ε j )
∗(ω) = ε∗j (sq

∗(ω)), that is, sq ∗(ω) = ε∗j (sq
∗(ω)).
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Hence,

ε∗j (sq
∗(ω)) =

∑

i1<···<ik
i` 6= j

Ai1...ik
(x1, . . . ,−x j , . . . , xn) d xi1

∧ · · · ∧ d xik

−
∑

i1<···≤ j≤···<ik

Ai1... j ...ik
(x1, . . . ,−x j , . . . , xn) d xi1

∧ · · · ∧ d x j ∧ · · · ∧ d xik
.

Then,

A i1...ik
i` 6= j
(x1, . . . ,−x j , . . . , xn) = Ai1...ik

(x1, . . . , x j , . . . , xn),

Ai1... j ...ik
(x1, . . . ,−x j , . . . , xn) = −Ai1... j ...ik

(x1, . . . , x j , . . . , xn).

Hence,
Ai1... j ...ik

(x1, . . . , x j = 0, . . . , xn) = 0.

Thus,

Ai1... j ...ik
(x1, . . . , x j , . . . , xn) = 2x j Ai1... j ...ik

(x1, . . . , x j , . . . , xn),

with Ai1... j ...ik
∈ C∞(Rn ,R). Therefore, there are real smooth functions Âi1...ik

de-
fined on Rn such that

Ai1...ik
(x1, . . . , xn) = 2k xi1

. . . xik
Âi1...ik

(x1, . . . , xn).

Now,
sq ∗(ω ��Kn) = sq ∗(ω) � {xi 6= 0}

implies
∑

i1<···<ik

2k xi1
. . . xik

ai1...ik
(x2

1 , . . . , x2
n) d xi1

∧ · · · ∧ d xik

=
∑

i1<···<ik

2k xi1
. . . xik

Âi1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik
.

Hence,

Âi1...ik
(x1, . . . , xn) = ai1...ik

(x2
1 , . . . , x2

n) for xi 6= 0, i = 1, . . . , n.

Thus (x1, . . . , xn) 7→ Âi1...ik
(x1, . . . , xn), which belongs to C∞(Rn ,R), is even in each

variable. Therefore, according to Schwartz’s Theorem [Sch75]11, there exist

a i1...ik
∈C∞(Rn ,R),

such that
Âi1...ik

(x1, . . . , xn) = a i1...ik
(x2

1 , . . . , x2
n).

One deduces:

a i1...ik
(x1, . . . , xn) = ai1...ik

(x1, . . . , xn), for all (x1, . . . , xn) ∈�K
n .

11Which is a generalisation of a famous theorem due to Whitney [Whi43]. It could be also deduced
from it easily.
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Then, defining the k -form ω on Rn by

ω=
∑

i1<···<ik

a i1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik
,

one has already
ω ��Kn = ω ��Kn .

Let us show that ω � Kn = ω. That is, let us check that for all plot P: U → Rn ,
P∗(ω) = ω(P). Actually, one has

sq ∗(ω) = sq ∗(ω �Kn).

Indeed:

sq ∗(ω) =
∑

i1...ik

Ai1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik

=
∑

i1...ik

2k xi1
. . . xik

Âi1...ik
(x1, . . . , xn) d xi1

∧ · · · ∧ d xik

=
∑

i1...ik

2k xi1
. . . xik

a i1...ik
(x2

1 , . . . , x2
n) d xi1

∧ · · · ∧ d xik
.

And, on the other hand:

sq ∗(ω �Kn) =
∑

i1...ik

2k xi1
. . . xik

a i1...ik
(x2

1 , . . . , x2
n) d xi1

∧ · · · ∧ d xik
.

Thus, sq ∗(ω−ω �Kn) = 0. Therefore, according to the lemma (§8), ω−ω �Kn = 0.
And then, ω is the restriction on Kn of the smooth k -form ω on Rn . �

10. Other Corners. The half-line ∆k = Rk/O(k) is identified to the interval
[0,∞[, equipped with the pushforward of the smooth diffeology ofRk by the projec-
tion νk : X 7→ ‖X‖2, see [PIZ07, IZW14]. Then, with each half-line we can associate
a n-corner ∆n

k . Note that, according to definition (§4), the only one of these corners
being a manifold with corners is Kn = ∆n . Note also that the identity j n

k from ∆n
k to

Kn ⊂Rn is still a smooth map. Now,

Proposition. — The pullback j n
k
∗ : Ω∗(Kn)→Ω∗(∆n

k ) is surjective.
As well as for the standard corner Kn , every differential form on ∆n

k is the pullback
of some smooth form on Rn .

Proof. The proof is a copy from the proof of (§9) because 1) the map sq is smooth,
2) the D-topology of ∆n

k ⊂Rn coincides with the induced topology, same proof as in
(§1). Then, 3) the interior of each stratum is some power of the open interval, and
the rest follows. �

11.AnApplication. Among the possible applications of the theorems above there is
already oneworthy ofmention. It is about the description of closed 2-forms, invariant
with respect to the action of a Lie group. As it has been shown in particular in the
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classification of SO(3)-symplectic manifolds [Igl84, Igl91], any closed 2-form ω on
a manifold M, invariant by a compact group12 G, is characterized by its moment
map µ : M→ G ∗ (we assume the action Hamiltonian), and for each moment map,
a closed 2-form ε ∈ Z2(M/G). Let us be more precise: the space of G-invariant
closed 2-forms Z2

G(M) is a vector space, the space of G-equivariant maps from M to
G ∗ is also a vector space, and the map associating its moment map13 µ with each
invariant closed 2-form ω is linear. What we claim is that the kernel of this map is
exactly Z2(M/G), where M/G is equipped with the quotient diffeology. Denoting by
Eq•(M,G ∗) ⊂ Eq(M,G ∗) the space of moment maps of G-invariant closed 2-forms
on M, as a subset of smooth equivariant maps, one has this exact sequence of smooth
linear maps:

0−→ Z2(M/G)−→ Z2
G(M)−→Eq•(M,G ∗)−→ 0.

Now, if an equivariant map is easy to conceive, it is more problematic for a differential
form on the space of orbits, which is generally not a manifold. This is where the
above theorem can help, because it happens that M/G is not far to be a manifold
with boundary or corners, as show the following example.

Consider the simple case M = R2n , equipped with the standard symplectic form
ω=

∑n
i=1 d qi∧d pi . It is invariant by the group SO(2)n acting naturally, each factor

on its respective copy of R2. The quotient space Qn = R2n/SO(2)n is equivalent
to the other corner ∆n

2 , with ∆2 = R2/O(2) = R2/SO(2). Thus, thanks to (§9)-
(§10), for each 2-form ε on the quotientQn there exists a 2-form ε on Rn , such that
ε = j n

k
∗(ε). Then, the 2-form ω is characterized by the moment map µ and ε � Kn ,

with ε ∈Ωk (Rn).
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