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Abstract. We discuss the relationship between the orbit type stratification of a man-

ifold M under the smooth action of a compact Lie group G and the Klein stratification

(defined by local diffeomorphisms) of the resulting space of orbits M/G, when the

latter is equipped with the quotient diffeology.

Introduction

The study of spaces arising from the smooth action of a compact Lie group G on a mani-

fold M is a cornerstone of differential geometry and topology. This area has a rich history,

built upon the foundational work of many distinguished mathematicians, including

figures like Palais, Bredon, Mostov, and their contemporaries, who laid the groundwork

for understanding compact transformation groups and their orbit spaces. The resulting

orbit space M/G is in general not a manifold due to the presence of singularities at points

corresponding to non-principal orbits. While classical approaches often describe these

spaces topologically or with piecewise smooth structures, the framework of diffeology

offers a powerful and unified method to endow M/G with a global smooth structure —

the quotient diffeology — allowing for a consistent differential calculus throughout the

space, even across singular regions.

This paper leverages the tools of diffeology to investigate the intrinsic geometric structure

of these orbit spacesM/G. A key aspect of this investigation is the diffeological dimension

map, a fundamental invariant. This map, defined on M/G, associates to each orbit

O ∈ M/G the dimension of the spaceM/G at that point, denoted bydimO(M/G). We

establish the formula relating this diffeological dimension of M/G at a point O ∈ M/G

to the geometry of O ⊂ M:

dimO(M/G) = dim(M)− dim(O).

It is important to note that this formula is not a definition specific to orbit spaces, but

an instance of the general definition of the dimension by minimax in diffeology [PIZ07,
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PIZ13], the first main invariant of the category. This result, while perhaps intuitive from

the perspective of the local slice model E/StabG(x) (where O = G · x), relies crucially

on a key property of diffeological quotients of Euclidean spaces by subgroups of their

orthogonal group: namely, that for H ⊂ O(E), the diffeological dimension of E/H at its

origin 0E is dim(E). This implies that the “collapsing” effect of the group action on the

dimension of the slice is fully captured by the diffeological dimension of the quotient at

that point, leading directly to the formula. As a consequence, the diffeological dimension

of M/G at singular points is greater than or equal to its dimension at principal points.

Beyond the dimension, the local structure of a diffeological space is characterized by its

pseudogroup of local diffeomorphisms, whose orbits define the intrinsic Klein stratifica-

tion [PIZ13]. For orbit spaces M/G, there is also the classical orbit-type stratification of

the manifold M. A central theme of this paper is to understand the relationship between

these two stratifications. We show that the canonical projection orbit : M → M/G

induces a surjective map, not from the set of orbit-type strata in M to the set of Klein

strata in M/G, but rather from the set of connected components of orbit-type strata in

M to the set of Klein strata in M/G. This refined mapping establishes that the projection

from M to its quotient M/G is a stratified subduction.

Crucially, we demonstrate through examples that this induced map is not necessarily

injective. This non-injectivity manifests in various ways, such as different orbit types

in M projecting to points in the same Klein stratum in M/G (e.g., P2(C)/SO(3)), or

even distinct connected components of the same orbit type mapping to the same Klein

stratum (e.g., {P0,P2} ⊂ P2(C) in P2(C)/U(1)), while another component (e.g.,

{P1} ⊂ P2(C)) maps to a different Klein stratum. This occurs when the local slice

models E/H corresponding to these points are diffeomorphic as diffeological spaces.

This non-injectivity highlights a profound aspect of diffeological quotients: the resulting

space M/G possesses an intrinsic geometric identity, defined by its diffeology (its smooth

structure) and its local diffeomorphism pseudogroup. This identity, which is one of

smooth equivalence, can be independent of the specific manifold M and group G used

in its construction. This perspective motivates the potential definition and study of

a class of singular spaces, tentatively termed orthofolds, characterized by being locally

diffeomorphic to quotients of Euclidean spaces by orthogonal group actions.

The paper is organized as follows: Section I reviews the local structure of orbit spaces and

its diffeological interpretation, introduces the diffeological dimension map and proves the

dimension formula, with an application to toric geometry. Section II recalls the general

theory of stratifications in diffeology. Section III defines and discusses the orbit-type and

Klein stratifications. Section IV presents several illustrative examples. Finally, Section V

establishes the relationship between the two stratifications and discusses the implications

of the non-injectivity of the induced map.
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I. Structure of Orbit Spaces

In this section we clarify the local structure of the diffeological quotient of a manifold M

by the smooth action of a compact Lie group G.

1. Local Structure of Orbit Spaces.
Let G be a compact Lie group acting smoothly on a manifold M. Let O = G(x) be the

orbit of a point x ∈ M, and let H = StabG(x) be its stabilizer.

The classical tube theorem (see, e.g., [Pal60, Bre72]) states that there exists a G-invariant

neighbourhood V ⊂ M of the orbit O, and a vector space E (the normal slice at x) on

whichH acts orthogonally, such thatV isG-equivariantly diffeomorphic to the associated

bundle G×H E = (G× E)/H. Here, h ∈ H acts on (g, ξ) ∈ G× E by

h · (g, ξ) = (gh−1, h(ξ)),

and g′ ∈ G acts on [g, ξ]H ∈ G×H E by left multiplication on the first factor:

g′ · [g, ξ]H = [g′g, ξ]H.

The diffeomorphismΦ : V → G×H E is G-equivariant: Φ(g′(y)) = g′ · Φ(y) for all

y ∈ V, g′ ∈ G. Then,

Proposition. Considering the quotient (G×HE)/G, the projectionprG : G×E → E ≃
G×G E descends into a diffeomorphism ϕ : (G×H E)/G → (G×G E/)/H ≃ E/H,
according to the diagram:

G× E

G×H E G×G E

(G×H E)/G (G×G E)/H

prH prG

prH,G prG,H

ϕ

Proof. This is a particular case of the general situation:

lemma. Let G and H be two diffeological groups acting smoothly on a diffeological space

X. Assume their actions commute, i.e., g(h(x)) = h(g(x)) for all g ∈ G, h ∈ H and

x ∈ X. Then, the iterated quotients are naturally diffeomorphic to the quotient by the

product group:

(X/H)/G ≃ (X/G)/H ≃ X/(G×H).

Proof of Lemma. First of all [x]H = {h(x) | h ∈ H} and X/H = {{h(x) | h ∈
H} | x ∈ X}. Then, G acts on [x]H by multiplication term by term. Indeed, g[x]H =

g{h(x) | h ∈ H} = {g(h(x)) | h ∈ H} = {h(gx) | h ∈ H} = [gx]H.



4 SERAP GÜRER AND PATRICK IGLESIAS-ZEMMOUR

Now,

(X/H)/G = {{g[x]H | g ∈ G} | x ∈ X}
= {{g{hx | h ∈ H} | g ∈ G} | x ∈ X} = {{{ghx | h ∈ H} | g ∈ G} | x ∈ X}

= {ghx | h ∈ H, g ∈ G, x ∈ X} = X/(G×H),

whereG×H acts onX by (g, h)x = ghx = hgx. Hence, sinceX/(G×H) = X/(H×
G) by commutation, one has (X/H)/G = (X/G)/H = X/(G × H). On the other

hand, the projection from a diffeological space to its quotient is what is called a subduction.

The composition of subductions is another subduction (they form a category [PIZ13,

§1.47]). Therefore if we denote by prH : X → X/H, prH,G : X/H → (X/H)/G,

prG : X → X/G and prG,H : X/G → (X/G)/H, one has:

prG,H ◦ prG = prH,G ◦ prH = prG×H .

Therefore, the quotients X/(G × H), (X/H)/G and (X/G)/H are naturally diffeo-

morphic. □

Now, coming back to the original question, (G×H E)/G = ((G×E)/H)/G, but the

action of G and H ⊂ G commute, then ((G× E)/H)/G = ((G× E)/G)/H. Since

(G× E)/G ≃ E, then (G×H E)/G ≃ E/H. □

And this is the diffeological interpretation of the slice theorem [Pal60]:

Corollary. As a diffeological space, the quotient space M/G is locally diffeomorphic to
some quotient E/H where E is an Euclidean space and H an orthogonal action. Precisely if
M is locally diffeomorphic to G×H E, then M/G is locally diffeomorphic to E/H.

This is summarized by the following commutative diagram, where the maps Φ and ϕ are

open embeddings.

M ⊃ V G×H E

M/G ⊃ V/G E/H

Φ

π class

ϕ

where class : [g, ξ]G 7→ [ξ]H.

Remark (The Orthofold Category). The local model E/H, where E is a Euclidean

space and H ⊂ O(E) is a subgroup acting orthogonally, appears fundamental. This

could lead to a definition of a new subcategory of spaces within the category of Diffe-

ological Spaces, which we might term the orthofold category. An orthofold would be a

diffeological space that is locally diffeomorphic, at every point, to such a quotient E/H.

This category would naturally include smooth manifolds (where H is trivial) and, as a

significant subcategory, orbifolds (where H is finite, see [IKZ10]). Crucially, all orbit

spacesM/G of manifolds by compact Lie group actions, as discussed in this paper, would
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be natural and founding examples of orthofolds. The study of orthofolds as a distinct

class of diffeological spaces could be a fruitful area for future investigation.

As an illustration of this definition, and an application of the dimension formula 2.2:

Proposition (Orbifolds within Orthofolds). A diffeological space X is an orthofold
with a constant dimension map if and only if it is an orbifold. So, an orbifold is an orthofold
of constant dimension.

Proof. Let X be an orthofold. By definition, for any x ∈ X, there is a local model diffeo-

morphic to E/H where E is a Euclidean space and H ⊂ O(E) is a compact subgroup.

The diffeological dimension of this local model at the point corresponding to x (the

image of 0E) is dim(E).

First of all: If X is an n-orbifold, it is, by definition (e.g., as a diffeological space [IKZ10]),

locally diffeomorphic to E/H where dim(E) = n and H is a finite subgroup of O(E).

The diffeological dimension of such a local model E/H (with H finite) is dim(E) = n

at every point within that model. Since this holds for all local models, an n-orbifold has a

constant dimension map equal to n.

Next: Assume X is an orthofold with a constant dimension map, say dimy(X) = d for

all y ∈ X. Consider any local model E/H for X. We must have dim(E) = d. For any

point [v]H ∈ E/H (where v ∈ E), the dimension of E/H at this point is given by the

formula dim[v]H(E/H) = dim(E) − dim(Ov), where Ov = H · v is the orbit of v

under H within E (this formula is analogous to Proposition 2.2 applied to the action of

H on E). Since the dimension map is constant and equal to d = dim(E), we must have

dim(E)− dim(Ov) = dim(E)

for all v ∈ E. This implies dim(Ov) = 0 for all v ∈ E. For a compact Lie group H

acting orthogonally on E, if all its orbits H · v are zero-dimensional, then H must be a

discrete group [PIZ13, §1.81]. Since H is also compact, it must be a finite group. Therefore,

every local model for X is of the form E/H with H finite. This means X is an orbifold. □

Note. It is worth noting that other classes of diffeological spaces also share the property

of having a constant diffeological dimension, such as quasifolds [IZP21]. By definition, a

quasifold is locally diffeomorphic to a quotient Rn/Γ, where Γ is a countable subgroup

of the affine group Aff(Rn) such that the orbits are discrete. At a point x in such a

local model, the isotropy group Γx = {γ ∈ Γ | γ(x) = x} is a countable subgroup of

Aff(Rn) fixing x. The action of Γx on the tangent space at x (which serves as the slice

model) is linear, given by the linear part of Γx, a countable subgroup of GL(n,R). For a

quasifold to be an orthofold, its local models must be diffeomorphic to E/H where E is a

Euclidean space and H is a compact subgroup of O(E). However, a countable subgroup

of GL(n,R) can only be compact if it is finite. Therefore, quasifolds with infinite

isotropy groups (i.e., strict quasifolds) cannot be locally diffeomorphic to quotients by

compact groups, and thus strict quasifolds are not orthofolds.
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2. The Dimension Map on the Quotient Space.
Let us recall some facts and constructions:

For the quotient M/G of a manifold by a compact Lie group action, the orbits of G are

classified by their orbit type: two orbits have the same type if their respective stabilizers

are conjugate in G. The Principal Orbit Theorem states that there exists an open dense

G-invariant subset Mpr ⊂ M consisting of orbits of the same type (principal type), such

that their stabilizer is conjugate to a subgroup of any other stabilizer. These are called

principal orbits; orbits not of principal type are called singular.

The dimension map for diffeological spaces has been defined originally in [PIZ07], and

then in [PIZ13, §2.22], as a minimax: the minimum dimension of a generating family,

itself defined as the maximum dimension of its plots. The dimension map is a diffeological

invariant. It applies to every kind of diffeological space and coincides with the standard

dimension in the case of manifolds.

As a diffeological space, equipped with the quotient diffeology, the space of orbits M/G

is accompanied by its dimension map O 7→ dimO(M/G).
1

This map provides diffeolog-

ically invariant labels attached to points in O ∈ M/G. These can be useful, for instance,

when considering only the underlying D-topology of the quotient, as the dimension map

can distinguish points that might otherwise be topologically similar.

One of the main properties of the dimension map, stemming from its nature as a diffeo-

logical invariant, is that:

Proposition 1. The dimension map O 7→ dimO(M/G) is constant on the Klein strata
of M/G (i.e., on the orbits of the group of local diffeomorphisms of M/G). In some cases,
this invariant is sufficient to distinguish between different Klein strata.
The dimension in M/G can vary across the space. It captures geometric characteristics

of the singularities, reflecting how orbits deviate from being principal. The simplest

example is ∆n = Rn/O(n). The space of orbits can be identified with the interval

[0,∞), equipped with the pushforward of the standard diffeology of Rn
by the map

sq : x 7→ ∥x∥2. In this case, dimt(∆n) is equal to n for t = 0 (the singular point) and

equal to 1 for t > 0 (principal points).

Proposition 2. Let orbit : M → M/G be the projection from M onto the space of orbits
M/G, equipped with the quotient diffeology. Pick a point x ∈ M, let O = orbit(x) be
the orbit G · x through x. The diffeological dimension of M/G at the point O obeys the
formula:

dimO(M/G) = dim(M)− dim(O). (♣)

From this central formula, we directly deduce the following properties concerning the

diffeological dimension on principal and singular orbits in the quotient space. Note that

if the quotient space is a manifold it coincides with the ordinary dimension. Actually,

since the category of manifolds is a full subcategory of the category of diffeological spaces,

1
An orbit O = G · x is indifferently a point O ∈ M/G or a subspace O ⊂ M.
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all dimensions in this formula are diffeological dimensions [PIZ07]: the dimension of

O ⊂ M equipped with the subset diffeology is constant on O (which is a manifold) and

equal to the dimension of the quotient O ≃ G/ StabG(x).

(a) The subspace (M/G)pr = orbit(Mpr) of principal orbits in M/G is an open dense

subset (with respect to the D-Topology). Since all principal orbits Opr have the same

dimension, the formula (♣) shows that the dimension map is constant on the open dense

subset (M/G)pr, with value dpr = dim(M)− dim(Opr).

(b) At singular orbitsOs, dimOs(Q) ≥ dpr sincedim(Os) ≤ dim(Opr) (asStabG(s)

contains a conjugate of StabG(pr)). Thus, dpr is the minimal dimension in M/G.

Equality, dimOs(M/G) = dpr, can occur for certain types of singular orbits, often

referred to as exceptional orbits.2

Proof. Let orbit : M → M/G denote the canonical projection, which, by definition of

the quotient diffeology, is a subduction.

(i) The set of principal orbits (M/G)pr is open and dense in M/G. It is a standard result

from the theory of compact Lie group actions that the set of principal points in M,

denoted Mpr, forms an open and dense G-invariant subset of M (see, e.g., [Bre72, Ch.

IV, Thm. 3.1]). Since orbit is an open map (as G is compact, or by properties of local

subductions in diffeology [PIZ13, §2.18]) and Mpr is open and G-invariant, its image

(M/G)pr = orbit(Mpr) is an open subset of M/G. Furthermore, since Mpr is dense

in M and orbit is surjective and continuous (for the D-topologies), (M/G)pr is dense

in M/G. The D-topology on the quotient M/G coincides with the standard quotient

topology inherited from M [PIZ13, §1.20, §5.6].

(ii) The dimension of M/G at the point O. The formula dimO(M/G) = dim(M) −
dim(O) relies on the following lemma.

Lemma. LetE be a finite-dimensional real vector space, and letH ⊂ O(E) be a subgroup

of its orthogonal group. Then dim[0E]H(E/H) = dim(E).

Proof of Lemma. Let ∆ = E/O(E) and πO(E) : E → ∆ be the projection. Let X =

E/H and πH : E → X be the projection. Define pr : X → ∆ by pr([x]H) = [x]O(E).

All three projections are subductions: πO(E) and πH by definition of quotient diffeology,

and pr because it is induced by the identity on E and respects the equivalence relations

[PIZ13, §1.51]. These maps send the origin of E to the respective origins of the quotient

spaces: πH(0E) = 0X, πO(E)(0E) = 0∆, and pr(0X) = 0∆.

2
This happens when dim(Os) = dim(Opr) even though Os is not of principal type (e.g., when

the stabilizer Hs of s has the same dimension as a principal stabilizer Hpr but is not conjugate to it, and

NG(Hs)/Hs is finite).
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E

X

∆

πH

πO(E) pr

and for origins:

0E

0X

0∆

πH

πO(E) pr

Since πH and pr are subductions preserving the origins (in the sense that the origin of

the domain maps to the point we are considering as the "origin" in the codomain), by

[PIZ13, §2.24, 2.26] (Dimension and Subductions/Pointed Subductions), we have:

dim0X(X) ≤ dim0E(E), and dim0∆(∆) ≤ dim0X(X).

This yields the chain:

dim0∆(∆) ≤ dim0X(X) ≤ dim0E(E).

From [PIZ13, Exercise 50] (with E = Rn
), we know that dim0∆(∆) = dim(E). Thus,

dim(E) ≤ dim0X(X) ≤ dim(E).

This forces dim0X(X) = dim(E), that is, dim[0E]H(E/H) = dim(E). □

Now, let O = orbit(x) ∈ M/G be the orbit G · x, with stabilizer H = StabG(x).

By the Corollary to Proposition 1, M/G is locally diffeomorphic around the point O ∈
M/G to E/H, where E is the slice at x. The point O ∈ M/G corresponds to [0E]H in

this local model, thus, by the Lemma, dimO(M/G) = dim[0E](E/H) = dim(E). The

local model V = G ×H E, where V is an open neighborhood of x, gives dim(M) =

dim(G) + dim(E)− dim(H), that is, dim(M) = dim(O) + dim(E) = dim(O) +

dimO(M/G), and then: dimO(M/G) = dim(M)− dim(O). □

3. Toric Actions and Depth.
The diffeological dimension map provides a natural way to quantify local complexity in

quotient spaces arising from group actions, sometimes aligning with or refining existing

topological or geometric invariants. Consider an effective action of the n-torus Tn
on a

2n-dimensional symplectic manifold (M2n, ω). Such actions are central to symplectic

geometry, and their orbit spaces Qn = M2n/Tn
have a well-studied combinatorial

and topological structure, often described by Delzant polytopes or, more generally, as

"manifolds with corners" locally.
3

In many local models for these quotient spaces (e.g., near a fixed point or a point with

a non-trivial stabilizer), the structure is identified with, or is locally homeomorphic

to, a quotient of the form (Ck × Rn−k)/Tk
eff

or, more simply for a standard model,

Cn/Tn
. The quotient Cn/Tn

(where Tn
acts by (eiθ1 , . . . , eiθn) · (z1, . . . , zn) =

3
The classification and local structure of such spaces are subjects of ongoing research, see for instance the

work by Yael Karshon and Shintarô Kuroki [KS] on locally standard torus actions.
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(eiθ1z1, . . . , e
iθnzn)) is diffeomorphic to the positive orthant [0,∞[n via the map with

components z 7→ (|z1|2, . . . , |zn|2).

In the topological analysis of such spaces, a label called the depth is often associated

with points in the quotient. For a point t = (t1, . . . , tn) ∈ [0,∞[n representing an

orbit, its depth is typically defined as the number of coordinates ti that are equal to zero.

This corresponds to the dimension of the subtorus in Tn
that stabilizes points in Cn

projecting to t.

Let us analyze this from a diffeological perspective. Consider the local model Qloc
n =

Cn/Tn
. This space is endowed with the quotient diffeology, which is the pushforward of

the standard diffeology of Cn
by the map sqn : (z1, . . . , zn) 7→ (|z1|2, . . . , |zn|2). Let

t = sqn(z) be a point inQloc
n . According to the general formula derived in Proposition 2

above, the diffeological dimension of Qloc
n at t is given by:

dimt(Q
loc
n ) = dim(Cn)− dim(Oz),

where Oz = Tn · z is the orbit of z ∈ Cn
under the Tn

action. The dimension of

the orbit Oz is dim(Oz) = dim(Tn) − dim(StabTn(z)). The stabilizer StabTn(z)

consists of (eiθ1 , . . . , eiθn) ∈ Tn
such that eiθjzj = zj for all j = 1, . . . , n. This

condition implies that eiθj can be arbitrary if zj = 0, and eiθj = 1, i.e., θj ≡ 0

(mod 2π)) if zj ̸= 0. If exactly k coordinates of z are zero (say z1 = · · · = zk = 0 and

zk+1, . . . , zn ̸= 0), thenStabTn(z) is isomorphic toTk
(the product of the firstk circle

factors of Tn
). Thus, dim(StabTn(z)) = k. This integer k is precisely the depth of the

point t = sqn(z) in the quotient [0,∞[n, since tj = |zj |2, so tj = 0 ⇐⇒ zj = 0.

The dimension of the orbit is thereforedim(Oz) = dim(Tn)−k = n−k. Substituting

this into the formula for the dimension of the quotient:

dimt(Q
loc
n ) = dim(Cn)− (n− k) = 2n− (n− k) = n+ k.

Thus, the depth, an important combinatorial invariant in the study of toric symplectic

manifolds, is directly related to the diffeological dimension of the (local model of the)

orbit space by the formula:

dimt(Q
loc
n ) = n+ depth(t).

This shows how the diffeological dimension naturally incorporates and quantifies the

"degree of singularity" captured by the depth in this context. For a point t in the interior

of [0,∞[n (depth k = 0), dimt(Q
loc
n ) = n. For a point at the origin of [0,∞[n (depth

k = n), dimt(Q
loc
n ) = 2n = dim(Cn).

A final remark: It is important to distinguish this quotient diffeology on [0,∞[n (ob-

tained fromCn/Tn
) from its standard diffeology as a manifold with corners when viewed

as a subset of Rn
. For the latter, as discussed in [PIZ13, §4.16, Exercise 51], the diffeo-

logical dimension is ∞ at any point on the boundary (e.g., dim0[0,∞[= ∞), and n

for interior points. In contrast, the quotient diffeology, which is the focus of this paper,
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yields dimt(Q
loc
n ) = n+ depth(t) for all t, reflecting the structure inherited from Cn

and the Tn
-action.

II. Stratifications

The space of orbits of a manifold by the action of a compact Lie group is naturally

stratified by the types of orbits, called orbit-type stratification, as described below. We

recall some aspects of the theory of stratifications in diffeology set out in [GIZ23].

4. Stratifications in Diffeology.
The classical theory of stratification is a mix of topology and differential geometry: given

a topological space X, a stratification of X is a partition S of which basically satisfies the

so-called frontier condition, that is:

[B] The closure of a stratum is a union of strata,

together with a manifold structure on the strata that is compatible with the topology.

This is because interesting stratified spaces have in general not a global structure of

manifold. They are generally subspaces of Cartesian spaces, often algebraic subspaces,

even sometimes artificial decomposition of manifolds.

In diffeology, the approach is different, since a diffeology exists on almost any kind of

space encountered in mathematics, one starts with a diffeological space X. Its smooth

sructure is a given. Then, we define a stratification as a partition of X satisfying primarily

the frontier condition [B], nothing more, regarding its D-Topology [PIZ13, §2.8]. Then,

each stratum is endowed with the subset diffeology, and whether they are or not manifold

doesn’t change much the subject. There is no need to add a smooth structure by hand.

We will see below that, according to the precise type of sub-structure we get, we classify

the stratifications by different labels.

Let us denote by the letter℘ the powerset functor that associates to a set the set of its

subsets, and for a diffeological space, the set of its subspaces. Then, the frontier condition

has a formal conceptual formulation:

[B] There is a map clos : S → ℘(S) such that for each stratum Si ∈ S there is a

subset clos(Si) = {Sji}j such that Clos(Si) = ∪jS
j
i ,

where Clos denotes the topological closure

Clos : ℘(X) → ℘(X) such that Clos(A) = A,

which is a projector. Let∪∪∪ be the union operator:

∪∪∪ : ℘(S) → ℘(X) such that ∪∪∪ ({Si}i) = ∪iSi.

Then, we can rewrite the definition of a stratification of a diffeological space as follows:

[B] A stratification S is a partition of X such that the map Clos : S → ℘(X) lifts

along∪∪∪ : ℘(S) → ℘(X) by a map clos : S → ℘(S):
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℘(S)

S ℘(X)

∪∪∪clos

Clos

5. Stratification Labels.
The differential theory of stratifications introduces certain constraints or particular be-

haviours, for example, that the strata be manifolds. This is a necessary condition in the

specific framework of classical differential geometry, since there is no alternative to what is

a smooth structure. This is no longer the case in diffeology, since any part of a diffeological

space naturally inherits the subset diffeology. For this reason, in diffeology, we can separate

the different properties of a stratification, independently of the frontier condition, with

a series of characteristic labels, see [GIZ23] for a separate discussion on the subject.

[B] For basic: the closure of a stratum is a union of strata.

[LF] The stratification is locally finite (or not locally finite [LF]).

[G] The strata are the orbits of a group, or a pseudo group of diffeomorphisms.

[GK] The strata are the orbits of the group of diffeomorphisms, or the pseudo group

of local diffeomorphisms.

[M] All the strata are manifolds (or not [M]).

[T0] The strata are locally closed (in the D-topology): the space of strata isT0 separated

(or not [T0]).

The list is not exhaustive, for example we could add the label [C] for locally conical
stratification, and so on.

Now, coming back to the standard stratification of diffeological spaces (which is not

necessarily the most interesting of all), we could describe their family by the encoding

[B]-[LF]-[M]-[T0]. Another example, the stratification defined by a smooth action of a

compact Lie group on a manifold will belong to the family [B]-[LF]-[G]-[M]-[T0]. The

manifolds with corners fall in the family [B]-[LF]-[GK]-[M]-[T0] etc.

III. Stratifications Types

In this section we lay the basis for our discussion of the different types of stratification

involved in quotients of manifolds by compact Lie groups.

6. Geometric Stratifications.
An important class of stratification is defined by the actions of groups or local groups on

spaces,
4

Precisely:

Proposition. Let G be a diffeological group acting smoothly on a diffeological space X.
The partition of X into orbits is a basic stratification. We call such stratifications geometric.

4
We call local group acting on a space X any sub-pseudogroup of local diffeomorphisms of X.
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Proof. Let O and Oy be two orbits of G. Assume that x ∈ Oy and let x′ ∈ O. Let U′
be

an D-open neighbourhood of x′ and g ∈ G such that g(x) = x′. Let U = g−1(U′).

Since g ∈ Diff(X), U is an open neighbourhood of x, and since x ∈ Oy there exists

z ∈ Oy ∩U, and Oy = Oz . Thus, Oy ∩U′ ̸= ∅, and x′ ∈ Oy . Therefore, the closure

of any orbit is a union of orbits. The partition of a diffeological space by a smooth action

of a diffeological group is a basic stratification. □

7. Orbit Type Stratifications.
Our analysis involves comparing the classical orbit type stratification of M with the Klein

stratification of M/G. We therefore begin by recalling the main theorem concerning the

orbit type stratification of M.

Let G be a compact Lie group acting smoothly on a smooth manifold M. For each point

x ∈ M, its stabilizer (or isotropy group) is a closed subgroup of G. A key property is

that for any g ∈ G, StabG(gx) = g StabG(x)g
−1

. This implies that all points on a

single orbit G · x have stabilizers conjugate to each other. Consequently, to each orbit

O = G · x, we can uniquely assign the conjugacy class [StabG(x)] of its stabilizer

subgroups. This conjugacy class is called the orbit type of O (and of any point x ∈ O).

The set of points in M whose orbits have the same type (H) (i.e., whose stabilizers are

conjugate to a closed subgroup H ⊂ G) forms a stratum by orbit type, denoted M(H):

M(H) = {x ∈ M | [StabG(x)] = (H)}.

Each M(H) is a G-invariant submanifold of M (possibly empty). For the sake of self-

consistency, we recall here the main statement (see for example [Bre72]) and its proof

about the decomposition of the manifold M into orbit-type strata.

Proposition 1. Let G be a compact Lie group acting smoothly on M. The collection of
non-empty strata {M(H)}, where (H) ranges over all orbit types occurring in M, forms a
partition of M. This partition is a basic stratification. We call this the stratification by

orbit types of M, denoted by StrOT(M,G).
Proof. The fact that {M(H)} forms a partition of M is clear. We need to show the frontier

condition [B]. For compact Lie group actions, the set of orbit types (conjugacy classes

of closed subgroups) is partially ordered. We define (H) ⪯ (K) if H is conjugate to a

subgroup ofK. This means orbits of type (K) are "more singular" (have "larger" stabilizers

in this sense) than or are of the same type as orbits of type (H). The fronftier condition

states that for any orbit type (H):

M(H) =
⋃

(K) s.t. (H)⪯(K)

M(K).

This is a standard result in the theory of transformation groups (see, e.g., [Bre72, Chapter

IV, Theorem 3.3] or similar results in [Pal60]). The proof relies on the Slice Theorem,

which shows that if y ∈ M(H) and StabG(y) is of type (K), then H must be conjugate

to a subgroup of K, i.e., (H) ⪯ (K). Thus, the closure of a stratum M(H) is the union
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of M(H) itself and all strata M(K) corresponding to orbit types (K) that are strictly

more singular than (H) (i.e., (H) ≺ (K)). This satisfies condition [B]. Furthermore,

each stratum M(H) is a locally closed submanifold of M [Bre72, Chapter IV, Thm. 3.3],

inheriting a smooth structure. □

In terms of labels, introduced in Section II Article 5, the orbit-type stratification is stan-

dard and responds to the code [B][LF][M][T0].

Let us now explicit the dependence of the stabilizer representations on the slice along

the submanifold M(H). For all point x ∈ M, let us denote by Nx the tangent subspace

Nx ⊂ Tx(M), normal to the tangent spaceTx(G ·x) ⊂ Tx(M), for a givenG-invariant

Riemannian metric on M. The subspace Nx representing the linear slice at x. While this

statement is commonly found in literature, we include a proof for self-consistency.

Proposition 2. Let G be a compact Lie group acting smoothly on a smooth manifold M.
Let H be a closed subgroup of G. For any connected component C of the orbit type stratum
M(H), there exists a subgroup K conjugate to H such that StabG(x) = K for all x ∈ C.
Furthermore, for any two points x, x′ ∈ C, the slice representations ρx : K → O(Nx) and
ρx′ : K → O(Nx′) are equivalent representations of K.

Proof. All the elements of this proof are taken from Bredon [Bre72] and Palais [Pal60]. Let

C be a connected component of the orbit type stratum M(H). The set M(H) is defined as

{z ∈ M | StabG(z) is conjugate to H}. It is established that M(H) is the disjoint union

of the sets MK = {z ∈ M | StabG(z) = K} for all closed subgroups K conjugate to

H. Furthermore, the set MK is a smooth manifold (possibly empty). This follows from

the Slice Theorem, which implies that MK is locally diffeomorphic to the fixed-point set

of the action of K on a slice, and the fact that the fixed-point set of a Lie group action on

a manifold is a smooth submanifold. Since C is a connected subset of M(H) and M(H) is

the disjoint union of the manifolds MK, C must be entirely contained within a single

MK for some subgroupK conjugate toH. Thus, for all z ∈ C, the stabilizer StabG(z) is

equal to K. In particular, for any two points x, x′ ∈ C, StabG(x) = StabG(x
′) = K.

This proves the first part of the proposition: the stabilizer is constant on any connected

component of M(H).

Now we show that the slice representations at any two points x, x′ ∈ C are equivalent

representations of K. The manifold M is equipped with a G-invariant Riemannian

metric (which exists because G is compact). For any z ∈ C ⊆ MK, the normal space to

the orbit G · z at z is Nz = Tz(G · z)⊥. The dimension of Nz is constant for all z ∈ C.

The collection of these normal spaces forms a smooth vector bundle W|C → C over

the smooth manifold C, where the fiber over z is Nz . The slice representation at z is the

action of the stabilizer K on the fiber Nz , ρz : K → O(Nz).

Since C is a connected component of the smooth manifold MK, for any two points

x, x′ ∈ C, there exists a smooth path γ in C such that γ(0) = x and γ(1) = x′.
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Consider the pullback bundle γ∗(W|C) → R.
5

This is a smooth vector bundle over the

contractible base space, and is therefore trivial.

Let Φ : R × Nx → γ∗(W|C) be a smooth trivialization, where Nx is the fiber over

x = γ(0). For each t ∈ [0, 1], Φt = Φ(t, ·) : Nx → Nγ(t) is a smooth vector space

isomorphism. The slice representation of K on Nγ(t) is ργ(t) : K → O(Nγ(t)). We can

use the isomorphism Φt to transport this representation to the fixed vector space Nx.

Define a family of representations ρ̃t : K → GL(Nx) by:

ρ̃t(k) = Φ−1
t ◦ ργ(t)(k) ◦ Φt for k ∈ K.

This family ρ̃t is a smooth path in the space of linear representations of K on Nx. Since

ργ(t) is an orthogonal representation and Φt is an isomorphism, ρ̃t is equivalent to ργ(t)
for each t.

The space of equivalence classes of smooth (or continuous) finite-dimensional representa-

tions of a compact groupK is discrete (actually finite in our case). Since ρ̃t is a continuous

path in the space of representations, and the equivalence classes form a discrete set, the

representation ρ̃t must belong to the same equivalence class for all t.

In particular, ρ̃0 is equivalent to ρ̃1. ρ̃0 = Φ−1
0 ◦ ργ(0)(k) ◦ Φ0. This representation is

equivalent to ρx. ρ̃1 = Φ−1
1 ◦ ργ(1)(k) ◦ Φ1. This representation is equivalent to ρx′ .

Since ρ̃0 is equivalent to ρ̃1, it follows that ρx is equivalent to ρx′ as representations of

the group K ∼ H. □

8. Klein Stratifications.

In honor of Felix Klein’s Erlangen Program, which characterized geometries by their

transformation groups, the term Klein strata was introduced for diffeological spaces X

[PIZ13, §1.42] to denote the orbits of the group of global diffeomorphisms, Diff(X). The

fact that these orbits constitute a basic stratification, along with variants, was further

discussed, for example in [PIZ25, p. 299].

The notion of stratification is often closely tied to that of singularity. Since singularity is

inherently a local concept, we consider the local geometry of a diffeological space. This

is defined at each point by the germ of the diffeology there [PIZ13, §2.19]. The local

geometry at a point is preserved under the action of local diffeomorphisms.
6

These local

diffeomorphisms form a pseudogroup, which we denote by Diff loc(X), rather than a

group. Importantly, local diffeomorphisms can only map points to other points that

share the same local geometry. This motivates the following definition, which specifies

the variant of Klein strata primarily used in this work:

5
For the sake of diffeology, we consider stationary paths defined on the whole R, that are constant on

]−∞, 0] and also on [1,+∞[.
6

Actually, this would be a formal definition of the “local geometry” of the diffeological space X at a point

x: its orbit by Diff loc(X).
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Definition. Let X be a diffeological space. We call its (local) Klein strata the orbits of its
pseudogroup of local diffeomorphisms, Diff loc(X). They are the sets of points in X sharing
the same local geometry.

While both global Diff(X)-orbits and local Diff loc(X)-orbits provide interesting parti-

tions and are of interest, our focus on local structure and singularities leads us to primarily

adopt the definition based on local diffeomorphisms for the remainder of this paper.

Proposition. The set of (local) Klein strata of a diffeological space X forms a basic
stratification [B], termed the Klein stratification of X. Hence, every diffeological space
possesses a natural stratification intrinsic to its diffeology, revealed by the action of its local
diffeomorphisms. This is the stratification of X by local geometry.

Proof. The proof that the partition into orbits of local diffeomorphisms is a basic stratifi-

cation [B] is analogous to the proof for geometric stratifications by group actions (see

section 6). If a point p in a Klein stratum S1 is in the closure of another Klein stratum S2,

then any point p′ in S1 (which is related to p by a finite chain of local diffeomorphisms

covering a path from p to p′) must also be in the closure of S2. This holds because local

diffeomorphisms map D-open sets to D-open sets [PIZ13, §2.1, §2.5], thereby preserving

the property of neighborhoods intersecting S2. □

IV. Examples

This section presents several examples of quotients of manifolds by compact group actions.

These examples, though straightforward, are selected to illustrate the diverse situations

encountered in the study of such orbit spaces.

9. Example TS2/ SO(3)TS2/ SO(3)TS2/SO(3).
The group SO(3) acts diagonally on the tangent bundle M = TS2 = {(x, v) ∈
S2 ×R3 | ⟨x, v⟩ = 0} by A · (x, v) = (Ax,Av). The stabilizers are:

StabSO(3)(x, v) =

{
{id} if v ̸= 0 (principal type),

SO(2, x) if v = 0 (singular type),

where SO(2, x) is the subgroup fixing x. The orbit type stratification of M consists of

two strata: M({id}) = {(x, v) | v ̸= 0} (the tangent bundle minus its zero section) and

M(SO(2)) = {(x, v) | v = 0} (the zero section, diffeomorphic to S2).

The orbit space Q = M/ SO(3) is diffeomorphic to the interval [0,+∞[ equipped with

the pushforward diffeology by the map sq : (x, v) 7→ ∥v∥2. We denote this space by

[0,+∞[sq. The invariant ∥v∥2 distinguishes the SO(3)-orbits.

The Klein stratification of [0,+∞[sq consists of two strata:

∗ K1 = {0}, corresponding to the singular orbits from M(SO(2)).

∗ K2 = ]0,∞[, corresponding to the principal orbits from M({id}).
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The stratification by orbit types, Q({id}) = ]0,∞[ and Q(SO(2)) = {0}, coincides with

the Klein stratification.

The diffeological dimension map is (by Proposition 2):

∗ For t ∈ K2 = ]0,∞[ (principal points in Q): dimt([0,+∞[sq) = 1.

∗ For t = 0 ∈ K1 (singular point in Q): The stabilizer of (x, 0) is SO(2, x) and

dim0([0,+∞[sq) = 2.

The dimension map separates the orbits. As a diffeological space, TS2/ SO(3) is diffeo-

morphic to the half-line ∆2.

10. Example TP2(R)/ SO(3)TP2(R)/SO(3)TP2(R)/ SO(3).
Consider the tangent bundle of the real projective plane, M = TP2(R). A point in M

is an equivalence class [(x, v)] = {(x, v), (−x,−v)}, where (x, v) ∈ TS2. The group

SO(3) acts diagonally: A · [(x, v)] = [(Ax,Av)]. The stabilizers are:

StabSO(3)[(x, v)] =

{
Z2 if v ̸= 0 (principal type),

O(2, x) if v = 0 (singular type),

where the Z2 stabilizer for v ̸= 0 is generated by the rotation of angle π around the axis

defined by x ∧ v (if x, v are identified with vectors in R3
), and O(2, x) is the subgroup

of SO(3) preserving the line through x. The orbit type stratification of M consists of

two strata: M(Z2) = {[(x, v)] | v ̸= 0} and M(O(2)) = {[(x, v)] | v = 0} (the zero

section, diffeomorphic to P2(R)).

The orbit space Q = M/SO(3) is diffeomorphic to [0,+∞[ equipped with the push-

forward diffeology by the map sq : [(x, v)] 7→ ∥v∥2. We denote this space by [0,+∞[sq.

The Klein stratification of [0,+∞[sq consists of two strata: {0} (from M(O(2))) and

]0,∞[ (from M(Z2)).

The diffeological dimension map is (by Proposition 2):

∗ For t ∈ ]0,∞[ (principal points in Q): dimt([0,+∞[sq) = 1.

∗ For t = 0 (singular point in Q): This point corresponds to orbits in the zero

section M(O(2)). The stabilizer of [(x, 0)] is O(2, x) and dim0([0,+∞[sq) = 2.

In summary for Q ∼= [0,+∞[sq:

∗ Orbit Type Strata (images in Q): Q(O(2)) = {0}, Q(Z2) = ]0,∞[.

∗ Klein Strata: {0}, ]0,∞[.

∗ Dimensions: dimt(Q) = 2 for t = 0, and dimt(Q) = 1 for t ∈ ]0,∞[.

Here again the dimension map separates the points, and TP2(R)/ SO(3) is diffeomor-

phic to the half-line ∆2.

This example further illustrates that distinct G-manifolds, such as (TS2,SO(3)) and

(TP2(R),SO(3)) which have different orbit-type stratifications, can yield diffeomor-

phic orbit spaces (∆2) when equipped with the quotient diffeology.
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11. Example P2(R)/ SO(2)P2(R)/ SO(2)P2(R)/ SO(2).7

The projective space P2(R) is the quotient of S2 by the inversion x 7→ −x. That is, the

set of pairs (x,−x) for all x ∈ S2. Let k ∈ S2 and SO(2, k) be the rotation around k.

Since the inversion commutes with rotation, the action of SO(2, k) on S2 descends to

the quotient P2(R), and

P2(R)/ SO(2, k) = [S2/{±1}]/SO(2, k) = [S2/ SO(2, k)]/{±1}.

Now, S2/ SO(2, k) ≃ [−1,+1]π with π : x 7→ ⟨x, k⟩. The inversion acts then on

[−1,+1]π by t 7→ −t. Thus, the quotientP2(R)/ SO(2, k) is equivalent to the interval

[0, 1]π2 with

P2(R)/ SO(2, k) ≃ [0, 1]π2 , with

{
π2 : P2(R) → [0, 1]

π2 : {x,−x} 7→ ⟨x, k⟩2.

The dimension of [0, 1]π2 at the point 0 is 1, and at the point 1 is 2. In summary:

∗ Orbit Type Strata (images in Q): {0}, {1}, {]0, 1[}.

∗ Klein Strata: {0}, {1}, {]0, 1[}.

∗ dim0([0, 1]π2) = 1, dim1([0, 1]π2) = 2, dimt∈]0,1[([0, 1]π2) = 1.

This example highlights how different singular points in the quotient can have different

diffeological dimensions, reflecting the geometry of the orbits in the manifold that map

to them. In this specific case, the orbit type strata in the quotient coincide with the Klein

strata.

Its geometry, that is to say its diffeology, is interesting and can be described by the proper-

ties of its plots. A plot P : U → [0, 1] is a plot if for any r0 ∈ U:

∗ If P(r0) ∈ ]0, 1[, there exists an open neighbourhood V ⊆ U of r0 such that

P ↾ V is an ordinary smooth map.

∗ If P(r0) = 0, there exists an open neighbourhood V ⊆ U of r0 and a smooth

parametrization Q : V → R such that P ↾ V(r) = Q(r)2.

∗ If P(r0) = 1, there exists an open neighbourhood V ⊆ U of r0 and a smooth

parametrization Q : V → R2
such that P ↾ V(r) = 1− ∥Q(r)∥2.

Another way to understand its structure would be to view it as a space obtained by gluing

a piece of the half-line ∆1 (near 0) and a piece of 1−∆2 (near 1) over an open interval

corresponding to the principal stratum. This shows that the structure of the quotient

ultimately depends little on how it was formed, while retaining its smooth properties.

12. Example (S2 × S2)/ SO(3)(S2 × S2)/SO(3)(S2 × S2)/ SO(3).

7
Thanks to Jordan Watts for suggesting this example.
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We consider the group SO(3) acting diagonally on S2 × S2 by A · (x, y) = (Ax,Ay).

The stabilizers are:

StabSO(3)(x, y) =

{
{id} if x ̸= y and x ̸= −y (principal type),

SO(2, x) if x = y or x = −y (singular type),

where SO(2, x) is the subgroup fixing x (isomorphic to SO(2)). The orbit type stratifi-

cation of M = S2 × S2 thus consists of two strata: M({id}) and M(SO(2)).

The orbit space Q = M/ SO(3) is diffeomorphic to the interval [−1,+1] equipped

with the pushforward diffeology from M by the map π : (x, y) 7→ ⟨x, y⟩ (the standard

inner product in R3
). We denote this diffeological space by [−1,+1]π . The map π

induces a diffeomorphism π̄ : Q → [−1,+1]π . The invariant ⟨x, y⟩ distinguishes the

SO(3)-orbits.

The Klein stratification of [−1,+1]π (by orbits of local diffeomorphisms) consists of

two strata:

∗ K1 = {±1}, corresponding to the images of singular orbits from M(SO(2)).

∗ K2 = ]−1, 1[, corresponding to the images of principal orbits from M({id}).

In this case, the stratification by images of orbit types,Q({id}) = ]−1, 1[ andQ(SO(2)) =

{±1}, coincides with the Klein stratification.

The diffeological dimension map is (see Proposition 2):

∗ For t ∈ K2 = ]−1, 1[ (principal points in Q): dimt([−1,+1]π) = 1.

∗ For t ∈ K1 = {±1} (singular points in Q): These points correspond to orbits

like G · (x, x) in M, with stabilizer SO(2, x) and dimt([−1,+1]π) = 2.

The dimension map separates the orbits. As a diffeological space, (S2 × S2)/ SO(3) is

diffeomorphic to I2, a space that we discuss further.

13. Example P2(C)/ SO(3)P2(C)/ SO(3)P2(C)/ SO(3).
Consider the projective space P2(C) as the quotient of S5 ⊂ R3 ×R3

by SO(2). Let

(X,Y) ∈ S5 :

SO(2) ∋
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
:

(
X

Y

)
7→

(
cos(θ)X− sin(θ)Y

sin(θ)X + cos(θ)Y

)
.

And A ∈ SO(3) acts diagonally:

A : (X,Y) 7→ (AX,AY).

This action descends to the quotient and defines an action of SO(3) on P2(C). The

space of orbits P2(C)/ SO(3) is realized as the interval [0, 1] by the projection:

π : (X,Y) 7→ 1− 4∥X ∧Y∥2. (1)

That is,

P2(C)/ SO(3) ≃ [0, 1]π.



ON DIFFEOLOGY OF ORBIT SPACES 19

There are two singular orbits: O∧ and O⊥ images of the subspaces,

X ∧Y = 0 for O∧, and ∥X ∧Y∥2 = 1

4
for O⊥.

The orbit O∧ is made of collinear pairs X //Y and the orbit O⊥ is made of orthogonal

pairs X ⊥ Y. The description of this action was primarily described in [PI91]. We

summarize the result here:

The tubular neighbourhood of the orbit O∧ has type SO(3)×O(2) R
2

, where O(2) ⊂
SO(3) acts by A(R, ξ) = (RA−1,Aξ). The singular stabilizer O(2) ⊂ SO(3) is the

subgroup generated by the rotations SO(2) around some axis and the reflection with re-

spect to the orthogonal plane to this axis. This is a semi direct product ofSO(2) by {±1}.

The orbit O∧ is of type (SO(3)/ SO(2))/{±1} ≃ P2(R). The principal stabilizer has

type Z/2Z corresponding to the reflections. The local quotient is R2/O(2) = ∆2 and

the dimension of P2(C)/ SO(3) at the point O∧ is 2.

The tubular neighbourhood of the orbitO⊥ is of typeF2 (in [PI91]), that isSO(3)×SO(2)

R2
, where A ∈ SO(2) acts by A · (R, ξ) = (RA−1,A2ξ). The principal stabilizer has

(of course) type Z/2Z, identifying SO(2) with U(1) ⊂ C it would be {eiπ, 1}. The

singular stabilizer for the orbit O⊥ is SO(2), so O⊥ has type SO(3)/SO(2) ≃ S2. The

quotient space is then diffeomorphic to R2/ SO(2) with SO(2) acting by A · ξ = A2ξ.

But the orbit space is still the space of concentric circles which coincides with the standard

∆2. The dimension of P2(C)/SO(3) at the point O∧ is also 2.

In summary:

(a) The quotient of P2(C)/ SO(3) is diffeomorphic to [0, 1]π .

(b) The point 0 corresponding to the orbit O⊥, with singular stabilizer SO(2), has a

local structure of ∆2 = R2/SO(2) and dimO⊥(P
2(C)/ SO(3)) = 2.

(c) The point 1 corresponding to the orbit O∧, with singular stabilizer O(2), has a local

structure of 1−∆2 at 1, equivalent to R2/O(2), and dimO∧(P
2(C)/ SO(3)) = 2.

(d) There are three orbit-type strata: {0}, {1}, {]0, 1[.
(e) There are two Klein strata: {0, 1}, {]0, 1[}, since the quotient P2(C)/SO(3) ≃
[0, 1]π has the same local structure ∆2 on the neighbourhood of 0 and 1. This shows

clearly that even if the projection π : M → M/G is a stratified subduction (as will be

made explicit further), this map is not necessarily injective.

Note. Diffeologically speaking, the quotients of S2×S2 and P2(C) by SO(3) are diffeo-

morphic. It is noteworthy that S2 × S2 can admit a family of non-equivariantly isomor-

phic (or non-equivariantly symplectomorphic) SO(3)-actions, indexed bym ∈ Z−{0}
(but with same singular stabilizers), as detailed in [PI91]. They nevertheless all yield this

same diffeological quotient space [−1,+1]π , while the actions differ (e.g., the effective ac-

tion of the SO(2) stabilizer on the 2-dimensional slice at singular points is by A 7→ Am
),

the resulting local quotient model R2/ SO(2)action Am is always diffeomorphic to ∆2.
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This implies that the diffeological dimension map and the overall structure of the quo-

tient space are identical for all these actions, highlighting that the diffeological quotient

captures certain fundamental geometric features determined by the invariant theory and

local singularity types, which can be common across distinct G-manifold structures.

14. Example: P2(C)/U(1)P2(C)/U(1)P2(C)/U(1).
This example is extracted from [Aud91]. Consider the action of the compact Lie group

G = U(1) on the smooth manifold M = P2(C) given, in projective notation, by:

τ · [z1 : z2 : z3] = [z1 : τz2 : τ
2z3] for τ ∈ U(1)

We analyze the stabilizers of points in P2(C) under this action to determine the stratifi-

cation of M and the resulting structure of the orbit space P2(C)/U(1).

A point [z1 : z2 : z3] ∈ P2(C) is stabilized by τ ∈ U(1) if it exists λ ∈ C∗
such that

z1 = λz1, τz2 = λz2 and τ2z3 = λz3.

Let P0,P1,P2 be the three points:

P0 = [1 : 0 : 0], P1 = [0 : 1 : 0], P2 = [0 : 0 : 1],

we get the following stabilizers:

(1) StabU(1)(P0,P1,P2) = U(1).

(2) StabU(1)([z1 : 0 : z3]) = {±1}, with z1 ̸= 0 and z3 ̸= 0.

(3) StabU(1)([z1 : z2 : z3]) = {1}, with z2 ̸= 0 and [z1 : z2 : z3] ̸= P1.

Stratification by Exact Stabilizer: The sets of points with a specific exact stabilizer are:

(1) MU(1) = {P0,P1,P2} are the singular fixed points.

(2) M{±1} = {[z1 : 0 : z3] | z1 ̸= 0, z3 ̸= 0} are the singular exceptional points.

(3) M{1} = {P = [z1 : z2 : z3] | z2 ̸= 0 and P ̸= P1} are the principal points.

These sets form a partition and a stratification of M. Since U(1) is abelian, conjugacy

classes of subgroups are just the subgroups themselves, and the orbit types strata are just

these ones.

Connected Components of Strata:

∗ M{1} the principal stratum is connected.

∗ M{±1} is a singular exceptional stratum diffeomorphic toC∗
, which is connected.

∗ MU(1) = {P0,P1,P2} is the stratum of fixed points, it is discrete and has 3

connected components.

As discussed in the proof of Article 7 Proposition 2: the connected components of the

orbit-type strata M(H) are precisely the connected components of the sets MK for K

conjugate to H. In this example, since U(1) is abelian, the connected components of the

orbit-type strata are the connected components of the MH strata listed above.

Slice Representations on Connected Components:
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(a) For points in x ∈ M{1}, the slice representation is trivial and constant on the whole

principal stratum.

(b) For points in M{±1}, the slice representation is an action of Z2 on Nx. This repre-

sentation is constant up to equivalence on M{±1} since it is connected. Thus, we can

choose the point x = (0, 1) ∈ M{±1}. The local model is the orthogonal subspace of

C×C tangent to the orbit U(1) · (0, 1). That is, C× iR, and the linear action of the

stabilizer is ε : (w, it) → (w, εit), with ε ∈ {±1}.

(c) For points in M{±1}, the normal spaces to the orbits are just C×C, and the slice

representations on the connected components of MU(1) are:

∗ At P0: ρ0(τ) · (w2, w3) = (τw2, τ
2w3).

∗ At P1: ρ1(τ) · (w1, w3) = (τ̄w1, τw3).

∗ At P2: ρ2(τ) · (w1, w2) = (τ̄2w1, τ̄w2).

Comparing the slice representations ρ0, ρ1, ρ2, we see that ρ0 is equivalent to ρ2 by

mapping τ 7→ τ̄ and exchanging w1 ↔ w3.

(∗) The decomposition into orbits ofU(1) in the local modelE = C×C corresponding

to ρ0 ≃ ρ2 is:

EU(1) = {0}, E{±1} = {0} ×C∗, E{1} = C∗ ×C.

We notice that the singular orbit EU(1) is in the closure of the exceptional line E{±1}.

(∗) The decomposition into orbits ofU(1) in the local modelE = C×C corresponding

to ρ1 is:

EU(1) = {(0, 0)}, E{1} = C×C− {(0, 0)}.
We notice the absence of the exceptional line E{±1}, the only singular strata is {P1}.

Local Model and Klein Strata: Based on the slice representations,

(a) The neighbourhood of {P0} and {P2} in P2(C)/U(1) represented by the local

model E/ρ0 ≃ E/ρ2 is diffeomorphic toC×∆1, where ∆1 = R/{±1} is an orbifold.

Thus, any open neighbourhood of {P0} or {P2} in P2(C)/U(1) contains orbifold

points.

(b) The neighbourhood of {P1} in P2(C)/U(1) represented by the local model E/ρ1
contains only principal points at the exclusion of {P1}. The singular point {P1} is iso-

lated among the principal points in the neighbourhood which does not contains orbifold

points. Now, the isotropy group (or structure group) of an orbifold is a diffeological

invariant [IKZ10, Lemma 21], thus, {P1} ∈ P2(C)/U(1) cannot be mapped to either

{P0} or {P2} by a local diffeomorphism because of these orbifold points in their neigh-

bourhoods. Thus, the point {P1} ∈ P2(C)/U(1) is fixed by local diffeomorphisms.

(c) Therefore, based on the distinct local geometries captured by these local models, the

Klein stratification of P2(C)/U(1) consists of 4 strata:

Kprinc, K{±1}, Kfixed,1 = {{P0)}, {P2}} and Kfixed,2 = {P1}.
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Moreover, the dimension map on P2(C)/U(1) takes the value 3 on Kprinc ∪ K{±1}
and 4 on Kfixed,1 ∪ Kfixed,2. It does not distinguish between Kprinc and K{±1}, nor

between Kfixed,1 and Kfixed,2.

This example particularly also shows that the projection orbit : M → M/G does not

necessarily map orbit-type strata onto Klein strata, but specifically illustrates how distinct

connected components of the same orbit-type stratum (MU(1) fixed points) can map to

different Klein strata (e.g., {P1}), while other components (e.g., {{P0)}, {P2}}) map

to the same Klein stratum (Kfixed,1).

15. Example: Geodesics on the 2-Torus.
To illustrate the broader applicability of Klein stratifications beyond quotients by compact

Lie group actions, we now consider the diffeological space of geodesics on the 2-torus.

The space of oriented unparametrized geodesics of the flat 2-torus T2 = R2/Z2
is not a

manifold but is a natural diffeological space [PIZ25, p. 268, 279].
8

It is diffeomorphic to

the quotient space

Geod(T2) ≃ (S1 ×R)/Z2,

where S1 ×R represents Geod(R2), the space of affine lines in the Euclidean plane R2

(parameterized by direction u ∈ S1 and signed distance ρ ∈ R from the origin). In this

model, the Z2
-action is defined for k ∈ Z2

by

k · (u, ρ) = (u, ρ+ ⟨u, k⟩),

where ⟨·, ·⟩ denotes the standard scalar product in R2
. Let class(u, ρ) denote the orbit

of (u, ρ) under this Z2
-action. Then

class(u, ρ) = (u, [ρ]u), where [ρ]u = {ρ+ ⟨k, u⟩ | k ∈ Z2}.

If u = (cos θ, sin θ), then [ρ]u = {ρ+ n cos θ +m sin θ | (n,m) ∈ Z2}.

The space Geod(T2) admits a natural projection pr1 : Geod(T2) → S1 mapping

(u, [ρ]u) 7→ u. The fiber over u ∈ S1 is pr−1
1 (u) = Tu = {(u, [ρ]u) | ρ ∈ R} ∼=

R/Γu, where Γu = {⟨k, u⟩ | k ∈ Z2} is the (diffeologically) discrete subgroup of R

generated by projections of Z2
onto the line in direction u.

∗ If the slope of u is rational (i.e., tan θ ∈ Q ∪ {∞}), Γu is isomorphic to aZ for

some a ̸= 0. Then Tu
∼= R/aZ ≃ S1 (a circle).

∗ If the slope of u is irrational, Γu is a dense subgroup of R. Then Tu
∼= R/Γu is

an irrational torus.

Thus, Geod(T2) is a diffeological space whose fibers Tu can be circles or these irrational

tori, depending on the direction u.

The Klein strata of Geod(T2) (orbits under Diff(Geod(T2))) are described by the

following results, adapted from [PIZ25, §72].

8
Note that in contrast, the space of oriented unparametrized geodesics of the 2-sphere S2

is a manifold

diffeomorphic to S2
itself.
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Proposition 1. Any diffeomorphism f ∈ Diff(Geod(T2)) induces a diffeomorphism
φ : S1 → S1 on the base space of directions, such that pr1 ◦f = φ ◦ pr1. This induced
map φ is realized by an element M ∈ GL(2,Z) acting on S1 by u 7→ Mu/∥Mu∥. This
yields a group homomorphism Ψ : Diff(Geod(T2)) → GL(2,Z) given by Ψ(f) = M.
This homomorphism fits into a short exact sequence:

1 → J = ker(Ψ) → Diff(Geod(T2))
Ψ−→ GL(2,Z) → 1,

where J is the group of gauge transformations mapping the fibers to themselves.
Proposition 2. The Klein strata of Geod(T2) under the action of Diff(Geod(T2))

are precisely the preimages under pr1 of the orbits of GL(2,Z) on S1. A Klein stratum
consists of all fibers Tu where u belongs to a single GL(2,Z)-orbit in S1. Consequently,
a Klein stratum will either consist entirely of fibers that are circles (if it corresponds to the
GL(2,Z)-orbit of rational directions) or entirely of fibers that are diffeomorphic irrational
tori (if it corresponds to a GL(2,Z)-orbit of irrational directions). Then, the space K of the
Klein strata of Geod(T2) is

K := Geod(T2)/Diff(Geod(T2)) ≃ S1/GL(2,Z).

In terms of labels, introduced in Section II Article 5, the Klein stratification of Geod(T2)

responds to the code [B][LF][GK][M][T0].

Remark on the Nature of Strata inGeod(T2)Geod(T2)Geod(T2). This example illustrates the robustness

of the Klein stratification in diffeology, extending beyond spaces typically considered

in classical stratification theory. The Klein strata here are generally not manifolds. For

instance, a stratum corresponding to the dense GL(2,Z)-orbit of rational directions

in S1 is itself a dense subset of Geod(T2), and its closure is the entire space. Despite

this complex topological behavior, where strata may not be submanifolds and frontier

conditions are met in a broad sense, the Klein stratification reveals crucial geometric

information. It precisely distinguishes sets of fibers based on their diffeomorphic type:

fibers Tu and Tu′ belong to the same Klein stratum if and only if u and u′ are in the same

GL(2,Z)-orbit. This demonstrates that the Klein stratification provides a meaningful

structural decomposition even for intricate diffeological spaces.

16. Example: Orbifolds.
An important class of diffeological spaces whose Klein stratification has a clear clas-

sical counterpart is that of orbifolds. As defined in [IKZ10],
9

an n-orbifold is a dif-

feological space everywhere locally diffeomorphic to Rn/Γ for some finite subgroup

Γ ⊂ GL(n,R), which may change from point to point. The group Γ, unique up to

conjugation in GL(n,R) for a given local model at a point, is called the structure group
or isotropy group at that point [IKZ10, Definition 27].

9
As was shown in this paper, the diffeological definition of an orbifold is equivalent to the orginal

definition of a “V-manifold” by Ichiro Satake in [Sat56].
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The Klein stratification of an orbifold
10

is described by the following proposition:

Proposition. The Klein strata of orbifolds are precisely the sets of points whose structure
groups are conjugate.
Therefore, the Klein stratification of an orbifold coincides precisely with the classical

stratification defined by the conjugacy classes of its structure groups. This coincidence

was also noted in [GIZ23]. The diffeology of an orbifold thus inherently encodes and

distinguishes these classical singularity types.

This proposition is a direct consequence of the fundamental Lemma 21 in [IKZ10] :

Lemma 21. Let Γ ⊂ GL(n,R) and Γ′ ⊂ GL(n′,R) be finite subgroups. A local
diffeomorphism between Rn/Γ and Rn′

/Γ′ mapping the origin to the origin exists if and
only if n = n′ and Γ is conjugate to Γ′ in GL(n,R).
Furthermore, as noted in Proposition “Orbifolds within Orthofolds” in Section 1, the

diffeological dimension of an n-orbifold is constant and equal to n at every point. This

constancy of dimension is a property that distinguishes orbifolds from more general

orthofolds.

In terms of labels, introduced in Section II Article 5, it has been proved in [GIZ23] that

the Klein stratification of an orbifold responds to the code [B][LF][GK][M][T0].

V. Orbit Type versus Klein

This section clarifies the relationship between the orbit-type stratification on the manifold

and the Klein stratification on the space of orbits, equipped with the quotient diffeology.

17. Stratified Orbit Map.
Let M be a manifold with a smooth action of a compact group G. We have seen that M is

stratified by orbit type on the one hand, and on the other hand, the space of orbits M/G

is stratified by the action of the local diffeomorphisms. It is thus natural to compare these

two different stratifications, since one is a stratification of the manifold M and the other

one is a stratification of the quotient space M/G.

We have seen that the space of orbitsM/G is locally modeled by the quotientsE/Hwhere

E and H are the slices and the stabilizers of orbits. Precisely, for any point O ∈ M/G,

there is a local diffeomorphism from E/H to M/G mapping 0 ∈ E/H to O, where E is

a slice at x ∈ O and H = StabG(x). Thus, we have the natural property:

Proposition. Let x, x′ ∈ M be points belonging to the same connected component of an
orbit-type stratum M(H). Then their orbits O = orbit(x) and O′ = orbit(x′) belong to
the same Klein stratum in M/G. In other words, the subduction orbit : M → M/G is
stratified with respect to the stratification by connected components of the orbit-type strata
on M and the Klein stratification on M/G.

10
Which is not necessarily the orbit space of the action of a finite group on a manifold.
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Let us then denote byStr∗OT(M,G) the set of connected components of orbit-type strata

of M under G, and StrK(M/G) the set of Klein strata of M/G. The projection orbit :

M → M/G descends into a surjective map orbit∗ : Str∗OT(M,G) → StrK(M/G),

according to the diagram:

M M/G

Str∗OT(M,G) StrK(M/G)

orbit

Str∗OT StrK

orbit∗

Note. This reveals a more nuanced situation than one might initially expect regarding

the map orbit : M → M/G being stratified with respect to the orbit-type stratification

on M and the Klein stratification on M/G. This is perhaps a more interesting situation.

One might have conjectured an isomorphism from StrOT(M,G) to StrK(M/G), but

this conjecture is refuted by Example 13 (SO(3) acting on P2(C)), where two non-

equivalent singular orbits (O∧ and O⊥) are mapped to the same fixed-point orbit in

P2(C)/ SO(3). One might then weaken this conjecture to assume that the map orbit :

M → M/G is merely stratified with respect to the orbit-type stratification on M and

the Klein stratification on M/G, without requiring it to induce an isomorphism. Even

this weaker conjecture is refuted by Example 14 (U(1) acting on P2(C)), where distinct

connected components of the same orbit-type stratum (the fixed points stratum) are

mapped to different Klein strata. Therefore, the result we have proved is the strongest

possible on a general basis: that the map orbit : M → M/G is stratified with respect to

the stratification by connected components of the orbit-type strata on M and the Klein

stratification on M/G. And, as shown by Example 14, the induced map on the level of

strata, orbit∗ : Str∗OT(M,G) → StrK(M/G), is not necessarily injective.

It also reveals a fundamental aspect of diffeological quotients: once an orbit space Q =

M/G is formed and its diffeology identified, it possesses an intrinsic geometric nature that

can be independent of its specific "constructor" (M,G). For instance, non-equivalent

SO(3)-actions on S2 × S2 [PI91] yield the same orbit space as P2(C)/SO(3). Despite

originating from different manifolds or distinct (non-equivalent) group actions, they

can all result in diffeological orbit spaces that are diffeomorphic to a canonical space,

say I2 = [0, 1]2. This space I2 can be defined intrinsically by its plots, without prior

reference to any M/G construction: A parametrization P : U → [0, 1] (where U is an

open domain in some Rk
) is a plot of I2 if for every r0 ∈ U:

(1) If P(r0) ∈ ]0, 1[, then there exists an open neighbourhood V ⊆ U of r0 such

that P ↾ V is an ordinary smooth map (into R, with values in ]0, 1[).

(2) If P(r0) ∈ {0, 1} (i.e., an endpoint), then there exists an open neighbourhood

V ⊆ U of r0 and a smooth parametrization Q : V → R2
such that P ↾ V(r) =

∥Q(r)∥2 or P ↾ V(r) = 1− ∥Q(r)∥2, depending if P(r0) = 0 or 1.
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This intrinsic definition characterizes the diffeology of spaces like ∆2 at its origin. This

construction suggests other "canonical singular spaces" independent of any specific quo-

tient origin.
11

For example:

One could generalize I2 to In,m = [0, 1]n,m, a space whose diffeology is defined by

plots that, near the endpoint 0, locally factor through the squared norm map from Rn
,

and near the endpoint 1, locally factor through the map v 7→ 1 − ∥v∥2 from Rm
.

Locally, near its endpoints 0 and 1, such an In,m is locally diffeomorphic to Rn/O(n) or

Rm/O(m) (specifically, to ∆n and 1−∆m near its endpoints). Yet, these spaces, such

as I2 and the more general In,m, are defined directly by their plots, without needing to

first find a specific manifold M and a compact group G such that In,m ≃ M/G.
12

This intrinsic definability is what it means for these diffeological geometric constructs to be

"independent of a quotient construction" and to "have a life of their own." They become

fundamental building blocks or model singularities within the category of diffeological

spaces.

VI. Concluding Remarks

In this paper, we have demonstrated how the framework of diffeology, particularly

through the notion of Klein stratification and its intrinsic dimension map, provides

valuable tools for analyzing the structure of orbit spaces M/G arising from the smooth

action of a compact Lie group G on a manifold M.

We established the fundamental formula dimO(M/G) = dim(M)− dim(O), which

offers a clear understanding of how the diffeological dimension of the quotient space

at a point O reflects the dimension of the corresponding orbit O ⊂ M. This formula

highlights that singular points in the orbit space (corresponding to lower dimensional

orbits in M) tend to have higher diffeological dimensions.

Furthermore, we investigated the relationship between the classical orbit-type stratifica-

tion of M and the Klein stratification of M/G (defined by local diffeomorphisms). We

showed that the canonical projection orbit : M → M/G induces a surjective stratified

map from the space of connected components of orbit-type strata in M to the space of

Klein strata in M/G.

Crucially, our examples demonstrate that this induced map is not necessarily injective.

Distinct orbit types strata in M can map to points belonging to the same Klein stratum in

M/G, and even distinct connected components of the same orbit-type stratum can map

to points belonging to different Klein strata. This finding reveals a profound aspect of

diffeological quotients: the resulting space M/G possesses an intrinsic smooth identity,

defined by its diffeology and its local diffeomorphism pseudogroup, which can unify

11
This is why we introduced this new category of orthofolds to clarify this point that we may start from

group action on manifolds but we land in the category of orthofolds.

12
Actually, we met the orthofold I1,2 as the quotient P2(R)/SO(2).
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points originating from different orbit structures in the manifold M. This intrinsic

identity is fundamentally tied to the local structure of the quotient, which is locally

diffeomorphic to quotients of Euclidean spaces by orthogonal group actions, motivating

the potential study of such spaces as a distinct class (orthofolds).

These results underscore the utility of diffeology in providing a consistent and nuanced

language and tools for the study of singular spaces arising from group actions. By cap-

turing the complete smooth structure that remains after reduction, the diffeological

approach offers a richer understanding of the quotient space’s geometry than its topology

alone, providing advantages even for quotients with a well-behaved topology.
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