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Preface

Since its creation, in the early 1980s, diffeology has become an alter-
native to —or rather an extension of— traditional differential geom-
etry. With its developments in higher homotopy theory, fiber bun-
dles, modeling spaces, Cartan-de Rham calculus, moment map and
symplectic program, for examples, diffeology now covers a large spec-
trum of traditional fields and deploys them from singular quotients
to infinite-dimensional spaces — and sometimes mixes the two —
treating mathematical objects that are or are not strictly speaking
manifolds, and other constructions, on an equal footing in a common
framework.

We shall see some of its achievements through a series of examples,
chosen because they are not covered by the geometry of manifolds,
because they involve infinite-dimensional spaces or singular quotients,
or both.

The growing interest in diffeology comes from the conjunction of two
strong properties of the theory:

(1) First of all, the category {Diffeology} is stable under all set-
theoretic constructions: sums, products, subsets, and quotients. One
says that it is a complete and co-complete category. The space of
smooth maps in diffeology has itself a natural functional diffeology
for which the category is also Cartesian closed. This allows us to treat
spaces of smooth maps between spaces as ordinary spaces. Mathe-
maticians like these kind of categories for their stability with respect
to set theoretic constructions.

vii
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viii PREFACE

(2) Just as important: quotient spaces, even heavily non-Hausdorff,
Sikorski or Frölicher [KM97] etc. get a natural non-trivial and mean-
ingful diffeology. This is particularly true of the irrational tori, where
it all began, a non-Hausdorff quotients of the real line by a dense sub-
group.1 They own, as we shall see, a non trivial diffeology, capturing
faithfully the intrication of the subgroup into its ambient space. This
crucial property will be the raison d’être of many new constructions,
or wide generalizations of classical constructions, that cannot exist
in almost all other extensions of differential geometry.2

The handling of any kind of singularities, maybe more than the inclu-
sion of infinite-dimensional spaces, reveals how diffeology changes the
way we understand smoothness and discriminates this theory among
the various alternatives. See, for example, the use of dimension in
diffeology,3 which distinguishes between the different half lines, quo-
tients Rn/O(n), on a pure differential geometry level.

In this regard, we can distinguish several types of singularities:

(a) A space can be singular when it presents a fatal mismatch between
its topology and its diffeology, as in the case of the irrational torus.

(b) A point in a space can be singular when it behaves differently
from other points under the action of diffeomorphisms. This is what
happens in orbifolds, for example.

(c) A point in an embedding can behave differently from other points
under the action of ambient diffeomorphisms. This is the case of the
cusp in the semi-cubic.

1More generally, quotient of Euclidean spaces Rn by generating dense and dis-
crete (in the sense of diffeology) subgroups. They are also quotient of ordinary tori
Tn by dense foliations.

2The kind of spaces that are trivial under the various generalizations of C∞

differential geometry : I am not considering the various algebraic generalizations
that do not play on the same level of intuition and generality and do not concern
exactly the same sets/objects. We’re indeed interested in differential geometry in
the broadest sense.

3See [PIZ07].
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Figure 1. The scope of diffeology.

The Figure 1 shows the inclusivity of diffeology, with respect to dif-
ferential constructions, in comparison with the classical theory.

The story began in the early 1980s, when Jean-Marie Souriau intro-
duced his axiomatic called difféologies in a paper titled “Groupes
Différentiels” [Sou80]. It was defined as a formal but light struc-
ture on groups,4 and it was designed for dealing easily with infinite-
dimensional groups of diffeomorphisms, in particular the group of
symplectomorphisms or quantomorphisms. He named the groups
equipped with such a structure groupes différentiels,5 as announced
in the title of his paper.6 His definition was made of five axioms
that we can decompose today into the first three that gave later the

4Compared to functional analysis heavy structures.
5Which translates in to English as “differential” or “differentiable groups.”
6Actually, difféologies are built on the model of K.-T. Chen’s differentiable

spaces [Che77], for which the structure is defined over convex Euclidean subsets
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notion of diffeology on arbitrary sets, and the last two, for the com-
patibility with the internal group multiplication. But it took three
years, from 1980 to 1983, to separate the first three general axioms
from the last two specific ones and to extract the general structure of
espace différentiel from the definition of groupe différentiel. It is in
particular the results on the irrational torus [DI83] and the develop-
ment of homotopy [Igl85], that made urgent and unavoidable a formal
separation between groups and spaces in the domain of Souriau’s dif-
ferential structures, as that gave a new spin to the theory as we know
it today.7

Since its inception, the theory has evolved significantly and the book
Diffeology is certainly a reference for the basic areas of the theory. I
refer to it as the “textbook” in the following [TB].

This book, Lectures on diffeology, has not the same role, it is not a
rewriting of the texbook despite having the same basis. The first half
consists of notes from a series of lectures I gave at Shantou University
in 2020/21, at the initiative of Enxin Wu, as part of a Chinese pro-
gram inviting foreign professors. Writing down the lectures notes was
part of the contract. In writing them, I’ve tried not to copy verbatim
(although this is sometimes unavoidable) parts of the textbook, as it
is more a support for these lectures. Instead, I’ve tried to extract the
spirit of the constructions rather than their formalization. Readers
can always refer to the relevant passage in the textbook for further
details. I’ve tried to highlight the most important constructions that
underpin the various branches of differential geometry, such as ho-
motopy, fiber bundles, differential calculus and so on. And to show
how they morph into diffeology, what makes them similar and what
makes them different from what we are used to.

The second part of the book is a series of blog-notes I have posted on
my website. These are various notes, remarks or exercises that I felt

instead of open Euclidean domains. That makes diffeology more suitable to extend-
ing differential geometry than Chen’s differentiable spaces, which focus more on
homology and cohomology theories.

7I talk more on this story in the postface.
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were interesting enough to share. I hope they will encourage some
readers to develop the ideas or constructions they introduce. I am
thinking in particular of Riemannian diffeology, which is still only
a program. Symplectic diffeology, which is already well-developed,
still needs more thought before it can become a acomplished theory.
I have not been able to incorporate the recent developments and ex-
ample of Čech cohomology that I have presented elsewhere, perhaps
a future edition of these lectures will do justice to this issue.

And, this is because this book is more a work in progress than a
finished thought, that I decided to present it as a series of typed notes,
which explains it particular display and the choice of typography.

On an entirely different note, the special properties of diffeology:
complete, co-complete and cartesian closed, have made this category
a tool of choice for categoricians, especially in differential homotopy
and model category.8 Japan and China have got the lead in these two
fields, that deserves to be mentioned. I asked Enxin Wu to contribute
to this book on the subject. He gracefully accepted to write a short
text which I have appended as a first step in this direction.

In conclusion, I will try to say why, from my point of view, diffeology
is the perfect framework for differential geometry, to the point that
it is exactly what we expect differential geometry to be. First of all,
the geometer will find pleasant and useful the flexibility of diffeology,
to extend in a unique formal and versatile framework, different con-
structions in various fields, without inventing each time a heuristic
framework that momentarily satisfies its needs.

Then, beyond all these circumstances and technicalities, what does
diffeology have to offer on a more formal or conceptual level? The
answer lies partly in Felix Klein’s Erlangen program [Kle72] :

The totality of all these transformations we desig-
nate as the principal group of space-transformations;

8I cite just a couple of names on these subfields in rapid development, for exam-
ple [CW14] in model category, and [SYH18, Kih19, Kur20] in differential homotopy.
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geometric properties are not changed by the trans-
formations of the principal group. And, conversely,
geometric properties are characterized by their re-
maining invariant under the transformations of the
principal group. . .

As a generalization of geometry arises then the
following comprehensive problem:

Given a manifoldness and a group of transfor-
mations of the same; to investigate the configura-
tions belonging to the manifoldness with regard to
such properties as are not altered by the transfor-
mations of the group.

As we know, these considerations are today regarded by mathemati-
cians as the modern interpretation of the word/idea of geometry. A
geometry is given as soon as a space and a group of transformations
of this space are given.9.

Consider, for example, Euclidean geometry, defined by the group
of Euclidean transformations, our principal group, on the Euclidean
space. We can interpret, for example, the Euclidean distance as the
invariant associated with the action of the Euclidean group on the set
of pairs of points. We can superpose a pair of points onto another pair
of points, by an Euclidean transformation, if and only if the distance
between the points is the same for the two pairs.10 Hence, geometric
properties or geometric invariants can be regarded as the orbits of
the principal group in some spaces built on top of the principal space,
and also as fixed/invariant points, since an orbit is a fixed point in the
set of all the subsets of that space. In brief, what emerges from these
considerations suggested by Felix Klein’s principle is the following:

9Jean-Marie Souriau reduces the concept of geometry to the group itself [Sou03]
But this is an extreme point of view I am not confident to share, for several reasons.

10We could continue with the case of triangles and other elementary construc-
tions – circles, parallels etc. – involving the nature of stabilizers. We can compare
between Euclidean and symplectic geometry, for example, from a strict Kleinian
point of view. See the discussion in [PIZ02].
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Claim. A geometry is associated with/defined by a principal group of
transformations of some space, according to Klein’s statement. The
various geometric properties/invariants are described by the various
actions of the principal group on spaces built on top of the principal
space: products, sets of subsets, and so on. Each one of these prop-
erties, embodied as orbits, stabilizers, quotients, and so on, captures
a part of this geometry.

Now, how does diffeology fit to this context?

∗ One can regard a diffeological space as the collection of the plots
that gives its structure. This is the passive approach.

∗ Or we can look at the space through the action of its group of
diffeomorphisms:11 on itself, but also on its powers or parts or maps.
This is the active approach.

This dichotomy appears already for manifolds, where the change of
coordinates (transition functions of an atlas) is the passive approach.
The active approach, as the action of the group of diffeomorphisms,
is often neglected, and there are a few reasons for that. Among
them, the group of diffeomorphisms is not a Lie group stricto sensu
– it does not fit in the category {Manifolds} – and that creates a
psychological issue. A second reason is that its action on the manifold
itself is transitive,12 there are no immediate invariants, one having
first to consider some secondary/subordinate spaces to make the first
invariants appear.

These obstacles, psychological or real, vanish in diffeology. First of
all, the group of diffeomorphisms is naturally a diffeological group.
And the square, discussed in one of the lectures, is an example of
a space where the action of the group of diffeomorphisms, the main
group in Klein’s sense, captures a good first image of its geometry.13

11We consider more precisely the action of the pseudo-group of local
diffeomorphisms.

12Generally, manifolds are regarded as connected, Haussdorf, and second
countable.

13And not just of its topology.
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Indeed, it has three orbits: the corners, the edges and the interior.
Any diffeomorphism preserves separately the interior of the square
and its border, which is a consequence of the D-topology.14 But the
fact that a diffeomorphism of the square cannot map a corner into
an edge is a typical smooth property.

Klein’s principle can already be tested on this simple example. As
the square is naturally an object of theory, there’s no need for an
heuristic extension here.

Claim. Considering the group of diffeomorphisms of a diffeological
space as its principal group, we can look at diffeology as the formal
framework that makes differential geometry, the geometry — in the
sense of Felix Klein — of the group of diffeomorphisms. Or possibly,
the (larger) pseudogroup of local diffeomorphisms.15

Actually, the action of local diffeomorphisms defines a stratification,
called Klein stratification, that embodies the internal geometry of
the object itself. The general geometry to which it belongs is defined
by the specific category of objects to which it is formelly attached.
For example, Euclidean geometry becomes the category of Euclidean
objects, that is, the category of spaces equipped with an action of
the Euclidean group with morphism equivariant maps.

Because diffeology is such a wide and stable category that satisfacto-
rily encompasses so many diverse situations, from singular quotients
to infinite dimensions, even mixing cases,16 I think it is fair to say
that it largely fulfils its mission and, according to the Kleinian view-
point, answers the question once posed by a student: "In what way
is diffeology geometry?"

14A diffeomorphism is in particular an homeomorphism for the D-topology. This
is an opportune moment to emphasise this: the diffeology approach is that topology
is a consequence of differential structure, and not the other way round as it is usually
the case, where the differential structure is subordinate to the topology.

15In comparison with [Sou03].
16See [PIZ16], for example.
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At the Beginning. . .

This lecture presents the prerequisites for the study of diffeology. As
we shall see, a good understanding of indefinitely differentiable maps
on Euclidean domains, and a few fundamental theorems of calculus,
will be a good start.

Let us introduce a little bit of vocabulary. First of all, we call Eu-
clidean space any real vector space Rn for some n.

The Euclidean structure of Rn, defined by the inner product

x · y =
n∑

i=1
xiyi with ∥x∥ =

√
n
∑

i=1
(xi)2,

is used to define its (standard) topology: an open subset O in Rn is
any union of open balls, like:

O =
⋃
i∈I

B(ri, εi),

where I is any set of indices, ri is any point in Rn and εi is any
(strictly) positive number.

Therefore, a subset U ∈ Rn is open for the standard topology if (and
only if): for each r ∈ U there exists an open ball B(r, ε) included in
U, B(r, ε) ⊂ U.

1
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2 AT THE BEGINNING. . .

Next, we call Euclidean domain any open subset of an Euclidean
space. We generally denote them by some big letter U, V, W etc. and
also by cursive letters O etc.

We denote also by Domains(Rn) the set of all Euclidean domains in
Rn. We call them simply n-domains.

Note that this is just the topology of Rn sometimes denoted by
{Top}(Rn).

A domain in Rn is said to be of dimension n, or be an n-domain.

Now, about continuity. A map F: U → V, where U and V are Eu-
clidean domains, is said to be continuous if (and only if): the pullback
f –1(O) of any open subset O ⊂ V is an open subset in U.

That is equivalent to say that for any open ball B ⊂ V, there exists a
family of open balls Bi ⊂ U such that f –1(B) = ∪iBi, for some family
of indices I.

1. Differentiable and smooth paths

Consider a path
γ : ]a, b[→ Rn.

Assume that γ is continuous. Then, consider the map

Δγ : (t, t′) 7→ γ(t′) – γ(t)
t′ – t

,

defined on
]a, b[2 – {(t, t)}a<t<b,

with values in Rn. The closed subset {(t, t)}a<t<b is called the diag-
onal. The function Δγ is continuous, but:

1. Definition. If Δγ extends continuously on the diagonal, we say that
γ is continuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiablecontinuously differentiable or of class C1.

We denote by

γ̇(t) or
dγ(t)

dt
the value Δγ(t, t) = lim

t′→t
Δγ(t′, t).
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3. DIFFERENTIABLE MAPS, THE PEDESTRIAN APPROACH 3

The function γ̇ : ]a, b[→ Rn is then called the derivative of γ. The
value γ̇(t) is the derivative of γ at the point t, or at time t.

Now, if γ is of class C1, then γ̇, which is defined on the same interval,
is continuous. One can ask if γ̇ is also C1? If it is the case, we
generally denote by γ̈ the derivative of γ̇. We say that γ is of class
C2.

That leads to the definition:

2. Definition. We say that γ is of class Ck , k > 1, if (and only if):

γ is of class Ck–1 and
dk–1

γ(t)
dtk–1 is of class C1.

And we say that γ is smooth, or of class C∞, if γ is of class Ck for all
k ∈ N. Note that continuous paths are said to be of class C0.

2. Smooth maps, the holistic approach

In diffeology we are interested principally in smooth maps, or infin-
itely differentiable maps. Precisely, diffeology consists in extending
the concept of smooth maps from Euclidean domains to arbitrary sets.
That is why we have the choice in the definitions of smooth maps
between Euclidean domains. We will present them here, not in their
historic order but according with what we think is more speaking to
our mind. The first definition is actually a theorem.

3. Definition-Theorem. (Boman 1967) Let F: U → V be a continuous
map between two Euclidean domains. The map F is infinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffeinfinitely diffe-
rentiable, or smooth, if (and only if) the composite F ◦ γ, where γ is
any smooth path in U, is a smooth path in V.

As we have seen, smooth paths have been defined previously, inde-
pendently.

3. Differentiable maps, the pedestrian approach

Now, the classical definition of differentiable map begins with the
definition of tangent maps.
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4 AT THE BEGINNING. . .

4. Definition. Let f and g be two maps defined on a same Euclidean
domain U to some Rm. Let r0 be some point in U. We say that f
and g are tangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangenttangent in r0 if:

lim
r→r0

f (r) – g(r)
∥r – r0∥

= 0.

Of course, that implies in particular that f (r0) = g(r0).

5. Definition. Let f be a map defined on some domain U ∈ Rn with
values in Rm. We say that f is differentiable, or derivable,1 at the
point r0 ∈ U if it is tangent, at this point, to an affine map

r 7→ f (r0) + M(r – r0),

where M ∈ L(Rn, Rm) is a linear map from Rn to Rm. That condition
means precisely that,

lim
r→r0

f (r) – f (r0) – M(r – r0)
∥r – r0∥

= 0. (♣)

We say that f is differentiable on U, or simply differentiable, without
more precision, if f is tangent to an affine map everywhere.

6. Remark. The condition (♣) implies that f (r) converges to f (r0)
when r tends to r0. That is f is continuous in r0: to be tangent
to an affine map implies to be continuous: a differentiable map is
necessarily continuous.

✑ Proof. Since limr→r0
f (r)–f (r0)–M(r–r0)

∥r–r0∥ = 0, limr→r0 f (r) – f (r0) –
M(r –r0) = 0. Thus, since limr→r0 M(r –r0) = 0, limr→r0 f (r)– f (r0) =
0. That is f (r) −−−→

r→r0
f (r0), and f is continuous at r0. That is the

logic of the situation. More formally, since limr→r0 f (r) – f (r0) – M(r –
r0) = 0, for all ε > 0, there exists η > 0 such that ∥r – r0∥ < η
implies ∥f (r) – f (r0) – M(r – r0)∥ < ε. On the other hand, let m
be ∥M∥ = sup∥u∥=1 ∥M(u)∥ (remember, the sphere Sn–1 is compact).
Thus, for all r, ∥M(r – r0)∥ ≤ m∥r – r0∥. That is, for all ε > 0 there
is η′ > 0 such that ∥r – r0∥ < η implies ∥M(r – r0)∥ < ε, actually
η
′ can be chosen equal to ε/m. Now, the inequality on a triangle

u + v = w says that ∥w∥ ≤ ∥u∥+ ∥v∥, or ∥w∥ – ∥u∥ ≤ ∥v∥. Applied to

1The words differentiable and derivable are here completely equivalent.
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u = M(r – r0), w = f (r) – f (r0) and v = w – u = f (r) – f (r0) – M(r – r0),
that gives: ∥f (r) – f (r0)∥ – ∥M(r – r0)∥ ≤ ∥f (r) – f (r0) – M(r – r0)∥ ≤ ε.
Then, ∥f (r) – f (r0)∥ ≤ ε + ∥M(r – r0)∥. Now, chosing η′′ < inf(η, η′),
we get ∥f (r) – f (r0)∥ ≤ ε+ ε. Changing ε to ε/2, we get: for all ε > 0,
there exists η′′ > 0 such that ∥r – r0∥ < η′′ implies ∥f (r) – f (r0)∥ ≤ ε.
Therefore, f is continuous at r0. ▶

Now let us describe more precisely the linear part of the affine tangent
map. Pick a vector v ∈ Rn, v ̸= 0, and let r = r0 + tv, where t > 0 is
small enough for r to be in the domain U. The last condition writes:

lim
t→0

f (r0 + tv) – f (r0) – M(tv)
t∥v∥

= 0.

And then,

M(v) = lim
t→0

f (r0 + tv) – f (r0)
t

.

The linear map M is then called the tangent linear map and it is
denoted by

Dfr0(v) or Df (r0)(v) or D(f )(r0)(v) = lim
t→0

f (r0 + tv) – f (r0)
t

.

So, f is differentiable on U if it admits a tangent linear map at every
point in U,

f ′ or Df or D(F): U → L(Rn, Rm).

The affine tangent map at the point r0 writes then

r 7→ f (r0) + D(f )(r0)(r – r0).

Note that there is another way to express the approximation of the
function f by its affine tangent map around r0:

f (r) = f (r0) + D(f )(r0)(r – r0) + o(∥r – r0∥),

where Landau’s Little-O notation o(x) means lim
x→0

o(x)/x = 0.

As we know the set of linear maps L(Rn, Rm) is a real vector space
of dimension n × m, equivalent to Rn×m, as such:

7. Definition. We say that f : U → Rm is of class C1 if f is differen-
tiable on U, and if the map that associates its tangent linear map
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with each point in U is continuous. That is, if the map r 7→ Df (r),
defined on U with values in L(Rn, Rm) is continuous.

8. Remark. An affine map from Rn to Rm writes x 7→ Ax + b, where
A ∈ L(Rn, Rm) and b ∈ Rm. The set of these affine maps is denoted
by Aff(Rn, Rm), it is naturally a vector space of dimension m +n ×m,
equivalent to the space of matrices(

A b
0 1

)
such that

(
A b
0 1

)(
x
1

)
=
(

Ax + b
1

)
,

and inherits the standard topology of Rm+n×m. The affine tangent
map writes, for all r ∈ U:(

Dfr f (r) – Dfr(r)
0 1

)
.

We can notice that, to be C1, it is equivalent to request that the maps
that associate the linear tangent map in L(Rn, Rm), or the affine
tangent map in Aff(Rn, Rm), with every point r in U, are continuous.
However, on a conceptual level: to be differentiable implies to be
continuous, then, having a first local affine approximation, — which
is exactly what the affine tangent map is — continuous everywhere
is a natural request. And that is the meaning of being C1.

4. Higher order derivatives and smooth maps

Now, we can look for higher order derivatives. Let us begin by the
second order. Assume that f is derivable, then its derivative D(F) is
defined on U with values in L(Rn, Rm). The second derivative of f is
then defined by

D2(f )(r) = D
(
r 7→ D(f )(r)

)
(r) ∈ L

(
Rn, L(Rn, Rm)

)
.

Note that if f is derivable and if its derivative Df is derivable, that
implies that Df is continuous and f is C1.

So, we get a recursive definiton of higher derivative of f and then a
recursive definition of class Ck :
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9. Definition. The kth-derivative of f , if it exists, is the derivative
denoted and defined recursively by

Dk(f ) = D
(
r 7→ Dk–1(f )(r)

)
.

Note that, if f is differentiable until order k, then Dℓ(f ) is continuous
until ℓ = k – 1, thanks to Remark 6. Therefore, if f admits a kth-
derivative, then f is Ck–1, with the definition:

10. Definition. , A function f is Ck , or of class Ck , if f is derivable
till order k and its k-derivative is continuous.

We say that f is infinitely differentiable, or infinitely derivable, or
smooth, if f is of class Ck for all integer k.

11. Remark. Boman theorem cited previously says exactly that defi-
nition 9 and Definition-Theorem 3 are coherent. Beware, it is a subtle
and non-trivial theorem.

5. The tangent linear map

We consider a differentiable map f : U → Rm, with U ⊂ Rn an open
subset.

Let us denote by x and y the source and target variables involved in
f , that is, f : x 7→ y with x = (x1, . . . , xn) ∈ U and y = (y1, . . . , ym) ∈

Rm. The tangent linear map can be written indifferently

D(f )(x) or D(x 7→ y)(x),

depending what we want to focus on. For example, if you denote the
square root function by sqrt, you can write it derivative as D(sqrt)(x),
or D(x 7→

√
x )(x).

Now, decompose x, v and y on the canonical basis,

x =
n∑

i=1
xiei, v =

m∑
j=1

viei and y =
m∑

j=1
yjej with yj = f j(x).

Now, the tangent linear map writes

D(x 7→ y)(x)(v) = D(x 7→ y)(x)
(

n
∑

i=1
viei

)
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=
n
∑

i=1
viD(x 7→ y)(x)(ei)

=
n
∑

i=1
viD

(
x 7→

m
∑

j=1
yjej

)
(x)(ei)

=
n
∑

i=1

m
∑

j=1
viD

(
x 7→ yj) (x)(ei) · ej

In other words, the tangent linear map D(x 7→ y)(x) is represented
by the matrix (Dj

i)
n
i=1

m
j=1, where

Dj
i = D

(
x 7→ yj) (x)(ei).

Now, what does exactly represent D
(
x 7→ yj) (x)(ei)?

D
(
x 7→ yj) (x)(ei) = lim

t→0

f j(x1, . . . , xi + t, . . . , xn) – f j(x1, . . . , xi, . . . , xn)
t

,

which is, by definition, the partial derivative

Dj
i =

∂yj

∂xi also denoted by ∂iyj.

Notations: By commodity we will denote also

D(x 7→ y)(x) by ∂y
∂x , the derivative;

and

D(x 7→ y)(a) by ∂y
∂x

∣∣∣
x=a

, the value of the derivative.

Eventually, the tangent linear map can by written as the matrix of
partial derivatives

D(x 7→ y)(x) = D


x1

...
xn

 7→

y1

...
ym


 (x) =

∂1y1 · · · ∂ny1

...
. . .

...
∂1ym · · · ∂nym


such that

D(x 7→ y)(x)(v) =

∂1y1 · · · ∂ny1

...
. . .

...
∂1ym · · · ∂nym


v1

...
vn

 =

∑
n
i=1 vi∂iy1

...
∑

n
i=1 vi∂iym

 .
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12. Proposition. Let f : U → V and g : V → W be two C1 maps, with
U ⊂ Rn, V ⊂ Rm and W ⊂ Rℓ. The derivative of the composite,
which is also C1, satisfies the so-called chain-rule:

D(g ◦ f )(r) = D(g)(f (r)) ◦ D(f )(r).

Note also that the derivation D is linear. If f1 and f2 are defined from
U to V and λ, μ ∈ R, then:

D(λf1 + μf2)) = λD(f1) + μD(f2).

13. Note. The chain-rule writes in term of partial derivatives:

∂z
∂x

=
∂z
∂y

∂y
∂x

,

and the value at the point x = a, with where b = f (a):

∂z
∂x

∣∣∣∣
x=a

=
∂z
∂y

∣∣∣∣
y=b

∂y
∂x

∣∣∣∣
x=a

.

In terms of coordinates:

∂izj =
m∑

k=1
∂iyk∂kzj that is

∂zj

∂xi =
m∑

k=1

∂zj

∂yk
∂yk

∂xi ,

where i = 1 . . .n, k = 1 . . .m and j = 1 . . . ℓ.

14. Note. In particular, for γ : I → U, a smooth path in U,

D(f ◦ γ)(t)(1) = D(f )(γ(t)) ◦ D(γ)(t)(1),

but

D(γ)(t)(1) = lim
ε→0

γ(t + ε × 1) – γ(t)
ε

=
dγ(t)

dt
= γ̇(t).

Therefore:

D(f ◦ γ)(t)(1) = D(f )(γ(t))
(
γ̇(t)

)
.

15. Notation. It hapens that a tangent vector v ∈ Rn would be
denoted by a variational notation δx, meaning that v is regarded
as a variation of the point x. Write γ : t 7→ x and f : x 7→ y, then
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f ◦ γ : t 7→ y, meaning t 7→ x 7→ y. Using the partial derivative
notation introduced previously, the formula above writes:

δy =
∂y
∂x

(δx),

with

x = γ(t), y = f (x), δx =
dx
dt

, δy =
dy
dt

,

to which we can add:

δx =
∂x
∂t

(δt) and δt = 1 ⇒ δx =
dx
dt

.

Of course, every vector v can be realised as a variation of the point
x by considering γ(t) = x + tv.

6. Higher derivatives components

What have been made for the tangent linear map can be done for
higher derivatives. For example, let f : x 7→ y. The second derivative

D2(f )(x) = D
(
x 7→ D(f )(x)

)
(x)

is represented itself by the bilinear form:

D2(f )(x)(v)(w) = D
(
x 7→ D(f )(x)(v)

)
(x)(w),

for all v, w ∈ Rn. Let decompose v = ∑
n
i=1 viei and w = ∑

n
j=1 wjej.

We get:

D2(f )(x)(v)(w) = D
(

x 7→ D(f )(x)
( n

∑
i=1

viei

))
(x)
( n

∑
j=1

wjej

)
=

n
∑

j=1
wjD

(
x 7→

n
∑

i=1
viD(f )(x)(ei)

)
(x)(ej)

=
n
∑

j=1
wj n

∑
i=1

viD
(
x 7→ D(f )(x)(ei)

)
(x)(ej)

=
n
∑

j,i=1
wjvi ∂

∂xj

(
∂y
∂xi

)
.
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And since y = (y1, . . . , ym),

D2(f )(x)(v)(w) =
n∑

j,i=1
wjvi


∂2y1

∂xj∂xi

...
∂2ym

∂xj∂xi

 =
n∑

j,i=1
wjvi

∂2
jiy

1

...
∂2

jiy
m


The partial derivatives ∂ijyk are the components of the bilinear map
D2(f )(x).

A main property of continuously differentiable function is the com-
mutativity of the partial derivatives:

16. Theorem (Schwarz). Let f : U → Rm, with U a n-domain, be a
C2 map. Then, the second derivative D2(f )(x) is symetric. In other
words, the partial derivatives commutent:

∂

∂xi

(
∂yk

∂xj

)
=

∂

∂xj

(
∂yk

∂xi

)
i.e. ∂2

ijy
k = ∂2

jiy
k .

For Ck maps, the k-derivatives Dk(f )(x) is a k-linear map, with com-
ponents the partial derivatives:

∂k
i1...ik yℓ = ∂i1

(
∂k–1

i2...ik yℓ
)

And, thanks to the last proposition, this multilinear map is symetric:
the order of the indices does not matter.

17. Theorem. Let f : U → Rm be a map, where U is an n-domain.
The map f is smooth if and only if f admits partial derivatives at
any order.

✑ Proof. Indeed, and that is the main point: if all the partial
derivatives at any order exist, that implies in particular that they
are continuous, thanks to § 6, and then the map f is continuously
infinitely differentiable. ▶

This theorem is a practical criterion to check if a map is smooth.

That is everything we need to know to introduce and study diffeology.
That is what makes diffeology a good alternative to the usual teaching
of differential geometry. And we shall see in the future how it could
be understood formally as a geometry in the sense of Felix Klein.
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7. The category of Euclidean domains

Euclidean domains are the objects of a category for which the arrows
are the smooth maps. We denote it by {Euclidean Domains}.

The goal of diffeology is to transfer some properties of the category
of Euclidean domains to arbitrary sets.

8. Some theorems we should know

There are a few important theorems of differential calculus in Rn we
will need in future development of diffeology, for example the implicit
function theorem or the rectification of vector fields and some others.
However, they are not necessary for now to learn diffeology. That is
why it is better to introduce them only when they will be used.

  Notes
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Diffeology, the Axiomatic

In this lecture we will look at the short axiomatic that founds diffeo-
logy. It describes the basic set theoretic constructions of the theory
and give a few examples.

Diffeologies are defined on arbitrary sets without any preexisting
structure, neither topology nor anything else. That is important
enough to be underlined and remembered. Diffeology is based on
the notion of parametrizations, and will consists in declaring which
parameterizations in a set will be regarded as smooth, provided that
a small set of axioms is satisfied. Then, the development of diffeology
will consist in transferring, through these specific parametrizations,
significative properties and constructions a priori defined in the cat-
egory of smooth domains, such as homotopy groups, fiber bundles,
differential form. . . for examples.

9. What is a diffeology?

The theory of diffeology begins with the idea of parametrization. The
first step in this direction was taken by K.T. Chen in his paper on
“Iterated Path Integrals” [Che77], but the parametrizations were de-
fined on convex subsets of Euclidean domains. In 1980, in his pa-
per on “Groupes différentiels” [Sou80], J.M. Souriau keeps the same
axiomatic but with parametrizations defined on Euclidean domains,

13
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open subsets of Euclidean spaces. That is what founds today’s dif-
feology:

18. Parametrizations. We call parameterization in a set X any map
P: U → X where U is some Euclidean domain, that is, any open
subset of an Euclidean space. If we want to be specific, we say that
P is an n-parameterization when U is an open subset of Rn. The set
of all parameterizations in X is denoted by

Param(X) = {P: U → X | U ∈ Domains(Rn), n ∈ R}

Note that there is no condition of injectivity on P, and as we said,
neither any topology precondition on X a priori.

19. Diffeology. A diffeology on a set X is any subset

D ⊂ Param(X)

that satisfies the following axioms:

1. Covering: D contains the constant parameterizations.
2. Locality: Let P: U → X be parametrization. If, for all r ∈ U,

there is an open neighbourhood V of r such that P ↾ V ∈ D,
then P ∈ D.

3. Smooth compatibility: For all P: U → X in D, for all F ∈

C∞(V, U), where V is an Euclidean domain, P ◦ F ∈ D.

A space equipped with a diffeology is called a diffeological space. The
elements of the diffeology D of a diffeological space X are called the
plots of (or in) the space.1

20. Note. Formally, a diffeological space is a pair (X,D) where X is
the underlying set and D the chosen diffeology, but we generally use
a single letter to make the reading lighter. For example, we can use
the letter X for the pair (X,D), or anything else suggestive.

1There is a discussion about diffeology as a sheaf theory in [Igl87, Annex]. But
we do not develop this formal point of view in general, because the purpose of
diffeology is to minimize the technical tools in favour of a direct, more geometrical,
intuition.
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21. Example: smooth diffeology on Rn. The first and foremost exam-
ples of diffeological spaces are the Euclidean domains. The plots of
a domain O are all the smooth parametrizations F: U → O, where U
is any other domain, of any dimension. We call this diffeology the
smooth diffeology, or the standard diffeology. It is clear that the
three axioms are satisfied. They have been chosen exactly because
they are the fundamental properties which we want to replicate on
sets, to define a smooth structure. Note that this is not the only way
to imagine smooth structure on sets. We may compare diffeology
with other approaches in the future.

10. Category {Diffeology}

22. Smooth maps. After defining the structure of diffeological space,
the main constituent in diffeology is the notion of smooth map. Let
X and X′ be two diffeological spaces. A map f : X → X′ is said to be
smooth if (and only if) the composite with any plot in X is a plot in
X′, which can be summarized by

f ◦D ⊂ D′,

where D and D′ denotes the respective diffeologies. The set of smooth
maps from X to X′ is denoted by2

C∞(X, X′) = {f ∈ Maps(X, X′) | f ◦ P ∈ D′, ∀P ∈ D}.

23. Example: smooth parametrizations. The plots of a diffeology are
the first examples of smooth maps. Indeed, let P: U → X be a plot of
X, let F: V → U be a plot of the smooth diffeology on the domain U,
that is F ∈ C∞(V, U). Then, the composite P◦F is a plot of X, that is
the third axiom of diffeology, the “smooth compatibiity”. Therefore,

C∞(U, X) = {P ∈ D | dom(P) = U}.

In particular, for the domains U and V, the notation C∞(U, V) is
understood in the usual sense and in the diffeological sense coincide.

2Maps(X, X′) denotes the set of all maps from X to X′.
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Hence, there is no need to introduce a special notation to denote the
plots of a diffeological space.

24. Category {Diffeology}. Consider X, X′ and X′′ be three diffeolo-
gical spaces, with diffeologies D, D′ and D′′. Let f ∈ C∞(X, X′) and
f ′ ∈ C∞(X′, X′′), then f ′ ◦ f ∈ C∞(X, X′′). Thus, diffeological spaces,
together with smooth maps, define a category we write {Diffeology}.

The isomorphisms of this category are called diffeomorphisms, they
are bijective maps, smooth as well as their inverse. In the case of a
diffeomorphism f ◦D = D′. The set of diffeomorphisms from X to X′

is denoted by Diff(X, X′).

25. Remark. {Euclidean Domains} is a full subcategory of {Diffeo-
logy}, which is a strict extension of it on sets. We could call such
extensions “smooth categories”, but that is just to identify the gen-
eral context of the theory.

Pick, for example, the smooth R2: we have a diffeology on T2 =
R2/Z2 by lifting locally the parameterizations in R2. That is, a plot
of T2 will be a parameterization P: r 7→ (zr , z ′r) such that, for every
point in the domain of P, there exist two smooth parameterizations
θ and θ′, in R, defined in the neighbourhood of this point, with
(zr , z ′r) = (e2iπθ(r), e2iπθ′(r)), that is, the usual diffeology that makes
T2 the manifold we know.

That procedure can be extended naturally to the quotient Tα =
R/(Z + αZ), where α is some number. Indeed, a parameterization
P: r 7→ τr in Tα is a plot if there exists locally, in the neighbourhood
of every point in the domain of P, a parameterization r 7→ tr , such
that τr = class(tr), with class : R → Tα the projection.

This is exactly the diffeology we are considering when we talk about
the irrational torus. This construction of diffeologies by pushforward
is actually one of the fundamental constructions of the theory, and
for that, we need to introduce an important property of the set of
diffeologies of a set.
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11. Order in diffeology

26. Comparing diffeologies. Inclusion defines a partial order in diffeo-
logy, called fineness. If D and D′ are two diffeologies on a set X, one
says that D is finer than D′ if D ⊂ D′. We denote by

D ⪯ D′.

We say also that D′ is coarser than D. Every set has two extreme

Discrete Diffeology

Coarse Diffeology

Inf

Sup

Difflg(X)

Figure 2. Comparing Diffeologies.

diffeology:

(1) The discrete diffeology where plots are only local constant
parametrizations is the finest.

(2) The coarse diffeology where plots are all the parametriza-
tions is the coarsest.

27. Infimum and supremum. Diffeologies are stable by intersection.
Any family (Di)i∈I of diffeologies on a set X has an infimum, it is the
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intersection:
inf(Di)i∈I =

⋂
i∈I

Di.

It is the coarsest diffeology which is contained in every element of
the family (Di)i∈I.

The family (Di)i∈I has also a supremum, it is the finest diffeology
containing every element of the family:

sup(Di)i∈I = inf{D′
∈ Diffeologies(X) | ∀i ∈ I,Di ⊂ D′}

where Diffeologies(X) denotes the set of all diffeologies on the set X.

This partial order, fineness, makes the set of diffeologies on a set X,
a lattice. That is, a set such that every subset of diffeologies has an
infimum and a supremum.

As usual, if the infimum of a family belongs to the family, then it is
called a minimum; and if the supremum belongs to the family, then
it is called the maximum.

This property of being a lattice is very useful in defining diffeologies
by means of properties. We shall see that most of diffeologies are
the finest or coarsest diffeologies such that some property is satisfied.
Because mimina and maxima are always distinguished elements in a
set when they exist. The following examples will illustrate the point.

12. Pushing and pulling diffeology

28. Pushing forward diffeologies. Let f : X → X′ be a map, and let X
be a diffeological space, with diffeology D. Then, there exists a finest
diffeology on X′ such that f is smooth. It is called the pushforward
of the diffeology of X. We denote it by f∗(D).

If f is surjective, its plots are the parameterizations P′ in X′ that
can be written Supi f ◦ Pi, where the Pi are plots of X such that the
f ◦ Pi are compatible, that is, coincide on the intersection of their
domains, and Sup denotes the smallest common extension of the
family {f ◦ Pi}i∈I. Formally speaking, a parametrization P′ : U → X
belongs to f∗(D), if (and only if) there exists a family (Pi)i∈I of plots
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of X, Pi ∈ D, defined on an open covering (Ui)i∈I of U, such that
f ◦ Pi = P′ ↾Ui .

f∗(D) = {P′
∈ Param(X′) | ∃Pi ∈ D, i ∈ I, P′ = Supi(f ◦ Pi)}.

It is equivalent to say that for all r ∈ U there exists an open neigh-
bourhood V and a plot Q in X, such that P ↾ V = f ◦ Q.

29. Subductions. Let π : X → X′ be a map between diffeological spaces.
We say that π is a subduction if (and only if)

(1) The map π it is surjective.
(2) The pushforward of the diffeology of X coincides with the

diffeology of X′.

We can check that the composite of two subductions is again a sub-
duction, that makes the subcategory {Subductions}.

Let’s talk about quotients.

30. What a quotient is and where does it live. There is sometimes an
ambiguity about the construction of quotient sets that needs to be
adressed once and for all. They are too often identified with some
sets of representants in a way that can be regarded as arbitrary. Let
us begin with a set X and an equivalence relation ∼ on X, that is, a
binary relation which is reflexive, symetric and transitive. Let x ∈ X,
the equivalence class class(x) of x is by definition the subset

class(x) = {x ′
| x ′

∼ x} ⊂ X.

It lives then naturally in the powerset

class(x) ∈ P(X) = {A | A ⊂ X},

set of all the subsets of X. The quotient set Q of X by ∼, denoted
generally by X/∼, can always be regarded as a subset of P(X):

Q = {class(x) | x ∈ X} ⊂ P(X).

The canonical projection class is then the application

class : X → P(X) with X/∼ = class(X).
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When it comes to quotient space in these lectures, it is always the
way we look at it.

31. Quotient spaces. Let X be a diffeological space and let ∼ be an
equivalence relation on X. Let Q = X/∼ be the quotient set. The
pushforward class∗(D) on Q of the diffeology of X, by the canoni-
cal projection, is called the quotient diffeology. Equipped with the
quotient diffeology, Q is called the quotient space of X by ∼.

This is the first important property of the category {Diffeology}, it
is closed by quotient, and we shall see not trivially closed.

Note that considering the quotient Q = X/∼ for what it is, as de-
scribed above, does not prevent us to identifiy it with some smooth
representant Q, according to the diagram where class and π are two
subductions and f a bijection, and therefore a diffeomorphism.

X

Q Q

class π

f

32. Pulling back diffeologies. Let f : X → X′ be a map, and let X′ be
a diffeological space with diffeology D′. Then, there exists a coars-
est diffeology on X such that f is smooth. It is called the pullback
of the diffeology of X′. We denote it by f ∗(D′). Its plots are the
parameterizations P in X such that f ◦ P is a plot of X′.

f ∗(D′) = {P ∈ Param(X) | f ◦ P ∈ D′}.

33. Inductions. Let X and X′ be two diffeological spaces and f : X →

X′ be a map. We say that f is an induction if (and only if):

(1) The map f is injective.
(2) The pullback f ∗(D′) of the diffeology of X′ coincide with the

diffeology D of X.

34. Subset diffeology. Pulling back diffeologies gives to any subset
A ⊂ X, where X is a diffeological space, a subset diffeology j∗(D),
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where j : A → X is the inclusion and D is the diffeology of X. A
subset equipped with the subset diffeology is called a diffeological
subspace. Plots of the subset diffeology are simply plots of X taking
their values in the subset A.

This is a second important property of the category {Diffeology}, it
is closed by inclusion.

35. Discrete subspaces. We have defined discrete diffeological spaces
as diffeological spaces equipped with the discrete diffeology. That
is, the diffeology consisting in locally constant parametrization. It
happens that subspaces of diffeological spaces inherit the discret dif-
feology.

The best examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest examplebest example of a discrete subset in diffeology is probably Q ⊂ R.
This corresponds perfectly to what we understand intuitivly to be
discrete. But we have to be careful because discrete in diffeology
does not coincide always with discrete in topology, in particular for
Q in R that topologists do not consider as discrete, which is a little
bit exagerate. However, it is always preferable to specify in which
sense we are using the word “discrete” when in doubt, to avoid any
confusion with topologists.

✑ Proof. Consider a plot P: U → R but with values in Q. Let
r, r ′ ∈ U and γ : t 7→ P(tr ′ + (1 – t)r), defined on a small open neigh-
bourhood of [0, 1]. Then, γ is a plot in R and therefore continuous.
Let q = γ(0) = P(r) and q′ = γ(1) = P(r ′), by hypothesis q, q′ ∈ Q.
Since γ is continuous, according to the intermediate values theorem,3
γ takes every values between q and q′. if q ̸= q′, there exists always
an irrational number in between, which cannot be because P takes
its values only in Q. Therefore γ(0) = γ(1), that is, P(r) = P(r ′).
The plot P is then locally constant since it will be constant on every
small ball around every r ∈ U. ▶

36. Example: the circle. Let S1 be the circle, defined by

S1 = {(x, y) ∈ R2
| x2 + y2 = 1}.

3https://www.wikiwand.com/en/Intermediate_value_theorem
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It is equivalent the set U(1) of complex numbers of modulus 1, z =
x + iy ∈ U(1) means4 z̄z = x2 + y2 = 1. The plots of S1, as a
diffeological subspace of R2, are just the pairs r 7→ (x(r), y(r)) of
smooth real functions defined on some Euclidean domain U, such
that for all r in U, x(r)2 + y(r)2 = 1. In particular, for r = θ ∈ R:

Proposition.The projection, from R to S1,

π : θ 7→ (cos(θ), sin(θ))

is a subduction.

Indeed, For any θ, one of the derivative x ′(θ) = – sin(θ) or y ′(θ) =
cos(θ) does not vanishes, since x ′(θ)2 + y ′(θ)2 = 1. Assume that
x ′(θ0) ̸= 0, then according to the inverse function theorem,5 there
exists a small interval I centered at θ0 such that φ = cos ↾ I is a
diffeomorphism onto its image, an open intervall that we denote by
J = cos(I). So, let r 7→ (x(r), y(r)) be a plot in S1 and assume that
x(r0) = cos(θ0) and sin(θ0) ̸= 0. The preimage O = x–1(J) is an open
subset in U, since r 7→ x(r) is smooth.

cos(q)

I

J

q0
0

Figure 3. Function Cosinus.

Then, let θ(r) = φ–1(x(r)), defined on O, and for all r ∈ O, x(r) =
cos(θ(r)) and y(r) = sin(θ(r)). The map r 7→ θ(r) is a local lifting,
along the projection π, of the plot r 7→ (x(r), y(r)).

4z̄ or z∗ denote the conjugate x – iy of z = x + iy.
5https://www.wikiwand.com/en/Inverse_function_theorem
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There exists then a bijection f : R/2πZ → S1

f (class(x))) = (cos(x), sin(x)),

and since π : x 7→ (cos(x), sin(x)) is a subduction, f is a diffeomor-
phisme satisfying f ◦class = π, and therefore S1 is a smooth represen-
tant of R/2πZ.

On the other hand, we can define also

σ : x 7→ x
2π

–
[ x

2π

]
,

where the bracket denotes the integer part. Then σ(x) = σ(x ′) if
and only if x ′ = x + 2πk, with k ∈ Z. Set theoretically, the interval
[0, 2π[ = σ(R) ⊂ R represent R/2πZ, but equipped with the subset
diffeology, σ is discontinuous and it cannot be a smooth represen-
tation of the quotient R/2πZ. Of course we can push forward the

0 2 p

Figure 4. Closing the circle by push forward.

smooth diffeology of R onto the segment [0, 2π[, but that would con-
sist to glue the end of the interval near 2π to the origin 0, and so to
reconstruct the circle as shown in Figure 4.

37. Strict maps. The last example of the projection π : θ 7→ (cos(θ),
sin(θ)), from R to S1 ⊂ R2 suggest the definition of a new kind of
map, the strict maps.

Every map f : X → Y defines the following commutative diagram
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X X′

X/f f (X)

f

class

φ

j

where

(1) X/f denotes the quotient by the relation f (x) = f (x ′).
(2) The map j : f (X) → X′ is the inclusion.
(3) The map φ : X/f → f (X) is defined by φ(class(x)) = f (x).

Let now X and X′ be two diffeological spaces:

We say that f is strict if φ is a diffeomorphism when X/f is equipped
with the quotient diffeology and f (X) with the subset diffeology.

In particular, the map π above is strict. Strict maps realize quotient
as subset of other diffeological spaces.

13. Making sum of diffeologies

38. Direct sum diffeology. Consider a family (Xi)i∈I of diffeological
spaces, for any family of indices. The direct sum, or simply the sum
of the (elements of) family is defined by∐

i∈I

Xi = {(i, x) | i ∈ I and x ∈ Xi}.

Proposition.There exists on the sum X =
∐

i∈I Xi a finest diffeology
such that every injections

ji : Xi → X defined by ji(x) = (i, x)

is smooth.

The plots of this diffeology are the parametrizations r 7→ (i(r), x(r))
such that r 7→ i(r) is locally constant. In other words, a plot is locally
with values in only one component of the sum.

Actually, the injections ji are inductions. The space X is called the
diffeological sum of the Xi.
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Now, the category {Diffeology} is also closed by sum.

39. Examples: some diffeological sums. Consider

E =
∐
x∈R

R.

Every element of E is a pair (x, y) ∈ R2, but of course the diffeology
of the sum is not the smooth diffeology of R2. Indeed, a plot in E
write always locally r 7→ (x, y(r)), where x is constant and r 7→ y(r)
is smooth. We could call this diffeology the “comb diffeology” of R2.

Another example, bigger: let n ∈ N, let x ∈ Rn and ε ∈ ]0, ∞[, let
B(x, ε) be the open ball in Rn centered in x with radius ε. The world
of balls would be the sum

X =
∐
n∈N

∐
x∈Rn
ε∈]0,∞[

B(x, ε).

In diffeology, don’t be afraid to think big. One can also access an

Square SquareKlein

Figure 5. Klein’s exploded view of the square.

aspect of the structure of a diffeological space by means of sum of
parts: consider the group of diffeomorphisms Diff(X) a diffeological
space X. It decomposes the space into a set of orbits O ∈ X/Diff(X).
Then we reconstruct a finer diffeological space by considering the sum
of the orbits, an exploded view of the space reavealing its singular
structure. We can call it the Klein’s exploded view.

XKlein =
∐

O∈X/Diff(X)

O.
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14. Grow and multiply

40. Product diffeology. Consider a family (Xi)i∈I of diffeological spaces,
for any family of indices. Let pr1 be the first projection of the direct
sum of the Xi, that is

pr1 :
∐
i∈I

Xi → I with pr1(i, x) = i.

The product of the Xi is defined as the set of section of pr1, that is∏
i∈I

Xi =
{

x : I →

∐
i∈I

Xi | pr1 ◦ x = 1I
}

Let X = ∏i∈I Xi. An element x ∈ X can be denoted as x = (xi)i∈I,
where xi = x(i). The projection πi on the i-th factor Xi is defined by

πi(x) = xi.

Proposition.There exists on the product X a coarsest diffeology such
that each projection πi is smooth. Equiped with this diffeology, X is
called the diffeological product, or simply the product, of the Xi.

Actually, the projections are subductions. A parametrization of the
product writes r 7→ (xi(r))i∈I, where the xi are plots of the Xi.

Now, the category {Diffeology} is also closed by product.

41. Examples: some diffeological products. The main example here
is the power Rn which is the product of n copies of R equiped with
the smooth diffeology.

A special and remarkable feature of diffeology is that the set of the
smooth maps between diffeological spaces carries a natural diffeology:

42. Functional diffeology. Let X and X′ be two diffeological spaces.
There exists on C∞(X, X′) a coarsest diffeology such that the evalua-
tion map

ev: C∞(X, X′) × X → X′ defined by ev(f , x) = f (x),

is smooth. Thus diffeology is called the functional diffeology.
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The plots of that diffeology are the parametrizations r 7→ fr , defined
on some domain U, such that

(r, x) 7→ fr(x) from U × X to X′

is smooth. That means that for every plot s 7→ xs in X, defined on
some domain V, the parametrization (r, s) 7→ fr(xs), defined on U×V,
is a plot of X′.

Now, let X, X′ and X′′ be three diffeological spaces. Then,

(1) The product
◦(f , g) = g ◦ f ,

defined on C∞(X, X′) × C∞(X′, X′′) to C∞(X, X′′), is smooth.
(2) The spaces C∞(X,C∞(X′, X′′)) and C∞(X × X′, X′′) are dif-

feomorphic. The diffeomorphism φ consists in the game of
parenthesis, for all f ∈ C∞(X,C∞(X′, X′′))

φ(f ) : (x, x ′) 7→ f (x)(x ′).

We say that the category {Diffeology} is Cartesian closed.

A forest, a sum of trees…
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The Irrational Tori

In this lecture we will study the examples of irrational tori, quotients
of torus Tn by irrational hyperplanes.

The irrational torus is the first example in diffeology that made the
difference with the other generalisations of differential geometry. It
appears for the first time in our paper “Exemples de groupes dif-
féologiques: flots irrationnels sur le tore” [DI83], at the very begin-
ning of the theory of diffeologies in 1983. It is this example that has
motivated the subsequent development of the theory.

The irrational torus is a quotient space that is topologically trivial
but, as it has been proven, absolutely not trivial for the quotient
diffeology. We shall see in this example how its diffeology captures
the maximum possible of its construction. It is also an example of
how diffeology can be sensitive to arithmetic and reveal it when it is
involved in a hidden way.

15. What is a torus?

The story begins with the ordinary multidimension torus Tn, which
is the n-power of the 1-dimensional torus

T = S1 = {(x, y) ∈ R2
| x2 + y2 = 1} ≃ U(1).

We have seen that this space, equipped with the subset diffeology of
R2 in the previous lecture.

28
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We recall that we have also seen that the map

π : R → R2 with π(t) = (cos(2πt), sin(2πt))

is a subduction from R to S1 ⊂ R2 that identifies smoothly the
quotient space R/Z with S1, T ≃ R/Z. The preimage of a point
z = (cos(2πt), sin(2πt)) is the orbit of t by Z, that is

π
–1(z) = {t + k | k ∈ Z}.

The torus T is naturally a group, quotient of the additive R by the
subgroup Z. It is a diffeological group (actually, a Lie group). More-

U

S

p

{

u

u,2

u,l

u.2

Figure 6. Covering of the Circle.

over, the projection π is the universal covering of T, which exists and
is unique up to an isomorphism for any connected diffeological space.
These words will be defined precisely later.

Now, the 2-torus
T2 = T × T ⊂ R2

× R2

is the product of the torus T by itself, its square. It is equipped with
the product diffeology we have seen in the previous lecture. A plot
of in T2 is a parametrization

r → (z1(r), z2(r)) =
((

x1(r), y1(r)
)
,
(
x2(r), y2(r)

))
such that the xi and yi are smooth parametrizations such that xi(r)2+
yi(r)2 = 1 for all r.
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30 THE IRRATIONAL TORI

Next, we can consider the square of the projection π, let us denote it
just by π2

π2 : R2
→ T2

with

π2(t1, t2) =
((

cos(t1), sin(t1)
)
,
(

cos(t2), sin(t2)
))

Since the projection π on each factor is a subduction from R onto
its image T ⊂ R2, the product π2 is a subduction from R2 onto its
image T2 ⊂ (R2)2. Therefore the square T2 of T identifies with the
quotient

T2 ≃ (R/Z)2 = R2/Z2,

where Z2 ⊂ R2 is the subset of points with integer coordinates.

U

U
){2-{3*

{2

{3

U3

Figure 7. The 2-torus.

More generally, a n-dimensional torus Tn is the n-th power of the
1-dimensional torus T

Tn = {(z1, . . . , zn) | ∀i, zi ∈ T}.

And also equivalent to the quotient

Tn ≃ (R/Z)n = Rn/Zn.

where Zn ⊂ Rn is the subgroup of points with integer coordinates.
Again, Tn is a diffeological group (a Lie group more precisely), an
Abelian one.
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Remark. Consider a lattice in Rn, that is, a subgroup like

L =
{

n
∑

i=1
nivi | ni ∈ Z

}
,

where the (vi)n
i=1 are a basis of Rn. Then the quotient space Rn/L is

naturally difféomorphic to Tn. Indeed, let M: Rn → Rn be the linear
isomorphism M(x) = ∑

n
i=1 xivi, with x = (x1, . . . , xn). The map

m = class(x) 7→ classL(x)

is well defined and defines a smooth group isomorphism from Tn =
Rn/Zn to Rn/L.

Rn

Rn/Zn Rn/L

class classL

m

So, diffeologically speaking there is only one torus Tn: all lattices are
equivalent.

The various tori are often described as the power of the unitary group

U(1) = {z ∈ C | z̄z = 1},

where z̄ denotes z conjugate. Thus,

Tn ≃ U(1)n = {(z1, . . . , zn) | ∀i, zi ∈ U(1)}

There, the group law is just the pointwise multiplication:

(z1, . . . , zn) · (z ′1, . . . , z ′n) = (z1z ′1, . . . , znz ′n).

We remark that the multiplication is smooth, that means that for
two plots r 7→ (z1(r), . . . , zn(r)) and r 7→ (z ′1(r), . . . , z ′n(r)), defined on
the same domain, the resulting parametrization r 7→ (z1(r)z ′1(r), . . . ,
zn(r)z ′n(r)) is again a plot in Tn. The inversion r 7→ (z̄1(r), . . . , z̄n(r))
also is smooth. We say that Tn is a diffeological group. We shall
develop later a little bit about diffeological group, especially when
it will come to the moment map and symplectic diffeology. But for
now, that is all we need.
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16. The irrational torus Tα

The object “irrational torus” has been motivated by physics, by a
question related to the behavior of a particle submited to a quasiperi-
odic potential. These quasiperiodic potentials describe the phenome-
non of a quasiperiodic pattern in cristals. For example, the Figure 8
is representing the diffraction of an aluminium-palladium-manganese
(Al-Pd-Mn) quasicrystal surface.

Figure 8. A Diffraction Figure of a Quasicristal.

For this type of material, the diffraction pattern is not periodic as it
is usually for a crystal, i.e. it does not draw a periodic tiling of the
plane, but something close without being quite so.

The physicists and the mathematicians who were involved in these
researchs decided that, that phenonenom could be described by a
quasiperiodic potential. I will try to outline their approach without
being able to be too precise.

In classical physics, the motion of a particle in a medium is described
by a force which is the gradient of a real function called the potential.

So, let us consider the simplest example, a toy model: a particle
moving on a line submited to a force that is the derivative of a real
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function V : R → R, which is assumed to be smooth. Physicists are
interested in the spectrum of the so-called (quantum) Hamiltonian:

Ĥ = –
h̄

2m
∂2

∂x2 + V(x)

which is an operator on some Hilbert space of functions. Two main
special cases are illustrated by figure 9.

(1) The periodic case is described by the potential

V1 : x 7→ U1
(
e2iπx)

where U1 is defined on the circle S1.
(2) The quasiperiodic case is described by the potential

V2 : x 7→ U2 ◦ jα(x),

where U2 is a function defined on the 2-torus and jα : R → T2

is the map

jα : x 7→
(
e2iπx, e2iπαx) with α ∈ R – Q.

U3
S

S
T2

V2

V3

f3jpy

ka

Figure 9. Periodic and Quasiperiodic Potential.

So, the quasiperiodic property is encoded in the irrational solenoid

Sα =
{(

e2iπx, e2iπαx)
| x ∈ R

}
.

We remark first that S ⊂ T2 is a subgroup.

Our intention now is not to solve the general question of the spectrum
of the Hamiltonian in presence of quasiperiodic potential, but to delve
deeper into issues surrounding these context. In particular:
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43. Definition. We call irrational torus Tα the quotient space

Tα = T2/Sα,

equipped with the quotient diffeology.

44. Proposition. The map jα : x 7→
(
e2iπx, e2iπαx) is an induction from

R into T2, with image the solenoid Sα.

Note. We shall see further on, Sα ⊂ T2 is a submanifold in the sense
of diffeological manifolds, but not exactly in the usual sense because
it is not embedded. In ordinary differential geometry textbooks, sub-
manifolds are defined only embedded.

✑ Proof. Let us begin to check that the map π2 : (x, y) 7→
(π(x), π(y)), where π(t) = (cos(2πt), sin(2πt)), from R × R to R2 × R2

is strict. First of all, the map π2 is smooth. Then, according to the
definition, π2 is strict if and only if

class(x, y) 7→
((

cos(2πx), sin(2πx)
)
,
(

cos(2πy), sin(2πy)
))

is an induction, from R2/Z2 to R2 × R2, with class : R2 → R2/Z2.
We have already seen that π : t 7→ (cos(2πt), sin(2πt)) is strict, and
π

2 is just the square of π. Thus, a plot Φ : U → S1 × S1 ⊂ R2 × R2 is
just a pair of plots P and Q from U to S1, which can be individually
smoothly lifted locally along π, and give a local lift of π2 itself. Thus,
π

2 is strict.

Now, let Δα be the line in R × R with splope α, the subset of points
(x, αx) ∈ R2. Since α is irrational, π2α = π2 ↾ Δα is injective. Indeed,
π

2(t, αt) = π2(t′, αt′) means, on the one hand, (cos(2πt′), sin(2πt′)) =
(cos(2πt), sin(2πt)), and on the other hand, (cos(2παt′), sin(2παt′)) =
(cos(2παt), sin(2παt)). That is, t′ = t + k and αt′ = αt + k ′ with
k, k ′ ∈ Z, which gives αk – k ′ = 0, but α ̸= Q, thus k = k ′ = 0 and
then t′ = t.

Let Φ : U → Sα ⊂ S1 ×S1 ⊂ R2 ×R2 be a plot, with Φ(r) = (P(r), Q(r)).
Since π2 is strict, for all r ∈ U, there exists locally a smooth lift
r ′ 7→ (x(r ′), y(r ′)) in R2, defined on a neighborhood V of r, such that
π

2(x(r ′), y(r ′)) = (P(r ′), Q(r ′)) Thus, π2(x(r ′), y(r ′)) ∈ Sα for all r ′ ∈
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V. But, r ′ 7→ (x(r ′), αx(r ′)) ∈ Δα ⊂ R2 is smooth, and π2(x(r ′), αx(r ′))
belongs to Sα too. Therefore, there exists r ′ 7→ k(r ′) ∈ Z such that
y(r ′) = αx(r ′) + k(r ′), that is, k(r ′) = y(r ′) – x(r ′). Thus, r ′ 7→
k(r ′) is smooth and takes its values in Z, hence k(r ′) = k constant.
Then, r ′ 7→ (x(r ′), y(r ′) – k) is a plot of Sα with π2(x(r ′), y(r ′) – k) =
(P(r ′), Q(r ′)), thus π2α : Δα → Sα is an injective subduction, that is, a
diffeomorphism from Δα to Sα, and therefore an induction. ▶

45. Proposition. The quotient space Tα = T2/Sα is diffeomorphic to
the quotient R/(Z + αZ), and isomorphic as a group.

Note 1. It is clear now that Tα, as a quotient topological space, is
trivial since Z + αZ ⊂ R is dense.

Note 2. Tα is also isomorphic to the intermediate quotient R2/Z2(Δα),
where Z2(Δα) is the image of the line Δα by Z2, that is, the set of points
(x + n, αx + m) with x ∈ R and (n, m) ∈ Z2.

✑ Proof. We begin to prove that with α ̸= Q, Z + αZ is dense in R.
We remark first that Z + αZ is a subgroup of (R, +). Let Γ ⊂ R be
a subgroup not reduced to {0}. It is relatively obvious that: either
there exists a smallest element a ∈ Γ and Γ = aZ, or Γ is dense. Now,
if Z + αZ = aZ, then α = ka and 1 = ℓa with k, ℓ ∈ Z, that would
mean that α = k/ℓ which is not the case. Thus, Z + αZ is dense.

Let φ : R2/Z2 → S1×S1 be the identification given by the factorization
of the strict map π2 : R2 → S1 ×S1. Then, the quotient (S1 ×S1)/Sα =
φ(R2/Z2)/Sα, is equivalent to R2/[Z2(Δα)] where the equivalence rela-
tion is defined by the action of the subgroup Z2(Δα). Let ρ : R2 → R2

be defined by ρ(x, y) = (0, y–αx), it is obviously a projector, ρ◦ρ = ρ,
and clearly class ◦ ρ = class, with class : R2 → R2/[Z2(Δα)]. Now, let
X′ = val(ρ), that is, X′ = {0} × R. The restriction to X′ of the equiv-
alence relation defined by the action of Z2(Δα) on R2, is given by the
following action of Z2, (n, m) : (0, y) 7→ (0, y +m–αn). Therefore, the
quotient (S1 × S1)/Sα is equivalent to X′/(Z + αZ), that is, equivalent
to R/(Z + αZ) = Tα. ▶
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Figure 10. Tα as quotients.

46. Smooth maps from Tα to Tβ. For any pair α and β of irrational
numbers, the set C∞(Tα, Tβ) does not reduce to the constant maps if
and only if there exists a, b, c, d ∈ Z such that

α =
c + dβ
a + bβ

.

Note that, since α and β are irrational, the relation above has an
inverse β = (aα – c)/(d – bα).

✑ Proof. Let f : Tα → Tβ be a smooth map. Consider the commu-
tative diagram

R R

Tα Tβ

F

classα classβ

f

Since classα is a plot in Tα, f ◦ classα is a plot of Tβ. Hence, for
every real x0 there exists an open interval V centered at x0, and a
smooth parametrization F : V → R such that classβ ◦F = (f ◦classα) ↾
V. For all real numbers x and all pairs (n, m) of integers such that
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x + n + αm ∈ V, there exist two integers n′ and m′ such that

F(x + n + αm) = F(x) + n′ + βm′. (♠)

Since β is irrational, for every such x, n and m, the pair (n ′, m ′) is
unique.

Now, there exists an interval J ⊂ V centered at x0 and an interval O
centered at 0 such that: for every x ∈ J and for every n + αm ∈ O,
x+n+αm ∈ V. Since F is continuous and since Z+αZ is diffeologically

^ \

\^

W

P K

y1

\^

1

.u ,u

Figure 11. Intervals V,O, J.

discrete, n′ + βm′ = F(x + n + αm) – F(x) is constant as function of
x. But F is smooth, the derivative of the identity (♠), with respect
to x, at the point x0, gives F′(x0 + n + αm) = F′(x0). Then, since
α is irrational, Z + αZ ∩ O is dense in O, and since F′ is continuous,
F′(x) = F′(x0), for all x ∈ J. Hence, F restricted to J is affine, there
exist two numbers λ and μ such that

F(x) = λx + μ for all x ∈ J. (♣)

Note that, by density of Z + αZ, classα(J) = Tα. Hence F defines
completely the function f .

Now, applying (♠) to the expression (♣) of F, we get for all n+αm ∈

O: λ(x + n + αm) + μ = λx + μ+ n′ + βm′, that is:

λ × (n + αm) ∈ Z + βZ, that is: λ(Z + αZ) ⊂ Z + βZ. (♦)

Let us show that actually (♦) is satisfied for all n + αm in Z + αZ.
Let O =] – t, t[, and let us take t not in Z + αZ, even if we have to
shorten O a little. Let x ∈ Z + αZ, and x > t. There exists N ∈ N
such that

0 < (N – 1)t < x < Nt, and then 0 <
x
N

< t.
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Now, by density of Z + αZ in R,

∀η > 0, ∃y > 0 such that y ∈ Z + αZ and 0 <
x
N

– y < η.

Choosing η < t/N we have

η <
t
N

⇒ 0 < x – Ny < Nη < t and 0 < y <
x
N

< t.

Hence,
x, y ∈ Z + αZ ⇒ x – Ny ∈ Z + αZ,

and
x – Ny < t ⇒ x – Ny ∈ Z + αZ ∩ O.

Thus,
λ × (x – Ny) = λx – N × (λy) ∈ Z + βZ.

But,

y ∈ Z + αZ ∩ O ⇒ λy ∈ Z + βZ ⇒ N × (λy) ∈ Z + βZ,

therefore, λx – N × (λy) ∈ Z + βZ, together with N × (λy) ∈ Z + βZ,
implies

∀x ∈ Z + αZ, λx ∈ Z + βZ.

Now, applying successively (♦) to x = 1 and x = α, we get

λ ∈ Z + βZ and λα ∈ Z + βZ

Let
λ = a + bβ. and λα = c + dβ.

If λ ̸= 0, then

α =
c + dβ
a + bβ

.

Let us remark that, since classα(J) = Tα, the map F, extended to the
whole R, still satisfies classβ ◦F = f ◦ classα. ▶

47. Diffeomorphisms between Tα and Tβ. Let α and β be two irra-
tional numbers. The tori Tα and Tβ are difeomorphic if and only if
there exists a, b, c, d ∈ Z such that

α =
c + dβ
a + bβ

with ad – bc = ±1.

We say α and β are conjugated modulo GL(2, Z) [DI83].
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✑ Proof. The map f is surjective is equivalent to λ ̸= 0. Let
us express that f is injective: let τ = classα(x) and τ′ = classα(x ′).
The map f is injective if f (τ) = f (τ′) implies τ = τ′, that is, x ′ =
x + n + αm, for some relative integers n and m. Using the lifting F,
this is equivalent to:

If there exist two integers n′ and m′ such that F(x ′) = F(x)+
n′ + βm′, then there exist two integers n and m such that
x ′ = x + n + αm.

But F(x) = λx + μ, with λ × (Z + αZ) ⊂ Z + βZ. Hence, the injectivity
writes:

If λx ′ + μ = λx + μ+ n′ + βm′, then x ′ = x + n + αm.

Which is equivalent to:

If λy ∈ Z + βZ, then y ∈ Z + αZ.

Finally equivalent to:

1
λ

× (Z + βZ) ⊂ Z + αZ.

Now, let us consider the multiplication by λ, as a Z-linear map, from
the Z-module Z+αZ to the Z-module Z+βZ, defined in the respective
basis (1, α) and (1, β), by

λ × 1 = a + b × β and λ × α = c + d × β.

The two modules being identified, by their basis, to Z × Z, the multi-
plication by λ and the multiplication by 1/λ are represented by the
matrices

λ ≃ L =
(

a b
c d

)
and

1
λ
≃ L–1 =

1
ad – bc

(
d –b
–c a

)
.

The matrix L is then invertible as a matrix with coefficients in Z,
that is, ad – bc = ±1 and L = GL(2, Z). ▶

48. The space C∞(Tα, Tβ). Every matrix M ∈ L(2, Z) maps the lattice

Z2 into itself, and the line y = αx is mapped into a line y = βx, that
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is,

M
(

1
α

)
∝
(

1
β

)
, that is MΔα = Δβ.

Let

M =
(

d –b
–c a

)
and α and β will be related by the same relation as above:

β =
aα – c
d – bα

, that is α =
c + dβ
a + bβ

Now, since M preserves the lattice Z2 and maps the line Δα to the line
Δβ, it defines by projection a morphism Φ of T2, mapping the solenoid
Sα to the solenoid Sβ. That defines a morphism fM from the quotient
Tα = T2/Sα to Tβ = T2/Sβ. Composed with a constant map we

民白!

民皮!

U3!

S3! S3!

U3!

U白! U﹚!

Y!⟼!NY!

甲!

qs! qs!

╮﹚!╮白!

gN!

Figure 12. Linear morphism from Tα to Tβ.

obtain all the smooth maps from Tα to Tβ, in additive notation:

f : τ 7→ fM(τ) + ν.

In other words:
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49. Proposition. Every smooth map f : Tα → Tβ is the projection of
an affine map

F: X → MX + N with M ∈ L(2, Z) and N ∈ R2.

In particular, the congruence modulo GL(2, Z) between α and β, in
case of diffeomorphism, is the optimum condition we can hope for
a good theory of quotients. What is remarkable here is that this is
the sufficient and necessary condition in the framework of diffeology.
Diffeology optimaly discriminates the irrational tori.

Now, consider the set of lines in R2, denoted usually by P2(R). Each
line Δα defines a torus Tα.

50. Proposition. The class of equivalent irrational tori are in bijection
with the orbits of the irrational lines by GL(2, Z).

Note that this proposition extends to any quotients Tα = T2/Sα,
even if α ∈ Q, in that case Tα is diffeomorphic to the circle S1. The
rationnal lines are one orbit under GL(2, Z).

51. Remark: C∞(Tα, Tβ) as bimodule. Let us come back to the lifting
on R of the smooth maps from Tα to Tβ,

x λx + μ

classα(x) classβ(λx) + classβ(μ)

F

classα classβ

f

Since Tβ is a group, the set C∞(Tα, Tβ) is a group for the addition.
The mapping

j : f 7→ (λ, ρ) with ρ = classβ(μ),

is a group homomorphism. The map j is injective and identifies

C∞(Tα, Tβ) ≃ Λαβ × Tβ,

with

Λαβ = {λ | λ(Z + αZ) ⊂ Z + βZ}.
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We can note here that the linear smooth maps on Tα act on the left
on C∞(Tα, Tβ), and the linear smooth maps on Tβ act on the right.
We can denote that by

Λαα · Λαβ · Λββ ⊂ Λαβ.

That would correspond to

x 7→ νx 7→ λ(νx) + ρ 7→ ε(λ(νx)) + ρ,

where ν(Z + αZ) ⊂ Z + αZ and ε(Z + βZ) ⊂ Z + βZ. These actions are
commutative and make C∞(Tα, Tβ) a bimodule. But this bimodule
is not trivial only if α or β are quadratic numbers, or both. Indeed,
ν(Z + αZ) ⊂ Z + αZ implies there exists four integers a, b, c, d ∈ Z
such that

α =
a + bα
c + dα

⇒ dα2 + (c – b)α – a = 0.

Yet, still much need to be clarified here.

✑ Proof. We just prove that the map j is injective. Let classβ(λx)+
ρ = classβ(λ′x) + ρ′, for x = 0 we get ρ = ρ′, and then classβ

(
(λ –

λ
′)x
)

= 0 for all x ∈ R. That is, (λ – λ′)x ∈ Z + βZ for all x ∈ R, and
thus λ = λ′. ▶

52. Remark: Component of C∞(Tα, Tβ). We have seen that C∞(Tα, Tβ)
is isomorphic to Λαβ × Tβ, equiped with the functional diffeology the
subgroup Λαβ×{0} is discrete, it represents the connected components,
what we shall denote later by

π0
(
C∞(Tα, Tβ)

)
= Λαβ.

What we know better is the group of components of the group Diff(Tα).
That is, the set of numbers λ ∈ R such that:

λ(Z + αZ) ⊂ Z + αZ and
1
λ

(Z + αZ) ⊂ Z + αZ

Considering the basis (1, α) of the Z-module Z+αZ, we define a, b, c, d
by:

λ × 1 = a + bα and λ × α = c + dα.
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The map F lifting f associated with λ for ρ = 0 is represented by the
matrix

M =
(

a b
c d

)
∈ GL(2, Z),

and it satisfies:

F(x) = (a + bα)x with α =
c + dα
a + bα

and ad – bc = ±1. (♣)

As we said, except for the obvious solution λ = 1 which correspond
to the inversion x 7→ –x, there are no other solutions except in the
case of α is quadratic.

Let us remark now that if two matrices M and M′ representing λ in
GL(2, Z), then they are equal. Indeed,

λ = λ′ ⇒ a + bα = a′ + b′
α ⇒ a = a′ and b = b′.

Then,

α =
c + dα
a + bα

=
c ′ + d′

α

a′ + b′α
⇒ c + dα = c ′ + d′

α

⇒ c = c ′ and d = d′.

Hence M = M′.

Proposition.The set of components of Diff(Tα) is isomorphic to the
stabilizer, in GL(2, Z), of the line Δα:

π0(Diff(Tα)) =
{(

a b
c d

)
|

(
a b
c d

)(
1
α

)
= λ

(
1
α

)}
According to a Dirichlet famous theorem, that we shall see in full

generality in the next section, we have:

Theorem.The group of components of Diff(Tα) is isomorphic to {±1}×

Z if α is quadratic, otherwise it is reduced to {±1}.

17. The general codimension 1 case

The case presented here of an irrational hyperplane in the torus Tn

is the result of a joint work with Gilles Lachaud, published in 1990
[IL90]. The arithmetic material for this part can be found in [BC67].
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We consider the standard torus Tn = Rn/Zn.

53. Definition. We call irrational hyperplane in Rn an hyperplane H
that does not contain any integer points except 0

H ∩ Zn = {0}.

An hyperplane is directed by a linear 1-form that is in our case nor-
malized as follow:

H = ker(w = (1 w2 . . . wn)) = {x ∈ Rn
| w(x) =

n∑
i=1

wixi = 0}.

The fact that the hyperplane is irrational is equivalent to the property
of the coefficients wi to be independent over Q:

∀qi ∈ Q,
n∑

i=1
wiqi = 0 ⇒ qi = 0, ∀i.

Let us denote by SH ⊂ Tn the image of H by the canonical projection
π : Rn → Tn. Here again the map π ↾ H is an induction.

We define the irrational torus associated with H as the quotient space

TH = Tn/SH,

which is also an Abelian group.

54. Proposition. The space TH is diffeomorphic to the quotient:

TH ≃ R/w(Zn).

where

w(Zn) = {n1 +
n∑

i=2
wini | ni ∈ Z}

is a subgroup of (R, +).

55. The group Diff(TH). The group of diffeomorphisms of the irra-
tional torus TH is given by

Diff(TH) ≃ Λw × TH.

with Λw its group of components π0(Diff(TH)):

Λw = {λ ∈ R | λMw = Mw} with Mw = w(Zn).
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✑ Proof. The situation for the diffeomorphisms of the torus TH is
identical to the case of Tα. They are the projections f of the affine
maps

F: x 7→ λx + μ,

such that, for all k ∈ Zn there exists a unique k ′ ∈ Zn with F(w(k)) =
w(k ′). In other words,

λw(Zn) ⊂ w(Zn).

The map f ∈ Diff(TH) is the defined by

f ◦ classw(x) = classw(F(x)).

On TH, f is the composite of the linear part

λ : classw(x) 7→ classw(λx)

by some translation

tρ : class(x) 7→ classw(x) + ρ with ρ = classw(μ).

We can focus on the linear parts of the diffeomorphisms of TH, which
makes the discrete part of Diff(TH).

Consider now the inverse diffeomorphism (λ)–1, it can be lifted to Rn

by λ′, with

λ ◦ classw = classw ◦λ and classw ◦λ′ = (λ)–1 ◦ classw ,

where λ on R is just the multiplication by λ. We get

classw ◦λ′ ◦ λ = classw ,

which gives first λ′λx = x + w(k), with k ∈ Zn, and then k = 0 for
x = 0. Therefore

λ
′ =

1
λ

.

Thus,
1
λ

w(Zn) ⊂ w(Zn) ⇒ λ ×
1
λ

w(Zn) ⊂ λw(Zn).

Therefore, λw(Zn) ⊂ w(Zn) and w(Zn) ⊂ λw(Zn), that is,

λw(Zn) = w(Zn).
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We get then the discrete part of Diff(TH)

Λw = {λ ∈ R | λMw = Mw},

such that Diff(TH) ≃ Λw × TH. ▶

In order to understand the group of components Λw we will introduce
the Q-vector space:

Ew = w(Qn) =
{

q1 +
n∑

i=2
qiwi | qi ∈ Q

}
.

56. The Algebraic Field Kw . The set of numbers

Kw = {λ ∈ R | λEw ⊂ Ew}

is an algebraic number field, a finite extension of Q, whose dimension
d on Q divides n, and Ew is a Kw-vector space of dimension n/d.
That is, Kw is a field Q(θ) where θ is a solution of some polynomial
with integer coefficients.

✑ Proof. It is enough to prove that if k ∈ Kw and k ̸= 0, then
1/k ∈ K. The multiplication by k is a linear map in Ew whose
kernel is {0}, then it is injective. Since Ew is finite dimensional, it
is surjective: for all y ∈ Ew there exists x ∈ E such that kx = y,
that is, x = y/k. the number 1/k stabizes Ew . On the other hand,
Kw is a subalgebra of L(E), hence of finite dimension on Q. Since
Q ⊂ Kw , Kw is a finite extension of Q. Moreover, the space Ew is
naturally a Kw-module, it is then a Kw-vector space. We get then
dimQEw = dimQKw × dimKw Ew . ▶

Let us consider now a lattice Mw ⊂ Ew , that is, an additive subgroup
of Ew such that Mw ⊗ Q = Ew . Its ring of stabilizers:

Aw = {λ ∈ R | λMw ⊂ Mw}

is a subring of the field Kw .

Let us recall what is an order in the sense of ring theory (op. cit.).

57. Order of a ring. Let K be a ring that is a finite-dimensional
algebra over the field Q. Let A ⊂ K be a subring. We say that
A is an order of K if
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(1) A is a Z-lattice in K,
(2) A spans K over Q.

Then,

58. The Order Mw . Let E ⊂ R be a finite dimensional Q-vector
subspace, and M ⊂ E be a Z-lattice. The ring A of stabilizers of M

A = {λ ∈ R | λM ⊂ M},

is an order of the ring K of the stabilizer of E in R

K = {λ ∈ R | λE ⊂ E}.

In other words:

E = M ⊗ Q ⇒ K = A ⊗ Q.

✑ Proof. We want to prove that K = A ⊗ Q. Let w = (w1, . . . , wn)
be a Z-basis of M, i.e. a Q-basis of E = M⊗ Q such that w(Zn) = M.
Let λ ∈ K and Λ be the matrix representing λ, the multiplication
by λ ∈ K, in the basis w. The matrix Λ can be written Λ = Λ′/ℓ,
where ℓ ∈ Z is the least common multiple of the denominators of the
elements of Λ, and Λ′ ∈ L(Zn). For all m ∈ M we have then ℓλm ∈ M,
that is, (ℓλ)M ⊂ M. Therefore, ℓλ ∈ A, or again λ ∈ A ⊗ Q. ▶

So, coming back to Aw and Kw , Aw is an order of Kw . Now we are
not just interested in Aw but in its invertible elements. That is,

Λw = {λ ∈ R | λM ⊂ M and
1
λ
M ⊂ M},

= {λ ∈ Aw | λ
–1

∈ Aw}.

59. The Group Λw . The group Λw of components of Diff(TH)) is the
group of invertible elements of the ring Aw , that is, its group of units
(op. cit.). Since Aw is an order of the algebraic field Kw , its group of
units is given by the Dirichlet’s unit theorem.1 In our case:

Λw ≃ ±1 × Zr+s–1,

1https://www.wikipedia.org/en/Dirichlet’s_unit_theorem
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where r is the number of real places of the field Kw and 2s the number
of complex places. In other words, Kw = Q(θ) where θ is a solution of
a polynomial P with integer coefficients. The degree d of Kw divides
n, thus d = r + 2s and n = ℓd.

Note. In particular, for n = 2 there are two cases, either d = 0 and
Λw = {±1}, or d = 2 and Λw = {±1} × Z.

60. Example. For the quotient of a 2-torus there is, as we have seen,
only one possibility: if we have one real root of the characteristic
polynomial, we have two and then π0(Diff(T/H) = {±1} × Z. For a
3-torus we have two possibilities either our characteristic polynomial
has one real root or three, illustrated in Figure 13.

In the first case the order is generated by one generator χ, and
π0(Diff(T/H) = {±1} × Z.

w = (1 3√2), χ = 3√2 – 1.

In the second case the order of Kw has two generators χ and χ′, and
π0(Diff(T/H′) = {±1} × Z2.

w = (1 ρ ρ2), with ρ = 2 cos
(2π

9
)
, χ = ρ, and χ′ =

1
1 – ρ

.

0
l

P(l) = l3 - 2 

0
l

P(l) = l3 - 3l +1 

Figure 13. The two examples for T3.
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Generating Families, Dimension

In this lecture we introduce first the notion of generating family, and
we’ll see an application in the definition of dimension in diffeology.
Applied to the quotients Δm = Rm/O(Rm), we prove that and Δm
and Δn are not diffeomorphic if n ̸= m, and not diffeomorphic to the
half-line Δ∞ = [0, ∞[ ⊂ R.

The notion of dimension in diffeology, that was introduced in [PIZ07],
is a quick and easy answer to the question: For two different integers n
and m, are the diffeological spaces Δn = Rn/O(n) and Δm = Rm/O(m)
diffeomorphic? We will show that since dim(Δn) = n and since the
dimension is a diffeological invariant, the answer is No, they are not.
This method simplifies a partial result, obtained in a more compli-
cated way in [Igl85], stating that Δ1 and Δ2 are not diffeomorphic. The
half-line Δ∞ = [0, ∞[ ⊂ R is a similar example for which dim(Δ∞) = ∞.
Hence, Δm is not diffeomorphic to the half-line Δ∞ for any integer m.
Dimension is a simple but powerful diffeological invariant.

18. Generating famillies

Diffeologies can be built by generating families. Any family of pa-
rametrizations of a set generates a diffeology. Conversely, any dif-
feology is generated by some set of parametrizations. This mode of
construction of diffeologies is very useful because it can reduce the
analysis of the properties of a diffeological space to a subset of its

49
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plots, hopefully smaller than the whole diffeology. The definition of
generating diffeology leads to the definition of the dimension of a
diffeological space, which is a first global invariant of the category
{Diffeology}. And this construction also leads to the introduction
of important subcategories of diffeological spaces, for example the
category of manifolds, or the category of orbifolds and others.

61. Proposition. Let F be a familly of parametrizations of a set X.
There exists a finest diffeology on X containing F, it is called the
diffeology generated by F. It is denoted by 〈F 〉. The family F is said
to be a generating family of the diffeological space (X, 〈F 〉) [PIZ07].
It is the intersection of the diffeologies containing F

〈F 〉 =
⋂

D∈Diffeologies(X)
F⊂D

D.

Let X be a diffeological space, the set of families generating X will
be denoted by Gen(X).

If the family F covers X, that is, if for all x ∈ X there exists a
parametrization F ∈ F such that x = F(r), with r ∈ dom(F), then a
plot of 〈F 〉 is any parametrization P: U → X such that:

(♣) For all r ∈ U there exists an open neighborhood V ⊂ U of r,
a parametrization F ∈ F, and a smooth parametrization Q: V →

dom(F) such that P ↾ V = F ◦ Q.

If the family F does not cover X, the easiest way is to add the constant
parametrizations

x̂ : R0
→ X with x̂(0) = x,

to F. That gives a family F̂ that covers X and

〈F 〉 = 〈 F̂ 〉 .

Note 1. The empty family ∅ generates the discrete family,

〈 ∅ 〉 = D◦.
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Note 2. The diffeology D of a diffeological space X belongs to Gen(X).
Generating family is a projector:

〈D 〉 = D

Note 3. Generating families is an increasing function of fineness

F ⊂ F′ ⇒ 〈F 〉 ⊂ 〈F′
〉 .

62. Pushing forward families. Let X and X′ be two sets. Let F be a
family of parametrizations of X, and let f : X → X′ be a map.

The pushforward f∗(F) of the family F by f is defined by

f∗(F) =
{

f ◦ F | F ∈ F
}

.

Then, the diffeology generated by the pushforward of the family F

by f is the pushforward by f of the diffeology generated by F, that
is,

〈 f∗(F) 〉 = f∗(〈F 〉).

In particular, let X and X′ be two diffeological spaces, and let f : X →

X′ be a subduction. The pushforward f∗(F) of any generating family
F for X is a generating family for X′.

63. Pulling back families. Let X and X′ be two sets. Let F′ be a
family of parametrizations of X′, and let f : X → X′ be any map. Let
us define the pullback of the family F′ by f as the family f ∗(F) of
parametrizations F : U → X satisfying the following property:

(♦) Either f ◦F is constant or there exists an element F′ : U′ → X′

of F′, and a smooth parametrization φ : U → U′, such that
F′ ◦ φ = f ◦ F.

Then, the diffeology generated by the pullback f ∗(F′) is the pullback
by f of the diffeology generated by F, that is,

〈 f ∗(F′) 〉 = f ∗(〈F′
〉).

In particular, let X and X′ be two diffeological spaces, and let f : X →

X′ be an induction. The pullback f ∗(F′) of any generating family F′

for X′ is a generating family for X. Unfortunately, compared with
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the pushforward of a family, pulling back a small generating family
may lead to a huge family, almost as big as the diffeology itself. That
will be the next example.

Note. The choice of a generating family is relatively arbitrary. For
example, the empty family is equivalent to the family of constant
parametrizations. If the family F′ is empty, its pullback is not empty,
but is the set of the parametrizations of X with values in the preim-
ages of points f –1(x ′), x ′ ∈ X′. This is not surprising since the pull-
back of the discrete diffeology is the sum of the preimages of points,
equipped with the coarse diffeology.

64. Example: Generating the half-line. Let the half line [0, ∞[⊂ R be
equipped with the subset diffeology of R. Let F be the generating
family of R reduced to the identity, F = {1R}. Then the pullback
of the generating family F by the inclusion j : [0, ∞[→ R is the whole
diffeology of [0, ∞[.

✑ Proof. Indeed, the pullback j∗({1R}) is the set of parametriza-
tions F: U → [0, ∞[ such that j ◦ F is constant, or there exists an
element F′ ∈ {1R} and a smooth parametrization φ : U → dom(F′)
such that j ◦ F = F′ ◦ φ.

Thus, F′ = 1R, dom(F′) = R, and then F = φ. Therefore, F is any
smooth parametrization of R with values in [0, ∞[, and j∗({1R}) is
the whole diffeology of the half-line. ▶

19. Dimension of a diffeology

The global dimension of a diffeology, or a diffeological space, defined
now is a diffeological invariant. It will be refined later in a pointwise
dimension map.

65. Dimension of a parametrization. Let P be a n-parametrization
of some set X, n ∈ N. We say that n is the dimension of P, and we
denote it by dim(P). That is,

∀P ∈ Param(X), dim(P) = n ⇔ P ∈ Paramn(X).
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66. Dimension of a family of parametrizations. Let X be a set and let
F be any family of parametrizations of X. We define the dimension
of F as the supremum of the dimensions of its elements,

dim(F) = sup{dim(F) | F ∈ F}.

Note that dim(F) can be infinite if for all n ∈ N there exists an
element F of F such that dim(F) = n. In this case we denote
dim(F) = ∞.

67. Dimension of a diffeology. Let D be a diffeology. The dimension
of D is defined as the infimum of the dimensions of its generating
families:

dim(D) = inf{dim(F) | 〈F 〉 = D}.

Let X be a diffeological space and D be its diffeology, we define the
dimension of X as the dimension of D:

dim(X) = dim(D) ∈ N ∪ {∞}.

68. Dimensions of Euclidean Domains. The diffeological dimension
of an Euclidean domain U ⊂ Rn, equipped with the standard diffeo-
logy, is equal to n:

∀U ∈ Domains(Rn), dim(U) = n.

✑ Proof. Let 1U be the identity map of U. The singleton {1U}
is a generating family of U, therefore, dim(U) ≤ dim {1U}. Since
dim {1U} = n, dim(U) ≤ n. Now let us assume that dim(U) < n.
Then, there exists a generating family F for U such that dim(F) < n.
Since the identity map 1U is a plot in U, it lifts locally at every point
along some element of F. Thus, for any r ∈ U there exists a superset
V of r, a parametrization F: W → U, element of F (that is, F ∈

C∞(W, U)) and a smooth map Q: V → W, such that 1U ↾ V = 1V =
F ◦ Q. But dim(F) < n implies that dim(F) = dim(W) < n. Now, the
rank of the linear tangent map D(F◦Q) is less or equal to dim(W) < n,
but D(F ◦ Q) = D(1V) = 1Rn , thus rank(D(F ◦ Q)) = rank(1Rn) = n.
Therefore, there is no generating family F of U with dim(F) < n, and
dim(U) = n. ▶
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69. Dimension zero spaces are discrete. A diffeological space has di-
mension zero if and only if it is discrete.

✑ Proof. Let X be a set equipped with the discrete diffeology. Any
plot P: U → X is locally constant. Then, for any r ∈ U, P lifts locally
along the 0-plot x = [0 7→ x], where x = P(r). Hence, the 0-plots
form a generating family and dim(X) = 0. Conversely, let X be a
diffeological space such that dim(X) = 0. Then, the 0-plots generate
the diffeology of X. But, any plot lifting locally along a 0-plot is
locally constant. Therefore, X is discrete. ▶

70. The dimension is a diffeological invariant. If two diffeological spa-
ces are diffeomorphic, then they have the same dimension.

✑ Proof. Let X and X′ be two diffeological spaces and let f ∈

Diff(X, X′). Let F be a generating family of X. The pushforward
F′ = f∗(F) made of the plots f ◦ F, where F ∈ F, is clearly a gen-
erating family of X′. Conversely we have f –1. Therefore, dim(X) =
dim(X′). ▶

71. Exemple: Has the set {0, 1} dimension 1? Let us realise the set
{0, 1} as the quotient of the real line R by the projection{

π : R → {0, 1}
π(x) = 0 if x ∈ Q, and π(x) = 1 otherwise.

Let then {0, 1}π be the set {0, 1} equipped with the diffeology gen-
erated by the parametrization π. Since {π} is a generating family,
the dimension of {0, 1}π is less than or equal to 1 = dim({π}). But,
since the plot π is not locally constant, by density of the rational (or
irrational) numbers in R, the space {0, 1}π is not discrete. Hence,
dim{0, 1}π ̸= 0, and finally dim{0, 1}π = 1. Thus, a finite diffeologi-
cal space may have a dimension non zero.

72. Exemple: Dimension of tori. Let Γ ⊂ R be any strict subgroup of
(R, +) and let TΓ be the quotient R/Γ, whose diffeology is generated
by the projection class : R → R/Γ. Then,

dim(TΓ) = 1.
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This applies in particular to the circles R/aZ, with perimeter a > 0,
or to irrational tori when Γ is generated by more than one generators,
rationally independent.

✑ Proof. Since R is an Euclidean domain, class is a plot of the quo-
tient, and F = {class} is a generating family of R/Γ, and dim(F) = 1.
Thus, as a direct consequence of the definition dim(R/Γ) ≤ 1. Now, if
dim(R/Γ) = 0, then the diffeology of the quotient is generated by the
constant parametrizations. But π is not locally constant, therefore
dim(R/Γ) = 1. ▶

20. Dimension map of a diffeological space

Because diffeological spaces are not necessarily homogeneous, the
global dimension of a diffeological space is a too rough invariant. It
is necessary to refine this definition and to introduce the dimension
function of a diffeological space, defined at each of its points.

The dimension function of diffeological spaces is the simplest numeral
invariant in diffeology.

73. Pointed plots and germ of a diffeological space. Let X be a dif-
feological space, let x ∈ X. Let P: U → X be a plot. We say that
P is pointed at x if 0 ∈ U and P(0) = x. We will agree that the set
of germs of the pointed plots of X at x represents the germ of the
diffeology at this point, and we shall denote it by Dx.

74. Local generating families. Let X be a diffeological space and let
x be a point in X. We shall call local generating family at x any
family F of plots of X such that:

(1) Every element P of F is pointed at x, that is, 0 ∈ dom(P)
and P(0) = x.

(2) For all plots P: U → X pointed at x, there exists a superset
V of 0 ∈ U, a parametrization F: W → X belonging to F

and a smooth parametrization Q: V → W pointed at 0 ∈ W,
such that F ◦ Q = P ↾ V.
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We shall say also that F generates the germ Dx of the diffeology D

of X at the point x. And we denote

Dx = 〈F〉.

Note that, for any x in X, the set of local generating families at x is
not empty, since it contains the set of all the plots pointed at x, and
this set contains the constant parametrizations with value x.

75. Local generating families. Let X be a diffeological space. Let us
choose, for every x ∈ X, a local generating family Fx at x. The union
F of all these local generating families,

F =
⋃

x∈X
Fx,

is a generating family of the diffeology of X.

✑ Proof. Let P: U → X be a plot, let r ∈ U and x = P(r). Let
Tr be the translation Tr(r ′) = r ′ + r. Let P′ = P ◦ Tr defined on
U′ = T–1

r (U). Since the translations are smooth, the parametrization
P′ is a plot of X. Moreover P′ is pointed at x, P′(0) = P ◦ Tr(0) =
P(r) = x. By definition of a local generating family, there exists
an element F: W → X of Fx, a superset V′ of 0 ∈ U′ and a smooth
parametrization Q′ : V′ → W, pointed at 0, such that P′ ↾ V′ = F◦Q′.
Thus, P ◦ Tr ↾ V′ = F ◦ Q′, that is, P ↾ V = F ◦ Q, where V = Tr(V′)
and Q = Q′ ◦T–1

r . Hence, P lifts locally, at every point of its domain,
along an element of F. Therefore, F is a generating family of the
diffeology of X. ▶

76. The dimension map. Let X be a diffeological space and let x be
a point of X. By analogy with the global dimension of X, we define
the dimension of X at the point x by:

dimx(X) = inf{dim(F) | 〈F〉 = Dx}.

The map x 7→ dimx(X), with values in N∪{∞}, is called the dimension
map of the space X.

77. Global dimension and dimension map. Let X be a diffeological
space. The global dimension of X is the supremum of the dimension
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map of X:
dim(X) = supx∈X

{
dimx(X)

}
.

✑ Proof. Let D be the diffeology of X. Let us prove first that for ev-
ery x ∈ X, dimx(X) ≤ dim(X), which implies that supx∈X dimx(X) ≤

dim(X). For that we shall prove that for any x ∈ X and any gen-
erating family F of D, dimx(X) ≤ dim(F). Then, since dim(X) =
inf{dim(F) | F ∈ D and 〈F〉 = D} we shall get, dimx(X) ≤ dim(X).

Now, let F be a generating family of D. For any plot P: U → X
pointed at x, let us choose an element F of F such that: there exists
a superset V of 0 ∈ U and a smooth parametrization Q : V → def(F),
such that F ◦ Q = P ↾ V.

Then, let r = Q(0) and Tr be the translation Tr(r ′) = r ′ + r. Let
F′ = F ◦ Tr , defined on T–1

r (def(F)).

Thus, F′(0) = x, and F′ is a plot of X, pointed at x, such that
dim(F′) = dim(F). Let Q′ = T–1

r ◦Q, then Q′ is smooth and P ↾ V =
F′ ◦ Q′.

Thus, the set F′
x of all these plots F′ associated with the plots pointed

at x is a generating family of Dx, and for each of them dim(F′) =
dim(F) ≤ dim(F).

Hence, dim(F′
x) ≤ dim(F). But dimx(X) ≤ dim(F′

x), thus dimx(X) ≤

dim(F). And we conclude that dimx(X) ≤ dim(X), for any x ∈ X,
and supx∈X dimx(X) ≤ dim(X).

Next, let us prove that dim(X) ≤ supx∈X dimx(X). Let us assume
that supx∈X dimx(X) is finite. Otherwise, according to the previous
part we have supx∈X dimx(X) ≤ dim(X), and then dim(X) is infinite
and supx∈X dimx(X) = dim(X).

Now, for any x ∈ X, dimx(X) is finite. And since the sequence of the
dimensions of the generating families of Dx is lower bounded, there
exists for any x a generating family Fx such that dimx(X) = dim(Fx).
For every x in X let us choose one of them.

Next, let us define Fm as the union of all these chosen families.
According to a proposition above, Fm is a generating family of D.
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Hence, dim(X) ≤ dim(Fm). But dim(Fm) = supF∈Fm dim(F) =
supx∈X supF∈Fx dim(F) = supx∈X dim(Fx) = supx∈X dimx(X).

Therefore, dim(X) ≤ supx∈X dimx(X). And we can conclude, from
the two parts above, that dim(X) = supx∈X dimx(X). ▶

78. The dimension map is a local invariant. Let X and X′ be two
diffeological spaces. If x ∈ X and x ′ ∈ X′ are two points related by a
local (a fortiori global) diffeomorphism, then dimx(X) = dimx′(X′).

79. Dimensions of manifolds. A n-manifold is a diffeological space
X generated by local diffeomorphisms with Rn. Each such local dif-
feomorphism is called a chart of X. Note that, each point is locally
equivalent to any other point: there exists always a local diffeomor-
phism from one point to any other. The dimension function is con-
stant, equal to the global dimension. Now, since there is always a
chart mapping 0 ∈ Rn to x ∈ X, dimx(X) = dim0(Rn) = n. There-
fore, dim(X) = n. Which is coherent with the ususal dimension in
differential geometry.

80. Klein decomposition. Let X be a diffeological space. The local
diffeomorphisms of X split the space into classes, according to the
relation: x ∼ x ′ if and only if there exists a local diffeomorphism f
mapping x to x ′. These classes are called the orbits of the local diffeo-
morphisms of X. We call these classes Klein’s orbit. The dimension
map is constant on each Klein’s orbit.

21. Examples of the half-lines

81. The half-line Δn. Let Δn = Rn/O(n) equipped with the quotient
diffeology, n ∈ N. Then, dim0(Δn) = n, and dimx(Δn) = 1 if x ̸= 0.
Thus, dim(Δn) = n and for n ̸= m the half-lines Δn and Δm are not
diffeomorphic.

✑ Proof. Let n > 0, and let us denote by classn : Rn → Δn the
projection from Rn onto its quotient. There is a natural bijection
f : Δn → [0, ∞[ such that

f ◦ classn = νn with νn(x) = ∥x∥2.
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Now, thanks to the uniqueness of quotients, we use f to identify Δn
with [0, ∞[, equipped with the diffeology Dn generated by νn.

Rn

Δn [0, ∞[

πn

f

νn

The elements of Dn consist of the parametrizations which can be
lifted locally along νn by smooth parametrizations of Rn. Thus, since
dim(νn) = n, we get dim(Δn) ≤ n. Let us prove now that dim(Δn) ≥ n:

Let us assume that νn, which is an element of Dn, can be lifted locally,
at the point 0n, along a plot

P ∈ Dn with dim(P) = p < n.

Then, there exists a smooth parametrization

φ : V → dom(P) such that P ◦ φ = νn ↾ V.

We can assume without loss of generality that

0p ∈ dom(P), P(0p) = 0 and φ(0n) = 0p.

Now, since P is an element of Dn, there exists a smooth parametri-
zation

ψ : W → Rn such that 0p ∈ W and νn ◦ ψ = P ↾ W.

Let V′ = φ–1(W), we get

νn ↾ V′ = νn ◦ F with F = ψ ◦ φ ↾ V′,

and
F ∈ C∞(V′, Rn), 0n ∈ V′ and F(0n) = 0n,

that is
∥x∥2 = ∥F(x)∥2.

The second derivative of this identity computed at the point 0n gives

1n = MtM with M = D(F)(0n).
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This is summarized by the following diagram:

W

V′ [0, ∞[ Rn

φ ↾ V′

νn ↾ V′

P ↾ W
ψ

νn

But

M = AB with A = D(ψ)(0p) and B = D(φ)(0n).

Thus, 1n = BtAtAB, which is impossible because rank(B) ≤ p < n.
Therefore, dim(Δn) = n. And, since the dimension is a diffeological
invariant, Δn is not diffeomorphic to Δm for n ̸= m. ▶

82. The half-line Δ∞. The dimension of a diffeological subspace A ⊂ X
can be less, equal, or even greater than the dimension of X. The
following example is an illustration of this phenomenon. Let Δ∞ =
[0, ∞[ ⊂ R, equipped with the subset diffeology. Then,

dim0(Δ∞) = ∞ and dimx(Δ∞) = 1 if x ̸= 0.

Thus, dim(Δ∞) = ∞, and for any integer m, Δ∞ is not diffeomorphic
to Δm.

✑ Proof. Let us assume that dim(Δ∞) = N < ∞. For any integer n,
the map νn : Rn → Δ∞, defined by νn(x) = ∥x∥2, belongs to D∞, the
subset diffeology on [0, ∞[.

U

V [0, ∞[

φ

νn ↾ V

f
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F

X

U

V

x

r

Q

F

P

s

x = P(r) = F(s) & s = Q(r)

Figure 14. A generating family.

Hence, νn lifts locally at the point 0n along some P ∈ D∞, where
dim(P) = p ≤ N. Now, let us choose n > N. Then, P belongs
to some C∞(U, R) with val(P) ⊂ [0, ∞[, and there exists a smooth
parametrization φ : V → U such that P ◦ φ = νn ↾ V. We can
assume, without loss of generality, that 0p ∈ U, φ(0n) = 0p, and thus:
P(0p) = 0.

Now, the first derivative of νn at a point x ∈ V′ = φ–1(V) is given by
x = D(P)(φ(x)) ◦ D(φ)(x). But, since P is smooth and positive, and
since P(0) = 0 we have D(P)(0p) = 0.

Hence, the second derivative of νn computed at the point 0n gives
1n = MtHM, where M = D(φ)(0) and H = D2(P)(0). But since
rank(M) ≤ p ≤ N and n > N, this is impossible, and the dimension of
the embedded line is infinite at the origin, dim(Δ∞) = ∞. ▶
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Cartan-De-Rham Calculus

This lecture is about the crucial theory of differential calculus, also
called Cartan calculus. It is accompanied with the description of the
De Rham Cohomology and its principal properties.

In this lecture we shall see the elementary constructions and defini-
tions of the theory of differential calculus in diffeology. In particular,
a reminder about smooth forms in Euclidean spaces, the definitions
of differential forms in diffeology, the operations of pullbacks and ex-
terior differential, the behavior under subduction with an example on
orbifold, the definition of the De Rham cohomology, the definition of
the cubic homology and the integration of forms on chains, the De
Rham homomorphism.

22. Smooth forms in Euclidean spaces

83. Linear p-forms on Rn. A linear p-form on the Euclidean space
Rn is a map

α : (Rn)p
→ R

which is multilinear, that is, that is linear in each parameter,

α(v1, . . . , λvi + μv ′
i , . . . , vp) = λα(v1, . . . , vi, . . . , vp)

+ μα(v1, . . . , v ′
i , . . . , vp)

62
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for all i = 1 . . .p, and which is antisymmetric under every transposi-
tion,

α(v1, . . . , vi, . . . , vj, . . . , vp) = –α(v1, . . . , vj, . . . , vi, . . . , vp).

We deduce from the antisymmetry that for all permutation ε of
{1, . . . , p}

α(vε(1), . . . , vε(p)) = (–1)sgn(ε)
α(v1, . . . , vp),

where sgn denotes the signature of the permutations.

We denote
Λ

p(Rn)

the set of p-forms (a shortcut for linear p-forms). This set is naturally
a real vector space:

(λα+ μβ)(v1, . . . , vp) = λα(v1, . . . , vp) + μβ(v1, . . . , vp).

Note that:

Λ
0(Rn) = R and Λ1(Rn) = (Rn)∗ ≃ Rn,

the dual space of Rn. The dimension is the binomial coefficient

dim(Λp(Rn)) =
n!

p! (n – p)!
.

Note that:

dim(Λn(Rn)) = 1 and dim(Λp(Rn)) = 0 if p > n.

Note. It happens that I write

α(v1) · · · (vp) for α(v1, · · · , vp).

84. Pullbacks of linear forms. Consider a linear map

M: Rn
→ Rm

Let β ∈ Λp(Rm), We call pullback of β by M the map denoted and
defined by

M∗(β)(v1, . . . , vp) = β(Mv1, . . . , Mvp).
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The map M∗(β) is obviously a linear p-form on Rn. Moreover, M∗ is
linear:

M∗
∈ L

(
Λ

p(Rm), Λp(Rn)
)
.

85. Smooth forms on Euclidean domains. Let U ⊂ Rn, we call smooth
p-form on U any smooth map

α : U → Λ
p(Rn).

We denote
Ω

p(U) = C∞
(
U, Λp(Rn)

)
the space of smooth p-form on U. In this case: α ∈ Ωp(U), α(x) ∈

Λ
p(Rn) for all x ∈ U.

There are a few ways of defining “smooth” for a p-form, one can use
the canonical decomposition of a linear p-form on the canonical basis
(it is documented everywhere, and also in [TB]), or we can directly
define it by this property:

For all v1, . . . , vp ∈ Rn [x 7→ α(x)(v1, . . . , vp)] ∈ C∞(U, R).

The expression α(x)(v1, . . . , vp) reads: α at the point x applied to the
vectors v1, . . . , vp.

Note 1. For p = 0 we have simply

Ω
0(U) = C∞(U, R).

Note 2. The set Ωp(U) is obviously a vector space. It can be equipped
with a functional diffeology that extends the functional diffeology on
Ω

0(U) = C∞(U, R).

86. Pullback of a smooth form. Let U ∈ Rn and U′ ∈ Rn′
, let f ∈

C∞(U, U′) and β ∈ Ωp(U′). We call pullback de β by f , and we denote
by f ∗(β) the p-form on U defined by:

f ∗(β)(x)(v1, . . . , vp) = β(f (x))(Mv1, . . . , Mvp), with M = D(f )(x),

for all x ∈ U and all v1, . . . , vp ∈ Rn.

Then, f ∗(β) is a smooth p-form on U,

∀β ∈ Ω
p(U′), f ∗(β) ∈ Ω

p(U).
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Moreover f ∗ is a linear operator:

f ∗(λα+ μβ) = λf ∗(α) + μf ∗(β),

and smooth for the functional diffeology.

87. Exterior derivative of a smooth form. Let α be a p-form,

α ∈ Ω
p(U),

on a domain U ⊂ Rn.

Let dα be defined as follow:

dα(x)(v0, v1, . . . , vp) =
∂α(x)(v1, v2, v3, . . . , vp)

∂x
(v0)

–
∂α(x)(v0, v2, v3, . . . , vp)

∂x
(v1)

–
∂α(x)(v1, v0, v3 . . . , vp)

∂x
(v2)

–
∂α(x)(v1, v2, v0, . . . , vp)

∂x
(v3)

– · · ·

–
∂α(x)(v1, v2, . . . , vp–1, v0)

∂x
(vp).

where v0, v1, . . . , vp ∈ Rn.

Then,
dα ∈ Ω

p+1(U) and d[dα] = 0,

for all α.

The (p + 1)-form dα is called the exterior derivative, or exterior dif-
ferential, of α, and the operator

d : Ωp(U) → Ω
p+1(U)

is called the exterior differentiation.

Note 1. for f ∈ Ω0(U) = C∞(U, R),

df (x) : v 7→ ∂f (x)
∂x

(v).

Note 2. For n = 2 and p = 1

α = a(x, y)dx + b(x, y)dy,
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where dx(v) = vx and dy(v) = vy are the coordinate 1-forms, with
v = (vx, vy). We have:

dα(x)(v1, v2) =
(∂b(x, y)

∂x
–
∂a(x, y)

∂y

)
(vx

1 vy
2 – vx

2 vy
1 ).

The linear 2-form
(v1, v2) 7→ vx

1 vy
2 – vx

2 vy
1

is denoted by dx ∧ dy, such that

dα(x) =
(∂b(x, y)

∂x
–
∂a(x, y)

∂y

)
dx ∧ dy.

Note 3. Pullback and exterior differentiation commute:

f ∗(dα) = d[f ∗(α)].

23. Differential forms in diffeology

88. Differential forms. Let X be a diffeological space. A differential
p-form on X is a mapping

α : P 7→ α(P),

for all plots P in X such that:

(1) α(P) ∈ Ωp(U), with U = dom(P).
(2) For all Euclidean domain V, for all F ∈ C∞(V, U),

α(P ◦ F) = F∗(α(P)).

The set of differential p-forms on X is vector space denoted by

Ω
p(X).

It can be equipped with a natural functional diffeology that extends
the functional diffeology on

Ω
0(X) = C∞(X, R).

Note. When we consider the Euclidean domain U as a diffeological
space, then a differential form α is naturally identified with the value

α = α(1U).



i
i

i
i

i
i

i
i

24. PUSHING FORWARDS DIFFERENTIAL FORMS 67

89. Pulback of a differential form. Let X and X′ be two diffeological
spaces. let β ∈ Ωp(X′) and f ∈ C∞(X, X′). Then, for all plots P in X

[f ∗(β)](P) = β(f ◦ P)

defines the pullback of β by f ,

∀β ∈ Ω
p(X′), f ∗(β) ∈ Ω

p(X).

The pullback is linear and smooth.

Note. We can identify
α(P) = P∗(α).

We should more properly write α(P) = P∗(α) = P∗(α)(1U), where
U = dom(P).

90. Exterior differential of a differential form. Let X be a diffeologi-
cal space and α ∈ Ωp(X). Then,

dα : P 7→ d[α(P)]

is a differential (p + 1)-form on X. The operator d is linear and
smooth, for the functional diffeology. It satisfies

d ◦ d = 0.

24. Pushing forwards differential forms

91. Pushing form onto quotients. Let X and X′ be two diffeological
spaces. Let π : X → X′ be a subduction and let α be a differential
k-form on X.

Theorem. The k-form α is the pullback of a k-form β defined on X′,
α = π∗(β), if and only if, for any two plots P and Q of X such that
π ◦ P = π ◦ Q, then α(P) = α(Q).

We also say that β is the pushforward of α by π. The differential
forms of X satisfying this property may be called basic forms, with
respect to π.

Note 1. For every integer k, the pullback π∗ : Ωk(X′) → Ω
k(X) is

always a smooth linear map. The previous proposition is a charac-
terization of the image of π∗, when π is a subduction.
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Note 2. This property can be expressed with the help of a diagram
and it is used for integrating closed 2-forms. Consider the pullback
of π by itself

π
∗(X) = {(x1, x2) ∈ X × X | π(x1) = π(x2)},

with projections pr1 and pr2.

π
∗(X) X

X X′

pr1

pr2 π

π

Then, α is basic with respect to π if and only if pr∗1(α) – pr∗2(α) = 0,
in other words, if and only if pr∗1(α) = pr∗2(α).

92. Vanishing forms on quotients. Let X and X′ be two diffeological
spaces and f : X → X′ be a subduction. Let α be a p-form on X′,
α ∈ Ωp(X′), p ∈ N. Then, f ∗(α) = 0 if and only if α = 0. Equivalently,
for any two p-forms α and β on X′ and for every subduction f from
X to X′,

f ∗(α) = f ∗(β) ⇒ α = β. (♦)

In other words, for every subduction f : X → X′, the pullback by
f ∗ : Ωp(X′) → Ωp(X) is injective.

Note. This implies in particular that if a diffeological space X has a
finite dimension n ∈ N, then every n + k differential form, with k > 0,
is zero. Formally,

dim(X) = n < ∞ implies Ωn+k(X) = {0}, for all k > 0. (♥)

93. The corner orbifold. Consider the corner orbifold

Q = Δ21 = [R/{±1}]2 = R2/{±1}2.

Show that every 2-form on Q is proportional to the 2-form ω defined
on Q by

π
∗(ω) = 4xy dx ∧ dy.
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That is, for any other differential form ω
′ ∈ Ω2(Q), there exists a

smooth function φ ∈ C∞(Q, R) such that ω′ = f ω.

✑ Proof. Let ω′ be a 2-form on Q, and let ω̃′ be its pullback by π,

ω̃
′ = π∗(ω′).

Thus, there exists a smooth real function F such that

ω̃
′ = F × dx ∧ dy,

where dx∧dy is the canonical basis on Ω2(R2). But since π◦(ε, ε′) = π,
for all (ε, ε′) ∈ {±1}2, we get

εε
′F(εx, ε′y) = F(x, y),

for all (x, y) ∈ R2 and all ε, ε′ in {±1}. Thus, F(–x, y) = –F(x, y)
and F(x, –y) = –F(x, y). In particular, F(0, y) = 0 and F(x, 0) = 0.
Therefore, since F is smooth, there exists f ∈ C∞(R2, R) such that
F(x, y) = 4xyf (x, y), with f (εx, ε′y) = f (x, y). Therefore, ω̃′ = f × ω̃,
with

ω̃ = 4xy × dx ∧ dy,

that is,
ω̃ = d(x2) ∧ d(y2),

but x 7→ x2 and y 7→ y2 are invariant by {±1}2, so they are the
pullback by π of some smooth real functions on Q. Thus, d(x2) and
d(y2) are the pullback of 1-forms on Q, let us say

d(x2) = π∗(ds) and d(y2) = π∗(dt),

so, ω̃ = π
∗(ω), where ω = ds ∧ dt is a well defined 2-form on Q.

Now, since f (εx, ε′y) = f (x, y) means just that f is the pullback of
a smooth real function φ on Q, it follows that any 2-form ω′ on Q is
proportional to ω, that is, ω′ = φ × ω, with φ ∈ C∞(Q, R). ▶

25. De Rham cohomology

94. The De Rham cohomology. Let X be a diffeological space. The
exterior derivative defined above satisfies the coboundary condition

d : Ωp(X) → Ω
p+1(X), p ≥ 0 and d ◦ d = 0.
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As is usual in cohomology theories [McL75], when we have a chain
complex — here the chain complex of real vector spaces Ω⋆(X) ={
Ω

p(X)
}∞

p=0 with a coboundary operator d — the space of p-cocycles
is defined as the kernel in Ωp(X) of the operator d, and the space of
p-coboundary is defined as the image, in Ωp(X), of the operator d.
They will be denoted by{

Zp
dR(X) = ker

[
d : Ωp(X) → Ωp+1(X)

]
,

Bp
dR(X) = d(Ωp–1(X)) ⊂ Zp

dR(X) with B0
dR(X) = {0}.

The De Rham cohomology groups of X are then defined as the quo-
tients of the spaces of cocycles by the spaces of coboundaries, we
denote them by

Hp
dR(X) = Zp

dR(X)/Bp
dR(X).

Since the operator d is linear, and since the space of differential p-
forms Ωp(X), equipped with the functional diffeology, is a diffeological
vector space, the De Rham cohomology group Hp

dR(X), equipped with
the quotient diffeology, is a diffeological vector space.

95. Homotopy invariance of the De Rham cohomology. Let f : X →

X′ be a smooth map. Since the exterior derivative commutes with
the pullback, we have a morphism

f # : HdR(X′) → HdR(X)

with
f #(class(α′)) = class(f ∗(α′)),

for all α′ ∈ Ω∗(X′). We shall prove the following theorem in a later
lecture.

Theorem. If s 7→ fs is an homotopy, that is, a smooth path in
C∞(X, X′), then

f #
0 = f #

1 .

That is called the homotopy invariance of the De Rham cohomology.

Corollary If A is a deformation retract of X, then the De Rham co-
homology of X coincides with the De Rham cohomology of A. Con-
tractible spaces have a trivial cohomology.
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26. Cubic homology and De Rham cohomology

96. Cubes and cubic chains in diffeological spaces. A standard p-cube
is the subset [0, 1]p of Rp, and we denote it by Ip,

Ip = [0, 1]p ⊂ Rp.

Let X be a diffeological space. A smooth p-cube in X any smooth
map from Rp to X. And Cubp(X) denotes the set of all the smooth
p-cubes in X,

Cubp(X) = C∞(Rp, X).

The set Cubp(X) will be equipped with the functional diffeology.

Note that since 0-cubes are any maps from I0 = R0 = {0} to X, then
Cub0(X) is naturally equivalent to X, thanks to the diffeomorphism
x 7→ x = [0 7→ x]. Hence,

Cub0(X) ≃ X.

Then, we define the smooth cubic p-chains in X, with coefficients in
Z, as the free Abelian group generated by Cubp(X), and we denote
it by Cp(X). Thus, a (smooth) cubic p-chain c, in X, is any finite
Z-linear combination of p-cubes, that is,

c =
∑
σ

nσσ, with σ ∈ Cubp(X), and nσ ∈ Z,

where the sum is performed over a finite set of p-cubes called the
support of c, and denoted by

Supp(c) = {σ ∈ Cubp(X) | nσ ̸= 0}.

The group of cubic p-chains Cp(X) can be represented by

Cp(X) ≃ {c ∈ Maps(Cubp(X), Z) | # Supp(c) < ∞}.

Note that in the writing ∑σ nσσ of the chain c, nσ = c(σ). Then, the
sum of two cubic p-chains c and c ′, and the multiplication of a cubic
p-chain c by an integer m, are defined as usual:

(c + c ′)(σ) = c(σ) + c ′(σ) and (mc)(σ) = m × c(σ).
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Note 1. A cubic chain can also be regarded as any finite family

{(ni, σi)}i∈I

and can be written ∑i∈I niσi, with the convention that if σi = σj, then∑
i∈I

niσi =
∑
i′∈I′

ni′σi′ + (ni + nj)σi,

where I′ = I – {i, j}. Since the family is finite, the sum of the coeff-
cients of a same cube is finite and both aspects are equivalent.

Note 2. With smooth homology or cohomology in mind, there is no
contradiction in defining smooth p-cubes in X as smooth maps from
Rp to X, as we do here, or as the maps from Ip to X which are the
restrictions of smooth maps defined on an open neighborhood of Ip,
as we could have also chosen to do. Indeed the following proposition
addresses this issue.

(♦) Every p-plot of X defined on a small open neighborhood of
Ip coincides, on Ip, with some global p-plot of X.

This is why, for sake of simplicity and without loss of generality, the
smooth p-cubes in X have been defined as the global p-plots of X. But
to focus our attention on Ip ∈ Rp we have introduced a special name,
p-cube instead of global p-plot, and a special notation Cubp(X) for
C∞(Rp, X).

97. Boundary of cubes and chains. Let us introduce the following
family of injections, for all a ∈ R :

jk(a) : Rp
→ Rp+1, k = 1, . . . , p + 1,

defined by

k = 1 j1(a) : (t1) · · · (tp) 7→ (a)(t1) · · · (tp),

1 < k ≤ p jk(a) : (t1) · · · (tp) 7→ (t1) · · · (tk–1)(a)(tk) · · · (tp),

k = p + 1 jp+1(a) : (t1) · · · (tp) 7→ (t1) · · · (tp)(a).

Given a p-tuple of numbers, jk(a) puts a at the place number k,
preserving the numbers before and shifting the numbers after.



i
i

i
i

i
i

i
i

26. CUBIC HOMOLOGY AND DE RHAM COHOMOLOGY 73

We define the boundary operator ∂, for p ≥ 1,

for all σ ∈ Cubp(X), ∂σ =
p∑

k=1
(–1)k [σ ◦ jk(0) – σ ◦ jk(1)]. (♦)

The operator ∂ defined by (♦) is naturally extended by linearity on all
cubic p-chains, with p ≥ 1. The boundary of the p-chain c = ∑σ nσσ
is given by

∂c =
∑
σ

nσ
p∑

k=1
(–1)k [σ ◦ jk(0) – σ ◦ jk(1)]. (♥)

The operator ∂ defined by (♥) is a boundary operator, that is,

∂ ◦ ∂ = 0,

and we get the chain-complex

· · · ∂
−→ Cp(X) ∂

−→ Cp–1(X) ∂
−→ · · · ∂

−→ C0(X) ∂
−→ {0}. (♣)

98. Degenerate cubes and chains. Let p and q be two integers such
that 0 ≤ q < p. A reduction from Rp to Rq iq any projection pr :
Rp → Rq such that

pr(t1, . . . , tp) = (ti1 , . . . , tiq),

where {i1, . . . , iq} ⊂ {1, . . . , p} is a subset of indices, and i1 < · · · <
iq. For q = 0, there is only one reduction: the constant map 0̂ :
(t1, . . . , tp) 7→ 0. So, a reduction from Rp to Rq consists of just
“forgeting” some, or all, of the components of t = (t1, . . . , tp) ∈ Rp.

Now, let X be a diffeological space. Let p > 0 be an integer, we say
that a p-cube σ ∈ Cubp(X) is degenerate if there exists an integer
q such that 0 ≤ q < p, a reduction pr from Rp to Rq and a q-cube
σ
′ ∈ Cubq(X) such that

σ = σ′ ◦ pr.

In other words, a p-cube is degenerate if it does not depend on some
coordinates of Rp.

Let us denote by Cub•
p(X) the set of degenerate p-cubes of X, and let

us denote by C•
p(X) the free Abelian group generated by Cub•

p(X).
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The elements of C•
p(X) are called the degenerate cubic p-chains of X.

For p = 0, we agree that

Cub•
0(X) = ∅ and C•

0(X) = {0}.

We define the reduced group of cubic p-chains of X, denoted by Cp(X),
as the quotient of the group of cubic p-chains of X by its subgroup
of degenerate cubic p-chains, that is,

Cp(X) = Cp(X)/ C•
p(X).

Note that

C0(X) = C0(X)/ C•
0(X) = C0(X)/{0} = C0(X).

Now, for any integer p > 0, the boundary of any degenerate p-cube
is a degenerate cubic p-chain, that is,

for all σ ∈ Cub•
p(X), ∂σ ∈ C•

p–1(X).

Then, by linearity we get immediately that

for all c ∈ C•
p(X), ∂c ∈ C•

p–1(X) or ∂[C•
p(X)] ⊂ C•

p–1(X).

Thus, there exists an operator, denoted again by ∂, from Cp(X) to
Cp–1(X), such that the following diagram commutes

Cp(X) Cp–1(X)

Cp(X) Cp–1(X)

∂

πp πp–1

∂

where πp is the natural projection from Cp(X) onto its quotient
Cp(X). Moreover, the operator ∂ : Cp(X) → Cp–1(X) again satis-
fies the boundary property ∂ ◦ ∂ = 0.

99. Cubic homology. Let X be a diffeological space. As usual in
homology theory [McL75], when we have a chain complex, here C⋆(X)
with ⋆ = 0, 1, . . .∞, and the boundary operator

∂ : C⋆(X) → C⋆–1(X) with ∂ ◦ ∂ = 0,
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the space of p-cycles is defined as the kernel in Cp(X) of the opera-
tor ∂, and the space of p-boundary as the image, in Cp(X), of the
operator ∂ defined on Cp+1(X). These spaces will be denoted by{

Zp(X) = ker[∂ : Cp(X) → Cp–1(X)] with p ≥ 1,
Bp(X) = ∂(Cp+1(X)) ⊂ Zp(X) ⊂ Cp(X) with p ≥ 0.

Then, the homology groups are defined as the quotients of the spaces
of cycles by the spaces of boundaries

Hp(X) = Zp(X)/ Bp(X).

Let us recall that for p = 0, ∂ : C0(X) → {0}, thus Z0(X) = C0(X),
and in this case H0(X) = C0(X)/∂C1(X) = C0(X)/∂C1(X). We call
this homology H∗(X), the cubic homology 1 of the space X.

Once we have a homology, we get a cohomology, with values in R for
example, by a standard procedure [TB, § 6.63].

A (real) cubic p-cochain of X is a linear map

f : Cp(X) → R

such that

f :
∑
σ

nσσ 7→
∑
σ

nσf (σ) and f ↾ Cubp(X) ∈ C∞(Cubp(X), R),

The spaces of cubic p-cochains is denoted by Cp(X), that is,

Cp(X) = Hom∞(Cp(X), R) ≃ C∞(Cubp(X), R).

Now, the boundary ∂ defined from Cp+1(X) to Cp(X) induces, by
duality, a coboundary operator d such that

d : Cp(X) → Cp+1(X),

with

df (c) = f (∂c)

1In topology the cubic homology and the singular homology coincide [HY61,
Ex. 8.1] For a natural singular homology in diffeology, these two homologies will
coincide also.
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for all f ∈ Cp(X), and all c ∈ Cp+1(X). Then, by transfer of property,
the coboundary d satisfies

d ∈ Hom(Cp(X), Cp+1(X)) and d ◦ d = 0.

The cohomology groups are defined by considering this operation
applied to the reduced cubic chains, that is, by considering cochains
defined on Cp(X), or which is equivalent, by considering the cubic
cochains modulo reduced cochains, that is, the ones vanishing on
reduced chains. That gives finaly the cubic cohomology groups :

Hp(X, R) = Zp(X, R)/ Bp(X, R).

Note. It is not clear if cubic (or singular) homology will play, in
diffeology, the crucial role it plays in the theory of manifolds. But
since it is a traditional tool, and since it is still a smooth invariant,
it was worth extending it to the general case.

100. Integration on Chains. Let σ be a p-cube in X. Let α be a differ-
ential p-form on X, we integrate α on σ by∫

σ

α =
∫
1p

α(σ) =
∫
Ip
σ
∗(α)(1p),

but σ∗(α)(1p) is a smooth p-form on Rp, thus, there exists a smooth
real function f ∈ C∞(Rp, R) such that

σ
∗(α)(1p) = f volp = f (x1, . . . , xp) dx1 ∧ · · · ∧ dxp.

and therefore,∫
Ip
σ
∗(α)(1p) =

∫
Ip

f volp =
∫1

0
dx1 · · ·

∫1

0
dxp f (x1, . . . , xp).

Definition. The integration of a differential p-form α on p-chains
defines a cochain, denoted here by α :

α(σ) =
∫
σ

α ⇒ α

(∑
σ

nσσ
)

=
∑
σ

nσα(σ) =
∑
σ

nσ

∫
σ

α.

It turns out that

Theorem. The differential d on the cochain α coincides with the
exterior derivative. This is the so-called Stoke’s theorem which is



i
i

i
i

i
i

i
i

26. CUBIC HOMOLOGY AND DE RHAM COHOMOLOGY 77

actually due to Sir William Thomson (1824–1907), known as Lord
Kelvin:

α(∂σ) = dα(σ), that is,
∫
σ

dα =
∫
∂σ
α.

That construction induces a morphism, called De Rham Morphism
in every degree p

hp : Hp
dR(X) → Hp(X, R).

One can check that

H0
dR(X) = H0(X, R) = Maps(π0(X), R).

One can show also that

h1 : H1
dR(X) → H1(X, R)

is injective. However, h1 is not surjective as shows the example of
the torus Tα :

H1
dR(Tα) = R and H1(Tα, R) = R2.

The cokernel of h1 in interpreted by the introduction of the Čech co-
homology, see [PIZ23]. It is the class of principal fiber bundles with
group (R, +) over X, equipped with a flat connection. This obstruc-
tion is the first characteristic class specific to diffeology, since every
principal bundle with contractible fibre over a manifold is trivial. It
is even a geometric interpretation of the cokernel of the morphism
from H1

dR(X) to H1(X, R) in general.
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Diffeology Fiber Bundles

This lecture talks about the theory of diffeology fiber bundles, which
deviates from the usual locally trivial bundles, where local triviality is
replaced in diffeology by local triviality along the plots. We illustrate
this definition with a few examples where some new situations happen
only in diffeology.

The question of what is a fiber bundle in diffeology arises immediately
with the case of irrational torus Tα. A direct computation of the first
homotopy group shows that the projection T2 → Tα behaves like a
fibration, with fiber R, but without being locally trivial, since Tα
inherits the coarse topology. Indeed, from the diffeology we found
directly that

π0(Tα) = {Tα} and T̃α = R with π1(Tα) = Z + αZ ⊂ R,

where T̃α plays the role of universal covering of Tα.

So, it was necessary to revise the notion of fiber bundle from classical
differential geometry, and adapt it to diffeology in order to include
these news objects, specific to diffeology, but without losing the main
properties of this theory. This is what I have done in my ScD disser-
tation in 1985 [Igl85].

The main properties we wanted to preserve were:

(1) The homotopy long sequence, that we shall see in the lecture
on homotopy.

78
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(2) Any quotient class : G → G/H is a diffeological fiber bundle,
with fiber H, where G is a diffeological group and H any
subgroup.

These two properties, if satisfied, will explain the direct calculation
of the homotopy of the irrational torus we did in [DI83].

In this lecture we shall see two equivalent definitions of diffeological
fiber bundles. The first is pedestrian and operative, involving local
triviality along the plots. The second one involving groupoids is more
in the spirit of diffeology.

27. Diffeological fiber bundles, the pedestrian approach

101. Category of projections. We call projection any smooth surjec-
tion π : Y → X, with X and Y two diffeological spaces. The space Y
is called the total space of the projection and X is called the base.
We define a category {Projections} whose obects are the projections
and:

Definition 1. The morphisms from π : Y → X to π′ : Y′ → X′, are the
pair of smooth maps (Φ, φ) such that:

Φ ∈ C∞(Y, Y′) and φ ∈ C∞(X, X′),

such that
Y Y′

X X′

π

Φ

π
′

φ

with π′ ◦ Φ = φ ◦ π.

The preimage
π

–1(x) = {y ∈ Y | π(y) = x}

is called the fiber of the projection over x. I use also the word bundle
as synonym of projection, which will be specified in some cases in
fiber bundle later, when some other properties will be satisfied.

Definition 2. An isomorphism from π to π′ will be a pair (Φ, φ) of
diffeomorphisms.
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102. Pullbacks of bundles. Let π : Y → X be a projection. Let f : X′ →

X be a smooth map. We call the total space of the pullback of π by
f , or simply the pullback, the space denoted and defined by

f ∗(Y) = {(x ′, y) ∈ X′
× Y | f (x) = π(y)}.

This set is equipped with the subset diffeology of the product X′ × Y.

f ∗(Y) Y

X′ X

pr1

pr2

π

f

The pullback of π by f is the first projection:

pr1 : f ∗(Y) → X′ with pr1(x ′, y) = x ′.

103. Trivial projections. Projections on factors are particular cases of
projections. We will see often the first projection of direct products:

pr1 : X × F → X

Definition. We say that a projection π : Y → X is trivial with fiber F
if it is isomorphic to the first projection pr1 : X × F → X.

It is equivalent to say that there exists an isomorphism with the first
projection pr1 : X × F → X with type (Φ, 1X).

X × F Y

X
pr1

Φ

π

And that is the way we will use it in general.

✑ Proof. Assume that (Φ, φ) is an isomorphism from pr1 : X×F → X
to π : Y → X. Consider then the isomorphism (φ–1 × 1F, φ–1) from
pr1 : X × F → X to istelf, we get:
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X × F X × F Y

X X X

pr1

φ–1 × 1F

pr1

Φ

π

φ–1 φ

which gives

(x, y) (φ–1(x), y) Φ(φ–1(x), y)

x φ–1(x) φ(φ–1(x)) = x

pr1

φ–1 × 1F

pr1

Φ

π

φ–1 φ

And that is the triangle diagram above. ▶

104. Locally trivial projections. With trivial projection comes locally
trivial projection. Let π : Y → X a smooth projection as it is defined
above.

Definition. We say that the projection π is locally trivial if there
exists a diffeological space F, a D-open covering (Ui)i∈I of X such
that the restrictions

πi : Yi → Ui with Yi = π–1(Ui) and πi = π ↾ Yi,

are trivial with fiber F.

It is equivalent to say that:

(1) π is locally trivial at the point x ∈ X, if there exists a D-open
neighborhood U of x such that: the restriction πU : YU → U
is trivial, with YU = π–1(U) and πU = π ↾ YU.

(2) π is locally trivial everywhere with fiber F.

105. Diffeological fiber bundles. A smooth projection π : Y → X, is
a diffeological fibration, or a diffeological fiber bundle, if it is locally
trivial along the plots, that is, if the pullback of π by any plot P of
X is locally trivial with some given fiber F. The space F is the fiber
of the fibration.
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That means precisely the following:

For all plots P: U → X, for all r ∈ U, there exists an open neighbor-
hood V of r in U such that pr1 : (P ↾ V)∗(Y) → V is trivial with fiber
F, that is, isomorphic to pr1 : V × F → V. Recall that

P∗(Y) = {(r, y) ∈ U × Y | P(r) = π(y)}.

Note 1. A diffeological fibration π : Y → X is, in particular, a subduc-
tion and even a local subduction. That is, for every plot P: U → X,
for all r ∈ U and for all y ∈ Yx = π–1(x), with x = P(r), there exists
a plot Q of Y defined on some open neighborhood V of r lifting P ↾ V,
that is, P ↾ V = π ◦ Q, and such that Q(r) = y.

Note 2. There is a hierarchy in the various notions of fiber bundles:

(1) Trivial fiber bundles are locally trivial (with respect to the
D-topology).

(2) Locally trivial fiber bundles are locally trivial along the plots.
The converse is not true.

To be locally trivial along the plots does not mean that the fibration
itself is locally trivial, as many examples will point it out. For ex-
ample, the projection of T2 on the irrational torus Tα = T2/Sα is
locally trivial along the plots, with fiber R, but not trivial. This is a
particular case of quotient G/H of diffeological groups by a subgroup.

Note 3. If the base of a diffeological fiber bundle is a manifold, then
the fiber bundle is locally trivial. This comes immediately from the
definition, consider the pullback by local charts. If moreover the fiber
is a manifold, then the diffeological fiber bundle is a fiber bundle in
the category of manifolds. This shows in particular that the classical
notion of fiber bundle can also be defined directly in diffeological
terms as a property of its associated groupoid, as we shall see later,
but of course this definition leads to leave an instant the category of
manifolds.

106. Quotient of groups by subgroups. Let G be a diffeological group
and H ⊂ G be a subgroup. Then, the projection class : G → G/H is
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a diffeological fibration, where H acts on G by left multiplication
denoted by L(h)(g) = hg.

Note 1. We recall that a diffeological group is a group equipped
with a diffeology such that the multiplication (g, g ′) 7→ gg ′ and the
inversion g 7→ g–1 are smooth.

Note 2. In particular the projection class : T2 → Tα = T2/Sα is a
diffeological fibration.

✑ Proof. Let P: U → G/H be a plot. We have:

P∗(G) = {(r, g) ∈ U × G | class(g) = P(r)}.

Let r0 ∈ U, there exists an open neighborhood V of r0 and a smooth
lifting of P, Q: r 7→ gr , over V such that class(gr) = P(r). Let

ψ : V × H → (P ↾ V)∗(G) defined by ψ(r, h) = (r, hgr).

The inverse is given by

ψ
–1 : (r, g) 7→ (r, gg–1

r ).

Since the multiplication and the inversion are smooth, ψ and ψ–1 are
smooth and ψ is an isomorphism from V × H to (P ↾ V)∗(G), for pr1
both sides. Therefore class : G → G/H is a diffeological fibration. ▶

107. Principal fiber bundles. Let X be a diffeological space and g 7→
gX be a smooth action of a diffeological group G on X, that is, a
smooth homomorphism from G to Diff(X) equipped with the func-
tional diffeology of diffeological group.

Let E be the action map,

E : X × G → X × X with E(x, g) = (x, gX(x)).

Proposition. If E is an induction, then the projection class from X
to its quotient X/G is a diffeological fibration, with the group G as
fiber. We shall say that the action of G on X is principal.

Definition. If a projection π : X → Q is equivalent to class : X → G/H,
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X

X/G Q

class π

φ

that is, if there exists a diffeomorphism φ : G/H → Q such that
π = φ ◦ class, then we shall say that π is a principal fibration, or a
principal fiber bundle, with structure group G.

Note a) If the action E is inductive, then it is in particular injective,
which implies that the action of G on X is free, which is indeed a
necessary condition.

Note b) The quotients class : G → G/H are principal bundles with
group H.

Note c) Let π : X → Q the G-principal fiber bundle, then the pullback
of π by any plot P: U → Q is locally trivial, let say with Φ : V × G →

(P ↾ V)∗(X)

V × G (P ↾ V)∗(X)

V
pr1

Φ

pr1

and write

Φ(r, g) = (r, Φr(g)).

Then, the isomorphism Φ satisfies the equivariant property:

Φr(gg ′) = gX(Φr(g ′)).

In particular,

Φr(g) = gX(φ(r)) with φ(r) = Φr(1G).

And φ is a local lifting of the plot P

φ : V → X and π ◦ φ = P ↾ V.
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X

V U Q

π
φ

P

Note d) A principal fiber bundle is trivial if and only if it admits a
global smooth section.

28. Diffeological fiber bundles, the groupoid approach

108. Structure groupoid of a projection. Let π : Y → X be a smooth
surjection. Let us define

Obj(K) = X and for all x, x ′
∈ X, MorK(x, x ′) = Diff(Yx, Yx′),

where the Yx = π–1(x), x ∈ X, are equipped with the subset diffeo-
logy. Let us define on

Mor(K) =
⋃

x,x′∈X

MorK(x, x ′)

the natural multiplication f · g = g ◦ f , for f ∈ MorK(x, x ′) and
g ∈ MorK(x ′, x ′′), K is clearly a groupoid. The source and target
maps are given by

src(f ) = π(def(f )) and trg(f ) = π(val(f )).

The groupoid K is then equipped with a functional diffeology of K
defined as follows. Let Ysrc be the total space of the pullback of π by
src, that is,

Ysrc = {(f , x) ∈ Mor(K) × Y | x ∈ def(f )}.

We define the evaluation map ev as usual:

ev : Ysrc → Y with ev(f , x) = f (x).

There exists a coarsest diffeology on Mor(K), which gives to K the
structure of a diffeological groupoid and such that the evaluation
map ev is smooth. It will be called again the functional diffeology.
Equipped with this functional diffeology, the groupoid K captures
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b = src(f ) b' = trg(f )

Xb = def(f ) 
val(f ) = Xb'

   

Diff(Xb 
,Xb')

B

X

f

f ∈ Diff(Yx,Yx’)

Yx = Def(f) Yx’ = Val(f)

x = src(f) x’ = trg(f)
X

π π

Figure 15. The groupoid associated with a projection.

the smooth structure of the projection π. It is why we define K as
the structure groupoid of the surjection π.

Note 1. If X is reduced to a point, Obj(K) = {⋆}, this diffeology
coincides with the usual functional diffeology of Diff(Y) = Mor(K).

Note 2. This construction also applies when we have just a partition
P on a diffeological space Y. We can equip the quotient Q = Y/P
with the quotient diffeology, and we get the structure groupoid of the
partition as the structure groupoid of the projection π : Y → Q.

109. Fibrating groupoid. Let π : Y → X be a smooth projection.

The projection π is a diffeological fibration if the structure groupoid
K is fibrating, that is, if and only if the characteristic map

χ : Mor(K) → B × B

is a subduction. In particular, the preimages Yx = π–1(x), are neces-
sarily all diffeomorphic since χ is surjective.
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This definition is completely equivalent to the previous one § 105.

29. Associated fiber bundles

110. Associated fiber bundles. Consider a principal fiber bundle π : Y →

X with group G. Let E be a diffeological space with a smooth action
of G, that is a smooth morphism g 7→ gE from G to Diff(E). Let the
product over X be the quotient space

Y ×G E = (Y × E)/G,

where G acts on the product diagonally

gY×E(y, e) = (gY(y), gE(e)).

Then, the projection:

pr
(

class(y, e)
)

= π(y),

from Y ×G E to X is a diffeological fiber bundle with fiber E.

Y × E Y ×G E

Y X

pr1

class

pr

π

111. Main theorem. Let π : Y → X be a diffeological fiber bundle
with fiber E, then there exists a principal fiber bundle pr: T → X
with some diffeological group G acting smoothly on E, such that π is
associate to pr. Actually, one can always take G = Diff(E).

30. Covering diffeological spaces

A special case of fiber bundle plays a special role in differential ge-
ometry, the covering spaces.

112. Covering spaces. Let X be a connected space, that is, for all
pair of points x, x ′ ∈ X, there exists a smooth path γ ∈ Paths(X) =
C∞(R, X) such that γ(0) = x and γ(1) = x ′. We say that x and x ′ are
connected.
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We call covering over X any fiber bundle such that the fiber is discrete
(of course diffeologically). The covering may be non connected but
we focus in general on connected coverings.

The main theorem about covering is about the universal covering.

113. Universal covering. Let X be a connected diffeological space,
there exists a unique, up to equivalence, simply connected which is
a principal fiber bundle whose group is the first group of homotopy
π1(X). Any other connected covering is a quotient of this one.

Simple connexity will be defined in the next lecture.

114. Monodromy theorem. Let f : Y → X with X connected and Y
simply connected. There exists always a smooth lifting f̃ : Y → X̃ ,
where π : X̃ → X is the universal covering. That is, π ◦ f̃ = f . And if
we fix three points y ∈ Y, x ∈ X, x̃ ∈ X̃, such that f (y) = x, π(x̃) = x,
there exists a unique lifting such that f̃ (y) = x̃.

115. Example: The irrational tori. If we call irrational tori any quo-
tient Q of Rn by a discrete subgroup Γ that spans Rn, that is, Γ⊗R =
Rn, then Rn is the universal covering and π1(Q) = Γ.

116. Example: Diff (S1). The universal covering of group of diffeo-
morphisms Diff(S1) is naturally identified as

D̃iff(S1) ≃ {f̃ ∈ Diff(R) | f̃ (x + 1) = f̃ (x) + 1}

Any f̃ ∈ D̃iff(S1) descends on S1 ≃ R/2πZ by

f (class(x)) = class(f (x)), or f (e2iπx) = e2iπf̃ (x).

31. Examples of diffeological fiber bundles

117. Example: The irrational flow on the torus. As said previously
the projection class : T2 → Tα = T2/Sα is a principal fibration with
fiber (R, +). That is an interesting example because in usual differen-
tial geometry, the geometry of manifolds: every fiber bundle with a
contractible fiber has a smooth global section. If it is a principal fiber
bundle, it is then trivial. That is clearly not the case for diffeological
fiber bundles since T2 is not diffeomorphic to the product Tα × R.



i
i

i
i

i
i

i
i

31. EXAMPLES OF DIFFEOLOGICAL FIBER BUNDLES 89

118. Example: The infinite sphere over the infinite projective space.
We recall the construction of the infinite projective space, let

C⋆ = C – {0} and H⋆
C = HC – {0},

where HC is the Hilbert space of infinite square-summable sequences
of complex numbers. We equip this space with the fine diffeology of
vector space. The plots are the parametrizations that write locally

P: r 7→
∑
α∈A
λα(r)ζα,

where A is a finite set of indices, the λ are smooth parametrizations
in C, and the ζα are fixed vector in HC

Then, we consider the multiplicative action of the group C⋆ on H⋆
C,

defined by

(z, Z) 7→ zZ ∈ H⋆
C, for all (z, Z) ∈ C⋆

× H⋆
C,

and the quotient of H⋆
C by this action of C⋆ is called the infinite

complex projective space, denoted by

PC = H⋆
C/C⋆.

Now, HC is equipped with the fine diffeology and H⋆
C with the subset

diffeology. The infinite projective space PC is then equipped with the
quotient diffeology. Let

class : H⋆
C → PC

be the canonical projection. For every k = 1, . . . , ∞, let

jk : HC → H⋆
C

be the injections

j1(Z) = (1, Z) and jk(Z) = (Z1, . . . , Zk–1, 1, Zk , . . .), for k > 1.

Then, let Fk be the map

Fk : HC → PC with Fk = class ◦jk , k = 1, . . . , ∞.

That is,
F1(Z) = class(1, Z)
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and
Fk(Z) = class(Z1, . . . , Zk–1, 1, Zk , . . .), for k > 1.

Proposition. The preimage class–1(val(Fk)) ⊂ H⋆
C is isomorphic to

the product HC × C⋆, where the action of C⋆ on H⋆
C is transmuted

into the trivial action on the factor HC, and the multiplicative action
on the factor C⋆. Therefore, the projection

class : H⋆
C → PC

is a locally trivial C⋆-principal fibration. We recall that a locally
trivial fibration is stronger than a diffeological fiber bundle which is
trivial only along the plots.

✑ Proof. The subset class–1(val(Fk)) is the set of Z ∈ H⋆ equivalent
to some jk(Z′), with Z′ any element in H. That is, Z = z.jk(Z′). Let
then define

Φk : H × C⋆
→ H⋆ by Φk(Z, z) = z.jk(Z).

This is a diffeomorphism from H × C⋆ to class–1(val(Fk)). On the
other hand, we know that the val(Fk), with k ∈ N, is a D-open cov-
ering of PC. Therefore, the projection class : H⋆

C → PC is a principal
bundle with groups C⋆. ▶

119. Example: A remarkable non trivial fiber bundle. We know that,
in the category of manifolds, a fiber bundle over a contractible man-
ifold is trivial. It is also well known that in this category also, a
fiber bundle with contractible fiber admits a smooth section. There-
fore, that are two good reasons for a principal fiber bundle with a
contractible group over a contractible manifold to be trivial.

The following example is an attempt to the construction of a dif-
feological fiber bundle over a contractible diffeological space, with a
contractible group (that is R), that would be not trivial.

We consider the action of Z on C

∀n ∈ Z, ∀z ∈ C, n(z) = ze2iπαn,

with α an irrational number. Let

Qα = C/Z
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Now, consider the following action of Z on C × R

n(z, t) = (n(z), t + |z|2n)

Let
C ×Z R = (C × Z)/Z.

We have the following commutative diagram representing this con-
struction:

C × R C ×Z R

C × R C/Z

pr1

class

π

class

Then,

(1) The space C/Z is contractible.
(2) The fiber R of π is contractible.

Q. Is the projection π : C ×Z R → C/Z a R-principal fiber bundle?

The proper use of fiber bundles...
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Homotopy Theory in Diffeology

This lecture is about homotopy theory in diffeology, that generalizes
to diffeological spaces the theory of homotopy on Euclidean domain,
and encompasses the geometric theory of homotopy of manifolds. In
these times when homotopy can have more than one meaning, this
theory of homotopy should be understood as the historic version of
homotopy, built from loops. We can specify if necessary and call it
the “geometry homotopy theory of diffeological spaces”.

We present the elementary constructions and definitions of the theory
of homotopy in diffeology. In particular, the definitions of connected-
ness, connected components, homotopic invariants, the construction
of the Poincaré groupoid, the fundamental group and the higher ho-
motopy groups. We present the relative homotopy, and the exact
sequence of the homotopy of a pair. Thanks to the functional dif-
feology on the space of paths of a diffeological space, we define the
higher homotopy groups by considering simply the iteration of its
space of loops. This theory has been originally presented in my doc-
toral dissertation Fibrations difféologiques et homotopie [Igl85].

32. Smooth paths and operations

120. Smooth paths in a diffeological space. We define the set of smooth
paths in X, a diffeological space, as

Paths(X) = C∞(R, X).

92
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The origin and the end of the path γ are defined by

0̂(γ) = γ(0) and 1̂(γ) = γ(1).

And the ends of γ are naturally defined by

ends(γ) = (γ(0), γ(1)).

The set Paths(X) is equipped with the functional diffeology, then:

0̂, 1̂ ∈ C∞(Paths(X), X), ends ∈ C∞(Paths(X), X × X).

We generally say “path” for ”smooth path”, since we almost never
consider not smooth paths.

Definition. We say that x and x ′ are connected or homotopic if there
exists a path such that:

ends(γ) = (x, x ′).

121. Smooth loops in a diffeological space. A loop in X is a path γ
with same ends, that is, such that 0̂(γ) = 1̂(γ). The space of loops is
denoted by Loops(X),

Loops(X) = {γ ∈ Paths(X) | 0̂(γ) = 1̂(γ)}.

If we want to specify the base point,

Loops(X, x) = {γ ∈ Paths(X) | x = 0̂(γ) = 1̂(γ)}.

Unless otherwise stated, all subsets of Paths(X) are equipped with
the subset diffeology.

122. Concatening paths. Let X be a diffeological space. We say that
two paths γ and γ′ are juxtaposable if

1̂(γ) = 0̂(γ′)

and if there exists a path γ ∨ γ′ such that

γ ∨ γ
′(t) =

 γ(2t) if t ≤
1
2 ,

γ
′(2t – 1) if 1

2 ≤ t.

The path γ ∨ γ′ is called the concatenation of γ and γ′.
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123. Reversing paths. Let X be a diffeological space. Let γ be a path
in X, let x = 0̂(γ) and x ′ = 1̂(γ). The path

γ̄ : t 7→ γ(1 – t)

is called the reverse path of γ. It satisfies

0̂(γ̄) = 1̂(γ) and 1̂(γ̄) = 0̂(γ).

The map

rev: γ 7→ γ̄

is smooth, it is an involution of Paths(X). If γ and γ′ are juxtaposable,
then rev(γ′) and rev(γ) are juxtaposable, and

rev(γ′) ∨ rev(γ) = rev(γ ∨ γ
′).

124. Stationary paths. Let X be a diffeological space. We say that a
path γ is stationary at its ends, if there exists an open neighborhood
of ] – ∞, 0] and an open neighborhood of [+1, +∞[ where γ is constant.
Formally, the path γ is stationary if there exists ε > 0 such that

γ ↾ ]–∞, +ε[ = [t 7→ γ(0)] and γ ↾ ]1 – ε, +∞[ = [t 7→ γ(1)].

The set of stationary paths in X is denoted by

stPaths(X).

The prefix st is used to denote everything stationary.

Note 1. Two stationary paths γ and γ′ are juxtaposable if and only
if 1̂(γ) = 0̂(γ′).

Note 2. The concatenation of stationary paths is not associative, if
γ, γ′ and γ′′ are three stationary paths such that

1̂(γ) = 0̂(γ′) and 1̂(γ′) = 0̂(γ′′),

then γ∨(γ′∨γ′′) is a priori different from (γ∨γ′)∨γ′′. For a finite family
of stationary paths (γk)n

k=1 such that 1̂(γk) = 0̂(γk+1), with 1 ≤ k < n,
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we prefer, for reason of symmetry, the multiple concatenation defined
by

γ1 ∨ γ2 ∨ · · · ∨ γn : t 7→


γ1(nt – 1 + 1) t ≤

1
n ,

· · ·
γk(nt – k + 1) k–1

n ≤ t ≤
k
n ,

· · ·
γn(nt – n + 1) n–1

n ≤ t,

which is still a stationary path, connecting 0̂(γ1) to 1̂(γn).

125. Homotopic paths. Let X be a diffeological space. Because Paths(X)
is itself a diffeological space, it makes sense to say that a path s 7→ γs
in Paths(X) connects γ and γ′, that is,

[s 7→ γs] ∈ Paths(Paths(X)) = C∞(R, Paths(X)),

with γ0 = γ and γ1 = γ′.

• Free-ends homotopy. Such a path γ 7→ γs is called a free-ends
homotopy, connecting γ to γ′, or from γ to γ′.

• Fixed-ends homotopy. Now, let Paths(X, x, x ′) be the set of paths in
X connecting x to x ′, equipped with the subset diffeology of Paths(X).
A path [s 7→ γs] ∈ Paths(Paths(X, x, x ′)) = C∞(R, Paths(X, x, x ′))
is called a fixed-ends homotopy from γ to γ′. But note that, by
definition of the subset diffeology, [s 7→ γs] is a fixed-ends homotopy
if and only if [s 7→ γs] ∈ Paths(Paths(X)) and for all s ∈ R, γs(0) = x
and γs(1) = x ′.

Proposition. A crucial property of homotopy in diffeology is that
every path γ is fixed-ends homotopic to a stationary path.

Indeed, let us consider the smashing function λ described by in Figure
16, where ε is some strictly positive real number, 0 < ε ≪ 1. The real
function λ satisfies essentially the following conditions, and we can
choose it increasing,

λ ∈ C∞(R, R), λ ↾ ]–∞, ε[ = 0, λ ↾ ]1 – ε, +∞[ = 1.

Let γ ∈ Paths(X). We have the following properties:

a) The path γ⋆ = γ ◦ λ is stationary with the same ends as γ.
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Figure 16. The smashing function λ.

b) The path γ is fixed-ends homotopic to γ⋆.

Note. As we know, not any two paths γ, γ′ ∈ Paths(X) such that
1̂(γ) = 0̂(γ′) can be juxtaposable, but we can always force the con-
catenation by smashing them first. Hereafter, we shall use often this
smashed concatenation, denoted and defined by

γ ⋆ γ′ = γ⋆ ∨ γ
′⋆.

As a consequence of the point b),

Proposition. If 1̂(γ) = 0̂(γ′), then γ ⋆ γ′ connects 0̂(γ) to 1̂(γ′). More-
over, if γ and γ′ are juxtaposable, then γ∨γ′ is homotopic to γ ⋆γ′.

126. Connected components. Let X be a diffeological space.

Proposition 1. To be connected, or homotopic, is an equivalence
relation on X whose class are called connected components. The
connected component of x ∈ X is denoted by

comp(x) = {x ′
∈ X | ∃γ ∈ Paths(X), ends(γ) = (x, x ′)}.

The set of components is denoted by

π0(X) = {comp(x) | x ∈ X}.

Equipped with the quotient diffeology, π0(X) is discrete.

Let x ∈ X, we denote by π0(X, x) the pointed space:

π0(X, x) = (π0(X), x).
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Proposition 2. If X is connected, then

ends: Paths(X) → X × X

is a subduction.

127. The sum of its components. Let X be a diffeological space. The
space X is the sum of its connected components. More precisely, if X
is the sum of a family {Xi}i∈I, then the connected components of the
Xi are the connected components of X. The decomposition of X into
the sum of its connected components is the finest decomposition of
X into a sum. It follows that the set of components π0(X), equipped
with the quotient diffeology of X by the relation connectedness, is
discrete.

128. Higher homotopy groups. Let X be a diffeological space, and let
x be a point in X. The higher homotopy groups of X, based at x, are
defined recursively. Let us denote by x̂ the constant loop

x̂ : t 7→ x.

Then, we define, for all integer n > 0:

πn(X, x) = πn–1(Loops(X, x), x̂),

For n = 1 it gives

π1(X, x) = π0(Loops(X, x), x̂) = (π0(Loops(X, x)), x̂),

which is called the fundamental group of X, based at x.

Proposition. The set π1(X, x) is equipped with a multiplication de-
fined by:

class(ℓ) · class(ℓ′) = class(ℓ ∨ ℓ′),

for all ℓ, ℓ′ ∈ Loops(X, x). This multiplication gives π1(X, x) a struc-
ture of group:

a) the identity is class(x̂),
b) the inverse of class(ℓ) is class(ℓ̄), where ℓ̄ is the reverse of ℓ.

Proposition. If x and x ′ are connected, then the groups π1(X, x) and
π1(X, x ′) are conjugated.
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Now, let us define the recurrence

Loopsn+1(X, x) = Loops(Loopsn(X, x), x̂n),

and x̂n+1 = [t 7→ x̂n],

initialized by

Loops0(X, x) = X and x̂0 = x.

We have then:

πn(X, x) = π0(Loopsn(X, x), x̂n),

for all n ∈ N. For n ≥ 1, πn(X, x) = π1(Loopsn–1(X, x), x̂n–1), which
shows that the higher homotopy groups of X are the fundamental
groups of some loop spaces, and therefore deserve their name of
“group”.

Note 1. This is specific to diffeology since in traditional differential
geometry the set of loops of a manifold is not a manifold, and talking
about the π1 of a set of loops has no funded meaning.

For example, π2(X, x) is the fundamental group of the connected
component of the constant loop x̂ in Loops(X, x) etc. Since loop
spaces are H-spaces, the groups πn(X, x) are Abelian for n ≥ 2.

Note 2. Let f : X → X′ be a smooth map, then f induced a map from
πn(X, x) to πn(X′, x ′), with x ′ = f (x), which is a group morphism for
all n > 0 and a morphism of pointed space for n = 0.

129. The Poincaré groupoid and fundamental group. Let X be a dif-
feological space. Let Π be the equivalence relation on Paths(X) :

γ Π γ
′ ⇔ {

there exists x, x ′ ∈ X and ξ ∈ Paths(Paths(X, x, x ′))

such that ξ(0) = γ and ξ(1) = γ′.

Said differently, γ and γ′ belong to the same component of

Paths(X, x, x ′),

the subspace of paths such that ends(γ) = ends(γ′) = (x, x ′). We
shall denote by Π(X) the diffeological quotient Paths(X)/Π, and by
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class the canonical projection:

class : Paths(X) → Π(X) = Paths(X)/Π.

We shall denote again by ends the factorization of ends: Paths(X) →

X × X on Π(X).

Note that, if X is connected, then ends : Π(X) → X×X is a subduction,
and class ↾ stPaths(X) → Π(X) is also a subduction.

The Poincaré groupoid X is then defined by

Obj(X) = X and Mor(X) = Π(X).

For all x and x ′ in X,

MorX(x, x ′) = Paths(X, x, x ′)/Π = π0(Paths(X, x, x ′))

is the set of fixed-ends homotopy classes of the paths connecting x
to x ′. The composition in the groupoid is the projection of the con-
catenation of paths. For all τ ∈ MorX(x, x ′) and τ′ ∈ MorX(x ′, x ′′),

τ · τ′ = class(γ ∨ γ
′), where τ = class(γ) and τ′ = class(γ′).

The paths γ and γ′ are chosen in stPaths(X), for the concatenation
γ ∨ γ′ to be well defined.

The construction of the Poincaré groupoid is summarized by the
following diagram.

Paths(X) Π(X)

X × X

class

ends ends

The isotropy groups Xx = MorX(x, x) and the inverse of the elements
of X(x, x ′) = MorX(x, x ′) are described by what follows:

a) For every point x of X, the isotropy group 1x ∈ Xx is the
component class(x̂), in Loops(X, x), of the constant path x̂.
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b) The inverse τ–1 of τ = class(γ) ∈ MorX(x, x ′) is the compo-
nent class(γ̄) of the reverse path γ̄ = rev(γ).

The structure group Xx = MorX(x, x), where x ∈ X, is the first
homotopy group, or the fundamental group, of X at the point x.
That is, π1(X, x).

If X is connected, then the fundamental groups are isomorphic. They
are precisely conjugate, if τ ∈ MorX(x, x ′), then

π1(X, x) = τ · π1(X, x ′) · τ–1.

In this case, the type of the homotopy groups π1(X, x) is denoted by
π1(X).

Definition. The space X is said to be simply connected if it is con-
nected, π0(X) = {X}, and if its fundamental group π1(X) is trivial.
In that case ends: Π(X) → X × X is a diffeomorphism.

Note. If X is not connected, then π1(X, x) is also the fundamen-
tal group of the connected component of x, that is, π1(X, x) =
π1(comp(x), x) = π1(comp(x)), since there is one type of fundamen-
tal group by component.

130. The universal covering. Let X be a connected diffeological space,
let Π(X) = Paths(X)/Π the space of motphisms of the Poincaré groupoid.

Proposition. The preimage

X̃x = ends–1({x} × X)

is a simply connected diffeological space. The projection

π = 1̂ ↾ X̃x

is a principal fiber bundle with group π1(X, x). The spaces X̃x and
X̃x′ are equivalent and denoted generally by X̃.

The space X̃ is called the universal covering of X.

131. Monodromy Theorem. Let π : X̃ → X be the universal covering
of a connected diffeological space. Let f : Y → X be a smooth map,
where Y is simply connected.
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Theorem. There exists a smooth global lifting f̃ : Y → X̃. Let y ∈ Y,
x = f (y) and x̃ ∈ π–1(x), then there is a unique lifting f̃ such that
f̃ (y) = x̃.

✑ Proof. Let y ′ ∈ Y and t 7→ yt a smooth path such that y0 = y
and y1 = y ′. Let xt = f (yt), t 7→ xt is a path pointed at x = f (y).
Let

f̃ (y ′) = class[t 7→ xt].

This is a lift of f . And f̃ (y ′) does not depend on the special choice
of the path t 7→ yt because Y is simply connected. ▶

33. Every topological space admits a universal covering

For the topologist this sentence “Every topological space admits a
universal covering” is incorrect, because every topologist is aware of
the theorem:

Topology theorem A pathwise connected topological space admits
a simply connected covering if and only if it is semi-locally simply
connected.

However, as an application of the theory of diffeology homotopy and
the previous construction of the Poincaré groupoid and subsequent
universal covering, we get the following theorem, which is also true:

132. The universal covering of a topological space. Consider a path-
wise connected topological space X, equip X with the topo-diffeology
for which the plots are the continuous parametrizations. This diffeo-
logy was introduced at first by Paul Donato in his thesis [Don84].

Thus, as a diffeological space, X admits a simply connected diffeolo-
gical covering π : X̃ → X, for which the projection π is continuous.

Indeed, the continuous paths, which are parametrizations by defini-
tion, are smooth for the topo-diffeology. Then, X equipped with the
topo-diffeology is connected and the construction (§ 129) applies.

Therefore, every topological space admits a universal covering, in the
sense of diffeology.
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We have to note that the D-topology of the topo-diffeology is a priori
finest than the initial topology. It contains a priori more open sets.
Moreover, we shall see later that every diffeological space is locally
path-connected, for the D-topology.

Note also that in diffeology the projection π : X̃ → X is not a priori a
local diffeomorphism, nor a local homeomorphism.

There are here many conjectures we can investigate about the re-
lationship between this universal covering and the pure topological
situation.

Diffeology gives us a procedure to smooth the space, even if it is
not semi-locally simply conected, which is enough to give it a unique
universal covering.

Let us recall that in topology a covering is a map π : X̃ → X which is
locally equivalent, in the sense of topology, to a direct product with
a discrete fiber.

34. Relative homotopy

We describe now the homotopy of a pair (X, A), where X is a diffeo-
logical space and A is a subspace of X. We establish the short and
long exact sequences of the homotopy of the pair (X, A), pointed at
a ∈ A, which is a key ingredient of the exact homotopy sequence of
the diffeological fiber bundles.

133. The short homotopy sequence of a pair. Let X be a diffeological
space, let A be a subspace of X, and let a ∈ A. Let

Paths(X, A, a) = {γ ∈ Paths(X) | 0̂(γ) ∈ A and 1̂(γ) = a}.

Let γ and γ′ be two paths belonging to Paths(X, A, a), a homotopy
from γ to γ′, relative to A, pointed at a is a path in Paths(X, A, a),
connecting γ to γ′. We shall also call it an (A, a)-relative homotopy
from γ to γ′. In Figure 17 the paths γ and γ′ belong to Paths(X, A, a),
with A = A1 ∪ A2. The path γ is (A, a)-relatively homotopic to a
loop in X, but not γ′. Let us consider the map
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Figure 17. Relative homotopy of a pair.

0̂ : Paths(X, A, a) → A

and the injection
i : A → X.

They made up a two-terms sequence of smooth maps:

Paths(X, A, a) 0̂
−−→ A i

−−→ X.

This sequence induces naturally the two-terms sequence of morphisms
of pointed spaces,

(Paths(X, A, a), â) 0̂
−−→ (A, a) i

−−→ (X, a),

where â = [t 7→ a]. Then, this sequence induces a two-terms sequence
on the space of components

π0(Paths(X, A, a), â)
0̂#−−→ π0(A, a)

i#−−→ π0(X, a). (♥)

Note 1. ker(i#) — The kernel of i# is the subset of components of
A, contained in the component of X containing a.
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Note 2. val(0̂#) — The values of 0̂# are the components of A, con-
taining the initial points of the paths in X starting in A and ending
at a. In other words, the subset of the components of A which can
be connected, through X, to a. Now, it is clear that any component
of A which can be connected to a by a path in X is included in the
component of X containing a. Conversely, every component of A in-
cluded in the component of X containing a can be connected to a by
a path in X, starting in A. So, we get the equality,

ker(i#) = val(0̂#).

Now, let us consider the inclusion of the triple (X, a, a) into (X, A, a).
It induces an injection, denoted by j, on the space of paths,

Paths(X, a, a) = Loops(X, a)
j

−−→ Paths(X, A, a).

This injection descends, on the space of components, into a morphism
of pointed spaces,

π0(Loops(X, a), â)
j#
−−→ π0(Paths(X, A, a), â). (♦)

Now, the concatenation of (♦) to the two-terms sequence (♥) gives
a three-terms sequence of morphisms of pointed spaces,

π0(Loops(X, a), â)
j#
−−→ π0(Paths(X, A, a), â))

0̂#−−→
π0(A, a)

i#−−→ π0(X, a).
(♠)

Let us call, by abuse of language, first group of homotopy of X, rel-
ative to A, pointed at a, the pointed space denoted by π1(X, A, a),
and defined by

π1(X, A, a) = π0(Paths(X, A, a), â).

Since, by definition, π0(Loops(X, a), â) = π1(X, a) — regarded as
pointed space — the sequence of morphisms (♠) rewrites,

π1(X, a)
j#
−−→ π1(X, A, a)

0̂#−−→ π0(A, a)
i#−−→ π0(X, a). (♣)
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This sequence is called the short sequence of the relative homotopy
of the pair (X, A), at the point a. We have seen that

ker(i#) = val(0̂#);

moreover,
ker(0̂#) = val(j#).

Note 3. ker(0̂#) — The kernel of 0̂# is the set of the components
of Paths(X, A, a) whose initial point belongs to the component of A
containing a.

Note 4. val(j#) — The values of j# are the components of the γ ∈

Paths(X, A, a) which are (A, a)-relatively homotopic to some loops in
X, based at a.

In short, the relative homotopy sequence of the pair (X, A), at the
point a, is exact.

✑ Proof. We need only check that

ker(0̂#) = val(j#).

Let us recall that, on the one hand, ker(0̂#) is made up of the com-
ponents of Paths(X, A, a) whose initial point belongs to the same
component of A, containing a. On the other hand, val(j#) is the
set of the components of paths γ ∈ Paths(X, A, a) which are (A, a)-
relatively homotopic to some loops in X, based at a.

Note 1. val(j#) ⊂ ker(0̂#). If a path γ is (A, a)-relatively homotopic
to some loop in X based at a, its initial point is connected, in A, to
a, and belongs to the same component of A containing a.

Note 2. ker(0̂#) ⊂ val(j#). Let us consider a component of A
contained in the same component of X containing a. Let γ be a
stationary path in X, beginning in A and ending at a such that
its beginning belongs to the component of A containing a. Let
γ(0) = x. Since x and a belong to the same component of A, there
exists a stationary path c in A connecting a to x (Figure 17). Let
ξ(s) = [t 7→ c(s+(1–s)λ(t))], where λ is the smashing function. Thus,
ξ belongs to Paths(Paths(X, A, a)) and ξ(s)(1) = c(1) = x = γ(0). So,



i
i

i
i

i
i

i
i

106 HOMOTOPY THEORY IN DIFFEOLOGY

σ(s) = ξ(s) ∨ γ is a homotopy connecting (c ◦ λ) ∨ γ ∈ Loops(X, a) to
x̂ ∨ γ, which is homotopic to γ. Therefore γ is (A, a)-relatively homo-
topic to a loop in X, based at a. ▶

134. The long homotopy sequence of a pair. Let X be a diffeological
space, let A be a subspace of X, and let a ∈ A. Let us denote again
by i the natural induction i : Loops(A, a) → Loops(X, a). There is
no ambiguity with the injection i of § 133, since the spaces involved
are not the same. Then, let us consider the two-terms sequence of
smooth maps

Paths(Loops(X, a), Loops(A, a), â) 0̂
−−→ Loops(A, a) i

−−→ Loops(X, a).

Or, if we prefer, by denoting

X1 = Loops(X, a), A1 = Loops(A, a) and a1 = [t 7→ a],

the above two-terms sequence of smooth maps writes

Paths(X1, A1, a1) 0̂
−−→ A1

i
−−→ X1.

We can then apply the construction of the previous paragraph and
get the short sequence of relative homotopy of the pair (X1, A1), at
the point a1. Let us denote again by j the natural induction from
Loops(X1, a1) to Paths(X1, A1, a1). Thus, we have,

π1(X1, a1)
j#
−−→ π1(X1, A1, a)

0̂#−−→ π0(A1, a1)
i#−−→ π0(X1, a1). (♦)

Let us define the second group of relative homotopy of the pair (X, A),
at the point a, by

π2(X, A, a) = π1(X1, A1, a1) = π0(Paths(X1, A1, a1), a1).

So, the short exact sequence (♦) writes now

π2(X, a)
j#
−−→ π2(X, A, a)

0̂#−−→ π1(A, a)
i#−−→ π1(X, a). (♥)

But the right term π1(X, a) = π0(X1, a1) is just π0(Loops(X, a), â),
that is, π1(X, a), regarded as a pointed space. It is also the left term
of the relative homotopy sequence of the pair (X, A) at the point
a. Let us connect the right term of the short homotopy sequences
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relative to the pair (X1, A1), to the left term of the short homotopy
sequences relative to the pair (X, A). We get

· · · π2(X, A, a)
0̂#−−→ π1(A, a)

i#−−→ π1(X, a)
j#
−−→

π1(X, A, a)
0̂#−−→ π0(A, a) · · ·

Then, let us describe the connection of the morphisms of these two
relative homotopy sequences at the junction π1(X, a).

Note 1. ker(j# : π1(X, a) → π1(X, A, a)) — This kernel is the set of
classes of loops of X based at a which can be connected, relatively to
(A, a), to the constant loop â.

Note 2. val(i# : π1(A, a) → π1(X, a)) — This is the set of classes of
loops in X, based at a, that are fixed-ends homotopic to a loop in A.

Now, if a loop in X, based at a, can be smoothly deformed into a
loop contained in A, then it can be retracted relatively to A into
the constant loop â. Conversely, if a loop of X, based at a, is con-
nected relatively to (A, a) to the constant loop â, then it is fixed-ends
homotopic to a loop in A. In other words,

ker(j# : π1(X, a) → π1(X, A, a)) = val(i# : π1(A, a) → π1(X, a)).

Thus, the connection of the two short exact relative homotopy se-
quences is exact. Now, let us define the higher relative homotopy
groups of the pair (X, A) at the point a by recursion. Let us remark
first that the inclusion i : A → X induces an inclusion

in : Loopsn(A, a) → Loopsn(X, a).

Then, we can define

Pathsn+1(X, A, a) = Paths(Loopsn(X, a), Loopsn(A, a), ân),

for every integer n, and this gives the higher relative homotopy groups

πn+1(X, A, a) = π0(Pathsn+1(X, A, a), ân)

= π1(Loopsn(X, a), Loopsn(A, a), ân).
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Now, we can iterate the above connection of short relative homotopy
sequences for each degree n + 1 → n, and we get the long exact
relative homotopy sequence of the pair (X, A), at the point a.

· · · i#−−→ πn(X, a)
j#
−−→ πn(X, A, a)

0̂#−−→ πn–1(A, a)
i#−−→ πn–1(X, a) · · ·

· · · i#−−→ π1(X, a)
j#
−−→ π1(X, A, a)

0̂#−−→ π0(A, a)
i#−−→ π0(X, a).


✑ Proof. We need only check that

ker(j# : π1(X, a) → π1(X, A, a))

is equal to

val(i# : π1(A, a) → π1(X, a)).

Let us recall that ker(j#) is made up of the loops of X based at a
which can be connected, relatively to (A, a), to the constant loop â,
and val(i#) is the subset of the classes of loops in X, based at a,
which are fixed-ends homotopic to a loop in A.

Note 1. ker(j#) ⊂ val(i#). Let ℓ be a loop in X, based at a, (A, a)-
relatively homotopic to the constant loop â. Let γ be the homotopy.
So, for all s ∈ R,

γ(0) = ℓ, γ(1) = â, γ(s)(0) ∈ A and γ(s)(1) = a.

The properties of γ are schematized in Figure 18. Let us consider a
line of R2, turning around the origin, its intersection with the cube
describes a homotopy connecting ℓ to γt=0 ∈ Loops(A, a). More
precisely, let us consider first the path γ′ : s 7→ [t 7→ γ(t)(st)] in
Loops(X, a). The path γ′ connects ℓ to [t 7→ γ(t)(t)]. Then, let us
consider the path γ′′ : s 7→ [t 7→ γ((1 – s)t)(t)] in Loops(X, a). The
path γ′′ connects [t 7→ γ(t)(t)] to γs=0 ∈ Loops(A, a). Therefore, ℓ is
(A, a)-relatively homotopic to a loop in A, based at a.

Note 2. val(i#) ⊂ ker(j#). Let comp(γ) ∈ val(i#). We can choose
γ ∈ Loops(A, a). The path ξ : s 7→ [t 7→ γ(s + (1 – s)t)] is a (A, a)-
relative homotopy connecting γ to the constant loop â. ▶
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Figure 18. A relative homotopy of a loop to the con-
stant loop.

135. The long homotopy sequence of a fiber bundle. Consider a dif-
feological fiber bundle π : Y → X with fiber F, then the long exact
sequence of a pair induced a long exact sequence of the fiber bundle

· · · i#−−→ πn(Y, y)
π#−−→ πn(X, x) ∂

−−→ πn–1(F, y)
i#−−→ πn–1(Y, y) · · ·

· · ·
j#
−−→ π1(X, x) ∂

−−→ π0(F, y)
i#−−→ π0(Y, y)

π#−−→ π0(X, x).



  Notes
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Local Diffeology, Modeling

In this lecture we shall see how local diffeology builds a new branch
of diffeology with the modeling process.

35. Local diffeology

136. Local smooth maps. We have seen what is a local smooth map

f : X ⊃ A → X′,

where X and X′ are two diffeological spaces. The map f is local
smooth if for all plots P: U → X, the following composite is a plot:

f ◦ P: P–1(A) → X′

Proposition. The composition of local smooth maps is a local smooth
maps.

Note that the composite of two local smooth map may be empty, the
empty map is assumed to be smooth.

137. D-topology. We have seen that, if f : X ⊃ A → X′ is a local
smooth map, then for all plots P ∈ D (the diffeology of X) the preim-
age P–1(A) is open (an open subset of dom(P)). We then defined
the D-topology as the finest topology on X such that the plots are
continuous, that is,

• A subset O ⊂ X is D-open if P–1(O) is open for all plots in X.

110



i
i

i
i

i
i

i
i

35. LOCAL DIFFEOLOGY 111

Thus, the local smooth maps from X to X′ are the maps f defined on
D-open subsets A of X such that restricted to A, f ↾ A is smooth for
the subset diffeology.

138. Embedded subsets. What is interesting with the D-topology,
which is a perfect byproduct of the diffeology, is the definition of
embedding subsets that result immediately, without the introduction
of anything else.

Consider a subset A ⊂ X, and j : A → X be the inclusion. We have
on A the subset diffeology of X, let us denote it by DA = j∗(D), with
D the diffeology of X.

We have also on X the D-topology T, and on A the D-topology TA
of DA.

But we have also the pullback j∗(T) of the D-topology of X on A.

Definition. We say that a subset A ⊂ X is embedded in the diffeolo-
gical space X, if the D-topology TA of the subspace A coincides with
the pullback j∗(T) of the D-topology of X on A.

TA = j∗(T) ⇔ A is embedded in X.

In other words,

Criterion The subset A ⊂ X is embedded if and only if for any D-
open subset ω ⊂ A, equipped with the subset diffeology, there exists
an open subset Ω ⊂ X, of the D-topology of X, such that ω = Ω∩ A.

139. Example: The rational numbers. The rational numbers Q ⊂ R
is discrete but not embedded. What is interesting here is that from
a pure topological point of view, only embedded subgroups of R are
regarded as discrete. They are all of the form aZ, for any number a.

In diffeology it is more precise, we can have subgroups discrete and
embedded, they coincide with the discrete subgroups from the topol-
ogy point of view, and the discrete subgroup which are just induced
but not embedded.

✑ Proof. We now that Q is discrete, that is, the plots are locally
constant. Thus, any point q ∈ Q is open of the D-topology of the
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induced diffeology, since the pullback of q by a plot is a component of
the domain of the plot, then open. I recall that to be locally constant
for a plot means that to be constant on the connected componenents
of the domain of the plot. Therefore,

Proposition. The D-topology of a discrete diffeological space is dis-
crete.

Now, the intersection of an open subset of R with Q is always infinite,
since Q is dense. Therefore, Q is not embedded. And we can conclude
also that a strict subgroup Γ ⊂ R, which is discrete, is embedded if
and only if, for any element γ ∈ Γ there is an interval ]γ–ε, γ+ε[ such
that ]γ – ε, γ + ε[ ∩ Γ = {γ}. Hence there exists a smallest element
0 < a in Γ, and therefore Γ = aZ. ▶

140. Embeddings. Let A and X be two diffeological spaces and j : A →

X be a map. We say that j is an embedding if

(1) j is an induction.
(2) j(A) ⊂ X is embedded.

141. Example: The group GL(n, R). Consider the group of linear iso-
morphisms GL(n, R) ⊂ Diff(Rn). The group of diffeomorphisms is
equipped with the functional diffeology of group of diffeomorphisms,
that is, a parametrization r 7→ fr in Diff(Rn), defined on U, is smooth
if and only if:

(1) (r, x) 7→ fr(x), defined on U × Rn is a plot in Rn.
(2) (r, x) 7→ (fr)–1(x), defined on U × Rn is a plot in Rn.

As a subset of Diff(Rn), GL(n, R) inherits the functional diffeology.

On the other hand, the group GL(n, R) is the open subset of Rn×n:

GL(n, R) = {(mij)n
i,j=1 | mij ∈ R and det((mij)n

i,j=1) ̸= 0}.

Proposition. The injection j : GL(n, R) → Diff(Rn) is an embedding.

✑ Proof. First of all, j is injective.

Let us prove that j is an induction. Let r 7→ fr be a plot in Diff(Rn)
with values in GL(n, R). Let ei be the canonical basis of Rn and e∗i the
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dual basis. Then, the coefficient of fr are given by mij(r) = e∗i (fr(ej).
They are obviously smooth, by definition of the functional diffeology.

Now, let us prove that j is an embedding. Consider the open ball
B(1n, ε), centered at the identity and of radius ε. Let Ωε be the set
of all diffeomorphisms defined by

Ωε = {f ∈ Diff(Rn) | D(f )(0) ∈ B(1n, ε)},

where D(f )(0) is the tangent linear map of f at the point 0. Now, let
us prove the following:

(a) The set Ωε is open for the D-topology of Diff(Rn).

Let P : U → Diff(Rn) be a plot, that is, [(r, x) 7→ P(r)(x)] ∈ C∞(U ×

Rn, Rn). The pullback of Ωε by P is the set of r ∈ U such that the
tangent map D(P(r))(0) is in the ball B(1n, ε), formally,

P–1(Ωε) = {r ∈ U | D(P(r))(0) ∈ B(1n, ε)}.

Considering P as a smooth map defined on U × Rn, D(P(r))(0) is the
partial derivative of P, with respect to the second variable, computed
at the point x = 0. The map [r 7→ D(P(r))(0)] is then continuous,
by definition of smoothness. Hence, the pullback of Ωε by this map
is open. Because the imprint of this open set on GL(n, R) is exactly
the ball B(1n, ε), we deduce that any open ball of GL(n, R) centered
at 1n is the imprint of a D-open set of Diff(Rn).

(b) Every open of GL(n, R) is the imprint of a D-open set of Diff(Rn).

By using the group operation on GL(n, R) and since any open set of
GL(n, R) is a union of open balls, every open subset of GL(n, R) is
the imprint of some D-open subset of Diff(Rn). Therefore, GL(n, R)
is embedded in Diff(Rn). ▶

142. Functional diffeology on local smooth maps. Let X and X′ be
two diffeological spaces. Let C∞

loc(X, X′) be the set of local smooth
maps from X to X′. The evaluation map is defined on

F = {(f , x) | f ∈ C∞
loc(X, X′) and x ∈ dom(f )}
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The evaluation map is, as usual,

ev: C∞
loc(X, X′) × X ⊃ F → X′ with ev(f , x) = f (x).

Proposition. There exists a coarsest diffeology on C∞
loc(X, X′) such

that the evaluation map is local smooth.

That is, F is a D-open subset of C∞
loc(X, X′) × X, and the map ev is

smooth with F equipped with the subset diffeology.

A parametrization r 7→ fr in C∞
loc(X, X′), defined on U, is a plot if and

only if the map
ψ : (r, x) 7→ fr(x)

defined on

P∗(F) = {(r, f , x) ∈ U × X | f = fr and x ∈ dom(f )}

≃ {(r, x) ∈ U × X | x ∈ dom(fr)}

with value in X′, is local smooth.

Note that (r, x) 7→ fr(x) is the composite ev◦φ, where φ(r, x) = (fr , x).

U × X ⊃ P∗(F) F X

U C∞
loc(X, X′)

pr1

φ ev

pr1

P

143. Example: Functional diffeology on D-open sets. Let X be a dif-
feological space. We get a diffeology on the set of D-open subsets
of X as follow: consider a family of D-open subsets defined on some
Euclidean domain U:

r 7→ O(r),

we can decide that the family is a plot in the set of D-open subsets
of X if the map

r 7→ 1O(r)

is a plot in the space of local smooth map. That is, if the subset

U = {(r, x) ∈ U × X | x ∈ O(r)}

is a D-open subset on U × X.
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For example, let r 7→ Ir be a parametrization of open intervals in R.
This family is smooth if for all r0 and x0 ∈ R such that x0 ∈ Ir0 , there
exists a small ball B centered at r0 and ε > 0 such that for all r ∈ B,
]x0 – ε, x0 + ε[ ⊂ Ir .

36. Manifolds

We shall present now the classical definition of manifolds, and then
the diffeology way.

144. Manifolds, the classic way. We summarize the basic definitions,
according to Bourbaki [Bou82], but we make the inverse convention,
made also by some other authors, to regard charts defined from real
domains to a manifold M, rather than from subsets of M into real
domains.

(♣) Let M be a nonempty set. A chart of M is a bijection F defined
on an n-domain U to a subset of M. The dimension n is a part of
the data. Let F : U → M and F′ : U′ → M be two charts of M. The
charts F and F′ are said to be compatible if and only if the following
conditions are fulfilled:

a) The sets F–1(F′(U′)) and F′–1(F(U)) are open.
b) The two maps F′–1 ◦ F : F–1(F′(U′)) → F′–1(F(U)) and

F–1 ◦ F′ : F′–1(F(U)) → F–1(F′(U′)), each one the inverse
of the other, are either empty or smooth. They are called
transition maps.

An atlas is a set of charts, compatible two-by-two, such that the union
of the values is the whole M. Two atlases are said to be compatible
if their union is still an atlas. This relation is an equivalence relation.
A structure of manifold on M is the choice of an equivalence class of
atlases or, which is equivalent, the choice of a saturated atlas. Once
a structure of manifold is chosen for M, every compatible chart is
called a chart of the manifold.

145. Manifolds, the diffeology way. Let X be a diffeological space, we
say that X is a n-manifold if it is locally diffeomorphic to Rn at all
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points. Such local diffeomorphisms from Rn to X are called charts.
A generating family of charts is called an atlas.

The Euclidean domains are the first examples of manifolds.

146. Remark Where is the difference? The difference between the
two definition gives an advantage to diffeology. The difference comes
from that in diffeology, the set X is a priori equipped with a diffeology,
that is a smooth structure. Then, the point is to test if the diffeology
gives the space a structure of manifold.

A contrario, with the classical approach, the smooth structure is
defined a posteriori. A parametrization P in a manifold M is smooth if
the composite by the inverse of the charts is a smooth parametrization
of Rn.

Note that the same set equipped with two different diffeologies may
give two different structures of manifolds with different dimensions.
For example R2 can be equipped with its standard diffeology that
gives it a structure of a 2-manifold. It can also be equipped with the
sum diffeology X = ∑x∈R R which gives it a structure of 1-manifold.

147. Why these definitions give the same category? As we say pre-
viously, given a n-manifold M defined by the classic way, smooth
parametrizations P in M are parametrizations such that F–1 ◦ P are
smooth parametrizations in Rn. We consider the empty parametri-
zation as admissible. It is not difficult then to check that the set
of these smooth parametrizations define a diffeology for which the
charts are local diffeomorphisms. Conversely, local diffeomorphism
from Rn to a diffeological manifold X define on X a structure of man-
ifold, the classic way. And these two operations are inverse one from
each other.

148. We know already some examples. Consider the sphere S2 ⊂ R3.
Consider the tangent plane at N = (0, 0, 1), identified with R2, made
of points

X =

x
y
1
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Consider the projection

F: X 7→ m with m =
1√

x2 + y2 + 1

x
y
1

 .

The map F is clearly injective from R2 into S2, and smooth since
x2 + y2 + 1 never vanishes. Its inverse is given by

F–1 : m 7→ X with X =

x = x ′/z ′

y = y ′/z ′

z = 1

 and m =

x ′

y ′

z ′

 .

We see here that necessarily z ′ ̸= 0 and then F–1 is smooth. So, we
got a local diffeomorphism F, around the North Pole N. Then, we
use the transitive action of SO(3, R) to get a local diffeomorphism at
all points in S2.

To this example we have already seen the various tori Tn = Rn/Zn.

149. Diffeological manifolds. In diffeology we extend the definition
of manifolds. A diffeological manifolds is a diffeological space locally
diffeomorphic to a diffeological vector space at all points.

A diffeology of vector space is a diffeology on a vector space for which
the addition and the multiplication by a scalar are smooth.

150. Example: The infinite complex projective space. We have seen
the construction of the infinite projective space in § 118, where

PC = H⋆
C/C⋆

is equipped with the fine diffeology. We have introduced the maps
Fk , with k = 1, 2, . . .

Fk : HC → PC with Fk = class ◦jk , k = 1, . . . , ∞.

That is,

F1(Z) = class(1, Z) and

Fk(Z) = class(Z1, . . . , Zk–1, 1, Zk , . . .), for k > 1.

Then:
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(1) For every k = 1, . . . , ∞, jk is an induction from HC into H⋆
C.

(2) For every k = 1, . . . , ∞, Fk is a local diffeomorphism from HC to
PC. Moreover, their values cover PC,

∞⋃
k=1

val(Fk) = PC.

Proposition. The diffeological space PC is a diffeological manifold
modeled on HC, for which the family {Fk}∞

k=1 is an atlas.

37. Manifolds with boundary

151. Half-spaces. We denote by

Hn = Rn–1
× [0, ∞[

the standard half-space of Rn.

We denote by x = (r, t) its points with r ∈ Rn–1 and t ∈ [0, +∞[.

We denote by ∂Hn its boundary Rn–1 × {0}. The subset diffeology of
Hn, inherited from Rn, is made of all the smooth parametrizations
P : U → Rn such that Pn(r) ≥ 0 for all r ∈ U, Pn(r) being the n-
th coordinate of P(r). The D-topology of Hn is the usual topology
defined by its inclusion into Rn.

152. Smooth real maps from half-spaces. This is a theorem: A map
f : Hn → Rp is smooth for the subset diffeology of Hn if and only if
there exists an ordinary smooth map F, defined on an open neighbor-
hood of Hn, such that f = F ↾ Hn. Actually, there exists such an F
defined on the whole Rn.

Note. As an immediate corollary, any map f defined on C × [0, ε[ to
Rp, where C is an open cube of ∂Hn, centered at some point (r, 0),
smooth for the subset diffeology, is the restriction of a smooth map
F : C×] – ε, +ε[→ Rp.

✑ Proof. First of all, if f is the restriction of a smooth map F: Rn →

Rp, it is obvious that for every smooth parametrization P : U → Hn,
f ◦ P = F ◦ P is smooth. Conversely, let fi be a coordinate of f . Let



i
i

i
i

i
i

i
i

37. MANIFOLDS WITH BOUNDARY 119

x = (r, t) ∈ Rn–1 × R. If fi is smooth for the subset diffeology, then
φi : (r, t) 7→ fi(r, t2), defined on Rn, is smooth. Now, φi is even in the
variable t, φi(r, t) = φi(r, –t). Thus, according to Hassler Whitney
[Whi43, Theorem 1 and final remark], see Figure 19 and Figure 20,
there exists a smooth map Fi : Rn → R such that: φi(r, t) = Fi(r, t2).
Hence, fi(r, t) = Fi(r, t) for all r ∈ Rn–1 and all t ∈ [0, +∞[. ▶

Figure 19. Whitney theorem 1.

153. Half-spaces local diffeomorphisms. A map f : A → Hn, with A ⊂

Hn, is a local diffeomorphism for the subset diffeology of Rn if and
only if

(1) A is open in Hn,
(2) f is injective,
(3) f (A ∩ ∂Hn) ⊂ ∂Hn,
(4) and for all x ∈ A there exists an open ball B ⊂ Rn centered

at x, and a local diffeomorphism F: B → Rn such that f and
F coincide on B ∩ Hn.

Note. This implies in particular, that there exists an open neighbor-
hood U of A and an étale application g : U → Rn such that f and g
coincide on A.

✑ Proof. See [TB, § 4.14]. ▶
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154. Classical manifolds with boundary. Manifolds with boundary
have been precisely defined for example in [GP74] or in [Lee06], and
others. We use here Lee’s definition except that, for our subject, the
direction of charts have been reversed.

Definition. A smooth n-manifold with boundary is a topological
space M, together with a family of local homeomorphisms Fi defined
on some open sets Ui of the half-space Hn to M, such that the values of
the Fi cover M and, for any two elements Fi and Fj of the family, the
transition homeomorphism F–1

i ◦ Fj, defined on F–1
i (Fi(Ui) ∩ Fj(Uj))

to F–1
j (Fi(Ui)∩Fj(Uj)), is the restriction of some smooth map defined

on an open neighborhood of F–1
i (Fi(Ui) ∩ Fj(Uj)). The boundary ∂M

is the union of the Fi(Ui ∩ ∂Hn). Such a family F of homeomor-
phisms is called an atlas of M, and its elements are called charts.
There exists a maximal atlas A containing F, made with all the local
homeomorphisms from Hn to M, such that the transition homeomor-
phisms with every element of F satisfy the condition given just above.
We say that A gives to M its structure of manifold with boundary.

155. Manifolds with boundary, the diffeology Way. Let X be a diffeo-
logical space. We say that X is a n-manifold with boundary if it is
locally diffeomorphic to the half-space Hn at all points. Such local
diffeomorphisms are called charts of X and a set of charts that covers
X is called an atlas.

Proposition. This definition is completely equivalent to the classic
way above.

Note 1. Here again we shall note that the main difference is that the
set X is a priori equipped with a diffeology, and we just check if its
diffeology is a diffeology of manifold with boundary.

Note 2. The diffeology of a classic manifold with boundary M is
defined by parametrizations in M such that, the composite with the
inverse of all charts is smooth. That definition creates an equivalence
between the classic and the diffeology categories.
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38. Manifolds with corners

156. Corners. We denote by

Kn = [0, ∞[n

the standard corner of Rn. That is, the subset

Kn = {(x1, . . . , xn) | xi ≥ 0, ∀i = 1 . . .n}.

The corner Kn is equipped with the subset diffeology inherited from
Rn, which coincides with the nth-power of [0, ∞[. The plots are just
the smooth parametrizations in P in Rn such that, for all i = 1 . . .n
Pi(r) ≥ 0. The D-topology of Kn is the usual topology defined by its
inclusion into Rn.

Figure 20. Whitney Last Remark.

157. Local smooth maps on corners. A map f : Kn → Rk is smooth
for the subset diffeology if and only if, it is the restriction of a smooth
map defined on an open neighborhood of Kn.

What does that mean pecisely?

Let f : Kn → R be a map such that: for every smooth parametrization
P: U → Rn taking its values in Kn, f ◦ P is smooth. Then, f is the
restriction of a smooth map F defined on some open neighborhood
of Kn.

What doest that say?

That says that an heuristic consisting to define a smooth map from
the corner Kn to R, as the restriction of a smooth map defined on
an open neighborhood of Kn, can be avoided by using the diffeology
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framework. Assuming f to be smooth for the subset diffeology do
the work, and moreover conceptually.

✑ Proof. The proof is a recurence on the same theorem above for
half-spaces, see [GIZ19]. ▶

158. Local diffeomorphisms of corners. A local diffeomorphism f from
Kn into itself is the restriction of an étale map defined on some open
neighborhood of its domain of definition.

159. Classic manifolds with corners. Let M be a paracompact Haus-
dorff topological space. A n-chart with corners for M is a pair
(U, φ), where U is an open subset of Kn, and φ is a homeomorphism
from U to an open subset of M. Two charts with corners (U, φ)
and (V, ψ) are said to be smoothly compatible if the composite map
ψ

–1 ◦ φ : φ–1(ψ(V)) → ψ–1(φ(U)) is a diffeomorphism, in the sense that
it admits a smooth extension to an open set in Rn. An n-atlas with
corners for M is a pairwise compatible family of n-charts with corners
covering M. A maximal atlas is an atlas which is not a proper sub-
set of any other atlas. An n-manifold with corners is a paracompact
Hausdorff topological space M equipped with a maximal n-atlas with
corners.

160. Diffeology manifolds with corners. A diffeological space X is a
n-manifold with corners if and only if it is locally diffeomorphic to
Kn at all points.

Manifold in the corner…
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Modeling: Manifolds, Orbifolds and Quasifolds

In this lecture we build the category of orbifolds, and also quasifolds,
by modeling locally these spaces according to what they should look
like; and manifolds, of course.

Orbifolds have been introduced by Ishiro Satake as V-Manifolds in
1956 and 1957 [Sat56] [Sat57]. They have been presented as smooth
structures for describing quotient spaces by a finite group of trans-
formations. We shall recall Satake construction first and show then
how we can rethink these spaces as diffeological spaces.

We show in particular how diffeology solves, in a pure geometrical
way, a problem unresolved by Satake and successors, about what
are smooth maps between orbifolds, and build then the subcategory
{Orbifolds} in the catagory {Diffeology}.

C

Figure 21. The cone orbifold viewed by a topologist.

123
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Let us mention that the word orbifold has been coined by Thurston
[Thu78] in 1978 as a substitue for V-manifold, but it recovers the
same original Satake notion without modification. This concept was
introduced to describe the smooth structure of spaces that look like
manifolds, except on a few points or subsets, where they look like
quotients of linear domains by a finite group of linear transformations.

The typical example is the quotient of the field C by a group of roots
of unity.1 The quotient space is always drawn as a cone as shown by
Figure 21, to suggest the singularity of the point 0. But how do we
capture the smooth structure around the singular point? That is the
whole question.

39. Orbifolds, the Satake definition

The elementary brick in Satake construction is the Local Uniformiza-
tion System. It is a topological construction.

 

V
　

V

N

V0H　

𝜑

g

h

Figure 22. Local Uniformizing System.

1We consider C for its field structure: addition and multiplication, not for its
complex structure which is anecdotic here.
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161. Local uniformization system. Let M be a Hausdorff space and
U ⊂ M an open subset. A local uniformizing system for U (l.u.s) is a
triple (Ũ, G, φ), where Ũ is a connected open subset of Rn for some
n, where G is a finite group of diffeomorphisms of Ũ,2 and where
φ : Ũ → U is a map which induces a homeomorphism between Ũ/G
and U.

Note. In Figure 22, f is this homeomorphism from Ũ/G to U.

Local uniformizing systems are patched together by injections; these
can be thought of as the “transition maps”. The following definition
is taken from [Sat57, p. 466]:

162. Injections. An injection from an l.u.s (Ũ, G, φ) to another l.u.s
(Ũ′, G′, φ′) is a diffeomorphism λ from Ũ onto an open subset of Ũ′

such that
φ = φ′ ◦ λ.

V
　

V

N

𝜑

Vａ　

𝜑ａ

`

Figure 23. Injection.

163. Defining family. Let M be a Hausdorff space. A defining family
on M is a family F of l.u.s for open subsets of M, satisfying conditions

2in original definition, the fixed point sets have codimension ≥ 2.
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below. An open subset U ⊂ M is said to be F-uniformized if there
exists an l.u.s. (Ũ, G, φ) in F such that φ(Ũ) = U.

(1) Every point in M is contained in one F-uniformized open set,
at least. If a point p is contained in two F-uniformized open
sets U1 and U2, then there exists an F-uniformized open set
U3 such that p ∈ U3 ⊂ U1 ∩ U2.

(2) If (Ũ, G, φ) and (Ũ′, G′, φ′) are l.u.s in F and φ(Ũ) ⊂ φ′(Ũ′),
then there exists an injection λ : Ũ → Ũ′.

In other words, if p ∈ U ∩ U′ there exists a third l.u.s. (Ũ′′, G′′, φ′′),
two injections λ : Ũ′′

→ Ũ and λ′ : Ũ′′
→ Ũ′ such that φ′◦λ′ = φ′′ = φ◦λ,

as shown in Figure 24.

Ê

`ａ

𝜑 𝜑ａ

V Vａ

𝜑ｄ

Vｄ
　

W

q

V
　

Vａ
　

`

Vｄ

Figure 24. Defining Family.

164. V-manifold. The following definition is taken from [Sat57, p. 467,
Definition 1].
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Definition. A V-manifold is a composite concept formed of a Haus-
dorff topological space M and a defining family F.

Two defining families F and F′ are said to be directly equivalent if
there exists a third defining family F′′ containing both of them. Two
defining families are said to be equivalent if they are the ends of a
chain of directly equivalent defining families. Equivalent families are
regarded as defining one and the same V-manifold structure on M.

In [Sat57, p. 467, footnote 1] Satake write:

But in the following we consider a V-manifold M
with a fixed defining family F. (i.e. a “coordinate
V-manifold” (M,F).

That is the convention we have made and when we say V-manifold
it is always a coordinate V-manifold (M,F) we have in mind.

40. Orbifolds as diffeologies

165. Diffeological orbifolds. Let X be a diffeological space. We say
that X is an diffeolgical n-orbifold (or a D-orbifold) if X is every-
where locally diffeomorphic to some Rn/Γ, with Γ a finite subgroup
of GL(n, R), possibly different from point to point. The diffeological
n-orbifolds are modeled on quotient spaces of type Rn/Γ.

More precisely, for every point x ∈ X, there exists a finite group
Γ ⊂ GL(n, R), a (connected) Γ-invariant Euclidean domain Ũ ⊂ Rn

and a local diffeomorphism F : Ũ/Γ→ X on a superset of x.

The situation, illustrated in Figure 25, looks like the previous def-
inition of l.u.s except that here the quotient Ũ/Γ is equipped with
the quotient diffeology, the map class : Rn → Rn/Γ is the canonical
subduction and F is a local diffeomorphism.

These local diffeomorphisms are called charts of the D-orbifold X. An
atlas of X is any covering set A of charts. Of course there exists a
saturated atlas made of all charts.
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Given an atlas A of X, that defines a generating family

F = {F ◦ class | F ∈ A},

where class is relative to the group Γ associated with F. We call F

the strict generating family associated with the atlas A.

Note that when Γ is trivial we get the classical manifolds.

 

V　

dmbtt

Y

V0A　

X

G
G!p。dmbtt V

Figure 25. Generating Family for a D-orbifold.

166. Linear action or not? In the previous definition, it is equivalent
to ask Γ to be a finite group of diffeomorphisms or to be linear. Indeed,
we define a Γ-invariant Riemmannian metric by

〈u, v〉Γ =
1

#Γ

∑
γ∈Γ

〈γu, γv〉,

then the slice theorem states that this action is equivalent to an
orthogonal action.

167. Example: The simplest. It is important to clarify a similar point
we made for the diffeological definition of manifold. Here again an
D-orbifold come a priori as a diffeological space, that is, equipped
with a diffeology D. The fact that X is an orbifold is a property of
the diffeology, not the set itself, as the following examples will show.



i
i

i
i

i
i

i
i

40. ORBIFOLDS AS DIFFEOLOGIES 129

The first example, the simplest, is certainly Δ1 = R/{±1}, which is
equivalent to the half-line [0, ∞[ equipped with the pushforward of the
standard diffeology of R by the map x 7→ x2. The D-topology is the
subset topology on [0, ∞[. A plot of Δ1 is a positive parametrization
that can be writen locally everywhere as some r 7→ Q(r)2.

168. Example: The cone orbifold. Not the simplest example but the
most known is the cone orbifold. It is defined as the quotient of the
complex number space C by a cyclic group Um. We denote it by:

Cm = C/Um,

where m ∈ N, m ̸= 0 and

Um = {exp(2iπk/m) | k = 1 . . .m}.

The diffeological space Cm, equipped with the quotient diffeology,
is by definition an orbifold. The topologists are used to represent
this orbifold by gluing the two sides of a fundamental domain, as it
is illustrated in Figure 21. But that representation disservices the
diffeological intuition. We will show now how the orbifold Cm can be
represented as a special diffeology on the field C itself.

C

C

Figure 26. The cone orbifold viewed by a diffeologist.
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Considering then the map

φm : C → C with φm(z) = zm,

it is clear that the preimages of the points ζ ∈ C are exactly the
orbits of the group Um. Since φm is surjective, C can be identified
with the quotient set C/Um, with canonical projection φm. The last
question is what diffeology on C represents the quotient diffeology?
Naturally, the answer is the pushforward

C∞
m = φm∗(C∞)

of the standard diffeology C∞ on C. Note that the D-topology of C∞
m

is still the standard topology of C.

A parametrization P : U → C belongs to C∞
m if and only if, for all

point r0 ∈ U, there exists a small ball B centered at r0 and a smooth
parametrization Q : B → C such that P(r) = Q(r)m, for all r ∈ B.

Actually, if P(r0) ̸= 0, it is sufficient to ask P to be smooth on some
small ball around r0, and if P(r0) = 0, then there is no shortcut, we
have to find Q satisfying the condition above.

Thus, as we can see in this simple example, the same set C can be
equipped with an inifinity of orbifold diffeologies, one for each integer,
without altering the underlying space.

169. Example: The waterdrop. This orbifold, the waterdrop drawn
in the many figures above, is a diffeology defined on the sphere S2.
By convenience, S2 is regarded as a subset of C × R. A plot of the
waterdrop diffeology is a smooth parametrization ζ in S2 which is
identified to C × R, with N = (0, 1) the North Pole, satisfying:

ζ : U → C × R with

 ζ(r) =
(

z(r)
t(r)

)
,

|z(r)|2 + t(r)2 = 1.

such that, for all r0 ∈ U:

• if ζ(r0) ̸= N, then there exists a small ball B centered at r0 such
that ζ ↾ B is smooth.
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Figure 27. The waterdrop Orbifold.

• If ζ(r0) = N, then there exists a small ball B centered at r0 and a
smooth parametrization z in C defined on B such that, for all r ∈ B,

ζ(r) =
1√

1 + |z(r)|2m

(
z(r)m

1

)
.

Note that this orbifold diffeology on S2 is a subdiffeology of the
standard diffeology of manifold, embedded in R3.

Note also that how it is possible to multiply the number of conical
points on the sphere.

170. Example: The hedgehog. After the cone which has a unique sin-
gularity, of conic type and structure group Um, at the north pole, it
is not hard to imagine many other examples based on the construc-
tion of previous two: a sphere, or a plane, with as many different
singular conic (or not) points we wants. The fact that, contrarily to
manifolds, orbifolds may have a rich set of smooth local invariants,
permits to build easily more different orbifold strutures on the same
underlying space. In our examples above, we just picked up a diffeo-
logy finer than the standard manifold diffeology which happens to be
an orbifold diffeology.

In particular, we have seen earlier that the quotient space of a disc by
Um is equivalent to the same disc but equipped with a finer diffeology.
It is then easy to extract from a manifold diffeology, a finer orbifold
diffeology with as many conic singularities as we want, with arbitrary
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Figure 28. The function L(n, m).

structure groups. Let’s build a simple example: Consider the plane
C and let L : Z + iZ → N be the bijection described in Figure 28.

Then, let us define the following diffeology, with parametrizations
ζ : U → C such that, for all r0 ∈ U:

(1) if ζ(r0) ̸∈ Z + iZ, then there exists a small ball B centered
at r0 such that ζ ↾ B is smooth.

(2) If ζ(r0) = n + im, with n, m ∈ Z, then there exists a small
ball B centered at r0 and a smooth parametrization z in C
defined on B such that, for all r ∈ B,

ζ(r) = n + im + z(r)1+L(n,m).

In this example, the integer points n + im ∈ C are conic with cyclic
groups, all different, equal to Z1+L(n,m).

It should be noted that, with all the transition functions, a descrip-
tion of this orbifold using the original Satake’s defining families,
would be, for the least, laborious. We can appreciate, on this ex-
ample, the simplification brought by the diffeological approach.
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171. Smooth Maps Between Orbifolds. Let us continue with the cone
orbifold Cm = C/Um. Let f : R2 → R2 be defined by

f (x, y) =


0 if r > 1 or r = 0

e–1/r
ρn(r)(r, 0) if 1

n+1 < r ≤
1
n and n is even

e–1/r
ρn(r)(x, y) if 1

n+1 < r ≤
1
n and n is odd,

where r =
√

x2 + y2 and ρn is a function vanishing flatly outside the
interval ]1/(n + 1), 1/n[ and not inside, see Figure 29. Remark now

Figure 29. The function ρn.

that

f (AX) = hX(A)f (X), with X ∈ R2 and A ∈ SO(2).

On the annulus

1
n + 1

< r ≤
1
n

, with

{
hX(A) = 1R2 if n is even, and

hX(A) = A if n is odd.

Now, the function f descends onto a smooth map φ from the cone
orbifold Cm to itself. In particular because the homomorphism hX
flips from the identity to trivial on any successive anulus, φ has no
local equivariant smooth lifting.

This is a big difference with diffeomorphisms for which it is proven
that the stabilizer of one point is locally mapped equivariantly into
the stabilizer of the image by a homomorphism.
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R2 R2

Cm = R2/Um Cm = R2/Um

f

classm classm

φ

This example is the very illustration of the unsuccessful attempt to
define smooth maps between orbifolds as locally equivariant maps, on
the level of local symmetry group, and that answer Satake footnote
in [Sat57, page 469],

“The notion of C∞-map thus defined is inconvenient
in the point that a composite of two C∞-maps de-
fined in a different choice of defining families is not
always a C∞ map.”

Embedding of orbifolds into a category such as {Diffeology} could
have solved this question. The existence of good smooth maps be-
tween orbifolds is crucial for having a covariant satisfactory theory
of orbifolds.

41. Equivalence between V-manifolds and D-orbifolds

172. V-manifolds are D-orbifolds. Let M be a Hausdorff topological
space. A defining family F on M determines a diffeology of orbifold.
Namely, the diffeology generated by the parametrizations φ : Ũ → U,
for all (Ũ, G, φ) ∈ F.

173. Equivalence of defining families. Let M be a Hausdorff topo-
logical space. If two defining families F and F′ on M generate the
same diffeology then they are equivalent. More precisely, the union
F′′ = F ∪ F′ is a defining family.

174. D-orbifolds are V-manifolds. Conversely, let X be a D-orbifold,
then equip X with the D-topology (assumed Hausdorff). Let A be
an atlas of X, the strict generating family of the atlas A is a defining
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family in the sense of Satake, and equip X with a structure of V-
manifold for its D-topology.

Two different atlases A and A′ give equivalent Satake defining fami-
lies, essentially because they are sub-atlases of the maximal atlas.

175. Equivalence of definitions. The two constructions above are, up
to an equivelence, inverse one from each other.

Note. Actually, Satake defined only what we call reflexion free V-
manifolds. But there was no technical obstacles to extend the defini-
tion to any V-manifold.

42. Internal structure of a D-orbifold

176. The groupoid G of germs of local diffeomorphisms. Let X be
any diffeological space. We define the groupoid G of germs of lo-
cal diffeomorphisms of X as follow:{

Obj(G) = X,
Mor(G) = { germ(φ)x | φ ∈ Diffloc(X) and x ∈ dom(φ)}.

The source maps, the target maps and the composition of germs of
local diffeomorphisms are defined as follows:

{
src(germ(φ)x) = x, trg(germ(φ)x) = φ(x).
germ(φ)x · germ(φ′)x′ = germ(φ′ ◦ φ)x, with x ′ = φ(x).

The pseudogroup of local diffeomorphisms of X is equipped with the
functional diffeology of pseudogroup, that is, the diffeology of local
smooth map for the pairs (f , f –1), where f ∈ Diffloc(X). Let then
define the germ map by:{

G = {(φ, x) | φ ∈ Diffloc(X) and x ∈ dom(φ)}.
germ : (φ, x) 7→ germ(φ)x.

We equip Mor(G) with the pushforward of the diffeology of G by
the map germ. That makes G a diffeological groupoid. That means
essentially that:
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(a) the multiplication and the inversion are smooth maps

(b) and the inclusion Obj(G) ↪→ Mor(G) by the identities is an in-
duction.

177. The structure groupoid of an orbifold. Let X be an n-orbifold,
A be an atlas, F be the strict generating family over A, N be the
nebula and ev be the evaluation map, that is:

N =
∐
F∈F

dom(F) and ev : N → X with ev(F, r) = F(r).

Figure 30. The Groupoid of the Teardrop.

We call Structure groupoid G of the orbifold X the subgroupoid of
the groupoid of germs of local diffeomorphisms of N that descends
on the identity of X along ev. That is,

MorG((F, r), (F′, r ′)) =
{

germ(φ)r

∣∣∣∣ φ ∈ Diffloc(Rn), r ′ = φ(r)
F′ ◦ φ = F ↾ dom(φ)

}
Note. In order to show the dependency of the structure groupoid
with respect to the atlas A we need the two following lemma.
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178. Lifting the identity. Let Q = Rn/Γ. Consider a local smooth
map F from Rn to itself, such that class ◦F = class. In other words,
F is a local lifting of the identity on Q. Then,

Rn ⊃ Ũ Rn

Q

class

F

class

Theorem. F is locally equal to some group action F(r) =loc γ · r,
where γ ∈ Γ.

✑ Proof. Let us assume first that F is defined on an open ball B.
Then, for all r in the ball, there exists a γ ∈ Γ such that F(r) = γ · r.
Next, for every γ ∈ Γ, let

Fγ : B → Rn
× Rn with Fγ(r) = (F(r), γ · r).

Let Δ ⊂ Rn × Rn be the diagonal and let us consider

Δγ = F–1
γ (Δ) = {r ∈ B | F(r) = γ · r}.

Lemma 1. There exist at least one γ ∈ Γ such that the interior Δ̊γ is
non-empty.

◀ Indeed, since Fγ is smooth (thus continuous), the preimage Δγ
by Fγ of the diagonal is closed in B. However, the union of all the
preimages F–1

γ (Δ) — when γ runs over Γ — is the ball B. Then, B is
a finite union of closed subsets. According to Baire’s theorem, there
is at least one γ such that the interior Δ̊γ is not empty. ▶

Lemma 2. The union Δ̊Γ = ∪γ∈ΓΔ̊γ is an open dense subset of B.

◀ Indeed, let B′ ⊂ B be an open ball. Let us denote with a prime the
sets defined above but for B′. Then, Δ′γ = (Fγ ↾ B′)–1(Δ) = Δγ ∩ B′,
and then Δ̊′γ = Δ̊γ ∩ B′. Thus, B′ ∩ Δ̊Γ = B′ ∩ (∪γ∈ΓΔ̊γ) = ∪γ∈ΓΔ̊

′
γ,

which is not empty for the same reason that ∪γ∈ΓΔ̊γ is not empty.
Therefore, Δ̊Γ is dense. ▶

In conclusion: the tangent linear map D(F): B → GL(n, R) is smooth,
then continuous, thus D(F)–1(Γ) is closed. But, Δ̊Γ, which is an
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open dense subset of B, is contained in D(F)–1(Γ). Hence, B is con-
tained in D(F)–1(Γ) (its own closure) which is contained in B. Thus,
D(F)–1(Γ) = B. Then, since B is connected, D(F)(B) ⊂ Γ is con-
nected. But Γ ⊂ GL(n, R) is discrete, then D(F)(B) = {γ}, for some
γ ∈ Γ. ▶

179. Lifting local diffeomorphisms. Let Q = Rn/Γ and Q′ = Rn′
/Γ′,

Then,

Theorem. Every local smooth lifting f̃ of any local diffeomorphism f ,
from Q to Q′, is necessarily a local diffeomorphism, from Rn to Rn′

.
In particular n = n′. Moreover, let

x ∈ dom(f ), x ′ = f (x)

and r, r ′ ∈ Rn such that

class(r) = x and class(r ′) = x ′.

Then, the local lifting f̃ can be chosen such that

f̃ (r) = r ′.

✑ Proof. Let the local diffeomorphism f be defined on U with
values in U′. By definition of local diffeomorphism, they are both
open for the D-topology. Then Ũ = class–1(U) is open in Rn. Since
the composite f ◦class : Ũ → U′ is a plot in Q′, for all r ∈ Ũ there exists
a smooth local lifting f̃ : Ṽ → Rn′

, defined on an open neighborhood
of r, such that class′ ◦f̃ = f ◦ class ↾ Ṽ.

Rn ⊃ Ũ ⊃ Ṽ Rn′

Q ⊃ U Q′

class

f̃

class′

f

Let x = class(r), x ′ = f (x), r ′ = f̃ (r), and then x ′ = class′(r ′).

Next, let Ũ′ = class′–1(U′). Since the composite f –1 ◦ class′ is a
plot in Q, there exists a smooth lifting f̂ : Ṽ′

→ Rn, defined on an
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open neighborhood of r ′, such that class ◦f̂ = f –1 ◦ class′ ↾ Ṽ′. Let
r ′′ = f̂ (r ′), which can be different from r.

Rn Ṽ′
⊂ Ũ′

⊂ Rn′

Q U′ ⊂ Q′

class

f̂

class′

f –1

Now, we consider the composite f̂ ◦ f̃ : W̃ → Rn, where W̃ = f̃ –1(Ṽ′)
is a non-empty open subset of Rn since it contains r. Moreover,
f̂ ◦ f̃ (r) = r ′′. It also satisfies class ◦(f̂ ◦ f̃ ) = class. Indeed, class ◦(f̂ ◦
f̃ ) = (class ◦f̂ )◦f̃ = (f –1◦class′)◦f̃ = f –1◦(class′ ◦f̃ ) = f –1◦(f ◦class) =
(f –1 ◦ f ) ◦ class = class. Thus, thanks to § 178, there exists, locally,
γ ∈ Γ such that f̂ ◦ f̃ = γ ↾ W̃. By the way, r ′′ = (f̂ ◦ f̃ )(r) = γ · r. Let
f̄ = γ–1 ◦ f̂ , then: class ◦f̄ = class ◦γ–1 ◦ f̂ = class ◦f̂ = f –1 ◦ class′, and
f̄ is still a local lifting of f –1. Thus f̄ ◦ f̃ = 1W̃, that is, f̄ = f̃ –1 ↾ W̃.
We conclude that, around r, f̃ is a local diffeomorphism. Now, if
we consider any another point r ′′′ over x ′, there exists γ′ such that
γ
′ · r ′ = r ′′′; changing f̃ to γ′ ◦ f̃ and f̄ to f̄ ◦ γ′–1, we get f̃ (r) = r ′′′,

and f̃ and f̄ still remain inverse of each other. Thus, for any r ∈ Rn

over x and any r ′ ∈ Rn over x ′ = f (x), we can locally lift f to a local
diffeomorphism f̃ such that f̃ (r) = r ′. ▶

T)b*
b

B

d

D
T

Figure 31. Equivalence of categories.

180. Equivalence between categories, groupoids. Let A and C be two
categories. Let us recall that, according to [McL71, Chap.4 § 4 Thm. 1],
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a functor
S: A → C

is an equivalence of categories if and only if,

(1) S is full and faithful,
(2) each object c in C is isomorphic to S(a) for some object a

in A.

If A and C are groupoids, the last condition means that,

(2’) for each object c of C, there exists an object a of A and an
arrow from S(a) to c.

In other words: Let the transitivity-components of a groupoid be
the maximal full subgroupoids such that each object is connected to
any other object by an arrow. The functor S is an equivalence of
groupoids if

(1) it is full and faithful,
(2) it descends surjectively on the set of transitivity-components.

A C

Comp(A) Comp(C)

comp

S

comp

S∗

181. Equivalence of structure-groupoids. Consider an n-orbifold X.
Let A be an atlas, let F be the associated strict generating family, let
N be the nebula of F and let G the associated structure groupoid.

Proposition. The fibers of the subduction ev: Obj(G) → X are ex-
actly the transitivity-components of G. In other words, the space of
transitivity components of the groupoid G associated with any at-
las of the orbifold X, equipped with the quotient diffeology, is the
orbifold itself.

Theorem. Different atlases of X give equivalent structure groupoids.
The structure groupoids associated with diffeomorphic orbifold are
equivalent.
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Figure 32. The Groupoid of Δ1.

In other words, the equivalence class, in the sense of categories, of
the structure groupoids of a orbifold is a diffeological invariant.

✑ Proof. The proof of this theorem is based on the previous two
propositions § 178 and § 179.

Let us start by proving the proposition. Let

F: U → X and F′ : U′
→ X′

be two generating plots from the strict family F, and r ∈ U ⊂ R and
r ′ ∈ U′ ⊂ R′. Assume that

ev(F, r) = ev(F′, r ′) = x, that is , x = F(r) = F′(r ′).

Note that

F = f ◦ class ↾ U and F′ = f ′ ◦ class′ ↾ U′,

where f , f ′ ∈ A. Then, let

ψ = f ′–1 ◦ f with ψ : f –1(f ′(U′)) → U′,

is a local diffeomorphism that maps

ξ = f (class(r)) to ξ′ = f ′(class′(r ′)).

Then, according to § 179:

(1) n = n′,
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Figure 33. Lifting the identity.

(2) there exists a local diffeomorphism φ of Rn, lifting locally ψ
and mapping r to r ′. That is

class′ ◦φ =loc ψ ◦ class and ψ(r) = r ′.

Its germ realizes a morphism (an arrow) of the groupoid G connecting
(F, r) to (F′, r ′), which are then on the same transitivity component:

F(r) = F′(r ′) ⇒ comp(F, r) = comp(F′, r ′).

Of course, when F(r) ̸= F′(r ′) there cannot be an arrow, by defini-
tion. Therefore, the fibers of the evaluation map are the transitive
components of the structure groupoid G of the orbifold.
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Now, for the theorem: let A and A′ be two atlases of X and consider

A′′ = A
∐

A′.

With an obvious choice of notation:

Obj(G′′) = Obj(G)
∐

Obj(G′),

and G′′ contains naturally G and G′ as full subgroupoids. The ques-
tion then is: how does the adjunction of the crossed arrows between
G and G′ change the distribution of transitivity-components? Ac-
cording to the previous proposition, it changes nothing since, for G,
G′ or G′′, the set of transitivity-components are always exactly the
fibers of the respective subductions ev. In other words, the set of
groupoid components is always X, for any atlas of X. Thus G and G′

are equivalent to G′′, therefore G and G′ are equivalent. ▶

43. Quasifolds as diffeologies

The notion de quasifold has been proposed by Elisa Prato in [EP01], it
extend the notion of orbifold. The original definition, which has been
modified once or twice, has been revisited by diffeology as follow:

182. Definition. A diffeological space X is said to be a n-quasifold if
it is locally diffeomorphic everywhere to a quotient Rn/Γ, where Γ is
a countable subgroup of Aff(Rn).

The main difference is that the group Γ can be infinite, but countable.

Example 1. The first example would certainly be the irrational torus
Tα = R/(Z + αZ) with α ∈ R – Q. Also quotient of the 2-torus by the
irrational solenoid Sα. Here the subgroup is strictly affine.

Example 2. One can think also of the irrational cone or quasicone:

Cα = C/{e2iπkα}k∈Z,

where α ∈ R – Q.

As a curiosity we have this triangle of subductions:
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C

Cα Δ2

class | · |2

π

where class : C → Cα is the standard projection from the space to
its quotient, and | · |2 : z 7→ |z|2 is the projection from C to the
quotient C/U(1) which is equivalent to Δ2 = R2/O(2). Then, the map
π : Cα → Δ2 is a subduction since class and | · |2 = π ◦ class are both
subductions [TB, § 1.51]. The preimages of π are all diffeomorphic to
the irrational torus Tα except for 0. It would be an exercise probably
to show that the local diffeomorphisms of Cα has two orbits: {0} and
Cα – {0}. Note that the D-topology of Cα is certainly, by density, the
pullback of the D-topology of Δ2, which coincides with the topology
of the half-line [0, ∞[.s

Folds - Basics

A typical piece of fabric. 
Nothing special about this…

…until you 
hang it from 
a single point. 
Note how it 
falls in on 
itself as the  
material 
adheres to the 
laws of gravity

Here we have 
the same piece 
of fabric, hung 
from two 
points of 
support with a 
lot of slack

This time there’s less slack in 
between the points, but the sweep 
of the folds remains.

ZejanNoSaru
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Symplectic Mechanics and Diffeology

I give, in this lecture, a short survey on symplectic mechanics. The
basic foundations in the work of Lagrange at the end of the 18th
century and the beginning of the 19th, and what it became in the
middle of the 20th century with what it is called now: symplectic
mechanics. We will discuss also how to extend these constructions
to Diffeology, the main concepts.

There are a few different approaches to symplectic geometry in me-
chanics. At the beginning there is three papers from Joseph-Louis
Lagrange in 1808, 1809 and 1810 [Lag08, Lag09, Lag10] :

1) Sur la théorie des variations des éléments des planètes et en parti-
culier des variations des grands axes de leurs orbites (1808).

2) Sur la théorie générale de la variation des constantes arbitraires
dans tous les problèmes de la mécanique(1809).

3) Second mémoire sur la théorie générale de la variation des con-
stantes arbitraires dans tous les problèmes de la mécanique (1810).

In these papers, Lagrange sets the first elements of what we can call
“symplectic calculus”. The question was the stability of the great
axes of the planets, and Lagrange brought a simplification in the
approximation computations of this time, in particular by Laplace
and Poisson. I will not write down here the details of his work but I
refer (for now) to the paper I wrote on the subject: Les Origines du
Calcul Symplectique chez Lagrange, but in French [PIZ98].

145
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That said, I will emphasize — in this overview on symplectic me-
chanics — the following points relative to the global structure of the
spaces of solutions of dynamical (symplectic) systems.

(1) The presymplectic/symplectic framework.
(2) The symmetries of dynamical systems.
(3) Isolated mechanical/dynamical systems, the Galilean and

Poincaré groups.
(4) The moment map associated to a group of symmetries.
(5) The conservation of the moment map (Noether-Souriau the-

orem).
(6) The Souriau cocycle and the barycentric decomposition.
(7) The elementary particles/systems and the classic spin.
(8) The “geometric quantization program”, the prequantization.

These few points summarizes, I believe, the main progress on the
global structure of dynamical systems made in the 20th century.

Of course, symplectic mechanics does not reduce to these chapters,
other constructions like the behavior of hamiltonian vector fields,
the geometric optics, reflexion, diffraction, caustics. . . The structure
of the group of symplectomorphisms, etc. All these subjects are
a part of modern symplectic mechanics. A whole year of lectures
could hardly be enough to cover all the applications of symplectic
mechanics.

44. The short approach to symplectic mechanics

The following presentation of the syplectic structure on the space of
solutions of a dynamical (second order differential equation) system
is due to Elie Cartan [Car22], followed by some authors, Galissot
[Gal52], and especially Jean-Marie Souriau in his book “Structure
des Systèmes Dynamique” [Sou70].

183. To drive out the denominators. Let us recall that a classical
dynamical system in Galilean Mechanics, or Newtonian Mechanics,
is described by an ordinary second order differential equation. For
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example, for a material point:

m
d2x
dt2 = F(x, v, t) where v =

dx
dt

.

The unknown here is the path [t 7→ x], where t is a real number
defined on some interval and x ∈ R3.

Then we transform this second order system into a first order differ-
ential equation system:

m
dv
dt

= F(x, v, t) and v =
dx
dt

.

Then we reinterpret the Newton equations by “driving out the de-
nominators” :

mdv = F(x, v, t)dt and dx = vdt.

We need here to explain this writing. Consider the subset

Y ⊂ R3
× R3

× R

where F is defined. We call it the space of initial conditions, or
following Souriau: the “evolution space”. Let y = (x, v, t) a point in
Y, let us denote by dy a tangent vector to Y, at the point y, that is
a vector of R7. We can imagine dy being the shortcut the derivative
of a path s 7→ y

dy =
dy
ds

∈ TyY with dy =

dx
dv
dt

 .

Then, the equations of motion writes

mdv – F(x, v, t)dt = 0 and dx – vdt = 0.

At this point we use a trick, and considering an other tangent vector

δy =

δxδv
δt

 ∈ TyY,

we define

ω(dy, δy) = 〈mdv – Fdt, δx – vδt〉 – 〈mδv – Fδt, dx – vdt〉.
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Let us make some comment on the notation: first of all, F denotes
at the same time the function F and the value of F at the point
y = (x, v, t). Second of all, the 2-form ω should rigorously be indexed
by the point y where it is taken, but the vectors dy and δy contains
already this information, so it is unnecessary to be redundant.

One can check now that:

(1) ω is a 2-form on Y.
(2) the vector dy ≃ dy/ds satisfies the equations of motion if

and only if it belongs to the kernel of ω.

The kernel of ω is defined by

dy ∈ ker(ω) ⇔ ω(dy, δy) = 0 ∀δy.

Therefore, the integral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curvesintegral curves of the kernel distribution

y 7→ ker(ω)

are the solutions of the Newton equations.

Proposition 1. The space M of integral curves of the kernel distri-
bution is a manifold, that can be, for some kind of force F, non
Hausdorff. It is called the space of motions.

I would like to emphasize the fact the a solution of the differential
equation, in this approach, is an integral curve of the distribution
y 7→ ker(ω), that is, a subset of Y, the graph of some curve t 7→
(x, v, t). So the space of motions is indeed a set of subspaces of Y,
and this set of subspaces is equipped with a structure of manifold.

And beware to not confuse the motion with the trajectory of the
motion. The schedule of the trajectory is a part of the motion. For
example, a circular motion has a circle for trajectory but its motion
is a line, precisely an helix. That is why it is not enough to know
the route of the bus to take advantage of it, you have to know when
it stops in front of your door. The timetable is an element of the
movement.
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Proposition 2. The restrictions (x, v) 7→ classt(x, v), for all t ∈ R,
made a canonical atlas of the manifold M.

Note that these canonical charts classt are called Darboux charts
because the symplectic form takes the canonical expression,

ωt = m
3∑

i=1
dxi ∧ dvi.

Proposition 3. If the force F is the gradient of some potential φ,
actually F = – grad(φ), then the 2-form ω is closed

dω = 0,

and descends on the quotient space M into a symplectic 2-form.

In that case, the 2-form ω is the exterior derivative of the so-called
Cartan form

λ(δy) = m〈v, δx〉 – h δt with h =
1
2

m∥v∥2 + φ.

Definition.We recall that a symplectic form on a manifold is a non
degenerate closed 2-form.

45. Presymplectic and symplectic manifolds

184. Presymplectic form. Let M be a manifold, a closed 2-form ω on
M is said to be presymplectic if its kernel has a constant dimension
on M [Sou70]. The vector distribution

y 7→ ker(ω)

is called the characteristic distribution. Thanks to the Frobenious
theorem that states that for every differential form ω, the character-
istic distribution

y 7→ ker(dω) ∩ ker(ω)

is integrable, since ker(dω)y = TyM, the characteristic distribution
of a closed form y 7→ ker(ω) is integrable.
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The leaves of the integral submanifolds of the characteristic distribu-
tion are called characteristics of the distribution, and the resulting
foliation is called the characteristic foliation.

The characteristics of the presymplectic form ω are the connected
submanifolds F ⊂ M such that at each point y ∈ F,

TyF = ker(ω).

185. Symplectic dynamical systems. In symplectic mechanics, a dy-
namical system is defined as a presymplectic manifold (M, ω). By
analogy with the case of a particle, we call motions of the system
the characteristics of the presymplectic form. The space of motions,
which plays an important role in mechanics, is then the set of all
characteristics.

Note. There is no reason that, in general, the space of motions inher-
its a manifold structure by quotient, and it does not. That can be an
obstacle in ordinary differential geometry, but not from the general
diffeology point of view, where any case can be dealt with. The space
of characteristic of a presymplectic manifold can always be equipped
with the quotient diffeology, for which the usual diffeological tools
continue to work. We denote this space by

M = M/ker(ω).

186. Symplectic form. A closed 2-form ω on a manifold M is said to
be symplectic if it is non degenerate, that is, if its kernel is reduced
to {0}

ω symplectic ⇔ dω = 0 and ker(ω) = 0.

A symplectic manifold is then a presymplectic manifold with a trivial
characteristic foliation:

Fy = {y}.

Proposition. Consider a presymplectic manifold (M, ω), if the quo-
tient space M = M/ker(ω) is a manifold, it inherits a symplectic form
for which ω is the pullback.

That is why symplectic geometry is important in physics:
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(1) Conservative dynamical systems are identified as presym-
plectic dynamical systems, for which the characteristic leaves
are the solutions, or motions, of the system.

(2) The space of solutions of a conservative dynamical system,
if it is a manifold itself, inhertis a symplectic structure.

The word “conservative” will be explained later.

187. Example: The geodesics trajectories on the Sphere. Consider the
sphere S2. Let US2 be the unitary tangent bundle:

US2 = {(x, u) ∈ R3
× R3

| ∥x∥ = ∥u∥ = 1 and 〈x, u〉 = 0}.

Define on US2 the 1-form

λy(δy) = 〈u, δx〉, with
{

y = (x, u) ∈ US2

δy = (δx, δu) ∈ TyUS2.

let ω = dλ, precisely

ωy(δy, δ′y) = 〈δu, δ′x〉 – 〈δ
′u, δx〉.

One can check that ω is presymplectic and its charactetistic distribu-
tion is defined by

dy
ds

∈ kerω ⇔ dx
ds

= αu and
du
ds

= –αx,

for all α ∈ R. The solutions of this sytem are great circles described
by the law of motion

x(s) = esj(ℓ)x0 and u(s) = esj(ℓ)u0 with ℓ = x0 ∧ u0.

Note that ℓ = x ∧u is constant on the solutions, it is called the kinetic
momentum. It is a particular case of the general moment map theory
we talk later in the following.

Thus, the map

y = (x, u) 7→ ℓ = x ∧ u

from Y to S2 realizes the quotient space

Y/ker(ω) ≃ S2.
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And the symplectic structure of the space of motions is equal, up to
some constant, to the standard area form

Surfℓ(δℓ, δ
′ℓ) = 〈ℓ, δℓ ∧ δ

′ℓ〉.

This example is a special case of the general construction of the set of
geodesic trajectories, which are equipped with a symplectic structure
as soon as it is a manifold.

188. Example: The geodesics trajectories on the torus. The geodesic
trajectories of the 2-torus T2 = R2/Z2 are the projections of the affine
lines in R2. Consider the projection which associates with each geo-
desic trajectory Δ, its direction u ∈ S1.1 This is a surjection. We can
write it

π : Gtraj → S1 with π(Δ) = u.

Now, the fiber over the direction u ∈ S1 are all the projections on
the 2-torus T2 of the affine lines in R2, parallel to the unique line
of direction u, and passing through the origin. Depending on the
orientation, these lines cut the axis oy or the axis ox according the
action of Z ⊕ Z

(n, m) : y 7→ y + n + τm,

with
u = (α, β), with α2 + β2 = 1, and τ =

β

α
.

Thus,
π

–1(u) ≃ Tτ,

where Tτ is the torus of slope τ. If τ is rational then Tτ is diffeomor-
phic to the torus S1, otherwise it is not a manifold but a diffeological
space called the irrational torus (of slope τ) [DI83].

So, in the case of the torus the space of geodesic trajectories is not
a manifold but at least a diffeological space. We prove further in
the book that the canonical symplectic form on the space of geo-
desic curves (which is always a manifold) descends, in some sense, to
the quotient Gtraj, as a differential closed 2-form, according to the
definition in diffeology.

1We consider first the oriented geodesic trajectories.
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That example shows in particular the necessity to enlarge the cate-
gory of manifolds if we want to describe a bigger class of dynamical
systems than usually.

189. Darboux theorem. An important theorem due to the mathe-
matician Jean Gaston Darboux makes explicit the local nature of
presymplectic and symplectic manifolds. Let (M, ω) be a presymplec-
tic manifold of rank 2n; the rank is defined by

rank(ω) = dim(M) – dim(ker(ω)).

The rank of a 2-form is always even, let dim(M) = 2n + k. Then:

There exists an atlas A of charts such that, in any chart F ∈ A, the
form ω can be identified with the matrix, if k > 0:0n –1n 0

1n 0n 0
0 0 0k

 , or
(

0n –1n
1n 0n

)
in the symplectic case k = 0.

This is an important, even crucial, theorem with an enormous set of
applications. In a few words: a symplectic structure is flat, always.

* There is no local invariants.
* All symplectic invariants are global.

46. Symmetries and moment map

The symmetries of a dynamical system, and its consequences, are
certainly at the heart of symplectic mechanics.

190. Symmetries of a system. Let (M, ω) be a dynamical system, that
is, a presymplectic manifold. We call a symmetry of the system any
diffeomorphism f ∈ Diff(M) that preserves the presymplectic form ω.
So, we define the largest group of symmetries of the system

Diff(X, ω) = {f ∈ Diff(X) | f ∗(ω) = ω}

When the form is symplectic, such a diffeomorphism is called a sym-
plectomorphism.
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Proposition. Except for trivial cases, the group Diff(X, ω) is infinite
dimensional.

Theorem. On symplectic manifolds, Diff(X, ω) is transitive on M. Ac-
tually Diff(X, ω) is n-transitive if dim(X) = 2n [Boo69].

191. Galilean mechanics. The history has produced three kind of
Mechanics, each of them characterized by a group of transformations
[PIZ18]. The Aristotelean group, the Galilean group and the Poincaré
group. The Aristotelean mechanics has not been much developped.2
The Galilean group is a 10-dimensional Lie group, made of matrices

m =

A b c
0 1 e
0 0 1

 with A ∈ SO(3); b, c ∈ R3 and e ∈ R.

This group is associated with Galilean/Newtonian mechanics. It acts
on R3 × R by A b c

0 1 e
0 0 1

r
t
1

 =

Ar + bt + c
t + e

1


Now we can anwser the Question:

What is a (Galilean) isolated system?

Principle An isolated Galilean system is a presymplectic manifold
(M, ω) with a symmetric action of the Galilean group.

Later we will see that one adds the condition for this action to be
Hamiltonian.

192. Relativity and the Poincaré Group. The group of Einstein Rel-
ativity is the Poincaré Group, that is, the group of affine transforma-
tions that preserve the quadratic form

ds2 = c2dt2 – dx2 – dy2 – dz2,

with (x, y, z, t) ∈ R3 × R.

g : X 7→ LX + C,

2I have some project on this question.
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where X ∈ R3 × R, C ∈ R4 and L is a linear automorphism of ds2,
a Lorentz transformation. Let X = (r, t) ∈ R3 × R, every element of
the Lorentz group decompose uniquely in the product of 2 matrices

L =
(

13 β

β̄ 1

)(
B–1 0
0 a

)
, with B̄B + β β̄ = 13 and a = ±

1√
1 – β2

.

B is a 3 × 3 matrix, β is a vector in R3, the bar over B ou β denotes
the transposition operator, and β = ∥β∥.

The Poincaré group is also a 10-dimensional Lie group but with 4
connected components. It is customary to reduce the Poincaré group
to its identity component. Again,

Principle. An isolated Einstein relativistic system is a presymplectic
manifold (M, ω) with a symmetric action of the Poincaré group.

47. Coadjoint orbits

193. Coadjoint action and orbits. Given a Lie group G, there is a
universal model of symplectic manifold. Consider a left invariant
1-form α and let G∗ be the space of left-invariant 1-forms.

G∗ = {α ∈ Ω
1(G) | L(g)∗(α) = α},

where L(g) : g ′ 7→ gg ′ is the left-multiplication. By invariance every
element of G∗ is uniquely determined by its value at the origin, that
makes G∗ a vector space with dimension dim(G). This space is the
space of momenta of the group G, it is also interpreted as the dual
of the Lie algebra, but we do not need that.

Now, the group G acts by conjugation on itself and by coadjoint
action on G∗ :

Ad(g) : g ′ 7→ gg ′g–1

and for all g ∈ G :

Ad∗(g) : G∗ → G∗ with Ad(g)∗(α) = Ad(g–1)∗(α).

We define the coadjoint orbit of α ∈ G∗ by

Oα = {Ad∗(g)(α) | g ∈ G},
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and we equip Oα with the quotient diffeology

Oα ≃ G/St(α),

where St(α) is the stabilizer of α

St(α) = {g ∈ G | Ad∗(g)(α) = α}.

Theorem. The exterior derivative dα is a presymplectic form on G
that have the orbits of St(α) as characteristics. It follows that Oα has
a natural structure of symplectic manifold. That is, there exists a
symplectic form ω on Oα such that

class∗(ω) = dα, with class : G 7→ G/St(α).

194. Elementary systems or particles. The Kirillov-Kostant-Souriau
theorem on classification of transitive symplectic manifolds leads to
interpret coadjoint orbits of the groups of symmetries of the mechan-
ics as elementary particles. Thus, in Galilean Mechanics, elementary
particles will be coadjoint orbits of the Galilean group. In Einstein
Relativity they will be coadjoint orbits of the Poincaré group.

Note that in Galilean Mechanics, a large class of orbits have the type

O = R6
× S2,

with the symplectic form

ωm,s = m Can ⊕sSurf,

where Can is the canonical symplectic form on R6 and Surf the sur-
face element on S2. The S2 part represents the classical spin compo-
nent of the particle, s is the spin and m the mass of the elementary
particle.

48. The classic moment map

The impact of symmetries in symplectic mechanics are subsumed in
a special map called the moment map. It was introduced by Souriau
in the 60’s and published in [Sou70].
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195. The classic moment map. Let (M, ω) be a presymplectic mani-
fold. Let G be a Lie group with an action by symmetries on M, that
is, a smooth morphism

G ∋ g 7→ gM ∈ Diff(X, ω).

We say that G is a group of symmetries. Let G be the Lie algebra,
that is the space of smooth homomorphisms

G = Hom∞(R, G).

It is identified with the space of invariant vector fields

ZG(g) =
d
dt

h(t) · g
∣∣∣∣
t=0

, with Z = ZG(1G) =
dh(t)

dt

∣∣∣∣
t=0

Every element of the Lie algebra Z defines a vector field ZM on M,
called the infinitesimal action of G on M

ZM(x) =
d
dt

h(t)M(x)
∣∣∣∣
t=0

,

Applying the Cartan formula

Lξ(ε) = [dε](ξ) + d[ε(ξ)],

where Lξ denotes the Lie derivative by ξ, for any differential form ε
and any vector field ξ, to ω and ZM, we get

d[ω(ZM)] = 0,

where ω(ZM) is the contraction of ω by the vector field ZM.

Theorem-Definition. We say that the action of G on M is Hamiltonian
if ω(ZM), which is closed, is exact. Then, there exists a map

μ : M → G∗ such that ω(ZM) = d[x 7→ mu(x) · Z].

This map is called the moment map, it is defined up to a constant,
the manifold M is assumed to be connected.

196. The Noether-Souriau theorem. Let (M, ω) be a presymplectic
manifold. Let G a Lie group equipped with an Hamiltonian ac-
tion on M. Then the moment map μ : M → G∗ is constant on the
characteristics. If the quotient M = M/ker(ω) is a manifold, then
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the moment map descends on M. The moment map μ represents the
invariants associated with the symmetries represented by G.

197. The Souriau cocycle. For a presymplectic manifold (M, ω) with
a Hamiltonian action of G, with moment μ, we can check the variance
of μ according to the action of G on M and the coadjoint action of G
on G∗. That gives the following theorem:

Theorem. (Souriau) The lack of equivariance of the moment map μ is
a cocycle of the group G with values in G∗, twisted by the coadjoint
action:

θ(g) = μ(gM(x)) – Ad∗(g)(μ(x)).

The choice of another moment map change θ by a coboundary. Thus,
the class is well defined and depends only on the form ω and the action
of G.

class(θ) ∈ H1(G,G∗).

I call this cocycle the Souriau cocycle.

We recall that these cocycles are defined as map θ : G → G∗ such that

θ(gg ′) = Ad∗(g)(θ(g ′)) + θ(g).

A coboundary is a map

Δ(ε)(g) = Ad∗(g)(ε) – c,

for all ε ∈ G∗.

A major consequence of the moment map and its lack of equivariance
is the general theorem of barycentric decomposition.

198. The Barycentric decomposition theorem (Souriau). Let (M, ω)
be an isolated dynamical system, that is, a symplectic manifold with
an Hamiltonian action of the Galilean group. First of all let us recall
that, considering its cohomology:

Theorem. (Bargmann) The cohomology of the Galilean group is 1-
dimensional. Therefore the Souria cocycle θ is equivalent to mθ0,
where θ0 is a chosen unit.

The number m is interpreted as the total mass of the system in the
unit θ0.
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Theorem. For an isolated dynamical system (M, ω), if the total mass
of the system is not zero then the manifold M is a product

M = R6
× M0,

where R6 represents the motions of the center of gravity and M0 the
motions around the center of gravity. The group SO(3)×R continues
to act on M0.

199. The Kostant-Kirillov-Souriau theorem. The following theorem
is due under different formulations to Kostant, Kirillov and Souriau.
I give here the Souriau’s formulation.

Theorem. Let (M, ω) be a symplectic manifold, transitive under a
Hamiltonian action of a Lie group G. Then, the moment map μ : M →

G∗ is a covering onto a coadjoint orbit, may be affine.

Let θ be the Souriau cocycle of the system, it modifies the coadjoint
action by adjunction to the standard linear coadjoint ation

Adθ∗(g) : ε 7→ Ad∗(g)(ε) + θ(g).

This action is called an affine coadjoint action.

200. Exemple: The cylinder and SL(2, R). The group SL(2, R) acts
transitively on the cylinder R2 – {0}, preserving the symplectic form
Surf = dx ∧ dy. And the moment map is given by

μ(z)(Fσ) = 1
2Surf(z, σz) × dt,

where z = (x, y) ∈ R2 – {0}, and

Fσ =
[
s 7→ esσ]

is the one-parameter group defined by

σ ∈ sl(2, R),

the Lie algebra of SL(2, R), vector space of real 2×2 traceless matrices:

sl(2, R) =
{(

a b
c –a

)
| a, b, c ∈ R

}
We have clearly μ(z) = μ(–z).
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201. Dynamic variable and Poisson bracket. Let (M, ω) a symplectic
manifold. Every compactly supported real function [x 7→ u] defines a
1-parameter group of symplectomorphisms. The symplectic gradient
is uniquely defined by the equation:

ω
(

grad
ω
(u), δx

)
= –δu with δu =

∂u
∂x

(δx).

Since u is compactly supported, grad
ω
(u) is compactly supported too,

and then integrable. The 1-parameter group generated by grad
ω
(u)

is denoted by:
s 7→ es grad

ω
(u).

We have then,

Lξ(ω) = 0, with ξ = grad
ω
(u);

and (
es grad

ω
(u)
)∗

(ω) = ω.

Note 1. The function [x 7→ u] is the moment map associated with
the symmetry

(
es grad

ω
(u)
)

s∈R
.

Note 2. The Poisson bracket of two dynamical variables [x 7→ u] and
[x 7→ v] is defined and denoted by:

{u, v} = ω
(

grad
ω
(u), grad

ω
(v)
)
.

It satisfies the identity

grad
ω

(
{u, v}

)
=
[

grad
ω
(u), grad

ω
(v)
]
,

where the right is the bracket of vector fields. The Poisson bracket
is a morphism of algebras.

49. Geometric quantization

The program of geometric quantization try to answer the Dirac pro-
gram of quantization. It consist, for any symplectic manifold (M, ω),
to find a Hilbert space H and a morphism from the algebra of the real
functions, for the Poisson bracket, the albegra of unitary operators:

u 7→ û such that {̂u, v} = [û, v̂],
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and
1̂ = 1H,

where here 1 denotes the constant function [x 7→ 1].

The expected solution would have been

H = L2(M) and û(φ) = Lξ(φ)

with
ξ = grad

ω
(u), and for all φ ∈ H.

Unfortunately, in that case

1̂ = 0.

The first step in the direction of a solution to this problem is given
by the prequentization construction.

202. Prequantization. Consider a symplectic manifold (M, ω). Let Pω
be its group of periods :

Pω =
{∫
σ

ω | σ ∈ H2(M, Z)
}

Then, according to [PIZ95] :

Theorem. There exists always a principal fiber bundle Y over M,
with group Tω = R/Pω, and equipped with a connection form λ of
curvature ω. That is,

dλ = π∗(ω),

where π : Y → M.

Look in [TB, § 8.37] for the definition of a connection form on a
principal bundle with group a diffeological torus R/P, where P is a
strict subgroup. Note that there maybe more than 1 such integration
bundles, the classification is given in the paper cited above.

Definition. [Sou70] A symplectic manifold (M, ω) is quantizable if its
group of periods is Pω = h̄Z.

In this case the integration bundle Y is a manifold, a S1-principal
bundle. There exists a unique fundamental vector field τ on Y such
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that:
λ(τ) = 1 and dλ(τ) = 0.

Consider a dynamical variable x 7→ u, lift it by π, [y 7→ u]. Then,
define the quantized lifting ĝrad

ω
(u) of grad

ω
(u) on Y by

ĝrad
ω
(u) = u × τ+ ηu,

where ηu is defined by

dλ(ηu) = 0 and π∗(ηu) = grad
ω
(u).

Now, let H be the set of L2 complex valued function on Y satisfying
the equivariant condition

φ(z · y) = zφ(y),

where z ·y is the action of z ∈ U(1) on y ∈ Y. Let y 7→ u the pullback
on Y of x 7→ u. Define

û(φ) =
∂φ

∂y
(
ĝrad

ω
(u)
)
.

We check esealy now that

1̂ = 1 × τ+ 0 ⇒ 1̂(φ) =
∂φ

∂y
(
τ(y)

)
= φ.

The other part of the condition {̂u, v} = [û, v̂] is still satisfied.

That construction is called the prequantization.

203. The Dirac program, almost. With the prequantization we have
a good quandiate which would be perfect if it satisfied the Dirac
conditions. Indeed a wave function φ in prequatization is, up to a
phase, a function on the symplectic manifold, that is, 2n variables.
There are n variables too much. In the simplest case the symplectic
manifold is Rn×Rn, space of pairs (q, p), position q and momentum p.
The wave function is a function only on the poisition or momentum,
or a mix of both, but no more than n variables.

So, to resolve that problem, geometric quantization had proposed to
use a polarization, that is a projection

π : X → Q
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which is a priori a fibration, where the leaves are Lagrangian sub-
spaces, that is n-dimensional subspaces where ω vanishes.

ω ↾ π–1(q) = 0 for all q ∈ Q.

The wave function would be, more or less, a function on Q. But to
represent the 1-parameter group associated with a dynamical vari-
able x 7→ u the polarization needs to be invariant by that group.
Unfortuantely, that almost never happens.

For example in the simplest example of the 2-dimensional harmonic
oscillator, where the space is just R × R and the group willing to be
represented SO(2). The ordinary polarization (q, p) 7→ q, or (q, p) 7→
p, is not invariant by the matrices(

cos(θ) – sin(θ)
sin(θ) cos(θ)

)(
q
0

)
=
(

cos(θ)q
sin(θ)q

)
.

The method of geometric quantization is front of a deep problem
until now without clear solution.

The case of the harmonic oscillator has been solved by the pairing
method, which is too long to explain in that kind of short survey
notes, but has been satisfactory solved, see for example [Sou75].

In conclusion, the problem has been posed by Dirac, and been solved
for some part by the geometric quantization program, but remains
largely open until today.

50. Symplectic diffeology

In the last decades many examples of wannabe symplectic spaces
in infinite dimension came from physics. Also physicists were more
and more interested in symplectic constructions involving singulari-
ties. These two directions are not covered by traditional symplectic
geometry and need a new framework. What was usually done is that
to each new example or new situation one creates a specific frame-
work specially adapted to that situation. We call that the heuristic
approach.
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On the other hand, diffeology has all the qualities necessary to fill
this program to extend symplectic geometry into the direction of infi-
nite dimensional spaces and singular situations. This is what we shall
discuss now. But we need to think and redefine some fundamental
definitions to frame correctly the field of symplectic diffeology. Espe-
cially, what does mean to be symplectic, to start with.

204. The Darboux condition in diffeology. One most striking prop-
erty symplectic manifolds share is the Darboux theorem. That is,
every symplectic manifold (M, ω) is locally equivalent to R2n equipped
with the standard symplectic structure. That can be rephrased as
follow:

205. Theorem (Darboux). Let M be a manifold and ω be a sym-
plectic form on M. Then, the pseudogroup of local automorphisms
Diffloc(M, ω) is transitive.

Of course, that does not say nothing about the local structure itself.
We shall come back on that question, but that does not implies that
the form ω is non degenerate. It just implies that ω is presymplectic.

Now, since we deal with various properties of closed 2-forms we in-
troduce the general definition:

Definition 1. We call parasymplectic form on a diffeological space X,
any closed 2-form ω on X.

Now we introduce:

Definition 2. We call presymplectic form on a diffeological space X,
any parasymplectic form ω on X such that the pseudogroup of auto-
morphisms Diffloc(X, ω) is transitive.

If that condition is sufficient to determine the germ of ω at each point
as being the germ of (R2n ×Rk , Can), it is not necessarilly the case in
diffeology. That leads to a specific invariant in symplectic diffeology

Definition 3. The type of a presymplectic structure in diffeology will
be defined as some representant of equivalent germx(ω), where (X, ω)
run over presymplectic spaces and x ∈ X.
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For example, (R2n × Rk , Can) is the type of all finite dimension
presymplectic manifolds.

The question now is to understand how can we characterize the sym-
plectic forms from the presymplectic ones? For that we need the help
of the moment map in diffeology.

206. The moment map in diffeology. Next, we consider the group of
symmetries (or automorphisms) of ω, denoted by Diff(X, ω). Then,
to introduce the moment map for any group of symmetries G, we
need to clarify some vocabulary and notations:

Definition 1. A diffeological group is a group that is a diffeological
space such that the multiplication and the inversion are smooth.

Definition 2. A momentum (Plural momenta) of a diffeological group
G is any left-invariant 1-form on G. We denote by G∗ the space of
momenta :

G∗ = {ε ∈ Ω
1(G) | L(g)∗(ε) = ε, for all g ∈ G}.

The set G∗ is a real vector space. It is also a diffeological vector space
for the functional diffeology, but we shall not discuss that point here.

Next, let (X, ω) be a parasymplectic space and G be a diffeological
group.

Definition 3. A symmetric action of G on (X, ω) is a smooth morphism

g 7→ gX from G to Diff(X, ω),

where Diff(X, ω) is equipped with the functional diffeology. That is,

for all g ∈ G, g∗
X(ω) = ω.

Now, to grab the essential nature of the moment map, which is a
map from X to G∗, we need to understand it in the simplest possible
case. That is, when:

(1) ω is exact, ω = dα,
(2) and when α is also invariant by G, g∗

X(α) = α.
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In these conditions, the moment map is given by

μ : X → G∗ with μ(x) = x̂∗(α),

where
x̂ : G → X

is the orbit map
x̂(g) = gX(x).

We check immediately that,

Proposition 1. Since α is invariant by G, x̂∗(α) is left invariant by G,
and therefore

μ(x) ∈ G∗.

Actually, as we know that:

Not all closed 2-forms are exact, and even if they are exact, they do
not necessarily have an invariant primitive.

We shall see now, how we can generally come to a situation, so close
to the simple case above, that, modulo some minor subtleties, we can
build a good moment map in all cases.

Let us consider now the general case, with X connected. Let K be
the chain-homotopy operator, defined in [TB, § 6.83] :

K : Ωk(X) → Ω
k–1(Paths(X)) with K ◦ d + d ◦K = 1̂∗ – 0̂∗.

Then, the differential 1-form Kω, defined on Paths(X), satisfies

d[Kω] = (1̂∗ – 0̂∗)(ω),

and Kω is invariant by G [TB, § 6.84]. Considering

ω̄ = (1̂∗ – 0̂∗)(ω)

and
ᾱ = Kω,

we are in the simple case:
ω̄ = dᾱ

and ᾱ invariant by G. We can apply the construction above and then:
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Definition 4. We define the paths moment map by

Ψ : Paths(X) → G∗ with Ψ(γ) = γ̂∗(Kω),

where γ̂ : G → Paths(X) is the orbit map γ̂(g) = gX ◦ γ of the path
γ.

The paths moment map is additive with respect to the concatenation,

Ψ(γ ∨ γ
′) = Ψ(γ) + Ψ(γ′),

and it is equivariant by G, which acts by composition on Paths(X),
and by coadjoint action on G∗. That is, for all g, k ∈ G and ε ∈ G∗,

Ad(g) : k 7→ gkg–1

and
Ad∗(g) : ε 7→ Ad(g)∗(ε) = Ad(g–1)∗(ε).

Then,

Definition 5. We define the holonomy of the action of G on X as the
subgroup

Γ = {Ψ(ℓ) | ℓ ∈ Loops(X)} ⊂ G∗.

Proposition 2. The group Γ is made of (closed) Ad∗-invariant mo-
menta. But Ψ(ℓ) depends only on the homotopy class of ℓ, so then Γ
is a homomorphic image of π1(X), more precisely, its abelianized.

Definition 6. If Γ = {0}, the action of G on (X, ω) is said to be
Hamiltonian. The holonomy Γ is the obstruction for the action of
the group G to be Hamiltonian.

Now, we can push forward the paths moment map on G∗/Γ, as sug-
gested by the commutative diagram

Paths(X) G∗

X × X G∗/Γ

ends

Ψ

class

ψ

and we get then:
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Defintion 7. The two-points moment map is defined by:

ψ(x, x ′) = class(Ψ(γ)) ∈ G∗/Γ,

for any path γ such that ends(γ) = (x, x ′).

Proposition 3. The additivity of Ψ becomes the Chasles’s cocycle
condition on ψ :

ψ(x, x ′) + ψ(x ′, x ′′) = ψ(x, x ′′).

Since the group Γ is invariant by the coadjoint action, the coadjoint
action passes to the quotient group G∗/Γ, and ψ is a natural group-
valued moment map, equivariant for this quotient coadjoint action.

Definition 8. Because X is connected, there exists always a map

μ : X → G∗/Γ such that ψ(x, x ′) = μ(x ′) – μ(x).

The solutions of this equation are given by

μ(x) = ψ(x0, x) + c,

where x0 is a chosen point in X and c is a constant. These are the
one-point moment maps.

But these moment maps μ are a priori no longer equivariant. Their
variance introduces a 1-cocycle θ of G with values in G∗/Γ.

Definition 9. Let x0 ∈ X and c ∈ G∗/Γ. We define:

θ(g) = ψ(x0, g(x0)) + Δc(g),

for all g ∈ G, with

Δc(g) = Ad∗(g)(c) – c

Then, θ(g) is a 1-cocycle of G with values in G∗/Γ, twisted by Ad∗,
and Δc is a coboundary. Moreover,

μ(g(x)) = Ad∗(g)(μ(x)) + θ(g),

Changing the base point x0 and the constant c in μ changes the
cocycle θ into a equivalent cocycle.
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The cocycle θ capture the lack of invariance of the moment μ, we
called it the Souriau’s cocycle since it is a generalization of the man-
ifold case. The cohomology class

σ = class(θ) ∈ H1(G,G∗/Γ)

is uniquely defined by the action of G on X. We say that the action
of G on (X, ω) is exact when σ = 0, that is, when the cocycle θ is a
coboundary.

Next, defining
Adθ∗(g) : ν 7→ Ad∗(g)(ν) + θ(g),

then
Adθ∗(gg ′) = Adθ∗(g) ◦ Adθ∗(g ′).

The cocycle property of θ, that is,

θ(gg ′) = Ad∗(g)(θ(g ′)) + θ(g),

makes Adθ∗ an action of G on the group G∗/Γ. This action is called
the affine action.

Proposition 4. For the affine action, the moment map μ is equivariant:

μ(g(x)) = Adθ∗(g)(μ(x)).

This construction extends to the category {Diffeology}, the moment
map for manifolds introduced by Souriau in [Sou70]. When X is a
manifold and the action of G is Hamiltonian, they are the standard
moment maps he defined there.

The remarkable and very important point is this: none of the con-
structions brought up above involves differential equations, and there
is no need for considering a potential Lie algebra either.

The momenta appear as invariant 1-forms on the group, naturally,
without intermediaries, and the moment map as a map in the space
of momenta.

Note that the group of automorphisms Gω = Diff(X, ω) is a legitimate
diffeological group. The above constructions apply and give rise to
universal objects:
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- universal momenta G∗ω,

- universal path moment map Ψω,

- universal holonomy Γω,

- universal two-points moment map ψω,

- universal moment maps μω,

- universal Souriau’s cocycles θω, and cohomology class σω.

Note. The universal cohomology class σω is a parasymplectif invariant
depeding only on (M, ω).

A parasymplectic action of a diffeological group G is a smooth mor-
phism h : G → Gω, and the objects, associated with G, introduced by
the above moment maps constructions, are naturally subordinate to
their universal counterparts.

Many examples can be found in [TB, Sections 9.27 – 9.34]

207. Example: The moment of imprimitivity. Consider the cotangent
space T∗M of a manifold M, equipped with the standard symplectic
form

ω = dλ,

where λ is the Liouville form:

λ(x,a)

(
d(x, a)

ds

)
= a

(
dx
ds

)
.

Let G be the Abelian group

G = C∞(M, R).

Consider the action of G on T∗M defined by

f : (x, a) 7→ (x, a – dfx),

where x ∈ M, a ∈ T∗
xM, and dfx is the differential of f at the point

x. Then, the moment map is given by

μ : (x, a) 7→ d[f 7→ f (x)] = d[δx],

where δ denotes here the Dirac distribution δx(f ) = f (x).3

3This example is inspired from a heuristic in [Zie96].
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We see that in this case, the moment map identifies with a function
with values distributions but still has the definite formal statute of a
map into the space of momenta of the group of symmetries.

Moreover, this action is Hamiltonian and exact. This example gener-
alizes to cotangent of diffeological spaces, see [TB, Exercise 147].

✑ Proof. Since δx is a smooth function on C∞(M, R), its differential
is a 1-form.4 Let us check that this 1-form is invariant: Let h ∈

C∞(M, R), L(h)∗(μ(x)) = L(h)∗(d[δx]) = d[L(h)∗(δx)] = d[δx ◦ L(h)],
but δx ◦ L(h) : f 7→ δx(f + h) = f (x) + h(x). Then, d[δx ◦ L(h)] =
d[f 7→ f (x) + h(x)] = d[f 7→ f (x)]. Therefore, L(h)∗(μ(x)) = μ(x). ▶

208. Symplectic manifolds are coadjoint orbits. Because symplectic
forms of manifolds have no local invariants, as we know thanks to
Darboux’s theorem, they have a huge group of automorphisms. This
group is big enough to be transitive [Boo69], so that we will be able
to identify the symplectic manifold with its image by the universal
moment map. Then, by equivariance, it will give a coadjoint orbit
(affine or not) of its group of symmetries. In other words, coadjoint
orbits are the universal models of symplectic manifolds.

Precisely, let M be a connected Hausdorff manifold, and let ω be a
closed 2-form on M. Let Gω = Diff(M, ω) be its group of symmetries
and G∗ω its space of momenta. Let Γω be the holonomy, and μω be
a universal moment map with values in G∗ω/Γω. We have, then, the
following:

Theorem 1. (P.I-Z) The form ω is symplectic, that is non-degenerate,
if and only if:

1. the group Gω is (locally) transitive on M;
2. the universal moment map μω : M → G∗ω/Γω is injective.

This theorem is proved in [TB, § 9.23], but let us make some com-
ments on the key elements.

4This deserves to be emphasized: the exterior derivative of the Dirac distribu-
tion exists and is a differential 1-form on the group of real functions.



i
i

i
i

i
i

i
i

172 SYMPLECTIC MECHANICS AND DIFFEOLOGY

Remark Consider the closed 2-form ω = (x2 + y2) dx ∧ dy; one can
show that it has an injective universal moment map μω. But its group
Gω is not transitive, since ω is degenerate in (0, 0), and only at that
point. Thus, the transitivity of Gω is necessary.

The case homogeneous presymplectic manifolds is interesting for what
it suggests:

Theorem 2. (P.I-Z) Let (M, ω) be a presymplectic manifold, homoge-
neous under its group of automorphisms. Then, the characteristcis
of ω are the preimages of the universal moment map μω.

✑ Proof. Let us give some hints about the sequel of the proof.
Assume ω is symplectic. Let m0, m1 ∈ M and p be a path connecting
these points. For all f ∈ C∞(M, R) with compact support, let

F: t 7→ et grad
ω
(f )

be the exponential of the symplectic gradient of the f . Then, F is a
1-parameter group of automorphisms, and its value on Ψω(p) is:

Ψω(p)(F) = [f (m1) – f (m0)] × dt.

Now, if μω(m0) = μω(m1), then there exists a loop ℓ in M such that
Ψω(p) = Ψω(ℓ). Applied to the 1-plot F, we deduce f (m1) = f (m0) for
all f . Therefore m0 = m1, and μω is injective.

Conversely, let us assume that Gω is transitive, and μω is injective.
By transitivity, the rank of ω is constant. Now, let us assume that ω
is degenerate, that is, dim(ker(ω)) > 0. Since the distribution ker(ω)
is integrable, given two different points m0 and m1 in a characteristic,
there exists a path p connecting these two points and drawn entirely
in the characteristic, that is, such that dp(t)/dt ∈ ker(ω) for all t.
But that implies Ψω(p) = 0 [TB, § 9.20]. Hence, μω(m0) = μω(m1).
But we assumed μω is injective. Thus, ω is nondegenerate, that is,
symplectic. ▶

209. Symplectic diffeological spaces. Thanks to the two previous the-
orems I proposed a definition of symplectic diffeological space:
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Definition. A parasymplectic form ω on a diffeological space X will
be sait symplectic if:

(1) The local automorphisms Diffloc(X, ω) are transitive.
(2) The universal moment map μωis a covering onto its image.

The first condition means that ω is presymplectic, we’ll call it the
Darboux condition. The second condition mimic the situation of
manifolds, but we can hardly ask the universal moment map to be
injective, we do not know enough. The weaker condition of being a
covering would be probably sufficient to insure the symplectic nature
of the presymplectic form. It is possible that we can weaken the sec-
ond condition by considering an equivalent of the universal moment
map for the pseudogroup of local automorphisms. But that remain
to be investigated.

Note. There is a conflict between the definition I gave above and
what is usually regarded as “symplectic orbifold”. For example, the
symplectic form ω = dx ∧ dy descends on the quotient space Qm =
C/Um, where Um is the group of m-th roots of unity. And this space
is regarded as “symplectic” in the literature. However, it does not
fit the definition above because the pseudogroup of automorphisms
fixes the origin 0 ∈ Qm, even though the universal moment map is
injective.

To relsolve this dilemma about the use of the word “symplectic”
outside the realm of differentiable manifolds, I suggest to call this
kind of parasymplectic spaces, like the cone orbifold, symplectically
generated, what they are. This opens a lot of questions by comparing
the two kinds of parasymplectic spaces.

Example: The infinite projective space:

CP∞ = S∞/S1,

where S∞ ⊂ ℓ2 is the set of infinite complex sequences of norm 1, is a
symplectic diffeological space. It is actually a coadjoint orbit of the
diffeological group U(H).
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Diffeology and Non-Commutative Geometry

In this lecture we show how we can build a bridge between some
diffeological spaces and noncommutative geometry, such that diffeo-
morphic spaces give Morita equivalent C∗-algebras. These spaces are
orbifolds, generalized by quasifolds, regarded as diffeological spaces.

The basic ideas, at the source of the relationship between diffeology
noncommutative geometry, have been introduced in a first paper
[IZL18] of the following two papers, and its results extended in the
second one [IZP21]:

• “Noncommutative geometry and diffeology: The case of orbifolds”,

• “Quasifolds, diffeology and noncommutative geometry”.

We have seen that the concept of orbifold has been introduced by
Ishiro Stake [Sat56, Sat57] as V-manifolds, and renamed orbifolds by
Thurston [Thu78]. On the other hand, its generalization to quasifolds
was proposed by Elisa Prato [EP01].

In the paper “Orbifolds as diffeologies” [IKZ10] we include the orb-
ifolds in the category {Diffeology}. In the second paper we give a
diffeological definition of “quasifolds” that fits correctly the original
definition. Thus, quasifolds are also included in the category {Diffeo-
logy}. By this inclusive diffeological approach it is obvious that the
Elisa Prato quasifolds are a generalization of orbifolds, which is not
necessarily obvious with the specific definitions. We have then this

174
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particular series of full subcategories:

{Manifolds} ⪯ {Orbifolds} ⪯ {Quasifolds} ⪯ {Diffeology}

Then, we associate a C∗-algebra to the orbifold, or quasifold, such
that diffeomorphic spaces give Morita equivalent C∗-algebra, which
is the minimum required.

I insist on the fact that the process of associating a C∗-algebra to
these categories of spaces is not tautological as it can be with a direct
algebraic approach which contains already in the definition of the
category (based on groupoids or stacks), the particular property that
equivalent structures (groupoids or stacks) give Morita equivalent C∗-
algebras. In our case, we start here a floor below, if I may say so,
with the geometry of the space, that is, its diffeology.

The outline of the construction is as follows:

(1) Definition of orbifolds and quasifolds in diffeology.
(2) Introduction of charts and atlases that define the structure.
(3) Associate with every atlas a strict generating family and its

nebula.
(4) Associate a groupoid over the space with the nebula of each

atlas, that captures the local structure point by point.
(5) Prove that two different atlases give to equivalent groupoids,

in the algebraic sense, which is the minimum required: the
groupoid [its class] is a diffeological invariant of the space.

(6) Prove that these groupoids are etale and Hausdorff.
(7) Associate a ∗-algebra, and a C∗-algebra by completion, to

each of these groupoids, according to Jean Renault’s con-
struction.

(8) Use a central theorem from Muhly-Renault-Willian, proving
that two different atlases give Morita equivalent C∗-algebras,
which is the minimum expected.

(9) And finally illustration by two examples: the C∗-algebra
associated with the irrational torus Tα, and the C∗-algebra
associated with the quotient R/Q.
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In the two cases, the idea is to associate a structure groupoid to
these objects and then, by a now standard procedure, associate a
C∗-algebra.

{Diffeology} ⊃

[
{Orbifolds}
{Quasifolds}

]
C∗-Algebras

Groupoids

I would like to finish this preamble by recalling that the development
of diffeology, starting in 1983 with the example of the irrational torus
[DI83], was deeply motivated by the emergence of noncommutative
geometry dealing with quasiperiodic potentials in quantum mechan-
ics. It was time to close the loop, at least for now.

51. Orbifolds and quasifolds again

210. The orbifolds. Let us recall that an orbifold is a diffeological
space that is locally diffeomorphic to some quotient Rn/Γ, at each
point, where Γ is a finite subgroup of GL(n, R). The group Γ may
change from point to point. See lecture “Modeling: Manifolds, orb-
ifolds and quasifolds”.

Example 1. The quotient space Qm = C/Um, with the group of roots
of unity Um = {exp(2iπk/m) | k = 1 . . .m}, is a cone-orbifold.

Example 2. The product [R/{±1}]n is a corner-orbifold.

Example 3. We have seen the waterdrop represented in Figure 27.
We recall that it is the sphere S2, equipped with a specific diffeology
described previously.

211. The quasifolds. I recall that a quasifold is a diffeological space
that is locally diffeomorphic to Rn/Γ, where Γ is a countable subgroup
of the affine group Aff(Rn), x 7→ Ax + B, with A ∈ GL(n, R) and
B ∈ Rn. Diffeological quasifolds are a generalization of orbifolds.
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Example 1. The first example of quasifold is the irrational torus, the
first special diffeological space studied for itself in 1983 [DI83], which
is at the source of the development of diffeology:

Tα = T2/Sα ≃ R/(Z + αZ),

where α ∈ R – Q, Sα ⊂ T2 is the projecttion of the line y = αx, and
T2 = [R/Z]2.

Example 2. The second example G (for Geodesics) is inspired by the
first one. The lines of slope α are the geodesic trajectories on the
torus T2 of slope α. The set of all geodesic trajectories of the torus
T2 are bundled over S1, they are the projections on T2 of all the
affine lines in R2 directed by a unit vector u ∈ S1. Over the vector u
we have Gu, the torus Tu which is rational or irrational depending if
the line Ru cut or not the lattice Z2 elsewhere than in 0.

The set G of the geodesic trajectories of the torus T2 is the quotient
of the space of geodesic trajectories of the plane R2 by the action of
Z2. The space of geodesic trajectories of the plane is equivalent to
the cylinder

TS1 = {(u, r) ∈ S1
× R2

| 〈u, r〉 = 0}.

The mapping

(u, r) 7→
(
u, ρ = 〈r, Ju〉

)
with J =

(
0 –1
1 0

)
identifies

TS1 ≃ S1
× R.

The action of Z2 on TS1 is given by(
m
n

)
: (u, r) 7→

(
u, r + [1 – uū]

(
m
n

))
.

Translated on (u, ρ) that gives:(
m
n

)
: (u, ρ) 7→

(
u, ρ+

〈(
m
n

)
, Ju
〉)

.
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That is,(
m
n

)
: (u, ρ) 7→ (u, ρ+ nux – muy) with u =

(
ux
uy

)
.

In other words, G is diffeomorphic to the quotient of R × R by the
relation

(t, ρ) ∼
(
t + ℓ, ρ+ n cos(2πt) – m sin(2πt)

)
with ℓ, n, m ∈ Z.

212. Charts, atlases and strict generating families. The definition of
charts, atlases and strict generating families for quasifolds are strictly
similar for that of orbifolds, but since we did not write them down for-
mally in the chapter “Modeling: Manifolds, orbifolds and quasifolds”,
we shall take the time to do it here.

Consider a quasifold X, and x ∈ X. Let Γ ⊂ Aff(Rn) be a countable
sugroup of the affine group of Rn and φ be a local diffeomorphism
from Rn/Γ to X, defined on some open subset U ⊂ Rn/Γ, such that
x ∈ φ(U). The subset U is open for the D-topology, that is in this
case, the quotient topology by the projection map class : Rn → Rn/Γ.

Definition 1. Any such diffeomorphism is called a chart. A set of
charts A, covering X, is called an atlas.

Let f : U → X be a chart, then U is an open subset of some Rn/Γ for
the D-topology. Thus Ũ = class–1(U) is a Γ-invariant open subset in
Rn. Hence, F = f ◦ class is a plot of X. We shall call it the strict
lifting of f .

Definition 2. Let F be the set of strict liftings F = f ◦ class, where
f : U → X runs over the charts in A. Then, F is a generating family
of X. We shall say that F is the strict generating family associated
with A.

52. Structure groupoids

213. Lifting the identity. Let Q = Rn/Γ where Γ is a countable sub-
group of Aff(Rn). Consider a local smooth map F from Rn to itself,
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such that

class ◦F = class .

In other words, F is a local lifting of the identity on Q. Then,

Theorem. F is locally equal to some group action

F(r) =loc γ · r = Ar + b,

where γ = (A, b) ∈ Γ, for some A ∈ GL(Rn) and b ∈ Rn.

✑ Proof. Let us assume first that F is defined on an open ball B.
Then, for all r in the ball, there exists a γ ∈ Γ such that F(r) = γ · r.
Next, for every γ ∈ Γ, let

Fγ : B → Rn
× Rn with Fγ(r) = (F(r), γ · r).

Let Δ ⊂ Rn × Rn be the diagonal and let us consider

Δγ = F–1
γ (Δ) = {r ∈ B | F(r) = γ · r}.

Lemma. There exist at least one γ ∈ Γ such that the interior Δ̊γ is
non-empty, and the union Δ̊Γ = ∪γ∈ΓΔ̊γ is an open dense subset of B.

◀ The proof of this lemma is identical to that for orbifolds. ▶

The following is a bit different and deserves to be developed: There
exists a subset of Γ, indexed by a family I, for which Oi = Δ̊γi ⊂ B

is open and non-empty, ∪i∈IOi is an open dense subset of B, and
F ↾ Oi : r 7→ Air + bi, where (Ai, bi) ∈ Aff(Rn). Since F is smooth,
the first derivative D(F) restricted to Oi is equal to Ai, and then
the second derivative D2(F) ↾ Oi = 0, for all i ∈ I. Then, since
D2(F) = 0 on an open dense subset of B, D2(F) = 0 on B, that
is D(F)(r) = A for all r ∈ B, with A ∈ GL(n, R). Now, the map
r 7→ F(r) – Ar, defined on B, is smooth. But, restricted on Oi it is
equal to bi. Its derivative vanishes on the open dense subset ∪i∈IOi
and thus vanishes on B. Therefore, F(r) – Ar = b on the whole B,
for b ∈ Rn and F(r) = Ar + b on B, with γ = (A, b) ∈ Γ.▶

214. Building the groupoid of a quasifold. The structure groupoid of
a quasifold X is built on the same principles as that of orbifolds. Let
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A be an atlas and let F be the strict generating family over A. Let
N be the nebula of F :

N =
∐
F∈F

dom(F) = {(F, r) | F ∈ F and r ∈ dom(F)}.

The evaluation map is the natural subduction

ev: N → X with ev(F, r) = F(r).

The structure groupoid of the quasifold X, associated with the atlas
A, is defined as the subgroupoid G of germs of local diffeomorphisms
of N that project to the identity of X along ev. That is,{

Obj(G) = N,

Mor(G) = { germ(Φ)ν | Φ ∈ Diffloc(N) and ev ◦ Φ = ev ↾ dom(Φ)}.

The set Mor(G) is equipped with the functional diffeology inherited
by the full groupoid of germs of local diffeomorphisms.1 Note that,
given Φ ∈ Diffloc(N) and ν ∈ dom(Φ), there exist always two plots
F and F′ in F such that ν = (F, r), with r ∈ dom(F), and a local
diffeomorphism φ of Rn, defined on an open ball centered in r, such
that dom(φ) ⊂ dom(F), φ = Φ ↾ {F}×dom(F) and F′ ◦φ = F ↾ dom(φ).
That is summarized by the diagram:

dom(F) ⊃ dom(φ) dom(F′)

X
F

φ

F′

Note. According to the theorem in § 213, the local diffeomorphisms,
defined on the domain of a generating plot, and lifting the identity of
the quasifold, are just the elements of the structure group associated
with the plot.

We can legitimately wonder what is the point of involving general
germs of local diffeomorphisms, if we merely end up with the structure
group we could have began with? The reason is that: The structure
groups connect the points of the nebula that project on a same point

1That is defined precisely in the paper on orbifolds and C∗-algebras [IZL18, § 2
& 3]
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of the quasifold, only when they are inside the same domain. They
cannot connect the points of the nebula that project on the same
point of the quasifold but belonging to different domains, with maybe
different structure groups. This is the reason why we cannot avoid
the use of germs of local diffeomorphisms in the nebula, to begin
with. That situation is illustrated in Figure 33.

215. Lifting local diffeomorphisms. Let Q = Rn/Γ and Q′ = Rn′
/Γ′,

where Γ ⊂ Aff(Rn) and Γ′ ⊂ Aff(Rn′
) are countable subgroups. Then,

Theorem. Every local smooth lifting f̃ of any local diffeomorphism f
of Q is necessarily a local diffeomorphism. In particular n = n′. More-
over, let x ∈ dom(f ), x ′ = f (x), r, r ′ ∈ Rn be such that class(r) = x
and class(r ′) = x ′. Then, the local lifting f̃ can be chosen such that
f̃ (r) = r ′. Note that n is also the diffeological dimension of Rn/Γ.

✑ Proof. This theorem is a consequence of the previous theorem
on the lifting of the identity ▶

216. Equivalence of structure groupoids. The construction and prop-
erties of the structure groupoid associated with a quasifold follow
word for word the equivalent construction and properties as in the
case of an orbifold.

Proposition. The fibers of the subduction ev: Obj(G) → X are ex-
actly the transitivity-components of G. In other words, the space
of transitivity components of the groupoid G associated with any at-
las of the quasifold X, equipped with the quotient diffeology, is the
quasifold itself.

Theorem. Different atlases of X give equivalent structure groupoids.
The structure groupoids associated with diffeomorphic quasifolds are
equivalent.

In other words, the equivalence class of the structure groupoids of a
quasifold is a diffeological invariant.
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53. The C∗-algebra

We use the construction of the C∗-algebra associated with an ar-
bitrary locally compact groupoid G, equipped with a Haar system,
introduced and described by Jean Renault in [JR80, Part II, § 1].
Note that, for this construction, only the topology of the groupoid is
involved, and diffeological groupoids, when regarded as topological
groupoids, are equipped with the D-topology.2

We will denote by C(G) the completion of the compactly supported
continuous complex functions on Mor(G), for the uniform norm. And
we still consider, as is done for orbifolds, the particular case where
the Haar system is given by the counting measure. Let f and g be
two compactly supported complex functions, the convolution and the
involution are defined by

f ∗ g(γ) =
∑
β∈Gx

f (β · γ)g(β–1) and f ∗(γ) = f (γ–1)∗.

The sums involved are supposed to converge. Here, γ ∈ Mor(G),
x = src(γ) and Gx = trg–1(x) is the subset of arrows with target x.
The star in z∗ denotes the conjugate of the complex number z. By
definition, the vector space C(G), equipped with these two operations,
is the C∗-algebra associated with the groupoid G.

217. The structure groupoid is étale and Hausdorff. Let A be an at-
las of a quasifold X. The structure groupoid G associated with the
generating family of the atlas A is étale, namely: the projection
src: Mor(G) → Obj(G) is an étale smooth map, that is, a local dif-
feomorphism at each point [TB, § 2.5].

Proposition 1. For all g ∈ Mor(G), there exists a D-open superset O

of g such that src restricted to O is a local diffeomorphism.

Proposition 2. The groupoid G is locally compact and Hausdorff.

2Since smooth maps are D-continuous and diffeomorphism are D-
homeomorphisms.
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Note. Since the atlas A is assumed to be locally finite, the preim-
ages of the objects of G by the source map, or the target map, are
countable.

218. MRW-equivalence of structure groupoids. We consider a quasi-
fold X and two atlases A and A′, with associated strict generating
families F and F′. We shall show in this section that the associ-
ated groupoids are equivalent in the sense of Muhly-Renault-Williams
[MRW87, 2.1]; this will later give Morita-equivalent C∗-algebras.

This section follows [IZL18, § 8]; we just check that the fact that the
structure groups are countable and not just finite, does not change
the result.

Let us recall what is an MRW-equivalence of groupoids. Let G and
G′ be two locally compact groupoids. We say that a locally compact
space Z is a (G, G′)-equivalence if

(i) Z is a left principal G-space.
(ii) Z is a right principal G′-space.
(iii) The G and G′ actions commute.
(iv) The action of G on Z induces a bijection from Z/G to Obj(G′).
(v) The action of G′ on Z induces a bijection from Z/G′ to Obj(G).

Let src : Z → Obj(G) and trg : Z → Obj(G′) be the maps defining the
composable pairs associated with the actions of G and G′. That is,
a pair (g, z) is composable if trg(g) = src(z), and the composite is
denoted by g · z. Moreover, a pair (g ′, z) is composable if src(g ′) =
trg(z), and the composite is denoted by z · g ′.

Let us also recall that an action is principal in the sense of Muhly-
Renault-Williams, if it is free: g · z = z only if g is a unit, and the
action map (g, z) 7→ (g · z, z), defined on the composable pairs, is
proper [MRW87, § 2].

Now, using the hypothesis and notations of the previous pragraphs,
let us define Z to be the space of germs of local diffeomorphisms,
from the nebula of the family F to the nebula of the family F′, that
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project on the identity by the evaluation map. That is,

Z =

{
germ(f )r

∣∣∣ f ∈ Diffloc(dom(F), dom(F′), r ∈ dom(F),
F ∈ F, F′ ∈ F′ and F′ ◦ f = F ↾ dom(f ).

}
.

Let
src(germ(f )r) = r and trg(germ(f )r) = f (r).

For the sake of simplicity, we make an abuse of notation: in re-
ality one should write, more precisely, src(germ(f )r) = (F, r) and
trg(germ(f )r) = (F′, f (r)).

Then, the action of g ∈ Mor(G) on germ(f )r is defined by com-
position if trg(g) = r, that is, g · germ(f )r = germ(f ◦ φ)s, where
g = germ(φ)s, φ ∈ Diffloc(N) and φ(s) = r. Symmetrically, the ac-
tion of g ′ ∈ Mor(G′) on germ(f )r is defined if src(g ′) = f (r) by
z · g ′ = germ(φ′ ◦ f )r , where g ′ = germ(φ′)f (r). Then, we have:

Theorem. The actions of G and G′ on Z are principal, and Z is a
(G, G′)-equivalence in the sense of Muhly-Renault-Williams.

✑ Proof. First of all, let us point out that Z is a subspace of
the morphisms of the groupoid G′′ built previously by adjunction
of G and G′, and is equipped with the subset diffeology. All these
groupoids are locally compact and Hausdorff as we seen previously.

Let us check that the action of G on Z is free. In our case, z =
germ(f )r and g = germ(φ)s, where f and φ are local diffeomorphisms.
If g · z = z, then obviously g = germ(1)r .

Next, let us denote by ρ the action of G on Z, defined on

G ⋆ Z = {(g, z) ∈ Mor(G) × Z | trg(g) = src(z)} by ρ(g, z) = g · z.

This action is smooth because the composition of local diffeomor-
phisms is smooth, and passes onto the quotient groupoid in a smooth
operation, see [IZL18, § 3]. Moreover, this action is invertible, its in-
verse being defined on

Z ⋆ Z = {(z ′, z) ∈ Z × Z | trg(z ′) = trg(z)}

by
ρ

–1(z ′, z) = (g = z ′ · z–1, z).
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In detail, ρ–1(germ(h)s, germ(f )r) = (germ(f –1 ◦ h)s, germ(f )r), with
f (r) = h(s). Now, the inverse is also smooth, when Z ⋆ Z ⊂ Z × Z is
equipped with the subset diffeology. In other words, ρ is an induction,
that is, a diffeomorphism from G⋆Z to Z⋆Z. However, since G⋆Z and
Z⋆Z are defined by closed relations, and G and Z are Hausdorff, G⋆Z
and Z⋆Z are closed into their ambient spaces. Thus, the intersection
of a compact subset in Z × Z with Z ⋆ Z is compact, and its preimage
by the induction ρ is compact. Therefore, ρ is proper. We notice
that the fact that the structure groups are no longer finite but just
countable does not play a role here.

It remains to check that the action of G on Z induces a bijection of
Z/G onto Obj(G′). Let us consider the map class : Z → Obj(G′) de-
fined by class(germ(f )r) = f (r). Then, let class(z) = class(z ′), with
z = germ(f )r and z ′ = germ(f ′)r ′ , that is, f (r) = f ′(r ′). However,
since f and f ′ are local diffeomorphisms, φ = f ′–1 ◦ f is a local dif-
feomorphism with φ(r ′) = r. Let g = germ(φ)r ′ , then g ∈ Mor(G)
and z ′ = g · z. Hence, the map class projects onto an injection from
Z/G to Obj(G′). Now, let (F′, r ′) ∈ Obj(G′), and let x = F′(r ′) ∈ X.
Since F is a generating family, there exists (F, r) ∈ Obj(G) such
that F(r) = x. Let ψ and ψ′ be the charts of X defined by factor-
ization: F = ψ ◦ class and F′ = ψ′ ◦ class′, where class : Rn → Rn/Γ
and class′ : Rn → Rn/Γ′. Let ξ = class(r) and ξ′ = class′(r ′). Since
ψ(ξ) = ψ′(ξ′) = x, Ψ =loc ψ

′–1 ◦ ψ is a local diffeomorphism from Rn/Γ
to Rn/Γ′ mapping ξ to ξ′. Hence, according to the lifting of local
diffeomorphisms, there exists a local diffeomorphism f from dom(F)
to dom(F′), such that class′ ◦f = Ψ ◦ class and f (r) = r ′. Thus,
z = germ(f )r belongs to Z and class(z) = r ′ (precisely the element
(F′, r ′) of the nebula of F′). Therefore, the injective map class from
Z/G to Obj(G′) is also surjective, and identifies the two spaces. Ob-
viously, what has been said for the side G can be translated to the
side G′; the construction is completely symmetric. In conclusion,
Z satisfies the conditions of a (G, G′)-equivalence, in the sense of
Muhly-Renault-Williams. ▶
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219. The C∗-algebra of a quasifold. Let X be a quasifold, let A be an
atlas and let G be the structure groupoid associated with A. Since
the atlas A is locally finite, the convolution defined above is well
defined. Indeed, in this case:

Proposition. For every compactly supported complex function f on
G, for all ν = (F, r) ∈ N = Obj(G), the set of arrows g ∈ Gν such
that f (g) ̸= 0 is finite. That is, # Supp(f ↾ Gν) < ∞. The convolution
is then well defined on C(G).

Then, for each atlas A of the quasifold X, we get the C∗-algebra
A = (C(G), ∗). The dependence of the C∗-algebra on the atlas is
given by this theorem, which is a generalization of [IZL18, § 9] :

Theorem. Different atlases give Morita-equivalent C∗-algebras. Dif-
feomorphic quasifolds have Morita-equivalent C∗-algebras.

In other words, we have defined a functor from the subcategory
of isomorphic {Quasifolds} in diffeology, to the category of Morita-
equivalent {C∗-algebras}.

220. Example: The C∗-algebra of the irrational torus. The first and
famous example is the so-called Denjoy-Poincaré torus, or irrational
torus, or noncommutative torus, or, more recently, quasitorus. It is,
according to its first definition, the quotient set of the 2-torus T2 by
the irrational flow of slope α ∈ R – Q. It is denoted by Tα = T2/Sα,
where Sα is the image of the line y = αx by the projection R2 → T2 =
R2/Z2. Diffeologically speaking, Tα ≃ R/(Z + αZ). The composite

R R/(Z + αZ) Tα,
class f with F = f ◦ class,

summarizes the situation where A = {f : R/(Z + αZ) → Tα} is the
canonical atlas of Tα, containing the only chart f , and F = {F = f ◦
class} is the associated canonical strict generating family. According
to lifting the identity, the groupoid Gα associated with the atlas A is
simply

Obj(Gα) = R and Mor(Gα) = {(x, tn+αm) | x ∈ R and n, m ∈ Z}.
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However, we can also identify Tα with (R/Z)/[(Z + αZ)/Z], that is

Tα ≃ S1/Z, with m(z) = e2iπαmz,

for all m ∈ Z and z ∈ S1. Moreover, the groupoid S of this action of
Z on S1 ⊂ C is simply

Obj(Sα) = S1 and Mor(Sα) = {(z, e2iπαm) | z ∈ S1 and m ∈ Z}.

The groupoids Gα and Sα are equivalent, thanks to the functor Φ
from the first to the second:

ΦObj(x) = e2iπx and ΦMor(x, tn+αm) = (e2iπx, e2iπαm).

Moreover, they are also MRW-equivalent, by considering the set of
germs of local diffeomorphisms x 7→ e2iπx, everywhere from R to S1.
Therefore, their associated C∗-algebras are Morita equivalent. The
algebra associated with Sα has been computed numerous times and
it is called irrational rotation algebra [MR81]. It is the universal C∗-
algebra generated by two unitary elements U and V, satisfying the
relation

VU = e2iπαUV.

Remark 1. Thanks to the theorem on equivalence of diffeomorphic
qusifolds, and because two irrational tori Tα and Tβ are diffeomorphic
if and only if α and β are conjugate modulo GL(2, Z) [DI83], we get
the corollary that, if α and β are conjugate modulo GL(2, Z), then the
algebra Aα and Aβ are Morita equivalent, which is the direct sense of
Rieffel’s theorem [MR81, Thm 4].

Remark 2. The converse of Rieffel’s theorem is a different matter
altogether. We should recover a diffeological groupoid Gα from the
algebra Aα. Then, the space of transitive components would be the
required quasifold, as stated by the proposition on equivalence of
structure groupoids. In the case of the irrational torus, it is not very
difficult. The spectrum of the unitary operator V is the circle S1 and
the adjoint action by the operator U gives UVU–1 = e2iπαV, which
translates on the spectrum by the irrational rotation of angle α. In
that way, we recover the groupoid of the irrational rotations on the
circle, which gives Tα as quasifold.
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Remark 3. Of course, the situation of the irrational torus is simple
and we do not exactly know how it can be reproduced for an arbitrary
quasifold. However, this certainly is the way to follow to recover the
quasifold from its algebra:

Task. Find the groupoid made with the Morita invariant of the al-
gebra, which will give the space of transitivity components as the
requested quasifold.

221. Example: The C∗-algebra of R/Q. The diffeological space R/Q
is a legitimate quasifold. This is a simple example with a groupoid
G given by

Obj(G) = R and Mor(G) = {(x, tr) | x ∈ R and r ∈ Q}.

The algebra that is associated with G is the set A of complex compact
supported functions on Mor(G). Let us identify C0(Mor(G), C) with
Maps(Q,C0(R, C)) by

f = (fr)r∈Q with fr(x) = f (x, tr), and let Supp(f ) = {r | fr ̸= 0}.

Then,
A =

{
f ∈ Maps(Q,C0(R, C)) | # Supp(f ) < ∞

}
.

The convolution product and the algebra conjugation are, thus, given
by:

(f ∗ g)r(x) =
∑

s
fr–s(x + s)gs(x), and f ∗r (x) = f–r(x + r)∗.

Now, the quotient R/Q is also diffeomorphic to the Q-circle

SQ = S1/UQ, where UQ = {e2iπr}r∈Q

is the subgroup of rational roots of unity. As a diffeological subgroup
of S1, UQ is discrete. The groupoid S of the action of UQ on S1 is
given by:

Obj(S) = S1 and Mor(S) =
{

(z, τ)
∣∣∣ z ∈ S1 and τ ∈ UQ

}
.

The exponential x 7→ z = e2iπx realizes a MRW-equivalence between
the two groupoids G and S. Their associated algebras are Morita-
equivalent. The algebra S associated with S is made of families of
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continuous complex functions indexed by rational roots of unity, in
the same way as before:

S =
{

(fτ)τ∈UQ

∣∣ fτ ∈ C0(S1, C) and # Supp(f ) < ∞
}

.

The convolution product and the algebra conjugation are, then, given
by:

(f ∗ g)τ(z) =
∑
σ

fσ̄τ(σz)gσ(z) and f ∗τ (z) = fτ̄(τz)∗,

where τ̄ = 1/τ = τ∗, the complex conjugate.

Now, consider f and let Up be the subgroup in UQ generated by
Supp(f ); this is the group of some root of unity ε of some order p.
Let Mp(C) be the space of p × p matrices with complex coefficients.
Define f 7→ M, from S to Mp(C) ⊗ C0(S1, C), by

M(z)στ = fσ̄τ(σz), for all z ∈ S1 and σ, τ ∈ Up.

That gives a representation of S in the tensor product of the space of
endomorphisms of the infinite-dimensional C-vector space Maps(UQ, C)
by C0(S1, C), with finite support.

Commuting

Not Commuting
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Functional Diffeology on Fourier Coefficients

In this exercise we transfer the functional diffeology defined on smooth
complex periodic functions to the space of Fourier coefficients of
smooth complex periodic functions.

We denote by C∞
per(R, C) the space of 1-periodic complex valued real

functions,

C∞
per(R, C) = {f ∈ C∞(R, C) | f (x + 1) = f (x)}.

This space is then equipped with the functional diffeology. Let f ∈

C∞
per(R, C), and (fn)n∈Z be its sequence of Fourier coefficients

fn =
∫1

0
f (x)e–2iπnx dx, n ∈ Z.

We know that the Fourier series converges to f , uniformly on [0, 1]
(see for example [Vil68, § 2 Thm. 1]). We note

f (x) = lim
N→∞

+N∑
n=–N

fn e2iπnx or f (x) =
∑
n∈Z

fn e2iπnx.

The set of Fourier coefficients of the smooth periodic real functions
with values in C is a vector subspace E of Maps(Z, C). Let

j : C∞
per(R, C) → Maps(Z, C) with j(f ) = (fn)n∈Z.

The map j is injective. We denote by E the subspace of Maps(Z, C)
made of the Fourier coefficients of the smooth periodic functions, that
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is,

E =
{

(fn)n∈Z = j(f ) | f ∈ C∞
per(R, C)

}
.

We know that the subspace E is made exactly of all rapidly decreasing
sequences of complex numbers (op. cit.),

for all p ∈ N, npfn −−−−−→
|n|→∞

0.

222. Exercise: Pushforward functional diffeology. Let E be the vec-
tor space of rapidly decreasing sequences of complex numbers, defined
above.

Q1. Show that the parametrizations P : r 7→ (fn(r))n∈Z in E satisfying
the following conditions define a diffeology.

(1) The functions fn : dom(P) → C are smooth.
(2) For all ball B̄ ⊂ dom(P), for all k, p ∈ N, there exists a

positive number Mk,p such that for all integer n∣∣∣∣∂kfn(r)
∂rk

∣∣∣∣ ≤
Mk,p
|n|p for all r ∈ B. (♣)

Q2. Show that the diffeology defined by (♣) is the pushforward on E,
by j, of the functional diffeology on C∞

per(R, C).

Note 1. In other words, the parametrization r 7→ (fn(r))n∈Z is a plot
of the pushed forward functional diffeology if the functions fn are
smooth and their derivatives are uniformly rapidly decreasing, what
we denote (rather imprecisely) by

np ∂
kfn(r)
∂rk −−−−−→

|n|→∞
0.

Note 2. Thanks to paracompacity, it is enough that, for every point
r0 ∈ dom(P), there exists a ball B′ centered at r0 such that (♣) holds
to ensure that (♣) holds on every ball B̄ ⊂ dom(P).

✑ Proof. We verify, first of all, that the condition (♣) defines a
diffeology on the space E of rapidly decreasing sequences of complex
numbers.
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A1 (Covering axiom). If fn(r) is constant in r, for all n, then the
condition (♣) is trivially satisfied for k > 0, and for k = 0 it means
that the series is rapidly decreasing, which is expected.

A2 (Locality axiom). According to Note 2, the condition (♣) is local.

A3 (Smooth compatibility axiom). Let P : (r 7→ fn(r))n∈Z satisfying
(♣) and F : s 7→ r be a smooth parametrization in the domain of P.
We have, for all k > 0,

∂kfn(s)
∂sk =

k∑
ℓ=1

∂ℓfn(r)
∂rℓ

· Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)
,

where the Qk,ℓ are polynomials. Now, since the function s 7→ r is
smooth, the operators Qk,ℓ are bounded on every ball. Let then
s0 ∈ dom(F), r0 = F(s0) and B be a ball centered at r0 such that the
condition (♣) is satisfied. Let B′ ⊂ F–1(B) be a ball centered at s0,
we have for all s ∈ B′,∣∣∣∣∂kfn(s)

∂sk

∣∣∣∣ ≤
k
∑
ℓ=1

∣∣∣∣∣∂ℓfn(r)
∂rℓ

∣∣∣∣∣
∣∣∣∣∣Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)∣∣∣∣∣
≤

k
∑
ℓ=1

Mℓ,p
|n|p sup

s∈B′

∣∣∣∣Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)∣∣∣∣ ,
where the Mℓ,p are the constants of the inequality (♣) for the ball B.
Let then

mk,ℓ = sup
s∈B′

∣∣∣∣Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)∣∣∣∣ and M′
k,p =

k∑
ℓ=1

mk,ℓ Mℓ,p ,

we get, for all s ∈ B′, ∣∣∣∣∂kfn(s)
∂sk

∣∣∣∣ ≤
M′

k,p
|n|p .

Hence, thanks to Note 2, P◦F still satisfies the condition (♣). There-
fore, this condition defines a diffeology on the set E of rapidly de-
creasing sequences of complex numbers.

Let us show now that the diffeology defined on E by (♣) is the push-
forward by j of the functional diffeology of C∞

per(R, C).
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1. Let us prove, first of all, that j is smooth, where C∞
per(R, C) is

equipped with the functional diffeology and E with the diffeology
defined by (♣). Let P : r → fr be a plot of C∞

per(R, C) defined on
some real domain U, the composite j ◦ P writes

j ◦ P : r 7→ (fn(r))n∈Z with fn(r) =
∫1

0
fr(x)e–2iπnx dx.

Since (r, x) 7→ fr(x) is smooth, the fn : r 7→ fn(r) are smooth, and:

∂kfn(r)
∂rk =

∫1

0

∂kfr(x)
∂rk e–2iπnx dx.

For all nonzero integer n, after p integrations by parts, we get

∂kfn(r)
∂rk =

1
(2iπn)p

∫1

0

∂p

∂xp

(
∂kfr(x)
∂rk

)
e–2iπnx dx.

Therefore, defining for every ball B ⊂ dom(P) the number

Mk,p =
1

(2π)p sup
r∈B

sup
x∈[0,1]

∣∣∣∣ ∂p

∂xp
∂k

∂rk fr(x)
∣∣∣∣ ,

we have ∣∣∣∣∂kfn(r)
∂rk

∣∣∣∣ ≤
Mk,p
|n|p for all r ∈ B.

Hence, j ◦ P is a plot of E. Therefore j is smooth.

2. Conversely, remember that j is injective, then let us show that
j–1 : E → C∞

per(R, C) is smooth. Let P : r 7→ (fn(r))n∈Z be a paramet-
rization in E satisfying the condition (♣), and let

j–1 ◦ P : r 7→ [x 7→ fr(x)].

The parametrization r 7→ fr is given by

fr(x) = lim
N→∞

SN(r, x) with SN(r, x) =
+N∑

n=–N
fn(r)e2iπnx.

The SN are smooth for all N, we want to show that the limit (r, x) 7→
fr(x) is smooth too. For all k, p, N ∈ N, let us introduce the series of



i
i

i
i

i
i

i
i

194 FUNCTIONAL DIFFEOLOGY ON FOURIER COEFFICIENTS

partial derivatives

Sk,p
N (r, x) =

∂p

∂xp
∂k

∂rk SN(r, x) =
+N∑
–N

(2iπn)p ∂
kfn(r)
∂rk e2iπnx.

The functions Sk,p
N are smooth, with respect to (r, x), for all N, k, p.

Let |S|k,p
N (r, x) be the series of moduli of the terms of Sk,p

N :

|S|k,p
N (r, x) =

+N∑
–N

|2πn|p
∣∣∣∣∂kfn(r)

∂rk

∣∣∣∣ .
Then, let B̄ ⊂ dom(P) be some ball. Thanks to the hypothesis,
applying (2) of Q1 to p + 2, we have, for all r ∈ B,

+N
∑

n=–N
|2πn|p

∣∣∣∣∂kfn(r)
∂rk

∣∣∣∣ ≤ c + 2
N
∑

n=1
(2π)p Mk,p+2

n2 ,

where c, corresponding to n = 0, is some constant. Hence, for all
r ∈ B, x ∈ [0, 1] and N ∈ N

|S|k,p
N (r, x) ≤ K

where K = c+2(2π)pMk,p+2(π2/6). Next, since the series |S|k,p
N (r, x)

is increasing and upper bounded, it is convergent, and therefore the
series Sk,p

N (r, x) is also convergent. Moreover, according to what pre-
ceded: the sequence of smooth functions Sk,p

N converges uniformly
on B × [0, 1] to some function Sk,p

∞ when N → ∞. Now, accord-
ing to (an obvious improvement of) [Don00, Thm. 3.10] the map
(r, x) 7→ fr(x) = limN→∞ SN(r, x) is smooth, and the Sk,p

∞ are the
partial derivatives

Sk,p
∞ (r, x) =

∂p

∂xp
∂k

∂rk fr(x).

Thus, the parametrization r 7→ [x 7→ fr(x)] is a plot of C∞
per(R, C) such

that j(r 7→ fr) = (fn(r))n∈Z. Therefore, j is a diffeomorphism from
C∞

per(R, C), equipped with the functional diffeology, to E, equipped
with the diffeology defined by (♣). In other words, the diffeology
defined on E by (♣) is the pushforward of the functional diffeology
on C∞

per(R, C). ▶
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Smooth Function on Periodic Functions

This exercise1 gives a simple example of a function on the space of
rapidly decreasing sequences that is smooth for the functional diffeo-
logy, inherited by the smooth periodic functions, but not smooth for
the ordinary product diffeology.

We consider the subspace E of rapidly decreasing complex sequences
(zn)n∈Z ∈ E. We consider the diffeology (♣) on E, inherited by the
functional diffeology on the space of smooth periodic functions, de-
fined in “Functional diffeology on Fourier coefficients” previously. We
denote by Can the diffeology inherited by the product diffeology, (♣)
is finer than Can.

223. Exercise. Show that the linear map F : E → C,

F : (zn)n∈Z 7→
∑
n∈Z

zn,

is smooth for the diffeology (♣), but not for the Can diffeology.

Hint: find a 1-plot γ : t 7→ (zn(t))n∈Z for the diffeology Can such that
F ◦ γ is not smooth.

✑ Proof. We know that the map j : f 7→ (fn)n∈Z, from C∞
per(R, C) to

E, where the fn are the Fourier coefficients of f , is a diffeomorphism
when C∞

per(R, C) is equiped with the functional diffeology and E with
the diffeology (♣) (op. cit.). The inverse is given by j–1 : (fn)n∈Z 7→

1Joint with P. Donato.
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196 SMOOTH FUNCTION ON PERIODIC FUNCTIONS

[x 7→ ∑n∈Z fne2iπnx]. Let ζ = j–1(zn)n∈Z, then F((zn)n∈Z) = ζ(0).
Therefore F = 0̂ ◦ j–1 where 0̂ is the evaluation at the origin, 0̂(f ) =
f (0). Since 0̂ : C∞

per(R, C) → C is smooth for the functional diffeology
and j–1 is a diffeomorphism, F is smooth.

Next, consider the path

γ : t 7→ (zn(t))n∈Z with zn(t) = e–|n|eie2|n|t,

where t ∈ R. Since every zn is smooth, the path γ is smooth with E ⊂

∏n∈Z C equipped with the subset diffeology of the product diffeology.
Since |zn(t)| = e–|n| is rapidly decreasing in n, the partial sums
∑

N
n=–N zn(t) converge for all t ∈ R. Let f = F ◦ γ, that is,

f (t) =
∑
n∈Z

e–|n|eie2|n|t.

We shall check now that f is not derivable at t = 0. Consider the
variation

Δf (t, 0) =
f (t) – f (0)

t

= ∑
n∈Z

e–|n|eie2|n|t – e–|n|

t

= ∑
n∈Z

e–|n|
×

eie2|n|t – 1
t

.

But,
eie2|n|t – 1

t
−−−→
t→0

ie2|n|.

Hence,
Δf (t, 0) −−−→

t→0
i
∑
n∈Z

e|n|,

but that is not convergent. Therefore f is not derivable in t = 0. ▶
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Symplectic Diffeology on the Space of
Smooth Periodic Functions

We consider a symplectic structure on the space of smooth periodic
functions and the action of the infinite torus as we have seen in
previous notes “Functional Diffeology on Fourier Coefficients” and
“Infinite Torus Action on Smooth Periodic Functions”. We study the
action of the irrational solenoid and we show a reduction process
for its moment map levels, extending a diffeological version of Elisa
Prato’s quasispheres construction [EP01] to infinite dimension,1 using
the diffeology tools.

54. A primitive of the symplectic form

We consider the space C∞
per(R, C) of 1-periodic complex valued real

functions equipped with the functional diffeology. We denote by E

the space of Fourier coefficients of smooth periodic functions and by
j : C∞

per(R, C) → E the mapping

j(f ) = (fn)n∈Z with fn =
∫1

0
f (x)e–2iπnxdx,

1This exercise has been inspired by a few and very interesting exchanges I have
had with Elisa Prato and Fiametta Battaglia in January 2014 at Firenze where
I stayed at the invitation of Elisa. Let me take this opportunity to thank them
sincerely.
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and E is equipped with the pushforward by j of the functional dif-
feology on C∞

per(R, C) from “Functional Diffeology on Fourier Coeffi-
cients”.

224. Exercise I. For all plots P : U → C∞
per(R, C) let

ε(P)r(δr) =
1

2iπ

∫1

0
fr(x)

∂fr(x)
∂r

(δr) dx.

Q1. Check that ε defines a differential 1-form on C∞
per(R, C).

Q2. Develop ε and ω = dε also in terms of the real and imaginary
parts f (x) = a(x) + ib(x).

Q3. Develop ε and ω in terms of Fourier coefficients.

✑ Proof. Let us check first that ε is a well defined form. Let
P : r 7→ fr be a plot in C∞

per(R, C), let Q : s 7→ r be a plot in dom(P).
We want to check that ε(P ◦ Q) = Q∗(ε(P)), that is,

ε(P ◦ Q)s(δs) = ε(P)r(δr) with r = Q(s) and δr =
∂r
∂s

(δs),

where δr is a tangent vector at r to dom(P). But

ε(P ◦ Q)s(δs) =
1

2iπ

∫1

0
P ◦ Q(s)(x)

∂P ◦ Q(s)(x)
∂s

(δs) dx

=
1

2iπ

∫1

0
P(r)(x)

∂P(r)(x)
∂r

∂r
∂s

(δs) dx, with r = Q(s)

=
1

2iπ

∫1

0
fr(x)

∂fr(x)
∂r

(δr) dx, with δr =
∂r
∂s

(δs)

= ε(P)r(δr), with r = Q(s) and δr =
∂r
∂s

(δs).

Therefore, ε(P ◦ Q) = Q∗(ε(P)) and ε is a well defined differential
1-form on C∞

per(R, C).

For Question 2. The exterior derivative of ε is given by an immediate
application of the definition

dε(P)r(δr , δ′r) = δ(ε(P)r(δ′r)) – δ′(ε(P)r(δr)),
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for two independent variations δ and δ′. Then,

ω(P)r(δr , δ′r) =
1

2iπ

∫1

0

∂fr(x)
∂r

(δr)
∂fr(x)
∂r

(δ′r)

–
∂fr(x)
∂r

(δ′r)
∂fr(x)
∂r

(δr) dx.

Now let fr(x) = ar(x) + ibr(x) and let us denote simply

a = ar(x), b = br(x), δa =
∂a
∂r

(δr), and δb =
∂b
∂r

(δr).

Then,

ε(P)r(δr) =
1

2iπ

∫1

0
fr(x)

∂fr(x)
∂r

(δr) dx

=
1

2iπ

∫1

0
(a – ib)(δa + iδb) dx

=
1
2π

∫1

0
(aδb – bδa) dx +

1
2iπ

∫1

0
(aδa + bδb) dx

=
1
2π

∫1

0
(aδb – bδa) dx +

1
4iπ

d
[∫1

0
(a2 + b2) dx

]
(δr)

Therefore, since d ◦ d = 0, the exterior derivative is

ω(P)r(δr, δ′r) =
1
π

∫1

0
(δa δ′b – δ′a δb) dx.

For Question 3. Since everything is smooth we can exchange limits
and integrals. Let

fn(r) =
∫1

0
fr(x)e–2iπnxdx,

we have then:

ε(P)r(δr) =
1

2iπ

∫1

0
fr(x)

∂fr(x)
∂r

(δr) dx.

=
1

2iπ

∫1

0

(
∑

n∈Z
fn(r)e–2iπnx

)(
∑

m∈Z

∂fm(r)
∂r

(δr)e2iπmx
)

dx

=
1

2iπ
∑

n,m∈Z
fn(r)

∂fm(r)
∂r

(δr)
∫1

0
e2iπ(m–n)x dx
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=
1

2iπ
∑

n∈Z
fn(r)

∂fn(r)
∂r

(δr).

And therefore, for the exterior derivative,

ω(P)r(δr, δ′r) =
1

2iπ
∑

n∈Z

∂fn(r)
∂r

(δr)
∂fn(r)
∂r

(δ′r)

–
∂fn(r)
∂r

(δ′r)
∂fn(r)
∂r

(δr).

Let us notice that if x̂ : C∞
per(R, C) → C denotes the evaluation map

x̂(f ) = f (x), then the 2-form ω is the mean value of the pullbacks

ω =
1
π

∫1

0
x̂∗(ω0) dx,

where ω0 is the canonical symplectic form on C. ▶

55. Hamiltonian action of the infinite torus

225. Exercise II. We consider the 2-form ω = dε defined on the space
of Fourier coefficients E, equipped with the pushforward of the func-
tional diffeology. We consider then the action of the infinite torus
T∞ on E, described in “Infinite Torus Action on Smooth Periodic
Functions”.

(τn)n∈Z · (Zn)n∈Z = (τnZn)n∈Z.

Q1. Verify that the action of T∞ on E is Hamiltonian and exact.2

Q2. Show that the moment maps of the action of T∞ on E are given
by

μ(Z) =
1

2iπ

∑
n∈Z

|Zn|2
π
∗
n(θ) + σ,

where Z = (Zn)n∈Z ∈ E, πn : T∞ → U(1) is the n-th projection
πn(Z) = Zn, θ is the canonical invariant 1-form on U(1), and σ is a
constant momentum of T∞, that is, a constant invariant 1-form.

2See [TB, Chapter 9]
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Q3. Let (αn)n∈Z be a sequence of irrational numbers independent
over Q, see Exercise II of “Infinite Torus Action on Smooth Periodic
Functions”. Consider the induction

ι : R → T∞ with ι(t) =
(

e2iπαnt
)

n∈Z
,

and the induced action of R on E

t(Zn)n∈Z =
(

e2iπαntZn

)
n∈Z

.

Show that the 1-point moment maps are given by

ν(Z) = h(Z) dt with h(Z) =
∑
n∈Z
αn|Zn|2 + c,

where c is some constant.

✑ Proof. For Question 1. The primitive ε is invariant by the action
of T∞. Let us recall that

ε(P)r(δr) =
1

2iπ

∑
n∈Z

Zn(r)
∂Zn(r)
∂r

(δr),

for all plots P : r 7→ (Zn(r))n∈Z in E. Then, let τ = (τn)n∈Z ∈ T∞,
we have

τ
∗(ε)(P)r(δr) = ε(τ ◦ P)r(δr)

=
1

2iπ
∑

n∈Z
τn Zn(r)

∂τn Zn(r)
∂r

(δr)

=
1

2iπ
∑

n∈Z
Zn(r) τ̄nτn

∂Zn(r)
∂r

(δr)

=
1

2iπ
∑

n∈Z
Zn(r)

∂Zn(r)
∂r

(δr)

= ε(P)r(δr).

Therefore, the action is Hamiltonian and equivariant [TB, § 9.11].

For Question 2. Let θ be the canonical 1-form on U(1) defined by

class∗(θ) = dt, with class : R → T = R/Z.

Let πn : T∞ → U(1) be the n-th projection Z 7→ Zn, for all Z =
(Zn)n∈Z ∈ E. Let ζ : r 7→ (ζn(r))n∈Z be a plot in T∞, the 1-point
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moment map μ of the action of T∞ on E is given, up to a constant,
by

μ(Z)(ζ)r(δr) = Ẑ∗(ε)(ζ)r(δr)

= ε(Ẑ ◦ ζ)r(δr)

=
1

2iπ
∑

n∈Z
Znζn(r)

∂Znζn(r)
∂r

(δr)

=
1

2iπ
∑

n∈Z
|Zn|2

ζ̄n(r)
∂ζn(r)
∂r

(δr)

=
1

2iπ
∑

n∈Z
|Zn|2

π
∗
n(θ)(ζ)r(δr).

Therefore, a general 1-point moment map writes

μ(Z) =
1

2iπ

∑
n∈Z

|Zn|2
π
∗
n(θ) + σ.

Remark that on any ball, for all n ∈ Z, ζn(r) = exp(2iπ tn(r)) for
some smooth real functions tn. Then, the moment map is also given,
modulo a constant, by

μ(Z)(ζ)r(δr) =
∑
n∈Z

|Zn|2 ∂tn(r)
∂r

(δr).

Note also that, since ζ is a plot in T∞ for the tempered diffeology,
the norm of the derivatives ∂ζn(r)/∂r, that is, ∂tn(r)/∂r, are domi-
nated by a polynomial in n what insures the convergence of the series
defining the moment map just above.

For Question 3. The induction ι : R → T∞

ι : t 7→
(

e2iπαnt
)

n∈Z

induces a projection ι∗ : T∗∞ → R∗, where T∗∞ is the space of momenta
of T∞. The moment maps with respect to the group R are then the
composites ν = ι∗ ◦ μ, that is,

ν = ι
∗
{ 1

2iπ
∑

n∈Z
|Zn|2

π
∗
n(θ) + σ

}
=

1
2iπ

∑
n∈Z

|Zn|2 (πn ◦ ι)∗(θ) + ι∗(σ).
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But

πn ◦ ι : t 7→ exp(2iπαnt), then (πn ◦ ι)∗(θ) = 2iπαn dt.

Thus,
ν(Z) = h(Z) dt with h(Z) =

∑
n∈Z
αn|Zn|2 + c,

where ι∗(σ) = c dt, c ∈ R. ▶

56. Orbits of the Hamiltonian flow

226. Exercise III. We continue with the data of previous exercise.
Let Y be a level of the moment map ν of the action of R, that is,

Y =
{

Z = (Zn)n∈Z ∈ E |

∑
n∈Z
αn|Zn|2 = c

}
with c > 0.

Q1. Verify that, for all Z ∈ Y, if there exists Zn ̸= 0 and Zm ̸= 0,
then the stabilizer of Z is reduced to {0} and the orbit of Z by R,
equipped with the subset diffeology, is diffeomorphic to R. Such
orbits are called principal orbits.

Q2. Verify that the non principal orbits, that is, the singular orbits,
are the subspaces

S1
n = {Z ∈ Y | Zm = 0 if m ̸= n}, with n ∈ N,

each diffeomorphic to the circle S1.

Q3. Show that the union

S =
⋃

n∈Z
S1

n ⊂ Y,

equipped with the subset diffeology is actually the sum of the S1
n [TB,

§ 1.39], that is,

S =
∐
n∈Z

S1
n and then dim(S) = 1.

Q4. Show that Y – S is open for the D-topology (D-open) [TB, § 2.8].
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✑ Proof. For Question 1. Let Z ∈ Y with Zn ̸= 0 and Zm ̸= 0, the
map

t 7→ (e2iπαnt
τn, e2iπαmt

τm) with


τn =

Zn
|Zn|

τm =
Zm

|Zm|

is an induction from R into T2, because αn and αm are independent
over Q, see [TB, Exercise 31]. Therefore, the orbit map t 7→ t(Z) is
an induction.

For Question 2. There exists n such that for all m ̸= n, Zm = 0 but
Zn ̸= 0, since ∑n∈Z αn|Zn|2 > 0. The orbit map is a covering onto
the circle S1

n induced in Y.

For Question 3. Let P : U → S be a plot. For every n ∈ Z let On =
(πn◦P)–1(C–{0}), where πn : Y → C is the projection πn((Zm)m∈Z) =
Zn. Since πn ◦ P is smooth, then continuous, every On ⊂ U is open.
Moreover, let n ̸= m, assume r ∈ On ∩ Om, that is, Zn(r) ̸= 0 and
Zm(r) ̸= 0, but P takes its values in the union of the S1

m, m ∈ Z,
hence Zn(r) ̸= 0 implies Zm(r) = 0 for all m ̸= n thus On ∩ Om = ∅.
Therefore,

U =
⋃

n∈Z
On and On ∩ Om = ∅,

for all n ̸= m.

That means that the On are the connected components of U. Thus,
P takes locally its values in the S1

n, n ∈ Z, that means that S is the
diffeological sum of the circles S1

n, n ∈ Z, see [TB, § 1.39].

For Question 4. Let P : U → Y be a plot, P(r) = (Zn(r))n∈Z. For
all r0 ∈ P–1(Y – S) there exist at least two different indices n and m
such that Zn(r0) ̸= 0 and Zm(r0) ̸= 0. Since Zn and Zm are smooth
there exists an open neighborhood V of r0 such that Zn(r) ̸= 0 and
Zm(r) ̸= 0, for all r ∈ V, that is, V ⊂ P–1(Y–S). Thus, P–1(Y–S) is a
union of open domains, it is then an open domain, and consequently
Y – S is D-open. ▶
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57. Reduction of a moment map level

227. Exercise IV. We denote by X the space of orbits of the action
of R on Y. We equip Y with the quotient diffeology, and denote by
pr : Y → X the projection.

Q1. Why could we call the space X, an infinite quasiprojective space?

Q2. Show that there exists a closed 2-form ϖ on X (We say that ϖ

is parasymplectic) such that

ω ↾ Y = pr∗(ϖ).

This is a particular case of symplectic reduction with singularities.

✑ Proof. For Question 1. Let Z = (Zn)n∈Z ∈ Y, by the change
Zn 7→ √

αnZn/
√

c the subspace Y is mapped into S∞ ∈ E, the unit
sphere in E. Now, if all αn would be equal to 1 then the action of
R would be the action of S1 and X would be diffeomorphic to CP∞,
the infinite projective space, and the projection pr : Y → X would
be the infinite Hopf fibration, see [TB, § 4.11] for the same infinite
projective space with another diffeology. That explains the choice of
vocabulary.

For Question 2. We shall apply the general criterion for a differential
form to be the pullback of another one. Let P : U → Y and P′ : U → Y
be two plots

U Y

X

P

P′
pr such that pr ◦ P = pr ◦ P′.

We want to check if, in these conditions, ω(P) = ω(P′). That would
insure the existence of ϖ, a (necessarily closed) 2-form on X such
that ω = pr∗(ϖ) [TB, § 6.38]. We consider first of all what happens
on the open subset

U0 = P–1(Y – S).
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Since pr ◦ P = pr ◦ P′, P–1(Y – S) = P′–1(Y – S) = U0. Now, the
restrictions of P and P′ on U0 take their values in the subset of Y
made of principal orbits of R, for which the stabilizer of the action
of R is {0}. Therefore, for each r ∈ U0 there is a unique τ(r) ∈ R
such that, for all n, Z′

n(r) = e2iπαnτ(r)Zn(r). Now, ω = dε, and

ε(P′)r(δr) =
1

2iπ
∑

n∈Z
Z̄′

n(r)
∂Z′

n(r)
∂r

(δr)

=
1

2iπ
∑

n∈Z
Z̄n(r)

∂Zn(r)
∂r

(δr)

+
(

∑
n∈Z
αnZ̄n(r)Zn(r)

)∂τ(r)
∂r

(δr)

= ε(P)r(δr) + c τ∗(dt).

Therefore, [ω(P′)–ω(P)] ↾ U0 = 0. Thus, by continuity, [ω(P′)–ω(P)] ↾
Ū0 = 0, where Ū0 is the closure of U0. It remains to check what
happens on the complementary V = U – Ū0. The subset V is open,
thus P ↾ V and P′ ↾ V are two plots of Y but with values in the
subset of singular orbits S. Since S has dimension 1 and ω is a 2-form,
ω(P ↾ V) = ω(P′ ↾ V) = 0. In conclusion ω(P′) = ω(P) everywhere on
U. That proves that there exists a 2-form ϖ on X = Y/R such that
pr∗(ϖ) = ω. ▶
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Infinite Torus Action on Smooth Periodic Functions

We continue the previous exercise on the space of Fourier coefficients
of smooth periodic functions, equipped with the functional diffeology,
by considering the infinite product T∞ of tori U(1) as a group of
diffeomorphisms.

We denote by T∞ the set of infinite sequences τ = (τn)n∈Z, where
τn ∈ T = U(1), that is, τn ∈ C and τ̄nτn = 1 :

T∞ =
∏
n∈Z

U(1).

Let E be the set of Fourier coefficients of smooth 1-periodic functions
equipped with the pushforward of the functional diffeology, as it is
described in “Functional Diffeology on Fourier Coefficients”. There
is a natural linear action of T∞ on E, defined by

τ · Z = (τn)n∈Z · (Zn)n∈Z = (τnZn)n∈Z.

Indeed, multiplying by a number of modulus 1 transforms a rapidly
decreasing sequence of complex numbers into another, and every τ =
(τn)n∈Z ∈ T∞ is invertible

(τn)–1
n∈Z = (τ̄n)n∈Z.

Moreover, for every plot r 7→ (Zn(r))n∈Z in E, for all p ∈ N,∣∣∣∣∂p
τnZn(r)
∂rp

∣∣∣∣ =
∣∣∣∣∂pZn(r)

∂rp

∣∣∣∣ .
207
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The same holds for the inverse. Hence, the action of (τn)n∈Z is
smooth as well as its inverse, thus (τn)n∈Z acts by diffeomorphism.
We have then a monomorphism

η : T∞
→ GL∞(E).

228. Exercise I. We consider the group T∞ of diffeomorphisms of E.
We shall say that a parametrization r 7→ τ(r) = (τn(r))n∈Z in T∞ is
tempered if the τn are smooth and if for every k ∈ N, for every r0 in
the domain of the parametrization, there exists a ball B centered at
r0, a polynomial Pk(n), and an integer N such that

∀r ∈ B, ∀n > N,
∣∣∣∣∂k
τn(r)
∂rk

∣∣∣∣ ≤ Pk(n). (♠)

Q1. Show that the tempered parametrizations form a group diffeo-
logy on T∞.

Q2. Show that, equipped with the tempered diffeology, the action of
the group T∞ on E is smooth.

Q3. Show that for all N ∈ N, the injection ιN : TN → T∞ defined by

ιN(ζ) = τ with
{
τn = ζn if n ∈ {1, . . . , N},
τn = 1 otherwise,

is an induction.

✑ Proof. For Question 1. Let us show that the condition (♠)
defines a diffeology, actually a sub-diffeology of the product diffeology
on the infinite product of tori T∞ = ∏n∈Z T. We denote indifferently
U(1) or T, for Torus.

(Covering axiom) If τn(r) = τn is constant in r, for all n, then
|∂k
τn(r)/∂rk| is equal to 1 for k = 0 and equal to 0 for k > 0.

It satisfies the condition (♠).

(Locality axiom) By definition the condition (♠) is local in the vari-
able r.

(Smooth compatibility axiom) Let ζ : (r 7→ τn(r))n∈Z satisfying (♠)
and F : s 7→ r be a smooth parametrization in the domain of ζ. We
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have, for all k > 0,

∂k
τn(s)
∂sk =

k∑
ℓ=1

∂ℓτn(r)
∂rℓ

· Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)
,

where the Qk,ℓ are polynomials. Therefore,∣∣∣∣∂k
τn(s)
∂sk

∣∣∣∣ ≤

k∑
ℓ=1

∣∣∣∣∣∂ℓτn(r)
∂rℓ

∣∣∣∣∣
∣∣∣∣∣Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)∣∣∣∣∣ .
Since the function s 7→ r is smooth, these polynomials are locally
absolutely bounded, let

Mk,ℓ = supr∈B

∣∣∣∣Qk,ℓ

(
∂r
∂s

, . . . ,
∂kr
∂sk

)∣∣∣∣ .
Next, let Nℓ satisfying (♠) for k = ℓ, and N′ = supℓ=1...k Nℓ, then for
all n > N′, ∣∣∣∣∂k

τn(s)
∂sk

∣∣∣∣ ≤

k∑
ℓ=1

Mk,ℓ

∣∣∣∣∣∂ℓτn(r)
∂rℓ

∣∣∣∣∣ ≤

k∑
ℓ=1

Mk,ℓPℓ(n).

Hence, the partial derivatives of the τn with respect to r are still
dominated by polynomials, and the condition (♠) defines a diffeology
on the set T∞.

For Question 2. Now, let us check that (♠) defines a group diffeology.
First of all, let τ : r 7→ (τn(r))n∈Z and τ′ : r 7→ (τ′n(r))n∈Z be two
plots of T∞, the derivatives of the terms of the product τn(r)τ′n(r)
write

∂k
τn(r)τ′n(r)

∂rk =
k∑

ℓ=1

(
k
ℓ

)
∂k–ℓ
τn(r)

∂rk–ℓ · ∂
ℓ
τ
′
n(r)

∂rℓ
.

Hence, ∣∣∣∣∂k
τn(r)τ′n(r)

∂rk

∣∣∣∣ ≤
k
∑
ℓ=1

(
k
ℓ

) ∣∣∣∣∣∂k–ℓ
τn(r)

∂rk–ℓ

∣∣∣∣∣
∣∣∣∣∣∂ℓτ′n(r)

∂rℓ

∣∣∣∣∣
≤

k
∑
ℓ=1

(
k
ℓ

)
Pk–ℓ(n) P′

ℓ(n).
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The partial derivatives of the product τnτ′n are still dominated by a
polynomial. The inverse mapping is given by ι : (τn)n∈Z 7→ (τ̄n)n∈Z,
the absolute values of the partial derivatives of an element of the se-
quence and the corresponding element of the inverse coincide. There-
fore, T∞, equipped with the diffeology (♠) is a diffeological group.

For Question 3. The injection ιN : TN → T∞ is clearly smooth since
that, for all plots τ in TN, the derivatives of the components τn of
the composite ιN ◦τ : r 7→ (τn(r))n∈Z vanish for n outside {1, . . . , N},
hence

np ∂k
τn(r)
∂rk = 0 if |n| > N.

Conversely if τ : r 7→ (τn(r))n∈Z is a plot in T∞ with values in ιN(TN),
then the components r 7→ τn(r) are smooth, by definition of the
diffeology on T∞, and hence ι–1

N ◦ τ is smooth. Therefore, ιN is an
induction. ▶

229. Exercise II. Let α = (αn)n∈Z be a sequence of positive irrational
numbers independent over Q, that is, for every sequence (qn)n∈Z,
with finite support, of rational numbers qn ∈ Q one has∑

n∈Z
qnαn = 0 ⇒ qn = 0 for all n.

Q1. Give an example of such a family of irrational numbers.

Q2. Show that ι : R 7→ T∞, defined by

ι(t) =
(

e2iπαnt
)

n∈Z
,

is an induction.

✑ Proof. For Question 1. Consider a transcendent number α (we
assume α < 1 even if it is not necessary). We define

α0 = 1 and αm = αm –
[
α

m] for m ̸= 0,

where the bracket denotes the integral part. That defines αn for all
n ∈ Z. Now, for a finitely supported sequence of rational numbers
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qn, we have

∑
n∈Z

qnαn = q0 + ∑
n∈Z
n ̸=0

qn
(
α

n – [αn]
)

= q0 – ∑
n∈Z
n ̸=0

qn[αn] + ∑
n∈Z
n ̸=0

qnα
n,

with only a finite part of this sum is not zero. Then, if ∑n∈Z qnαn = 0
we multiply both sides by αℓ, with ℓ big enough to get an algebraic
equation in α, with all powers positive. But we assumed α transcen-
dent, then all the coefficients are 0, what implies qn = 0, for all
n ∈ Z.

For Question 2. We need to check first of all that ι is smooth. The
successive derivatives are simply

∂ke2iπαnt

∂tk = (2iπαn)ke2iπαnt.

Since 0 < αn ≤ 1, for all n ∈ Z, we have∣∣∣∣∂ke2iπαnt

∂tk

∣∣∣∣ ≤ (2π)k .

Hence, the derivatives are absolutely dominated by (constant) poly-
nomials and ι is a plot in T∞. Next, consider a plot in T∞ with
values in ι(R), the composite with the projection on the first two
components gives a plot in T2 with values in the solenoid

(exp(2iπt), exp(2iπαt))t∈R.

But the injection t 7→ (exp(2iπt), exp(2iπαt)) is an induction, see [TB,
Exercise 31], therefore, ι is an induction. ▶
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Basic 1-Forms on Principal Fiber Bundles

We explicit a criterion for basic 1-forms on general principal bundles.

This is a specialization of the general criterion of paragraph 6.38 in
the textbook, for basic 1-forms on principal fiber bundles [TB, § 8.11].

230. Exercise. Let π : X → B be a principal fibration with structure
group G. Let α be a 1-form on X. Prove that α is basic, that is, is
the pullback π∗(β) of a 1-form on B, if and only if:

(1) α vanishes on “vertical plots”, that is, the preimages by π of
the points of B. In short, α ↾ π–1(b) = 0, for all b ∈ B.

(2) α is invariant by the structure group, that is, g∗
X(α) = α, for

all g ∈ G, where gX denotes the action of g on X.

Give a simple example showing that this criterion is then no more
valid even for a 2-form.

✑ Proof. Assume that α = π∗(β). Let P : U → X be a vertical plot,
then α(P) = [π∗(β)](P) = β(π ◦ P), but π ◦ P = cst, thus β(π ◦ P) = 0,
that is, α(P) = 0, see [TB, Exercise 96]. Now, let g ∈ G, then
g∗

X(α) = g∗
X(π∗(β)) = (π ◦ gX)∗(β), but π ◦ gX = π, thus g∗

X(α) = α.
Therefore, the two conditions above are satisfied.

Conversely, assume that the two conditions above are satisfied, and
let P : U → X and P′ : U → X be two plots such that π ◦ P = π ◦ P′.
Since π is a principal diffeological fibration, there exists, around every
point of U, a subdomain V ⊂ U and a plot r 7→ γ(r) in G, defined

212
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on V, such that P′(r) = γ(r)X(P(r)), for all r ∈ V [TB, 8.13, Note 1].
Hence,

α(P′) = α[r 7→ γ(r)X(P(r))].

Now we need the following formula, which is a generalization of [TB,
8.37 (♣) ]. Let R(x) : G → X be the orbit map R(x)(g) = gX(x), let
γ be a plot in G defined on some domain U and let P be a plot in X
defined on some domain V, then

α[(r, s) 7→ γ(r)X(P(s))](r
s
)(δr
δs

)
= α[(r, s) 7→ γ(r)X(P(s))](r

s
)(δr

0

)
+ α[(r, s) 7→ γ(r)X(P(s))](r

s
)( 0
δs

)
= α[r 7→ γ(r)X(P(s))]r(δr)

+α[s 7→ γ(r)X(P(s))]s(δs) = [R(P(s))∗(α)](γ)r(δr)+[γ(r)∗X(α)](P)s(δs).

Now, since R(P(s)) is the orbit map of the point x = P(s),

[R(P(s))∗(α)](γ) = [R(P(s))∗(α ↾ π–1(b))](γ),

with b = π(x). But, according to the hypothesis, α ↾ π–1(b) = 0, thus

[R(P(s))∗(α)](γ)r(δr) = 0.

Next, since, by assumption, α is invariant by the action of G, [γ(r)∗X(α)](P) =
α(P). Therefore,

α[(r, s) 7→ γ(r)X(P(s))](r
s
)(δr
δs

)
= α(P)r(δr).

This implies in particular α(P′) = α[r 7→ γ(r)X(P(r))] = α(P). Hence,
according to the criterion [TB, 6.38], there exists a 1-form β on B
such that α = π∗(β). For the second question, consider the 2-form
ω = dx ∧ dy on the plane R2. We can consider the first projection
pr1 : (x, y) 7→ x. It is a principal fibration with group (R, +) for the
action tR2(x, y) = (x, y + t). The 2-form ω is, in particular, invariant
by this action. Moreover, the restriction of ω on a fiber of pr1 is a
linear 2-form on R, thus vanishes. This example satisfies the two
conditions above, but since ω ̸= 0, ω is not the pullback by pr1 of a
2-form on R (which is necessarily 0). ▶
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Differential of Holonomy for Torus Bundles

We explicit the holonomy function on a torus bundle on a diffeological
space. Here the word torus denotes any quotient T = R/Γ, where
Γ is a strict subgroup of R. Then, we explicit the differential of
the holonomy in terms of the Chain-Homotopy Operator and the
curvature.

In this note we will consider a principal fiber bundle π : Y → X, with
X and Y two diffeological spaces, and with structure group a torus
T = R/Γ, where Γ is any strict subgroup of R. As we know, if Γ = aZ
then the torus T is a manifold isomorphic to the circle S1, and if Γ
has more than 1 generator, T is said to be irrational, and it’s not
anymore a manifold. We assume that there exists on Y a connection
form λ, that is, a differential 1-from satisfying the two conditions

(1) λ is invariant by the action of T:

For all τ ∈ T, τ
∗
Y(λ) = λ,

where τY denotes the action of τ on Y.
(2) λ is calibrated:

For all y ∈ Y, ŷ∗(λ) = θ,

where ŷ : T → Y is the orbit map ŷ(τ) = τY(y), and θ is the
canonical 1-form on T, pushforward of the canonical 1-form
dt on R.

214
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Then, the connection is defined by the horizontal paths in Y, and
they are

Hor(Y) = {γ ∈ Paths(Y) | λ(γ)t = 0 for all t ∈ R}.

See [TB] for the details of these constructions, in particular § 8.37.

58. Loops bundles

231. Exercise I. Show that the pushforward

π∗ : Loops(Y) → Loops(X), defined by π∗(ℓ̃) = π ◦ ℓ̃,

is surjective.

✑ Proof. Consider a loop ℓ in X, that is, ℓ ∈ C∞(R, X) and
ℓ(0) = ℓ(1). The pullback of Y by ℓ is a principal bundle on R with
a connection, therefore it is trivial [TB, § 8.34]: there exists an equi-
variant diffeomorphism φ : R × T → ℓ∗(Y). Let φ(t, τ) = (t, f (t, τ)),
with f (t, τ) ∈ Yℓ(t).

R × T ℓ∗(Y) Y

R X

φ

pr1
pr1

pr2

π

ℓ

Then, by equivariance, φ(t, τ) = (t, τY(f (t))), where f ∈ Paths(Y)
and π ◦ f = ℓ. There exists a unique a ∈ T such that f (1) = aY(f (0)).
Now, since T is connected there exists τ ∈ Paths(T) such that τ(0) =
1 and τ(1) = a–1. Then, ℓ̃ : t 7→ τ(t)Y(f (t)) is a path in Y such that
π ◦ ℓ̃ = ℓ, and ℓ̃(0) = ℓ̃(1) = f (0). Therefore, ℓ̃ ∈ Paths(Y) and
π ◦ ℓ̃ = ℓ. ▶

Now, there is more than π∗ being surjective. Using the same ideas
than in exercise I:

232. Exercise II. Show that the pushforward π∗ : Loops(Y) → Loops(X)
is not only surjective but even a subduction.

✑ Proof. Let r 7→ ℓr be a plot in Loops(X) defined on a small open
ball B centered at 0 in some Rn. Since r 7→ ℓr is smooth, the map
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Q : (r, t) 7→ ℓr(t) defined on B × R is a plot of X. Since we have
a connection on π : Y → X, we have a connection, by pullback, on
pr1 : Q∗(Y) → B × R. And since B × R is contractible, the fibration
pr1 : Q∗(Y) → B × R is trivial, that is, there exists an equivariant
diffeomorphism φ : B × R × T → Q∗(Y). By equivariance, φ(r, t, τ) =
(r, t, τY(fr(t))), where (r, t) 7→ fr(t) is a plot of Y. That is equivalent
to say that r 7→ fr is a plot of Paths(Y). We have then π◦fr(t) = ℓr(t).

B × R × T ℓ∗(Y) Y

B × R X

φ

pr1,2
pr1

pr3

π

ℓ

Thus, there exists r 7→ ar ∈ T such that fr(1) = (ar)Y(fr(0). Let
α : r 7→ fr(0) and β : r 7→ fr(1). Since α and β are homotopic,
the pullbacks α∗(Y) and β∗(Y) are equivalent (actually trivial) [TB,
§ 8.34]. Therefore, r 7→ ar is a plot of T, as well as r 7→ a–1

r . Now, the
projection class : R → T is the universal covering. The ball B being
contractible, there exists a unique lifting r 7→ ār of r 7→ a–1

r such that
ā0 = 0 [TB, § 8.25]. Consider then (r, t) 7→ τr(t) = class(tār). The
parametrization r 7→ τr is a plot of Paths(T) such that ār(0) = 1 and
ār(1) = a–1

r . Then, let ℓ̃r(t) = τr(t)Y(fr(t)), it is a plot of Y such that
ℓ̃r(0) = fr(0) and ℓ̃r(1) = τr(1)Y(fr(1)) = (a–1

r )Y((ar)Y(fr(0)) = fr(0).
Thus, r 7→ ℓ̃r is a plot of Loops(Y), and a lifting of r 7→ ℓr , that is,
such that π ◦ ℓ̃r = ℓr , for all r ∈ B. Hence, every plot in Loops(X)
has a local smooth lifting in Loops(Y) everywhere. Therefore, π∗ :
Loops(Y) → Loops(X) is a subduction. ▶

59. Holonomy function

In this section we shall explicit the holonomy H of the connection
defined by λ, and compute its differential.

233. Exercise III. Show that there exists a smooth map

H : Loops(X) → T defined by H(ℓ) = class
(∫

ℓ̃
λ

)
,
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for all ℓ̃ ∈ Loops(Y) such that π ◦ ℓ̃ = ℓ. And where class denotes the
canonical projection from R to T.

✑ Proof. Let ℓ̃ and ℓ̃′ be two loops in Y projecting on ℓ. Since
π : Y → X is a diffeological fiber bundle, there exists a loop τ in T
such that ℓ̃′(t) = τ(t)Y(ℓ̃(t)). According to [TB, § 8.37], we have

λ
(
t 7→ τ(t)Y(ℓ̃(t))

)
t(1) = τ∗(θ)t(1) + λ(ℓ̃)t(1).

Then, ∫
ℓ̃′
λ =

∫1

0
λ(ℓ̃′)t(1) dt

=
∫1

0
λ(t 7→ τ(t)Y(ℓ̃(t)))t(1) dt

=
∫1

0
τ
∗(θ)t(1) dt +

∫1

0
λ(t 7→ ℓ̃(t))t(1) dt

=
∫
τ

θ+
∫
ℓ̃
λ.

But since τ is a loop in T and θ is the canonical 1-form on T = R/Γ,∫
τ
θ ∈ Γ. Therefore, class

(∫
ℓ̃′ λ
)

= class
(∫

ℓ̃ λ
)
. We get the map

H, which is well defined: H(ℓ) = class
( ∫

ℓ̃ λ
)
. Let us denote H̃ the

integral of λ on the loops in Y. We have the following commutative
diagram:

Loops(Y) R

Loops(X) T

H̃

π∗ class

H

Now, since π∗ is a subduction, according to the previous exercise, the
map H is smooth. ▶

The values of H is exactly the group of holonomy of the connection
defined by λ, see [TB, § 8.35]. It is a subgroup of T, it is either
discrete or the whole T. A way to check if it is discrete is to compute
its “differential”. We will define it as:

dTH = H∗(θ).
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234. Exercise IV. Show that

dTH + Kω = 0,

where K is the Chain-Homotopy Operator [TB, § 6.83].

✑ Proof. Remark that

H̃ =
[
ℓ̃ 7→

∫
ℓ̃
λ

]
= Kλ.

Then, apply the fundamental property of the Chain-Homotopy Op-
erator, restricted to the space of loops of Y. That gives

d(Kλ) + K(dλ) = [(1̂∗ – 0̂∗) ↾ Loops(Y)](λ) = 0.

Recalling that dλ = π∗(ω), we get

dH̃ + K(π∗(ω)) = 0.

The variance of the Chain-Homotopy Operator states that the follow-
ing diagram is commutative, see [TB, § 6.84].

Ω
k(X) Ω

k–1(Paths(X))

Ω
k(Y) Ω

k–1(Paths(Y))

KX

π
∗ (π∗)∗

KY

Thus (forgetting the indices on K),

dH̃ + (π∗)∗(Kω) = 0.

But dH̃ = H̃∗(dt), and dt = class∗(θ), thus dH̃ = H̃∗(class∗(θ)) =
(class ◦H̃)∗(θ) = (H ◦ π∗)∗(θ) = (π∗)∗(dTH). Hence,

(π∗)∗(dTH) + (π∗)∗(Kω) = (π∗)∗(dTH + Kω) = 0.

Now, since π∗ is a subduction, according to the previous exercise, and
thanks to [TB, § 6.39],

dTH + Kω = 0.

And that is the expression of the differential of the holonomy. We get
from this identity that if the curvature ω vanishes, then the holonomy
is discrete and the fiber bundle reduces to a covering. ▶
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Conclusion By definition [TB, § 6.83], the Chain-Homotopy Operator
is defined by

Kω = iτ ◦ Φ(ω),
where τ ∈ Hom∞(R, Diff(Loops(X))) is the action of reparametriza-
tion of paths:

τ(ε)(γ) = [t 7→ γ(t + ε)],

and Φ(ω) is the mean value of the “time-pullbacks”:

Φ(ω) =
∫1

0
t̂∗(ω) dt,

with t̂(γ) = γ(t). That way, the differential of the holonomy writes:

dTH + iτF = 0 with F = Φ(ω).

That is the (infinitesimal) equivariant cohomology way of expressing
this differential: H is the moment map associated with the reparametriza-
tion group action on Loops(X), with respect to the 2-form F.

Take a good look, this torus flat! 
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Non-Symplectic Manifold with
Injective Universal Moment Map

This addendum is an exercise, with a detailed solution, made with
the Note 2 of the article 9.23 of the textbook. This example shows
how the condition of transitivity of the automorphisms is necessary
for being a symplectic manifold.

Considering the program of symplectic diffeology I have suggested to
call symplectic differential form on a diffeological space X any closed
2-form ω satisfying the two following properties:

(1) The universal moment map μω : X → Gω is injective.
(2) The local automorphisms Diffloc(X, ω) are transitive on X.

The first condition is to avoid non zero characteristics of ω because
of the theorem [TB, § 9.26] claiming that for manifolds homogeneous
under Diff(X, ω), the characteristics of ω are precisely the pre-images
of the universal moment map.

The second condition is the transposition to diffeology of Darboux
theorem satisfied by symplectic manifold. It could be strengthened
by considering the group of automorphisms, which is still satified for
manifolds, but it doesn’t seem necessary so be it.

Now, we shall see why the second condition is necessary by con-
structing an example of a closed 2-form on a manifold for which the

220
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univesal moment map is injective but the group of automorphism is
not transitive.

235. Exercise. Let us consider the real plane R2 equipped with the
2-form

ω = (x2 + y2) dx ∧ dy.

Q1. Why is ω closed?

Q2. Describe the kernel of ω. We admit that the group of compact
supported automorphisms of a symplectic manifold is transitive, de-
duce that Diff(R2, ω), the group of automorphisms of ω, has 2 orbits:
{0R2} and R2 – {0R2}.

Q3. Tell why every automorphism of (R2, ω) is Hamiltonian.

Q4. Exhibit the unique equivariant universal moment map μω for
(R2, ω) such that μω(0R2) = 0G∗ . Why is it unique?

Q5. Show that if z = (x, y) ̸= (0, 0), then μω(z) ̸= 0G∗ . Conclude
that μω is injective.

✑ Proof. Q1. ω is closed because it is a 2-form on a 2-dimensional
space (op. cit. § 6.39).

Q2. Let z = (x, y) ∈ R2, by definition

ker(ωz) = {u ∈ R2
| ωz(u)(v) = 0 for all v ∈ R2}.

But, ωz(u)(v) = (x2 + y2)det(u v). Thus, since det(· ·) is nondegener-
ate, if z ̸= (0, 0) then ker(ωz) = {0R2}, else ker(ω0) = R2. It follows
that, since an automorphism of ω induces an isomorphism on the ker-
nel, the origin 0R2 must be mapped onto itself by any automorphism
of ω. Indeed, 0R2 is the only point with kernel R2. Then, for all
φ ∈ Diff(R2, ω), R2 – {0} is invariant by φ, thus φ ↾ R2 – {0R2} is
a symplectomorphism of R2 – {0R2}. Now, R2 – {0R2} is open and
ω ↾ R2 – {0R2} is symplectic, according to the assumption: for every
two points z and z ′ in R2 – {0R2} there exists a compact supported
automorphism φ of (R2 – {0R2}, ω ↾ R2 – {0R2}) mapping z to z ′.
But since a compact in R2 – {0R2} is a closed and bounded subset,
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the complement of the support contains an open neighborhood of
0R2 on which φ is the identity, thus φ can be smoothly extended by
φ(0R2) = 0R2 . This extension, still mapping z to z ′, satisfies obi-
ously φ∗(ω) = ω on R2 and then belongs to Diff(R2, ω). Therefore,
Diff(R2, ω) is transitive on R2 – {0}, that is, the group Diff(R2, ω) has
two orbits in R2: {0R2} and R2 – {0R2}.

Q3. Since R2 is contractible (precisely, has a vanishing first homol-
ogy), the automorphisms Diff(R2, ω) are Hamiltonian (op. cit. § 9.7
and 9.15).

Q4. Since the action of Diff(R2, ω) has a fixed point, 0R2 , the moment
map is exact and there exists an invariant primitive μω (op. cit. § 9.10,
Note 2). Actually, applying the expressions (♦) and (♥) of (op. cit.
§ 9.20), to a path p, connecting 0R2 to z = (x, y), an equivariant
primitive μω (op. cit. § 9.9) of the 2-points moment map(op. cit. § 9.8)
is given, for every plot F of Diff(R2, ω), by

μω(z)(F)r(δr) =
∫1

0
ωp(t)(ṗ(t))(δp(t)) dt,

with

δp(t) = [D(F(r))(p(t))]–1∂F(r)(p(t))
∂r

(δr).

This moment is unique because two moment maps differ only by a
constant in G∗ (R2 is connected) (op. cit. § 9.9), and the constant is
fixed by μω(0R2) = 0G∗ .

Q5. The proof that the moment map μω restricted to R2 – {0R2} is
injective is contained in the proof of (op. cit. § 9.23, B) by chosing a
real smooth function f on R2 vanishing outside a small ball centered
at z ′ ̸= z not containing z nor 0R2 . Now we have just to show that for
all z ∈ R2 – {0R2}, μω(z) ̸= 0G∗ . For that we will apply the previous
formula to

p(t) = tz and F(r) =
(

cos(2πr) – sin(2πr)
sin(2πr) cos(2πr)

)
with

t ∈ R, z = (x, y) ∈ R2, r ∈ R and δr = 1.
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By linearity, D(F(r))(p(t)) = F(r), and then

δp(t) = F(r)–1∂F(r)
∂r

(p(t))

=
(

cos(2πr) sin(2πr)
– sin(2πr) cos(2πr)

)
× 2π ×

(
– sin(2πr) – cos(2πr)
cos(2πr) – sin(2πr)

)(
tx
ty

)
= 2π

(
0 –1

+1 0

)(
tx
ty

)
= 2π

(
–ty
tx

)
.

On the other hand, ṗ(t) = d(tz)
dt = z. Hence,

ṗ(t) =
(

x
y

)
, and δp(t) = 2π

(
–ty
tx

)
.

Therefore,

μω(z)(F)r(δr) =
∫1

0
ωp(t)(ṗ(t))(δp(t))dt = 2π

∫1

0
ωtz

(
x
y

)(
–ty
tx

)
dt

= 2π
∫1

0
((tx)2 + (ty)2)det

(
x –y
y x

)
tdt

= 2π
∫1

0
(x2+y2)(x2+y2)t3dt = 2π(x2+y2)2

∫1

0
t3dt =

2π
4

(x2+y2)2.

Hence, if z = (x, y) ̸= (0, 0) the value of the moment map above,
computed on the 1-path F, is not zero, which implies μω(z) ̸= 0G∗ .

In conclusion, μω(0R2) = 0G∗ , μω ↾ R2 – {0R2} is injective and if
z ̸= 0R2 then μω(z) ̸= 0G∗ , therefore μω is injective. ▶

So, what is this exercise all about? The paragraph 9.23 states that a
closed 2-form ω on a manifold is symplectic, that is, nondegenerate, if
and only if its group of automorphisms is transitive and the universal
moment map is injective. This exercise shows that the injectivity of
the universal moment map is not sufficient (and the condition of
transitivity is necessary), since it exhibits a non symplectic closed
2-form on R2 with an injective universal moment map.
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On Riemannian Metric in Diffeology

In this note, we attempt to establish the formal framework of Rie-
mannian diffeology. This involves providing a definition of a Rie-
mannian metric that coincides with the standard definition of mani-
folds. It’s easy to define a symmetric, covariant positive 2-tenor, the
tricky part being deciding what we mean by positive definite.

I have opted for a pointwise approach to the definition of a Riemann-
ian metric on diffeological spaces.

60. Pointed or pointwise diffeology

The notion of pointed or pointwise diffeology has been used at a
few places already: for the dimension in diffeology [TB, § 2.19/20],
or for the construction of differential p-forms bundles and p-vectors
bundles (op. cit. § 6.45). We can detach the definition of pointwise
diffeological objects from an ambient diffeology, and make it depend
solely on a pointed diffeology. First, let us recall that :

236. Pointed parametrization. A pointed parametrization in a set X
at a point x is any parametrization P : U → X such that: 0 ∈ U and
P(0) = x. We denote by Paramx(X) the set of all parametrizations
pointed at x.

237. Pointed diffeology. Let X a set and x ∈ X, we call a pointed
diffeology at x any set Dx ⊂ Paramx(X) that satisfies the two axioms:

224
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(1) The constant parametrization 0 7→ x belongs to Dx.
(2) For all parametrization P : U → X belonging to Dx and for

all smooth parametrization F : V → U, pointed at 0, P ◦ F
belongs to Dx.

Note that a pointed diffeology at x is always the germ at the point x
of the diffeology it generates (op. cit. § 1.6). And, for any diffeology
D, the subset Dx ⊂ D of plots pointed at x is a pointed diffeology.

238. Pointed path. A pointed path at x ∈ X is a pointed smooth
parametrization at x, defined on R or some interval ]a, b[.

239. Pointed p-form. A pointed p-form at x is a map αx that asso-
ciates to every pointed plot P at x a linear p-form αx(P) ∈ Λp(Rn)
at 0 ∈ dom(P) ⊂ Rn, such that αx(F ◦ P) = F∗(αx(P))0, that is:

αx(F ◦ P)(v1, . . . , vp) = αx(P)(Mv1, . . . , Mvp),

with M = D(F)(0),

for all smooth parametrization F in dom(P) pointed at 0. We shall
denote the space of pointed p-forms at x by λpx(X).

Note. The value at x of a (global) p-form is a pointed p-form, but
maybe not all pointed p-forms are values of a (global) p-form. We
have denoted by Λpx(X) the space of values of p-forms at x (op. cit.
§ 6.45). Actually, according to our notations:

Λ
p
x(X) ⊂ λ

p
x(X).

61. Smooth covariant tensor

We recall (op. cit. § 6.20 Note, 6.21) that a smooth covariant tensor
on a diffeological space is a map ε that associates to every plot P in
X a smooth covariant tensor ε(P) on U = dom(P), such that

ε(P ◦ F) = F∗(ε(P))

for all smooth parametrization F : V → U. The tensor ε is symetric
if ε(P) is symetric for all P. In the following we deal with symetric
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2-tensor and we denotes their space by

Σ
2(X),

and the space of symetric 2-tensor on the Euclidean subset U by
Σ

2(U) with the identification ε ∼ ε(1U).

About the notations, if ε is a smooth covariant k-tensor on a domain
U ⊂ Rn, we denote by εr(v1) · · · (vk) the evaluation of ε at the point
r ∈ U, applied to the k-uple of vectors v1, · · · , vk ∈ Rn. For n = 1, a
vector is just a number and 1 is the canonical basis vector.

62. Riemannian metric on a diffeological space

240. Riemannian metric. We shall define, for now, a Riemannian
metric on a diffeological space X a covariant 2-tensor that satisfies
the following conditions:

• (Symetric) The tensor g is symetric:

g ∈ Σ
2(X).

• (Positive) For all path γ ∈ Paths(X), g(γ) ≥ 0, that is

g(γ)t(1)(1) ≥ 0 for all t ∈ R.

Actually we can restrict the case to paths defined on R or on
intervals ]a, b[, in that case g(γ)t(1)(1) ≥ 0 for all t ∈ dom(γ)
obviously.

• (Definite) The tensor g is positive definite:

g(γ)t(1)(1) = 0 if and only if ∀α ∈ Ω
1(X), α(γ)t(1) = 0.

The last condition can be weakened by considering pointed differen-
tial forms, as defined above. Considering the space λkx(X) of pointed
k-forms at x by, the positivity condition becomes:

• (Definite’) The tensor g is positive definite if for all point
x ∈ X, for all path γ pointed at x :

g(γ)0(1)(1) = 0 if and only if ∀αx ∈ λ
1
x(X), αx(γ)0(1) = 0.
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It is not clear what definition is the best, for many examples built
with manifolds and spaces of smooth maps they do coincide. But
they may differ in general and, depending on the problem, one must
choose one or the other.

241. Length and energy of a path. Let g be a Riemannian metric on
a diffeological space X. For all path γ in X, we define its length and
its energy by:

Length(γ) =
∫1

0

√
g(γ)t(1)(1) dt, and E(γ) =

1
2

∫1

0
g(γ)t(1)(1) dt .

63. How does this fit?

242. Exercise 1. For all x ∈ X we say that a path γ is centered at x
if γ(0) = x. Let g be a symmetric 2-tensor on X. Show that:

• g is positive if for all x ∈ X, for all path γ centered at x,
g(γ)0(1)(1) ≥ 0.

• g is definite if for all x ∈ X, for all path γ centered at x,
g(γ)0(1)(1) = 0 implies that for all 1-form α on X, pointed
or not, α(γ)0(1) = 0.

✑ Proof. It is a part of the definition that if g(γ)t(1)(1) ≥ 0 for all
path γ in X and all t ∈ dom(γ), then, for all x ∈ X, for all path γ
centered in x, g(γ)0(1)(1) ≥ 0. Conversely, assume that for all x ∈ X,
for all path γ centered in x, g(γ)0(1)(1) ≥ 0. Let γ′ be a path in X
and t ∈ dom(γ′), let x = γ′(t). Let Tt(t′) = t′ + t be the translation
by t in R and γ = γ′ ◦ Tt Then,

g(γ)0(1)(1) = g(γ′ ◦ Tt)0(1)(1)

= T∗
t (g(γ′))0(1)(1)

= g(γ′)t(1)(1) because D(Tt)0(1) = 1.

Thus, for all t ∈ dom(γ′), g(γ′)t(1)(1) ≥ 0.

The same use of translation by t proves the second proposition. ▶
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F

X

F’

U U’
Q

V

x

r r’

Figure 34. The transition function.

243. Exercise 2. Show that for X = M be a manifold, this definition
coincide with the standard definition. We choose the definition of
positive definite metric with pointed forms. Say why on manifold
the two conditions coincide.

✑ Proof. Let A be an atlas of M and let dim(M) = n. By definition,
for all chart F ∈ A, g(F) is a symetric 2-tensor on dom(F), since a
chart is a particular plot. Let x ∈ M and two charts F, F′ ∈ A such
that F(r) = F(r ′) = x. Since A is a generating family, there exists
an open neighborhood V ⊂ dom(F) of r and a plot Q : V → dom(F′)
such that F′ ◦ Q = F ↾ V, Q(r) = r ′, and we can choose V such
that Q(V) ⊂ dom(F′). Thus, g(F ↾ V) = g(F ◦ Q) = Q∗(g(F)), but
Q = F′–1 ◦ F ↾ V is the transition diffeomorphism, hence: g(F) =
(F′–1 ◦ F)∗(g(F′)) which is the definition of a 2-tensor on a manifold.

Now, let F be a chart of M. As we said g(F) is a symmetric 2-
tensor on dom(F) ⊂ Rn. Let g(F)r be its value in r, and x = F(r).
Let v ∈ Rn and γv : t 7→ r + tv, γv is a smooth path in dom(F),
defined on some interval in R and centered at r. Let γv = F ◦ γ, then
γ

v(0) = F(r) = x. Then:

g(γv)0(1)(1) = g(F ◦ γv)0(1)(1)

= γ∗v(g(F))0(1)(1)

= g(F)γv(0)(γ̇v(0))(γ̇v(0)), with γ̇v(t) =
dγv(t)

dt
= g(F)r(v)(v)
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Since g(γ)0(1)(1) ≥ 0 for all γ, then, for γ = γv , g(F)r(v)(v) ≥ 0 for
all r ∈ dom(F) and v ∈ Rn. Thus, g(F) is a non-negative symmetric
2-tensor.

Now, let F be a chart and let us check that g(F) is positive defi-
nite. Let r ∈ dom(F) and v ∈ Rn. Let x = F(r). Assume that
g(F)r(v, v) = 0. Let γv(t) = r + tv and γv = F ◦ γv , then:

g(F)r(v)(v) = g(F)γv(0)(γ̇v(0))(γ̇v(0))

= γ∗v(g(F))0(1)(1)

= g(F ◦ γv)0(1)(1)

= g(γv)0(1)(1)

So, if g(F)r(v, v) = 0 then g(γv)0(1)(1) = 0, which implies, by hy-
pothesis, that for all 1-form αx pointed at x, αx(γv) = 0. Consider
now the coordinate 1-forms e∗i : v 7→ vi, for all v = ∑i viei, where
(ei)n

i=1 is the canonical basis of Rn. Push the form e∗i onto M by the
chart F : Let εxi defined as follow: for all plots P : U → X pointed at x,
there exists a smooth parametrization Q pointed at r, with F(r) = x,
defined on neighborhood V of 0 ∈ U such that P ↾ V = F◦Q. Then, let
ε

x
i (P) = Q∗(e∗i ), this is a 1-form centered at x. Indeed, for P′ = P◦F,

Q′ = Q ◦ F and εxi (P ◦ F) = (Q ◦ F)∗(e∗I ) = F∗(Q∗(e∗i )) = F∗(εxi (P)).
Now, since g is assumed to be positive definite: εxi (γv) = 0, but
γ

v = F ◦ γv , thus εxi (γv) = γ
∗
v(e∗i ) = (e∗i )r(γ̇v(0)) = e∗i (v) = vi.

R

t

F

γv

X

U
γv

Figure 34. A path in a chart.
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Hence, for all i, vi = 0 and then v = 0. The 2-tensor g(F) defined on
dom(F) is a positive definite metric. ▶

244. Exercise 3. For two vectors v, v ′ ∈ R3, denote by 〈v, v ′〉 their
ordinary scalar product. Let γ ∈ Paths(R3), call a variation of γ a
path t 7→ (xt, vt) such that xt = γ(t) and vt ∈ R3. For two variations
ν = [t 7→ (xt, vt)] and ν′ = [t 7→ (xt, v ′

t)] of γ, define the product

〈ν, ν′〉 =
∫1

0
〈vt, v ′

t〉 dt

Q1. Considers this product to define a formal Riemannian metric on
Paths(R3).

Q2. Explicit the energy of a path [s 7→ γs] in Paths(R3).

✑ Proof. Let P : U → Paths(X) be a n-plot. Let us define g(P) a
2-tensor on U by: for all r ∈ U and v, v ′ ∈ R3,

g(P)r(v)(v ′) =
∫1

0

〈
∂γr(t)
∂r

(v),
∂γr(t)
∂r

(v ′)
〉

dt .

Let us prove that g is a Riemannian metric on Paths(X). Consider
g(P ◦ F), with F a smooth paramerization in U. Let us denote F :
s 7→ r, P : r 7→ γ and then P ◦ F : s 7→ r 7→ γ. We have:

g(P ◦ F)s(w)(w ′) =
∫1

0

〈
∂γ(t)
∂s

(w),
∂γ(t)
∂s

(w ′)
〉

dt

=
∫1

0

〈
∂γ(t)
∂r

∂r
∂s

(w),
∂γ(t)
∂r

∂r
∂s

(w ′)
〉

dt

We remind that for a smooth parametrization f : x 7→ y, where x and
y are two real variables, we use indiferently the notations

D(f ) or D(x 7→ y) or
∂y
∂x

.

Then for g ◦ f : x 7→ y 7→ z, the chain-rule writes:

D(x 7→ z) = D(x 7→ y 7→ z) = D(y 7→ z) ◦ D(x 7→ x),
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or:
∂z
∂x

=
∂z
∂y

◦ ∂y
∂x

.

Therefore, by denoting

v =
∂r
∂s

(w) and v ′ =
∂r
∂s

(w ′)

we get:

g(P ◦ F)s(w)(w ′) =
∫1

0

〈
∂γ(t)
∂r

∂r
∂s

(w),
∂γ(t)
∂r

∂r
∂s

(w ′)
〉

dt

=
∫1

0

〈
∂γ(t)
∂r

(v),
∂γ(t)
∂r

(v ′)
〉

dt

= g(P)r=Q(s)

(
∂Q(s)
∂s

(w)
)(

∂Q(s)
∂s

(w ′)
)

= Q∗(g(P))s(w)(w ′)

Hence, g is a covariant 2-tensor on Paths(R3). It is symmetric be-
cause the scalar product is symetric. Now, let s 7→ γs be a path in
Paths(R3),

g(s 7→ γs)s(1)(1) =
∫1

0

〈
∂γs(t)
∂s

,
∂γs(t)
∂s

〉
dt =

∫1

0

∥∥∥∥∂γs(t)
∂s

∥∥∥∥2
dt

Obviously g(s 7→ γs)s(1)(1) is positive. Now

g(s 7→ γs)s(1)(1) = 0 ⇒ ∥∥∥∥∂γs(t)
∂s

∥∥∥∥2
= 0.

then
∂γs(t)
∂s

= 0 ⇒ γs = γ.

The path s 7→ γs is constant. Thus, for all 1-forms α on Paths(R3),
α(s 7→ γ) = 0. Differential forms vanish on constant plots (op. cit.
Ex. 96). Therefore, the tensor g defined on Paths(R3) is positive
and definite, it is a diffeological Riemannian metric according to the
definition above. Hence,

E(s 7→ γs) =
1
2

∫1

0
ds

∫1

0
dt
∥∥∥∥∂γs(t)

∂s

∥∥∥∥2

is the energy of the path s 7→ γs in Paths(R3). ▶
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A Few Half-Lines

In this note we shall talk about a few diffeologies that appeared,
equipping the half-line [0, ∞[.

As you may know, the half-line [0, ∞[⊂ R can be equipped with the
subset diffeology [TB, § 1.33], that is, a plot in [0, ∞[ is just a smooth
parametrization in R taking its values in [0, ∞[. Let us denote this
space by Δ. Actually, Δ is a manifold with boundary according to
(op. cit. § 4.12, 4.16), the boundary being the point {0}. Now the
set [0, ∞[ appears in many other places, as the underlying set for
the quotients Δn = Rn/O(n) (op. cit. § 1.50, Ex. 50). Indeed, the
quotient space1 Δn can be realized as the set [0, ∞[ equipped with the
pushforward of the usual diffeology of Rn by the norm-square map
sqn : x 7→ ∥x∥2. Now, for every integer n, thanks to the inclusion

Jn+1
n : Rn

→ Rn+1, defined by Jn+1
n (x) =

(
x
0

)
,

we get a family of smooth injections on the quotient spaces, denoted
by jn+1

n .

These definitions give a direct system {Δn, jmn }n,m∈N indexed by the
integers, where the jmn , m = n + k, are defined by

jn+k
n : Δn → Δn+k , and jn+k

n = jn+k
n+k–1 ◦ jn+k–1

n+k–2 ◦ · · · ◦ jnn+1.

This is summarized by the commutative diagram:

1Actually Δ1 = R/{±1} is an orbifold (op. cit. § 4.17).
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A FEW HALF-LINES 233

Rn Rn+1

Δn Δn+1

Jn+1
n

πn πn+1

jn+1
n

Since the category {Diffeology} is stable by the operations of sum
(op. cit. § 1.39) and quotient (op. cit. § 1.50), it is possible to de-
fine the direct limit (or inductive limit or colimit) of a direct system
{Xi, f j

i }i,j∈I, where I is an up-directed set of indices,2 the Xi are dif-
feological spaces, and the f j

i : Xi → Xj are smooth maps such that
f j
k ◦ f k

i = f j
i and f i

i = 1Xi . By definition

lim
−→Xi =

(∐
i∈I

Xi

)
/∼,

where the equivalence relation is defined by

(m, x) ∼ (n, y) ⇔ ∃k, k ≥ m, k ≥ n and jkm(x) = jkn(y).

Then, a plot in lim
−→Xi is any parametrization P : U 7→ lim

−→Xi such that
there exists everywhere in U, locally, a plot Q : V →

∐
i∈I Xi satisfy-

ing class(Q(r)) = P(r) for all r ∈ V, where class is the projection from∐
i∈I Xi onto its quotient lim

−→Xi. Now, thanks to the definition of the
sum of diffeological spaces, that means that everywhere in V, there
exists an index i and a domain W ⊂ V such that val(Q ↾ W) ⊂ Xi.
In other words, there exists everywhere in U, an index i, a domain
W ⊂ U, and a plot Q : W → Xi, such that P(r) = classi(Q(r)), where
classi = class ↾ Xi and r ∈ W. So, that is the natural diffeologi-
cal construction of limit we inherit from the standard definition of
sums and quotients.3 Now, applied to our system above, and after
identifying each Δn with [0, ∞[ equipped with the pushforward of the

2In French: un ensemble filtrant croissant d’indices.
3I didn’t include this definition in the book because I didn’t use this construction

explicitly in it, and it’s something that follows naturally from the definition of sums
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smooth diffeology of Rn by the square map sq : x 7→ ∥x∥2, the maps
jmn reduce to 1[0,∞[, and the plots in Δ∞ = lim

−→(Δn) are the paramet-
rizations P : U → [0, ∞[ such that everywhere in U, there exists an
integer N, a domain V ⊂ U, and a smooth map Q : V → RN such that
P(r) = ∥Q(r)∥2 for all r ∈ V. In other words, there exist N smooth
real functions Qi, defined on V, such that

P(r) =
N∑

i=1
Qi(r)2.

And that’s all for the description of the diffeology of Δ∞. The plots
are the non-negative parametrizations of R which write locally as a
finite sum of squares of smooth real functions.

Now: a day of June, a few years ago, during the Conference in honor
of Souriau, I was drinking a Coke on the Cours Mirabeau in Aix-en-
Provence with Enxin Wu when he asked if Δ∞ and Δ could coincide
as diffeological spaces? In other words, if any non-negative paramet-
rization of R could be locally written as a sum of squares of smooth
real functions? A good question. . . We asked Google: “non negative
function as sums of squares”, unexpectedly the first link appeared on
the screen was the paper of Bony and al. [BBCP06], which states in
its very abstract that:

“For n ≥ 4, there are C∞ nonnegative functions f
of n variables (...) which are not a finite sum of
squares of C2 functions.”

It was done. In our words: there exist 4-plots in Δ that cannot be
locally lifted smoothly in

∐
n∈N Δn, or: there are plots in Δ which are

not plots in Δ∞. Therefore, if clearly the diffeology of the limit Δ∞ is
finer than the diffeology of Δ, the converse is not true, and these two
diffeologies on [0, ∞[ do not coincide. We have finally the chain of
strictly ordered diffeological spaces on the same underlying set [0, ∞[,

Δ1 ≺ Δ2 ≺ · · · ≺ Δ∞ ≺ Δ.

and quotients. But thanks to this note, I’ve been able to include a paragraph on
the definitions of limits, inductive and projective.
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1-Forms on Half-Lines

In this note we characterize the differential 1-forms, defined on the
various half-lines Δ, Δn, Δ∞, that share the same underlying set [0, ∞[.

We consider a series of diffeologies on the set [0, ∞[:

(A) Equipped with the subset diffeology, it is a manifold with bound-
ary {0}, [TB, § 4.12, 4.16]. It is denote by Δ.

(B) Equipped with the pushforward of the standard diffeology of Rn,
n > 0, by the norm-square map:

Sq : Rn
→ [0, ∞[ with Sq : x 7→ ∥x∥2,

it represents the quotients Δn = Rn/O(n) (op. cit. § 1.50, Ex. 50).
We denote Δ∞ = limn→∞ Δn, and when we write Δn, we allow n to
represent also ∞.

Note 1. There are no two different half-lines above that are diffeomor-
phic. We recall that dim0(Δn) = n, dim0(Δ∞) = ∞ and dim0(Δ) = ∞,
(op. cit. § Ex. 50,51) and “A few half-lines” in these notes.

Note 2. The choice of the function Sq to characterize the quotient
Rn/O(n) is irrelevant. Every other bijection with the space of orbits
could have been used to push forward the standard diffeology of Rn,
as explained in (op. cit. § 1.52). For example we could have chosen
equivalently X 7→ ∥X∥, but then the injection j : [0, ∞[→ R would
have not been smooth.
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245. The 1-forms are closed. Every differential 1-form defined on Δn,
Δ∞, or Δ ⊂ R, is closed. Moreover, every half-line is contractible.
Therefore, every 1-form is exact.

Note. In the case n = 1, the 1-forms are closed simply because the
dimension of Δ1 is 1 (op. cit. § 6.39). But because the dimension of
Δn and Δ at the origin are n or ∞, the argument of the dimension
doesn’t apply so simply.

✑ Proof. Any of these half-lines has [0, ∞[ as underlying space,
only the diffeology change. In each case, the subset ]0, ∞[ is D-open.
In each case, the diffeology induced on ]0, ∞[ is the standard diffeo-
logy. The difference of behavior in the diffeology happens only on
the neighborhood of {0}. Now, let α be a 1-form on a half-line, let P
be a m-plot and U ⊂ Rm be its domain. The subset V = P–1(]0, ∞[)
is open in U and because ]0, ∞[ is 1-dimensional d[α(P ↾ V)] = 0.
The complementary W of V in U is closed. On its interior W̊ the
plot is constant, therefore α(P ↾ W̊) = 0, and then d[α(P ↾ W̊)] = 0.
Now, on the boundary ∂V = V̄ – V = W – W̊, every point r is a
limit limn→∞ rn, with rn ∈ V. Thus, by continuity, for all ξ, ξ′ ∈ Rm,
d[α(P)]r(ξ, ξ′) = limn→∞ d[α(P ↾ V)]rn(ξ, ξ′) = 0. Hence, dα(P) = 0
everywhere, that is, dα = 0.

Next, about contractibility. Since the radial retraction x 7→ sx in Rn

is equivariant under the action of O(n), the quotients Δn = Rn/O(n)
are contractible, and also the limit Δ∞. For Δ we have the retraction
ρs : t 7→ s2t. The map (s, t) 7→ s2t, defined on R × Δ takes its values
in Δ and is smooth. Thus, Δ is contractible. According to (op. cit.
§ 6.90) every closed differential form on a contractible diffeological
space is exact. Therefore, every 1-form on these half-lines is the
differential of a smooth function, this function can be normalized by
zero at the origin, and then is unique. ▶

246. The case of Δ. Every differential 1-form on the embedded half-
line Δ ⊂ R is the restriction of a differential 1-form defined on R. In
other words, the natural induction j : [0, ∞[→ R induces a surjective
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pullback j∗ : Ω1(R) → Ω
1(Δ). That is, for all α ∈ Ω1(Δ), there exists

a ∈ C∞(R, R) such that αx = a(x) dx, for all x ≥ 0.

✑ Proof. Thanks to (op. cit. § 4.13) we know that a smooth func-
tion from Δ to R is the restriction of a smooth function from R to R.
Together with the proposition 1, that gives the result. ▶

247. The case of Δn. The set [0, ∞[ is equipped with the pushforward
of the standard diffeology of Rn by the norm-square map Sq. That
identifies Δn with Rn/O(n) by class(X) ≃ ∥X∥2. The injection j :
Δn ≃ [0, ∞[→ R is smooth. The pullback j∗ : Ω1(R) → Ω1(Δn) is, here
again, surjective.1

✑ Proof. The smoothness of the injection comes from the smooth-
ness of the square Sq : Rn → [0, ∞[, with Sq(X) = ∥X∥2. Now, for
the same reason than previously, every 1-form α on Δn is exact, that
is, there exists a function f ∈ C∞(Δn, R) such that α = df . Pulled
back on Rn, we have Sq∗(α) = Sq∗(df ) = d(f ◦ Sq). The function
F = f ◦Sq is smooth and invariant by O(n). Conversely every smooth
function F : Rn → R that is O(n)-invariant is the pullback, by Sq,
of a smooth function f on Δn. So, every 1-form on Δn is the push-
forward of a differential dF, where F is smooth and O(n)-invariant.
Let us restrict F to the subspace of the vectors (x, 0), x ∈ R, and
let F(x) for F(x, 0). We have F(x) = f (x2), that is, F(+x) = F(–x).
Thanks to Whitney theorem [Whi43], there exists a smooth function
g ∈ C∞(R, R) such that F(x) = g(x2). Thus, f (x2) = g(x2), in other
words: f = g ↾ [0, ∞[, f is the restriction of a smooth function to the
interval [0, ∞[. Thus α = df = d(g ◦ j) = j∗(dg); written differently,
αt = a(t) dt, for all t ∈ [0, ∞[. On Rn, the pullback of α writes,

Sq∗(α)X = 2a
(
∥X∥2)X · dX = 2a

(
∥X∥2) n∑

i=1
XidXi,

where a is a smooth function on R. ▶

248. The 1-forms vanish at the origin. Every differential 1-form α,
defined on any half-line Δ or Δn or Δ∞, vanishes at the origin (op. cit.

1Note that the inclusion j is smooth injective but not an induction.
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§ 6.40). That is, for every 1-plot γ pointed at the origin, γ(0) = 0,
we have α(γ)0 = 0.

In other words, the cotangent space reduces to {0} at the origin,
(op. cit. § 6.48); it is equal to R everywhere else. An interesting ques-
tion would be to describe the diffeology of the cotangent space, and
to study its parasymplectic structure,2 that is, the struture defined
by the differential of its Liouville form (op. cit. § 6.49).

✑ Proof. According to what comes before, in every case the in-
jection j from the half-line into R is smooth, and the form α is the
pullback, by j, of some smooth 1-form A ∈ Ω1(R). Thus, α(γ)0 =
j∗(A)(γ)0 = A(j ◦ γ)0. But j ◦ γ(0) = 0 and j ◦ γ(t) ≥ 0 imply
dγ(t)/dt |t=0= 0. Therefore, A(j ◦ γ)0 = A0(dγ(t)/dt |t=0) = 0,
and α(γ)0 = 0. ▶

249. The 1-forms as a 1-dimensional module. From what precedes
we conclude that, in every case: Δ⋆ = Δ or Δn or Δ∞, the space of
differential 1-forms Ω1(Δ⋆) is a 1-dimensional module on Ω0(Δ⋆), with
dt ↾ [0, ∞[ as a generator.

250. Gauges on diffeological spaces. There is a notion of volume for
diffeological spaces of finite constant dimension, in (op. cit. § 6.44)
that almost applies to the half-lines but not completely. First of
all, in our case the dimension is not constant (except for the case
n = 1), but more importantly, the 1-form vanishes at the origin, and
volumes are assumed to be nowhere vanishing. Nevertheless, in every
case above, the space of 1-forms is a 1-dimensional module on the
space of smooth functions, and that is an important remark. That
leads to the introduction of the concept of k-jauge on a diffeological
space, which is slightly different from the concept of volume, but
pursues the same idea:

Definition. We call a k-gauge on a diffeological space X, any k-form
generating Ωk(X) as a 1-dimensional module on Ω0(X).

2Terminology introduced in “Example of Singular Reduction in Symplectic
Diffeology”.
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In our case, for every half-line X, the pullback j∗(dt), where j is the
smooth injection of [0, ∞[ into R, is a generator of Ω1(X). The concept
of k-gauge on diffeological spaces worth being studied. There are a
few questions around it that need to be answered.

[

Half lines

0

0

t

-t

t2

R

∆1 = R/{±1}

dim = 1

[
||x||20

dim = 2

x
R2

∆2 = R2/O(2)

20 20
TB

0
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1-Forms on the Subset Half-Line

We revisit the fact that 1-forms on [0, ∞[ ⊂ R are the restrictions of
smooth 1-forms defined on a neighborhood of the half-line in R.

This is a previous result cited in “1-Forms on Half Lines” about the
half-line subset [0, ∞[ ⊂ R, that every of its 1-forms are the restriction
of some 1-form on R. But in this note, we give a direct proof using
Whithey theorem [Whi43, Theorem 1 and final remark] (see facsimile
in lecture “Local Diffeology, Modeling”).

251. Proposition. Let Δ = [0, ∞[ ⊂ R equipped with the subset dif-
feology. Let α ∈ Ω1(Δ), then there exists a smooth 1-form ᾱ defined
on some neighborhood of Δ such that α = ᾱ ↾ Δ. In other words,
there exists a smooth function a ∈ C∞(] – ε, ∞[), ε > 0, such that α
is the restriction of a(x)dx to [0, ∞[. In other words, for any n-plot
P : r 7→ xr in Δ,

α(P)r(δr) = a(P(r))
∂xr
∂r

(δr),

where, n ∈ N, r belongs to the domain of P and δr ∈ Rn.

✑ Proof. Since ]0, ∞[ ⊂ [0, ∞[ inherits the usual smooth diffeology,
let α ↾ ]0, ∞[ = f (x)dx, and f ∈ C∞(]0, ∞[ , R).

Now, let sq : t 7→ t2, then sq∗(α)t(δt) = α(t 7→ t2)t(δt) = F(t)δt,
with F ∈ C∞(R, R). And for all t ̸= 0, F(t) = f (t2) × 2t.

Next, sq∗(α) is invariant by –1 : t 7→ –t, thus (–1)∗(sq∗(α))t(δt) =
sq∗(α)t(δt). That is, –F(–t) = F(t) and then F(0) = 0. Hence, there

240
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exists a smooth function φ ∈ C∞(R, R) such that F(t) = 2tφ(t), for
all t ∈ R, and then f (t2) = φ(t) for all t ̸= 0. Therefore, the function
φ is even, we can apply the Whitney theorem [Whi43] :

Theorem. (Whitney) An even function f (x) = f (–x), defined on a
neighborhood of the origin, may be written as g(x2). If f is smooth,
g may be made smooth.

There exists then a smooth function g defined on a neighborhood of
the origin such that f (t2) = g(t2). That is, f = g ↾ ]0, ∞[ . Let us
then define ᾱ = g(x)dx, ᾱ is a smooth 1-form defined on an open
neighborhood of [0, ∞[, and α ↾ ]0, ∞[ = ᾱ ↾ ]0, ∞[ .

Now, let γ be any path in [0, ∞[. Let O = γ
–1(]0, ∞[ ), O ⊂ R is

open, and on this open subset ᾱ(γ) = α(γ). Hence, by continuity
ᾱ(γ) = α(γ) on the closure O of O (since ᾱ(γ) and α(γ) are smooth).
But γ is constant (and equal to 0) on R – O, then ᾱ(γ) and α(γ) both
vanishe on R – O. Thus α(γ) = ᾱ(γ) on the whole R. Therefore,
since ᾱ and α coincide on the 1-plots, they coincide as 1-forms [TB,
§ 6.37]. ▶

0

[0,∞[ ⊂ R

dim ∞

R2

∞

The embedded half-line
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Cotangent Space of the Half-Line

We investigate the nature and structure of the cotangent space of the
embedded half-line Δ = [0, ∞[ ⊂ R.

Consider the half-line Δ = [0, ∞[ ⊂ R, equipped with the subset dif-
feology. We have seen above, in “1-Forms on Half-Lines”, that every
1-form α on Δ is the pullback of some 1-form on R. In other words,
there exists a smooth function a ∈ C∞(R, R) such that

α(P)r(δr) = a(P(r))
∂P(r)
∂r
δr,

where P is some plot in Δ, r ∈ dom(P) and δr is a vector of Rn, with
n the dimension of the plot P. One can also write

α(P)r(δr) = a(x)δx,

with P : r 7→ x and δx = D(P)r(δr). We have also seen that the value
of α at any point x ̸= 0 is given by a(x), and that the value of α at 0
is 0. Therefore, the map

π : Δ × Ω
1(Δ) → R × R, defined by π(x, α) = (x, xa(x)),

gives a representation of the cotangent space T∗(Δ) [TB, 6.48], where
its image is equipped with the pushforward diffeology. Indeed, if
π(x, α) = π(x ′, α′), then x = x ′ and if x ̸= 0, then a(x) = a(x ′). If
x = 0, then for whatsoever α and α′, π(0, α) = (0, 0) = π(0, α′). Since
every 1-form vanishes at the origin, (0, 0) = π(0, α) represents the
value of α at x = 0, for all α.
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It’s now time to investigate the diffeology on the set

val(π) = {(0, 0)}
⋃

]0, ∞[ × R

when it is equipped with the pushforward diffeology by π.

252. Real functions vanishing at the origin. Let f ∈ C∞(R, R) such
that f (0) = 0. Then, there exists φ ∈ C∞(R × R) such that f (x) =
xφ(x), for all x ∈ R.

Let C∞
0 (R, R) be the subset of real smooth functions vanishing at

the origin, equipped with the induced diffeology of the functional
diffeology on C∞(R × R). Then, the map

j : C∞
0 (R, R) → C∞(R, R) defined by j(f ) = φ : x 7→ f (x)

x
is a diffeomorphism.

✑ Proof. First of all, if x ̸= 0, φ(x) = f (x)/x. For x = 0, φ is
extended by continuity and φ(0) = f ′(0). Next, it is clear that the
map j : f 7→ φ is bijective. Now let us consider a plot r 7→ fr in
C∞

0 (R, R). Applying the Taylor’s formula with rest [Die70a, § 8.14.3],
we get, since fr(0) = 0 for all r:

fr(x) = xf ′r (0) + x2
∫1

0
(1 – t)f ′′r (xt)dt.

And since φr(x) = fr(x)/x, we get

φr(x) = f ′r (0) + x
∫1

0
(1 – t)f ′′r (xt)dt.

This expression shows clearly, for f constant in r, that φ is smooth.
It shows, moreover, that (r, x) 7→ φr(x) is smooth, that is, r 7→ φr is
a plot of C∞(R, R). Conversely, if r 7→ φr is a plot, then r 7→ [x 7→
xφr(x)] is obviously a plot. Therefore, æ is a diffeomorphism. ▶

253. Representing T∗(Δ). Let us factorize the projection π : (x, α) →

(x, a(x)) by

(x, α) 7→ (x, f = [x 7→ xa(x)]) 7→ (x, f (x) = (x, xa(x))).

Thanks to the first article, the first arrow (x, a) 7→ (x, f = [x 7→
xa(x)]) is a diffeomorphism from Δ×Ω1(Δ) to Δ×C∞

0 (Δ, R). The second
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Figure 34. The representation of T∗(Δ).

arrow
ev : (x, f ) 7→ (x, f (x)),

defined on Δ × C∞
0 (Δ, R) is an evaluation map.

1) The cotangent space T∗(Δ) is diffeomorphic to {(0, 0)}
⋃

]0, ∞[ × R,
equipped with the pushforward diffeology by ev.

2) This diffeology, on {(0, 0)}
⋃

]0, ∞[ × R, is not the subset diffeology
of R2, it is strictly finer.

✑ Proof. Indeed, consider the 1-plot γ : t 7→ (x(t) = t2, y(t) = t) of
{(0, 0)}

⋃
]0, ∞[×R for the subset diffeology. Assume that there exists

a local lift of γ in Δ×C∞
0 (Δ, R) near 0, that is, a smooth path t 7→ ft in

C∞
0 (R, R) such that y(t) = ft(x(t)). According to the article 1, there

exists a smooth path t 7→ at such that ft(x) = xat(x). Thus, y(t) =
x(t)at(x(t)), that is, t = t2at(t2), i.e. at(t2) = 1/t. And that is not
possible since t 7→ at(t2) is defined for t = 0 (and moreover smooth).
Therefore, ev is not a subduction on {(0, 0)}

⋃
]0, ∞[×R for the subset

diffeology. Said differently, not all plots of the subset diffeology are
plots for the cotangent diffeology. The cotangent diffeology is then
finer than the subset diffeology. ▶
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1-Forms on Half-Spaces

In this note we shall see that every differential 1-form on the half-
space Hn = [0, ∞[ × Rn–1 is the restriction of a smooth 1-form on Rn.

This is a (almost) straightforward generalisation of the proposition
of “1-Forms On The Half Line” in the previous article. And with a
little bit of rewriting, this proof applies to all differential k-forms on
half-spaces.

254. Differential 1-form on half-space. Let Hn = [0, ∞[ × Rn–1 be the
half n-space, equipped with the subset diffeology. Let α ∈ Ω1(Hn) be
a differential 1-form on Hn. Then, there exists a smooth 1-form ᾱ
defined on some neighborhood of Hn ⊂ Rn such that α = ᾱ ↾ Hn.

✑ Proof. Since ]0, ∞[ × Rn–1 ⊂ [0, ∞[ × Rn–1 inherits the usual
smooth diffeology,

α ↾ ]0, ∞[ × Rn–1 = a(x, y)dx +
n–1∑
i=1

bi(x, y)dyi

where (x, y) ∈]0, ∞[ × Rn–1 and a, bi ∈ C∞(]0, ∞[ × Rn–1, R).

Now, let

sq1 : (t, y) 7→ (t2, y),

then

sq∗
1(α)(t,y)(δt, δy)) = α((t, y) 7→ (t2, y))(t,y)(δt, δy)

245
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= A(t, y)δt +
n–1
∑

i=1
Bi(t, y)δyi,

with A, Bi ∈ C∞(Rn, R). And for all t ̸= 0,

A(t, y) = 2t a(t2, y) and Bi(t, y) = bi(t2, y).

Next, sq∗
1(α) is invariant by (–1, 1) : (t, y) 7→ (–t, y), thus

sq∗
1(α)(t,y)(δt, δy) = (–1, 1)∗(sq∗

1(α))(t,y)(δt, δy)

= sq∗
1(α)(–t,y)(–δt, δy)

= A(–t, y)(–δt) +
n–1
∑

i=1
Bi(–t, y)δy.

Thus, –A(–t, y) = A(t, y) and Bi(t, y) = Bi(–t, y). In particular,
A(0, y) = 0. Hence, there exists a smooth function A ∈ C∞(Rn, R)
such that A(t, y) = 2tA(t, y), for all t ∈ R. Thus, a(t2, y) = A(t, y).
Now, A is even in t, as well as the Bi. We can then apply the Hassler
Whitney theorem [Whi43, Theorem 1 and final remark] (See facsimile
in lecture “Local Diffeology, Modeling”), stated as follows:

Theorem. (Whitney) If a smooth function f (t, x) is even in t, f (t, x) =
f (–t, x), then there exists a smooth function g(t, x) such that f (t, x) =
g(t2, x).

Hence, there exists a smooth function a(t, y) such that A(t, y) =
a(t2, y), and there exists (n–1) smooth functions bi such that Bi(t, y) =
bi(t

2, y). We have then, for all t > 0, a(t, y) = a(t, y) and bi(t, y) =
bi(t, y).

Let us then define ᾱ on Rn,

ᾱ = a(x, y)dx +
n–1∑
i=1

bi(t, y)dyi.

The form ᾱ is a smooth 1-form defined on an open neighborhood
of Hn, and α ↾ ]0, ∞[ × Rn–1 = ᾱ ↾ ]0, ∞[ × Rn–1. Let us prove now
that α and ᾱ coincide on the whole Hn. Since α and ᾱ ↾ Hn are two
differential 1-forms on Hn, it is enough to show that they take the
same value on any smooth path.
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Let γ be any path in [0, ∞[ × Rn–1. Let O = γ–1(]0, ∞[ × Rn–1), O ⊂ R
is open, and on this open subset ᾱ(γ) = α(γ). Hence, by continuity
ᾱ(γ) = α(γ) on the closure O of O (since ᾱ(γ) and α(γ) are smooth).
But on the open subset R –O, γ takes its values in ∂Hn = {0} × Rn–1;
γ ↾ R – O is a plot of the boundary ∂Hn. Let i2 : Rn–1 → ∂Hn,
i2(y) = (0, y). Then, i∗2(α) and i∗2(ᾱ) are both 1-forms on Rn–1. Let
us prove that they coincide. On the one hand

i∗2(ᾱ)y(δy) =
n–1∑
i=1

bi(0, y)δy.

On the other hand, let us notice that

i2 = sq1 ◦ i2 : y 7→ (0, y) 7→ (02, y).

Thus, i∗2(α) = i∗2(sq∗
1(α)) and then i∗2(α)y(δy) = sq∗

1(α)(0,y)(0, δy).
But,

sq∗
1(α)(0,y)(0, δy) = A(0, y) × 0 +

n–1
∑

i=1
Bi(0, y)δyi

=
n–1
∑

i=1
bi(0, y)δyi,

since Bi(t, y) = bi(t
2, y). Hence α and ᾱ coincide on ∂Hn and then

ᾱ(γ) and α(γ) coincide everywhere. Therefore, since ᾱ and α coincide
on the 1-plots in Hn, they coincide as 1-forms [TB, § 6.37], and then,
α = ᾱ ↾ Hn. ▶

H = [0,∞[ x R ⊂ R2

∞

The embedded half-space ∂H = {0} x R

V

α = αV | H
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p-Forms on Half-Spaces

We shall see that every differential p-form on the half-space Hn =
[0, ∞[ × Rn–1 is the restriction of a smooth p-form on Rn.

This note is a natural development of the previous “1-Forms on half-
spaces”.

255. Differential p-forms on half-spaces. Let Hn = [0, ∞[ × Rn–1 be
the half n-space, equipped with the subset diffeology. Let ω ∈ Ωp(Hn)
be a differential p-form on Hn. Then, there exists a smooth p-form
ω̄ defined on some neighborhood of Hn ⊂ Rn such that ω = ω̄ ↾ Hn.

✑ Proof. Since H̊n =]0, ∞[ × Rn–1 ⊂ Hn = [0, ∞[ × Rn–1 inherits the
usual smooth diffeology,

ω ↾ H̊n = ∑
1<j<···<k

a1j...k(x, y)dx ∧ dyj ∧ · · · ∧ dyk

+ ∑
i<j<···<k

bij...k(x, y)dyi ∧ dyj ∧ · · · ∧ dyk ,

where (x, y) ∈ H̊n and a1j...k , bij...k ∈ C∞(H̊n, R).

Now, let
sq1 : (t, y) 7→ (t2, y),

then let

sq∗
1(ω) = ω((t, y) 7→ (t2, y))

= ∑
1<j<···<k

A1j...k(t, y)dt ∧ dyj ∧ · · · ∧ dyk

248
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+ ∑
i<j<···<k

Bij...k(t, y)dyi ∧ dyj ∧ . . .dyk ,

with A1j...k , Bij...k ∈ C∞(Rn, R). And for all t ̸= 0,

A1j...k(t, y) = 2t a1j...k(t2, y) and Bij...k(t, y) = bij...k(t2, y).

Next, sq∗
1(ω) is invariant by ε : (t, y) 7→ (–t, y), thus

sq∗
1(ω) = ε

∗(sq∗
1(ω))

= ∑
1<j<···<k

A1j...k(–t, y)(–dt ∧ dyi ∧ · · · ∧ dyk)

+ ∑
i<j<···<k

Bij...k(–t, y)dyi ∧ dyj ∧ · · · ∧ dyk .

Thus, –A1j...k(–t,y) = A1j...k(t, y) and Bij...k(t, y) = Bij...k(–t, y). In
particular, A1j...k(0, y) = 0. Hence, there exists a smooth function
A1j...k ∈ C∞(Rn, R) such that A1j...k(t, y) = 2tA1j...k(t, y), for all
t ∈ R. Thus, for all t ̸= 0, a1j...k(t2, y) = A1j...k(t, y). Now, A1j...k
is even in t, as well as the Bij...k . We can then apply the Hassler
Whitney theorem [Whi43, Theorem 1 and final remark], stated as
follows:

Theorem. (Whitney) If a smooth function f (t, x) is even in t, f (t, x) =
f (–t, x), then there exists a smooth function g(t, x) such that f (t, x) =
g(t2, x).

Hence, there exist smooth functions a1j...k(t, y) and bij...k(t, y), such
that A1j...k(t, y) = a1j...k(t2, y) and Bij...k(t, y) = bij...k(t2, y). Then,
for all t > 0, a1j...k(t, y) = a1j...k(t, y) and bij...k(t, y) = b1j...k(t, y).

Let us then define ω̄ on Rn,

ω̄ = ∑
1<j<···<k

a1j...k(x, y)dx ∧ dyj ∧ · · · ∧ dyk

+ ∑
i<j<···<k

bij...k(t, y)dyi ∧ dyj ∧ · · · ∧ dyk .

The form ω̄ is a smooth p-form defined on an open neighborhood of
Hn, and ω ↾ H̊n = ω̄ ↾ H̊n. Let us prove now that ω and ω̄ coincide
on the whole Hn. Since ω and ω̄ ↾ Hn are two differential p-forms on
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Hn, it is sufficient to check that they take the same value on every
smooth p-path.

Let σ be any p-path in Hn. Let O = σ–1(H̊n), O ⊂ Rp is open, and
on this open subset ω̄(σ) = ω(σ). Hence, by continuity ω̄(σ) = ω(σ) on
the closure O of O (since ω̄(σ) and ω(σ) are smooth). But on the open
subset Rp – O, σ takes its values in ∂Hn = {0} × Rn–1; σ̄ = σ ↾ Rp – O

is a plot of the boundary ∂Hn. Let i : Rn–1 → ∂Hn, i(y) = (0, y).
Then, i∗(ω) and i∗(ω̄) are both p-forms on Rn–1. Let us prove that
they coincide. On the one hand

i∗(ω̄) =
∑

i<j<···<k
bij...k(0, y)dyi ∧ dyj ∧ · · · ∧ dyk .

On the other hand, let us notice that

i = sq1 ◦ i : y 7→ (0, y) 7→ (02, y).

Thus, i∗(ω) = i∗(sq∗
1(ω)) and then

i∗(ω)y(δ1y, . . . , δp–1y) = sq∗
1(ω)(0,y)(0, δ1y, . . . , δp–1y).

Hence,

sq∗
1(ω) = ∑

i<j<···<k
Bij...k(0, y)dyi ∧ dyj ∧ · · · ∧ dyk

=
n–1
∑

i=1
bij...k(0, y)dyi ∧ dyj ∧ · · · ∧ dyk ,

since A(0, y) = 0 and Bij...k(t, y) = bij...k(t2, y). Hence ω and ω̄ coin-
cide on ∂Hn and then ω̄(σ) and ω(σ) coincide everywhere. Therefore,
since ω̄ and ω coincide on the p-plots, they coincide as p-forms [TB,
§ 6.37], and then, ω = ω̄ ↾ Hn. ▶
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p-Forms on Corners

In this note we shall see that, for the subset diffeology, differential
forms defined on half-spaces or corners of Euclidean spaces, are the
restrictions of a differential forms defined on an open neighborhood
of the corner in the ambient Euclidean space.

Heuristically, smooth maps from corners Kn = {(x1, . . . , xn) | xi ≥ 0}
into the real line R are just defined as restrictions of smooth maps,
defined on some open neighborhood of the corner [Cer61] [Dou62] etc.
This heuristic becomes a theorem in diffeology where Kn is equipped
with the subset diffeology. Indeed, every map from Kn to R which
is smooth composed with any smooth parametrization P: U → Rn

taking its values in Kn, is the restriction of a smooth maps defined
on some open neighborhood of the corner [TB, § 4.16].

It is always a progress when a convention, based on mathematicians’
intuition, becomes a theorem in a well defined axiomatic. Here the
axiomatic is the theory of Diffeology. Noticing that C∞(Kn, R) is
just the space of differential 0-forms Ω0(Kn), it is legitimate to ask
about the behavior of differential k-forms on Kn, that is, Ωk(Kn) as
it is defined in (op. cit § 6.28). In this note we prove the following
theorem stated in (art. 259):

Theorem. Every differential form on the corner Kn is the restriction
of a smooth form on an open neighborhood of Kn in Rn. Precisely,

251
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252 p-FORMS ON CORNERS

the pullback : j∗ : Ωk(Rn) → Ωk(Kn) is surjective, where j denotes the
inclusion from Kn into Rn.

Do we need to remind that a differential k-form on a diffeological
space X is a mapping α that associates with each plot P in X, a
smooth k-form α(P) on dom(P), such that the smooth compatibility
condition α(F ◦ P) = F∗(α(P)) is satisfied, where F is any smooth
parametrization in dom(P).

64. Smooth structure on corners

256. Corners as diffeologies. We denote by Kn the corner

Kn = {(xi)n
i=1 ∈ Rn

| xi ≥ 0, i = 1, . . . , n}.

And we equip it with the subset diffeology. A plot in Kn is just a
regular smooth parametrization in Rn but taking its values in Kn.

(A) The corner Kn is the diffeological n-power of the half-line K =
[0, ∞[ ⊂ R, equipped with the subset diffeology.

(B) The corner Kn is embedded in Rn, and closed. That is, the
D-topology of the induction Kn ⊂ Rn coincides with the induced
topology1 of Rn, see (op. cit § 2.13).

(C) Let X0 = {0} ⊂ X1 ⊂ · · · ⊂ Xn = Kn be the natural filtration of
Kn, where the levels Xj are defined by

Xj = {(xi)n
i=1 ∈ Kn

| there exists i1 < · · · < in–j such that xiℓ = 0}.

Then, the stratum

Sj = Xj – Xj–1

1The standard topology of Rn is the D-topology of its standard smooth
structure.



i
i

i
i

i
i

i
i

64. SMOOTH STRUCTURE ON CORNERS 253

is the subset of points in Rn that have j, and only j, coordinates
strictly positive. The strata Sj are equipped with the subset diffeo-
logy.2

Sj =
{

(xi)n
i=1 ∈ Rn

∣∣∣ There exist i1 < · · · < ij such that xiℓ > 0,
and xm = 0 for all m ∉ {i1, . . . , ij.}

}
.

Then, Sj is D-open in Xj, j ≥ 1. As a subset of Xj, Sj is the (diffeolo-
gical) sum of

(n
j
)

connected components indexed by a string of j ones
and n – j zeros.

✑ Proof. For the first item, it’s immediately by definition. Consid-
ering the second item: for any subset U ⊂ Kn open for the induced
topology, there exists (by definition) an open subset O ∈ Rn such
that U = O ∩ Kn. Then, for all plots P in Kn, P–1(U) = P–1(O) is
open, because plots are continuous. On the other hand, let U ⊂ Kn

be D-open. Then, sq–1(U) ⊂ Rn is open, where sq : Rn → Kn is the
map sq(xi)n

i=1 = (x2
i )n

i=1. And sq–1(U) ↾ Kn is open for the induced
topology of Rn. Now, the map sq restricted to Kn is an homeomor-
phism. Hence, since U = sq(sq–1(U) ↾ Kn), U is open for the induced
topology of Rn. Therefore the D-topology of the induction coincides
with the induced topology, as we claimed.

For the third item: let x ∈ Xj, then the number ν of vanishing
coordinates of x is at least n – j, i.e. ν ≥ n – 1. Next, if x ∈ Xj
and x ∉ Xj–1, then ν ≥ n – j and ν < n – j + 1, thus, ν = n – j.
Therefore, Xj – Xj–1 is the subset of points in Rn that have exactly
n – j coordinates equal to 0 and the other j strictly positive:

Consider now a point x = (x1, . . . , xn) ∈ Sj – Sj–1. Since the j non-
zero coordinates of x are strictly positive, there exists ε > 0 such that
xi – ε > 0, for all non-zero coordinate of x. The open n-parallelepiped
Cx =]x1 – ε, x1 +ε[× · · · ×]xn – ε, xn +ε[⊂ Rn contains x, and Cx ∩ Sj ⊂

Sj – Sj–1. Thus,

Sj – Sj–1 =
⋃

x∈Sj–Sj–1

Cx ∩ Sj.

2Recall that, by transitivity of subset diffeology, to be a subspace of Sℓ or Kn

or of Rn is identical.
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Now, let P : U → Sj be a plot for the subset diffeology. We have,
P–1(Sj – Sj–1) = ∪x∈Sj–Sj–1P–1(Cx ∩ Sj), but P–1(Cx ∩ Sj) = P–1(Cx)
since val(P) ⊂ Sj. Next, since P is smooth as a map into Rn and Cx
is open, P–1(Cx) is open and then P–1(Sj – Sj–1) is open. Therefore,
Sj – Sj–1 is D-open in Sj. ▶

257. Smooth maps on corners. We know that a map f : Kn → R, is
smooth in the sense of diffeology, if and only if it is the restriction of
a smooth map F defined on some open neighborhood O of Kn into R,
see (op. cit § 4.16). That is, f ∈ C∞(Kn, R) if and only if, f = F ↾ Kn

and F ∈ C∞(O, R).

258. The square function lemma. Let sq : Rn → Kn be the smooth
parametrization:

sq(x1, . . . , xn) = (x2
1 , . . . , x2

n).

Then sq∗ : Ωk(Kn) → Ωk(Rn) is injective. That is, for all α ∈ Ωk(Kn),
if sq∗(α) = 0, then α = 0.

✑ Proof. Note that each component of Sj – Sj–1 is isomorphic to Rj.
Hence, if sq∗(α) = 0, since sq ↾ sq–1(Sj – Sj–1) is a 2-folds covering
over Sj – Sj–1, α ↾ Sj – Sj–1 = 0. that is, for all plots Q in Sj – Sj–1,
α(Q) = 0. Let then, for some j ≥ 1, Pj : Uj → Sj be a plot. In
view of what precedes, the subset Oj = P–1

j (Sj – Sj–1) is open, and
α(Pj ↾ Oj) = α(Pj) ↾ Oj = 0. By continuity, α(Pj) ↾ Oj = 0, where Oj
is the closure of Oj. Let then Uj–1 = Uj – Oj and Pj–1 = Pj ↾ Uj–1.
Then, Uj–1 is open and Pj–1 : Uj–1 → Sj–1 is a plot. This construction
gives a descending recursion, starting with any plot P: U → Kn, by
initializing Pn = P, Un = U and Sn = Kn. One has Pj = P ↾ Uj,
Uj–1 ⊂ Uj, the recursion ends with a plot P0 with values in S0 = {0},
and α(P0) = 0 since P0 is constant. Therefore α = 0. ▶

259. Differential forms on corners. The previous article (art. 257)
deals with smooth real functions on corners, that is, Ω0(Kn). It is a
particular case of the more general theorem:

Theorem. Any differential k-form on the corner Kn, equipped with
the subset diffeology of Rn, is the restriction of a smooth differential
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k-form defined on some open neighborhood of the corner. Precisely,
the pullback : j∗ : Ωk(Rn) → Ωk(Kn) is surjective, where j denotes the
inclusion from Kn to Rn.

✑ Proof. Let ω ∈ Ωk(Kn) and K̊n = {(xi)n
i=1 | xi > 0, i = 1, . . . , n}.

One has

ω ↾ K̊n =
∑

i1<···<ik

ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

with ij = 1, . . . , n and ai1...ik ∈ C∞(K̊n, R). Recall that sq : (xi)n
i=1 7→

(x2
i )n

i=1, then

sq∗(ω) =
∑

i1<···<ik

Ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

where Ai1...ik ∈ C∞(Rn, R). Let εj : (. . . , xj, . . . ) 7→ (. . . , –xj, . . . ), then
sq◦εj = sq and (sq◦εj)∗(ω) = ε∗j (sq∗(ω)), that is, sq∗(ω) = ε∗j (sq∗(ω)).
Hence,

ε∗j (sq∗(ω)) = ∑
i1<···<ik

iℓ ̸=j

Ai1...ik (x1, . . . , –xj, . . . , xn) dxi1 ∧ · · · ∧ dxik

– ∑
i1<···≤j≤···<ik

Ai1...j...ik (x1, . . . , –xj, . . . , xn) dxi1 ∧ . . .dxj · · · ∧ dxik .

Then,

A i1...ik
iℓ ̸=j

(x1, . . . , –xj, . . . , xn) = Ai1...ik (x1, . . . , xj, . . . , xn),

Ai1...j...ik (x1, . . . , –xj, . . . , xn) = –Ai1...j...ik (x1, . . . , xj, . . . , xn).

Hence,
Ai1...j...ik (x1, . . . , xj = 0, . . . , xn) = 0.

Thus,

Ai1...j...ik (x1, . . . , xj, . . . , xn) = 2xjAi1...j...ik (x1, . . . , xj, . . . , xn),

with Ai1...j...ik ∈ C∞(Rn, R). Therefore, there are real smooth func-
tions Âi1...ik defined on Rn such that

Ai1...ik (x1, . . . , xn) = 2kxi1 . . . xik Âi1...ik (x1, . . . , xn).

Now,
sq∗(ω ↾ K̊n) = sq∗(ω) ↾ {xi ̸= 0}
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implies

∑
i1<···<ik

2kxi1 . . . xik ai1...ik (x2
1 , . . . , x2

n) dxi1 ∧ · · · ∧ dxik

= ∑
i1<···<ik

2kxi1 . . . xik Âi1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik .

Hence,

Âi1...ik (x1, . . . , xn) = ai1...ik (x2
1 , . . . , x2

n) for xi ̸= 0, i = 1, . . . , n.

Thus (x1, . . . , xn) 7→ Âi1...ik (x1, . . . , xn), which belongs to C∞(Rn, R),
is even in each variable. Therefore, according to Schwartz Theorem
[Sch75],3 there exists

ai1...ik ∈ C∞(Rn, R),

such that
Âi1...ik (x1, . . . , xn) = ai1...ik (x2

1 , . . . , x2
n).

One deduces:

ai1...ik (x1, . . . , xn) = ai1...ik (x1, . . . , xn), for all (x1, . . . , xn) ∈ K̊n.

Then, defining the k-form ω on Rn by

ω =
∑

i1<···<ik

ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

one has already
ω ↾ K̊n = ω ↾ K̊n.

Let us show that ω ↾ Kn = ω. That is, let us check that for all plots
P: U → Rn, P∗(ω) = ω(P). Actually, one has

sq∗(ω) = sq∗(ω ↾ Kn).

Indeed:

sq∗(ω) = ∑
i1...ik

Ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik

= ∑
i1...ik

2kxi1 . . . xik Âi1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik

= ∑
i1...ik

2kxi1 . . . xik ai1...ik (x2
1 , . . . , x2

n) dxi1 ∧ · · · ∧ dxik .

3Which is a generalisation of a famous Whitney theorem [Whi43]
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And, on the other hand:

sq∗(ω ↾ Kn) = ∑
i1...ik

2kxi1 . . . xik ai1...ik (x2
1 , . . . , x2

n) dxi1 ∧ · · · ∧ dxik .

Thus, sq∗(ω – ω ↾ Kn) = 0. Therefore, according to the previous
lemma (art. 258), ω – ω ↾ Kn = 0. And indeed, ω is the restriction of
the smooth k-form ω on Kn. ▶

65. Application

260. An exemple of application. Among the possible applications of
the theorems above (art. 258) and (art. 259), there is already one
worthy of mention. It is about the description of closed 2-form, in-
variant with respect to the action of a Lie group. As it has been
showed in particular in the classification of SO(3)-symplectic man-
ifolds [Igl84, Igl91], any closed 2-form form ω on a manifold M, in-
variant by a compact group4 G, is characterized by its moment map
μ : M → G∗ (we assume the action Hamiltonian), and for each moment
map, a closed 2-form ε ∈ Z2(M/G). Let us be precise: the space of
closed 2-forms Z2(M) is a vector space, the space of G-equivariant
maps from M to G∗ is also a vector space. Then, the map associat-
ing its moment map5 μ with each invariant closed 2-form ω is linear.
What we claim is that the kernel of this map is exactly Z2(M/G),
where M/G is equipped with the quotient diffeology.

Now, if an equivariant map is easy to conceive, it is more problematic
for a differential form on the space of orbits, which is generally not
a manifold. This is where the above theorem can help, because it
happens that M/G is not far to be a manifold with boundary or
corners, as show the following example.

Let us consider the simple case of M = R2n equipped with the
standard symplectic form ω = ∑

n
i=1 dqi ∧ dpi. It is invariant by

the group SO(2, R)n acting naturally, each factor on its respective

4There could be a diffeological generalisation possible to non compact group.
5The manifold M is supposed to be connected. To have a unicity of the moment

maps we decide to fix their value to 0 at some base point m0 ∈ M, for example.
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copie of R2. The (diffeological) quotient space Qn = R2n/SO(2, R)n

is the n-th power of Q = R2/SO(2, R). Let X = (Xi)n
i=1 with

Xi = (qi, pi). There is a natural smooth bijection j2n : Qn → Kn,
given by j2n : class(X) 7→ (∥Xi∥2)n

i=1. It turns out that this smooth
bijection6 induces, by pullback, an injection j∗2n from Ω

k(Kn) into
Ω

k(Qn). Thus, thanks to (art. 259), for each 2-form ε on the quotient
Qn there exists a 2-form ε on Rn, such that ε = j∗2n(ε). And the
2-form ω is characterized by μ and ε ↾ Kn, with ε ∈ Ωk(Rn).

✑ Proof. Let us prove that j∗2n is injective. Let x = (xi)n
i=1 ∈ Rn

and ιn : x 7→ (xi, 0)n
i=1 from Rn into R2n. Let jn : Rn/{±1}n → Kn be

defined by jn : class(x) 7→ sq(x) = (x2
i )n

i=1. Then, jn = j2n ◦ ι, where
ι is the projection of ι, from Rn/{±1}n to Qn.

Rn R2n

Rn/{±1}n Qn = R2n/SO(2, R)n Kn = [0, ∞[n

class

ι

class

ι j2n

But sq = jn ◦ class and we know that sq∗ = class∗ ◦j∗n : Ωk(Kn) →

Ω
k(Rn) is injective (art. 258), thus j∗n : Ωk(Kn) → Ω

k(Rn/{±1}) is
injective. On the other hand, jn = j2n ◦ ι, then j∗n = ι∗ ◦ j∗2n. Since
jn is injective, j∗2n is necessarilly injective too. ▶

6Which is not a diffeomorphism [PIZ07].
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Differential Forms on the Cross

We describe the differential forms on the diffeological space consisting
of the union of the two axes ox ∪ oy in R2.

This question was raised by professor Jedrzej Sniatycki: describe the
differential forms on the space X, union of the two axes in R2

X = {(x, 0) | x ∈ R} ∪ {(0, y) | y ∈ R},

equipped with the subset diffeology.

261. The forms on the cross. Every differential 1-form α on X, is the
restriction of a 1-form on R2 of type A = a(x)dx + b(y)dy. In other
words, for all plots P: r 7→ (xr , yr) in X,

α(P)r(δr) = a(xr)
∂xr
∂r

(δr) + b(yr)
∂yr
∂r

(δr).

The 1-forms a and b are the restrictions of α on the axes:

a(x)dx = α ↾ ox and b(y)dy = α ↾ oy.

Note. According to the definition [TB, § 6.40], the value of α at (0, 0)
is zero if and only if a(0) = b(0) = 0. Indeed evaluated on the plots
t 7→ (t, 0), and t 7→ (0, t) at t = 0, α is equal to a(0)dx or b(0)dy,
which are not zero, except if both are 0.

✑ Proof. First of all, notice that the four semi-axes: ox–, ox+,
oy– and oy+, are D-open in X. That is, open for the D-topology
[TB, § 2.8]. Indeed, for example, for any plot P in X, P–1(ox+) =

259
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260 DIFFERENTIAL FORMS ON THE CROSS

P–1{(x, y) | x > 0}, which is open because it is the pullback of an
open subset by a continuous map. And mutatis mutandis for ox–,
oy– and oy+.

Let P be defined on U ⊂ Rn, and let

O = P–1(ox–
∪ ox+

∪ oy–
∪ oy+).

The subset O is open. Let us prove first that,

α – A ↾ O = 0.

That is, for all r ∈ O and all δr ∈ Rn

α(P)r(δr) – a(xr)δxr – b(yr)δyr = 0.

We denoted

δxr =
∂xr
∂r

(δr) and δyr =
∂yr
∂r

(δr).

Let r ∈ O and P(r) ∈ ox+, for example. Then, there is an open
neighbourhood V of r such that P ↾ V takes its values in ox+. Thus,
on V, by definition α(P)r(δr) = a(xr)δxr . And since yr = 0 on V,
α(P)r(δr) = a(xr)δxr + b(yr)δyr . Mutatis mutandis for all other
values of P(r) when r ∈ O. We get eventually that on O, (α – A)(P) ↾
O = 0.

Now, for all δr ∈ Rn, (α – A)(P)r(δr) is a smooth function in r. This
function vanishes on O, by continuity it vanishes on the closure O.
Let U′ = U – O, U′ is an open subset of Rn and then P ↾ U′ is
a plot in X. Then, it makes sense to evaluate (α – A)(P)r(δr) on
U′. But since, for all r ∈ U′, P(r) = (0, 0), (α – A)(P)r(δr) = 0.
Indeed, a differential form evaluated on a constant plot is zero (since
it factorizes through R0). Thus, for all r ∈ U, (α – A)(P)r(δr) = 0.
Hence α(P)r(δr) = a(xr)δxr + b(yr)δyr , and α = A ↾ X. ▶

ox

oy

o

ox
oy

o
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A note on Hamiltonian Diffeomorphisms

We describe the group Ham(X, ω), of Hamiltonian transformations of
a parasymplectic space (X, ω), as the kernel of a morphism into the
product of the tori of periods of the elements of the holonomy groups.

We consider a diffeological space X equipped with a parasymplectic
form ω, that is, a closed 2-form on X. Let Gω be the group Diff(X, ω)
and G◦

ω be its identity component. Let G̃◦
ω be the universal covering

of G◦
ω, and π : G̃◦

ω → G◦
ω be the projection. Let Γω be the holonomy

of ω, defined in [TB, § 9.7], that is,

Γω = {Ψω(ℓ) | ℓ ∈ Loops(X)},

where Ψω is the universal moment map, i.e. the moment map relative
to the group Gω. Let us remind that Γω is made of closed 1-forms
on Gω. Then, for all γ ∈ Γω, there exists a unique homomorphism
γ̄ : G̃◦

ω → R such that dγ̄ = π∗(γ). Let

Ĥω =
⋂
γ∈Γω

ker(γ̄).

The group of Hamiltonian transformations is then defined (op. cit.
§ 9.15) by

Ham(X, ω) = π(Ĥω).

That is what is written in the book Diffeology in the sections 9.15 and
9.16. But we can go a little bit further and write the group Ham(X, ω)
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262 A NOTE ON HAMILTONIAN DIFFEOMORPHISMS

directly as the kernel of one homomorphism. For all γ ∈ Γω, let Pγ
the group of periods:

Pγ =
{ ∫

ℓ
γ | ℓ ∈ Loops(Gω, 1)

}
.

We assume now that the periods Pγ is a strict subgroup of R. The
fonction γ̄ projects onto a smooth homomorphism γ from G◦

ω into the
torus of periods

Tγ = R/Pγ,

and the projection class : R → Tγ is the universal covering. This
situation is illustrated by the following commutative diagram of ho-
momorphisms.

G̃◦
ω R

G◦
ω Tγ

γ̄

π class

γ

262. The group of Hamiltonian diffeomorphisms. Let γ ∈ Γω. The
projection of ker(γ̄) ⊂ G̃◦

ω in G◦
ω, by π, is the kernel of γ. Therefore,

Ham(X, ω) =
⋂
γ∈Γω

ker(γ).

Defining

η : G◦
ω →

∏
γ∈Γω

Tγ by η(g) = (γ(g))γ∈Γω ,

we have then
Ham(X, ω) = ker(η).

✑ Proof. Let g = π(g̃) and g̃ ∈ ker(γ̄), then γ(g) = γ(π(g̃)) =
class(γ̄(g̃)) = class(0) = 1. We denote the group operation on Tγ
multiplicatively. Thus, π(ker(γ̄)) ⊂ ker(γ). Now, let g ∈ ker(γ) and
let g̃ ∈ π–1(g). Thus γ̄(g̃) ∈ Pγ. But since Pγ is the group of periods
of γ, there exists a loop ℓ in G◦

ω such that

γ̄(g̃) =
∫
ℓ
γ.
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A NOTE ON HAMILTONIAN DIFFEOMORPHISMS 263

On the other hand, g̃ is the fixed-ends homotopy class of a path p in
G◦
ω pointed at the identity, and

γ̄(g̃) =
∫
p
γ.

Next, let g̃ ′ = ℓ̄ ∨ p, where ℓ̄ is the reverse loop ℓ̄(t) = ℓ(1 – t).
Technically, we work with stationary paths and the concatenation is
an internal operation. Then,

π(g̃ ′) = g and γ̄(g̃ ′) =
∫
ℓ̄∨p
γ =

∫
ℓ̄
γ+

∫
p
γ = –

∫
ℓ
γ+

∫
p
γ = 0.

Thus, g ∈ π(ker(γ̄)). Therefore, π(ker(γ̄)) = ker(γ). ▶

The next proposition seems to be obvious but needs a proof regarding
the diffeology involved (op. cit. § 6.29).

263. {0} ⊂ Ω
k(X) is closed. The subset {0} ⊂ Ωk(X) is closed for the

D-topology of the functional diffeology of Ωk(X).

✑ Proof. Let us remind that a subset of a diffeological space is
open if and only if its pullback by any plot is open (op. cit. § 2.8).
Alternatively, a subset is closed if and only if its pullback by any plot
is closed. So, let P : r 7→ αr a plot defined on U in Ωk(X). Let

P–1(0) = {r ∈ U | αr = 0}

= {r ∈ U | For all plots in X, αr(Q)s = 0}

=
⋂

Q∈D

{r ∈ U | For all s ∈ V, αr(Q)s = 0}

where Q is defined on some domain V, s ∈ V and αr(Q)s ∈ Λk(Rn),
the vector space of k-linear forms on Rn, assumes P is an n-plot. Let

PQ = {(r, s) ∈ U × V | αr(Q)s = 0}.

Since (r, s) 7→ αr(Q)s is smooth, then continuous, the subset PQ is
closed. Now,

P–1(0) =
⋂

Q∈D

pr1(PQ),

where pr1 : (r, s) 7→ r is an open map. Thus, since PQ is closed then
pr1(PQ) is closed and P–1(0) is an intersection of closed subsets,
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264 A NOTE ON HAMILTONIAN DIFFEOMORPHISMS

hence closed. Therefore, P–1(0) is closed for every plot P in Ωk(X),
that is, {0} ⊂ Ωk(X) is closed. ▶

264. The D-topology of Diff(X,ω). Let (X, ω) be a parasymplectic
space. For the D-topology, Diff(X, ω) is closed in Diff(X).

✑ Proof. Let us consider the map

F : Diff(X) → Ω
2(X) with F : φ 7→ φ∗(ω) – ω.

The group Diff(X, ω) is the kernel of F, that is,

Diff(X, ω) = ker(F) = F–1(0).

Since the pullback is a smooth operation (op. cit. § 6.32), with Ω2(X)
equipped with the functionnal diffeology, and since 0 ∈ Ω2(X) is
closed for the D-topology, we checked that just above, Diff(X, ω) is
closed in Diff(X). ▶

Clearly this proposition applies to any group Diff(X, α) of automor-
phisms, where α is any k-form.

Vladimir Igorevich Arnold, a master in Hamiltonian
geometry and mechanics.
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Differential of a Lie-Group Valued Function

In this note we give a meaning of the differential of a smooth function
defined on a diffeological space, with values in a Lie group.

66. The general question

This question has been raised by Cheyne Miller,1 as a byproduct of
his reflexion on the differential of the holonomy function, in the case
of a general fiber bundle, or a more general situation. I am sure he
will not see any objection that I share my reflexion on his question
in these notes.

Precisely, a part of his question translates into:

Question (Cheyne Miller) Let h : X → G be a smooth function defined
on a general diffeological space, with values into an ordinary Lie
group. What would be the meaning of dh ?

When G is the abelian group (R, +), we know the answer:

dh = h∗(dt),

where dt is the standard 1-form on R. More recently we have seen, in
the previous note “Differential of holonomy For torus bundles”, that
we can define a “differential” dTh by:

dTh = h∗(θ),

1Private email exchange of the February 27, 2016.
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266 DIFFERENTIAL OF A LIE-GROUP VALUED FUNCTION

where θ is the standard 1-form on the (maybe irrational) torus T =
R/Γ, pushforward of dt by the projection π : R → T. In other words,
satisfying π∗(θ) = dt.

We remark that, in these two cases, the differential of the function
is the pullback of some fundamental form defined on the group R or
T. This consideration will be the guide to define more generally the
differential of a function with values in any Lie group.

67. The Maurer-Cartan form

There is a canonical 1-form defined on any Lie group G, with values
on the tangent space G = T1G, that is, the Maurer-Cartan form
Θ ∈ Ω1(G,G). With the ordinary notations of differential calculus on
a Lie group, let g ∈ G, let L(g) be the left-multiplication by g, that
is, L(g)(g ′) = gg ′. Let δg ∈ TgG, be any tangent vector at the point
g, then the Maurer-Cartan form Θ is defined by2

Θg(δg) = [D(L(g))(1)]–1(δg).

This Maurer-Cartan form is left-invariant, that is, L(k)∗(Θ) = Θ for
all k ∈ G. We have an analogous right-invariant Maurer-Cartan form,
replacing L(g) by R(g) in the definition above. The choice depends
on our need or preferences.

Note that the Maurer-Cartan form has a diffeology-compliant defini-
tion. Let P : r 7→ gr be a n-plot of G, let v ∈ Rn, then:

Θ(P)r(v) = D(s 7→ g–1
r gr+s)(s = 0)(v).

68. The definition of the differential

Now we have the tools to define the differential of the smooth function
h : X → G. I suggest this:

265. Definition. Let X be a diffeological space, let G be an ordinary
Lie group, let h : X → G be a smooth function. We define the

2The notation D(f )(x) means: the tangent linear map of f at the point x.
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differential of h as the pullback by h of the Maurer-Cartan form.
And we shall denote,

dGh = h∗(Θ), dGh ∈ Ω
1(X,G).

This is a well defined diffeological 1-form with values in a vector
space, and that corresponds exactly to what we did in the particular
abelian case of R or T. In that case the Maurer-Cartan form is just
the identity.

Now, how is that a good replacement for the differential in the general
case? If X is a manifold, we should have on the one hand, for all x ∈ X
and δx ∈ TxX:

dhx(δx) ∈ Th(x)G,

where dhx, also denoted by D(h)(x), is the tangent linear map of h
at the point x. The Maurer-Cartan form is just the tool for trivial-
ising the tangent fiber bundle. The map (g, v) 7→ (g, Θg(v)) is the
canonical isomorphism from TG to G × G. Therefore Θh(x)(dhx(δx))
is the image of δx by dhx after trivialisation.

On the other hand, Θh(x)(dhx(δx)) is, by definition, h∗(Θ)x(δx). There-
fore, the definition given above dGh = h∗(Θ) seems to be a good re-
placement, in diffeology, of the differential of a Lie-group valuated
smooth function.

Note that in the 1-dimension case G = R or T the differential dGh
is closed (because 2-forms on 1-dimensional spaces vanishe), which
is no more true in the general case. Indeed, d[dGh] = h∗(dΘ) ∈

Ω
2(X,G). The differential dG is a replacement for the tangent linear

map, not for the differential operator of exterior calculus. But this is
what is useful in mathematical physics when one deals with principal
connections, or more exotic structures like gerbes.
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The Geodesics of the 2-Torus

We describe the space of geodesics trajectories of the 2-torus, and we
exhibit its natural parasymplectic structure.

It is well known that, if the space of (oriented) geodesic trajecto-
ries (a.k.a. unparamatrized geodesics) of a manifold is a manifold,
then this manifold is naturally symplectic. A famous example is the
geodesics of the sphere S2, for which its space of geodesics is also
S2, equipped with the standard surface element.1 The mapping from
the unit bundle US2 = {(x, u) ∈ S2 × S2 | u · x = 0} to Geod(S2) is
realized by the moment map ℓ : (x, u) 7→ x ∧ u. Now,

Question What about the space of geodesics of the torus T2 ?

It is certainly not a manifold because of the mix of closed and not
closed geodesics. And what about the canonical symplectic structure,
does it remain something from it? And what?

In the following, we denote by pr : R2 → T2 = R2/Z2 the projection.

As usual in symplectic geometry, we realize the space Geod(T2) as
the space of characteristics of the presymplectic form dλ on the unit
bundle UT2 ≃ T2 × S1, where

λ(δy) = u · δx,

1for a judicious choice of constant.
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THE GEODESICS OF THE 2-TORUS 269

with y = (pr(x), u) ∈ UT2 and δy = (D(pr)x(δx), δu) ∈ TyUT2.
Thus, the characteristics of dλ are the submanifolds

γ =
(

pr{x + tu}t∈R, u
)

,

when (pr(x), u) is a point in UT2. We denote by π the projection
from UT2 to Geod(T2),

π : (pr(x), u) 7→
(

pr{x + tu}t∈R, u
)

.

The space Geod(T2) of unparametrized geodesics of the 2-Torus is
naturally a bundle2 over the circle S1, thanks to the projection

pr2 :
(

pr{x + tu}t∈R, u
)
7→ u.

The preimage Geodu(T2) = pr–1
2 (u) is the space of all the geodesics

with slope u, that is, the torus Tu = T2/Δu, where Δu = pr(Ru).
Precisely, Tu is a rational torus (a circle) if u is a rational vector, that
is, if Ru∩Z2 ≃ Z. And Tu is an irational torus [DI83] if Ru∩Z2 = {0}.

UR2 Geod(R2)

UT2 Geod(T2)

S1

π

π

pr2 pr2

266. Parasymplectic structure on Geod(T2). There exists a closed 2-
form ω on Geod(T2) such that π∗(ω) = dλ. We say that ω is parasym-
plectic.3

2But not a fiber-bundle.
3The analysis of Diff(Geod(T2), ω) and the universal moment map [TB, § 9.14]

is discussed in “Diffeomorphisms of Geod(T2)”, in these notes.
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270 THE GEODESICS OF THE 2-TORUS

Note. It is noteworthy that, in spite of the singularities of the space of
geodesics, some closed and diffeomorphic to the circle (indexed by Q)
and the others unclosed and diffeomorphic to R, the presymplectic
form dλ passes into a smooth closed 2-form on the quotient Geod(T2).
And that is the main fact we want to draw your attention to.

✑ Proof. We use the criterion § 6.38 of [TB] on dλ. Let P : r 7→
(zr , ur) and P′ : r 7→ (z ′r , u′

r) be two plots of UT2, defined on a same
domain and such that π ◦ P = π ◦ P′. That is,(

pr{xr + tur}t∈R, ur

)
=
(

pr{x ′
r + tu′

r}t∈R, u′
r

)
.

Thus, u′
r = ur and pr{x ′

r + tur}t∈R = pr{xr + tur}t∈R. Then, x ′
r =

xr + f (r)ur , with f (r) = ur · (x ′
r – xr), f is smooth. Next,

λ(P′)r(δr) = ur ·
(
δxr + dfr(δr)ur + f (r)δur

)
= λ(P)r(δr) + dfr(δr).

That is, λ(P′) = λ(P) + df . Therefore, d(λ(P′)) = d(λ(P)). By
application of § 6.38 of [TB], there exists ω ∈ Ω2(Geod(T2)) such
that π∗(ω) = dλ and dω = 0. ▶

l

x

u0

sphere S2

plane (x,u)

angular 
momentum

The geodesics of the sphere

geodesic
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The Use of the Moment Map in Geodesic Calculus

A fact or two about geodesics, proved thanks to the moment map.4

The moment map is a powerful tool in symplectic geometry. This is
another illustration.

69. On geodesics

We consider the unparametrized geodesics of a Riemannian manifold
(M, g). They are defined as the characteristics of the presymplectic
2-form dλ on the unit tangent bundle:

UM = {(x, u) ∈ TM | x ∈ M, u ∈ Tx(M) and u · u = 1},

where TM denotes the tangent bundle and λ ∈ Ω1(UM) is defined by
its evaluation on a tangent vecteur δ(x, u) ∈ T(x,u)(UM)

λ(x,u)(δ(x, u)) = u · δx.

We note v · w for gx(v, w), and ∥v∥2 = v · v, where v, w ∈ Tx(M).
The characteristics of dλ satisfies the differential equations

δ(x, u) ∈ ker(dλ(x,u)) iff δx ∝ u and δ̂u = 0,

where δ̂ stands for the covariant differentiation. In a chart:

δ̂uμ = δuμ + Γμνρuνδxρ,

4This note comes from a discussion with Jean-Paul Mohsen.
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272 THE USE OF THE MOMENT MAP IN GEODESIC CALCULUS

where the Γμνρ are the Christoffel symbols of the Levi-Civita connec-
tion. The map δ(x, v) 7→ (δx, δ̂v) is a isomorphism from T(x,v)(TM)
to Tx(M) × Tx(M). What we have to know now is this:

267. Geodesics trajectories. The integral curves of the distribution

(x, u) 7→ ker(dλ(x,u))

projects on M on the geodesics trajectories (or unparametrized ge-
odesics) of the Riemannian metric g.

Actually, for every integral curve there exists always a parametriza-
tion t 7→ x(t), defined on some interval, such that u(t) = dx(t)/dt,
with (x(t), u(t)) ∈ UM, and [t 7→ (x(t), u(t))] is a characteristic of
dλ. And that is the way one usually understands the wording “un-
parametrized geodesics”.

Now, if a Lie-group H acts on M preserving the metric g, that is,
h∗

M(g) = g for all h ∈ H, then its natural action on TM preserves
UM,

hUM(x, u) = (hM(x), hM∗(u) = D(hM)(x)(u)),

and also λ on UM,
h∗

UM(λ) = λ.

The moment map of this action is the pullback by the orbit map of
the 1-form λ [PIZ10], that is,

μ(x, u) = [h 7→ hM(x, u)]∗(λ).

Applied on a vector Z in the Lie algebra H of H, that gives

μ(x, u) · Z = u · ZM(x),

where ZM(x) denotes the action of Z on M, that is, the infinitesimal
action of the 1-parameter group generated by Z.

The Noether theorem states that the moment map is constant on
the characteristics. That means that if [t 7→ x(t)] is a geodesic with
u(t) = dx(t)/dt unitary, then for all t in the domain of the curve, for
all Z ∈ H,

u(t) · ZM(x(t)) = u0 · ZM(x0),
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where (x0, u0) = (x(t0), u(t0)), for an arbitrary t0 in the domain of
the curve.

70. Special metrics on principal bundles

Consider now a principal bundle π : M → B with structure group H,
equipped with an H-invariant metric g. Consider a connection on M
defined by orthogonal projectors: for all x ∈ M let Qx : Tx(M) →

Tx(HM(x)) be the vertical projector, and Px = 1x – Qx be the hori-
zontal one. In other words, the horizontal subspace is orthogonal to
the fibers. Assume also that the metric g is “calibrated vertically”,
we mean that there exists a left-invariant metric ε on G such that

x̂∗(g) = ε, i.e. gx(ZM(x), Z′
M(x)) = ε(Z, Z′),

where x̂ is the orbit map:

x̂ : H → M with x̂ : h 7→ hM(x).

Now, we have two interesting consequences of the conservation of the
moment map along the geodesics:

268. Proposition 1. If a geodesic is horizontal at some point, it is
horizontal at everypoint.

✑ Proof. To be horizontal in one point means that the unit tangent
vector u0 is orthogonal to the fiber at x0. Next, being orthogonal to
a fiber at t0 means: u0 · ZM(x0) = 0 for all Z ∈ H, since the vertical
tangent space is spaned by the infinitesimal action of H. Then, the
moment map being constant along the geodesic , u(t) · ZM(x(t)) = 0
for all t. The whole geodesic is horizontal. ▶

Actually this is a particular case of a more general property:

269. Proposition 1’. Let H be a group of isometries of (M, g). If a
geodesic is orthogonal to an orbit of H at one point, it is orthogonal
to every orbit it meets.

In particular, if the group has a fix point, every geodesic emerging
from this point is orthogonal to every orbit it meets. Consider for
example the 2-sphere, and the rotations around an axe. The poles are
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fixed and the geodesics passing through the poles are the meridians,
orthogonal to the parallels, orbits of the rotations.

270. Proposition 2. The fibers are totally geodesic.

✑ Proof. Let us recall that being totally geodesic means that a
geodesic which is tangent to a fiber at some point is tangent to that
fiber at every point.

Let {Zi}k
i=1 be an orthonormal basis of H, for the metric ε. Then,

according to the hypothesis x̂∗(g) = ε, the vectors ZiM(x) form an
orthonormal basis of Tx(HM(x)), for all x ∈ M. Let t 7→ x(t) be
a geodesic with unitary velocity u(t), and let u(t) = uQ(t) + uP(t),
where uQ is the vertical part and uP the horizontal. Then, ∥uQ(t)∥2 =
∑

k
i=1 ui(t)2, with ui(t) = u(t) · ZiM(x(t)). Thus, since the ui(t) are

constant on the geodesic, ∥uQ(t)∥2 is also constant on the geodesic.
Thus, if uP(x0) = 0, then ∥uQ(t)∥2 = ∥uQ(0)∥2 = 1 for all t, and
then ∥uP(t)∥2 = 0. Therefore, if the geodesic is tangent to the fiber
somewhere it is tangent everywhere. ▶

271. Remark. On R2 the standard metric is SO(2, R)-invariant. And
if we forget 0, the action of SO(2, R) is principal. The geodesics
are the lines and the orbits, the circles centered at the origin. A
line which is tangent to a circle somewhere is not tangent to any
other circle. Thus, the orbits are not geodesics. So? Did we miss
something? It happens that the metric is not calibrated with respect
to the action of SO(2, R). Precisely x̂∗(g) = ∥x∥2

ε. Hence, we can
see that for the proposition 2, the hypothesis for the metric to be
calibrated is crucial.

$$ 
  \Gamma^\mu_{\nu \rho} = {1 \over 
2} g^{\mu\epsilon} 
  \left\{ 
  {\partial g_{\nu\epsilon} \over 
\partial x^\rho} 
  + {\partial g_{\rho\epsilon} \over 
\partial x^\nu} 
  - {\partial g_{\nu\rho} \over 
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The Parasymplectic Space of Geodesics Trajectories

We describe the parasymplectic structure on the space of geodesics
trajectories of any Riemannian manifold.

We consider a Hausdorff and second countable manifold M equipped
with a Riemannian metric g. The construction of the space of geo-
desic trajectories is described in §69. Quotient spaces are equipped
with quotient diffeology. Let UM be the unit tangent bundle

UM = {y = (x, u) | x ∈ M and u ∈ TxM with g(u, u) = 1}.

The space of (oriented) geodesic trajectories Geod(M) is defined as
the space of characteristics of the presymplectic form dλ defined on
UM, where λ is the Cartan form

λ(δy) = g(u, δx),

for all δy ∈ TyUM. Its differential dλ is given by

dλ(δy, δ′y) = g(δ̂u, δ′x) – g(δ̂′u, δx),

where δ̂u is defined by its coordinates in the charts:

δ̂uμ = δuμ + Γμνρuνδxρ.

The Γμνρ are the Christoffel symbols. We have seen that δy ∈ ker(dλ)
if and only if:

δ̂u = 0 and δx ∝ u.

Thus, there is only one vector ξ ∈ TyUM such that:

ξ ∈ ker(dλ) and λ(ξ) = 1.
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It is defined by

ξ = δy with δx = u and δ̂u = 0.

This vector ξ is called Reeb vector.

Definition. A contact form on a manifold Y is any 1-form λ such that

ker(λ) ∩ ker(dλ) = {0},

and the Reeb vector field is defined by

ξ ∈ ker(dλ) and λ(ξ) = 1.

We accept th following proposition:

Proposition. Two point y and y ′ are on the same characteristic of
dλ, that is, on an integral curve of the distribution y 7→ ker(dλ), if
and only if there is a real number s such that:

esξ(y) = y ′,

where esξ denotes the local flow etξ of the Reeb vector ξ.

The Reeb vector field on UM generates what is called the geodesic
flow. We have then the following theorem:

Theorem. Let Y be a manifold, Hausdorff and second countable,
equipped with a contact form λ. Then, there always exists on the
space S of charateristics of dλ a parasymplectic form ω such that

class∗(ω) = dλ,

where class : Y → S = Y/ker(dλ) is the projection. When S is a
manifold then ω is symplectic, but in any case ω still is a closed 2-form
on S. This is an example of symplectic reduction with singularities
similar to the one in Ex. 227. Moreover, if Y has dimension 2n – 1
(contact manifolds are odd dimensional) then S has dimension 2n–2.

✑ Proof. We recall that the Reeb vector field of a contact form
generates by integration a local 1-parameter of automorphisms of λ.
Indeed, thanks to the Cartan formula one has first the vanishing Lie
derivative:

Lξ(λ) = [dλ](ξ) + d[λ(ξ)] = 0 + 0.
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Thus, the local flow etξ of the vector ξ preserves λ :

etξ∗(λ) = λ.

To prove that the form dλ passes to the quotient X, we shall apply
the criterion [TB, §6.38]. Let P, P′ : U → Y be two plots in Y such
that π ◦ P = π ◦ P′. Let r0 ∈ U, by hypothesis, P(r0) and P′(r0)
belongs to the same characteristic. Then, there exists a real number
s such that esξ(P(r0)) = P′(r0). The local diffeomorphism esξ is
defined on some neighbourhood of P(r0) and its inverse e–sξ, on some
neighborhood of P′(r0). The composite P′′ = e–sξ ◦P′ is then defined
on some neighbourhood O′ of r0 and satisfies: π ◦ P = π ◦ P′′ and
P(r0) = P′′(r0). Now, thanks to the flow box theorem, there exists a
local diffeomorphism φ from a neighbourhood O′′ of P(r0), that maps
O′′ to a product W × I′, where I′ is some real interval, the vector
field ξ to (0, 1) and esξ to the translation (w, t) 7→ (w, t + s). We
assume that φ(P(r0)) = (0, 0). The intersection U′ = (φ ◦ P)–1(W ×

I′) ∩ (φ ◦ P′′)–1(W × I′) is open and non empty since it contains r0.
We will restrict P and P′ to U′. Consider now, (π ◦ φ–1) ↾ W × {0},
since our manifolds are assumed Hausdorff and second countable,
the preimages in W of characteristics are countable, and because
W is an Euclidean domain, they are (diffeologically) discrete [TB,
Exercice 8]. Therefore, restricting P and P′′ to a ball B centered
at r0, π ◦ P = π ◦ P′′ implies pr1 ◦ φ ◦ P(r) = pr1 ◦ φ ◦ P′′(r), for all
r ∈ B. That is, φ ◦ P(r) = (f (r), t(r)) and φ ◦ P′′(r) = (f (r), t′′(r)),
where the maps involved are smooth. Hence, there a smooth real map
r 7→ s(r) = t′′(r) – t(r) such that P′′(r) = es(r)ξ(P(r)), for all r ∈ B.
Let us write simply s(r)Y = es(r)ξ, then P′′(r) = s(r)Y(P(r)), and
s 7→ sY is a local additive action on Y. Remember now that because
ξ ∈ ker(dλ) and λ(ξ) = 1 the Lie derivative vanishes: Lξ(λ) = 0, and
then (esξ)∗(λ) = λ, or s∗Y(λ) = λ. Thus, thanks to [TB, §8.37],

λ(P′′)r = λ
(
r 7→ s(r)Y(P(r))

)
r

= [s(r)∗Y(λ)](P)r + [R(P(r))∗(λ)](s)r

= λ(P)r + dsr ,
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where we denoted R(y)(s) = sY(y). Hence, dλ(P′′) = dλ(P) on the
ball B, and then on all U. Therefore, according to the criterion [TB,
§6.38], there exists a 2-form ω on X such that dλ = π∗(ω). And ω is
closed since π∗(dω) = 0 [TB, §6.39].

As for the dimension of the quotient, the diffeology of S = Y/ker(dλ)
is generated by the transversal of the flow of the Reeb vector which
are 2n – 2 plots. When one can choose such transversal that cuts
each orbit of the geodesic flow in one and only one point, then they
are local diffeomorphisms with the quotient S, and S is a manifold.
On that manifold the 2-form ω is non degenerate, therefore symplec-
tic. Otherwise, and this is the most general case, one cannot find
such transversal everywhere and the flow cuts some of them infin-
itely many times. It is what happens in particular on the 2-torus for
irrational geodesics. ▶

Corollary. The space Geod(M) of geodesic trajectories, equipped
with the quotient diffeology of the unit tangent bundle UM by the
kernel of the differential dλ, has dimension 2n– 2 and is parasymplec-
tic for a closed 2-form ω defined by class∗(ω) = dλ. When Geod(M)
is a manifold then ω is symplectic.

Definition. We shall call symplectically generated any parasymplectic
space that admits a generating family of plots where the pullback of
the parasymplectic form is symplectic.

Then, the parasymplectic structure on the quotient space S in the
general case of a contact form, and on Geod(M) in particular, is sym-
plectically generated. Indeed, the restrictions of dλ on the transver-
sals of the Reeb vector field is non-degenerate since ker(dλ) = ξR.
They give a generating family of plots on which the pullback of ω is
symplectic. This is why I decided to call symplectically generated
this kind of parasymplectic space. That includes the spaces of ge-
odesic trajectories as we just saw, but also the cone orbifolds [TB,
§9.32] or Prato’s toric quasifolds [EP01].
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Diffeomorphisms of Geod(T2)

In this note we explicit the group of diffeomorphisms of the space of
geodesic trajectories of the 2-torus.

71. Geodesic trajectories of the 2-torus

We consider the space of geodesic trajectories of the 2-torus T2 =
R2/Z2, see “The geodesics of the 2-torus” in these notes. They are the
projections of the affine lines in R2 by the projection class : R2 → T2 :

class : (x, y) 7→
(
e2iπx, e2iπy).

272. The geodesics of R2 The set of (oriented) affine lines in R2 is
diffeomorphic to the tangent space of the circle S1. That is:

Geod(R2) ≃ TS1 =
{

(u, r) ∈ S1
× R2

| u · r = 0
}

.

With every pair (u, r) is associated the line

Δ(u, r) = {r + tu}t∈R.

This space is also equivalent to S1 × R, thanks to the mapping

(u, r) 7→ (u, ρ = u · Jr), with J =
(

0 –1
1 0

)
.

The centered dot denotes the scalar product.

✑ Proof. Contained in Figure 34. ▶
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273. The geodesics of T2 The set of (oriented) affine lines in T2 is
diffeomorphic to the quotient space

Geod(T2) ≃ (S1
× R)/Z2,

with the Z2-action defined by

k(u, ρ) = (u, ρ+ u · k) for all k = (m, n) ∈ Z2.

Let u = (cos(θ), sin(θ)), the action of Z2 on S1 × R writes

(m, n)(u, ρ) = (u, ρ+ m cos(θ) + n sin(θ)).

We denote

class(u, ρ) ≡ (u, classu(ρ)) =
(
u, {ρ+ k · u | k ∈ Z2}

)
,

and
pr1 : (u, classu(ρ)) 7→ u,

the projection of Geod(T2) to S1.

274. The projection on the circle The fibers of the projection pr1 is
the torus

Tu = R/[Z cos(θ) + Z sin(θ)].

R2

∆(u,r)

r

u

0

Figure 34. The geodesic trajectories of the plane.



i
i

i
i

i
i

i
i
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The torus Tu is irrational when cos(θ) and sin(θ) are independent
over Q and rational, diffeomorphic to a circle R/aZ, otherwise.

It has a group structure:

classu(ρ) + classu(ρ′) = classu(ρ+ ρ′).

The projection pr1 has a global section:

σ ∈ C∞(S1, Geod(T2)), σ : u 7→ classu(0).

These are the geodesics trajectories passing through 0 ∈ R2.

72. Diffeomorphisms of Geod(T2)

The diffeology of Geod(T2) is defined as the quotient diffeology of
the manifold S1 × R by Z2, and then

Geod(T2) ≃ R2/Z3,

where (ℓ, m, n) ∈ Z3 acts on R2 by:

(ℓ, m, n)R2(θ, ρ) = (θ+ 2πℓ, x + m cos(θ) + n sin(θ)).

275. Proposition 1 Let f ∈ Diff(Geod T2), then there exists M ∈

GL(2, Z) such that
pr1 ◦ f = M ◦ f ,

where GL(2, Z) acts on S1 by

M(u) = u′ ⇔ u′ = Mu/∥Mu∥.

Let’s call Ψ the homomorphism

Ψ : Diff(Geod(T2)) → GL(2, Z) with Ψ(f ) = M.

We have a short homomorphism sequence:

0 → ker(Ψ) → Diff(Geod(T2)) → GL(2, Z) → 0.

✑ Proof. Let f ∈ Diff(Geod(T2)). The plot f ◦ class ◦ class1 has a
local smooth lifting Φ, that is,

f ◦ class ◦ class1 =loc class ◦ class1 ◦ Φ.
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Precisely, if
Φ(θ, ρ) = (θ′, ρ′)

then, for all (θ, ρ) ∈ R2 and all (ℓ, m, n) ∈ Z3 there exists (ℓ′, m′, n′) ∈

Z3 such that:

Φ(θ+2πℓ, ρ+m cos(θ)+n sin(θ)) = (θ′+2πℓ′, ρ′+m′ cos(θ′)+n′ sin(θ′))

Denoting

φ
(

class1(θ, ρ)
)

= class1
(
Φ(θ, ρ)

)
with class1(θ, ρ) =

(
eiθ, ρ

)
we have

class1 ◦ Φ =loc φ ◦ class1,

and therefore
class ◦φ =loc f ◦ class,

R × R R × R

S1 × R S1 × R

Geod(T2) Geod(T2)

Φ

class1 class1

φ

class class

f

Let (u, ρ) ∈ S1 × R :

φ(u, ρ) = (u′, ρ′) with u′ = U(u, ρ) and ρ
′ = R(u, ρ).

For all k ∈ Z2, there is k ′ ∈ Z2, depending a priori on k, u, ρ such
that:

φ
(
k(u, ρ)

)
= k ′(

φ(u, ρ)
)
.

We denote by k the action of k ∈ Z2. Thus,

φ(u, ρ+ u · k) = k ′(u′, ρ′)(
U(u, ρ+ k · u), R(u, ρ+ k · u)

)
= (u′, ρ′ + u′ · k ′)(

U(u, ρ+ k · u), R(u, ρ+ k · u)
)

=
(
U(u, ρ), R(u, ρ) + U(u, ρ) · k ′).
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We get: {
U(u, ρ+ k · u) = U(u, ρ) (♦)

R(u, ρ+ k · u)
)

= R(u, ρ) + U(u, ρ) · k ′ (♥)

The first identity (♦) gives

U(u, ρ) = U(u, ρ+ m cos(θ) + n sin(θ)),

where u = (cos(θ), sin(θ)) and for all m, n ∈ Z. Then, for all u
irrational, by density of m cos(θ) + n sin(θ) in R, with m, n ∈ Z, we
have:

U(u, ρ) = U(u, 0).

Then, because the set of irrational u is dense in S1 :

For all u in S1, u′ = U(u)

is independant on ρ. Thus, the map φ writes

φ : (u, ρ) 7→ (u′ = U(u), ρ′ = R(u, ρ)).

The map f writes then

f (u, classu(ρ)) =
(
u′ = U(u), classu′(R(u, ρ))

)
Thus, f exchange the fibers Tu to Tu′ , and the restriction of f on Tu
writes

fu : classu(ρ) = classu′(ρ′) with ρ
′ = R(u, ρ).

But since f is a diffeomorphism, its restriction to Tu is a diffeomor-
phisms:

fu = f ↾ Tu ∈ Diff(Tu, Tu′).

There exists then a map F : S1 → S1 such that u′ = F(u) such that
the following diagram commutes:

Geod(T2) Geod(T2)

S1 S1

pr1

f

pr1

F
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The map F is a diffeomorphism because f is a diffeomorphism and
the projection pr1 is a subduction. Thus, f is an automorphism of
the projection pr1 :

[f 7→ F] ∈ Hom∞
(
Diff(GeodT2), Diff(S1)

)
.

On the other hand, we now that [DI83] Tu and Tu′ are diffeomorphic
if and only if:

u′ = F(u) ⇒ ∃M ∈ GL(2, Z), Mu = λ u′.

Said differently,

∃M ∈ GL(2, Z), Ru′ = M(Ru).

A priori M depends on u. Consider the cicle S1 as the set or direction
in R2, that is,

S1 = [R2 – {0}]/]0, ∞[ with
(

x
y

)
∼ λ

(
x
y

)
for al λ ∈]0, ∞[.

The map F has a lifting (at leat locally) on R2 – {0}. Let’s call it F̃ :

R2 – {0} R2 – {0}

S1 S1

class

F̃

class

F

class ◦F̃ =loc F ◦ class .

Thus, for all u ∈ S1, for all v = (x, y) ∈ Ru

F̃
(

x
y

)
=
(

au bu
cu du

)(
x
y

)
with Mu =

(
au bu
cu du

)
∈ GL(2, Z),

and F̃ is smooth. Let (x ′, y ′) = F̃(x, y). The map (x, y) 7→ x ′ =
aux + buy is smooth. Let y = 1 and consider the map ξ : x →

aux + bu were u = (x, 1)/
√

x2 + 1. Since F̃ is smooth, ξ is smooth
on a neighborhood of 0. Assume ξ(0) = 0. Its derivative satisfies

ξ
′(0) = lim

t→0

1
t
(
m(t)t + n(t)

)
= lim

t→0

(
m(t) +

n(t)
t

)
,
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with m(t) = au(t) and n(t) = bu(t) – bu(0) integers. That is:

lim
t→0

(
m(t) +

n(t)
t

– ξ′(0)
)

= 0.

Let t = 1/N with N ∈ N big. Then,

lim
N→∞

(
m(1/N) + N n(1/N) – ξ′(0)

)
= 0,

Then n(t) = bu(t) – bu(0) = 0 and m(t) = au(t) = ξ′(0) = a. Thus,
the matrix M is constant.

Now let us prove that Ψ : Diff(Geod(T2)) → GL(2, Z) is surjective.
Let M ∈ GL(2, Z), consider M̂ : S1 × R → S1 × R :

M̂(u, ρ) = (u′, ρ′) with u′ =
Mu

∥Mu∥
and ρ

′ =
ρ

∥Mu∥
.

Then,

M̂(u, ρ+ k · u) = (u′, ρ′ + k ′ · u′) with k ′ = (M–1)tk.

Thus, M̂ passes to the quotient Geod(T2) = [S1 × R]/Z2, and Ψ(M̂) =
M. Therefore Ψ is surjective. ▶

276. Proposition 2 The identity component of the kernel of the pro-
jection Ψ : Diff(Geod(T2)) → GL(2, Z) is equivalent to the space of
sections of the projection pr1 :

ker(Ψ)◦ ≃ Sec(pr1 : Geod(T2) → S1)

= {σ ∈ C∞(S1, Geod(T2) | pr1 ◦ σ = 1S1}

Let σ : u 7→ τu ∈ Tu be such a section, the diffeomorphism Σ associ-
ated with σ is given by addition inside the fiber:

Σ : (u, τ) 7→ (u, τ+ τu).

We recall that each fiber Tu = R/[cos(θ)Z + sin(θ)Z] is an abelian
group.

The subgroup ker(Ψ) ∈ Diff(Geod(T2)) is what is called by physicists
the gauge group of the bundle pr1 : Geod(T2) → S1. It has actually
2 components. We described the identity component, the second
component is obtained my composing with the inversion (u, τ) 7→
(u, –τ).
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286 DIFFEOMORPHISMS OF Geod(T2)

✑ Proof. Let f ∈ ker(Ψ), then fu ∈ Diff(Tu) for all u ∈ S1. We
know that all diffeomorphisms of Tu are the projections of the affine
map x 7→ λux + μu, where u 7→ μu is smooth and λu is ±1 or in
{±1} × Z if u is “quadratic”, see [DI83]. Thus, since the irrationals
non quadratic unit vectors are dense in S1, λu = ±1. Hence, the value
λu = +1 defines the unity component and λu = –1 correspond to the
inversion. ▶

73. Half a manifold and half not. . .

In conclusion, the geodesics trajectories of the manifold T2 is a good
and natural example of a diffeological space which is half manifold
and half not. The projection pr1 : Geod(T2) → S1 looks like a fiber
bundle but is just a bundle since the fibers are not diffeomorphic
to each other. The group of diffeomorphisms of this space turns
out to be the group of automorphisms of the projection, which in
particulier shows the rigidity of the structure. The orbits of the
group of diffeomorphisms mix ordinary circles — the orbits of rational
geodesics — with irrational tori, which is an interesting situation.

The D-topology of the space of geodesics of T2 is poor, since the
largest Hausdorff quotient is the circle S1 only; but the diffeology,
again, is able to discriminate between the non equivalent parts. That
gives an interesting Klein stratification where strata are not all man-
ifolds, actually thet are almost never manifolds except a countably
infinite subset of them.

  Notes
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The Diffeomorphisms of the Square

In this note we shall see how diffeology, understood as the geometry
of the group of diffeomorphisms in the sense of Felix Klein, fulfills its
duty concerning the full square Sq = [0, 1]2 ⊂ R2.

According to Klein’s program [Kle72], a geometry must be under-
stood as the action of a group (called the principal group) on some
space. As an example, Euclidean geometry is the action of the Eu-
clidean group on a Euclidean space, affine geometry, the action of the
affine group etc. The example of the closed square discussed here, in
the Diffeology framework, seems to support the point of view that
“differential geometry” is the geometry of the group of diffeomor-
phisms, in the sense of Klein.

277. Klein decomposition. Let Sq = [0, 1]2 ⊂ R2 be equipped with
the subset diffeology. The decomposition of the square under the
group of diffeomorphisms gives the expected three orbits:

(1) The 4 corners: NO = (0, 1), NE = (1, 1), SO = (0, 0) and
SE = (1, 0).

(2) The 4 vertices B =]0, 1[×{0}, T =]0, 1[×{1}, L = {0}×]0, 1[
and R = {1}×]0, 1[.

(3) The interior S̊q =]0, 1[2.

Note 1. The quotient diffeology on

Sq/Diff(Sq) = {Corners, Vertices, Interior}

287
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288 THE DIFFEOMORPHISMS OF THE SQUARE

is of course not the discrete diffeology, it captures the combinatorial
structure of the orbits.

Note 2. that under homeomorphisms there are only 2 orbits, the
border and the interior. In our case, the differential structure is
obviously indispensable.

✑ Proof. (1) Let us show that, Sq is embedded in R2. That is,
the D-topology of the induction Sq ⊂ R2 coincides with the induced
topology of R2. For any subset U ⊂ Sq open for the induced topology,
there exists an open O ⊂ R2 such that U = O ∩ Sq. For all plots P
in Sq, P–1(U) = P–1(O) is open, because plots are continuous. On
the other hand, let U ⊂ Sq be a D-open. s–1(U) is open, where
s : R2 → K2 is the map s(x1, x2) = (x2

1 , x2
2). s–1(U) ↾ Sq is open for

the induced topology of R2. Now, the map s restricted to Sq is an
homeomorphism. Hence, since U = s(s–1(U) ↾ Sq), U is open for the
induced topology of R2. Therefore the D-topology of the induction
coincides with the induced topology.

(2) Now, let us show that a diffeomorphism of Sq cannot send a point
of the border into the interior. Let f : Sq → Sq be a diffeomorphism
for the subset diffeology. Hence f is a homeomorphism for the D-
topology. Let us assume that f maps x ∈ L to f (x) ∈ S̊q. Obviously
f induces a homeomorphism f̃ : Sq \ {x} → Sq \ {f (x)}. Since x ∈ L,
we have that Sq \ {x} is convex, therefore homotopy equivalent to a
point. On the other hand, we can construct a homotopy equivalence
Sq \ {f (x)} ≃ ∂Sq ≃ S1. Thus, we get {point} ≃ S1, which is a
contradiction.

(3) A diffeomorphism from the square must send corners into corners.
Let f be a diffeomorphism on Sq, such that f ↾ L takes values in
L ∪ SO ∪ B and the restriction of f to L is defined as follows,

f (te2) =


φ(t)e1, if 0 < t < 1

2
SO, if t = 1

2
ψ(t)e2, if 1

2 < t < 1

where e1 and e2 are the vectors of the canonical basis of R2.
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Thus, for all p > 0,

lim
t→

1
2

–
f (p)(te2) = φ

(p)(t)e1 and lim
t→

1
2

+
f (p)(te2) = ψ(p)(t)e2.

Hence by continuity, for all p > 0, φ(p) (1
2
)

= ψ(p) (1
2
)
.

Therefore, f is flat at 1
2 . The restriction of f –1 to L ∪ SO is a local

diffeomorphism of half space with the subset diffeology. By [TB,
§ 4.14] (a consequence of [Whi43]), there exists F ∈ C∞(] – ε, 1[, R)
such that, f –1 ↾ L ∪ SO = F ↾ L ∪ SO. We have f –1 ◦ f (t) = t, for all
t > 1

2 . Thus, we have (f –1)′(f (t))f ′(t) = 1. But, (f –1)′(f (t))f ′(t) =
limt→

1
2

F′(f (t))f ′(t) = 0 which is a contradiction. Therefore 4 corners
of Sq is an orbit of Diff(Sq). ▶

NW

SW SE

NE

Figure 34. The diffeomorphisms of the square.
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Diffeological Spaces are Locally Connected

Something that should have been said a long time ago: Every diffeo-
logical space is locally connected for the D-topology.

Let us recall that every diffeological space X naturally owns a topol-
ogy called the D-topology. It was defined originally in [Igl85] but see
also [TB, § 2.8]. It is the finest topology for which the plots are con-
tinuous. A subset O ⊂ X is open for the D-topology, or is a D-open,
if P–1(O) is open in dom(P) for all plots P in X.

It has been shown that a the connected components for the D-topology
are the path-connected components, and that the space X is the sum
of its connected components [TB, § 5.7, 5.8].

We can say more about that, but first we recall one of the definitions
of locally connected spaces.

278. Definition. A topological space is said to be locally connected
if every open subset is the sum of its components, for the induced
topology.

Then:

279. Proposition. Every diffeological space is locally connected. That
means that every D-open subset O is the sum of its connected compo-
nents for the D-topology induced on O. Since connected components
for the D-topology coincide with pathwise connected components,
every connected diffeological space X is locally pathwise connected.

290
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DIFFEOLOGICAL SPACES ARE LOCALLY CONNECTED 291

✑ Proof. Let us prove that D-open subsets O ⊂ X are embedded
[TB, § 2.14]. That is, every D-open subset U of the subspace O ↪→ X
is the imprint of a D-open subset U′ of X, i.e.

U = U′
∩ O,

where U′ is D-open in X and U is D-open in O for its D-topology as a
subspace. So, on the one hand, since U is open for the D-topology of
the subspace O of X, then for every plot P in O, that is, for every plot
P in X taking its values in O, P–1(U) is open. On the other hand, let P
be any plot in X. since P–1(U) ⊂ P–1(O), P–1(U) = [P ↾ P–1(O)]–1(U).
But, P–1(O) is open since O is D-open, then P ↾ P–1(O) is still a
plot in X but taking its values in O. That is, a plot in O. Thus,
[P ↾ P–1(O)]–1(U) is open, and so is P–1(U). Thus, for all plots P in
X, P–1(U) is open. Therefore, U is D-open in X, and since U = U∩O,
U as D-open O is the imprint of U on O as D-open in X. In conclusion,
every D-open subset of X is embedded.

In summary, the intersection above U = U′ ∩O read as follows: every
D-open subset in O is a D-open in X, since it is the intersection of
two D-open subset of X.

Now, as a subspace of X, O is the sum of its component which are D-
open subset in O, and then, D-open subset of X. Thus, O is the sum
of its components for the D-topology of X. Therefore, X is locally
connected for the D-topology. ▶

X

O 

U 

U’

x
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Vague Adjunction of a Point to a Space

We add a point to a diffeological space, counting for nothing, and we
look at the consequences.

Consider a diffeological space X and D be its diffeology. Let

X̄ = X ∪ {ω},

where ω is an arbitray point not contained in X. We define on X̄ the
following set D′ of parametrizations:

280. Definition. A parametrization P : U → X̄ belongs to D′ if for
all r0 such that P(r0) ∈ X, there exists an open neighborhood V of
r0 such that P ↾ V ∈ D. No condition is required for P(r0) = ω.

281. Proposition 1 A parametrization P : U → X̄ belongs to D′ if
and only if its restriction on P–1(X) is a plot in X. This means in
particular that P–1(X) ⊂ U is an open subset. As a corollary, D′ is a
diffeology on X̄.

✑ Proof. If P ↾ P–1(X) is a plot in X then it satisfies the condition
above and belongs then to D′. Conversely, let P ∈ D′ and O = P–1(X):
since P ∈ D′, for all r ∈ O there exists a neighborhood V of r such
that P ↾ V belongs to D. This implies that P(V) ⊂ X and then V ⊂ O.
Thus, O is a union of open subsets of an Euclidean domain, it is then
open and P ↾ P–1(X) is a plot in X. ▶

282. Proposition 2. X̄ is connected. Precisely, let P: B → X̄ be the
parametrization defined by:

292
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VAGUE ADJUNCTION OF A POINT TO A SPACE 293

• B is an open ball.
• P(0) = ω.
• P(B – {0}) = x, where x ∈ X is any point.

Then, P is a plot connecting any point x in X to ω. Think of B = R.

✑ Proof. Indeed B – {0} is open, and P ↾ B – {0} is constant, then
P ↾ B – {0} is a plot, and since it takes its value in X, P is a plot
in X̄. Now, since B is connected, x and ω are in the same connected
component, for all x ∈ X. ▶

283. Proposition 3. The point ω is closed in X̄.

✑ Proof. The set {ω} is closed if and only if X ⊂ X̄ is D-open.
The set X ⊂ X̄ is D-open if and only if for all plots P in X̄, P–1(X)
is open. But this is exactly what we have seen above, in the proof
of Proposition 1. Therefore, X ⊂ X̄ is D-open and {ω} ∈ X̄ is D-
closed. ▶

284. Proposition 4. Every point x in X is in the neighborhood of ω.
In other words, ω has only one neighborhood, the space X̄ itself.

✑ Proof. Let Ω be an open neighborhood of ω. That is, for every
plot P in X̄, P–1(Ω) is open. Let x ∈ X and let P: B → X̄ be a special
plot defined in the second article, that sends 0 to ω and the rest of the
ball on x. Since P–1(Ω) is open and 0 is sent to ω, there exists a small
open ball B′ centered at 0 such that its image by P is contained in
Ω. By construction P(B′ – {0}) = x ∈ Ω. Therefore Ω contains every
point in X. That is, Ω = X̄. ▶

285. Remark. This kind of situation is not unique to diffeology.
Consider for example the quotient of Rn by the action of ]0, ∞[,
(α, x) 7→ αx, where (α, x) ∈]0, ∞[×Rn. For the quotient topology of
Rn/]0, ∞[, any neighborhood of class(0) contains the whole quotient.
Set theorethically, the quotient is the union of Sn–1 = (Rn–{0})/]0, ∞[
with class(0).
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Embedding a Diffeological Space Into its Powerset

In this note we shall see that the natural inclusion of a diffeological
space into its powerset is an embedding. And a closed embedding if
the space is Hausdorff.

The main ingredient is the Powerset diffeology of a diffeological space,
defined in the Exercise 62 of the textbook [TB]. We recall, in the
first article, the results of this exercise.

286. The inclusion map. Let X be a diffeological space and P(X)
be its powerset, equipped with the powerset diffeology. The natural
inclusion map

j : X → P(X) with j : x 7→ {x},

is smooth and is an induction [TB, § 1.29].

✑ Proof. Let P: U → X be a plot in X, we have to check that
j ◦ P: r 7→ j(P(r)) = {P(r)} is a plot for the powerset diffeology.

For all r0 ∈ U and for all plots Q0 with value in {P(r0)}, which is
necessarily constant, we define the following family of constant plots:

r 7→ Qr : dom(Q0) → X, with Qr(s) = P(r).

Since val(Qr) ⊂ j(P(r)) = {P(r)}, and (r, s) 7→ Qr(s) = P(r) is clearly
smooth, the conditions to be a powerset plot are satisfied by j ◦ P.
Thus, j is smooth.

294
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EMBEDDING A DIFFEOLOGICAL SPACE INTO ITS POWERSET 295

Let us check that j is now an induction. Let P: U → P(X) be a
powerset plot with value in j(X), we have to check that j–1 ◦ P is
a plot in X. Indeed, for all r ∈ U there exists xr ∈ X such that
P(r) = {xr}. For any fixed r0 ∈ U and for any plot Q0 such that
val(Q0) ⊂ P(r0) = {xr0}, there exists an open neighborhood V of
r0 and a smooth family r 7→ Qr of plots, defined on V, such that
val(Qr) ⊂ P(r) = {xr}. Thus, (s, r) 7→ Qr(s) = xr = j–1 ◦ P is locally
smooth, and r 7→ xr is a plot of X. ▶

287. Embedding X in its powerset. The inclusion j : X → P(X) is not
just an induction, it is an embedding [TB, § 2.13]. That is, the pull-
back of the D-topology of P(X) on X coincides with its D-topology.

✑ Proof. We have to prove that, for any D-open subset O ⊂ X,
there exists an D-open set O′ in P(X) such that j(O) = j(X) ∩ O′.

Let us define
O′ = {A ∈ P(X) | A ∩ O ̸= ∅}.

Clearly j(O) = j(X) ∩ O′. It remains to prove that O′ is D-open in
P(X). Then, for any plot P: U → P(X), we have to prove that

P–1(O′) = {r ∈ U | P(r) ∩ O ̸= ∅}

is open. Let r0 ∈ P–1(O′), thus P(r0) ∩ O ̸= ∅. Pick x0 ∈ P(r0) ∩ O

and the constant plot Q0(s) = x0, there exists a smooth family of
plots Qr for r near r0 such that val(Qr) ⊂ P(r) and (s, r) 7→ Qr(s) is
smooth. Since O is open, by continuity of Qr(s), it exists a product
of two balls Ω = B(s, ε) × B(r0, η) (s is arbitrary choosen) such that
for all (s, r) ∈ Ω, Qr(s) ∈ O, the condition val(Qr) ⊂ P(r) implies that
P(r) ∩O ̸= ∅. Thus, B(r0, η) ⊂ P–1(O′), that is, P–1(O′) is open, and
therefore, O′ is D-open. ▶

288. The case of the empty set. Let P(X)⋆ be the subset of non
empty sets in X,

P(X)⋆ = P(X) –
{

{∅}
}

.

Then, equipped with the powerset diffeology, P(X) is the vague ad-
junction of the singleton {∅} to P(X)⋆, as defined in the previous
note in “Vague adjunction of a point to a space”. That implies in
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296 EMBEDDING A DIFFEOLOGICAL SPACE INTO ITS POWERSET

particular that, for the D-topology, {∅} ∈ P(X) is closed, and P(X)
is the only neighborhood of {∅}.

✑ Proof. Indeed, for a parametrization P in P(X) and a point
r0 ∈ dom(P), if P(r0) = {∅} then the condition of the Powerset
Diffeology is empty. ▶

289. X in P(X). If X is Hausdorff for the D-topology, then its image
J(X) in P(X)⋆ is closed. Or, J(X) ∪ {∅} is closed in P(X).

✑ Proof. Let us show that P(X)⋆ – j(X) is open,

P(X)⋆ – j(X) =
{

A ⊂ X | ∃{x, y} ⊂ A, x ̸= y
}

.

Consider a plot P : U → P(X)⋆, and r0 ∈ P–1(P(X)⋆ – j(X)). Suppose
now {x0, y0} ⊂ P(r0) with x0 ̸= y0. Let Q0 and Q′

0 be two constant
plots such that : val(Q0) = {x0} and val(Q′

0) = {y0}, so there ex-
ists two smooth family U ⊃ V ∋ r 7→ Qr and U ⊃ V′ ∋ r 7→ Q′

r
such that val(Qr) ⊂ P(r) and val(Q′

r) ⊂ P(r). As X is supposed to
be Hausdorff, we may choose O and O′ two disjoint D-open neigh-
borhoods of respectively x0 and y0. Given s0 in a common domain
of Qr and Q′

r , the intersection of the pre-images of O and O′ by
the continuous maps (r, s) 7→ Qr(s) ∈ X and (r, s) 7→ Q′

r(s) ∈ X
defines an open neigborhood W × S of (r0, s0), with W ⊂ V ∩ V′,
such that Qr(s) ∈ O and Q′

r(s) ∈ O′ for any (r, s) ∈ W × S. As
val(Qr) ⊂ P(r) and val(Q′

r) ⊂ P(r), the condition O ∩ O′ = ∅ insures
that P(r) includes at least two distinct points of X for all r ∈ W.
Hence W ⊂ P–1(P(X)⋆ – j(X)). Thus, P–1(P(X)⋆ – j(X)) is open, as
a union of open subsets. Therefore, P(X)⋆ – j(X) is D-open and j(X)
is closed in P(X)⋆. ▶
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Foliations and Diffeology

Spaces of leaves of foliations on manifolds are the first examples we
can think about when it comes to diffeology. Paradoxically, with the
exception of Kronecker’s foliation of a torus by an irrational line, I
haven’t delved into this class of examples in the textbook. In [IL90]
we treated the particular case of the foliation of a n-dimensional torus
Tn by an irrational hyperplane. In this note we go a little bit further
about what diffeology can say about the space of leaves of a foliated
manifold?

Let us begin by recalling what a foliation is [Law74]. Let M be an
n-manifold [TB, 4.1]. We say that a partition L of M, into connected
subspaces, is a foliation if there exists an atlas of charts

φ : Rk
× Rm

⊃ U → M, with k = n – m,

such that, for all L ∈ L, the preimage by φ of each connected com-
ponent of L ∩ φ(U) is a vertical slice Ur = U ∩ [{r} × Rm], for some
r ∈ Rk , see [TB, 1.33, 5.7]. In simple words, a foliation is a partition
that looks like locally to a product of Euclidean spaces.

The elements L of L are called the leaves of the foliation. The charts
φ above are called adapted to the foliation L. Note that the leaves,
equipped with the subset diffeology, are m-dimensional submanifolds
[TB, 4.4]. Indeed, with the notations above, the restrictions φ ↾ Ur
are local diffeomorphisms, defined on Ur , from Rm to L.
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298 FOLIATIONS AND DIFFEOLOGY

290. Transversals. We call a tranversal of F any k-plot Q : V → M
such that there exists an adapted chart φ : V → M for which Q(r) =
φ(r, 0). A plot P in M is said to be transversal if it takes its values
in the values of a transversal Q.

Figure 35. Rectification of the flow.

Now, let L be equipped with the quotient diffeology [TB, 1.50], let
π : M → L be the projection, that is, π(x) = L if and only if x ∈ L ∈ L.

291. The space of leaves. Let M be a second countable Hausdorff
manifold, and L be a foliation on M.

(1) Let Q : V → M be a transversal, then for all L ∈ L, L∩Q(V)
— or {r ∈ V | Q(r) ∈ L} — is at most countable, thus, either
empty or (diffeologically) discrete.

(2) There are generating families of L, equipped with the quo-
tient diffeology, made of parametrizations Q = π ◦ Q, where
Q is a transversal plot.

(3) The dimension [TB, 2.22] of the quotient L is constant and
equal to k = n – m.

✑ Proof. Let us deal the first statement. Since Q is the restriction
of a chart φ, it is equivalent to consider L ∩ Q(V) or the set {r ∈ V |

Q(r) ∈ L}, they are isomorphic. Let us assume that {r ∈ V | Q(r) ∈

L} is not discrete, that is, there exists a 1-plot t 7→ r(t) in V, defined
on some interval J, such that Q(r(t)) ∈ L for all t, and there are
a, b ∈ J with a ̸= b and Q(a) ̸= Q(b). ▶
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Klein Stratification of Diffeological Spaces

In this note we see that every diffeological space is naturally stratified
by the action of its diffeomorphisms.

74. Klein stratifications

As we already know, diffeology is a flexible category, stable by any
set-theoretic operation. In particular diffeology gives a simple and
natural access to singularities, as many examples already have shown
[DI83, IKZ10, PIZ15], even when the space is topologically trivial
the diffeology can be relevant, which is the case for irrational tori for
example [DI83].1

In the case of irrational torus, the singularity lies in the global nature
of the space, and comes from the discrepancy between its trivial
topology and its non-trivial diffeology. On the other hand, from a
local point of view, the diffeology of a space encodes in a strong way,
the internal singularities of the space. They are revealed by the action
of the diffeomorphisms. For example, in a square a diffeomorphism
can exchange only vertices and edges and fixes the interior.

1This remarkable property has important consequences since it allows theorems
that could not exist otherwise. For example, one proved that every symplectic
manifold is an orbit of the linear coadjoint action of a central extension of the group
of hamiltonian diffeomorphisms by the torus of periods of the symplectic form, which
is in general not a manifold but trivial as topological space [DIZ22].
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300 KLEIN STRATIFICATION OF DIFFEOLOGICAL SPACES

This remark gave rise to the first definition of Klein strata of a dif-
feological space, as the orbits of the group of diffeomorphisms. We
recall this definition from [TB, § 1.42].

292. Definition 1. Let X be a diffeological space, the Klein strata of
X are defined as the orbits of Diff(X), its group of diffeomorphisms.

An important remark that did not appear in the book in the section
1.42 devoted to Klein’s strata is the following:

293. Proposition 1. The Klein strata of a diffeological space X, de-
fined as the orbits of its group of diffeomorphisms, form a stratifi-
cation in the sense that the closure of a Klein stratum, for the D-
topology, is a union of Klein strata. In other words, if O is an orbit
of Diff(X), then there exists a subset Σ ⊂ X such that

O = ∪x∈ΣOx,

where Ox denotes the orbit of x and O the closure of O.

The D-topology has been defined originally in [Igl85] and also in [TB,
§ 2.8]. This is the finest topology for which the plots are continuous.
A subset O ⊂ X is open for the D-topology, or is a D-open, if P–1(O)
is open in dom(P) for all plots P in X. The previous proposition can
be stated as follows:

294. Proposition 1 bis. Let Ox and Oy be two orbits by the group
Diff(X). If x ∈ Oy and x ′ ∈ Ox, then x ′ ∈ Oy .

✑ Proof. The proof is straightforward: since diffeomorphisms are
homeomorphisms [TB, § 2.9], the closure relation is preserved by dif-
feomorphisms. The following is just given to make this statement
obvious.

Let U′ be a D-open neighborood of x ′. Since x ′ = f (x), with f ∈

Diff(X), U = f –1(U′) is a D-open neighborhood of x. Then, there
exists z = g(y) ∈ Oy ∩ U. Thus z ′ = f (z) belong to U′ = f (U) and
z ′ ∈ Oy , since z ∈ Oy and z ′ = f (z). Therefore U′ ∩ Oy ̸= ∅. ▶

Consider the example of the square Sq described in Figure 34. The
group Diff(Sq) has three orbits:
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x

x’

f

U

U’

y

z

z’

g Oy

Ox

Figure 36. The frontier condition.

1. the 4-corners-orbit;
2. the 4-edges-orbit;
3. the interior-orbit.

The first remark we can do here is that the corners orbits, and the
edges orbit, are not connected but their elements can be treated
separately. Indeed, it is sufficient to redefine the Klein strata:

295. Definition 1 bis. Let X be a diffeological space, the connected
Klein strata of X are defined as the orbits of Diff(X)0, the identity
component of the group of diffeomorphisms of X.

Connected Klein strata are indeed connected. They are the images
of a connected diffeological group by a smooth orbit applications
x̂ : f 7→ f (x).

In the case of the square there are now nine strata:

1. Four corners: NE, SE, SW, NW;
2. Four edges: NE—SE, SE—SW, SW—NW, NW—NE;
3. One interior.
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As a remark, the partition of X into connected Klein strata is still a
stratification in the sense that it satisfies the frontier condition, for
the same reason of proposition 1.

296. Proposition 2. The connected Klein strata of a diffeological
space X, defined as the orbits of the identity component of its group
of diffeomorphisms, form a stratification in the sense that the closure
of a Klein stratum is a union of Klein strata.

These few previous considerations suggest a broadening of the defi-
nition of these stratifications:

297. Definition 2. Let X be a diffeological space, Let G be any diffeo-
logical group acting on X by a smooth homomorphism g 7→ gX. The
orbits of the action of G on X form a geometric stratification that
satisfies the frontier condition.

✑ Proof. Identical to Proposition 1. ▶

Now, the notion of stratification goes hand in hand with that of
singularity. The idea of singularity is by definition local. We consider
then the local geometry of a diffeological space: it is defined at each
point by the germ of the diffeology there.2 The local geometry at
each point is preserved by the action of local diffeomorphisms, which
is no more a group but a so-called pseudo-group, we denote it by
Diffloc(X). Local diffeomorphisms can exchange only points with the
same local geometry. That leads to the following definition:

298. Definition 3. Let X be a diffeological space. We call local Klein
strata the orbits of its local diffeomorphisms.

In other words, Klein strata gather the points that share the same
local geometry.

299. Proposition 3. The local Klein strata of a diffeological space X,
defined as the orbits of the local diffeomorphisms, form a stratifica-
tion in the sense that the closure of a Klein stratum is a union of
Klein strata.

2That can be defined precisely.
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✑ Proof. Identical to Proposition 1 since local diffeomorphisms are
defined on D-open subsets. ▶

75. Singularities

Local Klein strata are associated with the idea of singularity. In
some sense they capture the singular points of the diffeological space.
However, the singularity here is a relative concept, a point is not
singular by itself but relatively to others. This means, in the example
of the square, that the corners are singular to the interior points, as
are the edges, but they are not equivalent to each other.

The precise definition of singularity dwells in the definition of pre-
order associated with every geometric stratification, and eventually
with the local Klein strata.

300. Proposition 4. The binary relation defined on the space of local
Klein strata by

O ⪯ O′ iff O ⊂ O′

is a natural preorder, that is, reflexive and transitive. One can say
that O is singular with respect to O′ if O ⪯ O′. The set of strata is
called a PrOSet.

It appears that the space of local Klein strata, equipped with the quo-
tient diffeology, is an Alexandrov topological space for this preorder.
This preorder is a partial order (reflexive, transitive and antisymetric)
if and only if the D-topology of the space of strata is T0-separated.
It has been shown that this is equivalent for the strata to be locally
closed when the projection map is open, see [SY19] for example. In
this case we say that the space of strata is a POSet.

301. Example of a PrOSet. The solenoid action of R on the 2-torus:

t(z, z ′) =
(
ze2iπt, z ′e2iπαt)

gives a POset if α ∈ Q and only a PrOSet otherwise, if α ∈ R – Q. In
this case, every stratum is in the closure of every other one, that is,
the whole torus T2.
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302. Example of a POSet The space of strata of the square is a
POset. There are four minimal strata of the following type:

NW—NE

NW Int

NW—SW

where the arrow is for ⪯. The vertices NW, NE, SE, SW are the
minimal points.

NW

SW SE

NE

Figure 36. The corner orbifold R2/{±1}2.

Note. An interesting application of this subject would be the analysis
of the Klein stratification of the space of orbits of a manifold M by
the action of a compact group G. In particular, to compare the
stratification of M by type of stabilizer and the Klein stratification of
M/G. We have studied, with Serap Gürer, the Klein stratification of
an orbifold [GIZ22], see Figure 36 for example, and we have proved
that it coincides with the orbit type stratification.
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Lagrange’s Equations of Motion

In this note1 I apply the Lagrange method of variation of constant to
Newton’s equations, by considering the force involved in the motion
of a point as a perturbation of the absence of forces.

This note should be seen as a Récréation, a break from abstract
diffeology to return to the physics for which diffeology was specifically
developed. It is not that diffeology is used in this note, which is a
reflection on Lagrange’s equations of motion, in relation to what is
usually called the “Hamiltonian formalism”, but I hope that one day,
in the near future, I’ll have some examples where this is the case.

In a paper on Lagrange’s work I explained how Lagrange introduced
the first elements of symplectic geometry, when he applied his method
of variation of the constants to the motion of the earth around the
sun, see [Lag08, Lag09, Lag10]. In these memoirs, Lagrange regarded
the motion of the earth as a curve in the space of its Keplerian ele-
ments, the points of the curve representing, at each time, the Keple-
rian motion that the earth would follow if the forces exerted by the
other planets ceased at this instant. The motion of the planet is not
anymore described then in space-time but in the space of Keplerian
motions, that is, by the curve of its tangential Keplerian motions
at each instant. The question then consists in expressing the differ-
ential equation satisfied by this curve and eventually in extracting

1Work in progress.
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some informations on the stability of the system. It is when he estab-
lished the nature of this curve that Lagrange introduced his system of
parentheses which constitute the coordinates of the — today canon-
ical — symplectic structure on the space of Keplerian motions. It
was the birth of symplectic calculus and then symplectic geometry,
see [PIZ98, PIZ02].

But the Lagrange’s method of variation of constants applies in the
first place to the basic Newton’s equations where the force applied
on a point is measured by the the deflexion of the tangential inertial
motion (see Figure 37). The motion of the point is then regarded
as a curve in the space of its tangent inertial motions of which we
shall establish the differential equation. That is the original Lagrange
interpretation of Newton’s equations, this idea fully contained, but
implicitely, in his second paper on the question in 1809, op.cit. I
shall give in the following a modern construction of these Lagrange
equations of motion.

Note. A physicist would say that the construction below is just a
change of variables.2 It is maybe the way that appears at first glance,
but on a conceptual level, it does not just reduces to that. Newton
equations are by construction Aristotelian, they do not assume only
an absolute time — which is acceptable at this epoch — but also
an absolute space, since Newton’s equations are all about the second
variation of the position in space. Meanwhile, since Galilee, we know
that there is no such space, or if you prefer, there is no mechanical
way, in the world we live in, to distinguish a rectilinear uniform
motion from rest.3 Then, Newton’s equation, as they are taught
in school, are even not compatible with Galilean principles,4 but
they are still not too far. We shall see how the Lagrange point of
view transforms the Aristotelian Newton’s equations into a system
respectful of Galilean relativity.

2That is what happened to me during a talk at IHES.
3As a first approximation, of course, the reality being more complex.
4This is what generates so much confusion in school textbooks about Newton’s

equations.
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76. The space of inertial motions

First of all, let us build the space of inertial motions on wich we will
draw the curve representing the motion of our system. Considering
the simple case of a free particle in R3, an inertial motion is just a
uniform rectilinear motion, that is, a curve

μ = [t 7→ x] such that
d2x
dt2 = 0.

Let us denote by M0 this space of uniform rectilinear motions, M0 is
a smooth manifold and we have a particular global chart:

Φ : R3
× R3

→ M0, Φ(x, v) = [t 7→ x + tv].

Now, let us consider the motion of a particle with mass m submitted
to a force F, that is, a curve t 7→ x(t) in R3 satisfying the Newton
equation:

m
d2x(t)

dt2 = F(x(t), t).

The force F is assumed to be a smooth function defined on (an open
subset of) R3 × R. At each intant t we can define the tangent inertial
motion to the motion [t 7→ x(t)] as the uniform rectilinear motion
μ(t) passing through x(t) at the time t, with speed v(t) = dx(t)/dt,
that is,

μ(t) = [s 7→ x(t) – tv(t) + sv(t)].

In other words, the tangent inertial motion at the instant t is the
inertial motion that would have the particle if the force vanished at
this instant.

Hence, the curve t 7→ μ(t) represents the motion of the particle, but
drawn in the space of inertial motions. Let us now determine the dif-
ferential equation that this curve satisfies. We shall follow Lagrange
hypothesis that there exists a potential Ω for the force, that is,

F(x, t) = –
∂Ω(x, t)

∂x
.
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Figure 37. Tangent inertial motion.

In the chart Φ, the curve t 7→ μ(t) writes:

μ(t) = Φ(q(t), p(t)) with
{

q(t) = x(t) – tv(t),
p(t) = v(t).

That gives the differential system

dq(t)
dt

=
dx(t)

dt
– v(t) – t

dv(t)
dt

= –t
dv(t)

dt
dp(t)

dt
=

dv(t)
dt

.

Now, since the map (x, v, t) 7→ (q = x – tv, p = v, t) is a diffeomor-
phism, the potential Ω writes indifferently as a function of (x, v, t) or
(q, p, t). From the relations between partial derivatives:

∂Ω

∂q
=

∂Ω

∂x
∂x
∂q

+
∂Ω

∂v
∂v
∂q

+
∂Ω

∂t
∂t
∂q

,

∂Ω

∂p
=

∂Ω

∂x
∂x
∂p

+
∂Ω

∂v
∂v
∂p

+
∂Ω

∂t
∂t
∂p

,

with x = q + tp, v = p, and noticing that, by hypothesis, Ω does not
depend on v, we get eventually,

∂Ω

∂q
=

∂Ω

∂x
and

∂Ω

∂p
= t

∂Ω

∂x
,
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which gives

dq(t)
dt

= –t
dv(t)

dt
= –

t
m

F(x(t), t) = +
t
m

∂Ω

∂x
= +

1
m

∂Ω

∂p
dp(t)

dt
=

dv(t)
dt

= +
1
m

F(x(t), t) = –
1
m

∂Ω

∂x
= –

1
m

∂Ω

∂q
.

Now, if we consider the symplectic structure, defined on M0, in the
chart Φ, by

ω(δμ, δ′μ) = m
[
〈δv, δ′x〉 – 〈δ

′v, δx〉
]

with μ = Φ(x, v), (♣)

we recognize in the differential system above the symplectic gradient
of the potential Ω. And Newton equations write then:

dμ(t)
dt

= grad(Ω). (L)

We recall that the symplectic gradient of a real function f is defined
by the identity

grad(f ) = –ω–1(df ) or ω(grad f , δμ) = –df (δμ),

for all δμ ∈ TμM0. The equations (L) are the Lagrange equations of
motion. They are exactly described in the Lagrange second memoir
of 1809, on the method of the variation of the constants in all the
problems of Mechanics [Lag09]; only the notations change. Their
construction leads to a few remarks:

Note 1. Lagrange’s equations of motion respect Galilean relativity:
the Galilean group acts naturally (by construction) on the space
of inertial motions M0, that is, every element g in the Galilean
group transform an inertial motion μ into another inertial motion
g∗(μ) = g ◦ μ. Moreover, the Galilean group preserves the symplec-
tic structure on M0, g∗(ω) = ω, and the nature of the equations (L)
are preserved under a Galilean transformation, precisely, for a curve
t 7→ μ(t), satisfying equations (L), the curve g∗(μ) satisfies

d[g∗(μ)](t)
dt

= grad(g∗(Ω)),

where g∗(Ω) = Ω ◦ g–1. So, Lagrange’s version of Newton equations
behaves correctly with respect to Galilean relativity.
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Note 2. The term grad(Ω) in the equations above represents literally
the force exerted on the point in this covariant Lagrange’s symplectic
framework. It is a well define geometrical object and the Lagrange
equations of motion state the obvious, since Galilee: the force exerted
on a particle is measured by the variation of the inertial motion. If
the force vanished then μ = cst i.e. in absence of force the particle
follows an inertial motion.

Note 3. Lagrange’s equations of motion look like Hamilton’s equa-
tions, but they are not exactly the same. Indeed, Hamilton’s equa-
tions involve the whole Hamiltonian H = p2/2m +Ω and not only the
potential Ω, as it is the case in Lagrange’s equations. In the Hamil-
tonian framework, the space involved is not regarded as the space of
inertial motions (which is by construction Galilean respectful) but
it is regarded as the space of initial conditions at some instant t0, a
phase space, (which is not Galilean respectful for the reason evoked
above). This should also be seen in the light of what wrote Souriau in
the introduction of his book “Structure des Systèmes Dynamiques”
[Sou70]:

“La mécanique analytique n’est pas une théorie périmée;
mais il apparaît que les catégories qu’on lui attribue
classiquement : espace de configuration, espace de
phases, formalisme lagrangien, formalisme hamil-
tonien, le sont ; ceci simplement parce qu’elles ne
possèdent pas la covariance requise; en d’autres ter-
mes, parce qu’elles sont en contradiction avec la
relativité galiléenne. . . ”.5

With Lagrange’s method, in comparison with the usual Hamiltonian
formalism, the purely kinetic term of the Hamiltonian p2/2m is ab-
sorbed in the manifold of inertial motion and its symplectic structure.

5Free translation: “Analytical mechanics is not an outdated theory; but it ap-
pears that the categories classically attributed to it: configuration space, phase
space, Lagrangian formalism, Hamiltonian formalism, are (outdated theories); this
is simply because they do not possess the required covariance; in other words, be-
cause they are in contradiction with Galilean relativity. . . ”
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That is why the Newton’s equations, in the above form (L), involve
only the potential of the external force.

Note 4. Now it is easy to imagine more sophisticated situations, for
example considering geodesics of the sphere as inertial motions, or
the initial Lagrange construction with Keplerian motions as inertial
motions etc. This Lagrange approach solves the question of equivari-
ance of the dynamics by avoiding the reference to configuration or
phase spaces, except maybe in the preliminary construction of the
inertial motions which are at the foundation of the method.

77. Deployment of the perturbation

One can deploy the perturbation along the time, that is, consider
a new dynamical system defined by a pre-symplectic structure ω on
Y = M0 × R, with

ω = ω0 ⊖ d[Ωdt] = ω0 ⊖ dΩ ∧ dt,

where ω0 denotes now the symplectic form on the space M0 of inertial
motions. Let y = (μ, t) a current point on Y with δy and δ′y in
TyY = TμM0 × TtR. The evaluation of ω writes:

ω(δy, δ′y) = ω0(δμ, δ′μ) – dΩ(δμ)δ′t + dΩ(δ′μ)δt

= ω0(δμ, δ′μ) + ω0(grad(Ω)δ′t, δμ)

– ω0(grad(Ω)δt, δ′μ)

= ω0(δμ – grad(Ω)δt, δ′μ – grad(Ω)δ′t)

The 2-form ω on Y is clearly presymplectic, its kernel is 1-dimensional
and given by:

ker(ωy) = {δy ∈ TyY | δμ = grad(Ω)δt}.

The point to clear here is the meaning of grad(Ω). First of all, the
potential Ω is function of y = (μ, t), as we have seen. Then at the
point y = (y, t), grad(Ω) denotes the gradient, with respect to ω0, of
the function μ 7→ Ω(μ, t) defined on M0. We find here a version of
Souriau’s construction of the space of motions of a dynamical system
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[Sou70], but built over the inertial motions instead of built on a phase
space.

Now, the quotient of Y by the characteristic foliation of ω is a smooth
manifold M. Indeed, the distribution y 7→ ker(ωy) is transverse to
the slices M0 × {t} and the restrictions πt of the projection π : Y → M

to M0 × {t} form an atlas of M. Moreover, since ω is closed, denoting
by ξ the vector field ξ(y) = (grad(Ω), 1) generating ker(ωy), we get
£ξ(ω) = 0, which implies that there exists a closed 2-form, denoted
by the same letter ω, on M such that its pullback on Y by π is ω. Of
course, if the characteristic flow ξ is complete, that is, if the second
projection pr2 : Y → R, restricted to every integral curve, is surjective,
then (M, ω) is symplectomorph to (M0, ω0).

78. Example of the oscillator

We consider a couple of points x = (x1, x2) ∈ R3 × R3 and the New-
ton’s equations

d2x(t)
dt2 =

(
x2(t) – x1(t)
x1(t) – x2(t)

)
(A) The symplectic form on inertial motions — A variation of an
inertial motion μ ∈ M0 writes necessarilly

δμ = [t 7→ δX + tδv] ∈ TμM0.

Denoting by μ̇ the speed of the motion we can check that, for two
such variations δμ and δ′μ, the value

ω(δμ, δ′μ) = m
[
〈δμ̇(t), δ′μ(t)〉 – 〈δ

′
μ̇(t), δμ(t)〉

]
(♠)

does not depend on the instant t where it is computed, and it is equal
to the expression given in (♣) above.

(B) The action of Galilean group — The action of Galilean group
assumes a space-time E = R3 × R, the points of E are denoted by
(x, t). The Galilean group is the following group of matrices with
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A ∈ SO(3), b, c ∈ R3 and e ∈ R :

g =

A b c
0 1 e
0 0 1

 and

A b c
0 1 e
0 0 1

x
t
1

 =

Ax + bt + c
t + e

1

 ,

where E is imbedded in this affine picture as the level 1 of E×R. Now,
an inertial motion is an affine line in E, that is :

μ =
{(

x + tv
t

)
∈ E | t ∈ R

}
,

where, as usual x, v ∈ R3. Then, Galilean group acting on E maps
the affine line μ into another affine line g(μ) and immediately :

g(μ) =
{(

Ax + c + t(Av + b)
t + e

)
∈ E | t ∈ R

}
,

or again:
g(μ) = [t 7→ Ax + c + (t – e)(Av + b)].

The symplectic form ω on M0 is obviously invariant by g, indeed, let
μ
′ = g(μ), then δμ′ = [t 7→ Aδx + (t – e)Aδv]. Computed for t = e,

the expression (♠) above gives g∗(ω) = ω, since A ∈ SO(3).

Horologium Oscillatorium  by Christiaan Huygens



i
i

i
i

i
i

i
i

Poisson Bracket in Diffeology

In this note we show how to understand the Poisson bracket in diffeo-
logy, working directly on the group of Hamiltonian diffeomorphisms
without involving tangent spaces and Hamiltonian gradients. Indeed,
as it is usually defined, Poisson bracket seems to be a contravariant
object and therefore not really adapted to diffeology, but it can be
defined in a covariant way, which is more adequate with the diffeo-
logy framework.

The question of Poisson bracket in diffeology has been raised many
times, and recently again by Jim Stasheff in a private discussion. This
time I want to give an answer that I find satisfactory.

79. Classical Poisson bracket

The Poisson bracket is generally introduced in symplectic geometry
as a binary operation on the space of functions. Let (M, ω) be a
symplectic manifold, that is,

ω ∈ Ω
2(M), dω = 0 and ker(ω) = 0.

Let x 7→ u be a smooth real function on M, we denote by

grad
ω
(u) = ω–1(du)

is symplectic gradient. Here ω is regarded as a linear isomorphism
from TM to T∗M, so ω–1(du) is a tangent vector field. The Poisson
bracket is usually defined in the following way [Sou70]:

314
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303. The classical definition Let x 7→ u and x 7→ v be two smooth
real functions on M,1 The Poisson bracket of u and v is denoted and
defined by:2

{u, v} = ω(grad
ω
(u), grad

ω
(v)).

The Poisson bracket as it is so defined is a bilinear map

{·, ·} : C∞(M, R)2
→ C∞(M, R)

That satisfies some classical relations called Jacobi identity we do not
discuss here.

Next, by applying the definition above of the symplectic gradient, we
have also the equivalent definition:

{u, v} = du(grad
ω
(v)) also denoted by

∂u
∂x

(grad
ω
(v)).

80. Poisson bracket in diffeology

The problem with all these concept involving tangent vector fields
and Lie algebras is that they have not only one interpretation in
diffeology. That is why we have to bypass as much as possible the
introduction of tangent spaces in their generalizations in diffeology.
That works for the moment map, relatively well, as the many exam-
ples in [PIZ10] have shown. This is what we propose in the case of
the Poisson bracket, to get a definition that covers the classical case
and satisfies the constraints of a good diffeological equivalent.

Let us now come back to the classical picture for a while. Assume
that the vector field

x 7→ grad
ω
(u)

is integrable. That is, it defines a 1-parameter group of diffeomor-
phisms

t 7→ egrad
ω
(u).

1They are called dynamic variables by Souriau.
2It is denoted by [u, v]P in [Sou70].
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Let us change our notation to:

ZM : x 7→ ZM(x) = grad
ω
(u) and Z′

M : x 7→ Z′
M(x) = grad

ω
(u′).

We have
{u, u′} = ωx(ZM(x), Z′

M(x))

Assume now that Z, Z′ belong to the Lie algebra G of a Lie group G

Z, Z′
∈ G.

The 1-parameter groups {et grad
ω
(u)}t∈R and {et grad

ω
(u′)}t∈R are just

the action of two 1-parameter group in G

{etZ}t∈R and {etZ′
}t∈R belong to Hom∞(R, G),

and ZM(x) and Z′
M(x) are the fundamental vector fields associated

with Z and Z′ in G. Thus,

ωx(ZM(x), Z′
M(x)) = x̂∗(ω)(Z, Z′),

where
x̂ : g 7→ gM(x)

is the orbit map at the point x and gM ∈ Diff(M) denotes the action
of G on M. Indeed

x̂∗(ω)(Z, Z′) = ωx(D(x̂)1G(Z), D(x̂)1G(Z′))

= ωx(ZM(x), Z′
M(x)),

because

ZM(x) :=
∂etZ

M (x)
∂t

∣∣∣∣
t=0

= D(x̂)1G(Z),

where 1G denotes the identity in G. Now,

304. Proposition. If the group G preserves ω, that is, if

∀g ∈ G, g∗
M(ω) = ω,

then
∀g ∈ G, L(g)∗(x̂∗(ω)) = x∗(ω).

where L(g) is the left multiplication in G. Thus the map x 7→ x̂∗(ω)
defined on M takes its values in the vector space of left invariant
2-forms on G.
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Let us denote for now

G∗k = {ε ∈ Ω
k(G) | ∀g ∈ G, L(g)∗(ε) = ε}.

Thus,
{·, ·} = [x 7→ x̂∗(ω)] ∈ C∞(X,G∗2).

Such that
{·, ·}x(Z, Z′) = ωx(ZM(x), Z′

M(x)).

Come back to our symplectic gradients: the flow {et grad
ω
(u)}t∈R they

define is called Hamiltonian because its Hamiltonian [TB, § 9.15] is
[x 7→ u]. Of course the group

Hω = Ham(M, ω)

is not a Lie group, but it is a diffeological group and as such obeys
to all diffeological constructions, in particular the diffeological vector
space of left-invariant k-forms on Hω is well defined

H∗
ω,k = {ε ∈ Ω

k(Hω) | L(g)∗(ε) = ε},

for any diffeological space X equipped with a closed 2-form ω. The
space H∗

ω = H∗
ω,1 has been already defined as the space of momenta

of the group Hω [TB, § 7.12].

Therefore, we can define now the Poisson bracket in full generality:

305. The Poisson bracket in diffeology. Let (X, ω) be a parasymplectic
space. Let Ham(X, ω) be the group of Hamiltonian diffeomorphisms
[TB, § 9.15], and H∗

ω,2 be the diffeogical vector space of left-invariant
2-form on X. We call Poisson bracket the map

{·, ·} : x 7→ x̂∗
ω, {·, ·} ∈ C∞(X,H∗

ω,2).

But this definition coincides with the classical version when (X, ω) is
a symplectic manifold.

✑ Proof. Consider a n-plot P : U → Hω with P : r 7→ gr , centered
at 1G = P(0). Then, for all x ∈ X, for all r ∈ U and δr, δ′r ∈ Rn :

{·, ·}x(P)r(δr, δ′r) = x̂∗
ω(P)r(δr, δ′r) = ω(x̂ ◦ P)r(δr, δ′r)

= ω(r 7→ gr(x))r(δr, δ′r).



i
i

i
i

i
i

i
i

318 POISSON BRACKET IN DIFFEOLOGY

Since {·, ·}x is left-invariant it is defined by its value at the identity
[TB, § 6.40, 7.18]. Thus, let us compute {·, ·}x(P) at r = 0 for two
vectors v, v ′ ∈ Rn.

ω(r 7→ gr(x))0(v, v ′) = ω(r 7→ gr(x))0(v, v ′)

= ωg0(x)

( ∂gr(x)
∂r

∣∣∣∣
r=0

(v),
∂gr(x)
∂r

∣∣∣∣
r=0

(v ′)
)

= ωx(ZM(x), Z′
M(x)),

where

∂gr(x)
∂r

∣∣∣∣
r=0

(v) = D(s 7→ gsv(x))s=0(1), (s ∈ R)

= D(x̂)1G

( ∂gsv
∂s

∣∣∣∣
s=0

)
= D(x̂)1G(Z),

with

Z =
∂gsv
∂s

∣∣∣∣
s=0

.

Indeed s 7→ gsv is a centered path at the identity 1G, then its deriva-
tive defines a tangent vector Z ∈ T1G(G), that is an element of the Lie
algebra G. If the action of G on M is Hamiltonian then Z = grad

ω
(u)

and Z′ = grad
ω
(u′) Therefore:

ω(r 7→ gr(x))0(v, v ′) = ωx(ZM(x), Z′
M(x)) = {u, u′},

which is the ordinary definition of the Poisson bracket in symplectic
geometry. ▶

306. Remark The Poisson bracket is not only a map from X to left-
invariant 2-forms on Ham(X, ω):

(A) The Poisson bracket takes its values in the space of invariant
closed 2-forms:

d[{·, ·}(x)] = d[x̂∗
ω] = x̂∗[dω] = 0 for all x ∈ X.

Developed, this gives the Jacobi identity.
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(B) Consider the special case when ω is exact and its primitive is also
exact:

ω = dα and h∗(α) = α for all h ∈ Ham(X, ω).

Then, the Poisson bracket is related to the universal moment map μω
[TB, §9.14] :

{·, ·}(x) = d[μω(x)] for all x ∈ X ,

since μω(x) is in this case simply x̂∗(α).

Fish Hook : Crochets de Poisson ?
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Smooth Embeddings and
Smoothly Embedded Subsets

Since Henri Joris paper we potentially know that, paradoxically, the
semi-cubic y2 –x3 = 0 is an embedded submanifold of R2. So, how to
understand the singularity of the cusp? This is because, if the cusp
is embedded, it is not smoothly embedded. And this note will detail
this aspect.

81. Smooth embeddings

The semi-cubic is the subset S ⊂ R2 of equation y2 – x3 = 0. It is
represented in Figure 38. It is the image of the map

j : R → R2, j : t 7→
(

t2

t3

)
.

The map j is not an immersion since j′(0) = 0, where j′ is the deriv-
ative of j. But a longtime question was : is j an induction?

I recall that the map j is an induction [TB, § 1.29] if and only if: j
is smooth, injective and the inverse j–1 : S → R is smooth, where
S = val(j) is equipped with the subset diffeology.

In that case, that is equivalent to the following:

Question. For any smooth parametrization P : r 7→ (x(r), y(r)) with
values in S, that is, y(r)2 – x(r)3 = 0 for all r, is the following map

320
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smooth?

t(r) =
y(r)
x(r)

The solution to this question comes from a theorem due to Henri
Joris [Jor82], which was pointed out to me by Yael Karshon.1 In a
simple version:

307. Theorem (H. Joris). If a real map f is such that t 7→ f (t)2 and
t 7→ f (t)3 are smooth, then f is smooth.

!

t

x = t2

y = t3

0

Sj

Figure 38. The semi-cubic y2 = x3.

308. Corollary. The map j : t 7→ (t2, t3) is an induction from R into
R2. The semi-cubic S image of j is an embedded submanifold of R2.

✑ Proof. Clearly j : t 7→ (x = t2, y = t3) is smooth, and injective:
t = 3

√
y. Let r 7→ P(r) = (x(r), y(r)) be a plot in R2 with value in S.

Then, j–1 ◦P(r) = t(r) such that r 7→ t(r)2 and r 7→ t(r)3 are smooth.
To apply Joris theorem we need to come back to a map from R to R.
We can use Boman’s theorem ][Bom67]

309. Theorem (J. Boman). A continuous parametrization P : U →

Rm, is smooth if and only if, for any smooth path γ in U, the com-
posite P ◦ γ is smooth.

1In a private discussion, but since commented in [KMW22].
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But, for each such smooth path, the composite s 7→ t(r(s)) is smooth,
thanks indeed to Joris theorem. Thus, r 7→ P(r) is smooth. To finish
j is an embedding because y 7→ 3

√
y is an homeomorphism of R. ▶

So, we have a figure, the semi-cubic, image of R by an induction,
which is by construction a submanifold of R2 because its subset dif-
feology is equivalent to R.

There is clearly something weird in that situation, the cusp at (0, 0)
is obviously a singularity. But since it is transparent to the subset
diffeology, how to capture it? That is the question.

82. Smoothly embedded subsets

The answer lies in the relationship between the ambient space R2

and the subspace S. Consider the pseudo-group of diffeomorphisms
of R2 that preserve S, that is, that fix globally S ,

Diffloc(R2,S) = {φ ∈ Diffloc(R2) | φ(S) ⊂ S}

Since φ is a local diffeomorphism φ(S) = φ(S∩dom(φ)). If S∩dom(φ)
is empty, there is nothing to check. Then,

310. Proposition. Every local diffeomorphism φ ∈ Diffloc(R2,S) fixes
the point (0, 0) ,

∀φ ∈ Diffloc(R2,S), φ(0, 0) = (0, 0).

✑ Proof. Let φ ∈ Diffloc(R2,S) such that φ(0, 0) = (x, y) and
(x, y) ̸= (0, 0). The restriction φ ↾ S belongs to Diffloc(S). Thus,
φ = j–1 ◦ (φ ↾ S) ◦ j belongs to Diffloc(R).

R S ⊂ R2

R S ⊂ R2

j

φ

j

φ ↾ S
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Let us derive j ◦ φ = (φ ↾ S) ◦ j at the point 0, and let j(t) = (x, y) =
φ(0, 0) :

D(j ◦ φ)(0) = D((φ ↾ S) ◦ j)(0)

D(j)(t) ◦ D(φ)(0) = D(φ ↾ S)(0, 0) ◦ D(j)(0)

D(j)(t) ◦ D(φ)(0) = 0.

But t ̸= 0 implies rank(D(j)(t)) = 1, and D(φ)(0) is a non-zero num-
ber, thus the composite D(j)(t) ◦ D(φ)(0) cannot be zero. ▶

So, although the local diffeomorphisms are transitive on S, the local
diffeomorphisms of R2 preserving S are not. This is this iatus which
capture the singularity at 0. This remark leads then to a refinement
of the concept of embedding. Let X be a diffeological space and
S ⊂ X an embedded subset [TB, § 2.13].

Let us begin by defining two groupoids:

(A) Let KS be the groupoid of germs of local diffeomorphisms
of S.{

Obj(KS) = S

MorS(x, x ′) = {germ(φ)x | φ ∈ Diffloc(S), φ(x) = x ′}

(B) Let KX,S be the groupoid of germs of local diffeomorphisms
of X preserving S.{
Obj(KX,S) = S

MorX,S(x, x ′) = {germ(φ)x | φ ∈ Diffloc(X,S), φ(x) = x ′}

There is a natural morphism restriction Φ from KX,S to KS :

ΦObj = 1S and ΦMor : germ(φ)x 7→ germ(φ ↾ S)x.

That leads to the following definition:

311. Definition 1. We shall say that an embedded subset S ⊂ X is
smoothly embedded if the morphism Φ, from KX,S to KS is surjection
on the arrows. That is, if Φ is a full functor.

In other words, the embedded subset S is smoothly embedded if it
is embedded and the germ of any local diffeomorphism of S can be
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extended to a local diffeomorphism of X; or again if the germ of
any local diffeomorphism of S is the imprint, or the trace, of a local
diffeomorphism of X.

Thus, the semi-cubic is indeed and embedded submanifold, but not
smoothly embedded.

This notion of embedded subset goes back to the embeddings. We
get the definition of smooth embeddings.

312. Definition 2. Let j : Σ→ X be an embedding. we shall say that
j is a smooth embedding if S = j(Σ) is smoothly embedded in X.

Conclusion: The injection j : t 7→ (t2, t3) is an embedding, but not a
smooth embedding.

  Notes
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Seifert Orbifolds

The quotient of a 3-manifold by an effective action of S1, without
fixed points, is a classical example of orbifold. But how does that fit
within the diffeological frame? That is what we discuss here.

We’ll talk about classical things and construction in differential ge-
ometry, but from the point of view of diffeology. We’ll see how, in
this example, the vocabulary and constructions of diffeology fit the
needs of the problem. We shall consider in particular the diffeological
definition of an orbifold, that is, a diffeological space locally diffeo-
morphic to a quotient Rn/Γ, where Γ is a finite subgroup of the linear
group GL(n, R), see [IKZ10] for the details.

Warning. One should not confuse what we call in this note a "Seifert
orbifold" with what topologists call "Seifert fibered orbifold", as it
appears in [BS85] for example. For us the orbifold is the space of
Seifert fibers of a Seifert fibered manifold, and not an orbifold that
would be the total space of a Seifert fibration.

83. A little bit of smooth Lie group actions

Let M be a smooth manifold and consider a smooth action of a Lie
group G on M.

(A) Diffeologically speaking, such an action is a smooth homomor-
phism g 7→ gM, from G to Diff(M), where Diff(M) is equipped with
the functional diffeology [TB, § 7.4].

325
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(B) Let x ∈ M and H = St(x), the stabilizer of x. The orbit map
g 7→ gM(x) from G to M is strict, that means that the projection
class(g) 7→ gM(x), defined on the coset G/H into M is an induction.
In other words, the map class : G/H → Ox is a diffeomorphism,
where G/H is equipped with the quotient diffeology and Ox ⊂ M is
equipped with the subset diffeology [IZK12, § 1]: equipped with the
subset diffeology, the orbit Ox is a manifold diffeomorphic to the coset
G/H. Now, if G is compact, then this induction is an embedding and
the orbit is an embedded submanifold.

(C) If G is compact, the type of stabilizers (or orbits) of a smooth
action of G on a manifold M, is given by the Theorem of Principal
Orbits [Bre72, Theorem 3.1 of Part IV].

313. Principal orbits. There exists a maximum orbit type G/H for
G on M (i.e., H is conjugate to a subgroup of each isotropy group).
The union M(H) of the orbits of type G/H is open and dense in M.

In particular, the stabilizers of any two points in M(H) are conjugate.
The orbits of points in M(H) are called principal orbits.

Non-principal orbits are called singular orbits. If a singular orbit has
the same dimension than the principal orbits, the orbit is said to be
exceptional.

(D) If G is compact, the Theorem 2.4 of part VI of Compact Group
Action on Manifolds [Bre72] states that:

314. Smooth linear tube. Let x be any point in M, and let H be the
stabilizer of x. There exists a vector space V, an orthogonal action
of H on V, and a local G invariant diffeomorphism φ : G ×H V → M.

The space G ×H V is the quotient of G × V by the diagonal action of
H, hG×V : (g, v) 7→ (gh–1, hV(v)), where h 7→ hV denotes the action
of H on V.

The image of the local diffeomorphism φ is an open invariant tube
about the orbit Ox, image by φ of the zero-section in G ×H V.
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84. Circle actions on manifolds

Consider a smooth action of the circle S1 on a manifold M. According
to the Theorem of Principal Orbits of compact groups actions on
manifolds, there exists a S1-invariant open dense subset of M such
that all of its points have the same principal stabilizer H, a closed
subgroup of S1. And this principal stabilizer is contained in every
stabilizer.

If the principal stabilizer is S1 then all stabilizers are S1 and the
action is trivial.

If the action is not trivial then H is a cyclic group Zm = {ε | εm = 1}.

In the case of a non trivial action of S1, it is always possible to
consider the quotient group S1/H, which is isomorphic to S1, and
the situation is reduced to an effective action of S1, that is, an action
with principal stabilizer {1}. This will be what we assume now.

If the action has no fixed points then the singular orbits are excep-
tional, and conversely.

85. Seifert orbifolds

Now, we can present the object of our note. We refer to [Sco83] for
the vocabulary and general context.

315. Seifert fibration. A Seifert Fibered Space (or Seifert fibration)
is a 3-manifold M with an effective action of S1 without fixed points.

Because all the stabilizers are cyclic, the fibers of the Seifert Fibered
Space, that is, the orbits of the action of the circle, are diffeomorphic
to the circle, when equipped with their subset diffeology [IZK12, § 1].
What about the quotient space?

316. Seifert orbifolds. Let M be a 3-manifold with an effective action
of S1, without fixed points. Then, the quotient space Q = M/S1 is
a 2-manifold if the action is principal, or a 2-orbifold with isolated
conic singularities otherwise.
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✑ Proof. Thanks to the Linear Tube Theorem, every orbit Ox has
an equivariant open neighborhood diffeomorphic to a linear tube of
type S1 ×Zm C, where Zm is the stabilizer of x. Then, about the orbit
Ox ∈ Q, the quotient space Q is locally diffeomorphic to [S1×Zm C]/S1,
where the action of S1 is given by τ class(z, Z) = class(τz, Z). Note
in particular that class(z, Z) = z class(1, Z).

Consider the map J : C → S1 ×Zm C, defined by J(Z) = class(1, Z).
The map J is an induction. Indeed, it is clearly injective. Moreover,
let r 7→ ζ(r) be a plot in J(C) ⊂ S1 ×Zm C. Since class : S1 × C →

S1 ×Zm C is a subduction, by construction, there exists always plots
r 7→ (z(r), Z(r)) in S1 × C such that, locally, ζ(r) = class(z(r), Z(r)).
But since ζ(r) ∈ J(C), for all r in the domain of the plot there is Z′ ∈

C such that class(z(r), Z(r)) = class(1, Z′). Thus z(r) ∈ Zm ⊂ C, and
since Zm ⊂ C is diffeologically discrete, r 7→ z(r) is locally constant,
z(r) = ε ∈ Zm. Hence, ζ(r) =loc class(1, εZ(r)), with r 7→ εZ(r)
smooth. Therefore, J is an induction.

Next, every S1-orbit in S1 ×Zm C writes S1 · class(1, Z) = {class(z, Z) |

z ∈ S1}, for some Z ∈ C. Its intersection with J(C) is the set(
S1 · class(1, Z)

)
∩ J(C) = {class(1, εZ) = J(εZ) | ε ∈ Zm}

Thus, there exists a natural bijection j : C/Zm →
(
S1 ×Zm C

)
/S1

mapping every Zm-orbit in C to the corresponding S1-orbit in S1 ×Zm

C.
j(class(Z)) = S1 · class(1, Z).

Now, let pr : S1 ×Zm C →
(
S1 ×Zm C

)
/S1 be the natural projection. Let

us prove that the restriction pr ↾ J(C) is a still a subduction. Let r 7→
ζ(r) be a plot in

(
S1 ×Zm C

)
/S1, locally ζ(r) = class(z(r), Z(r)), where

r 7→ z(r) and r 7→ Z(r) are smooth. But, class(z(r), Z(r)) = z̄(r) ·
class(1, z(r)Z(r)), then pr(class(z(r), Z(r))) = pr(class(1, z(r)Z(r))),
and class(1, z(r)Z(r)) belongs to J(C). Thus, as claimed, pr ↾ J(C) is
still a subduction.

Therefore, since class : C → C/Zm and pr ↾ J(C) : J(C) →
(
S1 ×Zm

C
)
/S1 are two subductions, since J is an induction, and the factoriza-

tion j : C/Zm →
(
S1 ×Zm C

)
/S1 is a bijection, j is a diffeomorphism.
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C S1 ×Zm C M

C/Zm
(
S1 ×Zm C

)
/S1 M/S1

J

class pr

φ

π

j f

Finally, the equivariant local diffeomorphism φ : S1 ×Zm C → M, given
by the Smooth Linear Tube Theorem above, projects on a local dif-
feomorphism f :

(
S1 ×Zm C

)
/S1 → M/S1. The composite f ◦ j is then

a local diffeomorphism from C/Zm into M/S1. Therefore, M/S1 is
an orbifold according to [IKZ10, Definition 6]. The singular points
are the images by f ◦ j of class(0) ∈ C/Zm. They are clearly isolated
and conic. If there is no exceptional orbit, then M/S1 is obviously
just a manifold (which is just a consequence of the Linear Tube The-
orem). ▶

A vision of the Hopf fibration

by Niles Johnson (2012)
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Symplectic Spaces Without
Hamiltonian Diffeomorphisms

We consider the 2-dimensional irrational torus T2
α,β = Tα × Tβ, where

Tα = R/Z + αZ and Tβ = R/Z + βZ, with α, β ∈ R – Q. We check
that 2-form ω = θα ∧ θβ, where θα and θβ are the projection of dt on
Tα and Tβ, is symplectic, according to the definition of a symplec-
tic form in diffeology. Then, we show that the group of symplectic
transformations Diff(T2

α,β, ω) has no Hamiltonian transformation.

86. Diffeomorphisms of an irrational 2-Torus

Let T2
α,β = Tα × Tβ, where Tα = R/(Z + αZ) and Tβ = R/(Z + βZ),

with α, β ∈ R – Q. Let ω = θα ∧θβ, where θα and θβ are the projection
of dt on Tα and Tβ. That is, π∗α(θα) = π∗

β
(θβ) = dt, where πα : R → Tα

and πβ : R → Tβ are the projections.

317. The diffeomorphisms. Let Δ : Φ 7→
(
(τ, τ′), φ

)
be the map, de-

fined on Diff(T2
α,β) by

(τ, τ′) = Φ(1, 1) and φ(z, z ′) = (τ̄, τ̄′) · Φ(z, z ′).

The pair (τ, τ′) belongs to T2
α,β, the bar τ̄ denotes the inverse τ–1,

the dot · denotes the group multiplication on T2
α,β, and φ belongs to

the subgroup Diff(T2
α,β, 1) of diffeomorphisms fixing 1 = (1, 1).

330
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(1) The map Δ is a diffeomorphism from Diff(T2
α,β) to the prod-

uct T2
α,β × Diff(T2

α,β, 1), where T2
α,β is equipped with its dif-

feology and Diff(T2
α,β, 1) with the functional diffeology.

(2) Acting by multiplication, the group T2
α,β is naturally con-

tained in Diff(T2
α,β). It is its neutral component:

Diff(T2
α,β, 1)◦ = T2

α,β.

(3) The subgroup Diff(T2
α,β, 1) is discrete and identifies with the

group of components of Diff(T2
α,β):

π0(Diff(T2
α,β)) ≃ Diff(T2

α,β, 1).

✑ Proof. Since T2
α,β is a diffeological group (multiplication and

inversion smooth), the map Δ is smooth. Its inverse is given by

Δ
–1 :

(
(τ, τ′), φ

)
7→ [Φ : (z, z ′) 7→ (τ, τ′) · φ(z, z ′)].

And for the same reasons, Δ–1 is smooth too. Therefore, Δ is a diffeo-
morphism.

Now, let us prove that Diff(T2
α,β, 1) is discrete, for the functinal dif-

feology. Let φ ∈ Diff(T2
α,β, 1), and consider the composite φ◦π : R2 →

T2
α,β, where π : R2 → T2

α,β is the projection. Since R2 is simply con-
nected, and since φ(1, 1) = (1, 1), there exists a unique smooth map
Φ : R2 → R2 such that Φ(0, 0) = (0, 0) and π ◦ Φ = φ ◦ π.

R2 R2

T2
α,β T2

α,β

Φ

π π

φ

Now, let us denote by K the group (Z + αZ) × (Z + βZ) ⊂ R2. The
group T2

α,β is just the quotient R2/K. The map Φ satisfies then

Φ(X + K) = Ψ(X) + K′.

Where K′ depends a priori on X and K. But since X 7→ Φ(X+K)–Φ(X)
is smooth, and since K ⊂ R2 is discrete, K′ depends only on K. Thus,



i
i

i
i

i
i

i
i

332 SYMPLECTIC SPACES WITHOUT HAMILTONIAN DIFFEOMORPHISMS

the tangent linear map satisfies

D(Φ)(X + K) = D(Φ)(X),

for all X and all K. Choosing X = 0, we have, for all K ∈ K,
D(Φ)(K) = M, with M = D(Φ)(0) ∈ L(R2). But since X 7→ D(Φ)(X) is
smooth and K is dense in R2, D(Φ)(X) = M for all X. But that gives
the expression of Φ, which is a linear map:

Φ(X) = MX with M ∈ GL(R2).

Remark that a priori M is just linear, but if it has a non-zero kernel
then its image by π in T2

α,β is (at least) a whole 1-dimensional sub-
space mapped into (1, 1) by φ. But φ is a diffeomorphism and that
cannot happen. Therefore, M is non degenerate, and Diff(T2

α,β, 1)◦ is
naturally identified to a subgroup of GL(R2). Now, since π◦Φ = φ◦π
and φ(1) = 1, MK ⊂ K. Actually, since M is the lifting on the univer-
sal covering of a diffeomorphism, MK = K. Thus, for all n, m, n′, m′

in Z, there exist n′′, m′′, n′′′, m′′′ in Z such that(
a b
c d

)(
n + αm

n′ + βm′

)
=
(

n′′ + αm′′

n′′′ + βm′′′

)
with M =

(
a b
c d

)
We shall not solve this equation because it is not the purpose of this
exercise, but let us just notice that:

a, b ∈ Z + αZ
c, d ∈ Z + βZ

&
αa, βb ∈ Z + αZ
αc, βd ∈ Z + βZ

.

From these conditions, we get immediately that the subgroup in
GL(R2) identified to Diff(T2

α,β, 1) is discrete (diffeologically). Hence,
since Diff(T2

α,β) ≃ T2
α,β × Diff(T2

α,β, 1), where T2
α,β is connected and

Diff(T2
α,β, 1) is discrete, the group Diff(T2

α,β, 1), identifies naturally
with π0(Diff(T2

α,β)). ▶

87. The moment map of the torus action onto itself

We consider now the action of R2 on T2
α,β defined by

(a, b)T2
α,β

(z, z ′) = π ◦ (a, b)R2(x, x ′) = (πα(x + a), πβ(x ′ + b)),
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with

(z, z ′) = π(x, x ′), that is, z = πα(x) and z ′ = πβ(x ′).

The paths moment map of this action of R2 on (T2
α,β, ω) is defined by

Ψ(γ) = γ̂∗(Kω),

where K is the Chain-Homotopy Operator, γ ∈ Paths(T2
α,β) and γ̂ is

the orbit map γ̂ : R2 → Paths(T2
α,β), defined by

γ̂ : (a, b) 7→ [t 7→ (a, b)T2
α,β
γ(t)].

Let γ : t 7→ (z(t), z ′(t)) be a path in T2
α,β. Thanks to the Monodromy

Theorem, there always exists a lift –γ : t 7→ (x(t), x ′(t)) of γ into R2,

γ(t) = π(–γ(t)) = (πα(x(t)), πβ(x ′(t))).

It is uniquely defined by γ and the image of 0. We denote by

π∗ : Paths(R2) → Paths(T2
α,β), with π∗(–γ) = π ◦ –γ,

the projection defined by the composite.

318. Exercise. (The moment map) Let γ be a path in T2
α,β and –γ be

a lift of γ into R2. Show that

Ψ(γ) = Ψ(–γ),

where Ψ denotes the paths moment map of R2 acting on T2
α,β for the

left-hand side, and acting on R2 on the right-hand side.

✑ Proof. We have:

γ̂(a, b) = [t 7→ (a, b)T2
α,β

(z(t), z ′(t))]

= [t 7→ (πα(x(t) + a), πα(x ′(t) + b))]

= [t 7→ π(x(t) + a, x ′(t) + b)]

= π ◦ (a, b)R2 ◦ –γ

= π∗(–̂γ(a, b))

= π∗ ◦ –̂γ(a, b),
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and then,
γ̂ = π∗ ◦ –̂γ.

And we note that that apply to any lift –γ of γ. Injecting that into
the expression of the paths moment map above, we get

Ψ(γ) = π̂∗ ◦ –̂γ
∗
(Kω) = –̂γ

∗((π∗)∗(Kω)
)
.

But, according to the variance of the paths moment map,

(π∗)∗ ◦K = K ◦ π∗.

Thus
Ψ(γ) = –̂γ

∗(K(π∗(ω))) = –̂γ
∗(K(dx ∧ dy)) = Ψ(–γ),

And that is what had to be proven. ▶

319. Exercise: The universal path moment map. Let γ be a path in
T2
α,β and –γ be a lift of γ in R2. Let –γ(0) = (a, b) and –γ(1) = (a′, b′).

Show that the path moment map relatively to R2 is given by

Ψ(γ) = (a′ – a)dy – (b′ – b)dx.

And that the universal moment map is then

Ψω(γ) = (a′ – a)θβ – (b′ – b)θα.

✑ Proof. According to the previous exercise, Ψ(γ) = Ψ(–γ). Next,
since Ψ(–γ) is fixed-ends homotopic invariant, we can always choose –γ
to be the affine path connecting its origin to its end:

Ψ(–γ) = Ψ([t 7→ t(a′, b′) + (1 – t)(a, b)]).

The expression of the moment map in this case is simlpy given by

Ψ(–γ)(P)r(δr) =
∫1

0
(dx ∧ dy)–γ(t)(–̇γ(t), δ–γ(t)) dt,

with

–̇γ(t) =
(

a′ – a
b′ – b

)
& δ–γ(t) = [D(P(r))(–γ(t))]–1∂P(r)(–γ(t))

∂r
(δr),

where P is a plot of R2. Now, the moment map Ψ(–γ) is an invariant
1-form on R2, thus Ψ(–γ) = Adx + Bdy. The coefficients A and B are
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given by Ψ(–γ)[s 7→ T(s,0)]s(1) and Ψ(–γ)[s 7→ T(0,s)]s(1), where T(x,y) is
the translation of (x, y). In our case [D(P(r))(–γ(t))] = 1,

∂T(s,0)(x, y)
∂s

(1) = (1, 0) and
∂T(0,s)(x, y)

∂s
(1) = (0, 1).

Hence,

A =
∫1

0
(dx ∧ dy)

(
a′ – a
b′ – b

)(
1
0

)
dt = –(b′ – b)

and

B =
∫1

0
(dx ∧ dy)

(
a′ – a
b′ – b

)(
0
1

)
dt = a′ – a.

Thus, Ψ(γ) = (a′ – a)dy – (b′ – b)dx. Now, since Diff(T2
α,β)

◦ = T2
α,β,

and T2
α,β = R2/(Z + αZ) × (Z + βZ), Ψω is the pushforward of Ψ, that

is, Ψω(γ) = (a′ – a)θβ – (b′ – b)θα. ▶

320. Exercise: The holonomy. Let Γω be the universal holonomy of ω.
We know that the neutral component of Diff(T2

α,β, ω) is isomorphic
to T2

α,β acting on itself by multiplication. Show that

Γω = {kθα + k ′
θβ | k ∈ Z + βZ and k ′

∈ Z + αZ}.

✑ Proof. By definition

Γω = {Ψω(ℓ) | ℓ ∈ Loops(T2
α,β)}.

We can choose the loops ℓ pointed at the origin. Every loop pointed
at the origin is the projection on a path –γ = [t 7→ t(k, k ′)], where
k ∈ Z + αZ and k ′ ∈ Z + βZ. Now, according to the previous exercise
we get immediately Ψω(γ) = kθβ – k ′

θα. ▶

88. The symplectic irrational torus

We already proposed, in a few papers, a definition of a symplectic
diffeological space. The objects and constructions used here can be
found in [PIZ10]

321. Definition. A closed 2-form ω defined on a diffeological space X
is symplectic if it satisfies the following two conditions:
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(1) The space X is locally homogenous under the action of local
automorphisms. Precisely, that means that for every pair of
points x, x ′ in X, there exists a local diffeomorphism φ of X
such that:

φ
∗(ω) = ω ↾ dom(φ) and φ(x) = x ′.

(2) The universal moment map μω : X → G∗ω/Γω is injective.1

The first condition2 describes a presymplectic space. The second
condition mimic what happens for symplectic manifolds. This defi-
nition could be possibly modified if the development of “Symplectic
Diffeology” requires it, but it captures already quite well the spirit
of what we regard as symplectic.

Note however that the second condition has a better formulation
using the 2-points moment map ψω, with values in G∗ω/Γω, that is,

(2’) The diagonal ΔX = {(x, x)}x∈X is the zero locus of the 2-
points moment map ψ.

This condition has an expression involving only the paths moment
map:

(2”) For all γ ∈ Paths(X), Ψ(γ) ∈ Γω if and only if γ ∈ Loops(X).

322. Exercise: Symplectic irrational 2-torus. Show that the irrational
2-torus T2

α,β, equipped with the 2-form ω, is symplectic.

✑ Proof. We know already that the neutral component of Diff(T2
α,β, ω)

is T2
α,β itself. Then Diff(T2

α,β, ω) is transitive and ω is presymplectic.
Now, the paths moment map for a path γ connecting z = π(a, b) to
z ′ = π(a′, b′) is given by

Ψω(γ) = (a′ – a)θβ – (b′ – b)θα.

Then, Ψω(γ) ∈ Γω if and only if a′ – a ∈ Z + αZ and b′ – b ∈ Z + βZ,
that is, a′ = a + k and b′ = b + k ′, with k ∈ Z + αZ and k ′ ∈ Z + βZ.
Thus, z ′ = π(a + k, b + k ′) = π(a, b) = z and γ is a loop, and the

1It is safer to ask for a covering onto its image.
2There is an alternative between local transitivity or local homogeneity actually.
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condition (2”) is satisfied. Since the two condition (1) and (2”) are
satisfied, (T2

α,β, ω) is a symplectic diffeological space. ▶

There are two equivalent ways of considering Hamiltonian diffeomor-
phisms, described in [TB, § 9.15] and [TB, § 9.16]. Use both of them
in the next exercise.

323. Exercise: Hamiltonian diffeomorphisms. Show that the group
of Hamiltonian diffeomorphisms of (T2

α,β, ω) is trivial.

✑ Proof. Considering the definition [TB, § 9.15], we first construct
the group Ĥω as the intersection of the morphisms fε, from the cov-
ering of the neutral component of Diff(T2

α,β, ω) to R, integrating the
closed 1-forms ε ∈ Γω. And then, the group Ham(T2

α,β, ω) is the pro-

jection of Ĥω in Diff(T2
α,β, ω). In our case ε write kθα + hθβ, where

k ∈ Z + βZ and h ∈ Z + αZ. Its integration function is fε : (x, y) 7→
kx + hy. Its kernel is the line ker(ε) = {t(–h, k)}t∈R. Therefore the
intersection Ĥω is reduced to {(0, 0)}, and Ham(T2

α,β, ω) = {1}.

The second way describes the element of Ham(T2
α,β, ω) as the end of

paths t 7→ ft in Diff(T2
α,β, ω), centered at the identity, for which there

exists a path t 7→ Φt in C∞(T2
α,β, R) such that iFt(ω) = –dΦt, where

Ft = [s 7→ f –1
t ◦ ft+s] [TB, § 9.16]. But in our case, C∞(T2

α,β, R) is
reduced to the constant maps, then for all t, dΦt = 0, that is, iFt(ω) =
0. Let p ∈ Paths(T2

α,β) and let [t 7→ ft] be a path in Ham(T2
α,β, ω) ⊂

Diff(T2
α,β, ω). Thanks to formula [TB, § 9.2 (♣)], we have

Ψω(p)([t 7→ ft])t(1) = –
∫
p

iFt(ω) = 0,

for all path [t 7→ ft] in Ham(T2
α,β, ω). Now, on the one hand, Ψω(p) =

(a′ – a)θβ – (b′ – b)θα, where p(0) = π(a, b) and p(1) = π(a′, b′). On
the other hand, t 7→ ft has a lifting in R2, ft = (πα(x(t)), πβ(y(t))).
Then, Ψω(p)([t 7→ ft])t(1) = (a′ – a)ẏ(t) – (b′ – b)ẋ(t) = 0, for all a′ – a
and b′ – b. Thus, ẋ(t) = 0 and ẏ(t) = 0. Therefore ft = 1 for all t,
and Ham(T2

α,β, ω) = {1}. ▶
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The Diffeology Framework of General Covariance

In this lecture1 I will present the principle of general covariance, in-
troduced by J.-M. Souriau in the 70s, as the active version of the
principle of general relativity. I will show how we can include it in
the formal diffeology framework.

89. The principle of general covariance

Jean-Marie Souriau established its principle of general covariance in
a few papers. Namely, the first two as short notes [Sou70a, Sou70b],

- Sur le mouvement des particules à spin en relativité générale. C. R.
Acad. Sci. Paris Sér. A, 271 :751–753, 1970.

- Sur le mouvement des particules dans le champs életromagnétique.
C. R. Acad. Sci. Paris Sér. A, 271 :1086–1088, 1970.

Profusely deveoped and completed in a famous paper [Sou74]

- Modèle de particule à spin dans le champ électromagnétique et
gravitationnel. Ann. Inst. Henri Poincaré, XX A, 1974.

The purpose of these papers was to describe the motion of a material
medium submitted to the action of a gravitational field, represented
by a pseudo-Riemmannian metric g, of signature (+ – – –), on a
manifold M with dimension 4, the space-time.

1Talk given at the “Theory of Gravitation and Variation in Cosmology” School,
CIRM/Luminy, April 12–16, 2021.
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Of course that depends on the nature of the medium: if it is a contin-
uous medium or a system of particles, in presence of electromagnetic
field or not, with or without spin. . .

The motion, the evolution, of these system are described by differen-
tial equations, ordinary or partial differential systems. In his papers,
Souriau proposes a unique process, a mechanism, which gives them
all at the same time, according to the same principle of general co-
variance, which can be regarded as the effective principle of general
relativity.

I should mention that the principle of general covariance is not the
only way to find the equations of motion of material medium in gen-
eral relativity. There is obviously the classical variational approach,
the motion are the extremals of some action functions defined by a
Lagrangian. I will show later how the two approaches are related.

The point is that it is not apparent if and how the variational ap-
proach expresses the principle of general relativity, but there is no
doubt about the principle of general covariance. We’ll discuss it.

324. The Physis. As we said above, let M be a manifold of dimension
4. To describe the motion of a passive material in the gravitational
field we shall consider the infinite dimensional space of all the pseudo-
Riemmannian metric on M. Let M be this space.

M = {g : pseudo-Riemannian metric | sgn(g) = (+ – – –)}

Now consider the group Diff(M) of diffeomorphism on M, acting by
pullback (or pushforward) on M: For all f ∈ Diff(M), for all g ∈ M,

f ∗(g)x(v, w) = gf (x)
(
Dfx(v), Dfx(w)

)
.

Now, the indifference of the real world with respect to its different
representations leads to regard the gravitational field equivalently
represented by g or any other metric g ′ on the same orbit of the
group Diff(M). In other words, the gravitational field is not g but
the orbit

class(g) = Diff(M)∗(g).
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M

Φ

g

γ = class(g)

Diff(M)*(g)

δLg

δg

δγ

class

Figure 39. The Physis.

What Souriau proposes is to regard the real world, in this case: the
gravitation, represented not by M but by the quotient

Φ = M/Diff(M);

Originally, Souriau called the quotient M/Diff(M) the Hyperspace
and denoted it by H, but in his last unpublished works (“La Gram-
maire de le Nature”) he changed for Physis, since for him the nature
expresses itself through this quotient. We decide to follow him and
denote it by the greek letter Φ.

325. The passive matter. There are two kinds of evolution of matter
in relativity: passive and field generating. The field generating mat-
ter is described by Einstein’s equations. We may come back to that
point later, but now we are interested first in the Passive Equations
of Physics, as named by Shlomo Sternberg in [Ste12]:

- General Covariance and the Passive Equations of Physics.

They are defined by the following principle:

Souriau’s principle of general covariance The evolution of matter sub-
mitted to a gravitational field is described by a covector on the space
Φ = M/Diff(M).
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Covectors on the space Φ are defined by a universal equation we shall
establish now.

326. The universal equation of passive matter. We consider a metric

g ∈ M and γ = class(g) ∈ Φ.

Let us interpret a covector at the point γ as a linear functional defined
on the variation δγ. The point is to understand what is δγ, a priori
it would be a “tangent vector” at the point γ. That is, a tangent
vector δg at the point g, modulo a “vertical vector”, generated by
the infinitesimal action of the group Diff(M).

Thus, a linear functional defined on the variation δγ can be inter-
preted as a linear functional, defined on the variations δg but vanish-
ing on the vertical vectors.

The variation δg are naturally elements of the vector space of covari-
ant symmetric 2-tensors that we denote by E, δg ∈ E.

The vertical vectors are generated by derivation of paths along the
orbits of Diff(M), that is,

∂f ∗s (g)
∂s

∣∣∣∣
s=0

, with [s 7→ fs] ∈ Paths(Diff(M)), and f0 = 1M.

Here, Paths(Diff(M)) denote the smooth paths in Diff(M) in the sense
that (s, x) 7→ fs(x) is smooth, the variable s being defined on some
open neighbourhood of 0 ∈ R.

Then, let us define the vector field ξ on M by

ξ(x) =
∂fs(x)
∂s

∣∣∣∣
s=0

Thus, the vertical vectors write:

∂f ∗s (g)
∂s

∣∣∣∣
s=0

=
∂ exp(sξ)∗(g)

∂s

∣∣∣∣
s=0

That is, the Lie derivative of the metric g by the vector field ξ, we
denote it by

δLg, or £ξ(g), with δx = ξ(x)
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In terms of coordinates, the Lie derivative writes:(
δL(g)

)
μν

= ∂̂μξν + ∂̂νξμ,

where ∂̂ denotes the covariant derivative with respect to the metric
g. The symbol ∂̂ is also denoted by ∇, but I prefer the first notation
because everything with a hat will refer to a covariant differentiation.

In conclusion, a covector at the point γ = class(g) will be represented
by a linear fuctional, let us say T, defined on the space E of covariant
symmetric 2-tensors δg, and vanishing on the Lie derivative of the
metric by any vector field on M. We can write

T∗
γΦ = {T ∈ E∗ | T(δLg) = 0 for all δx ∈ Vect(M)},

where E∗ is the dual in some sense we do not specify now, and Vect(M)
is the space of the vector fields on M.

In other words, the passive motion of the matter in a gravitational
field g is described by a functional T ∈ E∗ satisfying the universal
equation:

T(δLg) = 0 for all δx ∈ Vect(M). (♣)

Such functionals T are called Eulerian functionals, and (♣) can be
called the Euler-Souriau equation. We shall understand later this
choice of vocabulary.

Important Note. Actually, for technical reasons and maybe more
deeper reasons, all the variations considered here, all vector fields
(which are also variations) will be supposed compactly supported. We
will denoted these spaces with a subscript K, for example VectK(M),
DiffK(M) etc.

327. The continuous medium. In this framework, continuous medium
are described by a continuous distribution of a contravariant symmet-
ric 2-tensor T, such that

T(δg) =
1
2

∫
M

Tμνδgμν vol,

where vol is the Riemmannian volume associated with g.

Let us write that T is Eulerian:
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0 = T(δLg) =
1
2

∫
M

TμνδLgμν vol

=
∫
M

Tμν∂̂μξν vol =
∫
M
∂̂μ(Tμνξν) vol –

∫
M

(
∂̂μTμν

)
ξν vol .

The first term is zero because

∂̂μ(Tμνξν) = d̂iv(η), with ημ =
∑
μ

Tμνξν,

and ∫
M

d̂iv(η) vol =
∫
M
δL(vol) =

∫
M

d[vol(η)] =
∫
∂M

vol(η) = 0,

since η is compactly supported.

Thus, it remains from T(δLg) = 0, the equation:∫
M

(
∂̂μTμν

)
ξν vol = 0,

for all compactly supported vector field ξ. That is equivalent to:

d̂iv(T) = 0,

which is the conservation equations of a continuous medium in general
relativity, also called Euler equations. And that explains the choice
for the name “Eulerian distribution” of the distributions T satisfying
the condition (♣).

328. The geodesics. Now, we look for an Eulerian distribution sup-
ported by a curve, let us say t 7→ x. Thus, for all δg,

T(δg) =
1
2

∫+∞

–∞

Tμνδgμν dt.

The Eulerian condition writes:

0 =
∫+∞

–∞

Tμν∂̂μξν dt,

for all compactly supported vector field ξ. For the sake of simplicity
we assume that the curve exits every compact.
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Let us multiply the vector field ξ by a real function α that vanishes
on the curve, we get another compactly supported vector field, but
we get now:

0 =
∫+∞

–∞

Tμν∂̂μ(αξν) dt =
∫+∞

–∞

Tμν∂μ(α)ξν dt +
∫+∞

–∞

αTμν∂̂μξν dt

=
∫+∞

–∞

TμνNμξν dt + 0 (since α vanishes on the curve),

with

N = grad(α) = g–1
(
∂α

∂x

)
Thus,

TμνNμ = 0

for all vector N orthogonal to the curve. Hence, there exists a vector
P such that

Tμν = Pμ
dxν

dt
,

and since Tμν is symmetric, the vector P is parallel to the curve:

P ∝ dx
dt

.

Now, we put that in the universal equation, that gives:

0 =
∫+∞

–∞

Pμ
dxν

dt
∂̂νξμ dt =

∫+∞

–∞

Pμ
∂̂ξμ

∂xν

dxν

dt
dt

=
∫+∞

–∞

Pμ
d̂ξμ
dt

dt =
∫+∞

–∞

d
dt

(Pμξμ) dt –
∫+∞

–∞

d̂Pμ

dt
ξμ dt.

The first term vanishes since ξ is compactly supported and we have
assumed that the curve leaves every compact. It remains:∫+∞

–∞

d̂Pμ

dt
ξμ dt = 0

for all ξ. Therefore,
d̂P
dt

= 0.

The curve is geodesic and the vector P is of constant norm:

g(P, P) = PμPμ = cst
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The value of the constant indicates the kind of geodesic of the curve
supporting the distribution T.

So, we see that the same condition, to be Eulerian emcompass at the
same time the continuous media and also the geodesics.

329. Others. . . I will not develop more the examples in this short
note, you can see [Sou74], and also [Ste12].

Let us say that the universal equation above (♣) gives all kind of pas-
sive equations of motion, of almost everything we can think about:
string, charged particle in the elctromagnitic field (we should add
the elecromagnetic potential A to the metric and the gauge transfor-
mation group), charged particle with spin in the gravitational and
electromagnetic field and so on.

We can also find the laws or reflexion and diffraction of dust in a
graviational field, along a discontinuity of the metric, by adapting
the Eulerian condition to the group of diffeomorphism preserving
the locus of the singularity [PIZ19].

330. Covariance and variation. As we said the calculus of variations
is the classical way to get the equations of motions of passive mater
in general relativity.

We have an action A depending on some fields σ in some given geom-
etry g. This action is the integral of some Lagrangian function which
depends on the specific problem. For example: for the geodesics σ
is a curve and A is the lenght of the curve. And the equations of
motions are the critical values of σ solutions of the equation:

∂A
∂σ

(δσ) = 0.

Consider now the geometry as a part of the action A, that is, the
action is a function of g and σ. Assume that there is a group G that
acts on the space M of geometries and the space, and on the space Σ
of fields σ such that:

(1) The action is invariant under the action of G acting diago-
naly on M × Σ.
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(2) The group G acts transitively on the space of fields.

Thus, the invariance of A will give the identity

∂A
∂g

(δLg) +
∂A
∂σ

(δLσ) = 0,

where δL denotes a derivation along the 1-parameter subgroups of
G. Then, since G acts transitively on the space Σ, the identity above
writes

∂A
∂g

(δLg) +
∂A
∂σ

(δσ) = 0,

for all δσ. Thus, if σ is a critical point of A for some value of the
geometry g, then the covector

T =
∂A
∂g

satisfies T(δLg) = 0,

for all δσ. The covector T is Eulerian.

Conversely, if the covector T is Eulerian for a value σ in some geom-
etry g, then σ is a critical point of the action A.

The two principles give indeed the same solutions, they are miroring
each other.

However, in absence of Lagrangian action, the principle of general
covariance generalizes the Principle of Least Action.

It has the vertue, in addition to generalize the construction of the
passive equations of physics, to change the paradigm of physics, from
a metaphysical principle of least action to a geometrical invariance
constraint, which is more palpable.

Remark. One should however note that the principle of general co-
variance does not find the irrational geodesics on the 2-torus, since
the integral T(δg) = 1

2
∫+∞

–∞
Pμ dxν

dt δgμνdt does not converge for all δg,
except on closed geodesics.

331. The principle of general relativity. It is time to discuss the re-
lationship between Einstein’s Principle of General Relativity and
Souriau’s principle of general covariance. Usually the principle of
general relativity is stated as follows:
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- physical laws are the same in all reference frames—inertial or non-
inertial.

This statement is vague enough to have made Vladimir Fock say:
“there is no general relativity but a theory of gravitation”. Indeed,
what are the laws of physics, how do you express them? What does
it mean to be the same in all frame? Same according to what. Yes,
it is clearly unsatisfactory.

There is another formulation that we can find in the literature:

- The equations of physics are covariant under the change of coordi-
nates.

Still unsatisfactory, too many terms are not weel defined.

On the other hand, the principle of general covariance is clear and
unambiguous: the objects are well defined and the universal equation
(♣) is unique and clear.

There is another difference between the usual statement of the prin-
ciple of general relativity and the principle of general covariance:

The principle of general relativity is a passive way to refer to nature.
It concerns the various means to describe parts of the world, through
the various charts used to refer to the object.

The principle of general covariance is an active approach in the sense
that the group of diffeomorphisms acts effectively on the geometries.
The statement is not vague and says precisely: in general relativity,
the objects of the nature are covectors of the Physis, quotient of the
geometries by the group of diffeomorphisms of space-time.

90. The Diffeology framework

332. The Compact Diffeology on M. Let M the set of pseudo-Riem-
mannian metrics on a manifold M, of signature (+ – – –). It is a subset
of smooth maps from M to the covariant 2-tensors fiber-bundle S2(M)
over M, they are smooth sections.



i
i

i
i

i
i

i
i

348 THE DIFFEOLOGY FRAMEWORK OF GENERAL COVARIANCE

Since M and S2(M) are manifolds, C∞(M, S2(M)) is equipped with the
functional diffeology, and M ⊂ C∞(M, S2(M)) will be equipped with
the subset diffeology.

Now, we will equip M with a sub-diffeology of the functional diffeo-
logy:

Definition. A smooth parametretrization r 7→ gr in M, defined on
some Euclidean domain U, is a plot of the compact diffeology if: for
all r ∈ U there is an open neighbourhood V ⊂ U of r and a compact
K ⊂ M such that:

∀r ′ ∈ V, ∀x ∈ M – K, gr ′(x) = gr(x).

Indeed, the constant parametrizations satisfy that condition. The
condition is obviously local. By composition with a smooth parame-
trization F in U, the neighbourhood V becomes F–1(U) for the same
compact K.

Note. Let r 7→ gr be a plot of the compact diffeology. Since M and
S2(M) are manifolds the variation

∂gr(x)
∂r

(δr)

is a well defined symmetric 2-tensor on M, and is compactly sup-
ported. Indeed,

∂gr(x)
∂r

(δr) = lim
s→0

1
s
[
gr+sδr(x) – gr(x)

]
.

For ε ∈ R sufficiently small, for all |s| < ε, r + sδr will be contained
in a ball contained in the neighbourhood V for which gr ′(x) = gr(x)
outside some compact K. Thus, for s → 0,

gr+sδr(x) – gr(x) = 0 outside K,

and the variation of gr is compactly supported.

333. Pushing forward pointed differential forms. In the chaper “On
Riemannian metric in diffeology" we have seen the definition of pointed
differential form, now, the general criterion of pushing forward differ-
ential forms can be adapted here. There are two cases, the general
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case of a subduction and the special case of local subduction [TB,
§ 2.16].

Let us recall that a subduction π : Y → X is said to be a local sub-
duction if for all plots P: U → X, for all r ∈ U and all y ∈ π–1(x),
x = P(r), there exists a local lift Q in Y, that is, π ◦Q = P ↾ dom(Q),
such that Q(r) = y.

In particular, projections on quotients by action of groups by diffeo-
morphisms are local subductions.

Let us come back to the general case. Let αy a pointed k-form.

Proposition 1. There exists a pointed k-form βx, with x = π(y), such
that αy = π∗(βx) if and only if for all y ′ ∈ π–1(x) there is a pointed
form αy ′ satisfying: for all pair of plots P′ and P′′, pointed in the fiber
π

–1(x), such that π ◦ P′ = π ◦ P′′, αy ′(P′) = αy ′′(P′′) with y ′ = P′(0)
and y ′′ = P′′(0).

If X = Y/G, where G is a diffeological group acting on Y by diffeo-
morphisms, the sitution is simpler because π is a local subduction.
In this case, we have:

Proposition 2. In that case X = Y/G, there exists a pointed k-form
βx, with x = π(y), such that αy = π∗(βx) if and only if for all plots
P′ and P′′ pointed in y, π ◦ P′ = π ◦ P′′ implies αy(P′) = αy(P′′).

334. Proposition: The Physis. Consider the group of diffeomorphisms
with compact supports DiffK(M), that is, the diffeomorphisms of M
that are the identity outside of a compact.

The group DiffK(M) acts on the set M of pseudo-Riemmannian met-
rics on M by pullback:

f ∗ : M → M, with f ∗(g)x(v, w) = gf (x)
(
Dfx(v), Dfx(w)

)
.

Equip M with the compact diffeology. Let Φ be the quotient space:

Φ = M/DiffK(M)

Claim 1. The group DiffK(M) act on M by diffeomorphisms. There-
fore, the projection class : M → Φ is a local subduction.
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Now, let us equip the group DiffK(M) with the compact functional
diffeology. A parametrization P: r 7→ fr , defined on U, in DiffK(M)
will be a plot if it is a plot for the functional diffeology and if:

Definition. For all r ∈ U there exists an open neigbourhood V of r
and a compact K ⊂ M such that: for all r ′ ∈ V, fr ′ is the identity
outside K.

Claim 2. Equipped with the compact functional diffeology, the group
DiffK(M) acts smoothly on M. That is, the map f 7→ f ∗ is smooth.

✑ Proof. First of all, f ∗ is bijective, its inverse is (f –1)∗. Now, let
P: r 7→ gr be a plot of the compact diffeology. Let r ∈ dom(P), there
is an open neighbourhood V of r and a compact K ∈ M such that:
for all r ′ ∈ V, for all x ∈ M – K, gr ′(x) = gr(x). Thus, for all r ′ ∈ V,
for all x ∈ M – f –1(K) f ∗(gr ′)(x) = f ∗(gr)(x). The parametrization
f ∗ ◦ P is then a plot of M. The same holds for (f –1)∗. Therefore, f ∗

is a diffeomorphism on M. Let us prove now that the action map:

DiffK(M) × M → M with (f , g) 7→ f ∗(g)

is smooth. Let r 7→ (fr , gr) be a plot, defined on some U. Let us show
that r 7→ f ∗r (gr) is smooth for the compact diffeology. It is already
smooth for the functional diffeology, all that remains is the question
of compact support. Let r ∈ U, there is an open neigbourhood V of
r and two compacts K, K′ ⊂ M such that, for all r ′ ∈ V, for all x ∉ K,
gr ′(x) = gr(x) and for all x ∉ K′, fr ′(x) = fr(x) = x. We have to
compare f ∗r (gr)(x) and f ∗r ′(gr ′)(x). For all r ′ ∈ V and x ∉ K′, fr ′(x) =
fr(x) = x, then f ∗r ′(gr ′)(x) = gr ′(x) and f ∗r (gr)(x) = gr(x). Now, for
all x ∉ K, gr ′(x) = gr(x). Thus, if r ′ ∈ V and x ∉ K′′ = K ∪ K′,
f ∗r (gr)(x) = f ∗r ′(gr ′)(x). Therefore, since K′′ is a compact, r 7→ f ∗r (gr)
is a plot in M and the action is smooth. ▶

335. Pointed differential forms on the Physis. Let T be a real smooth
bounded linear operator defined on the subspace E ⊂ S2(M) of sym-
metric covariant 2-tensors with compact support. That is,

(1) T : E → R, and T(aε+a′ε′) = aT(ε)+a′T(ε′), for all a, a′ ∈ R
and ε, ε′ ∈ E.
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(2) T ∈ C∞(E, R).
(3) For all ε ∈ E there is a constant c such that: |T(ε)| ≤ c∥ε∥

for some norm on the space E

Now, for all n-plots r → gr pointed at g = g0 let τg be defined by

τg(r 7→ gr) : v 7→ T

(
∂gr
∂r

∣∣∣∣
r=0

(v)
)

for all v ∈ Rn.

We know that since r 7→ gr is a plot for the compact diffeology,

∂gr
∂r

(δr) ∈ E.

Thus,

T

(
∂gr
∂r

(δr)
)

is well defined. So is τg(r 7→ gr), which belongs to Λ1(Rn).

Claim 2. The process τg is a differential 1-form pointed at g.

Now,

Claim 3. Consider two plots P: r 7→ gr and P: r 7→ g ′
r pointed at

g = g0 = g ′
0. Assume class(gr) = class(g ′

r) such that there exists a
plot r 7→ fr such that g ′

r = f ∗r (gr), with f0 = 1M. Then, τg(r 7→ gr) =
τg(r 7→ g ′

r) if and only if

T(δLg) = 0

for all compactly supported vector field δx.

In that case, there exists indeed a linear 1-form σ pointed at γ =
class(g) such that τg = class∗(σ).

Thus, Eulerian distributions indeed represent special 1-form pointed
somewhere in the quotient Φ.

Note. It remains to be seen what the obstacles are to the existence
of such a smooth map r 7→ fr , when class ◦g ′

r = class ◦gr in gen-
eral. Probably, the subspace of pseudo-Riemannian metrics without
isométries with compact support is a principal diffeological fiber bun-
dle over it quotient by DiffK(M), and therefore such a smooth map
r 7→ fr always exists in this situation.
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✑ Proof. Consider now τg , let s 7→ r 7→ gr , where s 7→ r is a plot
in Rn pointed at 0. Then,

τg(s 7→ gr)(w) = T

(
∂gr
∂s

∣∣∣∣
s=0

(w)
)

= T

(
∂gr
∂r

∣∣∣∣
r=0

(
∂r
∂s

∣∣∣∣
s=0

(w)
))

.

On the other hand,

[s 7→ r]∗
(
τg(r 7→ gr)

)
(w) = τg(r 7→ gr)

(
∂r
∂s

∣∣∣∣
s=0

(w)
)

= T

(
∂gr
∂r

∣∣∣∣
r=0

(
∂r
∂s

∣∣∣∣
s=0

(w)
))

.

Thus, τg(s 7→ r 7→ gr) = [s 7→ r]∗
(
τg(r 7→ gr)

)
. Therefore, τg is a

differential 1-form pointed at g.

Next, let g ′
r = f ∗r (gr). We have

∂g ′r
∂r

∣∣∣∣
r=0

(v) =
∂f ∗r (gr)

∂r

∣∣∣∣
r=0

(v)

=
∂f ∗r (g)
∂r

∣∣∣∣
r=0

(v) +
∂gr
∂r

∣∣∣∣
r=0

(v).

Now let φs(x) = fsv(x), s real. Then,

∂f ∗r (g)
∂r

∣∣∣∣
r=0

(v) =
∂φ∗s (g)
∂s

∣∣∣∣
s=0

,

and defining the vector field ξ by

ξ(x) =
∂φ∗s (x)
∂s

∣∣∣∣
s=0

,

we get:
∂f ∗r (g)
∂r

∣∣∣∣
r=0

(v) = δLg with δx = ξ(x).

Thus,
∂g ′r
∂r

∣∣∣∣
r=0

(v) =
∂gr
∂r

∣∣∣∣
r=0

(v) + δLg.

Hence:
T(δg ′) = T(δg) + T(δLg),
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where

δg =
∂f ∗r (g)
∂r

∣∣∣∣
r=0

(v).

Therefore, the 1-form τg , pointed at g, descends to the quotient if T
is Eulerian. ▶
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Postface: The Beginning of Diffeological Spaces

The word “diffeologies” first appears in Souriau’s paper Groupes dif-
férentiels, the text of a talk presented at a conference in Salamanca
in 1979 and published in 1980 [Sou80]. In this article, a “difféolo-
gie” refers to an abstract structure used to define exclusively what
Souriau called “groupes différentiels”. A “difféologie” is defined by
five axioms, the last two of which relate specifically to the group
structure. Although Souriau could have removed the last two axioms
from this list, and thus defined the general concept of “espaces dif-
férentiels”, we note that he did not do so in this article and only
considered his “difféologies” in the context of groups.

The general concept of “espace différentiel”, as it would later emerge,
is in fact absent from this 1980 paper. We shall see that it would
take three years, and some unexpected developments, for this notion
to appear in its own right.

Actually, Souriau’s focusing on groups is somewhat understandable
when we know that he was looking at this time for a renewal of
his method of quantization through the Gelfand-Naimark-Segal con-
struction,1 that is, using positive-definite functions on a given group
of symmetries to build a Hilbert space and a unitary representation.
What he suggested then was a mean to conditionally connect these
representations, depending on some positive function, with an ap-
propriate coadjoint orbit, and thus achieve the Dirac quantization
program. But because the Dirac program requires to represent the

1Not to mention Souriau’s profound bias for groups vis-à-vis general spaces.

355



i
i

i
i

i
i

i
i

356 POSTFACE: THE BEGINNING OF DIFFEOLOGICAL SPACES

whole group of symplectomorphisms,2 Souriau had to leave the cat-
egory he used to work in, that is, the category of finite dimensional
Lie groups, to deal with the huge infinite dimensional group of all
the symplectomorphisms of a symplectic manifold. A group about
which Kostant told him once: “It is too big”.

Souriau knew very well that dealing with infinite dimensional groups
is a serious challenge, especially if you don’t want to just be heuristic
but mathematically correct. He knew also that he didn’t need to
involve a too sophisticated structure on the group of symplectomor-
phisms to get what he was looking for. Just a few “differentiable”
properties would be enough. Then, instead of paying tribute to the
thick theory of topological groups, he preferred to build his own light
category of groups that he called “groupes différentiels”, by retaining
just the minimal properties he needed for his purpose. And that gave
his paper on “Groupes différentiels”, with its five axioms, which we
are talking about [Sou80].

Then, during a couple of years Souriau continued to work on this
approach and tried to figure out a way to fulfill Dirac program of
quantization in this context.

At the time, Paul Donato, also a student of Souriau, was interested
in this new concept of “groupe différentiel”. He wrote an essay on the
characterization of the fundamental group of a manifold through its
group of diffeomorphisms, published in 1981 [Don81], and continued
to investigate the fundamental group of groups of diffeomorphisms of
manifolds and more generally the fundamental group, and coverings,
of cosets of “groupes différentiels”. Eventually, this made the subject
of his dissertation that he defended later in 1984 [Don84]. On my
side, I was working on something very different, the classification of
SO(3) symplectic manifolds, and these “groupes différentiels” did not
speak to me that much.

2Originally infinitesimally.
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The next step in the theory of “groupes différentiels” happened in
June 1983 during a conference in Lyon,3 where Souriau was invited
to talk and Paul and I were attending. Souriau talked again about
his new theory of “groupes différentiels” applied to the quantization
program, he exposed his new developments. At the same conference
we heard also a series of talks concerning what we called later “ir-
rational tori”, that is, the quotients of the 2-torus by an irrational
line. This question was related to the study of quasi-periodic poten-
tials in quantum physics. Alain Connes had already introduced his
“non-commutative geometry” to study these objects that escape the
traditional differential geometry.

At that moment Paul had already developed some tools to compute
the fundamental group of a coset of a “groupe différentiel” and even
to built its universal covering in some cases. We decided then to
investigate the “irrational torus” from the “groupe différentiel” point
of view. We computed its fundamental group and universal covering,
for each irrational number. We were happy to find non trivial results,
but we were really amazed when we found that two irrational num-
bers gave two diffeomorphic tori if and only if they were conjugate
modulo GL(2, Z), we couldn’t have hoped for better, but we could
have get worse. We were even more surprised by the computation of
the connected components of the group of diffeomorphisms of irra-
tional tori that distinguish between the quadratic and non-quadratic
irrational numbers. We published these results, in a preprint titled
“Exemple de groupes différentiels : flots irrationnels sur le tore”, in
July 1983 [DI83]. As far as I know it is in this preprint that, for the
first time, the expression “espace différentiel” was used. It appears
between quotes, at the second page of the preprint (page 112 of the
CPT preprints page numbering), in the sentence:

Les applications différentiables de Tα dans un “es-
pace différentiel” E sont les applications φ : Tα → E
telles que. . .

3Feuilletages et Quantification Géométrique Journées Lyonnaises de la SMF,
14-17 juin 1983.
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On the other hand, the formal (axiomatic) definition of “espace dif-
férentiel” appeared a couple of months later, precisely in October
1983, in the Souriau preprint of the Lyon conference talk [Sou84]. I
do remember that during this period we had some lively discussions
about the need for such a general notion. In particular, on a summer’s
day that year, we were together, the whole team, at the cafeteria of
Luminy campus for a coffee break. We were talking about diffeolo-
gies. We, Paul and I, insisted on a formal definition of differential
spaces, and Souriau put up strong resistance because, at the time,
he thought that such a generality was useless or at least irrelevant.4
We could not agree because, for his ScD thesis, Paul was in need of
a formal framework of “espaces différentiels” at least to introduce co-
herently his “espaces différentiels homogènes” [Don84]. On my side,
following our paper with Paul, I began to think on a generalization
of our results through general homotopy and fiber bundles, and for
that I needed a general theory of “espaces différentiels” as fundation.
Indeed, homotopy and fiber bundles in diffeology became my ScD
thesis I defended in 1985, where “espaces différentiels” became “es-
paces difféologiques” [Igl85].5 Under this pressure, Souriau finally
changed his mind and included this definition a few weeks later, in
his October preprint.

This is how the diffeology of spaces was born, and we can finally ask
why it took so long to move from groups to spaces and from five
axioms to three.

4Indeed, if we have only in mind the needs of Geometric Quantization, involving
just homogeneous spaces.

5Fixing that way a language incoherence highlighted by A.E. Van Est.
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Appendix: A Categorical Approach to Diffeology

Enxin Wu
Department of Mathematics

Shantou University, Guangdong
P.R. China

From the very beginning, diffeology was introduced from a geometric
point of view. But one can take an abstract categorical approach to
understand and study this subject. In this short appendix, we briefly
discuss this alternative aspect, and see how to organize the basic the-
ory of diffeology, especially the categorical viewpoint of some geometric
constructions and homotopy theory in diffeology.

A bit category theory is needed to understand this appendix, as the stan-
dard terminologies are not defined here. The first section requires the
basics of categories, functors, natural transformations, limits, colimits
and cartesian closedness; The next two sections use adjunctions and
(left) Kan extensions. Some familiarity with the corresponding contents
in [McL71] suffices.

Diffeological spaces versus concrete sheaves

The classical sheaf theory can be viewed as making the mathematical
formalism of the local-to-global principle with underlying topological
spaces. For an example, to define a suitable continuous map from a
complicated topological space to R, one could first decompose the space
into simpler pieces (eg. an open cover), and define suitable continuous
maps from these pieces to R. Then one could try to patch them together

360
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to get a global one if it is possible. This idea can be formalized rigorously
using category theory as follows:

DEFINITION 1. For a topological space X, write OX for all open subsets of X,
ordered by inclusions. A (set-valued) presheaf on X is a functor Oop

X → Set

from the opposite category of OX to the category Set of sets and functions.
A (set-valued) sheaf on X is a (set-valued) presheaf F on X such that for
any U ∈ OX and any open covering U =

⋃
i Ui, we have an equalizer

diagram in Set:

F(U) ∏i F(Ui) ∏j,k F(Uj ∩ Uk)

where the two parallel arrows are induced by the inclusions Uj ∩ Uk → Uj
and Uj ∩ Uk → Uk, respectively.

It is easy to observe that if one abstracts the essential properties of OX
out of the above definition, one could define sheaves over other nice
categories:

DEFINITION 2. A presheaf on an arbitrary category A is a functor
Aop → Set.

A Grothendieck topology Cov on a category A is an assignment of a col-
lection Cov(A) of collections of morphisms with the common codomain A
for each object A of A such that

* {1A : A → A} ∈ Cov(A);
* If A′

→ A is a morphism in A and {Ai → A}i ∈ Cov(A), then
each pullback A′

×A Ai exists in A, and {A′
×A Ai → A′}i ∈

Cov(A′);
* If {Ai → A}i ∈ Cov(A), and {Aij → Ai}j ∈ Cov(Ai) for each i,

then {Aij → Ai → A}i,j ∈ Cov(A).

An element in Cov(A) is called a covering of A.

A site is a category with a Grothendieck topology.

A sheaf on a site (A, Cov) is a presheaf F : Aop → Set on A such that for
each covering {Ai → A}i∈I of A, we have an equalizer diagram in Set:
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F(A) ∏i∈I F(Ai) ∏j,k∈I F(Aj ×A Ak)

where the two parallel arrows are induced by the canonical maps Aj ×A
Ak → Aj and Aj ×A Ak → Ak, respectively.

EXAMPLE 3. Let X be a topological space, and let OX be the poset of
all open subsets of X together with inclusions. For any open subset U
of X, write Cov(U) for the collection of the usual open coverings of U.
This gives rise to a Grothendieck topology on OX, and the above two
definitions of sheaves on OX coincide.

EXAMPLE 4. First example: Let E∞ be the category of all open subsets
of Rn for all n ∈ N = {0, 1, 2, 3, . . .} and smooth (i.e., infinitely differ-
entiable) maps between them. For any object U of E∞, write Cov(U)
for the collection of the usual open coverings of U. This gives rise to a
Grothendieck topology on E∞.

Second example: In a similar manner, if we only change the morphisms
of E∞ to be Ck (i.e., k-times continuously differentiable) for k ∈ N or Cω

(i.e., analytic), then we again get sites denoted Ek and Eω, respectively.

Third example: Similarly, all open subsets of Cn for all n ∈ N, all holo-
morphic maps between them, and the usual open coverings together
form a site, denoted Cω.

From a differential geometer’s point of view, the general sheaves are ab-
stract to work with. It would be nice if there is an underlying set which
dominates all the structures. This leads to the following definition:

DEFINITION 5. A concrete site (A, Cov) is a site with a terminal object 1
such that

* the functor HomA(1, ·) : A → Set is faithful;
* for every object A in A and every covering {Ai → A}i ∈ Cov(A),

the induced map
∐

i HomA(1, Ai) → HomA(1, A) is surjective.

A concrete sheaf F over a concrete site (A, Cov) with a terminal object 1
is a sheaf over (A, Cov) such that the natural map

F(A) → HomSet(HomA(1, A),F(1))
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defined by a ∈ F(A) 7→ (f ∈ HomA(1, A) 7→ f∗(a) ∈ F(1)), is injective
for every object A of A.

We simply write CSh(A) for the category of concrete sheaves over the con-
crete site (A, Cov) and natural transformations between them.

EXAMPLE 6. All of the sites E∞,Ek,Eω,Cω are concrete. They share a
common terminal object which consists of a single point. The rest ax-
ioms for the concreteness are clear since every object (resp. morphism,
covering) in each of these sites has a set-theoretical meaning.

EXAMPLE 7. The site OX is concrete if and only if every covering of any
object U in OX is essentially the trivial covering 1U : U → U.

Here are some analogous definitions to that of a diffeological space and
a smooth map between diffeological spaces:

DEFINITION 8. Given a concrete site (A, Cov) with a terminal object 1,
write A for the set HomA(1, A) for each object A of A. An A-space is a set
X together with a collection S of maps (called the structure maps) A → X
of sets for all objects A of A such that the following three axioms hold:

* Every constant map A → X is in S;
* If A → X ∈ S and A′

→ A is a morphism in A, then the composite
A′

→ A → X is in S;
* Given a map f : A → X, if there is a covering {Ai → A}i of A in

Cov(A) such that each composite Ai → A → X is in S, then so is
the map f .

A map X → Y between two A-spaces is called an A-map, if it is a function of
the two underlying sets, which sends every structure map of X to a structure
map of Y. A-spaces and A-maps form a category, denoted A-Spaces.

THEOREM 9. For a concrete site (A, Cov), the two categories CSh(A) and
A-Spaces are equivalent.

Proof. Let 1 be a terminal object of the site. Define F : CSh(A) → A-
Spaces by sending a concrete sheaf F over A to F(1); the structure maps
on F(1) consist of all F(A) (viewed as a subset of HomSet(A,F(1)) from
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the definition of a concrete sheaf) for all objects A in A; a morphism
F → G is sent to the induced map F(1) → G(1).

Define G : A-Spaces → CSh(A) by sending an A-space X to a concrete
sheaf FX such that FX(A) = the collection of structure maps of X of the
form A → X, for every object A of A; an A-map f : X → Y in A-Spaces is
sent to a natural transformation FX → FY induced by post-composition
with f .

By unravelling the definitions of a concrete sheaf and a natural trans-
formations between two concrete sheaves, and the definitions of an A-
space and an A-map between two A-spaces, one sees that F and G are
functors which give rise to the equivalence of the two categories.1 □

THEOREM 10. Let (A, Cov) be a concrete site. Then

* A is canonically a fully faithful subcategory of CSh(A).
* The category CSh(A) is bicomplete and cartesian closed.
* Every concrete sheaf over a concrete site A is a colimit of a dia-

gram of A in CSh(A).

Proof. We can replace CSh(A) by the category A-Spaces.

(1) Define e : A → A-Spaces by sending an object A of A to an A-
space e(A) with the underlying set A. And A′

→ A is defined to be a
structure map if and only if it is induced by a morphism A′

→ A in A. A
morphism A → A′′ in A then induces an A-map A → A′′. Therefore, e is
a functor. Moreover, two distinct morphisms A → A′′ in A induces two
distinct A-maps e(A) → e(A′′) since 1A : A → A can distinguish them.
Furthermore, every A-map e(A) → e(A′′) is induced from a morphism
A → A′′ in A, again by using the structure map of e(A) induced by
1A : A → A. These prove the first result.

(2) Let F : I → A-Spaces be a functor from a small category I. Write
U : A-Spaces → Set for the forgetful functor. Then lim F is an A-space
which has lim(U ◦ F) as the underlying set, and A → lim F is a structure
map if and only if each composite A → lim F → F(i) is a structure map

1We will need to use the fact that A′
×A A′′

≅ A′
×A A′′ in Set in the proof, and this

fact can be easily verified by the universal property of pullback.



i
i

i
i

i
i

i
i

DIFFEOLOGICAL SPACES VERSUS CONCRETE SHEAVES 365

of F(i) for each object i of I. Similarly, colim F is an A-space which has
colim(U ◦ F) as the underlying set. And A → colim F is a structure map
if and only if there is a covering {Aj → A}j of A in Cov(A) such that for
each j there is an object i in I and a structure map Aj → F(i) making the
following diagram commutative:

F(i)

Aj A colim F

Given two A-spaces X and Y, simply write A(X, Y) for the collection
of all morphisms X → Y. Define f : A → A(X, Y) to be a structure
map if and only if the adjoint f̃ : e(A) × X → Y is an A-map, where
the domain is the product of two A-spaces and hence again an A-space
as we have just proved that the category A-Spaces is complete. It is
straightforward to check that A(X, Y) with these structure maps is an
A-space, and moreover, there is an adjoint pair of functors

· × Y : A-Spaces ⇌ A-Spaces : A(Y, ·),

for any fixed A-space Y.

(3) Given an A-space X, write A/X for the category whose objects are
structure maps A → X and whose morphisms are commutative triangles

A′ A

X

f̃

p q

where p, q are structure maps of X and f̃ is induced from a morphism
f : A′

→ A in A. Let A/X → A-Spaces be the functor sending the
above commutative triangle to the A-map e(A′) → e(A) induced by f . In
other words, this functor is a composition A/X → A → A-Spaces. It is
straightforward to check that the colimit of this functor is isomorphic to
X as A-spaces. □
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COROLLARY 11. First of all, CSh(E∞) is equivalent to the category Diff

of diffeological spaces.

Then, Diff is bicomplete and cartesian closed.

Next, every smooth manifold2 is a gluing of Euclidean domains via diffeo-
morphisms, while every diffeological space is a gluing of Euclidean domains
via smooth maps.

A bit more about concrete sheaves is discussed in [BH09].

Constructions in diffeology revisited

The general slogan is, some structures of E∞ can be compatibly (hence
functorially) pushed to diffeological spaces. This slogan will be realized
via Kan extension of a functor E∞ → C (resp. (E∞)op → C) to some
category C along the embedding E∞ → Diff (resp. (E∞)op → (Diff)op)
as follows.

D-topology. There is an adjoint pair of functors

D : Diff ⇌ Top : C

where the functor D sends a diffeological space X to a topological space
D(X) with the same underlying set. The topology (called the D-topology)
on D(X) consists of all subsets A of X such that p–1(A) is open in U with
the Euclidean topology for every plot p : U → X of X;3 the functor C
sends a topological space Y to a diffeological space C(Y) with the same
underlying set. The diffeology on C(Y) consists of all continuous maps
U → Y for every Euclidean domain U with the Euclidean topology.

Note that every smooth map between diffeological spaces is continu-
ous when both domain and codomain are equipped with the D-topology.
Moreover, the left adjoint D preserves colimits. In particular, the D-
topology of a quotient diffeological space is the quotient topology.

2By a smooth manifold, we always require it to be finite-dimensional, Hausdorff,
second-countable and without boundary.

3More categorically, the functor D is the left Kan extension of the forgetful functor
E∞ → Top along the embedding E∞ → Diff.
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As a warning, the D-topology does not behave well with limits. For
example, the D-topology of a diffeological subspace contains the sub-
topology, and the D-topology of a product of diffeological spaces con-
tains the product topology of the D-topologies, but they can be different.

The D-topology was first introduced in [Igl85]. See [CSW14, WZ22]
for more about the D-topology.

Differential forms and de Rham cohomology. For any k ∈ N, there is a
functor Ωk : (E∞)op → Vect sending a Euclidean domain U to the vector
space4 C∞(U, ∧kRdimU) of the differential k-forms on U. The left Kan ex-
tension ofΩk : (E∞)op → Vect along the embedding (E∞)op → (Diff)op

is the differential k-form functor (again denoted Ωk) for diffeological
spaces.

Moreover, since exterior derivative commutes with pullback of forms
on E∞, we have a functor Ω∗ : (E∞)op → Ch(Vect) which sends a
Euclidean domain to its cochain complex of differential forms. The left
Kan extension of Ω∗ along the embedding (E∞)op → (Diff)op sends
every diffeological space to its cochain complex of differential forms,
and its cohomology is called the de Rham cohomology.

Differential forms and de Rham cohomology for diffeological spaces
were further systematically developed in [PIZ10, TB].

Tangent and cotangent bundles. It is a bit controversial about how
to define tangent and cotangent bundles for diffeological spaces. There
are several different approaches in the existing literatures. We choose
the following one that fits closely to the slogan at the beginning of this
section.

For a general diffeological space, we could imagine that its tangent (resp.
cotangent) bundle may not be locally (eg. in the sense of D-topology)
trivial. We might still wish to have tangent (resp. cotangent) bundles
that are fibrewise vector spaces. This leads to the following definition:

DEFINITION 12. A diffeological vector pseudo-bundle is a morphism π :
E → B in Diff such that

4Indeed it is a diffeological vector space with the functional diffeology.
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* Each fibre π–1(b) is a vector space;
* The fibrewise addition E ×B E → E and the fibrewise scalar multi-

plication R × E → E are both smooth;
* The zero section B → E is smooth.

A bundle map from one diffeological vector pseudo-bundle π1 : E1 → B1
to another π2 : E2 → B2 is a commutative diagram in Diff

E1 E2

B1 B2

f

π1 π2

g

such that f restricted to each fibre π–1
1 (b1) → π–1

2 (g(b1)) is linear.

Diffeological vector pseudo-bundles and bundle maps form a category,
denoted Dvpb.

There is a functor T : E∞ → Dvpb sending a Euclidean domain U to
its tangent bundle TU → U. The left Kan extension of T along the em-
bedding E∞ → Diff is defined to be the tangent bundle for diffeological
spaces.

In a similar manner, for each k ∈ N, there is a functor ∧kT∗ : (E∞)op →

Dvpb sending a Euclidean domain U to its kth exterior bundle ∧kT∗(U) →

U. The left Kan extension of ∧kT∗ along the embedding (E∞)op →

(Diff)op is defined to be the kth exterior bundle for diffeological spaces,
whose sections correspond to differential k-forms discussed above.

Other tangent or cotangent bundles for diffeological spaces can be found
in [Hec94, TB, Vin08, CW23]. See [CW16, CW23] for some compari-
son and various calculated examples.

Homotopy theory for diffeological spaces

Iglesias’ geometric homotopy theory. The first important and non-
trivial example in diffeology, i.e., the irrational tori Tα, was calculated
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in [DI83]. This led to diffeological bundle theory and geometric ho-
motpy theory developed in [Igl85]. The textbook already contains these
material, so we will not repeat them here. We only quote one result as
follows. From the long exact sequence of smooth homotopy groups of
the diffeological bundle R → Tα, we know that the smooth fundamental
group of Tα is Z ⊕ Z; while the continuous fundamental group of the
topological space D(Tα) is 0.

An attempt of model structure by Christensen-Wu. About the two
fundamental groups of the irrational tori example discussed above, how
to homotopically “correct” this difference? This is an essential part of
my Ph.D. work [Wu12], which is further refined in [CW14]. It provides
a potential answer to this question, together with some geometric appli-
cations.

By choosing a cosimplicial object A∗ in Diff, we get an adjoint pair

|?|A∗ : sSet ⇌ Diff : SA∗ (A1)

where the left adjoint is given by the left Kan extension of A∗ : Δop →

Diff along the embedding Δop → sSet.

To be consistent with the definition of diffeology and to be connected
with the related construction in topology, we choose An to be the un-
bounded n-simplex in Rn+1 as a subspace, i.e., An = {(x0, x1, . . . , xn) ∈

Rn+1 | ∑
n
i=0 xi = 1},5 together with the usual coboundary and codegen-

eracy maps.

Combining this adjunction with the adjunction

D : Diff ⇌ Top : C

discussed above, there is a very enlightening comparison with the clas-
sical geometric realization and associated simplicial set adjunction

|?| : sSet ⇌ Top : S (A2)

which states that

5It is isomoprhic to Rn in Diff.
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* For any simplicial set X, there is a weak equivalence between
D(|X|A∗) and |X| in Top;

* For any topological space Y, there is a weak equivalence be-
tween SA∗(C(Y)) and S(Y) in sSet.

This motivates us to conceive that there is a Quillen model structure6
on the category Diff of diffeological spaces such that it is Quillen equiv-
alent to the standard model structure on sSet via the adjunction (A1)
above (and hence to the standard model structure on Top as well). We
further conjecture that this model structure can be transferred from the
standard model structure on sSet to Diff via the adjunction (A1).

As an easy observation, smoothness provides some rigidity via the in-
verse function theorem when comparing with continuity. In particular,

|Λn|A∗ → |Δn|A∗ ≅ Rn (A3)

has no smooth retract7. If our conjecture holds, this would imply that
not every diffeological space is fibrant or cofibrant. Furthermore, the
potential answer to the question we proposed at the beginning of this
part is, irrational tori Tα is fibrant but not cofibrant8, so the cofibrant
replacement S1

× S1 = T2
→ Tα9 gives a “correction” of the smooth

fundamental group of Tα from the continous one.

6A large amount of homotopy theory in Top relies on some interrelationship be-
tween Serre fibrations, Serre cofibrations and weak equivalences. These properties
were extracted as axioms by Quillen in [Qui67], called a Quillen model structure. This
approach unifies stable homotopy theory in topology, homological algebra in algebra,
A1-homotopy theory in algebraic geometry, etc. In particular, it provides an equivalence
of the combinatorial model of homotopy theory from sSet to the geometric model of
homotopy theory from Top via the adjunction (A2) above, called a Quillen equivalence.
The importance here is, there shall also be a smooth model of homotopy theory from
Diff.

7Indeed, it is not appropriate to call it a “retract” here, since |Λn|A∗ does not have
the subset diffeology of Rn. The fact is, even if we equip it with the subset diffeology,
there is still no smooth retract, which is implied by the inverse function theorem.

8This part has been proved in [CW14].
9This relates to another conjecture that every smooth manifold is cofibrant in this

model structure on Diff.
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Note that the domain |Λn|A∗ 10 of (A3) is the union of all coordinate hy-
perplanes in Rn with the gluing diffeology. Here is a geometric question:
For which diffeological spaces X, does every smooth map |Λn|A∗ → X
extend to a smooth map Rn → X via the map (A3), for all n ∈ N? This is
equivalent to the question that when is the simplicial set SA∗(X) a Kan
complex?11 If X is a diffeological abelian group, then it is not hard to
write down an explicit formula for the extension. But in general, this is
not straightforward. We used some simplicial set theory to get several
classes of such diffeological spaces. In particular, we gave three different
proofs for smooth manifolds.

Unfortunately, the conjecture was recently disproved in [Pav22].

A model structure by Kihara. At the mean time, in preprints posted
on Arxiv, Haraguchi and Shimakawa proposed a model structure on Diff
which is Quillen equivalent to the standard model structure on Top. The
first attempts had some flaws, but we can hope that they will be ad-
dressed in the future. Nevertheless, a key idea, there, is a modification
of the subset diffeology of R on the closed interval (and higher dimen-
sional analogues) to avoid the rigidity from the inverse function theo-
rem. Then mimic the standard cofibrantly generated model structure on
Top to prove the model axioms.

In [Kih19], Kihara got a model structure on Diff which is Quillen equiv-
alent to the standard model structure on sSet. The idea is a kind of
mixing of Christensen-Wu and Haraguchi-Shimakawa. In slightly more
detail, he uses an alternative cosimplicial object B∗ to connect sSet and
Diff. It is the standard bounded one as the underlying sets, with the
diffeology recursively defined, so that |Λn|B∗ → |Δn|B∗ is an induction
which also has a smooth retract for every n ≥ 2. Then mimic the stan-
dard cofibrantly generated model structure on sSet to prove the model
axioms. Equivalently, Kihara successfully lifts the standard model struc-
ture on sSet to Diff via the adjunction

|?|B∗ : sSet ⇌ Diff : SB∗ .

10|Λn
k|A∗ are isomorphic in Diff for all k = 0, 1, . . . , n, simply denoted by |Λn|A∗ .

11Such X is (called) fibrant in [CW14] when related to our main conjecture.
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This model structure was further applied in [Kih23] to study homotopy
theory of infinite-dimensional manifolds.

Final remarks

There are more material related to the categorical (and homotopical)
approach towards diffeology. We will have to omit them due to lim-
ited space and time. These include Bunk’s, Pavlov’s and Schreiber’s ap-
proaches to homotopy theory of (simplicial) (pre)sheaves over some sub-
sites of E∞; Iglesias’, Krepski-Watts-Wolbert’s, and Ahmadi’s approaches
to diffeological sheaves and Cěch cohomologies; Watts’ and Miyamoto’s
work on diffeological groupoids; Iwase’s work on diffeological CW com-
plexes and loop spaces; Kuribayashi’s work on rational homotopy theory,
etc. The interested reader shall be able to find most of them on the web.

As a final warning, the reader should check the existing results before
applying them, no matter they are published or not, as there could be
some mistakes.

email: exwu@stu.edu.cn
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These lecture notes are intended for students interested in differential geometry, 
particularly in situations not covered by the classical theory. The first part is 
a series of lectures given at Shantou University as a special program. They 
introduce the main areas of differential geometry extended to diffeology, as 
developed in the chapters of the diffeology textbook. The second part consists of 
a series of notes and exercises chosen because they do not fall within the scope 
of the theory of manifolds. They illustrate some applications of diffeology: infinite 
spaces with singular quotients, symplectic diffeological space without Hamiltonian 
diffeomorphisms, general spaces of geodesics, Riemannian diffeology program, 
classifying space of quasi-spheres, and other examples. They have been chosen 
to familiarise the student with some specific techniques used in the versatile 
environment of diffeology.
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