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0. INTRODUCTION :

Classical and relativistic mechanics can be formulated in
terms of symplectic geometry; this formulation leads to a rigorous
statement of the principles of statistical mechanics and of thermo-
dynamics.

This analogy also brings to light however certain fundamental
difficulties which remain hidden in ﬁhe traditional approach
through some ambiguities,

The "first principle".of thermodynamics can be formulated so
as to avoid this ambiguity provided one accepts a detour_thruugh the

wvprinciple of general relativity and the Einstein equations for

_ gravitation.

The mathematical tools used are the theory of symplectic
moments, certain cohomological formulae and the concept of distri-
bution~£enaor.

As the "second principle" we shall merely show how it is
possible, by accepting a particular geometry status for temperature
and entropy, to construct a relativistic model of a dissipative
continuous medium. This model has the-fbllowing properties :

*

a. it is predictive;
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b. all fits solutions satisfy both principles of thermo—
dynamics and admit a detailed balance (energy-impulse, momentum),

c. it contains in pdrticular all equilibrium situations of
statistical mechanjcs, and also the relativistic theory of elasti-
city. - ‘

d. Finally its non-relativistic limit allows ome to identify
the usual thermodynamic variables and in particular it contains
the theory of elasticity, the mechanics of perfect fluids, the
theory of heat conduction (Fourier) and the theory of viscosity
(Navier).

Nevertheless it is a schematic model which does not take
into account phenomena such as capillarity, plasticity, electro-

magnetic effects, etc.

I. SYMPLECTIC FORMULATION OF DYNAMICS

Consider first of all an elementary dynamical system : a
newtonian point mass of mass m, position ;, velocity ;, in a force
field (;,t) > ﬁ(i); the triplet y = (;,g,t) makes up an initial
condition for a motion x; y travels through a manifold v, (&volu-
tion space); if ome puts
cv(dy)(ﬁy) = <p dv - ?-dt,é? -V 6t> - <m 6v - ?Gt,ﬁr -V de>

(1.1.)

d and § being two arbitrary variations, the brackets <,> repre-
sénting scalar product infm;, one defines on V, a 2-~form Oy of
rank 6; the equations of motion become dy € ker(ov)(z) ; if F is
the gradient of some potential, o0 is a closed form (its exterior

v

derivative vanishes); is thus an absolute invariant integral

a.
of the equations of motgon, discovered by E. Cartan, but in fact
already described explicitly by Lagrange.

The set U of all possible motions has a structure of symplec-
tic manifold (of dimension 6), provided with the closed and rever-
sible 2-form Oy whose reciprocal image by the submersion y —+ x
coincides with Oy (fig. ).

Such a scheme can be extended to general dynamical systems
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(systems of many particles, spin particles, relativistic mechanics,
etc.; see (20)) : in all cases, the space U of wmotions is a sym—
plectic manifold (thus of even dimension) onto which the evolution
space V is projected, each section t = constant of V is a "phase
space"”,; however the identification of phase spaces corresponding
to different times is an arbitrary operation, which depends on the

system of reference chosen, and therefore is best avoided.

dy Sy v
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II. SYMPLECTIC FORMULATION OF. STATISTICAL MECHANICS

In this representation astatistical state U is simply a
probability law defined on U (i.e. a positive measure of weight
1); the set Prob(U) of these probability laws is a comver set,
whose extremal points are the classical motions x (identified with
the corresponding Dirac measures) (Fig. V). '

The completely continuous states are characterized by a
density of U, which is the product of the Liouville density (3> by
a scalar which can be identified with the classical distribution

(4)

function . The entropy of a statistical state Y is defined to
be the average value § of -Log p for this state; one can define
a good class of states, the "Boltzmann states" (23), which make
up a convex subset of Prob (U) and for which the integral of ~log

p is comvergent; 4 =+ S is a concave function on this convex.

IIT. THE PRINCIPLES OF THERMODYNAMICS
Statistical mechanics, as it has just been described, is

capable of describing various real phenomena, but not dissipative
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phenomena (friction, heat conduction, viscosity, etc.) which make
up the study of thermodynamics. The two "principles" of thermo-
dynamics apply in fact only to idealized situations : dissipative
transitions, in which a system is in a statistical state Bin
before the dissipative phenomena and reaches a new statistical
state u_ . after the phenomena. The second principle (Carnot-
Clausius) then reads

S(uout) = S(uin) (3.1)

whereas the first principle expresses the conservation of the
mean value of the energy E, which can be written
b d = L4
Hope & ™ E) = u, (x » E) : (3.2)

taking the measures to be linear functionals.

Both uin and uout belong to the convex of Boltzmann states
giving a given mean value Q to the energy. It can happen that, on
this convex, the concave function S be bOundeé; let Sq be then its

upper bound. Obviously

SGuy ) < SGu ) <8 (3.3)

Q- :
This gives a majorant of SQ-S(uin), known as a function of Mo
only, to the entropy production S(uout) - S(uin). It can also
happen that the maximum of S on this convex be reached at a unique

point pq, known as a Gibbg state ; if W =M the entropy pro-

Q’
duction vanishes and Hout = Hiq 7 8° Gibbs states cannot undergo
dissipative phenomena; they constitute what is known as thermo-

dynamic equilibria.

IV. COVARIANT FORMULATION OF THE FIRST PRINCIPLE

The foregoing analysis applies to conservative systems; the
function x - E, defined on a symplectic manifold U, permits by the
Hamiltonian formalism to define a one-parameter group of symplecto-
morphisms of U(S); calculations show that this group is lifted to
the evolution space V by the group of time translations; in the

cage of a single particle



-+ -+ -+ -+
v+v ,trt=+r , t->t+ Cte (4.1)

this is usually expressed somewhat incorrectly by saying that

w(6)

"time and energy are conjugate variables
Clearly translations (4.1) are linked to a particular frame:

the first principle, as stated, does not respect relativistic co-

(N

variance, even galilean' ’jheremust therefore exist a statement

avoiding this drawback.

A radical solution is to replace the group (4.1) by the com~

plete galilean graup(a)

o

, or else in the relativistic case, by the
Poincaré group
The action of these groups on U by symplectomorphisms is

defined in a natural way if the dynamical system is isolated;
otherwise one considers a partial system, to which the "mechanism"
made up by the given exterior system leaves only the symmetry
corresponding to a subgroup of the galilean (or Poincarg) group.
For example a fixed box containing a gas, which restricts the gas
to the subgroup (4.1); but also a centrifugal machine, etc.

Let G then be the group of symmetries; we seek a quantity
which plays the same role with respect to G as does the energy
with respect to the group (4.1).

It is sufficient to achieve this to consider all one-parame-
ter subgroups of G; each one will be characterized by an element
Z of the Lie algebra G of G; to each one will correspond a
hamiltonian which will be denoted by M(Z). Inspection shows that
one can choose the additive constant which appears in each hamil-
tonian in such a way that the correspondence Z » M(Z) be linear;
M becomes thus a linear form on G, thus an element of its dual
G*; thereexists therefore an application x * M of U into G* ; the
variable M will be called the moment of the group; naturally
therefore one replace the first principle (3.2) by the statement
(19)

”oﬁt(" » M) = ”in(“ » M) (4.2)

without changing the second principle (3.1); the conclusions are
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similar. On the convex of Boltzmann states satisfying u(x + M)*Qﬂn)
there may exist a "Gibbs state" uQ having the largest entropy SQ;'
as before, one obtains a majorant to the entropy production in a
dissipative transition; and one arrives at the conclusion that
Gibbs states are no longer susceptible to dissipative phenomena.

The distribution function of these Gibbs states is the expo-
nential of an affine function of M, which can be written

o i gd 8 4.3)

8 being an element of G ("geometric temperature"), z a number
("Planck's thermodynamic potential®, see (VI)) which is obtained

in terms of O by writing that the weight of u is 1,

z = log J EHB Ax) dx , (4.4)
1]

A being the Liouville measure; z is a convexr function of 8, which
turns out to be the Legendre transform of Q * -SQ H
dQd = - dS , Qd® =dz , Q8 = z-5 , V d. (4.5)

All the classical formulae of thermodynamics are thus gene-
ralised but now the variables are provided with a geometrical
status. For instance, the geometrical temperature 6, an element
of the Lie algebra of the Galilea or Poincaré groups, can be
interpreted as the field of space-time vectors; in the relativis-
tic.version, 6(x) is a time like vector, its orientation characte-

rises the "arrow of time'; its direction is the 4-vélocity of the

“equilibrium referential; its (Minkowski) length isf= £T

(k : Boltzmann's constant, T : absolute temperature). This tempe~
rature-vector -had already been suggested by Planck in order to
study relativistic thermodynamics, but its galilean countérpart
is quite as relevant.

The formulae thus obtained can be applied correctly to a
number of real situations : equilibrium of spin particles, centri-
fugal machines, rotation of celestial bodies, etc.

Furthermore new relations appear, linked to the non-commuta=-

tivity of the group G, which give rise to some predictions; thus,
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under weak hypotheses, one can predict the existence of a eritical
temperature for an isolated system, beyond which no equilibrium
state will exist; this fact is probably important in astrophysics

(supernovae). For further details see (20) and (23).

V. GRAVITATIONAL SUSCEPTIBILITY

The covariant formulation (4.2) of the first principle removes
thus a paradox, and at the same line increases the practical valde
of thermodynamics. However it leaves a conceptual problem.

During a dissipative transition, statistical mechanics is
necessarily violated since Houe 7 W3 the dynamical variable
energy (or more generally the moment) changes speéctrum during the
transition’ '), As one can no longer appeal to conservation laws

of classical or statistical mechanics, it is necessary to bring
in other laws of nature in order to tnderstand how the mean value
of the energy is conserved, or more simply how it is memorised.
Somewhat unexpectly the answer is provided by general rela-
tivity; we shall see how in §7, after a study of preliminary con-
cepts. Consider a dynamical system evolving in a gravitational
field, field which is characterized in general relativity by its
potentials By’ the space of all motions is always a symplectic
manifold U, whose structure depends on the field.
Now we choose a compact K of space~time E, (see fig. II)
-wherein we perturb the 8y The new space of motions U' is still
a symplectic manifold, which can be comnected to U by the technique
of diffusion; this technique will be described in the casé of a
spinless particle, whose motion is characterized by the world line;
if this line does not meet K, it characterizes a motion equally
in U as in U'.

d Consider now a motion in U, which we shall denote by X, whose
world line centers at some time into K; with the perturbed poten-—
tials, the line will deviate from the initial motion (dotted line
in figure). When it leaves K, it takes a new path which can be

identified to an element X of U; the correspondence X, + X _,
out in out
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which characterizes globally diffusion by scattering is a local
symplectomorphism of U (because U and U' are each symplectic, and
their structures can be obtained by starting from the same evolu-
tion space). Such a quantity can be characterized by a certain
dynamical variable called the diffusion etkonal.

We are interested here in infinitesimal diffusion : if one
gives to the &y a variation Gguv which vanishes outside K, the
initial motion will undergo a displacement 8x = F(X) which derives
from a certain hamiltonian ¢ (see §4); ¢, so defined to within
an additive constant, can be completely determinaed by putting it
equal to zero on ail paths which do not cross K(lza

For any motion x € U, let Tx be the application which esta=-
blishes a correspondence between ¢ and the tensor field
x + 8g (x € Eﬁ)’ Tx is a linear application, thus a priori a
distribution(IBE knowing Tx allows one to predict how the particle
will react to any "slight" modification of the gravitational field:
this is why T will be called the gravitational susceptibility of
the particle in the motion x.

We now use the genmeral relativity principle : it states that
a diffeomorphism A of time-space EA’ acting simultaneously on the
potential (according to the standard formulae of differential
geometry) and in the motion (here by direct image of the world
liney is unobservable (see (21)). Let us choose A so that it
leaves unchanged the points outside the compact K (fig. III); it.
modifies the potentials only in K, and its action in the particle
leaves unchanged those parts of the world line outside K, the
corresponding diffusion by scattering is thus zero.

Let us apply this result to the case A = exp(sF) (see 2.4),
s € R,F = vector field vanishing outside K. One sees that
Tx(x + §g) vanishes if g is the derivative with respect to s, at
s = 0, of the reciprocal image of A by x + 8g; this variation by
definition is the LZe derivative of g associated to the vector

field 86X = F(X); we shall denote it as GLg. Generally speaking a
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distribution T will be said to be eulerian if it satisfies the
condition
T(X + GLg) = 0 for any field X = ¢X  under compact support;

(5.1)
we know therefore that x *+ Tx is an application of the space of
motions U into the vector space of eulerian distributions of E4
(fig. V). Under certain hypotheses, a eulerian distribution allows
one to associate a conserved quantity to any Killing vector Z of
the metric g(l3% we shall give a brief description of this proce-
dure in the case where E4 is Minkowski space, and consequently Z
is an element of the Lie algebra of the Poincaré group; the asso-
ciated quantity is ‘

I=TX “‘GLg) where 8X = uZ(x) , (5.2)
U being a function taken to be equal to zero in the past and
equal to one in the future (fig. IV).

Contrary to what one may think by studying (5.1) and (5.2),
I is not mecessarily vanishing, because X + u Z(x) is not a:field
with compact support; but the eulerian condition (5.1) allows one
to show that I does not depend on the choice of u, by making some
assumptions on the behaviour of T at infinityclé? One can thus
calculate I by making u jump from O to 1 in a small neighborhood
of a space-like surface; the fact that the result is independent of
the choice of this surface expresses the ''preserved quantity"
character of I,

Clearly the application Z * 1 so defined is linear; it
assoclates to T an element ¥(T) of the dual'dﬁ of the Lie algebra
G of the Poincaré@ group. It is obvious that the application

x M =-W(T%) (5.3)
is a moment of the Poincaré group (§4); we shall now find another
property by equivariance considerations.

It is clear that the Poincaré group € acts on tensor fields
with compact support, thus on distribution—tensofs.according to the
formula

a(M@aE » 8g)) =TX»6g) , VYaca.. (5.4)
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It also acts on vector fields with compact support, and the
Lie derivative of g is equivariant for this action, so that G
acts on eulerian distributions. Finally G acts on Killing vectors,
and this action coincides with the adjoint representation of G on
G.

Let us now suppose that a be an element of the orthochrone

subgroup G+(16): the foregoing constructions show that

¥(a(T))(a(2)) = ¥(T)(2) (5.5)
and ¥V x € U, that -

o) T, (5.6)
whence )

W(Tacx))(a(Z) = W(T&)(Z). (5.7)

This last formula has a cohomological interpretation : it
expresses the vanishing of a certain symplectic coeycle and
entails that (see(19)).

M[z,2'] = 0(Z(x))(2'(x)) , ¥V Z,2' € G. (5.8)

This result allows one to f£ix the arbitrary constant which
appeared in M (because the Lie algebra of the Poincaré group is
equal to its derived algebra); it shows in particular that if
Z is an infinitesimal time translation, then the integral I
(5.2) is equal to the relativistic energy E = mcz of the system
in the motion in question.

We have thus factorized the "moment" application x+ M by
the composition of x # Tx and Tk #+ M (fig. V); this is the result
which will be essential for thermodynamics. Let us indicate in
detail what these results become for a single particle; the
symplectic form (1.1), in general relativity, reads

0y(d) (&) = m g [ 8U - ox* au'] . (5.9)

In this case an initial condition y is a pair (X,U), X

belonging to the world line, U being the unit tangent vector;

-

the carets ” represent covariant differentiation.
The calculation (somewhat technical) of the gravitational

susceptibility yields
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Tx(x'» 8g) = f m 6., P ¥ dx (5.10)

§ # X being an arbitrary parametrization of the world line of the
particle (from the past towards future). We see that the distri-
bution Tx is a meagsure, having as support this world line. It so
happens that we know all the eulerian measures supported by a

curve} they can be written as

i1 v dX
TE = 6g) f éguv P (5.11)
with the supplementary conditions

dx I

E;-parallel to P ; e 0 (5.12)

{the proof can be found in (2.1)); these conditions imply that
the curve be a geodesic : a well-known fact for particles, which
can also be found by using d'Alembert's principle dy € ker (o)
in the form (5.9). The 4-momentum P = mU appears thus as an
element of the gravitational susceptibility; in the case of
Minkowski space, the preserved quantity associated with an

element Z of the Lie algebra G of the Poincaré& group is

L By Mz _ ' (5.13)

X being chosen arbitrarily on the world line; by varying Z in G,
one can display energy, momentum, orbital momentum, etc.

The structures we have just displayed in the simplest case
can be extended to a great variety of circumstances.

They can be transposed to the clgssical mechanice case; to
each motion x we still associate a distribution T#; the eulerian
condition is expressed, no longer by a Lie derivative, but by a
certain connection which takes into account the gravitational
field in its newtonian form. One notes that the conserved quan-
tities associated with the null field case bring out a Lie algebra
of dimension 10 whieh is not that of the Galilean group, but
somewhat paradoxically that of the garoll group, which is a con-
traction of the Poincaré group obtained by letting the speed of
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light ¢ go to zero. This phenomenon can be put together with the
impossibility of choosing the galilean group moments in such a way
as to satisfy formula (5.8) : an obstruction appears which is a
class of symplectic cohomology and which is measured by the total
mass of the system, thus non-vanishing.

Physically speaking, these facts indicate that in the formu-
lation of classical mechanics by eulerian distribution, mass
conceals energy. '

The same method can be used to treat spin particles, both in
classical and relativistic mechanics. The gravitational suscepti-
bility involves, together with the 4-momentum pH , the antisymme~-
tric epin tensor sHV.

This method allows one to obtain in a simple way the collision
and desintegration rules for particles: one has simply to write
that the sum of the gravitatihnal susceptibilities carried by the
various world lines is still a eulerian distribution. This method
can be extended to electrodynamics : one calculates the gravita-
tional susceptibility for a simultaneous variation of the gravi-
tation potentials 8. and the electromagnetic potentials Ap; for
particles this susceptibility introduces, together with the 4-
momentum and the spin tensor, the electric charge and the magnetic
moment. The general relativity principle, which affected the group
of diffeomorphisms in space-time, is generalized to an electro-
magnetic group; consequently ‘the ‘eulerian condition becomes

T(X » (8g,60) = 0 if 8g'="6,g , 6A = 8 A + 3% (5.14)
X #+'8X and X * o being a vector field and ‘a scalar field with com-
pact support respectively.

Note that these structures become particularly simple when

]

written in the 5-dimensional space-time of Kaloza.
VI. LOCALISATION OF STATISTICAL STATES

Let | be a statistical state of a dynamical system, i.e. a

probability law of the manifold U of motioms (fig. V).
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’vaa._,f:

If X » §g is a variation with compact support of the gravi-
tation potentials, we can establish a correspondence between
every motion X € U, and a diffusion Hamiltonian ¢ = TX(X » §g)s
¢ is a function of x, i.e. a dynamical variable; the state u will
be called localisable if this function is p-integrable X + §g;
we shall then put

TU(X » 8g) = JU T (X *» égpuxdx (6.1)
this quantity is the mean value of ¢ is state U.

One can check immediately that :

~ the set of all localisable statistical states is a sub-
convex of Prob(U), and contains its extremal points. (6.2)

~If u is localisable, Iu is a eulerian distribution.

(6.3)

- In the case of Minkowski space, the element W(Tv) of g
(see §5) is equal to the mean value Q of M in state u(see fig. V).

{6.4)

- It would appear that localisable states are the only ones
met in nature; in particular Gibbs states are localisable. If the
state U has a distribution fugction of class Em {on U), Tu will
be a completely continuous distribution (on EAJ’ which will be

written

T(X + 8g) = J % 82, ™ () dx (6.5)
E
A

The ™ being densities (Tvp = Tpv); these T are the components
of a tensorial density in the Brillouin sense; they can also be
written as TUpl, ™ now being the components of a symmetric
tensor, and A the riemannian density of space-lime ; (6.5)

becomes
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- = ..1.. VP *
T (x> 6) J'E 3 1% 8g,) A0 aX (6.6)

4
the eulerian condition (5.1) is obtained from the Killing formula

- ~ ,Y -~ Y
{5L8}&B gUY BBGX + gYB Ba 6x (6.7)

one easily finds

3,1 =0 (6.8)
where one recognizes the relativistic form of the Euler equations
proposed by Einstein (4).

Consequently the localisation of a statistical state allows
one to interpret it with the assistance of a continuous media,
whose TP defined by t6.6) make up the energy tensor and are
automatically solutions of the Euler equations. This interpreta-
tion can be confirmed by detailed calculations; thus in the case
of a particle, the e component, which is interpreted as the

specific mass, is the mean value of the relativistic mass

mf/l~V2/02 in a volume element in the neighborhood of the peint
X considered; the pressure, or more generally, the constraint
tensor is interpreted as a measure of the random character of the
speeds of the motions going through X; etc.

~ Let us consider the case of a system of N relativistic spin-
less particles of mass m, making up a Gibbs equilibrium in a box
of volume V at a temperature T. In a frame linked to the box,
the TP tensor is diagonal, and can be expressed in terms of a
specific mass p and a pressure P given by

- Nm 6" () N¥m G"(x) ~ G(x)

VS ®P- TV -36m (6.9}
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where x = m/kT , and G is defined by

G(x) = I e x8 /92-1 ds. (6.10).
1

K. (x)
It so happens that G(x) = w%;—— 5 KI being the modified

Bessel function of order 1; G satisfies therefore the differential
equation -

") +26'() - 6x) = 0 (6.11)
whence

pV = NKT; ' (6.12)
one recovers thus exactly the classical perfect gas law (Boyle-
Mariotte—~Charles-Gay-Lussac-Avogadro —Boltzmann); the first terms
(27) yield the formula

I

5
Q= oV = Nm + % NKT = W r -ms!kT(S 1) (s+1)* ds

of the asymptotic expansion of Ki

(6.13)
Here we have set c=1, the first term is the mass at absolute zero;
the second term is the mean clasateal value of the energy, which
allows one to calculate the specific heat of a monoatomic gas;
the third (positive) term is the re#ativistic correctiom.

One also obtains Planck's thermodynamic potential (4.4)

2z = N Llog(~47 V m> G' (m/KT)F (6.14)
wh1ch indeed is a convex function of B = 1/kT; formula (4.5) then
a7

yields the entropy
S = Kz + (6.15)

1t is remarkable that the TUp

tensor, which has been cons-
tructed as characteristic of the gravitaiional susceptibility,
also characterizes the gravitational action of matter defined
by the statistical state U; for it is indeed this tensor which
appears -in the right- hand side of the Einstein gravitation
equations t

RVP vp

- % Rg™® + A g'P = gneT™P (6.16)

(A cosmological constant; G = Newton's constant; ¢ = 1),
. g -
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Using the definition(6.l), these equations can be written

I SZ(X)dX = J Tx(x » §g) u(x)dx , vy og (6.17)
E U
Z being the lagrangian density of the gravitational field
2h-g PR
Z= _—_§§E_Eg A(A = riemannian density) (6.18)

in this form, one notes that the distribution defined by the
first member is qutomatically eulerian.
All this approach can be extended to the electromagnetic

case; formulae (6.6) and (6.8) become

T (&> (8g,68) = JE [% P88, + 37681 A(X)ax
4 (6.19)
and
Svr“p +rpi’ =0 33%<0 (6.20)
respectively.
Einstein's equations (6.16) are replaced by the coupled
Einstein-Maxwell equations} the 4-vector ° is interpreted as
the current-charge density.
Applying the preceding formulae to statistical states of particles
with spin having a magnetic moment allows one to recover -the
principal characteristics of ferromagnetism (magnetic equivalence
magnet-solenoid) ; gyromagnetic effects; magnetostriction ...)
(see (21) and (23)).

VII. GRAVITATIONAL TINTERPRETATION OF THE FIRST PRINCIPLE

Consider the case of a dissipative transition uin -+ uout’
and let us suppose there exists a eulerian distribution T that
coincides with Tu; ~ before the dissipative phenomena and with
Tuout afterwards; in other words a distribution T that interpolates
between Tpin and T ..

We can then associate to Q a conserved quantity Q which will

acquire the same value for Tuin as for Tuout’ as it can be
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calculated at an arbitrary time; we also know that for T”in’ Q is

equal to the mean value of the Poincaré@ moment M; similarly for

Tpaut ; consequently the first principle, in its covariant form

(4.2) will be assured. We only need to set (motation 6.17)

T(X » 8g) = f &L (X)dX ; (7.1)
Ey
indeed it is known that T is a eulerian distribution that inter-
polates between Ty, and Tu_ ., as the Einstein equations (6.16)
: in out (18)

are valid before and after the dissipative phenomena . It
is thus the gravitational potentials g = that remember the mean
value of the moment M and which guarantee the validity of the

first principle (in its covariant form (4.2)).

VIII. THE DISSIPATIVE MEDIUM MODEL
Relativity, thermodynamics, matter and geometry

Consider a éibbs state of a particle in a symmetrical gravi-
tational field; there exists in space-time a conservative currenémb
S whose integral on a space-like hypersurface is equal to the sta-
tistical entropy ;

¥ = Vo - weH . (8.1)

T being given here by the construction explained in §6, F is the

(20)

specific free energy of the system and 6 is the temperature

vector. The conservation of the entropy current amounts to the
equation
aus” = 0. | (8.2)
In the case of a dissipitative continuous medium, we shall
assume as s0 many authors (2), (3), (8) ... (12) that the geome-
trization of the second principle is obtained by the pérmanence,
out of equilibrium, of the entropy.current, whose flux 8§ satisfies
then
div § = §uSu > 0. (8.3)
At any point div S is interpreted as the specific entropy
production.
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Still in the case of dissipative processes, we shall also
assume the permanence of the temperature vector, a less strong
hypothesis than the often adopted one of local thermodynamic
equilibrium.

The duality between the momentum—energy current and the uni-
verse metric on the one hand, and the geometrical nature of the
entropy current and the temperature vector on the other suggests
there exists a duality entropy-temperature that a complete geome-

trization of the second principle should clarify.

relativity thermodynamics
[_ T 5 matter I
! }
l g 6 geometry |

The vectorial character of O makes it the infinitesimal gene-
‘rator of a one parameter group and thus gives it a strictly kine~
matic role. Its limes of current are the molecules, their abstract
set makes up a manifold V3 called the reference body which corres-
ponds toour three dimensional intuition of "space".

Programm for a model

To construct .a model we have to choose a system of fundamen-—
tal variables from which will be written the equations of motion.
What we shall ask of a thermodynamic model of a continuous medium
is that it takes into account the kinematic variables

(g,9)
and the dual variables
(t,8)
in such a way that all the solutions of the equations of motion
satisfy the two principles of thermodynamics
5};‘” = 0and 35" >0
Furthermore we shall require that the motions contain as special

case the Gibbs equilibria for which 6 is a Killing vector and S
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is given by (8.1) and aus“ = 0.
The characterization of equilibria through infinitesimal
isometries emphasizes the role of the tensor Y defined as

1
=-§-6Lg,éx-8

Y = %[5”9\) + §veu]
v will be called the friection tensor.
It seems reasonable to interpret Y as the source of dissipa-
tive phenomena as thermodynamic equilibria are characterized by
Y = 0.
A simple phenomenological model satisfying this programm
Classical thermodynamic media are characterized by a function
of state, the dissipation function (ex. cf (18)) relating the
constraints to the amount of deformation. By moticing that the
amount of deformation and the constraint are the spatial parts
of the friction tenmsor Y and the momentum-energy tensor T respec-
_tively, it seems reasonable to generalize this hypothesis to rela-
tivity by assuming the existence of a generating fumetion ¢(21)
relating Yy and T.
More precisely we suppose that
¢ depends on the variables (x,g,9,Y,q, %%J where q represents
the molecule of Vs going through ¥

Vo 3 ga 8 = ™Wsy ., for any vartathon . (8.6)
aYuv v

of Y, the other variables kept fized.
In order to satisfy the principle of general relativity, we

(22)

shall suppose that ¢ is invariant under diffeomorphisms of VA.
We take this statement to be the rigorous expression of the prin-
eiple of objectivity or of material indifference, proposed by
many authors in the framework of classical mechanics (16),(17).

Calculations show that ¢ depends only on the following variables:
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molecule q

reciprocal of the temperature B = [guve“e“]"z
conformation wil - g““auqiavqj
deformation rate ) kij = - y“”auqiavqi (8. 7Y
thermal field | xt - 2auqiy“e°

thermal velocity as= %—ypve”e“

We have proved the following theorem (22), (7) :

if ¢ is convex on Y ;

if there exists a state function F which depends only on
q,B,Q, such that

e (8.8)
v &
and if one sgets (24)
s = 1™ g - Fe" (8.9)
then the equations of motion defined by the Einstein equations
gV - % rRg"Y = 8 ror™ (8.10)

generate the realization of the two principles of thermodynamics

5 ™™=0 and aus” > 0.

IX. INTERPRETATION OF THE MODEL
The friction tensor Y
The thermodynamic variables k,X and a of table 8.7 are built
up from the friction tensor ¥; one can show that, along the
motion, they take as values
;. ij

kIJ = Eg;— , with %% = 0; k measures thus the variation, along
the lines of current, of the deformation which justifies it being
called the rate of deformation.

d P
= %%‘; E% = B; "a" measures the variation of temperature along

the lines of currenat,
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xl is the relativistie equivalent of the classical temperature
gradient.
Momentum~energy tensor and entropy

The calculation of T and 5 y1e1ds

Tuu = aUqu - Zauq 3 .q A + (U Bvq ey + U 3 q c.)
. (9 1)
sV = ()oY 4 ngvavqlci
where
o = 22 is the internal energy in the normal sense of thermo-~
dynam1c3.
3¢ . ;
¢, =5, is the heat convexion.
i
A 3b . .
.+ = = 1is the constraint.
1] 3k13

The expression for the entropy shows that the nmon convective
heat remains, as in usual thermodynamics, the difference between
internal and free energy; furthermore the model distinguishes
quite naturally that part of the entropy flux vector which is

proportional to © and its orthogonal part, the convective heat
flux. .

X . NON DISSTPATIVE LIMIT OF THE MODEL

It follows from the strict convexity of the generating function
¢ that the only non dissipative motions of this model are the
thermodynamic equilibria for which the friction vanishes. Never-
theless the hypothesis ¢ affine in y gives the non dissipative

approximation for which every motion satisfies

5 ¥ = o. 10.1
o ( )
The energy-momentum tensor becomes
JF j BF
=, T - .2

Tuv B 36 UUU + guv Zauq Bvq - 13 (10.2)
and the entropy

¥ _ 9F .u

S =5 G (10.3)

and one recovers usual thermodynamics.
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Introducing a matter current characterized by its flux N

N = no*
(10.4)
ant =0
i
allows one, by putting
W=F-n c2 (10.5)
to write
T = (ncZ4+Q)U U + wg - 20 q'3 ¢ —er (10.6)
Hy HV HV H AY 31‘\1‘]
aW
s =q¢", q =Bg
The internal energy o becomes then
. P (10.7)

and Q can be written, by setting s = su* and g = %T .

Q= -

The expression (10.6) for the energy-momentum tensor allows
one to interpret W as the elastic energy of the relativistic
theory of elasticity. Formula (10.8) leads to the interpretation
of Q as the usual heat of thermodynamics, and one recovers in
(10,7) the usual expression for the internal energy.

Thus the non dissipative .limit of the model encorporates
completely the usual definitions and equations of thermodynamics.
Furthermore the equations of motion BuTuv = 0 and Busu = 0 express
the relativistic balance of thermodynamics of reversible process
of energy, entropy ... and one recovers the variational theory of
elastic media.

-

The equations aus“ =0 and s" = e%%e“ allow one to eliminate
the temperature B as independent variable (by using a Legendre
transformation). It is then possible to comstruct a Lagrangian
density depending only on q and h from which the equations of
motions can be derived. This lagrangian coincides with that of the
relativistic theory of elasticity (24). Going from this lagrangian
to the classical limit gives Hamilton's principle as applied to

continuous media.
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Perfect fluids and statistical mechanics

The perfect fluid is obtained by letting F depend on h only
through its determinant, i.e. the matter density n (10.4) (see
(24), (15)). In this case, we have

3[BF] L gL _
T = 3 UUU ( n F)(gu U u )
(10.9)
H oo o _ég i BE
W Lo=C-ggblt=-3
and the pressure p
oF
p‘..a.En F : (IO.IO)
appears as the Legendre transform of F and is expressed in terms
of the chemical potential u = %% ;

Furthermore, by interpreting  as the specific Planck poten-
tial per molecule, one recovers for the entropy per molecule ¢
the expression given by statistical mechanics (8.6). This model
is thus, in the non-dissipative limit, in agreement with the

predictions of statistical mechanics. Introducing the l-form

B = hU , with b= 222 (25) (10.11)
and its exterior derivative
lu alﬂu 9 HA (10.12)

we can replace the equations of motion (10.4) and (8.4) by

o N =0, 0 06"+ 03.=0.

Hv
This last equation shows that
85 = 0 and GLQ =0 for &X = 0. (10.14)

It follows that s is conetant along each line of current and
that © is an integral invariant of the field X * 8; its rank
(4,2 or 0) is thus constant along each line of current, as well
as the pseudo-scalar
- pe(@ 2 (10.15)

where pf(Q) is the pfaffian of the form (26)

. In general ™ # O,
2 is of rank 4 and the sign of 7 defines an orientation of space.

There exist also important classes of motions for which m = 0.
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- The isentropic motions (those in which s keeps the same
value along all lines of current); then (10.13) shows that
® &€ ker(2); in general the rank of  is 2; the kernel of 2 defines
a foliation whose leaves of dimension 2, can be interpreted as
vortex lines carried away by the fluid. These notions are baro-
topic: there exists an equation of state, indexed by the value
of s, obtained by eliminating B and n between p and p : the
particular enthalpy h (10.11) coincides with the index defined
by Lichneroﬁicz (15).

- Non isentropic motions in which rank () = 2 (it is suffi-
cient that this be true at some arbitrary time); they make up
the relativistic equivalent of the oligotropic motionsof Casal
(1); the "leaves" of { are described on the hypersurfaces S =cft,

- The potions where 2 = O (here again it is sufficient to
verify this at some arbitrary time); (10.13) shows that they are
isentropic; they constitute the <rrotational notions, in the sense
of Lichnerowi .z (15).

There exist solutions with discontinuities on a hypersurface
' of ?4'(3hock waves); the conditions obtained by writing equa-

tions (10.4) in the sense of distributions read'(z?)

N‘l - NA is tangent to I
Hi - HA is normal to I (10.16)

hl’2 e h2 - [U'h""‘uh}[p"‘P] ;

if one adds that the discontinuity S$'-S is positive, one obtains

the spock equations of Rankine~Hugoniot in their relativistic form.

XI. WEAKLY DISSIPATIVE MOTIONS
The generating funection ¢ can be put in general taking into

account condition (8.8), in the form

-
¢ = Tva]J\) + ¢
(11.1)
o
Tuv = BaF and -..§¢_
B uv
¢ is called the dissipation function as one can show that

=0
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;- o
div § = "R (11.2)
aYuv UV

The quadratic approximation of ¢ in terms of ¥ is what is called
the weakly dissipative approximation of the model
i3y

j,im 1,jo

S e A ij, 1m i ij

¢ 2[:\a +Eijx X +Fi. . k'k +ZaBix +2&Lijk +2R
(11.3)

(A\,E,F,B,L,R) are the dissipation coefficients; they are functions

of (q,B,h) and total 55.
We recover the thermal conduction tensor E and viscosity *

tensor F; their components satisfy of course the Onsager symmetry

relations :
E.. = E,, .

o R (11.4)

Peiomt ™ Nyimt " Mig,m T Fangag

To these coefficients, the model adds :

- A, which we shall call the thermal susceptibility;

- the tensors B., L.., R, ..
i’ 1] i,k
conduction and susceptibility, viscosity and susceptibility,

which couple the effects of

conduction and viscosity , respectively.

Their components satisfy the symmetry relations

L,. =L,,
1] 11
Bk T Pk

(11.5)

The reader is referred to (7) for the expression of the momen-~
tum-energy tensor and the equations of notion.

Furthermore, the limit A = 0, L =0, R=0 and B = 0 lead in
the Newtonian approximation to the Fourier heat equations and the
Navier viscosity equations. Note that the conservation equations

auT”“ = 0 lead, taking into account the convexity relations:

A>0

(11.6)
MdE-B®@B >0

a system of partial differential equations of the elliptic
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kind. The elliptic character of these equations seems inevitable

in as much as we have set ourselves at a macroscopic level. Taking
into account derivatives of higher order of the kinematic variables
(e.g. capillarity) would change of course the nature of the system
of equations; one should not therefore give any fundamenpal inter-

pretation to the fact that the system be elliptic or hyperbolic.

NOTES

(1) Unless mentioned explicitly, all functions considered in
this paper will be taken to be c ; in particular, (T,t) » F.

(2) i.e. Uv(dy)(ﬁy) = 0,4 6y : this is the generalization of
d'Alembert principle.

(3) A density on a manifold is a function f defined on the
frames R and satisfying £(RM) = f(R)|det(M){ for any matrix M; on
a symplectic manifold, there exists a density £, the Liouville
density such that fo(R) = ; for any canonical frame. One can define
the integral of a density with compact support on a manifold
independently of any coordinate system; this allows one to identi~
fy each field of densities with a measure.

(4) By comstruction, p is a function defined on U; it is thus
lifted on V through a first integral of the equations of motion;
if one chooses an identification of the various phase spaces, this
implies that p is a solution of Liouville's equation.

(5) A vector field F defined on a Haysdorff manifold U can be
ax . F(X); the solution of

ds
this equation, which equals xb for S = 0, is written as exp(sP)(xok

associated to the differential equation

if it exists y 2 € Uand ySER, F is said to be complete, then

S + exp(sF) is a morphism of the group (R,+) in the group of
diffeomorphisms of U. If U is symplectic, and if X » U is c ol U,
then the eymplectie gradient of the dynamical variable U is the
vector field F defined by o(8x)(F(x)) = 8U, vy &; the associated
equation is the Hamilton equation; exp(sF) preserves the symplectic

form 0 and is therefore called a symplectomorphism.
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(6) With the usual sign conventions, E must be replaced by
-E.

(7) More precisely, these transformations (4.l1) define a
subgroup of the galilean group which is not an invariant subgroup.

(8) This.is the Lie group, of dimension 10, generated by the
isometries onR3 : time-translations and galilean transformations
T+T+at, vy +a. '

{(9) The group of isometries in Minkowski space, also of
dimension 10.

(l10) Q is an element of é*, which generalizes the usual concept
of "heat". yi3

(11) In non-quantum statistical mechanics, the spectrum of a
dynamical variable u in a statistical state p is the <mage by
x * u of the probability law u; it is a probability law of R
(or of G* in. the case of the moment).

(12) Another method which avoids certain topological diffi-
culties, appeals to the prequantization algorithm (see (23)).

(13) The trial. variable x + 8g being a covariant tensor
field, 'I‘x is called a distribution-tensor (contravariant ).

(14) Z is said to be a Killing vector if exp(sZ) is an isometry
Vv s.

(15) The easiest way is to suppose that the support of T is
compact. in space, i.e. its intersection with any time slice
t, <t= o being the line in an arbitrary Lorentz frame, is
compact. This condition is satisfied by the Tx we have considered
for a particle (provided it is not a tachyon ).

(16) The connected component of the neutral element of a Lie
group is an invariant subgroup; the quotient by this subgroup
is the component group. In the case of the Poincaré group, the
component group is the Klein group (4 elements) which is abelian.
Elements which "respect the orientation of time" make up the union
of two components; they form thus an invariant subgroup called the

orthochrone group.
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(17) Usual entropy is the product by k of the quantity used
here. Temperature units can always be chosen so as to make k=1.

(18) One will note that this argument relies implicitly on an
approximation; on the one hand, one uses special relativity to
construct the Poincaré moments; on the other hand one considers
the gvp as variables as they give by differentiation the
through the Einstein equations. This approximation amounts to
taking G tobe small and to neglecting the gravitational self~
interaction of the system; this is customary in thermodynamics.

(19) This current is defined by a 3~form-on' the reference
manifold and 1ifts to space-time through a vector S by vola(S),
where vol4 is the riemannian volume.

(20) F = =-12/B ; Z is the specific Planck potential ; g¥ = Btll‘1
s v, =1 '

(21) ¢ must be understood as a function with density value.

(22) covariant, in the sense of densities, is the exact term.

(23) ¢ and F are still to be taken in the sense of densities.

(24) Definition which generalizes beyond equilibrjum formula
(8.1) established for Gibbs states.

(25) Because of the relativistic equivalence between specific
mass and specific energy (c=1),.h can be interpreted as the :enthalpy
per particle.

(26) This pfaffian is defined by 3 O A O = p£(Q) vol, where
vol represents the riemannian volume form defined through an
orientation of V4' 7 is the telativistic equivalent of the vortex
potential of Ertel (5,6).

(27) Dasked variables are taken after the shock.
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