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GEOMETRIC QUANTIZATION BY PATHS
PART I: THE SIMPLY CONNECTED CASE

PATRICK IGLESIAS-ZEMMOUR

ABSTRACT. For any connected and simply connected parasymplectic space

(X,ω) with group of periods Pω ⊊ R, we construct a prequantum groupoid

Tω as a diffeological quotient of the space of paths in X. This object, built

from the geometry of the classical system, serves as a unified structure for

prequantization. The groupoid Tω has X as its objects, and its space of mor-

phismsY carries a canonical left-right invariant 1-formλλλwhose curvature

encodes ω. A key property is that the isotropy group at any point x is iso-

morphic to the torus of periods Tω =R/Pω, naturally arising as a quotient of

the space of loops. Furthermore, the entire symmetry group Diff(X,ω) acts

as faithful automorphisms of (Tω,λλλ)without central extensions at this level.

Built within the framework of diffeology, this construction generalizes classi-

cal prequantization by applying to broad classes of spaces, including those

with singularities or infinite-dimensional aspects, and by accommodating

generalized (e.g., irrational) tori of periods. This paper focuses on the simply

connected case; the construction will be extended to general diffeological

spaces in a subsequent publication.

INTRODUCTION

Geometric quantization provides a framework for quantizing classical mechani-
cal systems described by symplectic manifolds. A fundamental step is prequan-
tization, which for a manifold M with a closed 2-formω, involves constructing a
principal U(1)-bundle over M with connection and curvatureω. This is possible
if and only if the de Rham class [ω] satisfies an integrality condition.

Applying geometric quantization to more general spaces, particularly singular
ones arising from reduction, presents challenges as traditional bundle theory
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relies on local Euclidean structure. Diffeology offers a robust framework for dif-
ferential geometry on arbitrary sets, including singular and infinite-dimensional
spaces, providing tools for smooth maps, forms, and bundles via plots.

Building on diffeology, this paper constructs a prequantum structure applicable
to connected and simply connected diffeological spaces (X,ω) with a closed
2-formω having discrete periods.1 We construct a unique (up to isomorphism)
diffeological groupoid Tω as a diffeological quotient of the space of paths in X.
This construction, inspired by the spirit of the Poincaré groupoid of diffeological
spaces2 but using a different equivalence relation based on the 2-formω, yields
an object with X as its objects and classes of paths as its morphisms.

This specific construction provides a unified structure for prequantization with
several key properties:

∗ The isotropy group at any point x ∈ X is isomorphic to the torus of
periods Tω =R/Pω, naturally arising as a quotient of the space of loops
based at x . This captures the quantum phase information intrinsically.
∗ The groupoid Tω is fibrating, and it is the structure groupoid of the

prequantum bundlesYx → X, which are principal Tω-bundles.
∗ Tω is equipped with a canonical left-right invariant 1-formλλλ on its space

of morphisms, whose curvature dλλλ is related toω on the base X×X.
∗ The entire symmetry group Diff(X,ω) acts as faithful automorphisms of
(Tω,λλλ)without involving central extensions at this level.

This construction, derived solely from the geometry of the classical system
via paths – a perspective that inherently connects to Feynman’s path integral
approach to quantization – naturally yields a prequantum structure that gener-
alizes classical prequantization in significant ways. It applies to broad classes
of spaces (singular, infinite-dimensional) and accommodates generalized (e.g.,
irrational) tori of periods, recovering the classical U(1)-bundle case when Pω is
integral.

This paper focuses on the simply connected case; the construction will be
extended to general diffeological spaces in a subsequent publication. Based
on our experience [PIZ95], we conjecture a classification of these prequantum
structures by Ext(π1(X)ab, Pω) in the general case.

The paper is structured as follows: Section ?? reviews necessary concepts from
diffeology. Section II states the main theorem, presenting the construction of the
prequantum groupoid Tω and the prequantum 1-formλλλ. Section III provides
the detailed proof of the main theorem. Section IV discusses the symmetries of
the prequantum structure. Finally, Section V offers remarks and applications,

1In diffeology sense, in particular every subgroup Pω ⊊R is discrete.
2See [PIZ13, §5.15].
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FIGURE 1. The Prequantum Groupoid Construct.

including interpretation, concrete examples, and outlines directions for future
research.

I. PRELIMINARIES

In this paper, we work within the framework of diffeological spaces, which
provides a flexible setting for spaces potentially more general than smooth
manifolds, finite or infinite dimensional, such as function spaces, quotient
spaces, subspaces, spaces with singularities3 etc.

We assume that the reader is familiar with the basics of diffeology: parametriza-
tions, plots, diffeological spaces, smooth maps, inductions, subductions, diffeo-
morphisms, differential forms, etc. A comprehensive reference for diffeology
is the book [PIZ13], or more precisely, the revised reprint recently published
by the Beijing WPC [PIZ22], where misprints and some minor errors, as well as
formatting flaws of the original version, have been corrected.

We will briefly recall some of the definitions that are not part of the basic frame-
work and will be used in the following.

1. Paths and Stationary Paths.

Let X be a diffeological space, we denote by

Paths(X) =C∞(R, X)

the space of smooth paths in X, equipped with the functionnal diffeology. For
all t ∈R, we define t̂ by:

t̂ ∈C∞(Paths(X), X), t̂ (γ) = γ(t ).

3The study of singular spaces by diffeology methods began with the article on the irrational

torus Tα, defined as the quotient of the 2-torus by an irrational flow of slope α ∈R−Q [DI83].
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FIGURE 2. The smashing function λ.

We denote by 0̂ and 1̂ the source and target maps. We denote by ends the ends
map 0̂× 1̂ from Paths(X) to X×X:

ends ∈C∞(Paths(X), X×X), ends : γ 7→ (γ(0),γ(1)).

We denote by Paths(X, x ,∗), Paths(X,∗, x ) and Paths(X, x , x ′) the subspaces

Paths(X, x ,∗) = {γ ∈ Paths(X) | 0̂(γ) = x },

Paths(X,∗, x ) = {γ ∈ Paths(X) | 1̂(γ) = x },

Paths(X, x , x ′) = {γ ∈ Paths(X) | ends(γ) = (x , x ′).}

We denote by Loops(X) the space of free loops of X,

Loops(X) = {ℓ ∈ Paths(X) | 1̂(ℓ) = 0̂(ℓ)},

and we denote by Loops(X, x ) the set of Loops based at x ,

Loops(X, x ) = Paths(X, x , x ) = {ℓ ∈ Loops(X) | 0̂(ℓ) = x }.

We denote by comp the projection

comp : Loops(X)→π0(Loops(X)),

and also the projection from

comp ↾ Loops(X, x ) : Loops(X, x )→π0(Loops(X, x )) =π1(X, x ).

Many constructions in homotopy involve concatenating paths, for γ and γ′

when 1̂(γ) = 0̂(γ′), but the concatenation γ∨γ′ is not necessarily smooth.

γ∨γ′ : t 7→

¨

γ(2t ) if t ≤ 1/2,

γ′(2t −1) if t ≥ 1/2,

This is why we consider the concatenation on the subspace of stationary paths
[PIZ13, §5.4]. A path γ ∈ Paths(X) is (strongly) stationary if there an ϵ > 0 such
that:

γ ↾ ]−∞,+ϵ[ = γ(0) and γ ↾ ]1− ϵ,+∞[ = γ(1).
Every path is fixed-ends homotopic to a stationary path by composing with the
smashing function λ, γ 7→ γ∗ = γ ◦λ, see Figure 2. This is sufficient to ensure
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that many operations in diffeology involving the concatenation of paths, and
depending only on their homotopy class, are justified.

Convention. To avoid unnecessary complications in the following, we shall
consider only stationary paths without explicitly mentioning them. We will not
change the notations so as not to make the text more cumbersome. That is,
Paths(X)will denote the set of stationary paths, Loops(X) the space of stationary
loops etc.

2. Differential Forms.

A differential k -form ϵ on a diffeological space X, with k ≥ 0, is a map ϵ that
associates to each n-plot P : U→ X a smooth k -form ϵ(P) ∈C∞(U,Λk (Rn )), on
U = dom(P), where Λk (Rn ) is the vector space of k-linear forms on Rn , such that
the following chain-rule is satisfied:

ϵ(P ◦F) = F∗
�

ϵ(P)
�

,

for any F ∈C∞(V, U), where V is any Cartesian domain.4 The space of differential
k -forms on X is denoted by Ωk (X). The space Ω0(X) coincides with C∞(X, R).
Then, the exterior derivative is a linear operator defined by:

d :Ωk (X)→Ωk+1(X), with [dϵ](P) = d[ϵ(P)].

The exterior derivative satisfies d◦d = 0 and leads to the De Rham complex
of closed and exact differential forms. The de Rham k -cohomology group is
denoted by Hk

dR(X).

3. The Chain-Homotopy Operator.

Let X be a diffeological space and Paths(X) be equipped with the functional
diffeology. Since X and Paths(X) are diffeological space, they have their own de
Rham complex of differential forms denoted by Ωk (X) or Ωk (Paths(X)), for the
differential k -forms [PIZ13, §6.28]. There exists a smooth linear operator, called
the chain-homotopy operator, defined in [PIZ13, §6.83]:

K :Ωk (X)→Ωk−1(Paths(X)),

satisfying the identity

K◦d+d◦K= 1̂∗− 0̂∗.

For α a k -form, it is explicitly given by this expression:

(Kα)(P)r (v2) · · · (vk ) =

∫ 1

0

α

��

t
r

�

7→ P(r )(t )

�

(tr )

�

1
0

��

0
v2

�

· · ·
�

0
vk

�

dt ,

where P is a plot in Paths(X), r ∈ dom(P) and v2 · · ·vk are (k − 1) vectors at the
point r .

4 A Cartesian domain is any open subset of some Cartesian space Rm , for some m .
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4. Groupoids.

A diffeological groupoid G is defined by its space of objects Obj(G), which is a
diffeological space, and a space of morphisms, or arrows, Mor(G), which is also
a diffeological space, such that:

(1) The source and target maps src, trg : Mor(G)→Obj(G) are smooth.
(2) The composition (g , g ′) 7→ g ·g ′, defined on the subset {(g , g ′) ∈Mor(G)2 |

trg(g ) = src(g ′)} of composable pairs, is smooth, where this subset is
equipped with the subset diffeology of the product diffeology.

(3) The injection x 7→ 1x from Obj(G) to Mor(G), that associates to each
object x ∈Obj(G) the identity 1x ∈MorG(x , x ), is an induction.

The latter condition ensures that the identity of G identifies diffeologically with
the objects of G. An important definition follows. Let ends(g ) = (src(g ), trg(g ))
denote the source/target map:

Definition (Groupoid Automorphism). A groupoid automorphism Φ of G, in
diffeology, is a groupoid morphism from G to itself that is also a diffeomorphism
on both the object and morphism spaces, generally denoted by (ΦMor,ΦObj), but
most often in this paper as a pair (Φ,φ). then:

∗ Φ ∈Diff(Mor(G)), φ ∈Diff(Obj(G)).
∗ ends◦Φ= (φ×φ) ◦ends, with (φ×φ)(x , x ′) = (φ(x ),φ(x ′)).
∗ Φ(g · g ′) =Φ(g ) ·Φ(g ′).

The group of automorphisms of G is denoted by Aut(G).

The following definition [PIZ13, §8.4] is used to define the fiber bundles in
diffeology.

Definition (Fibrating Groupoid). A diffeological groupoid G is fibrating if the
source/target map, ends : Mor(G)→Obj(G)×Obj(G), is a subduction.

5. Fiber Bundles and Principal fiber bundles.

Let π : Y→ X be a map between two diffeological spaces. We build the charac-
teristic groupoidπππ, with objects X and morphisms

Mor(πππ) = {φ ∈Diff(Yx , Yx ′ ) | (x , x ′) ∈ X×X},

with Yx =π−1(x ) equipped with the subset diffeology. This groupoid is equipped
with a functional diffeology described in [PIZ85], and included in [PIZ13, §8.8].

Definition (Fiber Bundle). The projection π is a diffeological fibration if the
characteristic groupoid πππ is fibrating, that is, if the ends-map φ 7→ (x , x ′) is a
subduction.

Principal fiber bundles are an important class of diffeological fiber bundles,
because every fiber bundle in diffeology is associated with a principal bundle
[PIZ13, §8.16]. We have the following theorem-definition [PIZ13, §8.11]:
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Definition (Principal Fiber Bundle). Let G be a diffeological group acting
smoothly on a diffeological space Y.5 Let ρ be the graph of the action:

ρ : Y×G→ Y×Y defined by ρ : (y , g ) 7→ (y , g (y )).

If ρ is an induction then the projection π : Y→ X = Y/G is a fiber bundle with
fiber G, we call it a principal fiber bundle or a principal fibration.

6. One-Dimensional Tori and Subgroups.

We call 1-dimensional torus any quotient T = R/Γ , where Γ ⊊ R is any strict
subgroup of R. Then,

Proposition. Let H ⊂ T be a subgroup, then, either H = T or H is discrete.

Proof. Let π : R→ T be the projection. Since π is a homomorphism, the pre-
image π−1(H) ⊂ R is a subgroup containing Γ . If π−1(H) contains an interval,
then it coincides with R and H = T; this is a classic theorem. Otherwise, π−1(H)
is a strict subgroup of R, and according to [PIZ13, Ex. 124], it is discrete as
a diffeological subgroup of R. That means that its plots are locally constant.
Now, let P : U→H be a plot. As a plot in T, it locally has a smooth lifting in R
everywhere; let us say Q : Y→R such that π ◦Q = P ↾V. Thus, Q takes its values
in π−1(H)which is discrete, then Q is locally constant, and so is P. Therefore, H
is discrete. □

7. Connections 111-form on Torus Principal Bundles.

Let us consider a T-principal bundle π : Y→ X, where T =R/Γ is a diffeological
torus. For all y ∈ Y and τ ∈ T, let ŷ : T→ Y be the orbit map ŷ (τ) =τ(y ).

Definition (Connection 111-Form). A connection form on a T-principal bundle
π : Y→ X is any differential 1-form λ ∈Ω1(Y), such that:

(1) The form λ is invariant: for all τ ∈ T, τ∗Y(λ) =λ.
(2) The form λ is calibrated: for all y ∈ Y, ŷ ∗(λ) = θ.

For details on general connections in diffeology see [PIZ13, §8.32], and specifi-
cally on T-principal bundles see [PIZ13, §8.37].

II. MAIN THEOREM: THE PREQUANTUM GROUPOID

In this section, we present the construction of the prequantum groupoid associ-
ated with a closed 2-form on a simply connected diffeological space, as a pure
diffeological quotient of the space of paths, without introducing external con-
structs. The assumption of simple connectedness simplifies key aspects, related
to the triviality of fundamental groups, allowing for a focused development of
the core groupoid structure and setting the stage for future generalization.

5Meaning the action map ρ is smooth.
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8. The Prequantum Groupoid.

Let X be a connected and simply connected diffeological space, and letω be a
closed 2-form on X:

ω ∈Ω2(X) and dω= 0.

For the remainder of this section, we assumeω ̸= 0.6

We use the chain-homotopy operator (see Article 3), K :Ωk (X)→Ωk−1(Paths(X)),
and consider Kω ∈Ω1(Paths(X)).

Since dω= 0 and 1̂ ↾ Loops(X) = 0̂ ↾ Loops(X), the restriction of Kω on Loops(X)
is closed,

d[Kω ↾ Loops(X)] = 0.

Thus,

Definition (Group of Periods). For ω a closed 2-form on a simply connected
space X, we define its group of periods Pω as the group of periods of the closed
1-form Kω ↾ Loops(X).7 That is, it is the subgroup of (R,+),

Pω =

�∫

σ

Kω |σ ∈ Loops(Loops(X))

�

,

Next, we consider the quotient group

Tω =R/Pω and let πω : R→ Tω.

Following the definition of Article 6, Tω is a 1-dimensional diffeological group if
Pω ̸=R. It can be R if Pω = {0}, or a circle S1 ≃R/a Z of perimeter a , if Pω has only
one generator a ∈R, or an irrational torus otherwise. The fact that the quotient
Tω is a 1-dimensional diffeological group is a property of the parasymplectic
formω, or the space itself. This is why we introduce this definition:

Definition (Torus of Periods). We shall say that the parasymplectic form ω

is discrete if its group of periods Pω is a discrete subgroup of R, or, which is
equivalent, if Pω ̸=R. In this case the quotient Tω is a 1-dimensional diffeological
torus, we call it the torus of periods.

We call it the torus of periods even if it is equal to R (a circle of inifinite perimeter).
We say also thatω is integral when Pω = a Z, for some number a , then Tω ≃ S1.
In geometric quantization, Souriau defined a quantizable symplectic manifold
(M,ω) specifically when Pω = hZ, where h is Planck’s constant [Sou70].

The construction of the prequantum groupoid that follows applies only for
discrete parasymplectic formsω.

6The caseω= 0 is a degenerate situation resulting in the trivial pair groupoid T0 = X×X with the

zero prequantum formλλλ= 0, a case not relevant for the purpose of non-trivial prequantization.
7For a closed 2-form on a general diffeological space, the group of periods will be the group

generated by the periods of all the restrictions of Kω on the connected components of Loops(X).
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Remark. Notice that this requirement forω to be discrete (Pω ≠R) is the nec-
essary and sufficient condition for the existence of the prequantum groupoid
Tω as constructed here. This condition holds regardless of whether X is finite
or infinite dimensional, or has singularities. It generalizes the classical inte-
grality condition (Pω = a Z) typically required for the existence of a principal
U(1)-bundle over a manifold. For second-countable Hausdorff manifolds, the
period group Pω is always a discrete subgroup of R in the diffeological sense,
meaning the diffeological discreteness condition Pω ̸=R is always fulfilled for
such spaces.

Assume, then, thatω is discrete and X is simply connected.

The following relation defined on Paths(X) is the key to the construction of the
prequantum bundle. Let γ and γ′ be two paths in X, we say that

γ∼ω γ′ iff























ends(γ) = ends(γ′) = (x , x ′),

∃ [s 7→ γs ] ∈ Paths(X, x , x ′) : γ0 = γ,γ1 = γ′,
∫

[s 7→γs ]
Kω=
∫ 1

0

Kω(s 7→ γs )s (1)ds ∈ Pω.

We have, then:

Proposition 1. The relation ∼ω is an equivalence relation on Paths(X).

We denote the quotient space by

Y = Paths(X)/∼ω, and classω : Paths(X)→Y .

The map ends : Paths(X)→ X×X factors through Y , defining the source and
target maps for elements inY : ends([γ]ω) = ends(γ).

Paths(X) Y

X×X

ends

classω

ends

We have then the main theorem of this construction:

Theorem 2. Let X be a connected and simply connected diffeological space, and
letω be a closed 2-form on X.

(1) The spaceY is the space of morphisms of a fibrating diffeological groupoid
Tω, which has X as its objects, i.e.,

Obj(Tω) = X, and Mor(Tω) =Y .

The source and target maps are given by ends :Y → X×X. The groupoid
composition is defined by the concatenation of paths:

[γ]ω · [γ′]ω = [γ∨γ′]ω,
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for composable paths γ,γ′, and the inverse is

[γ]−1
ω = [γ̄]ω, with γ̄(t ) = γ(1− t ).

(2) The isotropy group at any point x ∈ X is isomorphic to the torus of periods:

Tω,x = Loops(X, x )/∼ω ≃ Tω.

(3) There exists a unique differential 1-form

λλλ ∈Ω1(Y ) such that class∗ω(λλλ) =Kω .

We call it the prequantum 1-form or prequantum potential of (X,ω).
(4) The curvature ofλλλ is related toω by

dλλλ+ends∗(ω⊖ω) = 0,

whereω⊖ω is the 2-form src∗(ω)− trg∗(ω) on X×X, src and trg being the
source and target projections.

(5) The form λλλ is invariant by left and right composition,8 for any pair of
composable arrows:

L(y )(y ′) = y · y ′, and R(y )(y ′) = y ′ · y .

Meaning:
(

L(y )∗(λλλ ↾Ysrc(y ),∗) = λλλ ↾Ytrg(y ),∗,

R(y )∗(λλλ ↾Y∗,trg(y )) = λλλ ↾Y∗,src(y ),

Definition (Prequantum Groupoid). The groupoid Tω is called the prequan-
tum groupoid associated withω. The left-right invariant 1-formλλλ is called the
prequantum 1-form.

Also, since the prequantum groupoid is fibrating, see [PIZ13, §8.4], we have:

Definition (Prequantum Bundles). For all x ∈ X, let

1̂x :Yx → X, defined by 1̂x : [γ]ω 7→ 1̂(γ).

These projections are all equivalent and are called prequantum bundles asso-
ciated with ω. The restriction of the prequantum 1-form λ = λλλ ↾ Yx becomes
a connection 1-form for the action of Tω,x ≃ Tω, also called the prequantum
1-form.

Note 1. When X is a manifold and Pω = a Z for some a > 0, Tω ≃R/a Z≃ S1, and
the prequantum bundles built here are manifolds and are isomorphic to the
principal S1-bundle of the classical prequantization construction [Sou70].

This construction, while restricted here to simply connected diffeological spaces,
generalizes the classical construction in two directions: 1) It applies to any
(simply connected) diffeological space, finite or infinite dimensional, with or

8Also called precomposition and postcomposition.
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without singularities. And 2) It extends the construction of a principal bundle to
a groupoid, as the quotient of the space of paths, which includes, in particular,
a natural source/target symmetry that has been broken in the prequantum
bundle.

Note 2. A critical philosophical distinction of this construction lies in the emer-
gent nature of the isotropy group Tω,x ≃ Tω, and this is probably the most
remarkable aspect of this construct. Unlike classical geometric quantization,
where the introduction of a U(1)-bundle (the "circle") often serves as a necessary
mathematical device to overcome the "no-go theorem" (by ensuring the identity
operator corresponds to multiplication by one), here the circle (or torus of peri-
ods) arises naturally as an intrinsic component of the path-space quotient itself,
as the quotient of the space of loops. This suggests that the "quantum phase" is
not a property added for technical consistency, but an inherent characteristic
revealed through the reduction of paths. Precisely, the group of periods is a
homomorphic representation of the π1 of the space of loops.

Note 3. Let us anticipate a remark that is bound to come up when applying
this construction to singular spaces. In the simply connected case, the space of
loops is connected and its homotopy groups are conjugate. Consequently, there
is no intrinsic reason within this framework for the quantum phase (isotropy),
which is a quotient of the space of loops, to degenerate or vary across the dy-
namical parasymplectic simply connected space,9 even at singular points. Its
nature is fixed by the periods ofω, consistent throughout the space. If quan-
tum phenomena are related to such singularities, it would rather be through
the representations of the group of automorphisms (which reveal the singular
structure via the Klein stratification) than through the local isotropy itself.

Note 4. Our construction of prequantum groupoid also generalizes the prequan-
tum bundles for manifolds with any group of periods, as presented in [PIZ95],
and suggests a classification in the general case of a non-simply connected dif-
feological space X by Ext(π1(X)ab, Pω), as is done for manifolds. We will further
explore the benefits of this approach.

III. PROOF OF THE MAIN THEOREM

In this section, we will prove the theorem stated in Section II. The proof will be
developed step-by-step, with each element established in successive articles.
For technical convenience, the paths we consider are assumed to be stationary,

9On a non-simply connected space, the homotopy of the space of loops is more complex but it

seems that this is the aggregation of the groups of periods of Kωon all the connected components

Loopsi (Loops(X)) that will come into play for Pω. So, that will not change the situation: osn a

dynamical system the quantum phase is constant on connected components.
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allowing their concatenation to be a smooth path. This is a technical simplifica-
tion without affecting the result, as the space of stationary paths is a deformation
retract of the space of all smooth paths.

9. Integration of Closed 1-forms.

Let X be any connected diffeological space and α be a closed 1-form:

α ∈Ω1(X) and dα= 0.

We define the group of periods of α by:

Pα =

�∫

ℓ

α | ℓ ∈ Loops(X)

�

.

The group of periods is a subgroup of R. We say that α is discrete if Pα is a strict
subgroup of R, which is equivalent to Pα ̸= R. Then, in this case, the torus of
periods

Tα =R/Pα

is a 1-dimensional diffeological group. The proposition [PIZ13, §8.28] asserts
that:

Proposition. Let X be a connected diffeological space and α be a discrete closed
1-form. Then, there exists a smooth map f : X→ Tα, unique up to a constant,
such that

α= f ∗(θ),

where θ ∈Ω1(Tα) is the canonical 1-form, projection of dt ∈Ω1(R) by the projec-
tion πα : R→ Tα. That is, defined uniquely by π∗α(θ) = dt .

We call this function the integration function of α.

In the following, this construction will be applied to the subspace Loops(X)⊂
Paths(X) and the restriction of the 1-form Kω ↾ Loops(X).

10. Integrating concatenations over homotopies.

Let X be a connected diffeological space, and letω be a closed 2-form on X. All
paths in the following are assumed to be stationary. Let γ0 and γ′0 be two paths
such that γ0(1) = γ′0(0). Then let

σ : s 7→ γs , σ′ : s 7→ γ′s , and σ ∗σ′ : s 7→ γs ∨γ′s ,

where σ is a homotopy from γ0 to γ1 and σ′ a homotopy from γ′0 to γ′1, such
that γs (1) = γ′s (0) for all s . The homotopy σ ∗σ′ is the resulting homotopy from
γ0 ∨γ′0 to γ1 ∨γ′1. Now, let K be the chain-homotopy operator, then:

Kω(σ ∗σ′) =Kω(σ) +Kω(σ′), and

∫

σ∗σ′
Kω=
∫

σ

Kω+
∫

σ′
Kω .
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Proof. By definition,
∫

σ∗σ′Kω=
∫ 1

0
Kω(σ∗σ′)t (1) d t . Let us show the additivity

Kω(σ ∗σ′)t (1) =Kω(σ)t (1) +Kω(σ′)t (1),

which will give, by integration, the identity we are looking for. From the defini-
tion of the chain-homotopy operator [PIZ13, §6.83], we have

Kω(σ ∗σ′)t (1) =
∫ 1

0

ω

��

s
t

�

7→ (σ ∗σ′)(t )(s )
�

(st )

�

1
0

��

0
1

�

d s

=

∫ 1

0

ω

��

s
t

�

7→ [γt ∨γ′t ](s )
�

(st )

�

1
0

��

0
1

�

d s

=

∫ 1/2

0

ω

��

s
t

�

7→ γt (2s )

�

(st )

�

1
0

��

0
1

�

d s

+

∫ 1

1/2

ω

��

s
t

�

7→ γ′t (2s −1)

�

(st )

�

1
0

��

0
1

�

d s ,

and after a change of parameters s ′ = 2s and s ′′ = 2s −1, we get

Kω(σ ∗σ′)t (1) =
∫ 1

0

ω

��

s ′

t

�

7→ γt (s
′)

�

(s ′t )

�

1
0

��

0
1

�

d s ′

+

∫ 1

0

ω

��

s ′′

t

�

7→ γ′t (s
′′)

�

(s ′′t )

�

1
0

��

0
1

�

d s ′′

= Kω(σ)t (1) +Kω(σ′)t (1).

This is the first identity and we get the second by integration on both sides. □

11. The Cocycleφφφ.

We consider the tautological pullback of ends : Paths(X)→ X×X, that is, the
space of pairs of paths in X with common endpoints:

ends∗(Paths(X)) = {(γ,γ′) ∈ Paths(X)2 | ends(γ) = ends(γ′)},

equipped with the subset diffeology of the product diffeology.

(1) The map Φ : ends∗(Paths(X))→ Loops(X), defined by

Φ(γ,γ′) = γ∨ γ̄′,

is a smooth homotopy equivalence. Then, since, by hypothesis, π1(X) =
{0}, the space Loops(X) is connected and also the space ends∗(Paths(X)).

(2) The pullback of Kω by Φ satisfies

Φ∗(Kω) = pr∗1(Kω)−pr∗2(Kω).
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γs(1) = γ’s(0)

s

s’

γs(0)

γ’s(1)

γ
γ’

FIGURE 3. Integrating concatenations over homotopies.

It is also denoted by Kω⊖Kω. This is a closed 1-form with the same
periods as Kω and an integration function given by

φ =Φ∗( f ) = f ◦Φ,

where f is the integration function of Kω ↾ Loops(X), that is,

φ∗(θ) =Φ∗(Kω) =Kω⊖Kω,

with θ the canonical 1-form on Tω, defined uniquely by π∗ω(θ) = dt ,
where πω is the canonical projection from R to Tω =R/Pω.

(3) The smooth map φ is a (Chasles) cocycle, it can be chosen as

φ(γ,γ′) =

∫ γ′

γ

Kωx ,x ′ mod Pω, (♥)

where Kωx ,x ′ = Kω ↾ Paths(X, x , x ′) and (x , x ′) = ends(γ) = ends(γ′).
The integral is computed along a path in this subspace of Paths(X). For
any pairs (γ,γ′) and (γ′,γ′′) of elements of ends∗(Paths(X), one has:

φ(γ,γ′) +φ(γ′,γ′′) =φ(γ,γ′′).

Proof. Let us recall that Paths(X) and Loops(X) are homotopy equivalent to
stationary paths and loops, see [PIZ13, §5.5]. Then, we work with stationary
paths and loops without recalling each time.
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Homotopy equivalence. Let us begin with proving that ends∗(Paths(X)) is ho-
motopy equivalent to Loops(X). We consider the subspace Loops1/2(X) of sta-
tionary loops that are stationary at t = 1/2, that is, constant on an open inter-
val ]1/2− ϵ, 1/2+ ϵ[. The proof of [PIZ13, Ex. 84] can be adapted to show that
Loops(X) and Loops1/2(X) are homotopy equivalent. Now, let

Φ : ends∗(Paths(X))→ Loops1/2(X), defined by Φ(γ,γ′) = γ∨ γ̄′,

where γ̄′ is the reverse path γ̄′(t ) = γ′(1− t ). Next, let

Φ̄ : Loops1/2(X)→ ends∗(Paths(X)), defined by Φ̄(ℓ) = (γ,γ′)

with
¨

γ(t ) = ℓ(t /2), if 0≤ t ≤ 1, γ(t ) = γ(0) if t ≤ 0 and γ(t ) = ℓ(1/2) if t ≥ 1.

γ′(t ) = ℓ(1− t /2), if 0≤ t ≤ 1, γ′(t ) = ℓ(1) if t ≤ 0 and γ′(t ) = ℓ(1/2) if t ≥ 1.

These two maps, Φ and Φ̄, are homotopic inverse to each other. Therefore,
ends∗(Paths(X)) is homotopy equivalent to Loops(X).

PullbackKωbyΦ. Now, sinceπ1(X, x ) =π0(Loops(X, x )) = {0}, andπ0(Loops(X))
is a quotient of π0(Loops(X, x )) [PIZ13, Ex. 87], it follows that Loops(X) is con-
nected and so is ends∗(Paths(X)). Moreover, the map Φ defined above satisfies
the identity

Φ∗(Kω) = pr∗1(Kω)−pr∗2(Kω).

Indeed, let (P, P′) be a plot of ends∗(Paths(X)). Then φ∗(Kω)(P, P′) = Kω( f ◦
(P, P′)) =Kω(P ∗ P̄′), where the operation ∗ has been defined in Article 10, and
P̄′(r )(t ) = P′(r )(1− t ). Then, Kω(P ∗ P̄′) =Kω(P) +Kω(P̄′) =Kω(P)−Kω(P′);
that is, Φ∗(Kω) = pr∗1(Kω)−pr∗2(Kω). Therefore, Kω⊖Kω is closed and has the
same periods as Kω ↾ Loops(X), as a consequence of the homotopic invariance
of the de Rham cohomology [PIZ13, §6.88].

Functionφφφ. Next, we assumed that the periods Pω of the 1-form Kω ↾ Loops(X)
are discrete.10 Then, since Loops(X) is connected, let f ∈C∞(Loops(X), Tω) be
an integration function (Art. 9),

f ∈C∞(Loops(X), Tω) and f ∗(θ) =Kω ↾ Loops(X),

with θ the standard 1-form on Tω. The function

φ = f ◦Φ ∈C∞(ends∗(Paths(X)), Tω)

is an integration function on ends∗(Paths(X)), i.e.:
�

pr∗1(Kω)−pr∗2(Kω)
�

=φ∗(θ).

10Recall that in diffeology, ‘discrete’ means equipped with the discrete diffeology. In particular,

any strict subgroup of R is discrete, even when it is dense.
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This function is explicitly given by

φ(γ,γ′) =

∫ γ

γ′
Kω ↾ Paths(X, x , x ′) mod Pω, (♦)

where the integral is computed along a pathσ in Paths(X, x , x ′), connecting γ′ to
γ, where (x , x ′) = ends(γ) = ends(γ′). Indeed, by choice ot integration function
φ = f ◦Φ, we have:

φ(γ,γ′) =

∫ γ∨γ̄′

x̂

Kω ↾ Loops(X, x ) mod Pω,

where the integral is computed along a path in Loops(X, x ), connecting x̂ to
γ∨ γ̄′. Now, let us consider the map

ν : Paths(X, x , x ′)→ Loops(X, x ), with ν(γ′) = γ∨ γ̄′.

Lemma. One has: ν∗(Kω) =−Kω.

Proof of Lemma. Remember that all paths are assumed to be stationary, then
the concatenation is a smooth map [PIZ13, §5.4], and so ν is smooth. Now,
since Kω and ν∗(Kω) are 1-forms, we can compare ν∗(Kω) and −Kω only on
1-plots [PIZ13, §6.37]. Let s 7→ γ′s be a path in Paths(X, x , x ′). Then, ν∗(Kω)(s 7→
γ′s ) =Kω(s 7→ γ∨ γ̄′s ). We have seen in Article 10 that Kω([s 7→ γs ]∨ [s 7→ γ̄′s ]) =
Kω(s 7→ γs )+Kω(s 7→ γ̄′s ). Apply this identity to the constant plot γs = γ. The
first term is then zero, and then: Kω(s 7→ γ∨ γ̄′s ) =Kω(s 7→ γ̄′s ) =−Kω(s 7→ γ

′
s ),

from the change of integration parameter t 7→ 1− t . Thus, ν∗(Kω)(s 7→ γ′s ) =
−Kω(s 7→ γ′s ); that is, ν∗(Kω) =−Kω. □
Now, we use the variance of integration forms on chain [PIZ13, §6.67], that
states, for σ : s 7→ γ′s , with ends(γ′s ) = ends(γ) for all s and γ′0 = γ.
∫

ν∗(σ)
Kω=
∫

σ

ν∗(Kω), which implies

∫

ν∗(σ)
Kω=−
∫

σ

Kω .

But
∫

ν∗(σ)
Kω =
∫

s 7→γ∨γ̄′s
Kω =
∫ γ∨γ̄′

γ∨γ̄
Kω =
∫ x̂

γ∨γ̄
Kω
︸ ︷︷ ︸

=0

+

∫ γ∨γ̄′

x̂

Kω,

and, on the other hand

−
∫

σ

Kω = −
∫

s 7→γ′s
Kω = −
∫ γ′

γ

Kω =
∫ γ

γ′
Kω .

Thus
∫ γ∨γ̄′

x̂

Kω =
∫ γ

γ′
Kω,

and this confirms the expression (♦) for φ above.
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Cocycleφφφ. The map φ defined by (♥) is clearly additive:

φ(γ,γ′) +φ(γ′,γ′′) =

∫ γ′

γ

Kωx ,x ′ mod Pω+

∫ γ′′

γ′
Kωx ,x ′ mod Pω

=

∫ γ′′

γ

Kωx ,x ′ mod Pω =φ(γ,γ′′)

for any triple of paths γ, γ′ and γ′′ such that ends(γ) = ends(γ′) = ends(γ′′) =
(x , x ′). This completes the proof regarding the cocycle φ. □

12. The Equivalence Relation γ∼ω γ′γ∼ω γ′γ∼ω γ′.
The Chasles cocycle φ defined in the previous article leads to the definition of
this equivalence relation: for any pair of paths γ and γ′ in X:

γ∼ω γ′ iff

¨

ends(γ) = ends(γ′),

φ(γ,γ′) = 0.

Let us make explicit the condition φ(γ,γ′) = 0: There exists a fixed-ends ho-
motopy from γ to γ′, inside Paths(X, x , x ′), with (x , x ′) = ends(γ) = ends(γ′),
and:

γ∼ω γ′ iff ends(γ) = ends(γ′) and

∫ γ′

γ

Kωx ,x ′ ∈ Pω.

Proof. The fact that φ is a Chasles cocycle fulfills the requirements for ∼ω to be
an equivalence relation. □

13. The Groupoid TωTωTω.

The groupoid Tω defined by

Obj(Tω) = X and Mor(Tω) = Paths(X)/∼ω,

also denoted byY , is a diffeological fibrating groupoid:

(1) The composition [γ]ω · [γ′]ω = [γ∨γ′]ω is well-defined and is associative.
(2) The inverse [γ]−1

ω = [γ̄]ω is well-defined.
(3) The identity 1x is [x̂ : t 7→ x ]ω, and the injection j : x 7→ 1x from X toY

is an induction.
(4) The projection ends : Mor(Tω)→ X×X, defined by ends([γ]ω) = ends(γ)

is a subduction.

Proof. Let us prove that the groupoid operations are well defined

Concatenation. Let γ0 and γ′0 be two stationary paths such that γ0(1) = γ′0(0).
Then, let γ1 and γ′1 be two other paths such that [γ0]ω = [γ1]ω and [γ′0]ω =
[γ′1]ω. Because X is simply connected, there exists a fixed-ends homotopy σ
connecting γ0 to γ1, and another one σ′ connecting γ′0 to γ′1, that is,

∫

σ
Kω ∈
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Pω and
∫

σ′
Kω ∈ Pω. Thanks to Article 10,

∫

σ∗σ′Kω =
∫

σ
Kω+
∫

σ′
Kω, then

∫

σ∗σ′Kω ∈ Pω, whereσ∗σ′ is a homotopy fromγ0∨γ′0 toγ1∨γ′1. Thus [γ0∨γ′0]ω =
[γ1 ∨γ′1]ω, and hence the composition [γ]ω · [γ′]ω is well defined onY .

Associativity, identities, and inverses. The associativity of the concatenation,
the fact that 1x = [x̂ ]ω and [γ]−1

ω = [γ̄]ω, where γ̄ is the reverse of γ, are all based
on the homotopies described in [PIZ13, §5.15 (Proof)], connecting (γ1 ∨γ2)∨γ3

toγ1∨(γ2∨γ3), γ to x̂∨γ andγ∨γ̄ to x̂ . The integral of Kωover these homotopies
vanishes. Indeed, let σ : t 7→ γt a path in Paths(X). The integrand of

Kω(σ)t (1) =
∫ 1

0

ω

��

s
t

�

7→ γt (s )

�

(st )

�

1
0

��

0
1

�

d s ,

itself vanishes, because the homotopy σ factorizes through a path (i.e., γt (s ) =
γ′(ϕ(t , s )) for some path γ′ and some real function ϕ), and the pullback of a
2-form on R vanishes.

Groupoid Tω. Thus, Tω is a groupoid. Then, since the concatenation is smooth,
as well as the inversion [PIZ13, §5.4 (2)], and since x 7→ [x̂ ]ω, where x̂ is the
constant path at x , is clearly an induction, Tω is a diffeological groupoid.

Tω fibrating. Since ends : Paths(X)→ X×X is a subduction [PIZ13, §5.6] and
classω : Paths(X)→Y is smooth, the factorization ends :Y → X×X is a subduc-
tion [PIZ13, §1.51]. Therefore, Tω is a fibrating groupoid [PIZ13, §8.4], and the
Yx are Tω,x -principal fiber bundles attached to the points x ∈ X loc. cit.. □

14. The Prequantum 111-Formλλλλλλλλλ and its Curvature.

By definition, the space of morphismsY of the groupoid Tω is the quotient of
Paths(X) by the equivalence relation ∼ω:

γ∼ω γ′ iff

¨

ends(γ) = ends(γ′),

φ(γ,γ′) = 0,

where φ : ends∗(Paths(X))→ Tω is the cocycle defined in Article 11. The condi-
tion φ(γ,γ′) = 0 is equivalent to

γ∼ω γ′ iff

∫ γ

γ′
Kωx ,x ′ ∈ Pω.

where (x , x ′) = ends(γ) = ends(γ′).

Theorem. There exists a unique differential 1-formλλλ on the space of morphisms
Y =Mor(Tω) such that class∗ω(λλλ) =Kω. We call λλλ the prequantum 1-form on
the groupoid Tω. Furthermore,λλλ is invariant under left and right composition
in Tω, and its curvature is given by dλλλ= 1̂∗ω− 0̂∗ω, where 1̂, 0̂ :Y → X are the
target and source maps.
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Proof. Existence and Uniqueness ofλλλ. We use the criterion for a differential
form on a space W to be the pullback of a differential form on a quotient space
Z = W/∼ via the projection p : W → Z. A differential form α ∈ Ωk (W) is the
pullback of a unique differential form β ∈ Ωk (Z) (i.e., α = p ∗(β)) if and only if
pr∗1(α)−pr∗2(α) vanishes on the total space of the tautological pullback p ∗(W) =
{(w1, w2) ∈W×W | p (w1) = p (w2)}, where pr1, pr2 : p ∗(W)→W are the projection
maps [PIZ13, §6.38 (Note 2)].

In our case, W = Paths(X), Z =Y , p = classω, and α=Kω ∈ Ω1(Paths(X)). The
total space of the tautological pullback is class∗ω(Paths(X)) = {(γ,γ′) ∈ Paths(X)2 |
classω(γ) = classω(γ′)}. By definition of ∼ω, classω(γ) = classω(γ′) if and only if
γ∼ω γ′, which means ends(γ) = ends(γ′)andφ(γ,γ′) = 0. Thus, class∗ω(Paths(X)) =
{(γ,γ′) ∈ ends∗(Paths(X)) |φ(γ,γ′) = 0}.
We need to check if pr∗1(Kω)−pr∗2(Kω) vanishes on this subspace. From Article
11, we know that pr∗1(Kω)−pr∗2(Kω) =φ

∗(θ) on ends∗(Paths(X)), where θ is the
canonical 1-form on Tω. Thus:

(pr∗1(Kω)−pr∗2(Kω)) ↾ class∗ω(Paths(X)) = (φ∗(θ)) ↾φ−1(0).

Since θ is a differential form on Tω, its pullback φ∗(θ) restricted to the inverse
image of a point, that is, (φ∗(θ)) ↾ φ−1(0), is zero because differential forms
vanish on constant plots [PIZ13, Ex. 96]. Indeed, let P be a plot in φ−1(0), that
is φ ◦ P = 0. Then, φ∗(θ)(P) = θ(φ ◦ P), but φ ◦ P(r ) = 0, thus φ∗(θ)(P) = 0 for
all P in φ−1(0). The criterion is satisfied, which guarantees the existence and
uniqueness of a differential 1-formλλλ ∈Ω1(Y ) such that class∗ω(λλλ) =Kω.

Invariance of λλλ. We need to show that for any y0 ∈ Y , the pullback of λλλ by
left and right composition with y0 is related to λλλ. Let y0 = [γ0]ω ∈ Y . The left
composition map L(y0) :Ytrg(y0),∗→Ysrc(y0),∗ is given by L(y0)(y ) = y0 ·y . Similarly,
the right composition map R(y0) :Y∗,src(y0)→Y∗,trg(y0) is given by R(y0)(y ) = y · y0.

The invariance of Kω under pre-concatenation and post-concatenation in
Paths(X) is a known property [PIZ13, §6.85]. For any path γ0 ∈ Paths(X), the
map L(γ0) : Paths(X)trg(γ0),∗→ Paths(X)src(γ0),∗ given by L(γ0)(γ) = γ0 ∨γ satisfies
L(γ0)∗(Kω) =Kω. Similarly, R(γ0)∗(Kω) =Kω.

The composition maps inY are defined by factorization of path concatenation:
L([γ0]ω)([γ]ω) = [γ0∨γ]ω = classω(L(γ0)(γ)). This gives the commutative diagram:

Paths(X)trg(γ0),∗ Paths(X)src(γ0),∗

Ytrg(y0),∗ Ysrc(y0),∗

classω

L(γ0)

classω

L(y0)

Taking the pullback by L(y0) and using class∗ω(λλλ) =Kω:
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L(y0)
∗(λλλ) = L(y0)

∗(class∗ω)
−1(Kω) = (classω ◦L(γ0))

∗(λλλ)

= L(γ0)
∗(class∗ω(λλλ)) = L(γ0)

∗(Kω).

By the invariance of Kω under L(γ0), L(γ0)∗(Kω) =Kω. Thus, L(y0)∗(λλλ) =Kω.
Since class∗ω(λλλ) =Kω, we have L(y0)∗(λλλ) = class∗ω(λλλ). Restricting to the domain
Ysrc(y0),∗ and using the fact that classω is a subduction from Paths(X)src(γ0),∗ to
Ysrc(y0),∗, we can push the equality down toY :

L(y0)
∗(λλλ) ↾Ysrc(y0),∗ =λλλ ↾Ytrg(y0),∗.

This shows left invariance. The proof for right invariance is analogous, using
the postcomposition map R.

Curvature Formula. With obvious notations: endsY ◦classω = endsPaths. Then,
Then, taking the pullback of pr∗2(ω)−pr∗1(ω) by both sides of this equality, we
get class∗ω(ends∗Y (pr∗2(ω) − pr∗1(ω))) = ends∗Paths(pr∗2(ω) − pr∗1(ω)) = 1̂∗paths(ω) −
0̂∗paths(ω) = d[Kω] = d[class∗ω(λλλ)] = class∗ω(dλλλ). Since classω is a subduction,

we get dλλλ= ends∗Y (pr∗2ω)−ends∗Y (pr∗1ω) = (pr2 ◦endsY )∗ω− (pr1 ◦endsY )∗ω=
1̂∗Yω− 0̂∗Yω. which can also be written as dλλλ+ends∗Y (ω⊖ω) = 0. □

15. The Isotropy Tω,xTω,xTω,x .

By construction of the groupoid Tω, the isotropy at a point x ∈ X is the subspace

Tω,x :=MorTω (x , x ) =
�

[ℓ]ω | ℓ ∈ Loops(X, x )
	

.

Two loops ℓ and ℓ′ based at x are equivalent if and only if φ(ℓ,ℓ′) = 0. Define

F : Loops(X, x )→ Tω by F(ℓ) =πω

�

∫ ℓ

x̂

Kω

�

,

with x̂ the constant loop [t 7→ x ].

Theorem. Two loops ℓ,ℓ′ ∈ Loops(X, x ) are equivalent if and only if F(ℓ) = F(ℓ′),
and the map F is a subduction. The projection F : Tω,x → Tω, defined by F([ℓ]ω) =
F(ℓ) is an isomorphism of diffeological groups.

Loops(X, x )

Tω,x = Loops(X, x )/∼ω Tω

Fclassω

F

Proof. The notation Tω,x refers to the isotropy group of the groupoid Tω at the
point x ∈ X. That is, by definition:

Tω,x = {[ℓ]ω | ℓ ∈ Loops(X, x )}.
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Thus,

Tω,x = Loops(X, x )/∼ω, with ℓ∼ω ℓ′ iff

∫ ℓ′

ℓ

Kωx ,x ∈ Pω.

Since π1(X) = {0}, ℓ and ℓ′ are homotopic to the constant path x̂ : t 7→ x . More-
over, by definition of Pω,

∫ ℓ

x̂

Kωx ,x +

∫ ℓ′

ℓ

Kωx ,x +

∫ x̂

ℓ′
Kωx ,x ∈ Pω,

since this sum of integrals corresponds to the integral of Kωx ,x on a loop in
Loops(X). Hence

∫ ℓ′

ℓ

Kωx ,x ∈ Pω ⇔
∫ ℓ′

x̂

Kωx ,x −
∫ ℓ

x̂

Kωx ,x ∈ Pω

⇔ πω

�

∫ ℓ′

x̂

Kωx ,x

�

=πω

�

∫ ℓ

x̂

Kωx ,x

�

.

Remember that πω : R→ Tω =R/Pω. Hence

ℓ∼ω ℓ′ ⇔ F(ℓ) = F(ℓ′) with F(ℓ) =πω

�

∫ ℓ

x̂

Kωx ,x

�

.

Hence, set theoretically, F : Loops(X, x )→ Tω identifies val(F)with Tω,x :

Tω,x ≡ val(F).

Lemma. The subset val(F) is a subgroup of Tω. It can only be {0} or Tω, but if
ω ̸= 0, then val(F) = Tω.

Proof of Lemma. Let Paths(Loops(X, x ), x̂ ,∗)be the subspace of Paths(Loops(X))
of homotopies connecting the constant loop x̂ to any loop ℓ ∈ Loops(X, x ).
Define

F : Paths(Loops(X, x ), x̂ ,∗)→R, by F(σ) =

∫

σ

Kω,

where σ : s 7→ ℓs is a path in Loops(X, x ) connecting x̂ to some loop ℓ. Explicitly,

F(σ) =

∫ 1

0

Kω(σ)s (1)ds =

∫ 1

0

ds

∫ 1

0

ω

��

t
s

�

7→ ℓs (t )

�

(ts)

�

1
0

��

0
1

�

d t

Letσ andσ′ be two elements of Paths(Loops(X, x ), x ,∗), connecting x̂ to ℓ and x̂
to ℓ′. Let σ̄ : s 7→ ℓ̄s = [t 7→ ℓs (1−t )], hence σ̄ is a path in Loops(X, x ) connecting x̂
to the reverse ℓ̄. By a change of variable t 7→ 1− t in the expression of F(σ) above
we have Kω(σ̄) =−Kω(σ). Also, since for all s we haveσ(s )(1) =σ′(s )(0) = x , we
can consider the concatenation of homotopiesσ∗σ′. Then, thanks to Article 10,
and to the property of σ̄, we have:

F(σ ∗σ′) = F(σ) +F(σ′) and F(σ̄) =−F(σ). (∗)
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Thus, if t = F(σ) and t ′ = F(σ′), then t + t ′ = F(σ ∗σ′) ∈ val(F), and −t = F(σ̄) ∈
val(F). Therefore, val(F) is a subgroup of R. But, val(F) is connected because the
space of paths in Loops(X) based at x̂ , i.e., Paths(Loops(X, x ), x̂ ,∗), is connected
(actually contractible) and F is smooth. Thus, either val(F) = {0} or val(F) =R.
Since val(F) =πω(val(F)), then val(F) = {0} or val(F) = Tω. □
Let us examine the two different cases.

The zero case. If val(F) = {0}, then the isotropy Tω,x is reduced to the identity
{1x }, and Y = X×X. Thus, dλλλ = 1̂∗(ω)− 0̂∗(ω). Restricted to Yx = {x } ×X we
getω= dλ, and λ=λλλ ↾ {x }×X, that is, a 1-form on X. But returning to Kω, we
have Kω=K(dλ) = 1̂∗(λ)− 0̂∗(λ)−d (Kλ), then Kω ↾ Loops(X, x ) = d (Kλ) and
the condition F= 0 writes, for all ℓ ∈ Loops(X, x ),

∫ ℓ

x

Kω=
∫ ℓ

x

d Kλ=Kλ(ℓ) =
∫

ℓ

λ= 0.

Indeed, by definition of the chain-homotopy operator K, for a 1-form λ, Kλ is
the function from Paths(X) to R:

Kλ(γ) =
∫ 1

0

λ(γ)t (1)d t =

∫

γ

λ.

Therefore, λ is a 1-form vanishing on every loop, thus λ is closed andω= 0; see
[PIZ13, Ex. 118], a case we excluded.

The full case. If val(F) = Tω. Then,ω ̸= 0 and F : Loops(X, x )→ Tω is a subduction
projecting to a smooth isomorphism F : Tω,x → Tω.

This is what we will prove now. The map F is already a smooth surjection, let us
check that F is a subduction, which will imply that F itself is a subduction, and
therefore that its projection F : Tω,x → Tω is a smooth isomorphism.

Let us choose a path

σ ∈ Paths(Loops(X, x ), x̂ ,∗) such that F(σ) ̸= 0.

Such path exists since F : Paths(Loops(X, x ), x̂ ,∗)→R is surjective. Let

σs (t ) =σ(s t ) and ϕ(s ) = F(σs ).

So, ϕ is a smooth parametrization such that

ϕ(0) = 0 and ϕ(1) = F(σ) ̸= 0,

since ϕ(0) = F(σ0) and σ0 = [t 7→σ(0) = x̂ ]. Thus, there exists

s0 ∈ ]0, 1[ such that ϕ′(s0) ̸= 0,

where ϕ′ denotes the derivative of ϕ. Otherwise ϕ would be constant and then
equal to 0. Let

S(s ) = σ̄s0
∗σs+s0

, where σ̄s0
(t ) = [t ′ 7→σs0

(t )(1− t ′)].
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Define

ψ= F ◦S : R
S−→ Paths(Loops(X, x ), x̂ ,∗) F−→R.

By Article 10, we have:

F(σ̄s0
∗σs+s0

) = F(σs+s0
)−F(σs0

),

and then

ψ(s ) = F(S(s )) = F(σ̄s0
∗σs+s0

) = F(σs+s0
)−F(σs0

) =ϕ(s + s0)−ϕ(s0).

Thus,

ψ(0) = 0 and ψ′(0) =ϕ′(s0) ̸= 0.

Therefore, by the implicit function theorem on R, there exists ϵ > 0 such that
ψ ↾ ]−ϵ,+ϵ[ is a local diffeomorphism mapping ]−ϵ,+ϵ[ to some open interval
]−a ,+b [with a , b > 0 andψ−1(0) = 0. Hence,

ψ ↾ ]−ϵ,+ϵ[ = F ◦S ↾ ]−ϵ,+ϵ[ implies ψ ◦ψ−1 = 1]−ϵ,+ϵ[ = F ◦ (S ◦ψ−1).

Therefore,

F ◦ (S ◦ψ−1) = 1]−ϵ,+ϵ[.

Let us define:

Σ=S ◦ψ−1,

Hence,
¨

Σ : ]−a ,+b [→ Paths(Loops(X, x ), x̂ ,∗),
with Σ(0) =S(0) = σ̄s0

∨σs0
.

is a local smooth section of F : Paths(Loops(X, x ), x̂ ,∗)→R.

F ◦Σ= 1]−ϵ,+ϵ[,

defined on an open interval around 0 ∈R and mapping 0 to S(0) = σ̄s0
∗σs0

, and
for any plot P in R mapping r0 to 0, Q =Σ ◦P is a lift in Paths(Loops(X, x ), x̂ ,∗):

Paths(Loops(X, x ), x̂ ,∗)

]−ϵ,+ϵ[⊂R

FΣ=S ◦ψ−1 implies

Paths(Loops(X, x ), x̂ ,∗)

U ]−ϵ,+ϵ[⊂R

F

P

Q
Σ

Now, thanks to the additivity of function F, we can translate this local section
everywhere on R. Let t0 ∈ R, and recall that F is surjective. Thus, there exists
σ′ ∈ Paths(Loops(X, x ), x̂ ,∗) such that F(σ′) = t0. Let us then consider

S′(s ) =σ′ ∗S(s ),

and let,

Ψ(s ) = F(S′(s )), that is, F(σ′ ∗S(s )) = F(σ′) +F(S(s )) = t0+ψ(s ).
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So,

Ψ(0) = t0 and Ψ′(0) =ψ′(0) ̸= 0.

Thus, Ψ is a local diffeomorphism of R mapping 0 to t0, its inverse Ψ−1 maps t0

to 0. We define then:

Σ′ =S′ ◦Ψ−1

Then, Σ′ is a local smooth section of F over the interval ]t0− ϵ, t0+ ϵ[,

F ◦Σ′ = 1]t0−ϵ,t0+ϵ[, such that Σ′(t0) =σ
′ ∗S(0) =σ′ ∗ (σ̄s0

∨σs0
).

Hence, we can lift locally F around every point t0 ∈R. Therefore F is a subduction.
Then, by projection, F=πω◦F is itself a subduction, and the mapd F : Tω,x → Tω,
which is injective by construction, is a diffeomorphism and therefore a smooth
isomorphism from Tω,x to Tω. In conclusion, Tω is a fibrating groupoid with
isotropy Tω. □

IV. SYMMETRIES OF THE PREQUANTUM STRUCTURE

In this section, we investigate the symmetries of the prequantum groupoid
(Tω,λλλ) constructed in the Main Theorem. We show that the group of automor-
phisms of this prequantum structure is naturally isomorphic to the group of
ω-preserving diffeomorphisms of the base space X, demonstrating a faithful
representation of the classical symmetries at the prequantum level.

16. Automorphisms Induced by Symmetries.

This article discusses the action of symmetries. The group of diffeomorphisms of
X that preserve the closed 2-formω, denoted by Diff(X,ω), plays a crucial role in
the symmetry analysis of the system (X,ω). In this framework, these symmetries
lift naturally to automorphisms of the prequantum groupoid (Tω,λλλ). Let us
denote

Aut(Tω,λλλ) = {(Φ,φ) ∈Aut(Tω) |Φ∗(λλλ) =λλλ}.
On the other hand, the group of automorphisms of (X,ω) is denoted by

Diff(X,ω) = {φ ∈Diff(X) |φ∗(ω) =ω}.

Note first that:

Proposition 1. If (Φ,φ) ∈Aut(Tω,λλλ) then φ ∈Diff(X,ω).

And then, the construction of automorphisms of the prequantum groupoid:

Proposition 2.. Let Tω be the associated prequantum groupoid and λλλ its pre-
quantum 1-form, associated with the system (X,ω), where X is connected and
simply connected.

For any φ ∈Diff(X,ω), that is, φ ∈Diff(X) and φ∗(ω) =ω, define the map

Φ :Y →Y with Φ([γ]ω) = [φ ◦γ]ω.
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Then, this automorphism preserves the prequantum 1-formλλλ, Φ∗λλλ=λλλ, and

(Φ,φ) ∈Aut(Tω,λλλ).

Note that this proposition shows that the map (Φ,φ) 7→ φ from Aut(Tω,λλλ) to
Diff(X,ω) is surjective.

Proof. We first show that Φ is well-defined. Suppose γ∼ω γ′. By definition, let
(x , x ′) = ends(γ) = ends(γ′). Then, for any fixed-ends homotopy σ : s 7→ γs in
ends−1(x , x ′), from γ= γ0 to γ′ = γ1,

∫

σ

Kω ∈ Pω.

Consider the pathφ ◦σ : R→ Paths(X) defined by s 7→φ ◦γs . This is a fixed-ends
homotopy from φ ◦γ to φ ◦γ′, with φ ◦γs (0) =φ(x ) and φ ◦γs (1) =φ(x ′). That
is, φ ◦σ is a path in ends−1(φ(x ),φ(x ′)). Therefore,

∫

φ◦σ
Kω=
∫

σ

φ∗(Kω) =
∫

σ

Kω ∈ Pω,

thanks to the variance of the chain-homotopy operator [PIZ13, §6.84]. Thus, Φ
is well-defined.

Next, Φ is a smooth map fromY toY . Indeed, the map Ψ : Paths(X)→ Paths(X)
defined by Ψ(γ) = φ ◦ γ is smooth, as it is the composition operator in the
functional diffeology. Since classω : Paths(X) → Y is a subduction and Φ ◦
classω = classω ◦Ψ, Φ is smooth because Ψ is smooth.

The map Φ is bijective because φ is a diffeomorphism. Its inverse is given by
Φ−1([γ′]ω) = [φ−1 ◦γ′]ω.

Finally, we verify the functor properties:

(a) Preservation of Source and Target: For [γ]ω ∈Y ,

ends ◦Φ([γ]ω) = ends([φ ◦γ]ω) = ends(φ ◦γ)
= (φ(γ(0)),φ(γ(1))) = (φ×φ)(ends[γ]ω).

(b) Preservation of Composition: For composable [γ]ω, [γ′]ω ∈Y ,

Φ([γ]ω · [γ′]ω) =Φ([γ∨γ′]ω) = [φ ◦ (γ∨γ′)]ω
= [(φ ◦γ)∨ (φ ◦γ′)]ω = [φ ◦γ]ω · [φ ◦γ′]ω =Φ([γ]ω) ·Φ([γ′]ω).

(c) Preservation of Identity: For x ∈ X, with x̂ = [t 7→ x ],

Φ(1x ) =Φ([x̂ ]ω) = [φ ◦ x̂ ]ω = [Õφ(x )]ω = 1φ(x ).

Since (φ,Φ) is a groupoid morphism and both φ and Φ are diffeomorphisms,
(φ,Φ) is a diffeological groupoid automorphism of Tω. This proves part (1).
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For part (2), we show that Φ∗λλλ = λλλ. Let φ∗ : Paths(X) → Paths(X) defined by
φ∗(γ) =φ ◦γ. The map Φ is defined by the commutative diagram:

Paths(X) Paths(X)

Y Y

classω

φ∗

classω

Φ

Then, (Φ ◦ classω)∗(λλλ) = (classω ◦φ∗)∗(λλλ). That is, class∗ω(Φ
∗(λλλ)) = (φ∗)∗(class∗ω(λλλ)).

Thus, class∗ω(Φ
∗(λλλ)) = (φ∗)∗(Kω). But, since φ∗(ω) =ω, thanks to the variance

of the chain-homotopy operator K, see [PIZ13, §6.84], (φ∗)∗(Kω) =Kω, hence:
class∗ω(Φ

∗(λλλ)) =Kω = classω(λλλ). Thus, since classω is a subduction, thanks to
[PIZ13, §6.39], Φ∗(λλλ) =λλλ. □

17. The Automorphism Group of (Tω,λ)(Tω,λ)(Tω,λ).

In this article, we discuss the automorphism group of the structure (Tω,λλλ) and
show that its group of automorphisms is isomorphic to the group of symmetries
of the structure (X,ω), i.e., Diff(X,ω).

The group of automorphisms of the groupoid Tω preserving the prequantum
1-formλλλ is denoted by Aut(Tω,λλλ). An element (Φ,φ) ∈Aut(Tω,λλλ) is an element
(Φ,φ) ∈Aut(Tω) such that Φ∗(λλλ) =λλλ. That is:

(1) Φ ∈Diff(Y ), withY =Mor(Tω).
(2) There exists φ ∈Diff(X) such that: ends◦Φ= (φ×φ) ◦ends,

Y Y

X×X X×X

ends

Φ

ends

φ×φ

with
(φ×φ)(x , x ′) = (φ(x ),φ(x ′)).

(3) Φ(y · y ′) =Φ(y ) ·Φ(y ′), for all juxtaposable pairs.
(4) Φ∗(λλλ) =λλλ.

Proposition. Let (Φ,φ) be a pair in Aut(Tω). If Φ∗(λλλ) =λλλ, then φ ∈Diff(X,ω).

We finally establish the most important result on the group of automorphisms
of the prequantum groupoid:

Theorem. The projection (Φ,φ) 7→φ from the group of automorphisms of the
prequantum groupoid Aut(Tω,λλλ) to the group of symmetries of the parasymplectic
formω on X, Diff(X,ω), is an isomorphism of diffeological groups:

Aut(Tω,λλλ)≃Diff(X,ω).

Note. This theorem reveals a particularly interesting situation: the group of
ω-preserving diffeomorphisms of the base space (X,ω) has a full and faithful
representation as automorphisms of the prequantum groupoid (Tω,λλλ). This is



GEOMETRIC QUANTIZATION BY PATHS 27

a significant feature, as it implies that every symmetry of the classical system
(X,ω) lifts to a unique automorphism of the prequantum structure, and the
entire group Diff(X,ω) is represented at the prequantum level without any loss
of information or the need for a central extension. The prequantum property
of the system (X,ω) is captured in the isotropy groups Tω,x of the groupoid Tω.
This is achieved without abandoning any symmetries of the structure.

Proof. Let us begin by proving the first assertion. Let us apply ends◦Φ = (φ ×
φ) ◦ends to the pullback ofω⊖ω :

(ends◦Φ)∗(ω⊖ω) = ((φ×φ) ◦ends)∗(ω⊖ω)
Φ∗(ends∗(ω⊖ω)) = ends∗((φ×φ)∗(ω⊖ω))

Φ∗(dλλλ) = ends∗(φ∗(ω)⊖φ∗(ω))
d[Φ∗λλλ] = ends∗(φ∗(ω)⊖φ∗(ω))

dλλλ= ends∗(φ∗(ω)⊖φ∗(ω))
ends∗(ω⊖ω) = ends∗(φ∗(ω)⊖φ∗(ω))

Since ends is a subduction, this impliesφ∗(ω)⊖φ∗(ω) =ω⊖ω, see [PIZ13, §6.39].
Now apply that to a plot P×Const, where Const is any constant plot. Then we
get φ∗(ω)(P) =ω(P) for all plots in X, i.e., φ∗(ω) =ω.

Now, let us consider the projection pr2(Φ,φ) 7→φ from Aut(Tω,λλλ) to Diff(X,ω).
We know already by Article 16 that this is a surjection. Let us consider the kernel
ker(pr2) of this projection, that is the subgroup of (Φ, 1X) ∈ Aut(Tω,λλλ). Since Φ
projects onto the identity of X, one has:

ends◦ Φ= ends .

That is, for all y ∈ Y , ends(Φ(y )) = ends(y ). Thus, Φ(y ) is composable with
y −1, and τ(y ) = Φ(y ) · y −1 belongs to the isotropy group Tω,x , with x = src(y ).
By construction, the map τ is smooth. Therefore the map Φ ∈ ker(pr2) writes
Φ(y ) =τ(y ) · y , and satisfies Φ∗(λλλ) =λλλ.

Now choose x ∈ X, and let 1̂x : Yx → X, where Yx =MorTω (x ,∗) and 1̂x = 1̂. Let
λx = λλλ ↾ Yx . The projection 1̂x is a principal fibration with group Tx = Tω,x ,
and the 1-form λx is actually a diffeological connection form satisfying the
conditions [PIZ13, §8.37]:

∗ The form is invariant by Tx , τ∗(λx ) =λx , for all τ ∈ Tx .
∗ The form is calibrated: ŷ ∗(λx ) = θ, where ŷ :τ 7→τ(y ) is the orbit map,

and θ is the canonical 1-form on Tx ≃R/Pω.

Now, the restriction Φx of Φ on Yx writes the same way, that is, Φx (y ) =τ(y ) · y .

Lemma. The automorphism Φx : y 7→τ(y ) · y preserves λx , i.e., Φ∗x (λx ) =λx , if
and only if τ(y ) =τx is constant on Yx .
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Proof of the lemma. Let us compute Φ∗x (λx ) on a plot r 7→ yr . That is,

Φ∗x (λx )(r 7→ yr )r (δr ) =λx (r 7→τ(yr ) · yr )r (δr ),

for all r in the domain of the plot and δr a tangent vector at the point r . For that,
we will separate the variables: for any integers n and m , any n-plot τττ : U→ Tx

and any m-plot P : V→ Yx , let τττ ·P be the plot of Yx defined by

τττ ·P : U×V→ Yx , with τττ ·P : (r, s ) 7→τττ(r ) ·P(s ).

Let (r, s ) ∈U×V and two vectors δr ∈Rn and δs ∈Rm . The value of λx on τττ ·P
is given by

λx (τττ ·P)(rs)

�

δr
δs

�

=τττ∗(θ)r (δr ) +λx (P)s (δs ).

Indeed, let us develop the 1-form λx (τττ ·P) defined on U×V,

λx (τττ ·P)(rs)

�

δr
δs

�

= λx [(r, s ) 7→ (τττ(r ), P(s )) 7→τ(r ) ·P(s )](rs)

�

δr
δs

�

= [λU,s
x (r ) λV,r

x (s )]

�

δr
δs

�

,

because every 1-form on U×V at a point (r, s ) ∈U×V writes [λU,s
x (r ) λ

V,r
x (s )],

whereλU,s
x is a 1-form on U depending on s , andλV,r

x is a 1-form on V depending
on r . Let us use indifferently τr =τττ(r ), and ys = P(s ). We have

λx (τττ ·P)(rs)

�

δr
δs

�

= λU,s
x (r )(δr ) +λV,r

x (s )(δs )

= λx [r 7→τττ(r ) · ys ]r (δr ) +λx [s 7→τr ·P(s )]s (δs )

= λx ( ŷs ◦τττ)r (δr ) +τ∗r (λ)(P)s (δs )

= τττ∗[ ŷ ∗s (λ)]r (δr ) +λ(P)s (δs )

= τττ∗(θ)r (δr ) +λ(P)s (δs ).

Therefore,

Φ∗x (λx )(r 7→ yr )r (δr ) =τττ∗(θ)r (δr ) +λ(r 7→ yr )r (δr ),

where τττ(r ) =τ(yr ). Now, having Φ∗x (λx ) =λx means that Φ∗x (λx )(r 7→ yr )r (δr ) =
λx (r 7→ yr )r (δr ), for all plots r 7→ yr . That is, τττ∗(θ)r (δr ) = 0 for all plots r 7→ yr .
Locally, the plot r 7→τττ(r ) =τ(yr ) lifts to R into a plot r 7→ t (yr ), such that τ(yr ) =
class(t (yr )), where class : R → Tx = R/Pω. Then, τττ∗(θ)r = [r 7→ t (yr )]∗(dt ) =
d[r 7→ (t (yr ))]. And this must be zero. Thus r 7→ t (yr ) is locally constant, and so
is r 7→τ(yr ), for all plots r 7→ yr . Hence, y 7→τ(y ) is locally constant, and since
Yx is connected, y 7→τ(y ) is constant, equal to some τx . □
Now, the morphismΦwritesΦ(y ) =τx ·y , with x = src(y ). Applying the groupoid
morphism rule Φ(y · y ′) =Φ(y ) ·Φ(y ′), we get, with x = src(y ) and x ′ = trg(y ) =
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src(y ′),

τx · y · y ′ =τx · y ·τx ′ · y ′ ⇒ τx ′ = 1x ′ .

Therefore, for all y and x = src(y ), Φ(y ) = y . The only automorphism of the
structure (Tω,λλλ) projecting onto the identity of X is the identity ofY , and thus
the projection pr2 : Aut(Tω,λλλ)→Diff(X,ω) is an isomorphism. □

V. REMARKS AND APPLICATIONS

This section discusses the significance and implications of the main theorem,
structured into several articles.

18. On the System: The Prequantum Groupoid as the Central Object.

The construction presented in this paper introduces a shift in the geometric
quantization program by positioning the prequantum groupoid (Tω,λλλ) as the
central object, in place of the traditional prequantum principal bundle.

This groupoid object is an intrinsic construction, derived solely from the parasym-
plectic space (X,ω), as a diffeological quotient of the space of paths, a feature
that incidentally resonates with Feynman’s path integral approach to quanti-
zation. This single object serves as a unified geometric container possessing
several key virtues:

∗ It contains the original classical system (X,ω): The space of objects Obj(Tω)
is X, and the fundamental relationship defined by the 2-formω is encoded in
the curvature of the prequantum 1-formλλλ on the space of morphisms Mor(Tω).

∗ It embodies the prequantum total space: The space of morphisms Y =
Mor(Tω) carries the fundamental prequantum 1-form λλλ, which serves as the
potential forω according to the formula dλλλ+ends∗(ω⊕ω) = 0.

∗ It faithfully represents the full symmetry group Diff(X,ω)Diff(X,ω)Diff(X,ω): As shown in Article
17, the group of ω-preserving diffeomorphisms of X acts as the full group of
automorphisms of the entire (Tω,λλλ) structure in a faithful manner, without
involving central extensions at this level.

∗ It geometrically captures the quantum phase information: The periodicity
associated withω is intrinsically represented by the structure of the isotropy
groups Tω,x at each point x ∈ X — the “vertical” structure of the groupoid which
is isomorphic to the torus of periods Tω — as the quotient of the space of loops.

19. Structure of the Space of MorphismsYYY .

The space of morphismsY =Mor(Tω) possesses a rich internal structure related
to the principal bundle slicesYx =MorTω (x ,∗), where x ∈ X is a fixed base point.
Recall from the main theorem (Theorem II, part 1) that 1̂x :Yx → X is a principal
Tω,x -bundle with structure group Tω,x ≃ Tω.
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Now, consider the square of the projection 1̂x :Yx → X, that is,

1̂x × 1̂x :Yx ×Yx → X×X, with 1̂x × 1̂x : (y , y ′) 7→ (1̂(y ), 1̂(y ′)).

Since 1̂x :Yx → X is itself a Tω,x -principal fiber bundle, this is a T2
ω,x -principal

fiber bunlde, for the action (τ,τ′) · (y , y ′) = (τ · y ,τ′ · y ′). According to the reduc-
tion of principal bundle described in [PIZ13, §8.18], the quotient ofYx ×Yx by
the diagonal subgroup Tω,x ≃ {(τ,τ) | τ ∈ Tω,x } is itself a fiber bundle over
the same base space X × X, by the projection class : (y , y ′) 7→ Y ×Tω,x

Y =
(Y ×Y )/Tω,x , with fiber Tω,x

2/Tω,x ≃ Tω,x (as homogeneous space).

Now, the quotientYx ×Tω,x
Yx is naturally realized by the projection

class :Yx ×Yx →Y with class(y , y ′) = y −1 · y ′.

Therefore, the projection ends :Y → X×X is itself a fiber bundle with homoge-
neous fiber Tω, which is summarized by the diagram:

Yx ×Yx Y

X×X
1̂x × 1̂x

class

ends

Note. The space of morphismsY =Mor(Tω) is a fiber bundle over X×X via the
source/target map ends :Y → X×X. The fiber over a pair of points (x , x ′) ∈ X×X
is the set of morphisms from x to x ′, MorTω (x , x ′) = Paths(X, x , x ′)/∼ω.

As a consequence of the groupoid structure, for any fixed pathγ0 ∈ Paths(X, x , x ′),
the map τ 7→ τ · [γ0]ω establishes a diffeomorphism from the isotropy group
Tω,x to the fiber MorTω (x , x ′). This means that MorTω (x , x ′) is a principal homo-
geneous space for the isotropy group Tω,x ≃ Tω.

Thus, the fibers of the bundle ends :Y → X×X are all diffeomorphic to the torus
of periods Tω. This holds for any pair of points (x , x ′).

When the torus of periods Tω = R/Pω is a strict diffeological space (i.e., not
diffeomorphic to S1 or R), the total space of the groupoidY will also be a strict
diffeological space, even if the base space X is a smooth manifold. This highlights
how the diffeological framework naturally accommodates these structures that
arise from the geometry of ω and may not fit into the traditional manifold
setting.

20. The Exact Case.

When the closed 2-formω is exact, i.e.,ω= dα for some 1-form α ∈Ω1(X), the
unique prequantum groupoid construction simplifies significantly, revealing a
particularly direct relationship to the primitive α.
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In this case, the group of periods Pω is trivial, Pω = {0}. Indeed, Kω=K(dα) =
1̂∗(α) − 0̂∗(α) − d [Kα]. Note that fω := Kα ∈ Ω0(Paths(X)) is a smooth map,
explicitly:

fω : Paths(X)→R is defined by fω(γ) =

∫

γ

α.

Now, restricted to Loops(X), we get Kω ↾ Loops(X) = d fω ↾ Loops(X), and the
periods are the integrals

∫

σ
d fω = fω(σ(1)) − fω(σ(0)). However, when σ ∈

Loops(Loops(X)), fω(σ(1)) = fω(σ(0)), which implies Pω = {0} and Tω =R/Pω =R.

Next, the equivalence relation γ∼ω γ′ means: ends(γ) = ends(γ′) = (x , x ′) and
∫

σ
Kω= 0 for any fixed-ends homotopy σ : s 7→ γs from γ to γ′. But:

∫

σ

Kω=
∫

σ

(1̂∗(α)− 0̂∗(α)−d [ fω]) =

∫

1̂◦σ
α−
∫

0̂◦σ
α−
∫

σ

d fω

=

∫

s 7→γs (1)
α−
∫

s 7→γs (0)
α− ( fω(γ)− fω(γ

′)) =

∫

s 7→x ′
α

︸ ︷︷ ︸

=0

−
∫

s 7→x

α

︸ ︷︷ ︸

=0

− fω(γ) + fω(γ
′)

= fω(γ
′)− fω(γ)

Then,

γ∼ω γ′ iff ends(γ) = ends(γ′) and

∫

γ

α=

∫

γ′
α.

The space of morphismsY = Paths(X)/∼ω can be identified diffeomorphically
with X×R×X, by the subduction

Y ≃ X×R×X with classω : γ 7→

�

x = γ(0), t =

∫

γ

α, x ′ = γ(1)

�

By additivity of the integral of α on paths, the groupoid composition becomes

(x , t , x ′) · (x ′, t ′, x ′′) = (x , t + t ′, x ”)

This groupoid is an additive groupoid over X. Note that, the identity of the object
x ∈ X in the groupoid is the arrow (x , 0, x ). The map x 7→ (x , 0, x ) from X toY is
the identity induction.

The prequantum 1-formλλλ onY , uniquely determined by class∗ω(λλλ) =Kω, can
be expressed on a 1-plot s 7→ γs as: class∗ω(λλλ)(s 7→ γs ) = λλλ(s 7→ classω(γs )) =
Kω(s 7→ γs ). That is,λλλ(s 7→ (xs , ts , x ′s )) =Kω(s 7→ γs ), with xs = γs (0), ts = fω(γs )
and x ′s = γs (1). But,

Kω(s 7→ γs ) = 1̂∗(α)(s 7→ γs )− 0̂∗(α)(s 7→ γs )− [d fω](s 7→ γs ),

=α(s 7→ γs (1)))−α(s 7→ γs (0)))−d [s 7→ fω(γs )],

=α(s 7→ x ′s )−α(s 7→ xs )−d [s 7→ ts ]
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Therefore,

λλλ(s 7→ (xs , ts , x ′s )) =α(s 7→ x ′s )−α(s 7→ xs )−d [s 7→ ts ]

That is, with reordering terms:

λλλ= pr∗3(α)−pr∗2(d t )−pr∗1(α),

where the pri , i = 1, 2, 3, are the projections ofY ≃ X×R×X on its three factors.

Since we are in a very simple case, we can easily check that the main properties
for (Tω,λλλ) are satisfied:

∗ Invariance ofλλλ under Groupoid Composition: We verify the left and right
invariance ofλλλ using its coordinate expression: y = (x , t , x ′) ∈Y ≃ X×R×X.

Let us check the left invariance. Let y0 = (x0, t0, x ′0) ∈ Y and y = (x , t , x ′).
Then, L(y0)(y ) = (x0, t0, x ′0) · (x , t , x ′), which composes only when x = x ′0. Then
L(y0)(y ) = (x0, t0, x ′0) · (x

′
0, t , x ′) = (x0, t0 + t , x ′), that is, L(y0)(x ′0, t , x ′) = (x0, t0 +

t , x ′). Nowλλλ ↾Yx ′0,∗ = pr∗3(α)−pr∗2(d t ). Thus [(x ′0, t , x ′) 7→ (x0, t0+t , x ′]∗((pr∗3(α)−
pr∗2(d t ))) = pr∗3(α)−pr∗2(d t ) =λλλ ↾Yx0,∗. The same applies to right invariance.

∗ Curvature ofλλλ: The differential ofλλλ gives d [pr∗3(α)]−d [pr∗2(d t )]−d [pr∗1(α)] =
pr∗3(dα)− 0−pr∗1(dα), that is, dλλλ = pr∗3(ω)−pr∗1(ω), which was announced by
the theory.

∗ Action of Diff(X,ω)Diff(X,ω)Diff(X,ω): Let φ ∈Diff(X,ω), then φ∗(dα) = dα implies d [φ∗(α)] =
dα, and then d [φ∗(α)−α] = 0. That is φ∗(α)−α is closed, but since X is simply
connected φ∗(α)−α is exact and there exists a function fφ ∈C∞(X, R) such that
φ∗(α) =α+d fφ . So, let

Φ[γ]ω = [φ ◦γ]ω =

�

φ(γ(0)),

∫

φ◦γ
α,φ(γ(1))

�

.

But
∫

φ◦γα =
∫

γ
φ∗(α) =
∫

γ
α + d fφ =
∫

γ
α +
∫

γ
fφ =
∫

γ
α + fφ(γ(1)) − fφ(γ(0)).

Therefore,

Φ(x , t , x ′) = (φ(x ), t + fφ(x
′)− fφ(1),φ(x

′)).

Hence,

Φ∗(λλλ) =Φ∗(pr∗3(α)−pr∗2(d t )−pr∗1(α)

=Φ∗(pr∗3(α))−Φ
∗(pr∗2(d t ))−Φ∗(pr∗1(α))

= (pr3 ◦Φ)
∗(α)− (pr2 ◦Φ)

∗(d t )− (pr1 ◦Φ)
∗(α)

= (φ ◦pr3)
∗(α)− [t + fφ(x

′)− fφ(x )]
∗(d t )− (φ ◦pr1)

∗(α)

= pr∗3(φ
∗(α))−d [t + fφ(x

′)− fφ(x )]−pr∗1(φ
∗(α))

= pr∗3(α+d fφ)−d t −d [ fφ ◦pr3] +d [ fφ ◦pr1]−pr∗1(α+d fφ)

= pr∗3(α)−d t −pr∗1(α) +pr∗3(d fφ)−d [pr∗3( fφ)]+d [pr∗1( fφ)]−pr∗1(d fφ)

= pr∗3(α)−d t −pr∗1(α) +pr∗3(d fφ)−pr∗3(d fφ) +pr∗1(d fφ)−pr∗1(d fφ)
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= pr∗3(α)−d t −pr∗1(α)

=λλλ.

This tedious computation, confirming that Diff(X,ω) acts onY while preserving
λλλ, is not without purpose. It shows how the function cocycle fφ of Diff(X,ω), re-
lated to the lack of invariance of the primitiveα, is compensated by the variance
of the isotropy such that Diff(X,ω) acts on Tω as an automorphism of (Tω,λλλ).

Note. In this exact case, the prequantum bundles Yx are trivial R-bundles,
mirroring the classical situation for exact symplectic forms on manifolds. This
recovery of the classical structure in the simplest case demonstrates the consis-
tency and generality of the path-space construction.

The connection form λ = λλλ ↾ Yx corresponds to a connection on the trivial
R-bundle X×R→ X whose curvature isω.

21. Example: The Prequantum Groupoid for (S2,ωS 2 ).

The 2-sphere S2, equipped with its standard symplectic formωS 2 , is a fundamen-
tal example in geometric quantization. It is a connected and simply connected
manifold, andωS 2 is a closed 2-form. The periods ofωS 2 are related toπ2(S2)≃ Z.
For a suitable normalization (e.g., such that

∫

S2ωS 2 = 2π), the group of peri-
ods PωS2 is 2πZ. This is a discrete subgroup of R. Thus, (S2,ωS 2 ) satisfies the
conditions of the main theorem.

The torus of periods is TωS2 =R/PωS2 =R/2πZ≃ S1.

According to the main theorem, the prequantum groupoid TωS2 for (S2,ωS 2 )
has S2 as its objects. The space of morphisms is Y = Paths(S2)/ ∼ωS2 , where
the equivalence relation ∼ωS2 is determined by ωS 2 and its periods 2πZ. The
isotropy group at any point x ∈ S2 is isomorphic to the torus of periods: TωS2 ,x ≃
TωS2 ≃ S1.

The space of morphismsY has a rich structure over the product space S2×S2

via the source/target map ends :Y → S2 × S2. As discussed in Article 19, this
map is a diffeological fiber bundle with fiber TωS2 ≃ S1.

In this specific case, the prequantum line bundle over S2 (corresponding to
the prequantization condition [ωS 2 ] ∈H2

dR(S
2) being integral) is the well-known

Hopf bundle π : S3 → S2, which is a principal S1-bundle. The space of mor-
phismsY of the prequantum groupoid TωS2 can be identified with the space
of isomorphisms between fibers of this principal bundle. This space is diffeo-
morphic to (S3×S3)/S1

diag, where S1
diag is the diagonally embedded subgroup in

S1×S1.

The map ends :Y → S2×S2 is a S1-bundle over S2×S2. The base space S2×S2

is a 4-dimensional manifold, the fiber is S1 (a 1-dimensional manifold), and the
total spaceY ≃ (S3×S3)/S1

diag is a 5-dimensional manifold. The prequantum
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1-formλλλ onY is a 1-form on this 5-manifold whose curvature dλλλ is related to
ωS 2 ⊖ωS 2 on the base S2×S2.

This example provides a concrete illustration of the prequantum groupoid
construction for a classical symplectic manifold, showing how the space of
morphismsY forms a principal S1-homogeneous-bundle over the product of
the base space with itself, with the expected dimensions and structure related
to the classical prequantum bundle.

Note. For any pair of non-antipodal points (x , x ′) ∈ S2×S2, the space of mor-
phisms MorTωS2

(x , x ′), diffeomorphic to S1, can be trivialized. The trivialization

is explicitly realized by mapping a class [γ]ωS2 (where γ is a path from x to x ′)
as follows

[γ]ωS2 =
�

x , e

i

∫ γ

γx ,x ′

KωS 2

, x ′
�

,

where γx ,x ′ is the unique shortest geodesic from x to x ′, and the integral is
taken over any fixed-ends homotopy between γx ,x ′ and γ in Paths(S2, x , x ′). This
corresponds to the integral of ωS 2 on any surface sweeped by the homotopy.
This identification is a local trivialization ofYS2 over the subset of non-antipodal
points of the sphere. It connects with the physical intuition often found in the
literature, between the abstract path-space quotient and a concrete phase value
associated with paths between points.

22. Application to Symplectic Reduction.

A central and often problematic question in geometric quantization is whether
the process of quantization commutes with symplectic reduction. Classically,
quantizing a symplectic manifold and then performing a reduction (Quantize
then Reduce, QTR) frequently does not yield the same result as first reducing the
classical system and then quantizing the reduced space (Reduce then Quantize,
RTQ). This discrepancy is particularly acute when the reduced space is singular,
lacking a smooth manifold structure. Traditional geometric quantization meth-
ods, heavily reliant on local Euclidean charts, face significant obstacles when
applied directly to such singular reduced spaces.

The diffeological framework, by providing a robust setting for differential ge-
ometry on arbitrary spaces including those with singularities, allows us to con-
struct the prequantum groupoid (Tω,λλλ) even for singular parasymplectic spaces
arising from reduction. This holistic approach, which places the prequantum
groupoid as a unified object encoding both classical and prequantum infor-
mation along with the full symmetry group, offers a novel perspective on the
reduction problem. This perspective resonates with the general philosophy of
diffeology regarding quotient spaces, as discussed in [GIZ25].
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When considering a quotient procedure X/∼, diffeology encourages focusing
on the resulting quotient space itself, equipped with the quotient diffeology,
rather than being tied to the specific procedure that generated it. For instance,
the Hopf reduction S3/S1 is naturally viewed as the smooth 2-sphere S2 with its
standard manifold structure (which is a particular diffeology). While the Hopf
fibration can be retrieved by considering the set of S1 principal bundles over
S2 (classified by Chern classes), the primary object of interest is the resulting
space S2.

The challenge arises when the quotient space possesses singularities and cannot
be naturally equipped with a compatible manifold structure. In such cases, the
resulting space might, at best, be considered a topological space, as exemplified
by the quotient Qm = C/Zm . Topologically, this space is homeomorphic to
C. However, this topological perspective fails to capture the richer differential
structure that is intuitively present, particularly at the singularity.

This is precisely the motivation behind notions like V-manifolds (Thurston’s
orbifolds), introduced by Ichiro Satake [Sat56] and shown to be equivalent to the
specific class of diffeological orbifolds [IKZ10]. Diffeology provides a framework
where, when constructing a quotient, one can indeed focus on the resulting
quotient diffeological space, regardless of the specific process. This applies to
quotients of manifolds by compact groups, as shown in [GIZ25], and is relevant
to problems of symplectic reduction, generally denoted J−1(0)/G.11

Diffeology Principle: A quotient Q = X/∼ is always regarded as a quotient
diffeological space, irrespective of its construction.

Applying this principle to the symplectic reduction C/Zm , the resulting space is
the cone-orbifoldQm . It has been proved thatQm is symplectically generated in
the diffeological sense;12 that is, there exists a closed 2-formω (a parasymplectic
form) onQm such that its pullback on C by the projection πm : z 7→ [z ] is the
standard symplectic form d x ∧d y [PIZ13, §9.32].13 Actually, every parasym-
plectic form onQm is proportional to thisω by a smooth function onQm .

This parasymplectic diffeological space (Qm ,ω) is connected and simply con-
nected; it is, in fact, contractible. The map ρs : [z ] 7→ [s z ], where s ∈ R and

11The map J is the moment map of a Hamiltonian equivariant action of a Lie group G. The

group G acts on the level set J−1(0), where the restriction of the symplectic formω is coisotropic.

If J−1(0) is a manifold such that the canonical projection to the quotient is a submersion, then

the formω ↾ J−1(0) descends to the quotient as a symplectic form. This is the Marsden-Weinstein

construction [MW74].
12A parasymplectic space (X,ω) is symplectically generated if there is a generating family

[PIZ13, §1.66] of plots where the pullback ofω is symplectic.
13One can choose a projectionπm (z ) = z m , in which caseQm is diffeomorphic to C equipped

with the pushforward of the standard smooth diffeology on C by this map πm .



36 PATRICK IGLESIAS-ZEMMOUR

[z ] ∈Qm , is well-defined and provides a deformation retraction fromQm (for
s = 1) to the origin {[0]} (for s = 0). SinceQm is contractible, the parasymplectic
formω is exact [PIZ13, §6.90]. Let α ∈Ω1(Qm ) be a primitive such thatω= dα.
We are thus in the case previously discussed in Article 20. The result applies
directly:

Proposition. The prequantum groupoid Qm ,ωQm ,ωQm ,ω is isomorphic to the additive
groupoid

Qm ,ωQm ,ωQm ,ω ≃ {(q , t , q ′) ∈Qm ×R×Qm} with (q , t , q ′) · (q ′, t ′, q ′′) = (q , t + t ′, q ′′).

The prequantum formλλλ is given byλλλ= pr∗3(α)−pr∗1(α)−pr∗2(d t ).

This completely addresses the prequantization of the parasymplectic cone-
orbifold (Qm ,ω)within the diffeological framework, thereby obviating the need
to directly address the commutation of quantization and reduction procedures
at the level of the base space.

Note. A critical insight from this explicit construction is that the singular origin
0 ∈Qm does not lead to a degeneration or alteration of the isotropy group. For
this exact case, the isotropy group Tω,q is isomorphic to R for all points q ∈Qm .
This uniformity of the quantum phase information arises naturally from the
inherent structure of the path-space quotient, as discussed in the Introduction
(Note 2 of Article 8), demonstrating that singularities in the base space do not in-
trinsically affect the nature of the isotropy group itself. If quantum phenomena
are related to such singularities, it would rather be through the representations
of the group of automorphisms (which reveal the singular structure via the Klein
stratification) than through the local isotropy itself.

23. Example: The Prequantum Groupoid for Loops(S3)Loops(S3)Loops(S3).

The construction of the prequantum groupoid (Tω,λλλ) is applicable not only to
singular spaces but also to infinite-dimensional diffeological spaces, provided
they satisfy the conditions of the main theorem (connected, simply connected,
with a closed 2-form having discrete periods). A relevant example is the loop
space of the three-sphere, X = Loops(S3).

The space X = Loops(S3) is an infinite-dimensional diffeological space. Its path-
connectedness is given by π0(Loops(S3))≃π1(S3) = {0}; thus X is connected. Its
simple connectedness is given by π1(Loops(S3))≃π2(S3) = {0}; thus X is simply
connected.

Consider the volume 3-form vol on S3. Let ω = Kvol ∈ Ω2(X) be the 2-form
on X obtained by applying the chain-homotopy operator. The 2-form ω is
closed, which follows from d vol= 0 and the properties of the chain-homotopy
operator. The group of periods Pω of the form ω is the group of periods of
the 1-form Kω ↾ Loops(Loops(X)). This group is a homomorphic image of
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π1(Loops(X))≃π2(X)≃π3(S3) = Z. The periods ofω are related to integrals of
vol over cycles in π3(S3). For a suitable normalization of the volume form vol
on S3 (e.g., such that

∫

S3 vol= 1), the group of periods Pω is isomorphic to Z.

The torus of periods is Tω =R/Pω =R/Z≃ S1.

According to the main theorem, the prequantum groupoid Tω for (X,ω) has
X = Loops(S3) as its objects. The space of morphisms is Y = Paths(X)/ ∼ω=
Paths(Loops(S3))/∼ω, where the equivalence relation ∼ω is determined by the
2-formω and its periods Pω = Z.

The isotropy group at any object ℓ ∈ X (i.e., at any loop ℓ ∈ Loops(S3)) is isomor-
phic to the torus of periods: Tω,ℓ ≃ Tω ≃ S1. This means that at each point in
the infinite-dimensional space Loops(S3), the quantum phase information is
captured by an S1 group.

The prequantum 1-formλλλ onY is the unique form such that class∗ω(λλλ) =Kω.

Explicitly representing the space of morphismsY = Paths(Loops(S3))/∼ω in a
simpler form (like a product space) is generally not possible due to the infinite-
dimensional nature of X and the non-exactness ofω (since Pω = Z ̸= {0}). The
spaceY is genuinely the quotient space defined by the equivalence relation.

This example illustrates how the prequantum groupoid construction extends
to infinite-dimensional settings. The situation shares some analogy with the
prequantization of the 2-sphere (S2,ωS 2 ), where S2 is connected and simply
connected, and the periods of the standard symplectic form are related to
π2(S2) ≃ Z, leading to an S1 isotropy group. The key difference here is the
infinite dimensionality of the base space X = Loops(S3).

24. The Moment Map on the Prequantum Groupoid.

Now that we have this symmetry group Aut(Tω,λλλ), we can define a moment
map using its action, and here are its properties and what it tells us.

The prequantum groupoid (Tω,λλλ) provides a geometric framework to study
the system (X,ω). As established in Article 16, its group of automorphisms
Gω =Aut(Tω,λλλ) is diffeologically isomorphic to the group ofω-preserving dif-
feomorphisms of X, Diff(X,ω). This group Gω acts smoothly on the space of
morphismsY =Mor(Tω), preserving the prequantum 1-formλλλ.

According to the general theory of moment maps in diffeology developed in
[PIZ10] (see also [PIZ13, Chap. 9]), the existence of a Gω-invariant 1-formλλλ on
Y ensures the existence of a moment map Ψω :Y →G ∗ω, where G ∗ω is the space
of left-invariant 1-forms on the diffeological group Gω (the space of momenta
[PIZ10, Art. 2.6]). This map is defined for y ∈ Y by Ψω(y ) = ŷ ∗(λλλ), where ŷ :
Gω→Y is the orbit map ŷ (Φ) =Φ(y ).
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This moment map on the space of morphismsY is directly related to the paths
moment map defined in [PIZ10, Art. 3.1] for the action of Gω on X. Let Ψpaths :
Paths(X)→G ∗ω be the paths moment map given by Ψpaths(γ) = γ̂∗(Kω), where
γ̂(φ) =φ ◦γ. The map Ψω is precisely the projection of Ψpaths onto the quotient
Y :

Proposition. The moment map Ψω :Y →G ∗ω satisfies Ψω ◦ classω =Ψpaths.

Proof. Let γ ∈ Paths(X), and let y = classω(γ) ∈Y . By definition of Ψω, Ψω(y ) =
ŷ ∗(λλλ), where ŷ : Gω→Y is the orbit map ŷ (Φ) =Φ(y ) for Φ ∈Gω. Recalling that
Gω =Aut(Tω,λλλ) is isomorphic to Diff(X,ω) viaΦ 7→φ such thatΦ([γ′]ω) = [φ◦γ′]ω,
the orbit map ŷ is given by ŷ (Φ) = [φ ◦γ]ω = classω(φ ◦γ). Thus, ŷ = classω ◦γ̂,
where γ̂ : Gω→ Paths(X) is the orbit map γ̂(φ) =φ ◦γ as defined for Ψpaths. Now
we compute the pullback:

Ψω(classω(γ)) = ŷ ∗(λλλ) = (classω ◦γ̂)∗(λλλ) = γ̂∗(class∗ω(λλλ)).

By definition ofλλλ (Theorem II, part 3), class∗ω(λλλ) =Kω. Substituting this gives:

Ψω(classω(γ)) = γ̂
∗(Kω).

The right side is precisely Ψpaths(γ). Therefore, Ψω ◦ classω =Ψpaths. □

The paths moment map Ψpaths is an additive homomorphism from the path
concatenation to (G ∗ω,+) [PIZ10, Art. 4.3]. Since Ψω factors through classω and
classω preserves concatenation, Ψω is an additive homomorphism from the
groupoid Tω to (G ∗ω,+):

Ψω(y · y ′) =Ψω(y ) +Ψω(y ′)

for any composable y , y ′ ∈Y .

The additive property Ψω(y · y ′) =Ψω(y )+Ψω(y ′) implies that the value of Ψω(y )
for y ∈ Y depends only on the endpoints of y . This means Ψω descends to
a map ψω : X×X→ G ∗ω. This descent occurs if and only if Ψω is constant on
the equivalence classes [γ]ω corresponding to loops, which is equivalent to
Ψω(ℓ) = 0 for all loops ℓ ∈ Loops(X) (viewed as elements of Y via classω). The
set of values Ψpaths(ℓ) =Ψω(classω(ℓ)) for ℓ ∈ Loops(X) is the universal holonomy
group Γω =Ψpaths(Loops(X)) for the action of Gω on X [PIZ10, Art. 3.7].

Since X is connected and simply connected, its fundamental group π1(X) is
trivial. The universal holonomy group Γω is an additive subgroup of G ∗ω which
is a homomorphic image of π0(Loops(X)) [PIZ10, Art. 3.7]. Since X is simply
connected and connected, π0(Loops(X)) is trivial. Therefore, for a simply con-
nected X, the universal holonomy Γω is trivial, Γω = {0}. This property will not be
preserved in the general case of π1(X) ̸= {0}. In the general case, the universal
holonomy Γω will typically be non-trivial.
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The fact that Γω = {0} for simply connected X implies that Ψω(ℓ) = 0 for all loops
ℓ ∈ Loops(X), and thus Ψω :Y →G ∗ω descends to a well-defined map on X×X.
This descended map is the two-points moment map:

ψω : X×X→G ∗ω defined by ψω(x , x ′) =Ψω(y ),

for any y ∈ Y with ends(y ) = (x , x ′). This ψω is the universal two-points mo-
ment map associated withω (compare [PIZ10, Art. 4.1]). It satisfies the Chasles
cocycle relationψω(x , x ′′) =ψω(x , x ′) +ψω(x ′, x ′′) for x , x ′, x ′′ ∈ X.14

From the two-points moment mapψω, we can derive the one-point moment
map µω : X→G ∗ω by choosing a base point x0 ∈ X. As shown in [PIZ10, Art. 5.1],
µω is a primitive of ψω, unique up to an additive constant ϵ ∈ G ∗ω, satisfying
ψω(x , x ′) =µω(x ′)−µω(x ). A standard choice is µω(x ) =ψω(x0, x ).

The equivariance properties of these moment maps and the associated Souriau’s
cocycle θω ∈ C∞(Gω,G ∗ω) are described in detail in [PIZ10, Art. 5.2]. For sim-
ply connected X, the holonomy Γω is trivial, which means the target space for
Souriau’s cocycle and moment maps is G ∗ω (as opposed to G ∗ω/Γω in the gen-
eral case). The universal Souriau class σω, which lives in H1(Gω,G ∗ω/Γω), is
therefore an element of H1(Gω,G ∗ω). The triviality of this cohomology class
implies the existence of an equivariant moment map µω op. cit. However, the
triviality of Γω does not in general imply the triviality of the entire cohomology
group H1(Gω,G ∗ω). Thus, for a simply connected X, while the holonomy is triv-
ial, Souriau’s class σω may be non-trivial, corresponding to non-trivial central
extensions in the classical picture.

25. Towards the Quantum Hilbert Space.

A central aim of geometric quantization is the construction of the quantum
Hilbert spaceH . In our groupoid framework, the space of morphisms Y =
Mor(Tω) of the prequantum groupoid Tω serves as the fundamental arena for
potential quantum states.

Inspired by the algebraic structure of the groupoid, a natural candidate for
quantum states arises from considering multiplicative functions on the space of
morphisms. A V-valued functionψ :Y →V, where V is a complex vector space
equipped with a suitable composition operation (typically representing the fiber
of an associated vector bundle), is called multiplicative if for any composable
pair y1, y2 ∈Y , we have:

ψ(y1 · y2) =ψ(y1) ·ψ(y2).

14 This moment mapψω can be interpreted as the moment map for the diffeological space

X×X equipped with the 2-formω⊖ω= pr∗1ω−pr∗2ω and the diagonal action of Gω.
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Here, the dot · on the left is the groupoid composition, and the dot · on the right
is the composition in V. The set of such functions, satisfying appropriate differ-
entiability or regularity conditions, forms a candidate space for the quantum
Hilbert spaceH .

This definition directly encodes the action and representation of the isotropy
group Tω. For any y ∈ Y and any τ ∈ Tω,src(y ) (viewed as an element of Y
with src(τ) = trg(τ) = src(y )), the composition τ · y is defined. The multiplica-
tive property then implies ψ(τ · y ) = ψ(τ)ψ(y ). The restriction of ψ to each
isotropy group Tω,x ≃ Tω defines a representation ρx : Tω→ End(V) given by
ρx (τ)v =ψ(τ)v . For the standard case where V =C, this meansψ ↾ Tω,x must
be a character (a 1-dimensional representation) of Tω for each x . Thus, the
space of multiplicative functions on the groupoid naturally corresponds to
representations of the isotropy group.

As is standard in groupoid theory, the space of multiplicative functionsψ :Y →
V satisfyingψ(τ · y ) = ρx (τ)ψ(y ) for τ ∈Tω,src(y ) is precisely how one identifies
sections of the associated vector bundle E =Y ×Tω V→ X (where the bundle
projection is induced by the source map src :Y → X) with equivariant functions
on Y . The multiplicative function perspective on Y is therefore equivalent
to the associated bundle perspective over X, providing an intrinsic groupoid-
theoretic definition of the quantum states.

This concept of defining quantum states on the space of a groupoid resonates
with ideas explored by Souriau later in his career concerning the role of posi-
tive type functions on the group of symmetries [Sou04] (which, in our case, is
isomorphic to Aut(Tω,λλλ)).

The symmetry group Diff(X,ω) ≃ Aut(Tω,λλλ) acts naturally on Y via automor-
phisms Φ. This action lifts to the space of multiplicative functions: (Φ∗ψ)(y ) =
ψ(Φ−1(y )). Since Φ is a multiplicative map (a groupoid homomorphism), Φ∗ψ
is also multiplicative, ensuring that the symmetry group acts on the candidate
Hilbert spaceH . As discussed in Article 17, this lift is an isomorphism, suggest-
ing that central extensions may not arise at this level of representation, with the
quantum nature encoded in the multiplicative property related to Tω.

Developing the full geometric quantization program requires defining a suit-
able inner product onH and incorporating a notion of polarization to select
physical states. These steps, along with a detailed study of the relevant represen-
tations of Tω and the induced representations of Diff(X,ω), constitute essential
directions for future research stemming from this prequantization framework
on diffeological spaces.

26. Relation to Classical Central Extensions.
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It is natural to question how the isomorphism Aut(Tω,λλλ) ≃ Diff(X,ω) relates
to the well-known phenomenon of non-trivial central extensions arising in
the classical geometric quantization of symmetries, even on simply connected
symplectic manifolds. For instance, the prequantization of the standard sym-
plectic structure on R2n leads to the Heisenberg group extension for the trans-
lation group, and the prequantization of the sphere S2 leads to the spin group
Spin(3)≃ SU(2) as a central extension of SO(3).

The key to understanding this lies in distinguishing the object to which the
symmetries are lifted:

∗ In the classical prequantum bundle picture, central extensions emerge when
considering the lift of a symmetry group (or its Lie algebra) acting on the base
manifold X to the total space of the prequantum principal U(1)-bundle P → X, or
equivalently, to the space of sections of the associated line bundle. The failure of
the lifted Lie bracket to match the lift of the base Lie bracket results in a cocycle
valued in the Lie algebra of the fiber group (u(1)), leading to a central extension
of the symmetry Lie algebra and group by U(1).

∗ In the prequantum groupoid picture, the isomorphism Aut(Tω,λλλ)≃Diff(X,ω)
states that the full group ofω-preserving diffeomorphismsφ lifts isomorphically
to act as automorphisms Φ of the entire prequantum groupoid (Tω,λλλ) that pre-
serve the prequantum 1-formλλλ. The object being acted upon without central
extension here is the groupoid’s space of morphismsY = Paths(X)/∼ω endowed
with the formλλλ.

The classical prequantum bundle Y→ X (or, in our framework, the generalized
prequantum bundleYx =Mor(Tω, x ,∗)→ X, obtained by fixing a source point
x ) is not the same object as the full groupoid Tω. The groupoid Tω encompasses
all such principal bundlesYx for varying x , and the arrows of Tω can be seen
as isomorphisms between fibers of these bundles over different points.

The central extensions observed in the classical setting will reappear when one
descends from the groupoid level to consider actions on structures derived from
the groupoid over the base space X. For example, when considering the lifting
of symmetries to the total space of the principal bundle Yx → X or, crucially,
to the space of sections of an associated bundle over X (which would be the
candidate quantum Hilbert space), the central extension structure related to
the period group Tω will indeed typically emerge.

Therefore, the result Aut(Tω,λλλ)≃Diff(X,ω)does not contradict classical findings.
Instead, it provides a potentially deeper insight: the groupoid (Tω,λλλ) serves as
a fundamental, extension-free prequantum object where the entire symmetry
group Diff(X,ω) is faithfully represented. The "quantic anomaly" manifested by
central extensions in the classical picture is then understood as a phenomenon
that arises when one projects or realizes this fundamental structure and its
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symmetries within the context of bundles or representation spaces built over
the base space X. The essential quantic information, captured by the period
group Tω, resides fundamentally in the isotropy group of the groupoid, waiting
to express itself as an extension upon descent to structures defined over X. This
perspective offers significant conceptual clarity, especially when dealing with
singular spaces where classical bundle constructions are challenging.

27. Future Directions.

This paper focuses on the construction of the prequantum groupoid for con-
nected and simply connected diffeological spaces. This allowed us to elaborate
the core principles and strategies without the technical complexities inherent
in the non-simply connected case.

A primary direction for future research is to extend this construction to the case
of non-simply connected diffeological spaces. In this general setting, the structure
is expected to depend not only on the period group Pω but also on the homo-
topy of X by its fundamental group π1(X). Building on our previous work on
manifolds [PIZ95], which classified prequantum structures by Ext(π1(M)ab, Pω),
we conjecture a similar classification for general diffeological spaces.

Our strategy for constructing these prequantum groupoids in the non-simply
connected case will directly leverage the results established in the present paper.
The universal covering spaceπ : X̃→ X, which always exists in diffeology [PIZ13,
§5.15], is connected and simply connected. The closed 2-formω lifts to a closed
2-form ω̃=π∗ω on X̃. Since (X̃,ω̃) is simply connected, the construction from
this paper (Part I) yields a prequantum groupoid Tω̃ with its prequantum 1-
form λ̃λλ on Ỹ =Mor(Tω̃). The fundamental group Γ =π1(X) acts as the group of
deck transformations on X̃. Since deck transformations preserve ω̃, Γ acts as a
subgroup of Diff(X̃,ω̃). As shown in Section IV, these symmetries lift to faithful
automorphisms of the prequantum groupoid (Tω̃,λ̃λλ). We anticipate that the
prequantum groupoid Tω over X can be constructed as a suitable quotient of Tω̃
by this action of π1(X). Exploring how this symmetry action of π1(X) on (Tω̃,λ̃λλ)
gives rise to distinct structures on the quotient space over X is the central path
for Part II. We expect that the non-triviality of the period group Pω will manifest
as an obstruction to forming a unique structure on the quotient, leading to a
classification parameterized by cocycles related to extensions of π1(X)ab by Pω.
The classification by Ext(π1(X)ab, Pω) is expected to arise precisely from these
distinct possibilities.

The path-based nature of our construction suggests a deep connection to Feyn-
man’s path integral formulation of quantum mechanics. The relationship be-
tween geometric quantization and path integrals has been a subject of interest
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for many years among physicists, with various approaches explored in the liter-
ature (see, e.g., [Hor24] for recent reflections on prequantization from a path
integral viewpoint). Further investigation into how the structure of the prequan-
tum groupoid Tω directly encodes elements of the path integral formulation is
a compelling direction for future research.

Beyond the diffeological generalization, several other avenues are opened by
this work:

∗ Apply the prequantum groupoid construction to the coadjoint orbits of Lie
groups, which are fundamental examples in geometric quantization. Investigate
how their specific properties, such as transitivity and the existence of invariant
metrics (for semi-simple groups), might simplify the structure of (Tω,λλλ) or
provide new insights into the quantization of these spaces.

∗ Explore the space of multiplicative functions on the groupoid Tω as candidate
wave functions. Investigate the representations of the symmetry group Diff(X,ω)
on this space, including the study of representations of discrete symmetry
groups, which is naturally accommodated by the diffeological setting.

∗How does the Maslov correction, crucial in the framework of geometric quan-
tization, manifest in the space of paths and within the structure of the prequan-
tum groupoid? In particular, in the case of the quantization of the harmonic
oscillator (see, e.g., [Sou75]).

∗How can Lagrangian polarization be incorporated into this path-space frame-
work to include the reduction of the parasymplectic space to the space of con-
figurations?

∗ Furthermore, the flexibility of the diffeological setting may provide a rigorous
framework for understanding and justifying the use of singular polarizations,
which have been considered by some authors but lack a fully developed mathe-
matical foundation in the manifold setting.

These questions point towards the development of a full geometric quantization
program within the diffeological setting, applicable to a wide range of spaces,
including those with singularities.
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