
EVERY SYMPLECTIC MANIFOLD IS A (LINEAR) COADJOINT ORBIT
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Abstract. We prove that every symplectic manifold is a coadjoint orbit of the group

of automorphisms of its integration bundle, acting linearly on its space of momenta,

for any group of periods of the symplectic form. This result generalizes the Kirilov-

Kostant-Souriau theorem when the symplectic manifold is homogeneous under the

action of a Lie group and the symplectic form is integral.

Introduction

It is well known since Kostant, Souriau and Kirillov [Kos70] [Sou70] [Kir74] that a

symplectic manifold (X,ω), homogeneous under the action of a Lie group, is isomorphic
— up to a covering— to a possibly affine coadjoint orbit.

It is less known that any symplectic manifold
1
is isomorphic to a coadjoint orbit of

its group of symplectomorphisms (or Hamiltonian diffeomorphisms), possibly affine

[PIZ16]. This has been established, in particular, in the rigorous framework of diffeology

and uses essentially the notion of Moment Map for that category [PIZ10]. But this

theorem still seems to lack something. Although this is not a fundamental flaw, we would

like to get rid of the affine action, defined by a twisted cocycle of the automorphisms. We

would prefer to identify the symplectic manifold with an ordinary coadjoint orbit, that is

an orbit of the usual linear coadjoint action.
2
This can be achieved by passing to a central

extension of the group of automorphisms.

We recall that we are no longer in the classical framework but in diffeology andwe shall see

that the difficulty to absorb this cocycle in an extension of the automorphisms disappears

in this category by the capacity to treat irrational tori. The fundamental element is the

integration bundle existing for any symplectic manifold, as it has been established in

the paper “La Trilogie du Moment" [PIZ95]. This is a principal fiber bundle over the

manifold, with group the torus of periods of the symplectic form, quotient of the real line
by the group of periods, i.e. the integrals of the 2-form on every 2-cycle. This principal
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The manifolds are assumed to be connected, Hausdorff and second countable.
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2 PAULDONATOAND PATRICK IGLESIAS-ZEMMOUR

bundle comes equipped with a connection form, with curvature the symplectic form.

Of course, the torus of periods is almost never a manifold, but it is still a non-trivial

diffeological group [DI83] [IZL90]. We establish first the following

Theorem 1. — Let (X,ω) be a symplectic manifold. Let Pω be its group of periods and
Tω = R/Pω be its torus of periods. Let π : Y→ X be an integration bundle equipped
with a connection form λ with curvature ω. Let Aut(Y,λ) be the identity component of
the group of automorphisms of the integration structure. Then, the kernel of the projection
pr: Aut(Y,λ)→ Diff(X,ω) is reduced to the action of the torus Tω , and its image is
the group Ham(X,ω) of Hamiltonian di�eomorphisms. In other words, we get an exact
sequence of homomorphisms, which is a central extension:

1 Tω Aut(Y,λ) Ham(X,ω) 1.

The group of Hamiltonian diffeomorphisms is defined precisely in terms of diffeology

in [PIZ13, §9.15]. Then, denoting byA ∗
the space of momenta of the group Aut(Y,λ),

that is, its space of left-invariant 1-forms, we prove the following theorem which reveals

the universal model of symplectic manifolds.

Theorem 2. — The Moment Map µY : Y→A ∗ of the action of Aut(Y,λ) on (Y, dλ),
is equivariant with respect to the coadjoint action: µY(φ(y)) = Ad∗(φ)(µY(y)) for all
φ ∈ Aut(Y,λ), and invariant by Tω. Its projection µX : X → A ∗ is injective and
identifies X with the orbit Oλ= µY(Y) = µX(X). Therefore, every symplectic manifold is
a coadjoint orbit of a linear action of a di�eological group, at least Aut(Y,λ).

Note 1. —The idea that every symplectic manifold is a coadjoint orbit of its group of

symplectomorphisms (or Hamiltonian diffeomorphisms) is not new. It appeared already

at an early age of symplectic mechanics, a few decades ago. It is mentioned for example, in

a functional analysis context, by Marsden &Weinstein in their paper on Vlasov equation

[MW82, Note 3, p. 398]. It was taken up later byOmohundro, aWeinstein student, in his

book on geometric perturbation theory in physics [Omo86, p. 364]. What was already

original in the first paper [PIZ16] was the rigorous diffeology framework in which the

result was proved, the role of the universal moment map, the identification of Souriau’s

cocycle of the action of the automorphisms and the affine rather than linear action if the

cocycle is not trivial. What is original in this paper is that the affine coadjoint orbit is

made linear anyway, by absorbing the cocycle into a central extension of the group of

Hamiltonian diffeomorphisms thanks to the integration bundle.

Note 2. —We follow the vocabulary introduced in a previous work. We call parasym-
plectic form any closed 2-form on a diffeological space; and a parasymplectic space any
diffeological space equipped with a parasymplectic form, which we denote in general by

(X,ω). We refer to the textbook [PIZ13] for all generic constructions in diffeology.

Thanks. — To the anonymous referees for their suggestions that helped us to improve

our paper.
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Review of Diffeological Constructions

This universal model for symplectic manifolds builds on a few major constructions estab-

lished in previous works:

(1) The construction of themoment map for any parasymplectic form, on any dif-
feological space for any smooth action of any diffeological group preserving the

parasymplectic form, in “Moment Map in Diffeology” [PIZ10].

(2) The general construction of the group of Hamiltonian di�eomorphisms that
follows from this construction op. cit. §9.2.

(3) The integration bundle of any parasymplectic form on manifold, in [PIZ95].

(4) The realisation of every symplectic manifolds as an affine coadjoint orbits of the
group of symplectomorphisms [PIZ16].

In what follows, we recall the basics of these main constructions which can be found and

are detailed in the three references given above.

1. TheMomentMaps for Parasymplectic Spaces— First of all, letG be a dif-

feological group. We denote by G ∗ its space of its momenta, that is, the space of the
left-invariant differential 1-forms onG,

G ∗ = {ε ∈Ω1(G) | L(g )∗(ε) = ε, for all g ∈G}.

Now, let (X,ω) be a parasymplectic space with a parasymplectic action ofG on X. That

is, a smooth morphism ρ : G→ Diff(X,ω), denoted by g 7→ gX, where Diff(X,ω)⊂
Diff(X) is the group of automorphisms of ω, equipped with the functionnal diffeology.
Hence, g ∗X(ω) = ω for all g ∈G.

To understand the essential nature of the moment map, which is a map from X toG ∗,
it is good to consider the simplest case, and use it then as a guide to extend this simple

construction to the general case.

The Simplest Case. Consider the case where X is a manifold, andG is a Lie group. Let

us assume that ω is exact, ω= dα, and that α is also invariant byG. Then, themoment
map3 of the action ofG on X is the map

µ : X→G ∗ defined by µ(x) = x̂∗(α),

where x̂ : G→X is the orbit map x̂(g ) = gX(x).
As we can see, there is no obstacle, in this simple situation, to generalize,mutatis mutan-
dis, the Moment Map to a diffeological group acting by symmetries on a diffeological

parasymplectic space. However, as we know, not all closed 2-forms are exact and, even if
they are exact they do not necessarily have an invariant primitive. We shall see now how

we can reduce the general case to the simple particular situation by passing to the spaces

of paths: Paths(X) =C∞(R,X).

3
Precisely, one moment map, since they are defined up to a constant.
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The General Case. We consider a connected parasymplectic diffeological space (X,ω), and
a diffeological groupG acting on X and preserving ω. LetK be the Chain-Homotopy

Operator, defined in [PIZ13, §6.83]. We recall that

K : Ωk (X)→Ωk−1(Paths(X))

is a linear operator which satisfies the property

d ◦K +K ◦ d = 1̂∗− 0̂∗, (♥)

where t̂ (γ) = γ(t ), with t ∈ R and γ ∈ Paths(X). Then, the differential 1-formKω,
defined on Paths(X), is related to ω by d [Kω] = (1̂∗− 0̂∗)(ω), andKω is invariant by

G (op. cit. §6.84). Considering ω̄ = (1̂∗ − 0̂∗)(ω) and ᾱ = Kω, we are in the simple
case: ω̄= d ᾱwith ᾱ invariant. We can apply the construction above and define then the

Moment Map of Paths by

Ψ : Paths(X)→G ∗ with Ψ(γ) = γ̂∗(Kω),

and γ̂ : G→ Paths(X) is the orbit map γ̂(g ) = gX ◦γ of a path γ. The moment of paths
is additive with respect to the concatenation [PIZ10, §4.4],

Ψ(γ ∨ γ ′) =Ψ(γ)+Ψ(γ ′).

This paths Moment Map Ψ is equivariant byG, acting by composition on Paths(X),
and by coadjoint action onG ∗. Next, theHolonomy of the action ofG onX is defined by

Γ = {Ψ(`) | ` ∈ Loops(X)} ⊂ G ∗,

the Two-Points Moment Map is defined by pushingΨ forward on X×X,

ψ : X×X→G ∗/Γ with ψ(x, x ′) = class(Ψ(γ)),

where γ is a path connecting x to x ′, and where class denotes the projection fromG ∗
onto its quotient G ∗/Γ. The holonomy Γ is the obstruction for the action ofG to be

Hamiltonian. The additivity ofΨ becomes the Chasles’ cocycle condition

ψ(x, x ′)+ψ(x ′, x ′′) = ψ(x, x ′′).

Let Ad : G→ Diff(G) be the adjoint action, Ad(g ) : k 7→ g k g−1
. That induces onG ∗

a linear coadjoint action

Ad∗ : G→ L(G ∗) with Ad∗(g ) : ε 7→Ad(g )∗(ε) =Ad(g−1)∗(ε).

Next, the group Γ is made of closed forms, invariant by the linear coadjoint action. Thus,

the coadjoint action passes to the quotientG ∗/Γ and we denote the quotient action in

the same way:

Ad∗(g ) : class(ε) 7→ class(Ad∗(g )(ε)).

The 2-points Moment Map ψ is equivariant for the quotient coadjoint action. Note that

the quotientG ∗/Γ is in all cases a diffeological Abelian group.
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Now, because X is connected, there exists always a map

µ : X→G ∗/Γ such that ψ(x, x ′) = µ(x ′)− µ(x).

The solutions of this equation are given by

µ(x) = ψ(x0, x)+ c ,

where x0 ∈X is an arbitrary point and c ∈ G ∗/Γ is any constant. This map is a priori
no longer equivariant with respect to Ad∗ on G ∗/Γ. Its lack of equivariance defines a
1-cocycle θ ofG with values inG ∗/Γ:

µ(g (x)) =Ad∗(g )(µ(x))+ θ(g ),

with

θ(g ) = ψ(x0, g (x0))−∆c(g ) and ∆(c) : g 7→Ad∗(g )(c)− c

is the coboundary due to the constant c in the choice of µ. The cocycle θ defines then a
new action ofG onG ∗/Γ, that is, a quotient affine action :

Adθ
∗(g ) : τ 7→Ad∗(g )(τ)+ θ(g ) for all τ ∈G ∗/Γ.

TheMoment Map µ is then equivariant with respect to this affine action:

µ(g (x)) =Adθ
∗(g )(µ(x)).

Note that, in particular, ifG is transitive on X, then the image of the Moment Map µ is
an affine coadjoint orbit inG ∗/Γ.
This construction extends the Moment Map for {Manifolds} introduced by Souriau in

the sixties [Sou70] to the category {Diffeology}.

The group of all automorphisms of a parasymplectic space is naturally a diffeological

group, denoted by Diff(X,ω) or by Gω. The constructions above give the space of

momenta G ∗ω, the universal4 path moment map Ψω, the universal holonomy Γω, the

universal two-points moment map ψω, the universal moment maps µω, and the universal
Souriau’s cocycles θω.

2. The Case of a SymplecticManifold— Let (X,ω) be a connected parasymplec-
tic manifold. The value of the paths Moment Map Ψω at the point p ∈ Paths(X) =
C∞(R,X), evaluated on the n-plot F : U→Gω is explicitely given by [PIZ10, §10.1]

Ψω(p)(F)r (δr ) =
∫ 1

0
ωp(t )( ṗ(t ),δp(t ))d t , (♦)

where r ∈U and δr ∈Rn
, δp denotes the lifting in the tangent space TX of the path

p , defined by

δp(t ) = [D(F(r ))(p(t ))]−1 ∂ F(r )(p(t ))
∂ r

(δr ) for all t ∈R. (♥)

In that case we have the folowing theorem, see [PIZ16] for example:

4
The adjective “universal” relates to the groupGω [PIZ10, §9].
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Theorem (P.I-Z). Let X be a connected Hausdor� manifold. A parasymplectic form ω
on X is symplectic if and only if the following two conditions are satisfied:

(1) The manifold X is homogeneous under the action of Gω.
(2) The universal Moment Map µω : X→G ∗ω/Γω is injective.

Hence, the Moment Map identifies the manifold X with a, a priori affine, (Γω,θω)-
coadjoint orbit Oω of Gω,

µω(X) = Oω ⊂G
∗
ω/Γω.

The situation is summarized by the diagram

Gω

X Oω

πOπX

µω

(♣)

where πX(φ) = φ(x0), πO (φ) =Adθ
∗(φ)(µω(x0)), for all φ ∈Gω and x0 ∈X is any base

point. The projections πX is a subduction [Boo69, Don84], Oω is equipped with the

pushforward diffeology ofGω by πO , and µω is then a diffeomorphism.

3. Hamiltonian Diffeomorphisms— In the construction of the Moment Map of a

parasymplectic action of a diffeological groupG on (X,ω), the holonomy group Γ is the

obstruction of the action ofG to beHamiltonian.
Definition. A parasymplectic action of a di�eological group G on (X,ω) is said to be
Hamiltonian if Γ = {0}.
Hence, the moment maps have their values inG ∗. We get then the following theorem

[PIZ10, §9.2]

Theorem (P.I-Z). Let (X,ω) be a connected parasymplectic di�eological space. There
exists a largest connected subgroup Ham(X,ω)⊂ Diff(X,ω) whose action is Hamiltonian,
that is, whose holonomy is trivial. The elements of Ham(X,ω) are called Hamiltonian

diffeomorphisms. An action ρ of a di�eological group G on X is Hamiltonian if and only
if, restricted to the identity component of G, ρ takes its values in Ham(X,ω).
The group Ham(X,ω) is precisely built as follows. LetG◦ω be the identity component
ofGω = Diff(X,ω). Let π : eG◦ω→G◦ω be the universal covering. Since the universal

holonomy Γω is made of closed momenta [PIZ10, §4.7], every γ ∈ Γω defines a unique

homomorphism k(γ) from eG◦ω toR such that π∗(γ) = d [k(γ)] [PIZ10, §3.11]. Let

ÒHω =
⋂

γ∈Γω

ker(k(γ)), then Ham(X,ω) = π(ÒH◦ω),

where
ÒH◦ω ⊂Hω is its identity component. The space of momenta and the universal

moment maps objects associated to Hω =Ham(X,ω) are denoted by:H ∗
ω , Ψ̄ω, ψ̄ω, µ̄ω,

and θ̄ω.
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4. The Integration Bundle of a Parasymplectic Form — Let (X,ω) be a
connected, Hausdorff and second countable parasymplectic manifold. Let Pω its group
of periods, that is,

Pω =
�∫

σ
ω
�

�

�

�

σ ∈H2(X,Z)
�

⊂R.

Since X is second countable, Pω is diffeogically discrete, that is, the diffeology induced by

the standard diffeology of R is the discrete diffeology. The plots are locally constant. Let

Tω =R/Pω

be its torus of periods. Except in the casewhere the group of periods has only one generator,
the torus of periods is not a manifold but nevertheless, a non trivial diffeological group.

See for example the paper on the irrational torus Tα =R/Z+αZ [DI83], where α /∈Q.

Then, we get the following theorem in [PIZ95, Theorem 1.5].

Theorem (P.I-Z). Let (X,ω) be a second countable Hausdor� parasymplectic manifold.
There exists always a Tω–principal fiber bundle π : Y→X equipped with a connection
1-form λ with curvature ω. That is, π∗(ω) = dλ. Such integration bundles are classified
by the extension group Ext(H1(X,Z),Pω).

A connection 1-form λ on Y is a Tω invariant calibrated 1-form, that is, τ∗Y(λ) = λ for all
τ ∈ Tω and for all y ∈ Y, ŷ∗(λ) = θ, where ŷ : Tω→ Y is the orbit map ŷ(τ) = τY(y);
and θ is the canonical 1-form on Tω defined by class∗(θ) = d t , with class: R→Tω the

projection, see [PIZ13, §8.37].

Exact Sequence of Automorphisms

For a symplectic manifold, the transition from an affine orbit to a linear orbit
5
needs to

absorb the Souriau cocycle somewhere. We do it by building an extension of the group of

Hamiltonian diffeomorphisms, associated with the integration bundle of the symplectic

form (§4).

5. The Central Extension ofHamiltonian Diffeomorphisms— Let (X,ω)
be a symplectic manifold. Let Pω be its group of periods and Tω =R/Pω be its torus of

periods. Letπ : Y→Xbe aTω-principal integration fiber bundle, and λbe its connection
form. Let Aut(Y,λ) be the group of automorphisms of (Y,λ), that is,

Aut(Y,λ) = {φ ∈ Diff(Y) | φ∗(λ) = λ and ∃ f ∈ Diff(X), π ◦ φ = f ◦π}.

Actually we reduce Aut(Y,λ) to its identity component6. Then, the diffeomorphism
f belongs naturally to the group of Hamiltonian diffeomorphisms Ham(X,ω). The

5
We recall that we say “linear orbit” as a shortcut for “orbit of a linear action”.

6
We keep the same notation for the sake of simplicity.
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mapping η : φ 7→ f is then a surjective homomorphism. Its kernel is the torus of periods

Tω, and η is a central extension. This is summarized by the exact sequence:

1 Tω Aut(Y,λ) Ham(X,ω) 1
η

.

Note. — The integration bundles of a parasymplectic form being classified by the

group Ext(H1(X,Z),Pω), the theorem above applies to each of them indifferently. This

had been noticed in the special case of an integral form where Pω = aZ, for any a ∈
R, in particular by Bertram Kostant. In this case, the integration bundle is called the

prequantization bundle. In the general case Pω is dense in R and the integration bundle

is not a manifold.

It is remarkable too, that all this construction is purely diffeologial, involves only differen-

tial forms and does not need tangent vectors or integration of vector fields. That aspect

of diffeology had been already underlined in the construction of theMomentMap, in

particular in [PIZ10].

Proof. Let us begin by fixing our notation. The action of an element τ ∈ Tω on y ∈Y
will be denoted indifferently by

τ · y or by τY(y).

Now, let φ ∈Aut(Y,λ) and f = η(φ). Since f ◦π = π ◦ φ, φ∗(λ) = λ and π∗(ω) = dλ,
π being a subduction, we get f ∈ Diff(X,ω).

(A) Let us to prove thatker(η) =Tω , acting onY by τ : y 7→ τ ·y . Let φ ∈ ker(η), that is,
π ◦φ = π. Then, for all y ∈Y, there exists a unique τ(y) ∈Tω such that φ(y) = τ(y) · y .
(a) Let us first check that τ : Y → Tω is smooth. Let r 7→ yr by a plot in Y, the

composite with φ gives the plot r 7→ τ(yr ) · yr . We need to prove that r 7→ τ(yr ) itself
is smooth. The pullback of π : Y→X by the plot r 7→ xr = π(yr ) is localy trivial, then
we can restrict these plots to a ball B above which the pullback

[r 7→ xr ]
∗(Y) = {(r, y) ∈ B×Y | π(y) = xr }

is trivial. Any Tω-principal bundle isomorphism F from this pullback to the product

B×Tω writes F(r, y) = (r, t (r )(y)), and the smooth map t with values in Tω satisfies

the equivariance t (r )(τ · y) = τ · t (r )(y). Thus, r 7→ t (r )(yr ) is smooth as well as
r 7→ t (r )(τ(yr )(yr )) = τ(yr ) · t (r )(yr ). Hence, r 7→ τ(yr ) is smooth. Therefore, the
function τ is smooth.

(b) Let us prove now that the function τ is constant. The invariance φ∗(λ) = λ implies
λ(r 7→ τ(yr ) · yr ) = λ(r 7→ yr ), for all plots r → yr . That is, thanks to the partial
derivatives formula [PIZ13, §8.37♣]

λ(r 7→ yr ) = λ(r 7→ τ(yr ) · yr )

= λ(r 7→ yr )+ τ∗(θ)(r 7→ yr ),
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where θ is the canonical 1-form on Tω. Thus, τ
∗(θ) = 0. Then τ is constant. Hence,

kerη =Tω.

(B) Let us prove that η takes its values in Ham(X,ω). That is, that the holonomy group
of Aut(Y,λ) vanishes when acting on (X,ω) through the action

φX(x) = f (x) with f = η(φ).

We shall denote byA ∗
the space of momenta of Aut(Y,λ). TheMomentMapΨX of

the action of Aut(Y,λ) on (X,ω) is given, according to previous notations by:

ΨX : Paths(X)→A ∗
with Ψ(γ) = γ̂∗(KX(ω)),

where γ̂ : φ 7→ f ◦ γ is the orbit map. Let us prove now thatΨX(`) = ˆ̀∗(KX(ω)) = 0,
for all ` ∈ Loops(X).

Let us recall, first of all, that the principal fiber bundle π : Y→X induces, in particular,

a subduction of loops spaces:

π∗ : Loops(Y)→ Loops(X) by pushforward π∗(`) = π ◦ ` ,

see [PIZ13, §8.32] and [PIZ19]. That is, every plot r 7→ `r in Loops(X) has a local
smooth lifting r 7→ `r , everywhere, in Loops(Y). Note that we shall underline the paths
in Y, to distinguish them from paths in X. Now, let ` and ` such that π ◦ ` = `. We

have
ˆ̀(φ) = f ◦ `= f ◦π ◦ `= π ◦ φ ◦ `= π ◦ ˆ̀(φ), that is, ˆ̀= π∗ ◦ ˆ̀

. Thus,

ˆ̀∗(KX(ω)) = (π ◦ ˆ̀)∗(KX(ω)) = ˆ̀∗
�

�

π∗
�∗�KX(ω)

�

�

.

Then, let us recall the variance
7
of the chain-homotopy operatorsKX andKY, relative

to X and Y [PIZ13, §6.84], summarized by the commutative diagram:

Ωk (Y) Ωk−1(Paths(Y))

Ωk (X) Ωk−1(Paths(X))

KY

KX

π∗ (π∗)
∗

We have then:

�

π∗
�∗�KX(ω)

�

=KY
�

π∗(ω)
�

=KY(dλ).

Hence:

ˆ̀∗
�

�

π∗
�∗KX(ω)

�

= ˆ̀∗�KY(dλ)
�

.

Thus:

ΨX(`) = ˆ̀∗�KX(ω)
�

= ˆ̀∗�KY(dλ)
�

=ΨY(`),

7
The way a quantity varies.
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whereΨY is the Moment Map for the action of Aut(Y, dλ) on (Y, dλ). Note that, that
could have been deduced directly from [PIZ13, §9.13]. Now, according to the fundamental

property of the Chain-Homotopy Operator, we have:

ˆ̀∗�KY(dλ)
�

+ ˆ̀∗
�

d
�

KY(λ)
�

�

= ˆ̀∗(1̂∗(λ)− 0̂∗(λ))

= (1̂ ◦ ˆ̀)∗(λ)− (0̂ ◦ ˆ̀)∗(λ)

= 0,

because ` is a loop. Therefore,

ˆ̀∗�KY(dλ)
�

=−d
�

ˆ̀∗�KY(λ)
�

�

.

For every plot r 7→ φr in Aut(Y,λ), for all r in its domain :

ˆ̀∗�KY(λ)
�

(φr ) =KY(λ)(φr ◦ `) =
∫

φr ∗(`)
λ=

∫

`
φ∗r (λ) =

∫

`
λ.

Hence
ˆ̀∗�KY(λ)

�

is constant, its derivative vanishes and therefore

ΨX(`) = ˆ̀∗�KX(ω)
�

= ˆ̀∗�KY(dλ)
�

= 0. (♦)

And that complete toprove thatη : Aut(Y,λ)→ Diff(X,ω) takes its values inHam(X,ω).
(C) Let us show now thatTω ⊂Aut(Y,λ) is central, that is, η : Aut(Y,λ)→Ham(X,ω)
is a central extension. Let φ ∈Aut(Y,λ). We have seen that Tω = ker(η). Thus, for all
τ ∈Tω there exists τ

′ ∈Tω such that τ
′ = φ ◦ τ ◦ φ−1

. Obviously, hφ : τ 7→ τ′ defines a
group isomorphism of Tω : hφ(τ1τ2) = hφ(τ1)hφ(τ2), and hφ(τ)

−1 = φ−1 ◦ τ−1 ◦ φ.
But φ is connected to the identity map 1Y via a smooth path s 7→ φs ∈ Aut(Y,λ),
defined on an open intervalI containing [0,1], with φ0 = 1Y and φ1 = φ. That defines
a smooth path of isomorphisms hφs

= φs ◦ τ ◦ φ−1
s . Let us denote hs for hφs

. The map

(s , t ) 7→ hs (class(t )) is a plot defined on I ×R, in Tω. By the monodromy theorem

[PIZ13, §8.25], it has a global lifting (s , t ) 7→Hs (t ), defined onI ×R, which is a smooth

plot inR. And the lift is unique with H0(0) = 0.

I ×R 3 (s , x) Hs (x) ∈R

I ×Tω 3 (s , class(x)) hs (class(x)) = class(Hs (x)) ∈Tω

H

1× class class

h

For every parameter s , the restriction Hs : R→R is a smooth lifting of the isomorphism

hs : Tω → Tω. Thus, up to a constant bs ∈ R, Hs is a smooth morphism from R to

R. Hence, Hs (x) = as x + bs , where s 7→ as and s 7→ bs are smooth, and as 6= 0
since Hs lifts an isomorphism. Now, for all s ∈ I , all x, x ′ ∈ R, hs (class(x + x ′)) =
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hs (class(x))+ hs (class(x ′)), that is, class(Hs (x+ x ′)) = class(Hs (x))+class(Hs (x
′)),

i.e. as (x + x ′) + bs = as x + bs + as x ′ + bs + p , and then bs ∈ Pω for all s ∈ Pω.

Since s 7→ bs is smooth and Pω is (diffeologically) discrete in R, bs is constant and

equal to b0 which is 0. Thus, Hs (x) = as x . Next, hs (class(x)) = class(Hs (x)) implies
that, for all p ∈ Pω there exists p ′ ∈ Pω such that Hs (x + p) = Hs (x) + p ′. That is,
as (x + p) = as x + p ′, and then as p ∈ Pω for all p ∈ Pω. Again, since Pω is discrete

inR, s 7→ as is constant and the lifting H writes Hs (x) = ax , for some number a 6= 0.
Finally, since H0 lifts the identity h0 = 1Tω

by a morphism, H0(x) = x and a = 1.
Therefore Hs (x) = x for all s and hs (τ) = τ, that is, φ ◦ τY = τY ◦ φ, and the extension
η : Aut(Y,λ)→Ham(X,ω) is central.
(D)Letus show finally thatη : Aut(Y,λ)→Ham(X,ω) is surjective. Let f ∈Ham(X,ω).
There exists a smooth path t 7→ ft ∈ Ham(X,ω), such that f0 = 1X and f1 = f . We

define, for all x ∈ X, the path γX in X by γx (t ) = ft (x). It satisfies γx (0) = x and

γx (1) = f (x). The map x 7→ γx is smooth.

Given any y ∈Y and x = π(y) ∈X, we will denote by γ
y
the unique horizontal lifting

of γx with origin y . Moreover, the map y 7→ γ
y
is smooth and equivariant under the

action of Tω [PIZ13, §8.32]. We define then:

φ(y) = γ
y
(1) and φ ∈C∞(Y) (op. cit.)

The map φ is a smooth lifting of f , that is, π ◦ φ = f ◦π. Moreover, the equivariance

of γ
y
by Tω also implies that τY ◦ φ = φ ◦ τY for all τ ∈ Tω. If φ is equivariant, it has

no reason to preserve the contact form λ. We shall show then that there exists a map

τ ∈C∞(Y,Tω) such that
Φ : y 7→ τ(y) · φ(y),

which is still a smooth lifting of f and preserves the contact form λ, that is,Φ ∈Aut(Y,λ).
Thanks to the partial derivatives formula (op. cit.), for any plot r 7→ yr of Y, we get:

Φ∗(λ)(r 7→ yr ) = λ(r 7→ τ(yr ) · φ(yr ))

= θ(r 7→ τ(yr ))+ λ(r 7→ φ(yr ))

= τ∗(θ)(r 7→ yr )+ φ∗(λ)(r 7→ yr ).

That is, Φ∗(λ) = τ∗(θ)+ φ∗(λ). Consider now

Φ∗(λ)− λ= τ∗(θ)+ β with β= φ∗(λ)− λ.

Lemma 1. The 1-form β is the pullback of a closed 1-form ε on X : β= π∗(ε).
Ê Let us check that β is closed: d (φ∗(λ)− λ) = φ∗(dλ)− dλ = φ∗(π∗ω)− π∗ω =
π ◦ φ)∗ω−π∗ω= ( f ◦π)∗ω−π∗ω= π∗ f ∗ω−π∗ω= 0. Also, β is invariant by Tω :

τ∗(β) = τ∗(φ∗(λ)−λ) = (φ◦τ)∗(λ)−τ∗(λ) = (τ◦φ)∗(λ)−λ= φ∗(τ∗(λ))−λ= φ∗(λ)−λ=
β. Moreover, β vanishes vertically. Indeed, let us first remark that τ ◦ φ = φ ◦ τ, for all
τ ∈Tω, implies φ ◦ ŷ = ŷ ′, for all y ∈Y and y ′ = φ(y). Then, ŷ∗(β) = ŷ∗(φ∗(λ)− λ) =
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ŷ∗(φ∗(λ)− ŷ∗(λ) = (φ◦ ŷ)∗(λ)− ŷ∗(λ) = (ŷ ′)∗(λ)− ŷ∗(λ) = θ−θ= 0. Thus λ′ = λ+β is
a new connection 1-form, the difference β is then the pullback of a 1-formonX, according

to [PIZ13, §8.37, Note]. É
Lemma 2. The 1-form ε is exact: ε= dν, ν ∈C∞(X,R).

Ê Indeed, considering the fundamental property of the Chain-Homotopy Operator

K ◦ d + d ◦K = 1̂∗− 0̂∗ (§1♥), on the one hand, and the vanishing of the holonomy
of the action of Aut(Y,λ) on Y (§5 Proof♦) on the other, we get,

0=ΨX(`) = ˆ̀∗�KX(ω)
�

= ˆ̀∗�KY(dλ)
�

=−ˆ̀∗
�

d
�

KY(λ)
�

�

=−d
�

ˆ̀∗�KY(λ)
�

�

,

for all ` ∈ Loops(X) and all ` ∈ Loops(Y) over `, because 1̂ ◦ `∗ = 0̂ ◦ `∗. Now,
evaluating the Moment Map on the plot t 7→ φt connecting 1Y to φ, using ` = π ◦ `
and φt ◦ `= φt∗(`), we get:

d
�

ˆ̀∗�KY(λ)
�

(t 7→ φt )
�

= d
�

KY(λ)(t 7→ φt∗(`))
�

= d
�

t 7→
∫

φt∗(`)
λ
�

= d
�

t 7→
∫

`
φ∗t (λ)

�

=
∫

`
φ∗(λ)−

∫

`
λ =

∫

`
φ∗(λ)− λ

=
∫

`
β =

∫

`
π∗ε =

∫

`
ε.

Thus, for all ` ∈ Loops(X),
∫

`
ε= 0. Therefore, according to [PIZ13, §6.89], there exists

ν ∈C∞(X,R) such that ε= dν. É
We can now complete to prove that Φ ∈Aut(Y,λ). Indeed, let ν = ν ◦π ∈C∞(Y,R).
Let us define τ ∈C∞(Y,Tω) by τ =−class ◦ ν=−class ◦ ν ◦π, where class: R→Tω.

Hence:

τ∗(θ) =−π∗(ν∗(class∗(θ))) = π∗(ν∗(d t )) =−π∗(dν) =−π∗(ε) =−β.

Thus τ∗(θ) =−φ∗(λ)+ λ. Therefore:

Φ∗(λ) = τ∗(θ)+ φ∗(λ) =−φ∗(λ)+ λ+ φ∗(λ) = λ, and Φ ∈Aut(Y,λ).

So far, we have proved that η : Aut(Y,λ)→Ham(X,ω) is surjective, we have to prove
then that it is a subduction [PIZ13, §1.46]. For this, we need to check that any plot

P: r 7→ fr in Ham(X,ω), admits a local lifting P̃ such that P=locally η ◦ P̃, everywhere.
Thanks to the functional diffeology and to both subductions π∗ : Paths(Y)→ Paths(X)
[PIZ13, §8.32] and π : Y→X, the map (r, t , x) 7→ fr,t (x) is smooth and then admits a
smooth lifting onY. Thus, for x = π(y), the time t = 1 of this lifting defines the smooth
family φr (y) of diffeomorphisms, the shift by τ ∈C∞(Y,Tω) preserves the smoothness
of r 7→ Φr ∈Aut(Y,λ). �
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MomentMap of the Universal Extension Bundle Automorphisms

In this section we will show how the sympletic manifold (X,ω) identifies, through the
Moment map of the Hamiltonian action of Aut(Y,ω)with an orbit of this group for its
linear coadjoint action on its space of momenta. We again emphazise the fact that this

result generalizes the Kostant-Kirilov-Souriau theorem when the symplectic manifold is

homogeneous under the action of a Lie group, and the symplectic form is integral. In

the non-integral but homogeneous case, the optimal result in the category of manifolds

states that the symplectic manifold is, up to a covering, an affine coadjoint orbit of the

group. That result had been extended to the group of all Hamiltonian diffeomorphism

in [PIZ16].

6. SympecticManifolds As (Linear) Coadjoint Orbits— Let (X,ω) be a sym-
plectic manifold, and as it is described in (§5), letPω be its group of periods, π : Y→X be

an integration bundle with connection λ, and Aut(Y,λ) be the group of automorphisms
of the integration structure.

LetA ∗
be the space of Momenta of Aut(Y,λ), that is, the space of left-invariant 1-

forms on Aut(Y,λ). The action of Aut(Y,λ) on Y has a moment map, relatively to the

parasymplectic form dλ, given by

µY : Y→A ∗, with µY(y) = ŷ∗(λ).

Then,

(1) The moment µY descends to µX : X→A ∗
, µY = µX ◦π.

(2) µY is equivariant under the coadjoint action of Aut(Y,λ).
(3) µX is injective.

(4) µX defines a diffeomorphism from X onto the coadjoint orbit

A ∗ ⊃Oλ= µY(Y) = µX(X).

Therefore the symplectic manifold X inherits the structure of a coadjoint orbit. And this

is a universal characterization of symplectic manifolds:

Every Symplectic Manifold is a (Linear) Coadjoint Orbit.

This complements the statement made in [PIZ16] that Every Symplectic Manifold is a
(Affine) Coadjoint Orbit of its group of Symplectomorphisms.
Note. In case of a transitive action of a Lie subgroupG⊂Gω, the moment of the action

ofG is the projection of the moment relative toGω.

Proof. Let us begin by checking that µY is constant on each fiber. The action of Tω
is central in Aut(Y,λ), so for any τ ∈ Tω, for all y ∈ Y and for all φ ∈ Aut(Y,λ) we
have: dτ · y(φ) = φ(τ · y) = τ · φ(y) = τ · (ŷ(φ)), hencedτ · y = τ ◦ ŷ . Thus, µY(τ · y) =
(dτ · y)∗(λ) = (τ ◦ ŷ)∗(λ) = ŷ∗(τ∗(λ)) = ŷ∗(λ) = µY(y).
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Now, let us denote, for all φ, ψ in Aut(Y,λ), R(φ)(ψ) = ψ ◦ φ−1
, the right action of the

group on its momenta. Then, the equivariance follows from: µY(φ(y)) =Ôφ(y)
∗
(λ) =

(ŷ ◦ R(φ−1)∗(λ) = R(φ−1)∗(ŷ∗(λ)) = R(φ−1)∗(µY(y)) = R(φ−1)∗L(φ−1)∗(µY(y)) =
Ad(φ−1)∗(µY(y)) =Ad(φ)∗(µY(y)).

Finally, pushing forward themomentmaps [PIZ13, §9.12& 9.13] leads to the commutative

diagrambelow,where µ̄X is theMomentMap for the groupHam(X,ω), andH ∗
denotes

its space of momenta.

Y A ∗

X H ∗

π

µY

µ̄X

µX η∗

TheMomentMap µ̄X is known to be injective [PIZ16], aswell as η∗ since η is a subduction
(§5, Proof (C)). Hence, µX = η∗ ◦ µ̄X is injective and a subduction on Oλ = µY(Y).
Therefore, µX is a diffeomorphism from X to Oλ= µY(Y), equipped with the quotient
diffeology of Aut(Y,λ) by the stabilizer of any point y ∈Y. �

7. The Case of a Lie Group Action— For the reader who missed that point, let

us recall first how the moment map in diffeology [PIZ10] generalizes the definition

given originally by Souriau [Sou70]. Let (X,ω) be a symplectic manifold and letG be a

connected Lie group acting on X and preserving ω. In that case, the space of momenta
G ∗ is the dual of the Lie algebraG , represented by the space of invariant vector fields,
or equivalently, by the set of one-parameter subgroups. Let h : s 7→ exp(sZ) be a one-
parameter subgroup, Z belonging to the tangent space at the identity identified with

G . Coming back to the expression of the path moment map Ψ, the variation (§2♥)
becomes, for δs = 1,

δp(t ) = [D(exp(sZ)))(p(t ))]−1 ∂ exp(sZ)(p(t ))
∂ s

=
∂ exp(sZ)(p(t ))

∂ s

�

�

�

�

s=0

= ZX(p(t )),

whereZX is the infinitesimal action of h onX. Thus, the expression of the path-moment

map (§2♦) writes

Ψω(p)(h)s (1) =
∫ 1

0
ωp(t )( ṗ(t ),ZX(p(t )))d t .

The classical moment map µ is defined in [Sou70, §11.7], as a solution, at least locally, of
the differential equation

ω(ZX(x)) =−d (µ(x) ·Z).
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We assume now that µ is defined globally, that is, the action ofG is Hamiltonian. Thus

Ψω(p)(h)s (1) =
∫ 1

0

∂ µ(x) ·Z
∂ x

�

�

�

�

x=p(t )

�

d p(t )
d t

�

d t =
�

µ(x ′)− µ(x)
�

·Z.

Hence, Ψ(p) = ψ(x, x ′) = µ(x ′)− µ(x). Therefore, since this equation has a unique
solution, up to a constant, the moment map in diffeology coincides with the classical

moment map when X is a manifold andG is a Lie group.

Now, let us assume that the action ofG on X is transitive. Souriau proved in [Sou70,

§11.38] that the moment map is a covering onto its image. As it is explicitly shown in the

example of the “Cylinder and SL(2,R)” [PIZ16, §7], this covering can be non trivial. The
group SL(2,R) acts transitively on the cylinder R2−{0} preserving the symplectic form
Surf= d x ∧ d y . And the moment map is given by

µ(z)(Fσ) =
1

2

Surf(z,σz)× d t ,

where z = (x, y) ∈R2−{0}, Fσ = [s 7→ exp(sσ)] is the one-parameter group defined
by σ ∈ sl(2,R), the Lie algebra of SL(2,R), vector space of real 2× 2 traceless matrices.
We have clearly µ(z) = µ(−z).

So, why is there a discrepancy between the Hamiltonian Lie group situation, where the

moment map is a covering but may not be injective, and the full Hamiltonian group,

for which the moment map is injective? As we can see in [PIZ16, §3 Proof A’], a key

ingredient for the injectivity of the universal moment map is the existence of compactly

supported functions that separate points. These are the Hamiltonian functions of the

one parameter groups generated by their gradient, against which the moment map is

tested. In this example, in particular, the Hamiltonian functions of the one parameter

subgroups of SL(2R) are exactly the functions fσ : z 7→ µ(z)(Fσ), for all σ ∈ sl(2,R),
and they do not separate opposite points. So, with a Lie group we may not have enough

hamiltonian functions to separate the points of the symplectic manifold; this does not

happen with the whole group of Hamiltonian diffeomorphisms.

Conclusion

This paper answers the question of the ontological nature of symplectic manifolds, if
we can use such a big word. But that question has indeed arised in social networks, for

example in mathoverflow.net [Com17]. That is a good justification a posteriori of this
work.

As we have seen in this construction, for a symplectic manifold, to pass from an orbit

of the affine action of the Hamiltonian diffeomorphisms, to an orbit of a linear action

needs the integration of the Souriau cocycle. This integration is done by considering the

integration bundle of the symplectic manifold, which adds a floor to the construction

(art. 2,♣) and is summarized in the following diagram (♠). We have denoted byGλ the
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group of automorphisms of the integration structure, and by πO the subduction from

Gλ onto its orbit.

Gλ

Y Oλ

X

πOπY

µY

π µX

(♠)

It is important to emphasize that the key construction to passing from an affine coadjoint

orbit to a linear one is the integration bundle, and this integration bundle always exists

only because diffeology deals correctly with irrational tori. The irrationality of the torus of

periods is indeed a real chalenge for any general differential frameworks. Think for example

of the simple product S2× S2
, equipped with the symplectic form ω= Surf⊕

p
2Surf.

Its group of periods Pω = Z+
p

2Z⊂R is dense and its torus of periods not Hausdorff.

It admits however an integration principal bundle with group Tp2 equipped with a

connection form λ of curvature ω.
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